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Abstract
1.	 Accurate	 and	 precise	 assessment	 of	 population	 density	 plays	 a	 critical	 role	 in	

effective wildlife management, but reliable estimates are often difficult to ob-
tain. Camera traps have emerged as valuable noninvasive tools for studying elu-
sive species, offering cost- effective solutions for both marked and unmarked 
populations.

2.	 We	evaluated	the	consistency	of	badger	(Meles meles)	density	estimates	obtained	
from	 the	 random	 encounter	 model	 (REM)	 and	 camera	 trap	 distance	 sampling	
(CT-	DS)	with	independent	estimates	from	spatial	mark-	resight	(SMR)	models	and	
quantified the bias in CT- DS arising from animals reacting to camera traps. Six 
camera trap surveys were conducted in Cornwall, UK, in 2019 and 2021, and 
data were used to estimate badger density using the REM and CT- DS. Four sites 
were included in a badger vaccination research project, providing an opportunity 
to mark badgers with uniquely identifiable fur clips to facilitate resighting within 
a SMR framework.

3. We found consistency in the density estimates across all methods, but results had 
wide confidence intervals. Density estimates derived from CT- DS tended to be 
higher than those from the REM and were sensitive to the exclusion of reactive 
sequences, resulting in a twofold decrease in the estimated density in one case. 
The REM tended to be the most precise method; however, where badger density 
was low, precision was low using all methods.

4. Practical implication: our findings suggest animal density can be assessed from 
camera traps in the absence of individual identification; however, it is important 
to account for reactive behaviours, especially where such behaviour is prevalent. 
In these circumstances, we recommend utilising the REM which offers a clear 
methodology for addressing bias arising from reactive sequences. In addition, we 
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1  |  INTRODUC TION

Reliable population estimates are essential for ecological assess-
ment, conservation biology, and wildlife management. Quantifying 
badger	(Meles meles)	populations,	for	example,	is	relevant	in	the	con-
text of disease control, because badgers can transmit Mycobacterium 
bovis,	the	causative	agent	of	bovine	tuberculosis	(bTB),	to	cattle.	In	
the British Isles, bTB is a chronic infectious disease that greatly im-
pacts the farming industry, leading to substantial economic losses 
and affecting livestock health. Badger management aimed at bTB 
control currently involves large- scale badger culling in England. 
Badger density estimates have contributed to the understanding 
of the species' role in M. bovis	 transmission	 (Delahay	 et	 al.,	2013; 
Rogers et al., 1998; Woodroffe et al., 2006),	informed	disease	man-
agement	plans	(Scott	et	al.,	2018; Smith et al., 2012),	helped	estab-
lish	culling	targets	(DEFRA,	2022),	and	facilitated	policy	evaluation	
(Donnelly	&	Woodroffe,	2015).	 In	England,	 the	government	 is	cur-
rently scaling back badger culling, and encouraging badger vaccina-
tion	(DEFRA,	2020);	however,	lack	of	accurate	badger	density	data	
means, at present, there is no framework in place for establishing 
vaccination targets, evaluating the effectiveness of post- cull vacci-
nation or tracking the recovery of post- cull badger populations.

Badgers are nocturnal and fossorial, making direct population 
counts challenging, particularly on large scales. Counts of badger 
dens	(‘setts’)	are	used	as	indices	of	density	(Judge	et	al.,	2014; Wilson 
et al., 1997),	assuming	a	typical	group	size	and	pattern	of	sett	use.	
However,	such	metrics	can	change	with	habitat	(Judge	et	al.,	2017),	
geology	 (Neal,	1986),	 resource	 availability	 (Kruuk	&	Parish,	1982),	
and	 human	 intervention	 (Rogers	 et	 al.,	 1997).	 Other	 measures	 of	
relative	 abundance,	 such	as	 faecal	 counts	 (Buesching	et	 al.,	2015)	
and	road	casualties	(Woodroffe	et	al.,	2008),	are	similarly	prone	to	
bias	 (Hutchings	et	 al.,	2002).	Conventional	minimum	number	alive	
analysis is not recommended where accuracy is important because 
it	underestimates	density	to	an	unpredictable	degree	(Byrne	&	Do	
Linh San, 2016).

Mark- recapture is generally regarded as a reliable method of es-
timating	population	density	(Borchers	&	Efford,	2008; Efford, 2004; 
Royle et al., 2013)	but	 trapping	and	marking	badgers	 is	 logistically	
challenging	and	both	are	licensed	activities	(Natural	England,	2015).	
DNA-	based	 capture–recapture,	 using	 noninvasive	 samples	 such	
as	 hair	 or	 faeces,	 has	 alleviated	 some	 of	 these	 challenges	 (Judge	
et al., 2017; Wilson et al., 2003),	although	laboratory	procedures	can	
be	costly	(Davis	et	al.,	2020)	and	some	data	are	inevitably	lost	due	

to	 incomplete	DNA	amplification	 (Woodruff	 et	 al.,	2015).	Camera	
traps	 offer	 a	 relatively	 inexpensive	 alternative	 (Davis	 et	 al.,	2020; 
Twining et al., 2022).	Deployed	as	a	tool	for	resighting,	camera	traps	
allow density estimation using spatial mark- resight or - recapture 
(SMR)	 frameworks	 (Efford,	2023a).	 Individual	 identification	 is	cen-
tral to SMR, and the method is popular for species with unique pel-
age	markings	 (Alonso	et	al.,	2015; Karanth & Nichols, 1998; Teton 
et al., 2020).	SMR	can	also	be	used	for	species	with	uniform	pelage,	
by	artificially	marking	some	individuals	(Carter	et	al.,	2019;	Jimenez	
et al., 2019; Jordan et al., 2011).

