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FX Open Forward is a derivative instrument where the contract holder has the obligation to pur-
chase a specific amount of foreign currency under a fixed exchange rate by the contract expiry date.
In contrast to a traditional forward contract, a distinctive feature of FX Open Forward is that the
timing and notional size of the currency conversion can be freely chosen by the contract holder.
Under a Black–Scholes model where interest rates can be negative, we provide a complete solution
of the early exercise strategy of an FX Open Forward. When domestic rate and foreign rate are both
positive (negative), the full contractual notional should be exercised when the spot FX level is suf-
ficiently high (low). Unlike American options, the optimal waiting region of FX Open Forward is
always connected even when interest rates are negative.

Keywords: FX Open Forward; American derivative; Optimal stopping; Free-boundary problem

JEL Classification: D81, F31, G12

1. Introduction

Forward contract is arguably one of the most basic derivative
instruments. The long party of a forward has the obligation to
purchase on the expiry date a specific amount of the underly-
ing asset at a fixed delivery price agreed at the inception of the
contract. Static replication of a forward contract is theoreti-
cally possible. This involves a long position of the underlying
asset plus some investment in the money market account at
time zero. Consequently, the pricing of a forward is relatively
simple where its fair value is linear in the spot price of the
asset and is insensitive to the underlying price dynamics.

Forward contract can serve as a convenient tool for
investors to hedge against financial risk. For example, a multi-
national corporation receiving foreign income may wish to
eliminate the exchange rate risk because of the requirement to
report their profit in domestic currency. They can then enter
an FX forward to convert the foreign income into the domes-
tic currency at a locked exchange rate. One main limitation
of FX forward, as a hedging tool, is that the settlement of the
domestic currency against the foreign currency can only take
place on the maturity date of the contract. But the hedger may
not have perfect information about when exactly the foreign
cash flows will be incurred when they first enter the contract.
If the timing of the cash flows is drastically different from

∗Corresponding author. Email: alex.tse@ucl.ac.uk

the contract expiry date, such mismatch can pose significant
market risk and liquidity risk to the hedger.

FX Open Forward† is a popular alternative to the traditional
FX ‘Fixed’ Forward. Instead of exchanging the notional on
the contract expiry date only, FX Open Forward allows the
long party of the contract to freely convert (i.e. exercise) any
arbitrary fraction of the notional at the locked exchange rate at
any time during the contract lifetime, subject to the obligation
that the full contractual notational needs to be exercised by
the expiry date. The additional flexibility with the size and the
timing of the exercise allow the hedger to perform currency
conversion ‘on demand’, eliminating the uncertainty of cash
flows timing mismatch.

Despite the popularity of FX Open Forward, there appear
to be very few studies investigating its pricing behaviours.
To fill in the gap in the literature, in this paper we rigor-
ously analyse the problem of pricing and optimal exercise
of an FX Open Forward. Our first theoretical result is that
the optimal exercise strategy to be adopted by the long party
involves converting the entire notional at once under a very
general arbitrage-free market model with a linear pricing rule.
In other words, the flexibility to partially settle any fraction
of the notional is indeed redundant. An FX Open Forward is
therefore financially equivalent to an American forward con-
tract. This result is perhaps not surprising in view of linear

† The product is also known as flexible forward, flexi-forward, Open
FX Forward, etc. Apparently there is no market consensus on the
naming convention yet.
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pricing of financial derivatives. If it is ever optimal to exer-
cise a fraction of the notional at a certain time point, then the
same optimality criterion should also hold for any remaining
fraction of contract. The optimal exercise rule is thus an ‘all-
or-nothing’ strategy: the long party of the contract either does
nothing or settles the full notional at once. While this result
appears to be well understood among practitioners, we con-
firm that such an optimal exercise rule is indeed robust to the
modelling setup and does not rely on additional assumptions
like Markovian property nor dynamic programming principle.

Our second contribution is to give a thorough analysis and
description of the optimal exercise strategy of an FX Open
Forward under a Black–Scholes model, covering both the
cases of positive and negative interest rates. Since we have
established that FX Open Forward can be regarded as an
American forward, the problem can be analysed via stan-
dard theories of optimal stopping. We adopt the free-boundary
approach to study the analytical behaviours of the optimal
exercise boundary. The long party of the FX Open Forward
should exercise the full notional when the spot FX is suffi-
ciently high (low) when domestic and foreign interest rates
are positive (negative). While the techniques behind are fun-
damentally similar to those for a standard American option
and there indeed are cases that the pricing behaviours of FX
Open Forward and American call option coincide, the optimal
exercise strategy of FX Open Forward is drastically differ-
ent from that of American call option when interest rates are
negative. In general, the long party of an FX Open Forward
has a strong incentive to early exercise when the contract is
out-of-money to prevent the loss from further looming under
negative interest rate. In contrast, it is never optimal to early
exercise an out-of-money American call option because the
payoff is floored at zero while there is a strictly positive prob-
ability of realising a gain if the spot FX rallies in the future.†
To the best of our knowledge, the theoretical properties of the
optimal exercise strategy of an FX Open Forward (or equiva-
lently an American forward) have not been comprehensively
documented in the literature to date.

