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Abstract  14 

Background 15 

Risk prediction models are routinely used to assist in clinical decision making. A small sample 16 

size for model development can compromise model performance when the model is applied to 17 

new patients. For binary outcomes, the calibration slope (CS) and the mean absolute prediction 18 

error (MAPE) are two key measures on which sample size calculations for the development of 19 

risk models have been based.  CS quantifies the degree of model overfitting while MAPE assesses 20 

the accuracy of individual predictions.  21 

 22 

 23 
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Methods 24 

Recently, two formulae were proposed to calculate the sample size required, given anticipated 25 

features of the development data such as the outcome prevalence and c-statistic, to ensure that 26 

the expectation of the CS and MAPE (over repeated samples) in models fitted using MLE will meet 27 

prespecified target values. In this article, we use a simulation study to evaluate the performance 28 

of these formulae.  29 

 30 

Results 31 

We found that both formulae work reasonably well when the anticipated model strength is not 32 

too high (c-statistic<0.8), regardless of the outcome prevalence. However, for higher model 33 

strengths the CS formula underestimates the sample size substantially. For example, for c-34 

statistic=0.85 and 0.9, the sample size needed to be increased by at least 50% and 100%, 35 

respectively, to meet the target expected CS. On the other hand, the MAPE formula tends to 36 

overestimate the sample size for high model strengths. These conclusions were more pronounced 37 

for higher prevalence than for lower prevalence. Similar results were drawn when the outcome 38 

was time to event with censoring. Given these findings, we propose a simulation-based approach, 39 

implemented in the new R package ‘samplesizedev’, to correctly estimate the sample size even 40 

for high model strengths. The software can also calculate the variability in CS and MAPE, thus 41 

allowing for assessment of model stability. 42 

 43 

Conclusions  44 

The calibration and MAPE formulae suggest sample sizes that are generally appropriate for use 45 

when the model strength is not too high. However, they tend to be biased for higher model 46 

strengths, which are not uncommon in clinical risk prediction studies. On those occasions, our 47 

proposed adjustments to the sample size calculations will be relevant. 48 
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Introduction 52 

Clinical prediction models are routinely used in practice for prognosis or diagnosis. They can 53 

provide individual predictions given patient characteristics and may allow both clinicians and 54 

patients to monitor the course of a disease and make informed decisions regarding clinical 55 

management. For example, the QRISK prediction model(1) has been incorporated into clinical 56 

practice as a tool to estimate the 10-year risk of cardiovascular disease, guiding lifestyle changes 57 

and the need for preventative treatment. Another example is the HCM-SCD risk model (2) which 58 

is used to estimate the risk of Sudden Cardiac Death (SCD) in patients with hypertrophic 59 

cardiomyopathy (HCM).  60 

Prediction models are often derived using regression models although other approaches 61 

including machine learning methods may be used (3). These model the association between an 62 

outcome variable and a set of explanatory variables. For binary outcomes, such as in-hospital 63 

mortality, a logistic regression model is often used. The model coefficients are estimated using 64 

development (training) data and this model may then be used to make predictions for new 65 

patients. The predictive ability of the model is typically assessed using either the development 66 

dataset via data-splitting, bootstrapping or cross-validation, or a validation (test) dataset (4). If 67 

this model shows satisfactory performance with respect to calibration, discrimination and overall 68 

predictive accuracy, the model can be recommended for use in practice. It is important that the 69 

sample size of both the development and validation datasets are sufficient. In particular, if the 70 

development dataset is too small, the resulting model may fit the development data too well 71 

(overfitting) and predict poorly in validation data.  72 

Therefore, there is a need for clear guidelines regarding the sample size requirements for 73 

developing a reliable risk model. Until recently, the ‘rule of 10’  was often used which suggests 74 



 

that at least 10 events per predictor variable (EPV) are required for developing risk models (5, 75 

6). Recently, though, van Smeden et al.(7) performed a simulation study to investigate the effect 76 

of various factors on risk model performance, including EPV, model discrimination (see 77 

subsection ‘Model Performance’), outcome prevalence, and number and type of predictors. They 78 

concluded that predictive accuracy depends on sample size, number of predictors and outcome 79 

prevalence, and provided several formulae to calculate the sample size needed to achieve a 80 

desired level of predictive accuracy. Riley et al.(8) derived different sample size formulae based 81 

on either controlling the degree of  model overfitting or estimating the prevalence of the outcome 82 

accurately (overall risk). The conclusions and sample size formulae (hereafter RvS) from these 83 

two papers are summarised in a joint paper by Riley et al. (9). This contains four sample size 84 

formulae for binary outcomes based on: i) estimation of overall risk; ii) estimation of individual 85 

risk; iii) controlling overfitting; iv) controlling optimism in apparent model fit. The recommended 86 

sample size is the largest number obtained across all four formulae.   87 

In this paper, we investigate the performance of two of these sample size formulae, specifically 88 

those based on the estimation of individual risk and controlling overfitting, since they concern 89 

aspects that are typically among the most important in model development. Furthermore, in 90 

practice, the two formulae we investigate most often produce the largest of the four sample sizes. 91 

We therefore first investigate whether each of these performs as intended and then investigate 92 

how often they lead to risk models that have ‘acceptable’ performance, where we define 93 

acceptable performance in terms of model calibration and discrimination. 94 

In our main simulation study, we investigate the RvS formulae for binary outcomes, varying 95 

model strength and outcome prevalence with weakly correlated predictor variables. We then 96 

perform additional simulations to investigate the sensitivity of the results to the degree of 97 

correlation between continuous predictors, the type of predictors (continuous or binary) and the 98 

type of outcome (binary or time to event). We found that the RvS sample size formulae were 99 

biased in some scenarios, and so we develop unbiased simulation-based sample size calculations 100 

and implement these in the R package ‘samplesizedev’.  101 



 

