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Bayesian reweighting 
of biomolecular structural 
ensembles using 
heterogeneous cryo‑EM maps 
with the cryoENsemble method
Tomasz Włodarski 1,2*, Julian O. Streit 1, Alkistis Mitropoulou 1, Lisa D. Cabrita 1, 
Michele Vendruscolo 4 & John Christodoulou 1,3

Cryogenic electron microscopy (cryo-EM) has emerged as a powerful method for the determination 
of structures of complex biological molecules. The accurate characterisation of the dynamics of such 
systems, however, remains a challenge. To address this problem, we introduce cryoENsemble, a 
method that applies Bayesian reweighting to conformational ensembles derived from molecular 
dynamics simulations to improve their agreement with cryo-EM data, thus enabling the extraction 
of dynamics information. We illustrate the use of cryoENsemble to determine the dynamics of the 
ribosome-bound state of the co-translational chaperone trigger factor (TF). We also show that 
cryoENsemble can assist with the interpretation of low-resolution, noisy or unaccounted regions of 
cryo-EM maps. Notably, we are able to link an unaccounted part of the cryo-EM map to the presence 
of another protein (methionine aminopeptidase, or MetAP), rather than to the dynamics of TF, and 
model its TF-bound state. Based on these results, we anticipate that cryoENsemble will find use 
for challenging heterogeneous cryo-EM maps for biomolecular systems encompassing dynamic 
components.
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Describing the dynamics of complex macromolecular systems presents significant challenges1–6. The main tech-
niques to achieve this goal have been nuclear magnetic resonance (NMR) spectroscopy and single-molecule 
fluorescence methods2–5,7,8. More recently, technological and methodological advancements in single-particle 
cryogenic electron microscopy (cryo-EM), including improvements in electron detectors, image processing 
software and motion correction algorithms, have offered a new means to investigate protein dynamics9–12. By 
recording large numbers of two-dimensional (2D) projection images of biomolecules captured by flash freezing 
in various compositional or conformational states, cryo-EM offers a glimpse into the diverse conformational 
landscape of dynamic macromolecular complexes.

A variety of computational methods for fitting and refining atomic models against single-particle cryo-EM 
maps have been developed13–19. These methods include rigid body fitting of available X-ray structures into low-
resolution cryo-EM maps20, incorporation of protein flexibility through normal mode analysis21 and flexible 
fitting22–24, and density-based molecular dynamics (MD) simulations25–28. Despite these advances, however, char-
acterising the conformational heterogeneity underlying the dynamics of the systems under observation in cryo-
EM samples remains a significant challenge19,29,30. Structural regions that display conformational heterogeneity 
can be incorrectly aligned and then erroneously averaged with other images, causing these regions to become 
blurred, or even invisible, in the reconstruction, leading to lower final resolution and less detailed or incomplete 
maps. Separating these regions into homogeneous subsets during post-processing can be achieved, for example, 
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by using heterogeneous refinement with maximum likelihood classification methods31. This approach, however, 
tends to work better for discrete heterogeneity when the system can be characterised by a finite number of states. 
For continuous conformational heterogeneity, other methods have been developed that can be applied to either 
2D particle images or 3D maps32, including focus refinement, where a mask is applied to different regions of the 
structure33, multi-body refinement34, manifold embedding35 or deep neural networks36,37.

Typically, to generate dynamical descriptions, structural models can be fine-tuned with experimental data38–43. 
This approach, however, presents significant challenges as the experimental data are affected by a combination 
of the experimental errors and approximations included in post-processing into molecular simulations. As a 
result, different conformations can lead to a similar agreement with experimental observables, particularly when 
the data are incomplete and noisy, or when the forward model is dependent on many approximations, such as 
being based only on distances or angles between atoms to back-calculate experimental properties. Solutions that 
combine structural information from various experimental techniques (e.g. NMR spectroscopy, cryo-EM, small-
angle X-ray scattering (SAXS)) with computational methods (e.g. molecular dynamics) and Bayesian inference 
have been proposed to produce structural ensembles38–41,44. This integrative structural biology approach has been 
applied to many biological systems42,43. Bayesian inference can be applied during MD simulations by adding a 
bias energy term to constrain simulations to sample conformations in agreement with experimental data43, or 
it can be applied a posteriori when the experimental data are used to reweight the MD ensemble. The utility of 
these methods depends on the nature of the system under study, as well as the available experimental data45.

Bayesian methods incorporating cryo-EM 2D particle images or 3D maps have been used within the inte-
grative modelling framework40,46,47 and during MD simulations to enforce the agreement with experimental 
data39,48. A notable example is EMMI39 (Electron Microscopy Metainference), which generates a new structural 
ensemble during MD simulations by incorporating 3D maps as restraints and modelling the errors present in 
the map. Here, we describe cryoENsemble, a computational approach that instead combines molecular dynamics 
simulations with Bayesian reweighting utilising cryo-EM maps (Fig. 1). We present it both in a standard mode 
and in an iterative mode, in which we repeatedly apply reweighting to a more refined structural ensemble. These 
methods allow the interpretation of discrete, continuous and compositional heterogeneity from cryo-EM maps 
to accurately describe the underlying structural ensembles. To accomplish this, we adapted and extended the 
Bayesian Inference Of ENsembles (BioEn) method49, which uses various experimental data (e.g. NMR, SAXS, 
DEER) to refine structural ensembles from MD simulations. We first tested the cryoENsemble method and its 
iterative extension with synthetic cryo-EM maps from two well-characterised systems, namely adenylate kinase 
(ADK) and ribosomal nascent chain complex (RNC) (Supplementary Fig. 1). We could effectively reweight the 
structural ensembles in both cases, capture important structural and dynamic features and, at the same time, 
account for variations in resolution and noise levels present in the maps that correspond to discrete and continu-
ous cryo-EM heterogeneity.

Next, we applied iterative cryoENsemble to the cryo-EM map of the ribosome-bound state of trigger factor 
(TF) stabilised by the presence of peptide deformylase (PDF) and methionine aminopeptidase (MetAP) (Supple-
mentary Fig. 1). TF is the only ribosome-associated chaperone in bacteria, whereas PDF and MetAP are essential 
enzymes involved in the co-translational removal of formylated methionine in nascent protein chains, and both 
bind in the proximity of the ribosomal exit tunnel50. Despite intensive research51–56, the detailed role of TF in the 
co-translational folding process remains incompletely understood due to the experimental challenges presented 
by its dynamic nature, even in its ribosome-bound state, and only low-resolution or incomplete cryo-EM maps, 
which often encompass merely the ribosome-binding domain (RBD)57–59 are available.