All things considered, American forward is indeed simpler
to be theoretically analysed relative to its option counter-
part. Our contributions are therefore not about development of
new techniques to solve a difficult optimal stopping problem.
Instead, we are interested in unravelling when, how and why
the early exercise strategies might differ fundamentally across
these two types of American derivatives from economic as
well as mathematical perspectives. By focusing on a ‘sim-
ple’ Black–Scholes model with constant interest rates, we can
build intuitions towards the similarities and differences via
more transparent theoretical properties and numerical anal-
ysis. Further practical modelling considerations and other
interesting avenues of future research will be discussed in the
concluding section.

We conclude the introduction by briefly discussing some
related works. As far as we are aware of, the literature directly
addressing FX Open Forward and American forward is very

† While we exclusively focus on FX derivatives in this paper, sim-
ilar implications can be generalised to other asset classes, such
as commodity derivatives, where a negative dividend yield can be
interpreted as the warehouse storage cost of the physical underlying.

limited. Based on heuristic arguments, Kwok and Lau (2003)
point out that the flexibility of exercising any arbitrary frac-
tion of the notional during the lifetime of an American FX
Forward is redundant, and they provide a numerical exam-
ple showing how the optimal exercise boundary behaves
under positive interest rates. Giribone and Ligato (2016) study
numerical pricing of FX Open Forward by tree-based meth-
ods. Hölbl and Lovric (2019) propose a least-square Monte
Carlo algorithm to evaluate FX Open Forward by relating
the product to a swing option.‡ In parallel, there is a long
strand of papers dedicated to careful theoretical analysis of
American (put) option under Black–Scholes model. Earlier
works on this topic include McKean (1965), Jacka (1991) and
Myneni (1992), among others. A more complete and contem-
porary analysis of American option can be found in Battauz et
al. (2015), covering the cases of negative interest rates as well
which could result in disconnected waiting regions. Publica-
tions on Open Forward (American forward) contracts appear
to be scarce, and we will show that the optimal exercise strat-
egy can behave rather differently from that of an American
call option. More generally, our findings also complement
the growing literature of American derivatives under nega-
tive interest rates (see, e.g., Battauz et al. 2012, 2015, 2022a),
where the consideration of forward payoff leads to new (albeit
simpler) early exercising behaviours. FX Open Forward can
also serve as an example of American derivative under which
the near-maturity behaviours of the early exercise boundary
can be analysed readily. For American option, such prob-
lem has been comprehensively studied in the literature (see
Evans et al. 2002, Lamberton and Villeneuve 2003, Battauz
et al. 2022b and the references therein). The technical sub-
tlety with option is that one needs to make careful distinction
whether the early exercise boundary approaches the strike
price near maturity (at which the option payoff function is
not differentiable), and the corresponding asymptotic expres-
sion of the boundary function might have different forms. But
a forward payoff is smooth everywhere and hence the near-
maturity behaviour is always in a parabolic form regardless
of the model parameters used.

The rest of this paper is organised as follows. In Section 2,
we consider a general complete and arbitrage-free market to
demonstrate it is optimal for the FX Open Forward holder
to exercise the entire notional at once, i.e. the contract is
financially equivalent to an American forward. Section 3
presents the analysis of the FX Open Forward (American
forward) in a classical Black–Scholes model. Both cases of
infinite and finite maturity are considered, and we give a
complete description of the optimal exercise strategy which
property depends crucially on the signs of the domestic and
foreign interest rates. Some numerical illustrations are pre-
sented in Section 4. Section 5 concludes. Further technical

‡ Note that, however, there is an important fundamental difference
between swing option and FX Open Forward. For swing option, there
is typically a constraint on the maximal notional (known as the daily
contract quantity) that can be exercised on each trading date, whereas
for FX Open Forward one can opt to exercise the full contractual
notional. Likewise, ‘flexible forward’ written on energy commodi-
ties (see, e.g. Dar et al. 2022) has similar restriction on the minimal
and maximal amount over the power to be supplied over each time
interval.
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results and proofs not presented in the main body of the paper
are collected in an appendix.

2. American derivative with partial early exercise

The key feature of an FX Open Forward is that the contract
holder can early exercise any proportion of the underlying
notional during the contract lifetime, provided that the sum of
the early exercise proceeds must equal to the full notional by
the expiry date. This product can therefore be broadly viewed
as an American derivative with partial early exercise, whereas
a standard American derivative requires the entire contract to
be settled upon early exercise. In this section, we argue that an
American derivative with partial early exercise is financially
equivalent to a standard American derivative.

To develop intuitions, we will first focus on a discrete-
time model. Consider a sequence of trading dates indexed
by n ∈ {1, . . . , M }. On some filtered probability space
(�,F , {Fn}n=0,...,M , Q), let S = (Sn)n=0,1,...,M be an {Fn}-
adapted process such that Sn is the price level of a risky
asset on date n. We also introduce an {Fn}-adapted domes-
tic risk-free money market process R = (Rn)n=0,1,...,M which
is strictly positive with R0 ≡ 1. One unit of the domestic
currency deposited at time zero will grow to Rn at time n.