Marking individual animals may be challenging and risks harm-
ing study subjects. Consequently, spatial count models have been 
developed to enable noninvasive density estimation for animals 
without distinctive markings, by using spatial correlation in counts 
across sensors as information about the density of animal activity 
centres	(Chandler	&	Royle,	2013).	Alternatives	use	modelled	detec-
tion	rates	to	minimise	bias	 in	density	estimates.	Among	these,	 the	
most	popular	 approaches	are	 the	 random	encounter	model	 (REM;	
Rowcliffe et al., 2008),	 camera	 trap	 distance	 sampling	 (CT-	DS;	
Howe et al., 2017),	 the	time-	to-	event	and	related	models	 (Moeller	
et al., 2018),	 and	 the	 random	 encounter	 and	 staying	 time	 model	
(Nakashima	et	al.,	2018).	These	methods	are	promising,	but	testing	
them against independent estimates to validate their accuracy and 
reliability	is	recommended	(Rowcliffe	et	al.,	2008).

The REM and CT- DS share similar methods for data collection, 
enabling simultaneous estimation of density. Both models require 
information on the position of animals relative to the camera; for 
the REM, distance data allow the estimation of the focal species' 
speed	and	the	dimensions	of	the	camera	detection	zone,	which	af-
fect	the	encounter	rate	(the	number	of	photographs	per	unit	of	time)	
from which density is estimated. In CT- DS, a detection function is 
fitted to distance observations and density is estimated by model-
ling	the	probability	of	detecting	an	animal	within	the	detection	zone	
at a given time. However, the methods differ in how they address 
‘reactive’	sequences,	where	animals'	attraction	to	(or	avoidance	of)	
cameras	 may	 bias	 density	 estimates	 (Howe	 et	 al.,	 2017; Palencia 
et al., 2021).	Using	the	REM,	this	bias	can	be	controlled	by	remov-
ing reactive sequences from speed estimation but including them 
in	total	encounter	rate	(Palencia	et	al.,	2021; Rowcliffe et al., 2008).	
Approaches	within	CT-	DS	studies	vary,	with	some	discarding	data	
collected immediately after camera deployment to allow animals 
to	become	accustomed	to	camera	traps	(Howe	et	al.,	2017),	others	
removing potential investigative behaviour by left- truncating the 

emphasise the need for improved precision to ensure the effectiveness of these 
methods in the context of wildlife management. We offer practical considera-
tions to facilitate the broader application of these methods, drawing upon the 
example of disease control through badger vaccination.

K E Y W O R D S
badger, camera trap, density, distance sampling, random encounter model, spatial mark- resight

 26888319, 2024, 3, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1002/2688-8319.12378 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [10/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  3 of 15MILES et al.

detection	distance	data	(Cappelle	et	al.,	2019),	and	some	identifying	
and	removing	all	reactive	sequences	(Bessone	et	al.,	2020).	Defining	
a smaller sample of data for density estimation may be appropriate 
if	reactive	behaviour	varies	predictably	in	time	(Mason	et	al.,	2022).	
However, the impact of these differing methods on the accuracy 
and	precision	of	density	estimates	is	not	well	understood	(Palencia	
et al., 2019).

In this study, we aimed to evaluate the performance of the REM 
and CT- DS at estimating badger density in a badger vaccination con-
text. We compared the REM and CT- DS density estimates with in-
dependent estimates derived from SMR using marked badgers. We 
also compared different methods of processing reactive sequences 
and examined the practical implications of using camera- based den-
sity estimation methods.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

Data were collected from six camera trap surveys at five sites in 
Cornwall,	UK,	in	2019	and	2021	(Table 1; Figure 1).	Each	site	com-
prised	at	 least	 two	 farms	 (Table 1).	 Sites	 included	several	habitats	
and farming practices, including arable fields, livestock pasture, 
woodland,	 and	moorland.	 All	 data	were	 collected	with	 landowner	
consent.

2.2  |  Data collection

2.2.1  |  Camera	surveys

All	 surveys	 were	 planned	 to	 coincide	 with	 the	 open	 season	 for	
badger	 vaccination,	 which	 runs	 annually	 from	 the	 1	 May–30	
November	(Natural	England,	2023).	We	determined	the	number	and	
duration	of	camera	deployments	at	each	site	(Table 1)	using	recom-
mendations	from	Rowcliffe	et	al.	(2008).	Specifically,	we	estimated	
that a minimum of 1000 camera nights were required at each site, 
based	on	a	badger	day	range	of	1.2 km	(estimated	using	data	from	
Global	Positioning	System-	collared	badgers	recorded	by	Woodroffe	
et	al.	(2017))	and	a	local	minimum	number	alive	density	estimate	of	
4.2 badgers per km2	(Woodroffe	et	al.,	2017).	We	planned	to	deploy	
enough	cameras	to	ensure	we	would	have	data	from	≥40	cameras	
per	site	(recommended	by	Rowcliffe	et	al.,	2008),	allowing	for	antici-
pated camera failures or theft.

To meet the assumptions of the REM and CT- DS, we used a sys-
tematic grid with a random origin to plan the location of cameras 
at	each	site,	with	a	spacing	of	155–250 m	between	predetermined	
locations	 (Table 1).	 In	 the	 field,	 we	 attached	 cameras	 (Browning	
StrikeForce	HD	Pro	X)	to	suitable	objects	as	near	as	possible	to	pre-
determined locations. If deployment was not possible at the exact 
coordinates,	we	aimed	to	keep	within	≤20%	of	the	distance	between	
predetermined locations, ensuring the habitat remained unchanged 

and orientating the camera towards the planned location. This 
method	was	chosen	over	 trying	 for	a	 fixed	aspect	 (e.g.	north)	due	
to the anticipated difficulty of finding suitable attachment sites for 
cameras	in	the	farming	landscape.	We	positioned	cameras	30–40 cm	
high, parallel to the ground and did not use bait. Cameras took pho-
tographs	24 h/day	with	no	time	lapse	and	a	1-	s	passive	infra-	red	trig-
ger interval.