By using all-atom MD simulations combined with cryoENsemble, we provide insights into the dynamics of 
TF, as captured within this cryo-EM map and explain the additional density present around TF. Our findings 
indicate that an ensemble of TF structures obtained with MD can better explain cryo-EM maps compared to a 
single model. Furthermore, using cryoENsemble, we confirmed that the additional density localised close to TF 
is not due to the dynamics of TF, as was initially hypothesised57. Instead, by fitting MetAP to this unaccounted 
density, we found a compelling overlap, further confirming that this density stems from a novel binding site of the 
MetAP, as suggested recently50. Based on this observation, we set up another MD simulation with MetAP bound 
to TF. The obtained structural ensemble of TF + MetAP and the previously generated TF ensemble were used for 
the final cryoENsemble reweighting. By combining these two ensembles, we aimed to improve our structural 
ensemble further and analyse the compositional heterogeneity of the cryo-EM map. We obtained a reweighted 
minimal ensemble that combined TF and MetAP, and found that the MetAP population in this map is ~ 40%.

Overall, we demonstrate that cryoENsemble can extract otherwise elusive information about populations 
of the macromolecular states and their dynamics from heterogenous cryo-EM data. It also proves valuable in 
modelling biomolecular complexes when it is challenging to assign the regions of density due to their dynam-
ics or structural changes upon binding, making it a much-needed addition to the structural biology toolbox.

Results
The cryoENsemble method for Bayesian reweighting with cryo‑EM maps
To derive an ensemble of structures, each with a corresponding set of weights that adequately represent the 
experimental data, we based cryoENsemble on the BioEn method49,60,61 and incorporated a single-particle cryo-
EM data framework. The BioEn algorithm uses Bayes’ theorem to define the posterior probability as a function 
of the statistical weights of each member of the structural ensemble ( wi ), where i is the index of the member, 
given the experimental data (D) and the prior knowledge about the system (I)

(1)P(w|D, I) ≈ P(D|w, I)P(w, I)
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Figure 1.   Schematic illustration of the standard cryoENsemble method and its iterative extension. The input includes a 
structural ensemble (depicted in grey), typically obtained from molecular dynamics simulations, and a cryo-EM map of the 
biological system under investigation. Each model from the prior structural ensemble is fitted into the reference cryo-EM 
density before the cryoENsemble calculations. Subsequently, density is generated for each structure and starting weights 
(wi) are assigned. In the standard mode, Bayesian reweighting generates new weights (w′i), indicated in the figure by varying 
shades of grey, for each structure in the ensemble (posterior structural ensemble) as well as posterior density for the system 
(see Methods). In the iterative mode, following the standard reweighting, a sub-ensemble of structures that meets weight 
criteria is selected for another round of Bayesian reweighting, which generates new weights (w″i) for the sub-ensemble. This 
process is repeated until the agreement with the experimental data decreases (reflected by an increase in χ2 ). The iterative 
mode returns the minimal set of structures that maintains good agreement with the experimental cryo-EM data and posterior 
density.
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In the context of cryo-EM data, the experimental data points are defined as a set of voxels with a density 
exceeding a predetermined threshold value, the latter established based on the noise levels present in the data 
(see Methods). To take into account the resolution anisotropy that can be present in the map, we can filter the 
map based on local resolution prior to reweighting. The likelihood function, P(D|w, I) assesses the probability 
of observing a given set of experimental data (D), considering the actual ensemble of structures and their cor-
responding statistical weights ( w ). The prior probability term, P(w|I) , encapsulates the knowledge about the 
structural ensemble and weights ( w ). This knowledge is typically derived from the molecular dynamics ensemble 
prior to the incorporation of the experimental data. The prior can be constructed in several ways, but keeping 
in line with the BioEn methodology, we utilise Kullback–Leibler (KL) divergence ( SKL)

where SKL is defined as SKL =
∑M

i=1wiln
wi

w0
i
 and both reference ( w0

i  ) and refined weights ( wi ) are normalised and 
positive, and M is the size of the ensemble. Generally, the reference weights of the prior structural ensemble ( w0

i  ) 
are selected from the uniform distribution, though they can also be set according to populations derived from 
biased MD simulations (e.g. from metadynamics62). An additional hyperparameter, θ , describes our confidence 
in the initial structural ensemble. A high value of θ indicates high confidence in the MD simulations and gener-
ated ensemble, causing the refined weights ( wi ) to stay close to the initial ones ( w0

i  ). Conversely, a low value of 
θ , suggests that the initial ensemble may be far from optimal, allowing the weights ( wi ) to deviate significantly 
from the starting one ( w0

i  ). θ is automatically selected during optimisation based on the developed automatic 
L-curve analysis.

The likelihood function is modelled via a Gaussian distribution63

where ρ0
n represents the experimental/reference density from the n-th voxel of our map, whereas ρi

n(σ ) is simu-
lated density from the same voxel generated from the i-th model of the structural ensemble with the use of 
Gaussian functions with the width equal to σ , which is a nuisance parameter (see Methods). This likelihood 
function contains two additional parameters: the variance of the Gaussian likelihood 

(

σ 2
L

)

 , which is equivalent 
to the experimental error, and the scaling factor ( α ). We approximate σ 2

L using the variance of noise distribution 
outside of the molecular system density, while α and σ are estimated during the reweighting. To determine the 
optimal value of θ , we perform calculations over a range of θ values and use an automatic L-curve analysis with 
the Kneedle algorithm64. This allows the selection of a θ value that yields good agreement with experimental data 
(low χ2 ) and also prevents overfitting (maintaining a small difference from the distribution of the initial weights).