Consider a derivative product with payoff function g(·) and
maturity date M written on N units of the risky asset (N will
often be referred to as the ‘notional’, as we typically con-
sider a unit of foreign currency as the underlying risky asset).
On each date n ∈ {0, . . . , M }, the derivative holder can par-
tially exercise a fraction θn ∈ [0, N] of the contract where
they will then receive an immediate payoff of θng(Sn), which
discounted value is R−1

n θng(Sn). An exercise strategy can
be identified as an {Fn}-adapted, non-negative process θ =
(θn)n=0,...,M such that

∑M
n=0 θn = N . This equality constraint

enforces the requirement that the full contractual notional
must be entirely settled by the expiry date.

We assume the financial market is arbitrage-free, and the
underlying probability measure Q is the associated risk-
neutral measure.† The time-zero fair price of the contract
is

sup
θ∈A

E

[
M∑

n=0

R−1
n θng(Sn)

]
. (1)

Throughout this paper, E(·) denotes the expectation opera-
tor under the probability measure Q. The supremum in (1)
is taken over the class of admissible exercise strategies in the

† A discrete-time financial model is generally incomplete where the
risk-neutral measure is not unique. One may interpret a discrete-time
model as an approximation of a complete continuous-time model
that arises within a specific numerical procedure (e.g. lattice tree)
which determines Q. Another common industrial practice to get
around incompleteness is to fix a stochastic model of the underlying
asset which is then calibrated using market prices of liquidly traded
options. The pricing measure Q to be used is then jointly implied by
the modelling choice and the market. In our exposition, we simply
assume Q is exogenously given.

form of

A := {θ = (θn)n=0,...,M : θ is {Fn}

-adapted, θn ∈ [0, N] for all n,
M∑

n=0

θn = N

}
.

At the first sight, the possibility of partial exercise seems to
create additional financial value to the contract holder relative
to a standard American derivative written on N units of the
asset. But it turns out that such flexibility is indeed redundant,
as the following proposition shows.

Proposition 1 Let T be the set of {Fn}-stopping times
valued on {0, 1, . . . , M }. Then

sup
θ∈A

E

[
M∑

n=0

R−1
n θng(Sn)

]
= N sup

τ∈T
E
[
R−1

τ g(Sτ )
]

.

Moreover, if τ ∗ is the optimiser to supτ∈T E[R−1
τ g(Sτ )], then

sup
θ∈A

E

[
M∑

n=0

R−1
n θng(Sn)

]
= E

[
M∑

n=0

R−1
n θ∗

n g(Sn)

]

under the choice of θ∗
n := N1(n=τ ∗).

Proof Define J(θ) := E[
∑M

n=0 R−1
n θng(Sn)] and H(τ ) :=

E[R−1
τ g(Sτ )]. For any given τ ∈ T , consider a process θ̂

defined via θ̂n = N1(n=τ). Then by construction, θ̂ ∈ A and
hence

sup
θ∈A

J(θ) ≥ J(θ̂) = NE

[
M∑

n=0

R−1
n 1(n=τ)g(Sn)

]

= NE
[
R−1

τ g(Sτ )
] = NH(τ ).

As τ is arbitrary, taking supremum over τ ∈ T leads to
supθ∈A J(θ) ≥ N supτ∈T H(τ ).

To show the reverse inequality, for any given θ ∈ A and
x ∈ [0, N], define a random variable

τ̂ (x) := inf

{
k ≥ 0 :

k∑
i=0

θi ≥ x

}
.

In words, τ̂ (x) represents the time when x out of N units of the
underlying asset has been exercised. If we interpret τ̂ (x) as a
stochastic process indexed by x, then τ̂ (x) is a left-continuous,
increasing pure jump process with state space {0, 1, . . . , M }
such that τ̂ (0) = 0 and τ̂ (N) ≤ M . Importantly, τ̂ (x) ∈ T for
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all x and θn = ∫ N
0 1(τ̂ (x)=n) dx. Then

J(θ) = E

[
M∑

n=0

R−1
n θng(Sn)

]

= E

[
M∑

n=0

R−1
n

(∫ N

0
1(τ̂ (x)=n) dx

)
g(Sn)

]

=
∫ N

0
E

[
M∑

n=0

R−1
n 1(τ̂ (x)=n)g(Sn)

]
dx

=
∫ N

0
E

[
R−1

τ̂ (x)g(Sτ̂ (x))
]

dx

=
∫ N

0
H(τ̂ (x)) dx ≤

∫ N

0
sup
τ∈T

H(τ ) dx = N sup
τ∈T

H(τ ).

Taking supremum over θ ∈ A now yields supθ∈A J(θ) ≤
N supτ∈T H(τ ).