At	each	camera	location,	we	took	calibration	images	of	a	1	m	pole	
marked	at	20 cm	intervals,	at	a	range	of	distances	and	angles	from	
the	camera	(Figure 2).	Similar	calibration	images	were	taken	ex	situ	
at a range of angles and known distances, to enable accurate calibra-
tion and estimation of distances and angles in images.

2.2.2  |  Badger	vaccination	and	marking

Sites	B	to	E	(Table 1; Figure 1)	were	included	in	an	existing	research	
project. Badgers were trapped and handled under licence from the 
UK	Home	Office	(project	licence	PB32E4DFC)	and	Natural	England	
(research	licence	2021-	53121-	SCI-	SCI).	Cage	traps	were	placed	near	
badger setts, latrines and runs, and pre- baited with peanuts for 
7–10 days	 prior	 to	 trapping.	 On	 capture,	 badgers	 were	 anaesthe-
tised with an intramuscular injection of medetomidine and ketamine 
(de	Leeuw	et	al.,	2004),	and	individually	identified	using	microchips	
(FriendChip,	Avid	PLC,	Lewes,	UK).	We	recorded	age	class	 (cub	or	
adult),	sex,	tooth	wear,	and	reproductive	status.

Cage trapping provided the opportunity for SMR analysis, which 
requires an initial marking phase followed by re- sightings in which 
previously captured animals must be individually recognisable. Each 
badger was assigned a unique mark which was clipped onto both 
sides of the animal, by carefully trimming the dark tips of the guard 
hairs,	 revealing	 the	 pale	 undercoat	 (Stewart	 &	 Macdonald,	 1997; 
Figure 3).	We	recorded	a	photograph	of	each	mark	and	the	badger's	
identity	(Figure 3).

2.3  |  Data analysis

2.3.1  |  Image	processing

Badger images from surveys 1, 2, and 4 were isolated manually. 
During	 data	 analysis,	 the	 image	 processing	 tool	 Sherlock	 (Penn	
et al., 2024)	became	available	and	was	used	to	isolate	badger	images	
from	the	remaining	sites.	Images	were	tagged	using	XnView	MP	(ver-
sion	0.99.6;	Gougelet	(2020)).

Some cameras were displaced by livestock. Where this substan-
tially	changed	or	obscured	the	field	of	view	(FOV),	we	truncated	that	
camera's deployment period at the point the camera was moved, 
discarding any subsequent badger encounters and removing the af-
fected hours from effort calculations.

Except for the first night of cage trapping at site B in 2019, 
badgers were trapped and marked during the camera deployment 
periods. We therefore limited resighting data for SMR to images 
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obtained after marking was completed. For the REM and CT- DS, we 
excluded	data	from	cage	trapping	nights	(18:00	until	08:00)	to	avoid	
bias in encounter rate due to part of the population being caught in 
cage traps.

2.3.2  |  Outlier	analysis

Our survey design, which entailed random camera placement 
across a total area larger than the typical home range of badgers,  

was carefully considered to minimise sampling bias. This strat-
egy, coupled with the sparse distribution of badger setts across 
the landscape, ensured a broad representation of badger activity,  
minimising the potential for biased sampling. However, if areas 
of	high	badger	activity	(e.g.	setts)	were	by	chance	included	in	the	
sample, they might inflate encounter rates and bias density esti-
mates. To identify potential outliers, we fitted a negative binomial 
distribution to the per- deployment photographic encounter rate 
data	 (Anscombe,	1949)	 using	maximum	 likelihood.	We	 simulated	
1000 datasets from this distribution and considered the maximum 

F I G U R E  1 (a)	Location	of	the	five	sites	in	Cornwall,	UK	and	(b–g)	layout	of	the	camera	grids	deployed	for	each	survey.
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observed photographic encounter rate to be an outlier if it fell 
above the 95th percentile of the simulated distribution. If an out-
lier was identified, the process was repeated with the outlier re-
moved. We excluded outliers from density estimation using the 
REM and CT- DS but not SMR, which is not sensitive to encounter 
rate outliers.

2.3.3  |  REM	density	estimation

Although	badgers	are	a	social	species,	outside	of	the	sett	they	do	not	
form	cohesive	groups	(Kruuk,	1989),	so	we	considered	individuals	as	
the	unit	of	observation	for	all	models	(Rowcliffe	et	al.,	2008; Thomas 
et al., 2010).

Density estimates were obtained from encounter rates using 
Equation 1	from	Rowcliffe	et	al.	(2008)

where y	is	the	number	of	independent	badger	encounters	(defined	as	
a	badger	entering	and	exiting	the	FOV),	t is the temporal survey effort 
(the	total	number	of	camera	nights	during	the	survey	period,	exclud-
ing nights affected by cage trapping, camera movement, and camera 
failure),	v is the long- term average distance travelled by a badger per 
night	(the	product	of	average	speed	while	active	and	the	proportion	
of time spent active; hereafter referred to as activity level; Rowcliffe 
et al., 2014),	and	r and θ are the dimensions of the camera detection 
zone	(radius	and	angle,	respectively).

All	model	parameters	were	estimated	from	the	camera	images.	
Calibration images and badger sequences were digitised using 
AnimalTracker	 (Vargas	 Zarco,	 2019)	 and	 processed	 to	 produce	

(1)D =
y

t

�

vr(2 + θ)

F I G U R E  2 Example	of	a	deployment	calibration	image	taken	at	
each camera location. The camera was triggered to capture images 
of a calibration pole at a range of angles and distances from the 
camera. Similar images were taken ex situ at a range of angles and 
known distances, enabling accurate camera calibration.