Having defined both the likelihood and prior functions, we can express the negative log-posterior function, 
which we will minimise to find the optimal weights, along with nuisance parameters, using the log-weights 
optimisation as encoded in BioEn

The execution of standard cryoENsemble calculations yields optimal (non-zero) weights for every structure 
in our structural ensemble, along with the values of θ , σ and α . A schematic of our methodology is shown in 
Fig. 1A. Additionally, we extended the cryoENsemble standard run into the iterative mode, where we select a 
sub-ensemble of structures from the initial run and perform subsequent rounds of cryoEnsemble. In this mode, 
we select Neff*M structures with the highest weight during each round, where Neff is an effective sample size 
(Neff = exp(SKL)). This iterative process continues until the agreement with the experimental data decreases 
(reflected by an increase in χ2 ) (Fig. 1B).

Both approaches have been tested using two extensive synthetic cryo-EM datasets from the adenylate kinase 
and ribosomal nascent chain complex (Supplementary Fig. 1) and showed that they can accurately reproduce 
the structural properties of the underlying conformational ensembles from the heterogeneous and noisy cryo-
EM data.

CryoENsemble reweighting of a structural ensemble of adenylate kinase
Adenylate kinase (ADK) is an enzyme that catalyses the transfer of a phosphoryl group from ATP to AMP. This 
enzyme comprises three domains (CORE, NMP and LID) and undergoes a significant conformational change 
from open (apo) to closed (holo) conformation upon ligand binding, with RMSD = 7.16 Å (Supplementary 
Fig. 1A). Both states have been structurally characterised by X-ray crystallography (PDB IDs: 1AKE for the 
closed65 and 4AKE for open66 conformation). To test our method, we generated synthetic density maps based 
on these structures using different populations of each state, resolution and noise levels, culminating in a total of 
66 maps for reweighting (Supplementary Fig. 2). The prior structural ensemble consisted of structures obtained 
from two structure-based all-atom MD simulations (see Methods).

For each ADK dataset, consisting of a structural ensemble and a selected set of voxels from a combination of 
reference map and simulated map (Supplementary Fig. 3), we ran the cryoENsemble reweighting method both 
in a standard and iterative approach. Initially, we assessed the effectiveness of our methodology in reproducing 
the reference population of the open state used to generate the reference maps (Fig. 2A). Our findings from the 
standard cryoENsemble run indicate consistency across all density maps, which decreases with both a reduction 
in resolution (10 Å) and an increase in the noise level (10%) (Fig. 2A). The consistency was lower for reference 

(2)P(w, I) ≈ exp(−θSKL)

(3)P(D|w, I) ∝ exp(−
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2
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L
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∑M

i=1
wiln

wi

w0
i

+
∑N

n=1

[ρ0
n − α

∑M
i=1wiρ

i
n(σ )]

2

2σ 2
L



5

Vol.:(0123456789)

Scientific Reports |        (2024) 14:18149  | https://doi.org/10.1038/s41598-024-68468-7

www.nature.com/scientificreports/

maps with a very small (≤ 0.2) or very large (≥ 0.8) population of the open state. This disparity is likely due to our 
prior structural ensemble equally representing the open and closed states, a significant deviation from these refer-
ence maps. This discrepancy was resolved in the iterative mode, where by selecting progressively smaller subsets 
(Supplementary Fig. 4), we managed to achieve the correct population across all analysed open states (Fig. 2A).

Following these calculations, we generated a reweighted and averaged cryo-EM map for each dataset and 
compared it with the reference density map to evaluate the impact of the reweighting (Fig. 2B). For the compari-
son, we applied two metrics recommended by the 2019 Cryo-EM Model Challenge67: the correlation coefficient 
(CC) and Segment Based Manders’ Overlap Coefficient (SMOC)68 as they capture global and local aspects of 
similarity between maps.

The correlation coefficient calculated between the reference maps and posterior densities revealed that the 
effect of reweighting is evident across all open state populations in each ADK dataset (Fig. 2B). The correlation 
coefficient for medium and low-resolution maps reaches values of up to 0.9 or 0.8 for low (1%) and high (10%) 
noise levels, respectively. Higher resolution maps (3 Å), which contain more detail, present a more significant 
challenge in reweighting the structural ensemble to achieve high correlation coefficients, in particular when high 
noise levels (10%) are present in the data (Fig. 2B). However, reweighting consistently yields higher correlation 
coefficients than those obtained with the prior weights (for 3 Å with high noise levels (10%) on average CC = 0.597 
and CC = 0.557 for posterior and prior weights, respectively). We also compared our reweighting results with 
the correlation coefficients derived from maps generated based on the best single structure fit. In the majority 
of the cases, the entire ensemble obtained after reweighting provides a more accurate representation of the map 
than any individual structure (Fig. 2B). Interestingly, when lowering the map resolution, e.g. from 6 to 10 Å, the 
quality of a single structure fit increases and in the cases of either entirely open or closed state it is higher than 
the CC of the prior ensemble, and can even equal the value of the reweighted ensemble. The single structure CC 
deteriorates when maps are close to an equal mixture of open and closed states. Although using iterative mode 
does not significantly improve the correlation coefficient (Fig. 2B), this method selects smaller sub-ensembles 
with at least as good agreement with the data as the whole reweighted ensemble (Supplementary Fig. 4). These 

Figure 2.   CryoENsemble reweighting of ADK. (A) Open state populations calculated from cryoENsemble 
reweighting of the ADK dataset. The open state populations obtained after structural ensemble reweighting for 
each ADK dataset are shown in orange for the standard mode and green for the iterative mode, along with the 
target values (black circle). (B) Correlations between reference maps and posterior maps upon cryoENsemble 
reweighting of the ADK dataset in standard (orange) and iterative mode (green), including values for the prior 
ensemble and the best single structure. The datasets vary in resolution, noise level, and reference populations of 
the open state.
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observations show that cryoENsemble not only can provide a reweighted structural ensemble but also inform 
on when a single structure may be sufficient to describe a cryoEM map satisfactorily.

For the second score, we used SMOC, which captures the local similarity between the reference map and 
the fitted model. We calculated the average SMOC score across all residues and models from the MD ensemble 
and observed that it improved after reweighting, in particular for the entirely open and closed states (Sup-
plementary Fig. 5). With iterative mode, we observed small further improvement, especially again for maps 
capturing completely open or close state. Altogether, for both global and local metrics, we see a clear effect 
of the reweighting on the quality of the ADK structural ensemble, with the iterative mode having the highest 
impact on the estimation of the correct populations. We subsequently analysed how the weights of each model 
from the structural ensemble were updated during the reweighting. We found that cryoENsemble shifted the 
weights from the uniform prior distribution to correctly capture the reference map open/closed state population 
in standard (Supplementary Figs. 6–11) and iterative (Supplementary Figs. 12–17) reweighting. Finally, a visual 
comparison of the prior and posterior average density maps alongside the reference maps shows the impact of 
the reweighting, especially pronounced for the open state maps where posterior maps combine only the open 
state conformations (Supplementary Figs. 18–20).