This paper is organised as follows. In the ‘Methods’ section we describe the methods typically 102 

used to develop and validate risk models for binary outcomes and the RvS sample size formulae. 103 

In the ‘Simulations’ section we describe simulation studies to assess the performance of RvS 104 

formulae. Given the findings of the simulation study we then present a simulation-based 105 

approach to calculate the sample size for binary outcomes. The final section is a discussion.  106 

 107 

 108 

 109 

 110 

 111 

 112 
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Methods 114 

Prediction models for binary outcomes 115 

Prediction models for binary outcomes are commonly developed using logistic regression. The 116 

model 117 

𝜋 = Pr(𝑌 = 1|𝒙) =  
1

1 + exp(−𝜂)
 118 

models the probability (𝜋) of an event as a function of the linear predictor 𝜂 = 𝛽0 + 𝛽1𝑥1 +119 

⋯ 𝛽𝑝𝑥𝑝 = 𝜷𝑻𝒙, where 𝛽𝑗 and 𝑥𝑗 are the regression coefficient and predictor value for the j-th 120 

predictor and Y is the binary outcome. Estimation of the regression coefficients is typically 121 

performed using maximum likelihood estimation (MLE); these estimates can then be used to 122 

make predictions for new patients. Prediction models are often developed in a ‘development’ 123 

dataset then tested using a separate ‘validation’ dataset, where model performance is typically 124 

evaluated in terms of calibration, discrimination and predictive accuracy (the accuracy of 125 

individual predictions) (10). 126 

 127 

Model Performance 128 

Two common measures for assessing the predictive performance of risk models are the 129 

calibration slope and c-statistic which, respectively, quantify the agreement between observed 130 

and predicted risks and the concordance between the predictions and outcomes (measuring 131 

discrimination). In addition, one might calculate the mean absolute prediction error (MAPE) to 132 

quantify the distance between the estimated and ‘true’ probabilities (measuring predictive 133 

accuracy) (7). We note that MAPE can only be calculated when we know the true probabilities, 134 

i.e., in simulation.  135 

In detail, calibration may be assessed by considering the relationship between the outcomes and 136 

the predictions using a logistic regression model (4, 11). In detail, the following logistic model 137 

(calibration model) is fitted to validation data of size 𝑛𝑣𝑎𝑙 138 



 

log (
𝜋𝑖

1 − 𝜋𝑖
) = 𝛼0 + 𝛼1𝜂̂𝑖, 𝑖 = 1, … , 𝑛𝑣𝑎𝑙 139 

where 𝜂̂𝑖  is the estimated linear predictor, calculated using regression coefficients estimated in 140 

the development data of size 𝑛. Parameter 𝛼1 is known as the calibration slope (CS), with values 141 

less than 1 suggestive of model overfitting. The calibration model above can also be used be in 142 

internal validation (e.g. cross-validation and bootstrap validation). 143 

The c-statistic (also known as the area under the ROC curve) is the probability that a patient who 144 

has an event has a higher predicted risk than a patient who does not have an event. This can be 145 

estimated using 146 

𝑐 =
∑ ∑ 𝐼(𝑦𝑖 = 1 & 𝑦𝑗 = 0){𝐼(𝜋̂𝑖 >  𝜋̂𝑗) + 0.5𝐼(𝜋̂𝑖 = 𝜋̂𝑗)}

𝑛𝑣𝑎𝑙
𝑗=1

𝑛𝑣𝑎𝑙
𝑖=1

∑ ∑ 𝐼(𝑦𝑖 = 1 & 𝑦𝑗 = 0)
𝑛𝑣𝑎𝑙
𝑗=1

𝑛𝑣𝑎𝑙
𝑖=1

 147 

where 𝜋̂ = {1 + exp(−𝜂̂)}−1 and 𝐼(𝑢) equals 1 if 𝑢 is true and 0 otherwise. 148 

The mean absolute prediction error (MAPE) is the mean absolute difference between the 149 

estimated and true probabilities. This may be estimated using 150 

𝑀𝐴𝑃𝐸 =
1

𝑛𝑣𝑎𝑙
∑|𝜋̂𝑖 − 𝜋𝑖|

𝑛𝑣𝑎𝑙

𝑖=1

. 151 

We might also determine whether the performance of a risk model is acceptably close to that of 152 

the true model. We assume that the performance of the fitted model is assessed in a dataset with 153 

the same characteristics as the original development dataset (i.e. the development and validation 154 

dataset are random samples from the same population). For example, for calibration, we may 155 

consider performance to be unacceptable if the calculated calibration slope is less than 0.8. For 156 

discrimination, we may consider performance to be acceptable if the estimated c-statistic is 157 

within 0.02 of the true c-statistic. We use these definitions later in our simulations. 158 

 159 



 

Shrinkage 160 

Logistic regression models estimated using MLE tend to exhibit some degree of overfitting (12, 161 

13). That is, the highest predictions tend to be too high and the lowest too low (4). As discussed 162 

earlier, the degree of overfitting may be quantified using the CS. 163 

In practice, shrinkage is often used to counteract overfitting (4). One simple approach is to 164 

estimate and apply a shrinkage factor 𝑆 to the coefficient estimates following MLE. That is, the 165 

prediction model becomes 166 

log (
𝜋̂

1 − 𝜋̂
) = 𝛽̂0

∗ + 𝑆(𝛽̂1𝑥1 + ⋯ 𝛽̂𝑝𝑥𝑝) 167 

where the intercept 𝛽0
∗ is re-estimated so that the average predicted probability equals the 168 

outcome prevalence. This has the effect of shrinking the individual predictions towards the 169 

overall outcome prevalence, and, on average should result in a calibration slope close to one in 170 

validation data.  171 

The ‘heuristic’ shrinkage factor may be calculated as 172 

 𝑆 = (Δ𝜒2 − 𝑝) Δ𝜒2⁄  (1) 

where Δ𝜒2 is the model deviance and 𝑝 is the number of model parameters (excluding the 173 

intercept).(14)  As noted by Van Houwelingen & Le Cessie (1990)(15), this relationship should 174 

be valid if the model strength (c-statistic) is modest and the predictor variables follow a 175 

multivariable normal distribution.  176 

A shrinkage factor may also be estimated using the bootstrap. Briefly, the model is fitted in 177 

bootstrap datasets with the original dataset used for validation. The average value of the 178 

calibration slope over these bootstraps is an estimate of the shrinkage factor. Finally, shrinkage 179 

may also be applied at the estimation stage, for example using a penalised regression method 180 

such Ridge or Lasso (16). We do not consider penalised regression methods further in this work, 181 

since the sample size formulae that are the focus of our evaluation assume that the models are 182 

fitted using MLE. 183 



 