For τ ∗ being an optimiser to supτ∈T H(τ ), the optimality
of θ∗ defined via θ∗

n = N1(τ ∗=n) now follows trivially from the
fact that J(θ∗) = NH(τ ∗). �

The financial intuition behind Proposition 1 is as follows.
The fair price of an American derivative with the possibil-
ity to partially exercise is identical to the fair price of a
standard American derivative with only one opportunity to
early exercise the full notional. Moreover, the optimal partial
exercise strategy involves settling the entire notional when
it is optimal to exercise the corresponding standard Ameri-
can derivative. To solve problem (1), it is therefore sufficient
to price a standard American derivative with payoff function
g(·) and maturity M. If the corresponding optimal early exer-
cise strategy is τ ∗, then the optimal early exercise strategy for
the contract with partial early exercise is to exercise the full
notional N at time τ ∗. This is a generic result independent of
the payoff function as well as the underlying models of S and
R. When specialising to the case of g(s) = s − K where K is
some fixed delivery price, the contract becomes an FX Open
Forward which is the main focus of this paper. The extra flexi-
bility of the partial exercise timing does not make an FX Open
Forward more valuable than an American forward.†

The irrelevance of partial exercise is perhaps not too sur-
prising. Intuitively, one should early exercise a unit of Amer-
ican derivative when its intrinsic value (the payoff received if
the contract is exercised immediately) is larger than its con-
tinuation value (the fair value under the plan of not exercising
today but follow the optimal exercise rule thereafter). Under
linear pricing, American derivative on each unit of the under-
lying asset shares the same intrinsic and continuation value.
Hence if it is ever optimal to early exercise one unit of the
contract because its intrinsic value is higher than its contin-
uation value, this must also be the case for all other units
within the contract. The optimal exercise rule is therefore an
‘all-or-nothing’ rule.

We now show that the redundancy of partial exercise is also
true in a continuous-time setup. Fix a maturity date of T > 0

† This conclusion might change under a pricing rule that does not
satisfy linearity. An example is utility indifference pricing under an
incomplete market. See, for example Henderson and Hobson (2009).

and let the underlying probability space be (�,F , Q) where Q

again denotes the risk-neutral measure. Let {Ft}t≤T be a right-
continuous filtration of F . Write S = (St)t≤T and R = (Rt)t≤T

as the underlying processes for the price of the risky asset and
the domestic money market account respectively, which are
both strictly positive and {Ft}-progressively measurable. Con-
sider an American derivative written on N units of the risky
asset with payoff function g(·) which expires at time T. The
holder of the contract is allowed to partially exercise any arbi-
trary fraction of the underlying notional any time on [0, T].
Let �t be the cumulative units of the underlying that has been
exercised by time t. A feasible partial exercise strategy � is
identified by � ∈ A where

A := {� = (�t)0≤t≤T : � is adapted, right

− continuous, non-negative, increasing with �T = N}.

The time-zero fair value of the contract is then given by

sup
�∈A

E

[∫ T

0
R−1

u g(Su) d�u

]
. (2)

The following result is a continuous-time version of Proposi-
tion 1.

Proposition 2 Let T be the set of {Ft}-stopping times valued
on [0, T]. Then

sup
�∈A

E

[∫ T

0
R−1

u g(Su) d�u

]
= N sup

τ∈T
E
[
R−1

τ g(Sτ )
]

.

Moreover, if τ ∗ is the optimiser to supτ∈T E[R−1
τ g(Sτ )], then

sup
�∈A

E

[∫ T

0
R−1

u g(Su) d�u

]
= E

[∫ T

0
R−1

u g(Su) d�∗
u

]

under the choice of �∗
t := N1(τ ∗≥t).

Proof The proof is largely similar to that of Proposi-
tion 1. Define J(�) := E[

∫ T
0 R−1

u g(Su) d�u] and H(τ ) :=
E[R−1

τ g(Sτ )]. We could easily deduce sup�∈A J(�) ≥
N supτ∈T H(τ ) as (N1(t≥τ))0≤t≤T ∈ A for any τ ∈ T .

Now we show the reverse inequality. For any given � ∈ A,
construct its extension (�̃t)t≥0 via �̃t := �min(t,T). Define

τ̂ (x) := inf
{

u ≥ 0 : �̃u > x
}

.

Economically, τ̂ (x) represents the first time when more than
x out of N units of the underlying asset has been exer-
cised. But mathematically, x → τ̂ (x) is indeed the right-
continuous inverse of t → �̃t with τ̂ (x) ∈ T for all x ∈ [0, N),
and τ̂ (x) = +∞ for x ≥ N . By the time-change formula for
Lebesgue–Stieljes integral (see Proposition 1.4, Chapter V of
Revuz and Yor 2013), we have

∫ τ̂ (N)

τ̂ (0)

R−1
u g(Su) d�̃u =

∫ N

0
R−1

τ̂ (x)g(Sτ̂ (x)) d�̃τ̂ (x).

But since �̃t = 0 on t < τ̂(0), �̃t = N on t ≥ T , and the pro-
cesses (x)x∈[0,N) and (�̃τ̂ (x))x∈[0,N) only differ from each other
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on a set with zero Lebesgue measure, we deduce

J(�) = E

[∫ T

0
R−1

u g(Su) d�u

]

= E

[∫ ∞

0
R−1

u g(Su) d�̃u

]

= E

[∫ τ̂ (N)

τ̂ (0)

R−1
u g(Su) d�̃u

]

= E

[∫ N

0
R−1

τ̂ (x)g(Sτ̂ (x)) d�̃τ̂ (x)

]

= E

[∫ N

0
R−1

τ̂ (x)g(Sτ̂ (x)) dx

]

=
∫ N

0
H(τ̂ (x)) dx ≤

∫ N

0
sup
τ∈T

H(τ ) dx = N sup
τ∈T

H(τ ).