F I G U R E  3 Representative	images	of	three	individually	marked	badgers	during	the	marking	(a–c)	and	resighting	(d–f)	stages	of	spatial	
mark-	resight	(SMR)	analysis.
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    |  7 of 15MILES et al.

badger	 position	 data	 (defined	 in	 polar	 coordinates	 as	 radial	 dis-
tance from the camera and angular distance from the camera view 
centre)	 using	 the	 ‘CTtracking’	 package	 (Rowcliffe,	2021b).	 Speed	
was measured for each badger sequence by dividing the distance 
travelled summed across all positions in the sequence by the dura-
tion of the sequence, using the time stamp on the images. Overall 
average speed while active was estimated as the harmonic mean 
of these speed observations after removing reactive sequences 
(Rowcliffe	et	al.,	2016),	defined	as	a	badger	observing	the	camera	
followed by a change in directional movement with respect to the 
camera.	 Activity	 level	 was	 estimated	 by	 fitting	 a	 circular	 kernel	
model to radian time of day distributions of camera trap records 
of	badgers	using	the	‘activity’	package	(Rowcliffe	et	al.,	2014).	The	
effective detection radius and angle were estimated by fitting 
distance sampling detection functions to the radial and angular 
distance observations at the beginning of each badger sequence 
(Rowcliffe	et	al.,	2011).	The	‘camtools’	package	(Rowcliffe,	2021a)	
was used to estimate density, including bootstrapping of trap 
rate errors and incorporating variance using the delta method 
(Rowcliffe	et	al.,	2008).

2.3.4  |  CT-	DS	density	estimation

We	 used	 point	 transect	 distance	 sampling	 methods	 (Howe	
et al., 2017)	adapted	for	use	with	still	images.	A	key	distinction	be-
tween CT- DS and traditional point transect surveys is the calcula-
tion	of	effort,	because	camera	traps	(active	24 h/day	in	our	study),	
replace human observers surveying at intervals. We therefore dis-
cretized	 the	 number	 of	 times	 animals	 could	 potentially	 be	 photo-
graphed	(‘snapshot	moments’),	given	a	certain	interval	time	between	
camera	images	(Howe	et	al.,	2017).	We	calculated	the	mean	interval	
between sequential badger images within captures to define the 
length of the time between snapshot moments, T. Temporal effort 
for each camera was calculated as the number of snapshot mo-
ments within the time that the camera was operational, H, given in 
Equation 2:

where t is as defined for the REM.
The effort of the camera is given by the proportion of a circle 

covered	by	 its	estimated	FOV.	The	angle	of	 the	detection	zone,	θ, 
was estimated using digitised badger images, as described above for 
the REM. The overall sampling effort, e, is a product of temporal ef-
fort and spatial effort, given in Equation 3:

Density was estimated using Equation 4	(Howe	et	al.,	2017)

where y is the number of badger observations, w is the truncation 
distance	(beyond	which	badger	detections	were	disregarded	to	avoid	
heavy-	tailed	 detection	 functions),	p is the probability that a badger 
within a camera's FOV is detected, and a is the activity level, estimated 
as described for the REM.

We performed exploratory analysis for each camera survey to 
determine left-  and right- truncation distances, below and beyond 
which badger detections were excluded, respectively. The purpose 
of left- truncation is to control bias arising from animals passing under 
the camera undetected which could violate a key assumption of dis-
tance sampling models, that animals are detected with certainty 
at	the	point	where	the	observer	is	situated	(Buckland	et	al.,	2001).	
We chose to left- truncate the data at distances below which there 
were fewer than the expected number of badger detections. Right- 
truncation distances were decided by fitting an exploratory model 
and choosing to truncate the data at distances beyond which the 
detection probability was lower than 0.15. We estimated density 
under two scenarios, in which reactive sequences were included or 
excluded from analyses.

We fitted detection function models, and estimated den-
sity	 and	 the	 variance	 in	 density	 estimates,	 using	 the	 ‘Distance’ 
package	 in	 R	 (Miller	 et	 al.,	2019).	We	 considered	models	 of	 the	
detection function with the uniform key function with 1, 2, or 3 
cosine adjustments, the half- normal key function with 0, 1, or 2 
cosine	adjustments,	and	the	hazard	rate	key	function	with	0	or	1	
simple polynomial adjustments. We discarded models where the 
detection function did not decline monotonically in relation to 
the detection distance. Models were adjusted for overdispersion 
and final model selection was based on ĉ scores, following Howe 
et	al.	(2019).

2.3.5  |  SMR	density	estimation

Individual badgers were identified by comparing marks in camera im-
ages	with	those	taken	during	handling	(Figure 3).	Identifiable	badg-
ers were distinguished from unmarked, marked- unidentifiable, and 
indeterminable	badgers	(Efford,	2023a).	Retrospective	capture	his-
tories of identifiable badgers were constructed using the cage trap 
and camera locations. SMR models were fitted to the data using the 
‘secr’	package	in	R	(Efford,	2023b).

Spatial mark- resight analysis requires estimating the effective 
sampled area, a buffer around the camera traps where detection 
probability	declines	towards	the	outer	limit	(Efford,	2022a).	The	size	
of the buffer is not critical but must be large enough to account for 
all detected individuals, while individuals with home range centres 
at	 the	 outer	 limit	 should	 have	 zero	 probability	 of	 being	 detected	
(Efford,	2022a).

We used a buffer width of 4σ	 (Efford,	 2022a),	 where	 σ is a 
function of the distance between capture and resighting loca-
tions, assuming that detection probability declines as the distance 
between the two locations increases. Where sites bordered the 

(2)H = t ∕T

(3)e =
�H

2�T

(4)D =
y

�w2epa
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8 of 15  |     MILES et al.

sea, we fitted a shape file habitat mask to restrict the buffer to 
terrestrial	habitat.	A	retrospective	buffer	sensitivity	analysis	was	
also performed to confirm that wider buffers did not influence es-
timated density.