 184 

Formulae for the Sample Size of the Development Sample 185 

RvS describe four separate sample size formulae and recommend choosing the maximum value 186 

obtained from these. We investigate the performance of two of these formulae and describe these 187 

below.  188 

This first of these formulae (hereafter RvS-1 or ‘calibration formula’) is based on controlling 189 

model overfitting and is derived using the equation for the heuristic shrinkage factor (15).  Riley 190 

et al. (2019)(8) show that the sample size n needed to achieve a target expected shrinkage factor 191 

of S (hereafter ‘target expected shrinkage’ or ‘target expected CS’ for conciseness) after MLE has 192 

been used for model fitting is given by 193 

𝑛 =
𝑝

(𝑆 − 1) log (1 −
𝑅𝐶𝑆

2

𝑆 )

,                                                                         (RvS − 1) 194 

where 𝑅𝐶𝑆
2  is the Cox-Snell 𝑅2 statistic (proportion of variance explained), a measure of model 195 

strength, and 𝑝 is the number of model parameters (excluding the intercept). In line with (8), 196 

throughout this paper we assume that variable selection is not performed. We note here that RvS-197 

1 depends on the model strength and the outcome prevalence via 𝑅𝐶𝑆
2 . RvS suggest that the chosen 198 

value of 𝑆 be no lower than 0.9. The expected shrinkage, or ‘expected calibration slope’, 𝑆, is 199 

interpreted to mean that if the model were to be fitted to many random samples of size 𝑛 from 200 

the population of interest and validated on infinitely large validation datasets from the same 201 

population, then the calculated CS would be on average, 𝑆.   202 

The second equation that we investigate (hereafter RvS-2 or ‘MAPE formula’) calculates the 203 

sample size for estimating individual predictions accurately and was derived from the simulation 204 

results of van Smeden et al. (2018) (7). The sample size n needed to achieve a target expected 205 

mean absolute prediction error (MAPE)  𝑚 is given by 206 

𝑛 = exp (
−0.508 + 0.259 log(𝜙) + 0.504 log(𝑝) − log(𝑚)

0.544
) , (RvS − 2) 207 



 

where 𝜙 is the anticipated outcome prevalence. RvS-2 does not consider model strength in the 208 

calculation. RvS recommend that m be no larger than 0.05, though, in practice, this choice should 209 

arguably depend on the prevalence of the outcome. Without loss of generality, we later use  𝑚 =210 

𝜙/10 in our simulations when evaluating formula RvS-2, although in practice 𝑚 can be set to any 211 

value deemed appropriate. The target expected MAPE is interpreted in an analogous way to the 212 

target expected CS. 213 

For completeness, we mention that the two other formulae provide the sample size for estimating 214 

the mean predicted risk (e.g., to within 0.05), and for controlling the optimism in the estimate of 215 

the Nagelkerke 𝑅2 statistic. The latter is another measure of model strength, and optimism is 216 

defined as the difference between the apparent model performance, as quantified in the 217 

development data, and the actual model performance, as quantified in validation data. We do not 218 

consider these formulae further for the reasons stated in the introduction. 219 

 220 

 221 

 222 

 223 

Simulations 224 

Design  225 

Simulation studies were used to investigate the performance of the RvS-1 (calibration) and RvS-226 

2 (MAPE) sample size formulae. The RvS-1 formula was derived by Riley et al. (8) using the 227 

equation for the heuristic shrinkage factor, which assumes modest discrimination in the data 228 

(14). It is therefore important to assess the magnitude and direction of possible bias of RvS-1 229 

when model strength is high (i.e., whether using the sample size suggested by RvS-1 results in the 230 

target expected CS). The RvS-2 formula was derived by van Smeden et al. (7) using simulation, 231 

and model strength is not included as part of the equation. Therefore, it is of interest to assess its 232 



 

validity for a range of model strengths. Based on these motivations, we considered different 233 

scenarios corresponding to different combinations of model strength (c-statistic) and outcome 234 

prevalence. We note that higher of values of 𝑅𝐶𝑆
2  (of which Nagelkerke’s 𝑅2  is a function) and the 235 

c-statistic both correspond to a greater predictive ability for a model (higher model strength). As 236 

values of 𝑅𝐶𝑆
2   are rarely reported in the literature (18), we chose to define model strength in 237 

terms of the c-statistic in our simulation results. We describe these simulations below using the 238 

ADEMP framework of Morris et al. (2019) (17). 239 

 240 

Aims 241 

The primary aim of the simulations was to investigate whether the sample sizes selected by the 242 

RvS formulae led to risk models with the anticipated performance for different combinations of 243 

prevalence and model strength. In detail, we investigated whether choosing the sample size using 244 

RvS-1 and RvS-2 resulted in fitted models with the target expected CS and MAPE, respectively 245 

(i.e., whether the mean CS equals the target expected CS, and similarly for MAPE). 246 