Taking supremum over � ∈ A results in sup�∈A J(�) ≤
N supτ∈T H(τ ). Finally, if τ ∗ solves supτ∈T H(τ ), then
J(�∗) = NH(τ ∗) for �∗

t := N1(τ ∗≥t) and hence �∗ solves
sup�∈A E[

∫ T
0 R−1

u g(Su) d�u]. �

While the previous analysis focuses on a contract with finite
maturity, it is not difficult to generalise the above conclusion
to a perpetual contract with infinite maturity.

The statements in Propositions 1 and 2 are applicable to
a generic modelling setup without relying on the dynamic
programming principle. This allows one to confirm the opti-
mality of the ‘all-or-nothing’ early exercise rule even under,
for example, a highly non-Markovian model of stock price
and interest rate. This style of optimal strategy is analogous
to a ‘bang-bang’ control involving abrupt switch between the
minimum and maximum action values in the control space.
In quantitative finance applications, bang-bang strategy com-
monly arises in the pricing problems of swing options and
storage contracts (see , e.g. Barrera-Esteve et al. 2006, Bar-
dou et al. 2010, Daluiso et al. 2020 and references therein).
The existence of a bang-bang control as an optimal strategy
can facilitate simplification and effective design of numeri-
cal pricing procedures like quantisation, Longstaff–Schwarz
least-square or neural network methods (Barrera-Esteve et
al. 2006, Bardou et al. 2010). In our problem, this kind of
bang-bang optimality allows us to reduce the pricing prob-
lem of FX Open Forward to that of a standard American
derivative.

3. Valuation of FX Open Forward under Black–Scholes
model

From the analysis in Section 2, the pricing of an FX Open For-
ward can be reduced to the pricing of an American forward.
In this section, we will focus on a canonical continuous-time
model to deduce carefully the form of the optimal early exer-
cising strategy, whereas such analysis cannot be performed
easily in a discrete-time model.

We consider a Black–Scholes model or more precisely a
Garman–Kohlhagen model for a foreign exchange market.

Let (�,F , {Ft}t≥0, Q) be a standard filtered probability space
supporting a one-dimensional Brownian motion B = (Bt)t≥0,
where Q is the risk-neutral measure with respect to the domes-
tic risk-free instrument. The constant domestic and foreign
risk-free rates are denoted by rd ∈ R and rf ∈ R respectively.
Importantly, we do not make any assumption about the signs
of rd and rf to capture the possibility that interest rates can
be negative. Let S = (St)t≥0 be the price process of a for-
eign risky currency (quoted in terms of the domestic currency)
which has dynamics of

dSt

St
= (rd − rf ) dt + σ dBt, (3)

where σ > 0 is the FX volatility. Sometimes we will use
the notation St,s = (St,s

u )u≥t to denote the solution to (3) with
initial data St = s, i.e.

St,s
u = s exp

((
rd − rf − σ 2

2

)
(u − t)

+ σ(Bu − Bt)) , u ≥ t, s > 0.

More generally, our framework can be extended to different
asset classes beyond foreign exchange upon interpreting rf as
the dividend yield of some risky asset.

To price an FX Open Forward, it is sufficient to look at
a standard American derivative with payoff function g(s) :=
s − K. Its time-t fair price is given by the solution to the
optimal stopping problem

V (t, s) := sup
τ∈Tt,T

E
[
e−rd (τ−t)g(Sτ ) | St = s

]
, (4)

where Tt,T is the set of all {Ft}-stopping times valued in [t, T].
Our goal is to characterise the solution to (4) and describe
the corresponding stopping time which attains the supremum.
Our results can be extended to ‘short-forward payoff’ g(s) :=
K − s easily using a trivial variation of the put-call sym-
metry. Throughout this paper, an American derivative with
payoff function s − K (resp. K − s) is referred to as a pur-
chase (resp. sale) Open Forward. The main body of this paper
focuses on purchase Open Forward, while sale Open Forward
is considered in Appendix 2.

3.1. Perpetual FX Open Forward

We first provide some preliminary results for a perpetual ver-
sion of the FX Open Forward when T = +∞ in (4). Due to
the time homogenous Markovian structure of the process S,
the value of the perpetual contract does not depend on the
current time and the problem becomes

V∞(s) := sup
τ∈T0,∞

E
[
e−rdτ g(Sτ ) | S0 = s

]
. (5)

In particular, the supremum is taken over all non-negative
{Ft}-stopping times.

Theorem 1 For problem (5):

(1) If rd ≤ 0 ≤ rf , V∞(s) = s − K and τ ∗ = 0 is optimal
to problem (5).
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(2) If rf < 0 ≤ rd , V∞(s) = +∞ and τ ∗ = +∞ is optimal
to problem (5).

(3) If rf = 0 < rd , V∞(s) = s and τ ∗ = +∞ is optimal to
problem (5).

(4) If rf = 0 = rd , V∞(s) = s − K which can be attained
by any non-negative stopping time τ .