Since the marking and resighting processes are fundamen-
tally different, we used a variable detection probability between 
marking and sighting occasions. Exploratory analysis considered 
models	 with	 exponential,	 hazard	 rate,	 and	 half-	normal	 detection	
functions.	Models	were	 compared	using	QAIC	values	 (Borchers	&	
Efford, 2008)	and	their	performance	in	the	retrospective	buffer	sen-
sitivity	 analysis	 (Efford,	2022b).	Models	 and	 standard	 errors	were	
adjusted for overdispersion by simulating an overdispersion factor 
(Efford,	2023a).

In SMR models, incomplete identification of marked individu-
als can introduce bias, particularly if there is individual heteroge-
neity	in	resighting	probability	(McClintock	et	al.,	2014).	To	account	
for this, our models included data from both identified and un-
identifiable marked individuals, estimating a corrective factor, pID, 
which quantifies the proportion of marked animals identified upon 
resighting. We also conducted retrospective simulations across a 
range of pID values under similar detection conditions to assess 
the impact of incomplete identification on the precision and accu-
racy of density estimates. Capture histories were simulated using 
the	‘secr’	package,	with	a	spatial	grid	comprising	49	detectors	and	
specifying detection probabilities for two marking occasions and 
36 resighting occasions. The spatial scale parameter σ and detec-
tion probabilities were based on mean values derived from ob-
served data. We fixed the population density at 10 individuals per 
km2 and systematically varied the pID value. For each scenario, 
we simulated capture data and subsequently fitted mark- resight 
models using the same detection function applied to the observed 
data, assessing the impact of varying pID on the accuracy and pre-
cision of density estimates.

All	calculations	were	performed	in	R	(R	Core	Team,	2021).

3  |  RESULTS

3.1  |  Camera survey

We obtained 5,049,759 images from 388 camera placements over 
8467	camera	nights.	Badgers	were	identified	in	9784	(0.2%)	images,	
totalling 1739 independent encounters. The majority of badger de-
tections	 involved	solitary	badgers,	with	only	19	 (1.1%)	encounters	
featuring	groups	of	two	or	three	animals.	The	mean	group	size	was	
1.024	 (95%	 confidence	 interval	 [CI]	 1.018–1.029),	 supporting	 the	
use of individuals as the unit of observation.

Interference	 from	 livestock	 meant	 that	 31	 (8%)	 camera	 de-
ployments	were	truncated	early,	amounting	to	a	loss	of	396	(5%)	
camera nights and 218 independent badger encounters. Lack of 
suitable attachment sites meant that cameras were often situ-
ated	at	field	boundaries.	On	average,	cameras	deviated	by	35.8 m	

(median	28.0 m)	 from	 the	planned	deployment	 location	or	17.4%	
of	 the	 distance	 between	 predetermined	 locations.	 Accurate	 de-
ployment locations were not recorded for 21 cameras and were 
not included in the analysis of camera deviation. Cameras miss-
ing accurate location data were from surveys 1 and 2, where SMR 
analysis was not performed, thus not compromising the method. 
Following outlier analysis and removal of data due to livestock in-
terference	and	trapping	(detailed	below)	7023	badger	images	and	
1252 independent badger encounters were considered for the 
REM and CT- DS analyses.

3.2  |  Outlier analysis

We identified one observed photographic encounter rate as an out-
lier	(Figure 4,	survey	3)	and	excluded	this	camera	deployment	from	
the	REM	and	CT-	DS	analyses.	After	removing	this	outlier	there	were	
1543 independent badger encounters captured over 8071 camera 
nights, giving 0.2 encounters per camera- night.

3.3  |  Marking badgers

Of the 63 badgers trapped in 2021, 58 were given unique marks 
(Table 2)	to	facilitate	SMR	analysis,	while	five	could	not	be	marked	
due to insufficient anaesthesia.

3.4  |  Reactive sequences

We identified 138 independent encounters in which badgers dis-
played	reactive	behaviour,	which	 represented	10%	of	 the	encoun-
ters considered for the REM and CT- DS analyses. Of these, 100 
(72%)	 involved	 investigative	behaviour,	18	 (13%)	avoidance	behav-
iour,	and	20	(14%)	involved	a	mixture	of	these	behaviours.

3.5  |  Density estimation

Spatial mark- resight analyses, which were limited to data collected 
following individual marking, included 579 independent badger en-
counters. The presence or absence of a mark was confirmed in 374 
(65%)	encounters,	with	badger	identity	confirmed	in	33	(6%)	encoun-
ters	(Table 2).	During	survey	6,	we	obtained	only	two	re-	sightings	of	
one marked badger, so we excluded this survey from further SMR 
analysis.

Estimated	 badger	 densities	 ranged	 from	 1.4	 (95%	 CI	 0.6–3.0)	
badgers per km2	(REM	at	site	E,	survey	6)	to	20.2	(95%	CI	11.8–34.4)	
badgers per km2	 (REM	 at	 site	 B,	 survey	 2;	Table 3 and Figure 5).	
Density estimates using CT- DS tended to be higher than those using 
the	 REM	 (Table 3; Figure 5).	 When	 reactive	 sequences	 were	 ex-
cluded	from	CT-	DS	analysis,	density	estimates	were	on	average	22%	
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    |  9 of 15MILES et al.

(range	3%–51%)	 lower	 than	when	 those	 sequences	were	 included	
(Table 3; Figure 5).

The	REM	estimates	tended	to	be	the	most	precise	(Table 3).	The	
average	coefficient	of	variation	(CV)	for	the	REM	was	0.36,	for	CT-	
DS	 (reactive	 sequences	 included)	 it	was	 0.41,	 for	 CT-	DS	 (reactive	
sequences	excluded)	it	was	0.42	and	for	SMR	it	was	0.35.