For RvS-1 we also investigated the variability in the CS (quantified by the root mean square 247 

distance of the calibration slope – see ‘Performance measures’ section below’) and calculated the 248 

probability of obtaining a model with unacceptable calibration (defined here as 𝐶𝑆 < 0.80) and a 249 

c-statistic close (within 0.02) to the true value. 250 

 251 

Data-generating mechanisms 252 

 253 

For each scenario we generated 2000 development  and validation datasets each containing the 254 

binary outcome and 12 predictor variables; five of these were true predictors (𝛽𝑗 ≠ 0) and seven 255 

were noise variables (𝛽𝑗 = 0), following Riley 2021(18). The predictor variables were generated 256 

from a multivariate normal distribution with mean zero and unit variance, with pairwise 257 



 

correlations of 0.1 between the true predictors, 0.05 between the noise predictors, and 0 between 258 

noise and true predictors.  The binary outcomes were generated using the Bernoulli distribution 259 

with parameter 𝜋, where  𝜋 = 𝑙𝑜𝑔𝑖𝑡−1(𝜷𝑇𝒙) and 𝜷 and 𝒙 denote the vector of regression 260 

coefficients and predictor values respectively.  261 

The size of the development datasets for each scenario were determined using either RvS-1 with 262 

target 𝑆 = 0.9, or RvS-2 with target expected MAPE  m = 𝜙/10. For RvS-1, we calculated 𝑅𝐶𝑆
2  after 263 

fitting a model to a very large dataset with one million observations. Alternatively, RCS
2   can be 264 

approximated using the c-statistic, assuming a Normal distribution for the linear predictor in 265 

patients with and without the event(19);  in the simulation we report results from using the true 266 

RCS
2 . Similarly, the value of the c-statistic for the true model, which we call ‘true c-statistic’ for 267 

conciseness, was obtained by calculating the c-statistic in the same validation dataset using the 268 

true probabilities 𝜋.  269 

The validation datasets were generated using the same data generating mechanism, but with 270 

100,000 observations. The large size of the validation datasets ensures that the values of the 271 

performance metrics (see below) for the fitted model are estimated with very little variability. 272 

The values of the regression coefficients were chosen to correspond to a desired outcome 273 

prevalence 𝜙 and model strength scenario. Specifically, we set  𝜷 = (𝛽0, 𝑓 × 𝜸), with 𝜸 =274 

(0.4, 0.2, 0.2, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 0) denoting the relative strength of the predictors, and chose  275 

𝛽0 and 𝑓 accordingly to match the required prevalence and c-statistic. 276 

 277 

Targets 278 

We focus on measures of predictive performance when models are estimated using datasets with 279 

sample sizes obtained using formulae RvS-1 or RvS-2. We consider the CS, the MAPE and the c-280 

statistic. 281 

 282 

Parameter values 283 



 

Six values of model strength (c-statistic = 0.65, 0.70, 0.75, 0.80, 0.85 and 0.90) and three values of 284 

outcome prevalence (10%, 30% and 50%) were investigated. The sample sizes indicated by the 285 

RvS formulae are shown in Table 1; for each sample size 𝑛, the EPV was calculated as 𝐸𝑃𝑉 =286 

𝑛𝜙 𝑝⁄ .  287 

   288 

Methods 289 

We performed the simulations as follows for each combination of outcome prevalence and model 290 

strength. First, we generated 2000 development datasets with sample sizes determined as 291 

described above. We then fitted logistic regression models to the development datasets using 292 

MLE and calculated the measures of predictive performance (CS, MAPE and c-statistic) using the 293 

validation datasets. The use of 2000 simulations for each scenario ensured that the Monte Carlo 294 

simulation error (MCSE) was sufficiently small; the maximum value of the MCSE across all 295 

scenarios was 0.003 for the calibration slope, 0.0002 for the c-statistic and 0.0004 for MAPE.  296 

 297 

Performance Measures 298 

For each scenario, we assessed the performance of the sample size formulae RvS-1 and RvS-2 by 299 

comparing the mean calculated calibration slope and MAPE values to their target values, 0.9 and 300 

𝜙/10, respectively.  301 

One issue with the CS is its variability. Even when the mean CS appears to be close to the target 302 

expected CS, it tends to exhibit very high variability in some scenarios.(18, 20) Consequently, we 303 

looked at the Root Mean Square Distance of the CS (RMSD) from the ideal value of 1, which has 304 

been suggested(20) as a suitable measure to assess model performance with respect to CS. In 305 

addition, to further assess variability in model performance, we also calculated the proportion of 306 

times the estimated model exhibited unacceptable calibration (𝐶𝑆 <  0.8 suggesting substantial 307 

overfitting) or acceptable discrimination (c-statistic for the estimated model within 0.02 of the 308 

true c-statistic). 309 



 

Whenever the target expected CS and MAPE were not achieved with the recommended sample 310 

sizes using formulae RvS-1 and RvS-2, we also obtained by simulation the sample sizes actually 311 

required to achieve the target values on average.  312 

To calculate the required sample size we used the bisection method (which requires provision of 313 

starting values for the sample size and re-simulation and calculation of CS and MAPE until they 314 

are, on average, close enough to the target expected values). More details on our proposal for 315 

simulation-based sample size calculations are in a following section and in the Supplementary 316 

Material 1 (section ‘Details for simulation-based sample size calculations’). The software code (R) 317 

used for the main simulation study is provided in the Supplementary Material 2.   318 

Results 319 

Calibration Slope 320 

Figure 1 shows the mean CS for models developed with sample sizes calculated using RvS-1. If 321 

the RvS-1 formula worked well, then all the lines would lie near the horizontal dotted line. The 322 

target expected CS is 𝑆 = 0.9 for all combinations of model strength (c-statistic) and outcome 323 

prevalence. We see that the performance of RvS-1 depends on model strength and, to a lesser 324 

degree, outcome prevalence. That is, the mean CS is close to 0.90 when the model strength is 325 

relatively low but diverges from it as model strength increases. When the c-statistic is 0.90, the 326 

mean CS is 0.82 or less, depending on outcome prevalence. The CS also worsens with increasing 327 

prevalence. Figure S1 (figures prefixed by ‘S’ are in the Supplementary Material 1) shows that the 328 

variability in the CS tends to increase with model strength (primarily due to the under-estimation 329 

of the sample size). 330 

[Figure 1 here] 331 

332 



 

Figure 2 shows, using RVS-1 and using simulation, the sample size required to achieve the target 

expected CS, for different values of model strength and outcome prevalence. We express sample 

size via EPV to enable comparisons with the rule of 10 and across different scenarios. As in Figure 

1, it is clear that much larger sample sizes than that suggested by RvS-1 are required for higher 

values of model strength (𝑐 ≥ 0.8). This is particularly so for higher values of outcome prevalence. 