Overall, we have demonstrated the effectiveness of cryoENsemble in characterising discrete heterogene-
ity in cryo-EM maps. We derived weights that can generate a map in good agreement with the experimental 
data (Supplementary Figs. 18–20) and are able to describe the correct populations of each state (Fig. 2A). Our 
reweighted structural ensemble better explains the experimental data, using both global (Fig. 2B) and local 
metrics (Supplementary Fig. 5), than the starting ensemble. Furthermore, our method can also suggest when 
a single structure fitted into the reference map is insufficient, highlighting the necessity of using a structural 
ensemble for heterogeneous cryo-EM map fitting.

Reweighting the structural ensemble of the ribosome‑bound nascent chain of FLN5‑6
The second system we used for the test is the FLN5-6 ribosome nascent chain complex encompassing the 
immunoglobulin-like domain (FLN5 protein), captured during its biosynthesis on the bacterial 70S ribosome 
(Supplementary Fig. 1B). The FLN5 is the fifth filamin domain (residues 646–750) of the Dictyostelium discoi-
deum gelation factor, and its co-translational folding has been extensively studied through a combination of 
experimental and computational techniques69–72. The FLN5-6 nascent chain sequence also consists of the 31 
amino-acid linker comprising the fragment of the subsequent filamin domain (FLN6) and the SecM stalling 
sequence73. For our study, we obtained a starting structural ensemble of FLN5-6 based on the previous all-atom 
structure-based MD simulations74 encompassing a diverse set of 100 structures of the FLN5-6 nascent chain 
(Supplementary Fig. 21A,C). Additionally, we created reference density maps based on random selections of 10 
structures from this structural ensemble (Supplementary Fig. 21B) (see Methods section).

We applied the cryoENsemble protocol to the prior structural ensemble using the combined data from the 
reference map and maps generated from the structural ensemble. We used the entire structural ensemble (100 
models) for the reweighting, including the ten conformations used to generate the reference density maps. Aver-
age density maps were generated based on the prior and posterior weights, and their correlation coefficients 
with the reference density maps were calculated (Fig. 3A). The prior ensemble, despite its significant structural 
heterogeneity, already displayed a good agreement with the reference density maps with average CC varying 
between 0.8 (3 Å maps) and 0.95 (10 Å maps) for 1% noise and from 0.47 (3 Å maps) to 0.84 (10 Å maps) for 
10% noise (Fig. 3A). After standard reweighting, the correlation increased in all cases, reaching a value close to 
1.0 for low noise levels (1%) and 0.9 for high noise levels (10%), with the only exception of the 3 Å maps, which, 
as in the ADK case, present a more significant challenge in reweighting the structural ensemble, in particular 
at the higher noise levels (10%) where CC reached 0.54 versus 0.47 with the prior weights. This difficulty is 
further apparent upon examining the extent of density in this highly noisy system (Supplementary Fig. 21B). 
Iterative reweighting improved the CC further, especially for the highest resolution maps. A comparison with 
maps generated based on a single structure shows that, in contrast to the ADK system, a single structure can-
not represent the dynamic heterogeneity present in the nascent chain cryo-EM maps for any of the systems we 
tested (Fig. 3A). We also evaluated the reweighted ensemble using SMOC metrics (Supplementary Figs. 22), 
finding that the reweighting improved the agreement with experimental data both globally and locally in all 
cases. Additionally, in order to assess the structural similarity between the obtained reweighted ensemble and 
the ten structures used to generate the reference map, we used the Jensen-Shannon (JS) divergence. We found 
significantly closer matching values upon reweighting, especially upon iterative reweighting (Supplementary 
Fig. 23). The high initial correlation between the prior ensemble and reference map can result in relatively minor 
changes to the correlation coefficients after reweighting (Fig. 3A). However, we observed significant shifts from 
the uniform distribution of the weights of the prior structural ensembles due to reweighting (Fig. 3B) especially 
visible after iterative reweighting, which significantly narrowed down the structural ensembles, especially for 
the high-resolution maps (Supplementary Figs. 24, 25A). The weights of the ten models used for reference map 
generation (circled in Fig. 3B, Supplementary Fig. 24) are substantially higher than those of the remaining 
structures (e.g. 5.6% vs. 0.5% on average for 3 Å maps with 1% noise), a trend not significantly affected by the 
resolution of the density map or its noise level. These observations highlight the sensitivity of our method, which 
became particularly apparent when we analysed the entire dataset to determine how many of the ten models 
used to generate the reference map received the highest weight after the standard reweighting (Supplementary 
Fig. 25B). For high- and medium-resolution maps (3 and 6 Å), our method assigned the highest weights to the 
correct models in all datasets. While lower-resolution maps (10 Å) posed greater challenges, over half of the 
reference models were correctly identified to receive the top ten highest weights.
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As the maps were generated based on a selection of an ensemble of 10 structures (target ensemble), we can 
use this synthetic data to test cryoENsemble’s capacity to retrieve not only structural ensembles that corre-
spond to the cryoEM map but also the embedded dynamics. To analyse if local flexibility can be retrieved upon 
reweighting, we calculated the root-mean-square fluctuations (RMSF) for prior and reweighted ensembles and 
compared them to the target RMSF using root-mean-square deviation (Fig. 4). We observed that, in all cases 
apart from the very challenging map with 3 Å resolution and 10% noise, the description of the RMSF improved, 
especially with the use of iterative mode. Furthermore, we performed a principal component analysis (PCA) to 
study global dynamics for each ensemble and compared the three main principle components (PC1, PC2, PC3) 
with the target values. We found significant improvement for PC1 and PC2 (Supplementary Figs. 26 and 27), 
whereas PC3 proved more challenging to improve for some maps (Supplementary Fig. 28).