(5) If rd > 0 and rf > 0,

V∞(s) =
⎧⎨
⎩

b2

γ2

(
s

b2

)γ2

, s < b2;

s − K, s ≥ b2,
(6)

where γ2 > 1 is the larger root to the quadratic
equation

σ 2

2
γ 2 +

(
rd − rf − σ 2

2

)
γ − rd = 0 (7)

and b2 := γ2

γ2−1 K. The optimal early exercise strategy
is τ ∗ = inf{t ≥ 0 : St ≥ b2}, i.e. to early exercise the
contract when the spot price level is sufficiently high.

(6) If rd < 0 and rf < 0:
(a) If rf ≤ rd , or rd < rf and σ > |√−2rd −√−2rf |,

then V∞(s) = +∞. The explicit constructions of
τ ∗ which attain an infinite contract value can
be found in the proof of this proposition in the
appendix.

(b) If rd < rf and σ ≤ |√−2rd −√−2rf |, then

V∞(s) =
⎧⎨
⎩

s − K, s ≤ b1;
b1

γ1

(
s

b1

)γ1

, s > b1,
(8)

where γ1 > 1 is the smaller root to the quadratic
equation (7) and b1 := γ1

γ1−1 K. The optimal early
exercise strategy is τ ∗ = inf{t ≥ 0 : St ≤ b1}, i.e.
to early exercise the contract when the spot price
level is sufficiently low.

For a perpetual FX Open Forward, only Case (5) and
Case(6)(b) in Theorem 1 lead to a non-trivial early exercise
strategy where the necessary condition is rdrf > 0, i.e. domes-
tic and foreign interest rates need to be non-zero and have
the same sign. Under such a combination of parameters, there
exists a meaningful trade-off between the extra foreign inter-
ests received (governed by rf ) versus the opportunity cost of
paying the delivery price early (governed by rd ) when early
exercise is considered.

In Case (5) where rd > 0 and rf > 0, the value of the con-
tract indeed coincides with the value of a perpetual American
call option which payoff function is (S − K)+ (see, e.g., Mer-
ton 1973). When the maturity is infinity and rd > 0, there is
no incentive for the contract holder to early exercise the for-
ward at a loss because any negative payout can be indefinitely
deferred and discounted away. Hence the contract is finan-
cially equivalent to a perpetual American call option. When
domestic interest rate is positive, it is well known that early
exercise will only take place if foreign interest rate (dividend)
is strictly positive. Indeed, on letting rf ↓ 0 in Case (5) one

can verify that γ2 ↓ 1 and in turn b2 ↑ ∞. The optimal exer-
cise region [b2, ∞) therefore vanishes and we have τ ∗ ↑ +∞
because early exercise is now deferred indefinitely. In parallel,
the corresponding contract value becomes

lim
γ2↓1

V∞(s) = lim
γ2↓1

K

γ2 − 1

(
γ2 − 1

γ2K
s

)γ2

= lim
γ2↓1

sγ2 K1−γ2γ
−γ2
2 (γ2 − 1)γ2−1 = s.

Thus we observe that Case (5) degenerates to Case (3) when
the foreign interest rate rf decreases to zero.

However, this equivalence does not hold when rd < 0 as
shown in Case (6). The compounding effect under negative
domestic interest rate makes it more attractive to realise loss
earlier as well as to realise gain later. Away from the math-
ematically degenerate Case (6)(a), the agent has an incentive
to settle the contract before it becomes deeply out-of-money
since otherwise any loss will be compounded and grow over
time.

Interestingly, under negative rates the early exercise strat-
egy of the FX Open Forward is drastically different from that
of an American call option. The incentive to defer gains under
negative interest rates also holds in the case of American
options, as observed by Battauz et al. (2012, 2022b). Con-
sequently, the holder of an American call (put) option will
wait in general when the option is deeply in-the-money, i.e.
when spot price is sufficiently high (low). However, unlike
the Open Forward contract, there is no incentive for an option
holder to take loss via early exercising an out-of-money con-
tract because there is only financial upside in waiting until
maturity. Such optionality creates another waiting region over
sufficiently low (high) spot prices for call (put) option. This
is precisely why negative interest rates result in a double-
continuation region for American options in the works of
Battauz et al. (2012, 2022b, 2022a), etc. For American call
(put) option, the upper (lower) continuation region originates
from the financing motive to postpone gains under nega-
tive interest rates while the lower (upper) continuation region
originates from the optionality of the underlying derivative
contract. In contrast, there is no optionality within an FX
Open Forward because the contract payoff S − K is linear.
The early exercise strategy is thus simpler which is com-
pletely characterised by a single exercise threshold entirely
driven by the financing incentive of gain-postponement/loss-
anticipation.

3.2. FX Open Forward with finite maturity

Now we consider the case that the maturity of the contract is
finite (i.e. T < ∞ in (4)). We first identify two cases where
the early exercise strategy becomes degenerate.

Lemma 1 Consider problem (4) with finite maturity T < ∞.
If rd ≥ 0 ≥ rf , it is optimal to defer the exercise of the con-
tract until the maturity date (τ ∗ = T). If rf ≥ 0 ≥ rd , it is
optimal to early exercise the contract immediately (τ ∗ = t).