For example, when c-statistic=0.85 and prevalence=0.1, an EPV of 8 is required compared to the 

RvS-1 value of 5.3. If the prevalence is 0.5, then an EPV of 19.4 is required compared to the RvS-1 

value of 10.2. Further investigation suggests that the reason why RvS-1 is less accurate when 

model strength is high is that the heuristic shrinkage factor equation (1) under-estimates the 

amount of shrinkage that is required in these scenarios (results not shown). The recommended 

EPV using equation RvS-1 and the EPV calculated by simulation to achieve the target expected CS 

are provided in Table S1. Finally, we note that when 𝑅𝐶𝑠
2  was approximated using the c-statistic, 

the sample sizes obtained by the RvS-1 formula were very close to the sample sizes obtained using 

the true 𝑅𝐶𝑆
2 , and hence the conclusions were the same. 

[Figure 2 here] 



 

Figure 3 shows the proportion of models with 𝐶𝑆 < 0.8. When the sample size is chosen using 

RvS-1, the probability of obtaining a model with 𝐶𝑆 < 0.8  ranges from around 0.1 for low model 

strengths to 0.6 for high model strength. When the sample size is correctly chosen via simulation 

to achieve the target expected CS of 𝑆 = 0.9, the probability is reasonably constant at around 0.12.  

[Figure 3 here] 

Figure S2 shows the proportion of models with acceptable discrimination, that is, a c-statistic for 

the estimated model within 0.02 of the true c-statistic. We can see that use of RvS-1 tends to 

produce a model with discrimination somewhat below the true value for higher model strengths. 

In contrast, when the sample size is correctly chosen to achieve the target expected CS, most 

models have discrimination close to the true value across all model strengths. 

 

MAPE 

Figure 4 shows the average MAPE (Figure S3 shows the variability in MAPE) for models 

developed using sample sizes calculated using RvS-2. The target value of expected MAPE is 𝜙/10 

for all combinations of model strength and outcome prevalence 𝜙. The performance of RvS-2 

seems to depend on both model strength and outcome prevalence. More specifically, the mean 

MAPE typically exceeds the target value slightly when the model strength is low but decreases 

below the target value as model strength increases. This trend is more evident for higher values 

of outcome prevalence.  

[Figure 4 here] 



 

Figure 5 shows the sample size calculated by simulation, expressed via EPV, needed to achieve 1 

the target MAPE for different values of model strength and outcome prevalence. It is clear that 2 

smaller sample sizes could be used in many circumstances, particularly for higher values of model 3 

strength. For low values of model strength, a slightly larger sample size might be required. For 4 

example, when the c-statistic and prevalence are 0.85 and 0.1 respectively, an EPV of 47.2 is 5 

required compared to the RvS-2 value of 51.9. If prevalence is 0.5, then an EPV of 21.9 is required 6 

compared to the RvS-2 value of 29. The recommended EPV using RvS-2 and the EPV calculated 7 

by simulation to achieve the target MAPE are shown in Table S2. 8 

[Figure 5 here] 9 

 10 

Further Analyses  11 

We performed additional simulation studies, analogous to those described in section 3.1, to 12 

assess the sensitivity of the results to: i) correlations between continuous predictor variables; ii) 13 

binary predictors; iii) number of predictor variables, iii) different type of outcome (time to event).  14 

 15 

Correlation between continuous predictors  16 

We first calculated the sample size using either the RvS formulae or simulation assuming the same 17 

correlations between predictors (weakly correlated) and the same relative strength of predictors 18 

as in the main simulation.  We then modified the part of the DGM that concerns the generation of 19 

the predictor variables. Specifically, we generated continuous predictors, either uncorrelated or 20 

correlated, and selected the regression coefficients to correspond to an outcome prevalence of 21 

0.1 and model strengths ranging from 0.65 to 0.85. For correlated predictors, the correlation 22 

between the continuous true predictors was set to either 0.5 or 0.8, and the correlation between 23 

the noise predictors was set to 0.3.  24 



 

For the chosen size, we calculated the mean calibration slope and MAPE in datasets where the 25 

true correlations between the predictors differed, as above.  We found that the conclusions of 26 

section 3.1 remained unchanged for both RvS-1 and RvS-2 formulae (Table S3). Also, for a given 27 

size the mean calibration slope and MAPE were very similar regardless of the degree of 28 

correlation between the predictors. 29 

 30 

Binary Predictors  31 

We then considered a model with only independent binary predictors with prevalences ranging 32 

between 0.2 and 0.7. This covariate pattern resulted in a relatively skewed linear predictor. The 33 

mean calibration slope and MAPE were very similar to the case of continuous and correlated 34 

predictors (Table S3). These results suggest that, for given values of the c-statistic and prevalence 35 

and a given sample given size, the expected CS and MAPE do not seem to vary substantially 36 

depending on the type of covariates and correlation between covariates, at least for the scenarios 37 

considered here. 38 

 39 

Number of predictor variables  40 

We then studied whether the number of predictor variables (𝑝) affect the performance of the 41 

formulae. For this evaluation, we assumed independent and normally distributed predictor 42 

variables of equal strength. We considered a low model strength scenario (c-statistic=0.7), for 43 

which RvS-1 formula was seen to work well (see the previous section for 𝑝 = 12). The target 44 

expected CS was chosen to be 𝑆 = 0.9 as earlier, the anticipated outcome prevalence was fixed to 45 