Overall, we have shown that cryoENsemble can retrieve structural ensembles that globally and locally capture 
structural (CC, SMOC, JS divergence) and dynamical (RMSF, PCA) aspects ingrained in the cryo-EM map that 
represents continuous heterogeneity.

Figure 3.   CryoENsemble reweighting of the FLN5-6 nascent chain dataset. (A) Correlations between the 
reference maps and posterior maps upon standard and iterative cryoENsemble reweighting of the FLN5-6 
nascent chain dataset. Correlation coefficients calculated between the FLN5-6 nascent chain reference density 
maps and maps obtained before and after the reweighting, as well as the maps derived from the best single 
structure fitted into the reference density map. The 100 reference density maps (at resolutions of 3, 6, and 10 Å, 
and with noise levels of 1% and 10%) were generated based on ten randomly selected structures from the MD 
ensemble. (B) Weights obtained upon standard cryoENsemble reweighting of the FLN5-6 nascent chain dataset. 
Examples of the reweighting process for FLN5-6 nascent chain based on the reference map (at resolutions of 
3, 6, and 10 Å, and with noise levels of 1% and 10%). Weights are calculated with different theta (θ) values 
ranging from 0 to 107, and with black lines, we depict optimal weights selected based on the L-curve analysis. 
Additionally, weights corresponding to the ten models used to generate the reference map are circled.
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Dynamics of the ribosome‑bound TF in complex with PDF
Upon binding to the ribosome, TF remains highly dynamic, making it a challenging system for structural stud-
ies. We applied the iterative cryoENsemble methodology to the cryo-EM map, which represents the E. coli 70S 
ribosome in complex with PDF, TF and MetAP50. PDF and MetAP also bind around the ribosomal exit tunnel 
and compete for the s uL22–-uL32 protein region59. MetAP additionally has a secondary binding site, which 
overlaps with the TF one50,59. When TF is bound to the ribosome in the presence of PDF or MetAP, it exhibits 
reduced dynamics and is, therefore, easier to characterise via cryo-EM.

We exploited this and ran a long all-atom structure-based75 MD simulation with TF bound to the surface 
of the 70S ribosome complexed with PDF (Methods). Despite the fact that the dynamics of TF is restricted in 
the MD simulations by the presence of the bound PDF, it remains mobile, in particular within the peptidyl-
prolyl cis–trans isomerase (PPI-ase) domain region (Supplementary Fig. 29). We next reweighed the MD trajec-
tory using iterative cryoENsemble and the available cryo-EM map (EMDB: 3061150) (Supplementary Fig. 1C). 
Our initial ensemble was already in good agreement with the cryo-EM data, with a correlation coefficient 
(CC) of 0.68 and after four rounds of iterative reweighting, the agreement improved to CC = 0.73, respectively 
(Supplementary Fig. 30). Moreover, as the reweighting process increased the weights of selected members of 
the ensemble (Fig. 5A, Supplementary Fig. 30), we identified the best-fit model within the density map, with 
CC = 0.65 (Fig. 5B). The improvement of the agreement with the experimental data for the MD ensemble, 
upon the reweighting, underscores the significance of utilising a structural ensemble instead of a single model 
when analysing heterogeneous cryo-EM maps. The most significant change in the ensemble composition was 
evident in our clustering analysis (see Methods). We found that, of the five main clusters encompassing 77% 
of the total trajectory, only one had an increased population following the reweighting (cluster_4 from 7.7 to 
12%). Cluster_2 remained at a similar level (12%), and the remaining three experienced decreased populations, 
particularly apparent for cluster_1 (Fig. 5A), comprising 40% of the MD trajectory, which dropped to 21.5% in 
the reweighted ensemble.

Interestingly, cluster_14 had the highest absolute increase in the population upon reweighting (from 0.8 to 
12%). The three main clusters obtained from reweighting combine to 45.5% of the population (Fig. 5C). Alto-
gether, these findings show that reweighting using cryoENsemble can significantly improve the quality of the 
MD ensemble and its agreement with the cryo-EM data. Importantly, the reweighting process is not a simple 

Figure 4.   CryoENsemble reweighting can retrieve local dynamics from cryo-EM maps. The root-mean-square 
deviations calculated between the RMSF of the target ensemble and the RMSFs from the prior ensemble (in 
grey), standard reweighting (in orange), and iterative reweighting (in green).
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increase of weights for all structures with high CC, as we found no correlation between new weights and cor-
responding CC scores (Supplementary Fig. 31); however, the structures that have the highest weights also tend 
to have high CC scores – supporting our observation that an ensemble explains heterogenous cryo-EM data 
better than a single structure.

Additionally, when we compared the experimental cryo-EM map with the map obtained from the single best-
fit model and the map representing the entire reweighted MD ensemble, the reweighted map is more similar to 
the cryo-EM when visualised at different density thresholds (Supplementary Fig. 32). This emphasises not only 
the necessity to use an ensemble of structures instead of a single structure to capture information from highly 
heterogeneous cryo-EM maps but also underscores the importance of reweighting.

Finally, we analysed the TF dynamics retrieved from the cryo-EM map using RMSF and the first principal 
component (PC1) from the PCA analysis of the reweighted ensemble. We found that the most dynamic region 
corresponds to the PPI domain (Fig. 5D), which is also visible in the three main structural states (Fig. 5C). By 
conducting PCA on the reweighted ensemble, we characterised the movement of the PPI domain embeded in 
the cryo-EM map further and found that it moves towards and away from the ribosome surface (Fig. 5E). These 
observations align with previous work, which depicted, through coarse-grained MD simulations, that this domain 
fluctuates between bound and unbound state57. Altogether, these results show that cryoENsemble captures both 
the structural ensemble and its possible dynamics from the corresponding cryo-EM map.

The unaccounted cryo‑EM density corresponds to a TF‑bound methionine aminopeptidase, 
not TF dynamics
The initial study of TF, MetAP and PDF assembly on the ribosome provided several low-resolution cryo-EM 
maps of the 70S ribosome in various configurations59. Notably, in the cryo-EM map of MetAP-PDF-TF (12.2 Å, 
EMDB:9778), the MetAP density was unannotated, and an additional density near TF was attributed to the 
possible dynamics of TF. A subsequent study obtained a higher resolution cryo-EM map (4.1 Å) of the 70S ribo-
some with MetAP, PDF and TF with again additional density near TF, but now annotated as a tertiary binding 
site for MetAP50.