3.6  |  SMR simulations

On	average,	56%	 (range	25%–100%)	of	marked	badger	 sightings	
were	 identifiable	 (Table 2),	 prompting	 simulations	 with	 pID val-
ues of 1, 0.75, 0.50 and 0.25. Models fitted to the simulated data 
demonstrated a direct correlation between pID values and the ac-
curacy and precision of the estimated densities. When pID was 
100%,	 the	model	yielded	density	estimates	closest	 to	 the	actual	
population	 density	 used	 in	 simulations	 (10	 individuals	 per	 km2),	
with an estimated density of 9.8 individuals per km2 and a CV of 
0.22. This scenario illustrated minimal bias and lower variability, 
suggesting optimal model performance under full identification 
conditions.	As	pID decreased, estimated density was less accurate 
and	variability	increased	(Table 4).

4  |  DISCUSSION

Our study suggests that the REM and CT- DS are reliable methods of 
estimating the density of unmarked animal populations. The density 
estimates obtained using the REM and CT- DS were similar to each 
other and to the estimates obtained independently using SMR. The 
95%	 confidence	 intervals	 of	 all	methods	 overlapped	 substantially.	
In	 contrast	 with	 previous	 studies	 (Henrich	 et	 al.,	 2022; Palencia 

F I G U R E  4 Boxplot	showing	the	median	(thick	horizontal	lines),	interquartile	range	(boxes)	and	2.5th	and	97.5th	centiles	(vertical	lines)	
of maximum encounter rates from seven data sets using 1000 samples from a negative binomial distribution fitted to the data, with sample 
sizes	equal	to	the	number	of	deployments	in	the	data	set.	Black	crosses	show	the	maximum	encounter	rate	from	the	observed	data	at	each	
site,	with	an	outlier	identified	in	camera	survey	3	(site	B).	The	analysis	for	survey	3	was	repeated	with	the	outlier	removed.
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TA B L E  2 Badger	encounters	considered	for	SMR	analysis.

Site

B C D E

Survey 3 4 5 6

Number of badgers 
individually marked

23 19 12 4

Resighting Number of independent 
encounters

Identifiable	(number	of	
individuals	resighted)

11	(5) 15	(7) 5	(4) 2	(1)

Marked, unidentifiable 31 45 2 0

Unmarked 37 82 72 72

Indeterminable 60 56 64 22

Total independent encounters 139 198 143 99

Note: Site E was excluded from analysis due to the small number of 
marked and resighted individuals.
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10 of 15  |     MILES et al.

et al., 2021; Twining et al., 2022),	 density	 estimates	 derived	 from	
CT- DS tended to be higher than those using the REM, although not 
consistently	so.	As	the	REM	and	CT-	DS	are	mathematically	similar,	
their consistency with SMR is encouraging and supports their use 
for estimating the density of terrestrial mammals without needing 
to mark individuals.

Challenges with determining the identity of marked individu-
als, arising from incomplete visual captures or indistinct markings, 
are	well	documented	 in	mark-	resight	studies	 (Jimenez	et	al.,	2019; 
McClintock et al., 2014).	On	average,	we	were	able	to	identify	56%	
of	the	encounters	with	marked	individuals	(Table 2)	consistent	with	
rates reported in other studies employing camera traps for resight-
ing	 (Greenspan	et	al.,	2020;	 Jimenez	et	al.,	2019).	Our	simulations	
with varying pID values suggested that with comprehensive capture 
histories for all marked badgers, we may have seen more accurate 
and	 precise	 results.	 When	 100%	 of	 the	 marked	 individuals	 were	
identifiable, the model had minimal bias. However, reducing pID to 
50%	resulted	in	a	density	estimate	that	was	13%	lower	than	the	fixed	
simulated	density,	with	an	increase	in	CV	from	0.22	to	0.28	(Table 4).	
At	a	pID	of	25%,	density	was	underestimated	by	15%	and	 the	CV	
increased to 0.29. Our SMR results may therefore represent an un-
derestimate of badger density, although comparisons with our REM 
and	 CT-	DS	 estimates	 do	 not	 consistently	 reflect	 this.	 Alternative	
methods to address imprecision arising from marked unidentifiable 

individuals have been proposed. For example, spatial partial identity 
models	(SPIMs)	specifically	address	the	challenge	of	imperfect	iden-
tification by adding partially known information about identity, such 
as sex, to probabilistically determine identities obtained from cam-
era	traps,	thereby	improving	density	estimate	precision	(Augustine	
et al., 2019).	Such	models	may	outperform	other	spatial	models	(Sun	
et al., 2022),	particularly	where	the	resighting	rate	is	low	(Greenspan	
et al., 2020),	so	it	is	possible	that	we	could	have	obtained	more	accu-
rate and precise estimates with the use of SPIMs.

The REM and CT- DS methods negate the need for individual 
identification, thereby maximising data usage and circumventing 
challenges such as incomplete identification. However, our survey 
design, which used a randomised grid to meet the assumptions of 
the REM and CT- DS, was not optimised to maximise encounter rates 
for SMR. The precision of SMR estimates is sensitive to the resight-
ing	 rate	 of	 identifiable	 individuals	 (Carter	 et	 al.,	 2019)	 and,	 while	
SMR models necessitate coverage across the target species' den-
sity distribution, they do not require random camera placement and 
can support strategic camera placements in areas likely to detect 
the target species, as well as the use of bait to increase re- sightings 
(Jimenez	et	al.,	2019).	In	this	study,	we	utilised	the	existing	camera	
grid and the opportunity to individually mark badgers as part of on-
going research to provide independent density estimates, but insuf-
ficient recaptures meant SMR analysis could not be conducted for 

TA B L E  3 Badger	density	per	km2	and	associated	95%	confidence	intervals	and	coefficient	of	variation	(CV)	estimated	from	six	camera	
surveys at five sites, using three camera trap- based methods. SMR analysis was only possible for three of the surveys.