FX Open Forward 1043

Proof Write J(t, s; τ) := E[e−rd (τ−t)g(Sτ ) | St = s]. Then
under rd ≥ 0 ≥ rf , for any τ ∈ Tt,T we have

J(t, s; τ) = sE[e−rf (τ−t)eσ(Bτ −Bt)− σ2

2 (τ−t)] − KE[e−rd (τ−t)]

≤ se−rf (T−t)E[eσ(Bτ −Bt)− σ2

2 (τ−t)] − Ke−rd (T−t)

= se−rf (T−t) − Ke−rd (T−t).

Taking supremum over τ ∈ Tt,T leads to V (t, s) = supτ∈Tt,T

J(t, s; τ) ≤ se−rf (T−t) − Ke−rd (T−t) and equality is attained
under τ = T . Hence we have V (t, s) = J(t, s; τ = T) =
se−rf (T−t) − Ke−rd (T−t) and τ ∗ = T is optimal.

Similarly, if rf ≥ 0 ≥ rd , then

J(t, s; τ) = sE[e−rf (τ−t)eσ(Bτ −Bt)− σ2

2 (τ−t)] − KE[e−rd (τ−t)]

≤ sE[eσ(Bτ −Bt)− σ2

2 (τ−t)] − K = s − K

for any τ ∈ Tt,T . Then we conclude supτ∈Tt,T
J(t, s; τ) ≤ s −

K and equality is attained under τ = t. Hence V (t, s) =
J(t, s; τ = t) = s − K and τ ∗ = t is optimal. �

The intuition is similar to the one in the perpetual cases:
under positive (negative) domestic interest rate, the holder of
the derivative prefers paying the deliver price K later (earlier).
Furthermore, if the foreign interest rate is negative (positive),
then holding the asset physically is disadvantageous (advan-
tageous), and as such the holder should exercise the contract
as late (early) as possible. Throughout the rest of this paper,
we will impose the below standing assumption.

Assumption 1 The domestic and foreign interest rates are
both non-zero and have the same sign, i.e. rdrf > 0.

3.2.1. Fundamental properties of the value function.
Using the Markovian structure of the problem, one can see
that the value function in (4) can be rewritten as

V (t, s) = sup
τ∈T0,T−t

E
[
e−rdτ g(Sτ ) | S0 = s

]
. (9)

We first establish some theoretical properties of the value
function V (t, s) defined in (9).

Lemma 2 For the value function V : [0, T] × (0, ∞) → R

defined in (9):

(1) V (t, s) ≥ g(s) = s − K for all (t, s) ∈ [0, T] × (0, ∞).
(2) For any fixed s > 0, t → V (t, s) is decreasing with

V (T , s) = g(s).
(3) For any fixed t ∈ [0, T], s → V (t, s) is a continuous,

convex and increasing function.
(4) For any fixed t ∈ [0, T], write f (s) := V (t, s) − s for

s ∈ (0, ∞). Then f (s) is bounded from below by −K.
Moreover:
(a) If rd > 0 and rf > 0, then f (0) := lims↓0 f (s) =

−Ke−rd (T−t), and f (s) = −K for all sufficiently
large s.

(b) If rd < 0 and rf < 0, then f (0) := lims↓0 f (s) =
−K and lims→∞ f (s) = +∞.

Proof (1) It follows immediately from the fact that τ = 0
is an admissible stopping time in (9).

(2) For 0 ≤ t1 ≤ t2 ≤ T , V (t1, s) = supτ∈T0,T−t1
E[e−rdτ

g(τ )] ≥ supτ∈T0,T−t2
E[e−rdτ g(Sτ )] = V (t2, s) since

T0,T−t2 ⊆ T0,T−t1 . The claim of V (T , s) = g(s) is triv-
ial as the set T0,0 consists of the deterministic stopping
time τ ≡ 0 only.

(3) For a fixed t ≤ T and an arbitrary τ ∈ T0,T−t, the map

s → e−rdτ g(Sτ ) = e−rdτ

(
s exp

((
rd − rf − σ 2

2

)
τ

+ σBτ ) − K) =: w(τ , s)

is an increasing linear function. Therefore s →
E[w(s, τ)] is also an increasing linear function. Hence
V (t, s) = supτ∈T0,T−t

E[w(τ , s)] is the supremum of
some increasing linear functions, which must be con-
vex, increasing and continuous.

(4) The lower bound f (s) ≥ −K is simply due to V (t, s) ≥
g(s) = s − K. Furthermore:
(a) Since τ = T − t ∈ T0,T−t, we have

f (s) = V (t, s) − s

≥ E
[
e−rd (T−t)(ST−t − K)

]
− s = s(e−rf (T−t) − 1) − Ke−rd (T−t).

To establish an upper bound, observe that

V (t, s) = sup
τ∈T0,T−t

E
[
e−rdτ (Sτ − K)

]

= sup
τ∈T0,T−t

E

[(
se
(
−rf − σ2

2

)
τ+σBτ − Ke−rdτ

)]

≤ s sup
τ∈T0,T−t

E

[
e
(
−rf − σ2

2

)
τ+σBτ

]

− K inf
τ∈T0,T−t

E
[
e−rdτ

]
≤ sC − Ke−rd (T−t)

with C := supτ∈T0,T−t
E[e(−rf − σ2

2 )τ+σBτ ] ≤ 1.
Therefore s(e−rf (T−t) − 1) − Ke−rd (T−t) ≤ f (s) ≤
(C − 1)s − Ke−rd (T−t) and in turn lims↓0 f (s) =
−Ke−rd (T−t).