Figure 5.   CryoENsemble iterative reweighting of the TF dataset. (A) Analysis of the effect of reweighting 
on the weights of each cluster obtained from the MD simulations. The green circle size is proportional to 
the population of the cluster upon reweighting. (B) The structural model with the highest weight selected by 
cryoENsemble (Supplementary Fig. 30) is visualised in two different orientations inside the cryo-EM map. (C) 
The three main states obtained upon reweighting corresponding to the cluster_1, cluster_2 and cluster_14, along 
with their populations. (D) RMSF calculated on the reweighted ensemble and mapped on the structure of TF. 
(E) Visualisation of the principal mode PC1 that captures the most dominant motion (indicated by blue arrows) 
within the reweighted ensemble.
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Seeking to clarify the nature of this additional density, we took advantage of the unique combination of the 
MD simulations and cryoENsemble. After accounting for the TF structural ensemble obtained upon reweight-
ing, we observed that there is still an unaccounted density present (Fig. 6A), which confirms the suggestion of 
a tertiary binding site for MetAP50. To further validate this observation, we fitted the MetAP structure using 
a rigid-body procedure, starting with the orientation where the positively charged loops faced the ribosome 
surface, as indicated by biochemical studies to be a probable ribosome-binding mode76, and found a compelling 
overlap (Fig. 6B, Supplementary Fig. 33).

Next, we ran another structure-based MD simulation using this TF + MetAP structure. The resulting structural 
ensemble was combined with the previous TF structural ensemble, and we conducted iterative reweighting with 
cryoENsemble. After five iterations (Supplementary Fig. 34), we obtained a reweighted ensemble with 79 struc-
tures and a correlation coefficient of 0.76, which is higher than when using only the TF ensemble. We identified 
two main states for the TF and TF + MetAP ensemble, finding that the population of the MetAP in the cryo-EM 
map is ~ 40% (Fig. 6C,D and Supplementary Fig. 35).

These findings demonstrate how MD simulations, in combination with cryoENsemble reweighting, can help 
explain unmodelled and unaccounted for parts of cryo-EM density maps corresponding to dynamic regions of 
biomolecular complexes with potential compositional heterogeneity.

Discussion
Characterising complex biological processes through cryo-EM presents many unique challenges, especially for 
systems that are dynamic, exist in multiple conformational or compositional states. Among such systems is the 
ribosome-bound trigger factor, which possible dynamics we have elucidated using cryoENsemble, a method 
that takes advantage of both the molecular dynamics simulation and Bayesian methodology to yield accurate 
structural and dynamic representations of complex biomolecular systems. Notably, unlike most of the existing 

Figure 6.   CryoENsemble iterative reweighting captures conformational and compositional variability in 
cryoEM maps. (A) The cryo-EM map (EMDB: 3061150) with unaccounted density coloured in green. (B) 
The outcome of fitting the MetAP structure (PDB ID: 1MAT77) into the unaccounted density (from (A)), 
presented along the 70S-Trigger factor structure (PDB ID: 7D8050). (C) The main cluster of TF structures, with 
a population of 10%, obtained after the reweighting of combined structural ensembles (TF and TF + MetAP). 
(D) The main cluster of TF + MetAP structures, with a population of 12%, obtained after the reweighting of 
combined structural ensembles (TF and TF + MetAP).



11

Vol.:(0123456789)

Scientific Reports |        (2024) 14:18149  | https://doi.org/10.1038/s41598-024-68468-7

www.nature.com/scientificreports/

methods, it adjusts the weights of the structural ensembles to improve their agreement with 3D cryo-EM maps, 
rather than fit or refine a single structure. Our approach uses Bayesian inference to reweight pre-calculated 
structural ensembles, which differs from EMMI39, where inference is applied during the MD simulations to 
refine the ensemble with data from the cryo-EM map.

The effectiveness of our method highly depends on the quality of the prior structural ensemble since our 
reweighting strategy by design does not produce new conformations. The advantage of this approach is that it 
is computationally less demanding, easier to set up and can use structural ensembles obtained from any type 
of molecular dynamics simulations (all-atom or coarse-grained force fields). Additionally, we can combine 
multiple different ensembles to study compositional heterogeneity. However, if the prior ensemble is too dif-
ferent from the cryo-EM map (e.g. low correlation coefficient upon reweighting), it may be necessary to restart 
the simulation in a different force field, from a different starting structure or use enhanced sampling methods 
to sample conformational space more efficiently. Finally, as new, more refined maps emerge, we can rerun the 
cryoENsemble without the need to restart the MD simulations, allowing us to use the method alongside ongoing 
cryo-EM map processing.

In this study, we used all-atom structure-based models75 to sample available conformational space efficiently. 
While structure-based potentials have been previously used to fit models in the cryo-EM maps via MDFit78, we 
have instead employed them to generate a prior structural ensemble. Despite approximations, structure-based 
models allow exploration of the dynamics of large biological complexes that are otherwise inaccessible to more 
detailed computational approaches and can accurately describe their functional dynamics79,80. Coarse-grained 
simulations, once converted to the all-atom resolution, could be used in a similar manner to generate prior 
structural ensembles for cryoENsemble, thereby further expanding the accessible system size and complexity.

For more detailed systems, the use of more advanced force fields, such as CHARMM36m81 or DES-AMBER82, 
may be necessary to generate more apt initial structural ensembles – potentially even guided by density-driven 
MD simulations26, where lower resolution map or one of the half-maps can be used to restrict sampled con-
formational space. Moreover, the structural ensembles derived from MD simulations with enhanced sampling 
methods can also be used to further increase the capacity to extensively sample the conformational landscape. In 
this scenario, weights obtained from the reweighted MD simulations would serve to define our initial ensemble.

CryoENsemble can also be used to improve or test molecular dynamics simulations. By setting up multiple 
simulations with different force fields, cryoENsemble can assess which of the force fields most accurately cap-
tures the cryo-EM data. Furthermore, this method could be integrated into various force field parameterisation 
schemes, thereby enabling the utilisation of cryo-EM data83–85.