0.1 and 𝑝 was varied between 4 and 30. The mean CS was overall very close to the target value of 46 

0.9 (Figure S4). However, a notable finding was that the variability in the CS and hence, the RMSD 47 

of the CS was much higher when  𝑝 was less than 10. This can be explained by the fact that the 48 

required sample size decreased for smaller 𝑝. As a result, the probability of obtaining a 49 

miscalibrated model was much higher for smaller 𝑝 than for larger 𝑝. For, instance the chance of 50 



 

obtaining a model with 𝐶𝑆 < 0.8 was 21% when 𝑝 = 4, and only 8% when the 𝑝 = 22. This 51 

suggests that care should be taken when the number of predictor variables is small. Ideally, the 52 

target expected CS should be chosen so as the probability of obtaining a severely miscalibrated 53 

model is low. The results for MAPE were analogous (not shown). 54 

 55 

Time to event outcome with censoring  56 

We then considered whether the conclusions of section 3.2.1 for equation RvS-1 hold when the 57 

outcome is time to event. We modified the part of the DGM in section 3.1 that concerns the 58 

outcome to generate time to event outcomes with censoring  from the proportional hazards 59 

model ℎ(𝑡) = ℎ0(𝑡) exp(𝛽𝑇𝒙), where ℎ(𝑡) is the hazard function at time 𝑡 and ℎ0(𝑡) is the baseline 60 

hazard function. We specified a constant baseline hazard and hence, survival times were 61 

generated using the exponential distribution. We considered uncorrelated normally distributed 62 

predictors (5 true and 7 noise as in the DGM of section 3.1). We quantified the model strength 63 

using the concordance or Harrell’s c-index (21) (considering two patients, c-index is the 64 

probability that the patient with the largest value of the linear predictor has the shortest survival 65 

time). The variance of the normally distributed linear predictor was chosen to match a desired 66 

concordance, analogously to the c-statistic for binary outcomes. We administratively censored 67 

the survival times at a particular time-point to ensure that the proportion of uncensored 68 

observations matched a prespecified value (0.1, 0.5, 0.9).  69 

The results (shown in Table S4) were similar to those for binary outcomes when the proportion 70 

of censored individuals was 0.5 or higher (proportion of events up to 0.5). The similarity was 71 

perhaps to be expected because the corresponding RvS-1 equation for time to event outcomes is 72 

derived using the same shrinkage factor equation (1) as that used to derive the binary version of 73 

RvS-1. When using RvS-1, the sample size was appropriate for low and medium-strength models 74 

but was underestimated for higher strength models. Underestimation was worse when there was 75 

less censoring.  76 



 

Simulation-based sample size calculations to achieve target expected Calibration Slope 77 

and MAPE for binary outcomes 78 

 79 

We now describe the approach briefly mentioned in the previous section (and used for Figures 2 80 

and 5) that uses simulation and optimisation to calculate the sample size required to achieve a 81 

target expected CS or MAPE for binary outcomes. This approach is computationally efficient and 82 

has been implemented in the R package samplesizedev (available from the github repository 83 

https://github.com/mpavlou/samplesizedev).  Full details can be found in Supplementary 84 

Material 1 (Box 1 and Box 2 in Section ‘Details for simulation-based sample size calculations’). 85 

The software requires the following inputs: anticipated values of the outcome prevalence, the c-86 

statistic and the number of predictor variables.   87 

It can either: 88 

a) calculate the sample size if the user inputs a target value for the expected CS or MAPE 89 

b) calculate the expected CS and MAPE (and also the variability in these measures which enables 90 

assessment of model stability) if the user inputs a sample size.  91 

 92 

The sample size calculation is based on the assumption that the predictor variables follow a 93 

multivariate normal distribution, which is also the assumption underpinning formula RVS-1. We 94 

also make the simplifying assumption that the predictors are independent. As seen in our 95 

simulation study (subsection ‘Further analyses’), provided that the linear predictor is chosen to 96 

have mean and variance to match the anticipated prevalence and c-statistic, the correlation 97 

between the predictor variables minimally affects the expected CS and MAPE for a given sample 98 

size.  The independence assumption is helpful for two reasons. First, it simplifies the level of input 99 

required by the user, and second, it allows us to perform some of the computations using algebra 100 

and numerical integration (22, 23), which is faster than using simulation. These calculations and 101 

https://github.com/mpavlou/samplesizedev


 

our full algorithm for simulation-based sample size calculations are provided in the 102 

Supplementary Material 1.  103 

We have observed that the MCSE will be sufficiently small (for the CS the MCSE will usually be 104 

less than 0.0025 at the calculated size to achieve a target expected CS of 𝑆 = 0.9) when we use at 105 

least 𝑛𝑠𝑖𝑚 = 1000 simulated development datasets, and validation datasets of size at least 106 

𝑛𝑣𝑎𝑙=25000. Indicatively, for 𝑛𝑠𝑖𝑚 = 1000  and 𝑛𝑣𝑎𝑙 = 25000, the routine usually takes around 107 

one minute to complete. 108 

 109 

Example 110 

Suppose that we wish to develop a risk model with 24 predictor variables and the anticipated 111 

prevalence and c-statistic are 𝜙 = 0.174 and  𝑐 = 0.89 respectively. These are the input 112 

parameters example provided in the R package pmsampsize (24) and discussed in (8). Using 113 

formula RvS-1, the required sample size to achieve a target expected CS of 𝑆 = 0.9 is 620 (rounded 114 

up to the nearest 10).  115 

We use the package samplesizedev to evaluate whether this sample size is adequate to meet 116 

the calibration target. All results below were obtained assuming 24 predictors of equal strength; 117 

the results were almost identical when we used different numbers of true/noise predictors and 118 

relative strengths (the code and detailed results are provided in the Supplementary Material 1).  119 