Site Survey Density estimation method Density (badgers per km2) SE 95% CI CV

A 1 REM 4.9 3.3 1.5–16.1 0.67

CT-	DS	(reactive	included) 6.2 5.4 1.4–27.3 0.86

CT-	DS	(reactive	excluded) 6.0 5.2 1.4–26.4 0.86

B 2 REM 20.2 5.6 11.8–34.4 0.28

CT-	DS	(reactive	included) 19.8 5.5 11.4–34.1 0.28

CT-	DS	(reactive	excluded) 13.8 4.2 7.6–25.1 0.31

B 3 REM 11.7 3.9 6.3–22.0 0.33

CT-	DS	(reactive	included) 14.5 3.2 9.4–22.4 0.22

CT-	DS	(reactive	excluded) 13.1 2.8 8.7–19.8 0.21

SMR 16.8 4.2 10.4–27.1 0.25

C 4 REM 12.1 2.8 7.7–18.9 0.23

CT-	DS	(reactive	included) 14.0 3.2 8.9–22.0 0.23

CT-	DS	(reactive	excluded) 12.5 3.0 7.8–20.0 0.24

SMR 11.8 3.5 6.6–21.0 0.30

D 5 REM 14.5 3.5 9.1–23.1 0.24

CT-	DS	(reactive	included) 18.1 6.4 9.1–36.2 0.36

CT-	DS	(reactive	excluded) 8.9 3.0 4.6–17.2 0.34

SMR 17.6 9.0 6.8–45.3 0.51

E 6 REM 1.4 0.6 0.6–3.0 0.42

CT-	DS	(reactive	included) 2.3 1.1 0.9–5.7 0.49

CT-	DS	(reactive	excluded) 1.6 0.9 0.6–4.5 0.54
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    |  11 of 15MILES et al.

survey 6 and all SMR density estimates were imprecise. More pre-
cise reference estimates could have been obtained with additional 
cameras for SMR targeting areas with higher badger activity.

Our density estimates generally exceeded those from the most 
recent	badger	census	in	England	and	Wales	(e.g.	5.65	[95%	CI	3.15–
8.15]	 in	Land	Class	1	and	5.98	[95%	CI	4.57–7.39]	 in	Land	Class	4;	
Judge et al., 2017).	 However,	 the	 census	 assumed	 one	main	 bad-
ger sett per km2, whereas sett densities were higher than this in 
our	survey	areas.	Conversely,	at	sites	affected	by	culling	(site	A)	or	
characterised by moorland with low badger activity and few setts 
(site	E),	 our	estimates	were	 lower	 than	 the	 census	average	 (Judge	
et al., 2017).	Notably,	 the	 REM	estimate	 at	 site	 B,	 survey	 2	 (20.2	
badgers per km2,	95%	CI	11.8–34.4)	 indicates	high	badger	density,	
comparable	 to	 that	 of	Woodchester	 Park,	 Gloucestershire,	where	

at its peak, density was estimated at 47 badgers per km2	 (Delahay	
et al., 2013).	A	subsequent	survey	at	site	B	two years	 later	 (survey	
3)	yielded	a	markedly	lower	REM	estimate	(Table 3; Figure 5),	which	
is consistent with badger culling that took place on nearby land. 
However, the confidence intervals of the results overlap, and the 
consistency of CT- DS estimates across the two surveys does not re-
flect this pattern. Successive annual surveys would be necessary to 
ascertain if the observed variations indicate a persistent trend de-
tectable by the REM.

The precision of our estimates was similar to results reported 
elsewhere	 (Bengsen	 et	 al.,	2022; Cappelle et al., 2021; Palencia 
et al., 2021)	 but	 falls	 short	of	 the	 recommended	variance	of	CV	
<0.20	suggested	 for	wildlife	management	 (Cappelle	et	al.,	2021; 
Pollock et al., 1990).	Although	previous	studies	have	highlighted	
the suitability of the REM and CT- DS for studying populations at 
low	densities	given	sufficient	survey	effort	(Palencia	et	al.,	2021; 
Rowcliffe et al., 2008),	 our	 results	 had	 high	 variance	 at	 sites	 E	
and	A,	which	were	characterised	by	 low	density,	with	CV	values	
ranging from 0.42 to 0.86. This imprecision, which was unex-
pected for the REM as we surpassed the suggested survey effort 
(Rowcliffe	et	al.,	2008),	suggests	the	need	to	re-	evaluate	current	
guidelines. In our study, variability in trap rate was the biggest 
component of overall variance for the REM, but uncertainty in the 
speed parameter also had a substantial influence on overall pre-
cision.	Aggregating	data	from	surveys	with	analogous	conditions	
could potentially mitigate this, if conditions influencing parame-
ters can be assumed invariant between sites, but the influence 
of external factors, such as badger culling, on animal behaviour 

F I G U R E  5 Badger	densities	per	km2	and	associated	95%	confidence	intervals	estimated	from	six	camera	surveys	at	five	sites,	using	three	
camera	trap-	based	methods	(SMR	analysis	was	only	possible	for	three	of	the	surveys).
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TA B L E  4 Estimated	animal	density	per	km2,	with	associated	95%	
confidence	intervals	and	coefficient	of	variation	(CV),	derived	from	
simulated mark- resight models.

pID
Estimated density 
(individuals per km2) SE 95% CI CV

1 9.8 2.2 6.3–15.1 0.22

0.75 9.3 2.3 5.8–15.1 0.25

0.50 8.7 2.4 5.1–14.9 0.28

0.25 8.5 2.5 4.9–14.9 0.29

Note: Data were simulated with fixed model parameters reflecting 
observed	data	from	badgers:	A	density	of	10	individuals	per	km2, 
detection probabilities for marking and sighting occasions of 0.09 and 
0.04,	respectively,	and	a	spatial	scale	parameter	(σ)	of	219.3.

 26888319, 2024, 3, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1002/2688-8319.12378 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [10/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12 of 15  |     MILES et al.