In standard cryoENsemble reweighting, the weights can’t be equal to 0 (see method description). By introduc-
ing the iterative mode, where in each step we select a sub-ensemble of structures (Fig. 1), we define the minimal 
set of structures that achieves a good agreement with the cryo-EM map. Each new sub-ensemble is treated as 
a new prior ensemble with uniform weights and undergoes a standard cryoENsemble run. The iterative mode 
improved the results in both of our test systems (ADK and FLN5-6 + 31 RNC).

While our method is computationally efficient, the reweighting time and memory usage can depend on the 
size of both the cryo-EM map (number of voxels) and the structural ensemble. This can be mitigated by cluster-
ing the MD structural ensemble before the reweighting to eliminate highly similar structures, as each requires 
calculating and storing a density map. The largest structural ensemble we tested comprised 2000 structures, 
which should suffice to capture the heterogeneity present in the cryo-EM reconstructions for most of the cases. 
We used a maximum of ~ 120,000 voxels from the cryo-EM map; however, one can apply initial down-sampling 
of the map to reduce the number of voxels for particularly large datasets. This method can also be helpful when 
working with large structural datasets. A stepwise reweighting with a downsampled map can be applied to obtain 
a minimal set of structures, which can be subsequently reweighted again using the high-resolution map. In a 
similar fashion, cryo-EM maps can be split into sections with varying resolutions and noise levels or be utilised 
through separate half-maps. Reweighting the structural ensemble first to the much more refined maps and then 
subsequently reweighting it with a less resolved map region could therefore help mitigate some of the challenges 
with highly heterogeneous maps.

Through the use of two synthetic datasets and one experimentally derived cryo-EM map, we have demon-
strated that cryoENsemble can generate structural ensembles with averaged density maps closely mirroring 
the experimental maps and accurately reproducing the structural and dynamic properties of the underlying 
conformational ensembles. We have also presented that a fitted structural ensemble captures experimental data 
better than a single structure in these cases.

Each 3D cryo-EM map is obtained through extensive processing involving particle-sorting steps like 2D 
and 3D classification and thus represents only a fragment of the conformational space sampled by the system 
under study, which limits our complete understanding of its dynamics. Depending on the number of iterative 
3D classifications and sorting rounds driven by the system dynamics and the scientific question, the maps can 
combine different levels of heterogeneity and dynamics. Developing methods such as cryoENsemble, which can 
capture dynamics in well-defined maps and model the various types of heterogeneity in low-resolution maps, 
will enable the user to choose maps in earlier processing stages, reducing the time from data collection to model.

The cryoENsemble approach is particularly suited for complex biological systems featuring convoluted 
dynamics. However, highly dynamic systems may be challenging if they do not present detectable cryo-EM 
density. Systems accessible to the cryoENsemble approach often yield cryo-EM maps with high-resolution 
regions associated with more static components and lower-resolution and ambiguous cryo-EM density describing 
dynamic elements. This includes nascent chain polypeptides or ribosome auxiliary factors bound to the ribo-
some. In these cases, the rigid and well-resolved structure of the ribosome contrasts with the low-resolution 
cryo-EM density of the NC or auxiliary factor. The dynamic character of these components implies the search 
for a solution in the form of a true structural ensemble rather than a selection of structures, which individually 
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fit into the density or just a single structure43. We have also shown how cryoENsemble can be applied to analyse 
unaccounted densities and compositional heterogeneity, which allowed us to model TF-bound methionine 
aminopeptidase. By enabling the analysis of cryo-EM maps for regions that are more dynamic and therefore 
have less well-defined density, our method opens up new avenues for structural studies. Finally, cryoENsemble 
can be extended to utilise other experimental data within the BioEn or similar framework, making it a potent 
tool for integrative structural biology.

Methods
We tested cryoENsemble using two synthetic datasets. The first one is adenylate kinase (ADK) in both the open 
and closed conformations, capturing the discrete heterogeneity present in cryo-EM maps. The second system is 
a ribosome-bound nascent chain of the immunoglobulin-like domain (FLN5-6 + 31), exemplifying continuous 
heterogeneity. Characterising ribosome-bound nascent chains using cryo-EM is especially challenging, given that 
they combine flexible and predominantly unstructured linkers in the exit tunnel with folded or partially folded 
domains outside of the exit tunnel69; the latter are only transiently interacting with the ribosome72.

Generating the synthetic reference density maps
In our Bayesian framework, under typical circumstances, the reference density map would correspond to the 
experimentally derived cryo-EM map 

(

ρref = ρexp
)

 . However, to test our methodology, we utilised synthetic ref-
erence density maps. They were either generated based on the crystal structures of the open or closed ADK state 
(

ρref = ρX−ray
)

 or on randomly selected models from the all-atom MD ensemble of the FLN5-6 + 31 ribosomal 
nascent chain ( ρref =

∑N
i=1

ρi
N  , where ρ i is a density map of the i-th model). These synthetic reference density 

maps were generated using a protocol that mimics molmap command from ChimeraX with the bandwidth of 
the blur kernel σ set at 0.225 × resolution86. Maps were produced at three differing resolutions (3, 6, and 10 Å) 
to explore the influence of resolution on the reweighting process. To further investigate the effect of noise on 
reweighting, we added different levels of Gaussian noise to the map. The noise had a mean of 0 and a standard 
deviation based on either 1% or 10% of the map’s maximum density.

Generating the density maps for the prior structural ensemble
In addition to the synthetic reference density maps (ρref ) , we generated density maps for every structure from 
the MD ensemble (ρi) . If not initially aligned, each structure was aligned to the reference density map using 
Situs20. Following this alignment and using an approach similar to one from the modified gmconvert script40, 
density maps were generated with the same voxel size, number of voxels and origin as the reference density map. 
The process involved positioning a spherical 3D-Gaussian function at each atom position with parameters for 
the corresponding atom obtained by fitting the electron atomic scattering factors specific to each atom type40,87.

Synthetic density map processing
The generated density maps, both the reference and those from the structural ensemble, were further pro-
cessed using mrcfile python library88. From our reweighting dataset, we excluded voxels with negative values 
and rescaled the remaining ones to a molecular density value of 1, making the different maps easier to compare. 
Our reweighting methodology operates only on the selected voxels, both from the reference density map and 
the density maps generated based on the MD ensemble, that have density above the corresponding thresholds. 
The reference density map threshold is set up to be equal to 3 ∗ σnoise , where σnoise was either 1% or 10% of the 
maximum density, whereas the threshold for maps generated based on MD was equal to 3*σmap , where σmap is 
the standard deviation of the synthetic map (Supplementary Fig. 3).