In line with the simulation results in the previous section, the sample size is substantially 120 

underestimated by RvS-1. For the recommended sample size of 620, the mean CS is 0.80 (𝑀𝐶𝐸 =121 

0.0027), well below the target expected calibration slope of 0.9. For this sample size, the 122 

variability in the CS is substantial (Figure 6) and the probability of obtaining a model with CS 123 

below 0.9 and 0.8 is very high, around 86% and 52%, respectively. Using simulation with the 124 

package samplesizedev, the required size to achieve the expected CS of 𝑆 = 0.9 is more than 125 

double, 1310.   126 



 

Similarly, using equation RvS-2, the recommended sample size to achieve expected MAPE 𝑚 =127 

0.05 is 800. For this recommended size, the mean MAPE is slightly lower than 0.05, indicating a 128 

slight overestimation of the sample size. Using simulation, the required sample size to achieve a 129 

target expected MAPE of 𝑚 = 0.05 is 630.   130 

[Figure 6 here] 131 

 132 

Advantages and limitations of the simulation-based approach 133 

The advantages of our proposed simulation-based sample size calculations compared to the 134 

existing calculations are: 1) unbiased estimation of the sample size even for high model strengths 135 

and 2) estimation of the variability in the measures of predictive performance, which allows for 136 

assessment of model stability. A disadvantage is that by using our software, it may take 1-2 137 

minutes (for each of CS and MAPE) to calculate the sample size which, although not prohibitively 138 

slow, is slower than using the RvS software.  139 

It is worth noting that the simulation-based approach to sample size calculation was primarily 140 

used to assess the RvS formulae under ideal conditions (where the c-statistic, outcome prevalence 141 

and number of predictor variables are considered known, and the predictor variables are 142 

normally distributed). Although, it can be adapted to more complex scenarios, its application in 143 

practice will be challenging because the additional information required to simulate from those 144 

scenarios may not be readily available before data collection. For example, if we were to assume 145 

that the distribution of the linear predictor is non-normal, we would require information 146 

regarding the distribution and relative strength of the individual predictors, a level of information 147 

that would usually not be available before data collection. In our sensitivity analyses (section 148 

‘Further analyses’), we did not observe substantial variation in the expected CS and MAPE (for a 149 

given sample size), with different types of predictor variables and different levels of correlation 150 

between these variables but further future investigations are warranted. 151 

  152 



 

Discussion 153 

We have used simulation to investigate the performance of the sample size formulae proposed by 154 

Riley and van Smeden for the development of risk prediction models for binary outcomes. 155 

Specifically, we investigated the performance of the calibration and mean absolute prediction 156 

error (MAPE) formulae for different values of model strength (c-statistic) and outcome 157 

prevalence. 158 

The results from the first set of simulations suggest that the calibration equation (RvS-1) works 159 

well when the model strength is low to moderate but tends to severely under-estimate the sample 160 

size requirements when the model strength is high (c-statistic >0.8). This suggests the sample 161 

size calculated using RvS-1 may need to be increased in such scenarios. For example, we observed 162 

that depending on the prevalence, the sample size needed to be increased by at least 20%, 50%, 163 

and 100% when the c-statistic was 0.8, 0.85 and 0.9, respectively. Our simulations suggest that 164 

ensuring that the expected CS is at least 0.9, the resulting model will also have a high chance of 165 

achieving acceptable discrimination, defined here as achieving a c-statistic within 0.02 of the true 166 

c-statistic.  167 

The results from the second set of simulations, in contrast, suggest that the MAPE equation (RvS-168 

2) may over-estimate the sample size requirements when the model strength is high. This 169 

suggests that a smaller sample size might be adequate in such scenarios though we would 170 

generally recommend a conservative approach. 171 

In a series of further analyses, we investigated whether the results above hold when the model 172 

includes correlated (continuous) predictors or binary predictors, when the number of predictors 173 

varies, or when a time-to-event outcome (with censoring) is used. For both formulae we found 174 

that the results were very similar in the presence of correlated predictors or binary predictors. 175 

When varying the number of predictor variables for model strength equal to 0.7, a scenario where 176 

we had previously seen RVS-1 and RVS-2 working well, we found that that the performance target 177 

(CS/MAPE) was still met on average. Nevertheless, the variability was particularly high when the 178 



 

number of predictor variables was smaller than 10. Finally, as expected, the results for RvS-1 179 

were also similar when applied to a time to event outcome with proportion of censoring 50% or 180 

higher. For lower censoring proportions, the performance of RvS-1 was worse for time to event 181 

than that for binary outcome.  182 

Overall, the RvS calibration and MAPE formulae suggest sample sizes that are generally 183 

appropriate for use in practice when the model strength is not too high (c-statistic <0.8). 184 

Certainly, they are more nuanced than those suggested by the old ‘rule of 10’, which do not change 185 

depending on important factors such as model strength. However, it is not uncommon to observe 186 

a c-statistic >0.8 in clinical risk prediction studies (25). Arguably, higher values of the c-statistic 187 

(e.g. > 0.8) may be more common in diagnostic models than in prognostic models and hence, care 188 

should be taken when using RvS formulae in those cases. Information regarding the anticipated 189 

value for the c-statistic and outcome prevalence can often be obtained from existing risk models, 190 

as described in detail in (8). In the absence of reliable information, we suggest choosing a 191 

conservative value for the anticipated value of the c-statistic to avoid obtaining a sample size that 192 

is too small. 193 

In this paper we have thoroughly evaluated the two main formulae from RvS (calibration and 194 