(Ham	 et	 al.,	2019)	made	 this	 approach	 unsuitable	 for	 our	 study.	
Enhancing precision of the REM and CT- DS through denser cam-
era grids, either by adding cameras or redeploying them, is most 
effective	 (Rowcliffe	 et	 al.,	 2008),	 though	 as	 few	 as	 50	 cameras	
could suffice for precise CT- DS estimates if deployment times ex-
ceed	100 days	(Cappelle	et	al.,	2021).	Considering	our	findings,	we	
recommend further investigation into the impact of camera num-
ber and deployment duration on the precision of estimates in low- 
density populations under real survey conditions.

Density estimates obtained using CT- DS were sensitive to the 
exclusion	of	 reactive	 sequences.	 In	 the	 least-	affected	 survey	 (sur-
vey	1),	excluding	reactive	sequences	reduced	estimated	density	by	
3.4%	without	 altering	 precision,	 but	 in	 the	 worst-	affected	 survey	
(survey	5),	excluding	these	sequences	reduced	estimated	density	by	
51.0%,	although	variance	was	slightly	 improved.	This	result	 is	con-
sistent with previous studies which have found reactive sequences 
to	be	the	biggest	source	of	bias	in	CT-	DS	(Bessone	et	al.,	2020).	Our	
results highlight the importance of quantifying and addressing the 
influence of reactive sequences on density estimates to ensure ac-
curacy and precision. Left- truncation is proposed as an approach 
to control bias caused by investigative behaviour towards cameras 
(Cappelle	 et	 al.,	2019),	which	 can	 result	 in	 spikes	 at	 zero	distance	
(Howe	 et	 al.,	2017).	 In	 this	 study,	we	 observed	 both	 investigative	
and avoidance behaviour, sometimes within the same sequence. 
As	 a	 result,	 we	 rarely	 detected	 spikes	 at	 zero	 distance,	 making	
left-	truncation	an	unsuitable	approach	for	our	data.	An	alternative	
approach is to minimise the occurrence of reactive behaviour, for 
example by deploying cameras for a pre- survey acclimation period, 
allowing	animals	to	become	accustomed	to	their	presence	(Bessone	
et al., 2020).	However,	 this	 strategy	would	 require	 increased	 field	
effort to maintain camera performance over an extended period, 
which may be infeasible for small- scale projects. Furthermore, if 
avoidance of cameras is elicited by human scent or disturbance, an 
acclimation period would be necessary each time the cameras were 
checked. In contrast, by allowing reactive sequences to be removed 
from	 speed	 and	detection	 zone	parameter	 estimation	 but	 not	 the	
overall trap rate, the REM offers a clear and effective way of han-
dling bias from reactive sequences without additional effort, making 
it a more suitable choice for this application.

In terms of practical considerations, the biggest challenge we 
encountered was interference from livestock. Where interference 
is likely, we suggest checking and recalibrating cameras regularly, 
and increasing survey effort with more deployments as a buffer for 
potential losses. In the farming landscapes, pre- planned coordinates 
for camera placement often fell in open fields, where there were few 
existing	structures	on	which	 to	mount	cameras.	As	prior	work	had	
shown that cattle almost invariably disturb posts deployed specifically 
to mount cameras, we placed cameras preferentially at field bound-
aries.	Though	true	random	placement	is	difficult	to	achieve	(Foster	&	
Harmsen, 2012),	the	potential	impact	on	density	estimates	may	only	
be substantial if coupled with species- specific over-  or underuse of 
the	area	(Cusack	et	al.,	2015).	For	many	species,	linear	landscape	fea-
tures, such as hedgerows, can act as corridors for movement or are an 

essential	refuge	in	an	intensively	farmed	landscape	(Fitzgibbon,	1997; 
Hof & Bright, 2010),	potentially	leading	to	overestimation	in	this	case.	
The fact that the REM and CT- DS estimates were not higher than 
SMR	estimates	(which	are	robust	to	non-	random	placement	relative	
to	animal	movement)	suggests	that	this	may	not	have	been	a	major	
issue. However, incorporating understanding of spatial habitat utili-
sation by the target species is highly recommended when using cam-
era traps to estimate density, particularly in scenarios where camera 
placement may introduce bias. Failure to account for these spatial 
biases could lead to biased density estimates.

To conclude, our results show that badger density can be es-
timated non- invasively with camera traps, without the need for 
individual recognition. This approach could offer a promising tool 
for badger management in the context of current bTB policies, for 
example, to estimate the coverage achieved by badger vaccination 
efforts.	 Additionally,	 since	 the	 REM	 and	CT-	DS	 are	 capable	 of	 si-
multaneously estimating multiple species' densities, these methods 
offer a means to analyse the broader impacts of badger management 
strategies on ecosystems. However, given that precision was poor 
using all methods, particularly in areas of low badger density, these 
methods may be unable to detect population trends over time unless 
survey designs are refined to improve the precision of the results.

More generally, our study provides valuable insights into the use 
of camera- based methods for estimating the density of unmarked 
animal populations. We found that both the REM and CT- DS can 
yield reliable density estimates but recommend prioritising the REM 
for species showing reactive behaviour. We also recommend taking 
precautions to limit interference from other species, to ensure accu-
rate estimation of model parameters, minimise data loss and improve 
precision. Combining the REM and CT- DS with alternative methods, 
such as SMR, may help validate density estimates but requires care-
ful survey design. In future studies, the accuracy of density estimates 
could be improved by incorporating spatial movement patterns into 
analyses, to account for the bias that may arise from factors such as 
habitat preferences, resource availability, and human disturbances, 
thus increasing the applicability of these methods. Finally, we have 
illustrated how the REM and CT- DS can be used to inform wildlife 
management policy but recommend practical considerations to im-
prove the accuracy and precision of density estimates.
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