Generation of adenylate kinase synthetic cryo‑EM densities
We generated synthetic density maps based on available X-ray structures (1AKE for closed and 4AKE for open 
conformation), and for the final reference map, we averaged the different populations of open and closed states 
maps, starting from fully open state conformation and changing the population progressively using 10% intervals 
until the fully closed conformation was arrived at. In our test protocol, we operated under the assumption that 
during the cryo-EM image processing, these states could not be separated into individual 3D reconstructions 
but were averaged into a single one. We produced 11 averaged reference maps at three different resolutions (3, 6 
or 10 Å) and with varying levels of Gaussian noise (with a mean of zero and a standard deviation corresponding 
to 1% or 10% of the maximum ADK density) (Supplementary Fig. 2). In total, we generated 66 synthetic maps 
for analysis.

Generation of the prior structural ensemble for adenylate kinase
Two short (1.5*107 steps) molecular dynamics simulations, carried out in GROMACS 4.5.789, were used to obtain 
the prior structural ensemble. We used an all-atom structure-based model generated in SMOG 2.075 with native 
contacts defined with the Shadow map algorithm90 based on the X-ray structures of either the open or closed 
state. These two ensembles encapsulate the local dynamics around the native state of the apo or holo form. The 
combined structural ensemble consists of a total of 100 ADK conformations, with 50 randomly selected from 
each simulation.
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Generation of the prior structural ensemble and synthetic cryo‑EM densities for the FLN5‑6 + 31 
RNCs
For our study, we generated a starting ensemble by randomly selecting 100 conformations of the NC from the 
FLN5-6 structural ensemble obtained from the previous all-atom structure-based MD simulation74 (Supple-
mentary Figs. 1B and 21A). This ensemble exhibits significant structural heterogeneity, with RMSD values up 
to 28 Å (Supplementary Fig. 21C), reflecting the dynamic nature of the RNCs. To obtain the reference density 
maps, we randomly selected ten structures from this starting ensemble, generated an average density map at 
one of the three different resolutions (3, 6 or 10 Å), and repeated this procedure 100 times with Gaussian noise, 
corresponding to either 1% or 10% of the main density added (Supplementary Fig. 21B). This system enables us 
to evaluate our methodology in the case of continuous heterogeneity present in the cryo-EM maps.

Preparation of the trigger factor cryo‑EM map for reweighting
For the final system, we used an experimentally derived cryo-EM map capturing the dynamics of the ribosome-
associated chaperone (trigger factor) bound to the ribosome in the presence of the peptide deformylase and 
excess of methionine aminopeptidase (Supplementary Fig. 1C)50. The obtained cryo-EM map had a clear density 
for the 70S ribosome, TF and PDF, which enabled authors to fit and refine models. However, the presence of the 
incomplete MetAP density suggested a novel tertiary binding site but did not allow for modelling the bound 
state. To create a reference map for the reweighting process, we used ChimeraX to select only the density that 
corresponds to either the Trigger Factor (TF) or the unmodeled MetAP (Supplementary Fig. 1C), subsequently 
saving it as a smaller, cropped map. This map was then normalised using the same methodology that we previ-
ously outlined for the synthetic reference map. We used the map threshold suggested by the authors (0.005) to 
select significant voxels for the reweighting.

Generation of the prior structural ensemble for the TF system
Using the available structure of the 70S ribosome from E.coli with bound TF and PDF (from PDB ID: 7D8050), 
we prepared a starting structure for the MD simulation that encompassed the surface of the 70S ribosome around 
the ribosomal exit tunnel and bound both TF and PDF (Supplementary Fig. 36). We used an all-atom structure-
based model generated with SMOG 2.4.475,91 with bond lengths and angles based on the AMBER03 force field92,93. 
Native contacts that are used in structure-based potential were defined based on TF cryo-EM structure with the 
use of the Shadow Map90. For the structure-based MD simulations setup in SMOG, reduced units were applied 
with length, time, mass and energy scale all set to 1, except for the Boltzmann constant, which is kB = 0.00831451 
(kJmol−1 K−1, default in GROMACS). Simulations were performed for 5*108 steps in GROMACS 2021.294 in NVT 
ensemble at a reduced temperature of 0.5 (60 in GROMACS units), which is slightly below the temperature for 
this model to capture physiological conditions (0.582 reduced unit92). The constant temperature was maintained 
via the Langevin Dynamics protocol. Taking advantage of a recent comparison of diffusion coefficients in the 
SMOG model and an all-atom explicit-solvent model95, we estimated the effective simulated time to be in a range 
of hundreds of microseconds. During simulations, we kept the atoms of the ribosome surface frozen. We sampled 
the trajectory every 5*105 steps generating 1000 structures, and clustered them based on the RMSD using the 
gmx cluster method from GROMACS (Fig. 5A). Obtained structural ensemble, we used as a prior during the 
reweighting process carried out in cryoENsemble.

Fitting of the MetAP and generation of the prior structural ensemble for the TF + MetAP 
system
To isolate the MetAP cryo-EM density, we utilised the ChimeraX86 command ‘volume subtract’ to create a differ-
ence map between the original (EMDB: 3061150) and the posterior map derived from cryoENsemble reweighting 
of the TF MD trajectory. The E.coli methionine aminopeptidase structure (PDB ID: 1MAT77) was fitted into the 
obtained density using ChimeraX, orienting positively charged loops towards the ribosome, in accordance with 
previous studies76. For subsequent rigid-body fitting, we utilised the ‘Fit in Map’ command, setting the simu-
lated map resolution to 8 Å. Generated TF + MetAP structure was used as a starting structure in the all-atom 
structure-based MD simulations with the same setup as the TF ensemble. The trajectory was sampled every 5*105 
steps, generating 1000 structures, which were clustered based on the RMSD using the gmx cluster method from 
GROMACS. The obtained structural ensemble was combined with the TF ensemble and used as a prior during 
the reweighting process carried out in cryoENsemble.

Code availability
The source code of cryoENsemble, accompanied by a basic tutorial, is freely available on GitHub at: https://​
github.​com/​dydym​os/​cryoE​Nsemb​le.
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