MAPE formulae). These typically produce the largest sample sizes of the four formulae proposed 195 

and hence, in practice, will often determine the chosen sample size. Regarding the two formulae 196 

that were not evaluated in detail, we note the following. The formula based on the optimism in 197 

Nagelgerke’s 𝑅2 (𝑅𝑁𝑎𝑔
2 ) is obtained using the same approximations used for the calibration 198 

formula. To calculate the sample size to meet a target expected optimism 𝛿 in 𝑅𝑁𝑎𝑔
2 , the 199 

corresponding target shrinkage 𝑆𝛿 is first calculated. Then the required sample size is obtained 200 

by plugging 𝑆𝛿 into the calibration formula. The formula to ensure the precise estimation of 201 

overall risk makes the key assumption that the risk for an individual with mean predictor values 202 

(which is obtained as the inverse logit of the intercept 𝛽0 in a model where all predictors have 203 

been mean-centred) will often be very similar to the mean risk in the overall population (𝜙). 204 



 

While this statement may hold when the discrimination (c-statistic) is small, it does not hold in 205 

general, with large deviations when the prevalence is smaller than 0.5 and the c-statistic is 206 

moderate to high. For example, when 𝜙 = 0.1 and 𝑐 = 0.75 and 0.8, 𝑙𝑜𝑔𝑖𝑡−1(𝛽0) will be equal 207 

to 0.072 and 0.058, respectively (assuming a normally distributed linear predictor). Hence, the 208 

estimand 𝑙𝑜𝑔𝑖𝑡−1(𝛽0) does not, in general, correspond to a quantity we might be interested in, 209 

and so the related sample size formula for precise estimation of 𝑙𝑜𝑔𝑖𝑡−1(𝛽0) seems of limited 210 

practical use. 211 

In practice, it is important that the sample size be chosen with the clinical aims of the model in 212 

mind.  The RvS formulae investigated in this paper are important because they consider two 213 

important aspects of predictive performance: calibration and predictive accuracy. However, they 214 

only target average values of calibration slope and MAPE and there is, of course, no guarantee 215 

that an individual model fitted on an adequately sized sample from the target population will 216 

achieve these values. Even in cases where a calibration target is met on average, the variability in 217 

the calibration slope can be quite high. One such scenario we have seen in this article is when the 218 

number of candidate predictor variables is less than 10. Our simulation-based approach, 219 

implemented in the software ‘samplesizedev’, in addition to estimating the sample size 220 

required to achieve a target calibration slope on average, also allows quantification of the 221 

variability in the calibration slope for that sample size. 222 

 223 

Availability of data and materials 224 

In this study we used synthetic (simulated data) for method evaluation. Software code (R) written 225 

for the simulation studies is available from the Supplementary Material 2.   226 

 227 

Abbreviations 228 

CS: Calibration Slope 229 



 

EPV: Events Per Variable 230 

MAPE: Mean Absolute Prediction Error 231 

MCSE: Monte Carlo Simulation Error 232 

MLE: Maximum Likelihood Estimation 233 

HCM: Hypertrophic cardiomyopathy  234 

RMSD: Root Mean Square Distance 235 

RvS: Riley – van Smeden formulae 236 

SCD: Sudden Cardiac Death 237 
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Tables and Figures for main paper 354 

 355 

Table 1: Calculated sample size (n - rounded to the nearest 10) and corresponding EPV using the 356 

Calibration (RvS-1) and MAPE (RvS-2) formulae in Riley et al. (2020)  357 

Prevalence C-statistic n RvS-1  EPV RvS-1  n RvS-2  EPV RvS-2  

0.1 0.65 4120 34.3 6230 51.9 

0.3 0.65 1780 44.6 1400 34.9 

0.5 0.65 1480 61.7 700 29.0 

0.1 0.75 1390 11.6 6230 51.9 

0.3 0.75 620 15.5 1400 34.9 

0.5 0.75 520 21.8 700 29.0 

0.1 0.85 640 5.3 6230 51.9 

0.3 0.85 290 7.2 1400 34.9 

0.5 0.85 250 10.2 700 29.0 

 358 



 

Figure 1: Mean calibration slope for different values of model strength and outcome prevalence, 359 

using the sample size calculated using the RvS-1 calibration formula with target expected CS of 𝑆 =360 

0.90. Based on 2000 simulations. 361 

 362 

 363 

  364 



 

Figure 2: The EPV required to achieve target expected CS of 𝑆 = 0.90 calculated by simulation (blue 

line) and using the RvS-1 calibration formula (red line) for different values of model strength and 

outcome prevalence (prev). Numbers on top correspond to the ratio of the EPV calculated by 

simulation to the EPV calculated using RvS-1. Based on 2000 simulations. 

 

  



 

Figure 3: The proportion of simulations with  CS<0.8  for different values of model strength and 

outcome prevalence, using: a) the sample size calculated using the RvS-1 calibration formula  with 

target expected CS of  𝑆 = 0.90 (left) and  b) the  sample size calculated by simulation  to achieve 

the target expected CS (right). Based on 2000 simulations. 

  



 

Figure 4: Mean MAPE for different values of model strength and outcome prevalence, using the 

sample size calculated using the RvS-2 MAPE formula with target 𝑀𝐴𝑃𝐸 𝑚 = prevalence 10⁄ . Based 

on 2000 simulations. Dashed lines show the three target expected MAPEs for the three prevalences.

 



 

Figure 5: The EPV required to achieve the target 𝑀𝐴𝑃𝐸 = prevalence 10⁄  calculated by simulation 

(blue line) and using the RvS-2 MAPE equation (red line) for different values of model strength and 

prevalence. Numbers on top correspond to the ratio of the EPV calculated by simulation to the EPV 

calculated using RvS-2.  Based on 2000 simulations. 

 

 



 

Figure 6: The distribution of the calibration slope and MAPE for the recommended sample size of the 

development sample based on RvS-1 calibration formula.  

 