Meanwhile, s − K ≤ V (t, s) ≤ V∞(s) where
V∞(s) is the fair price of the contract with infinite
maturity. Hence

−K ≤ f (s) ≤ V∞(s) − s = −K

for s ≥ b2 where b2 is defined in part (5) of
Theorem 1 leading to f (s) = −K for s ≥ b2.
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(b) Note that

V (t, s) = sup
τ∈T0,T−t

E
[
e−rdτ (Sτ − K)

]

= sup
τ∈T0,T−t

E

[
(se

(
−rf − σ2

2

)
τ+σBτ − Ke−rdτ )

]

≤ s sup
τ∈T0,T−t

E

[
e
(
−rf − σ2

2

)
τ+σBτ

]

− K inf
τ∈T0,T−t

E
[
e−rdτ

]
≤ sC − K

as rd < 0, and we have defined C := supτ∈T0,T−t

E[e(−rf − σ2

2 )τ+σBτ ] ≤ e−rf T < ∞ under rf < 0.
Thus −K ≤ f (s) ≤ (C − 1)s − K and hence
lims↓0 f (s) = −K.

For any deterministic τ = n where n ∈ (0, T −
t] is arbitrary, we have

V (t, s) ≥ e−rd n

(
sE

[
exp

((
rd − rf − σ 2

2

)
n

+ σBn)] − K) = se−rf n − Ke−rd n

and hence f (s) ≥ (e−rf n − 1)s − Ke−rd n → +∞
as s ↑ +∞ because rf < 0.

�

3.2.2. Theoretical characterisation of the optimal exer-
cise strategy. From standard theories of optimal stopping of
Markovian process (see, e.g., Krylov 2008 or Shiryaev 2007),
the optimal stopping time associated with value function (4)
is given by

τ ∗ = τ ∗(t, s) = inf{u ≥ t : V (u, St,s
u ) = g(St,s

u )}.

Moreover, (e−rd uV (u, St,s
u ))u≥t is a supermartingale and

(e−rd (u∧τ ∗)V (u ∧ τ ∗, St,s
u∧τ ∗))u≥t is a martingale.

Define the exercise (stopping) set as

D := {(t, s) ∈ [0, T] × (0, ∞) : V (t, s) = g(s)} (10)

and the continuation set as

C := {(t, s) ∈ [0, T] × (0, ∞) : V (t, s) > g(s)}. (11)

Then τ ∗ can be rewritten as τ ∗ = inf{u ≥ t : (u, St,s
u ) ∈ D}.

We now show that the continuation and exercise set can be
separated by a single boundary function.

Proposition 3 (1) If rd > 0 and rf > 0, there exists a
strictly positive function b : [0, T) → (0, ∞) such that

C := {(t, s) ∈ [0, T) × (0, ∞) : s < b(t)},
D := {(t, s) ∈ [0, T) × (0, ∞) : s ≥ b(t)}

× ∪{{T} × (0, ∞)}.

(2) If rd < 0 and rf < 0, there exists a non-negative func-
tion b : [0, T) → [0, ∞) such that

C := {(t, s) ∈ [0, T) × (0, ∞) : s > b(t)},
D := {(t, s) ∈ [0, T) × (0, ∞) : s ≤ b(t)}

× ∪{{T} × (0, ∞)}.

Proof Using the definition of f (s) := f (t, s) := V (t, s) − s
in lemma 2 (where we suppress the argument t for brevity),
the sets in (11) and (10) can be written as

C : = {(t, s) ∈ [0, T] × (0, ∞) : f (t, s) > −K},
D := {(t, s) ∈ [0, T] × (0, ∞) : f (t, s) = −K}.

But for each fixed t ∈ [0, T), s → f (s) is continuous convex
function and f (s) ≥ −K for all s ∈ (0, ∞). When rd > 0 and
rf > 0, f (0) := lims↓0 f (s) = −Ke−rd (T−t) > −K and f (s) =
−K for large s using part 4(a) of lemma 2. Hence there must
exist a unique b = b(t) ∈ (0, ∞) such that f (s) > −K for s <

b(t) and f (s) = −K for s ≥ b(t), i.e. f (s) > −K ⇐⇒ s <

b(t) and f (s) = −K ⇐⇒ s ≥ b(t). Similar arguments hold
in the case of rd < 0 and rf < 0 due to part 4(b) of lemma 2
but we can only conclude that b(t) ≥ 0 because we may have
f (s) > −K for all s ∈ (0, ∞). �

Corollary 1 The continuation set C is non-empty.

Proof It follows immediately from the definition of C and
the fact that b(t) < ∞. �

Under the case of positive rates, b(t) ∈ (0, ∞) for all t. It
means that at any time there always exists a strictly posi-
tive and finite critical price threshold at or above which early
exercise is optimal. However, when rates are negative we
can then only conclude b(t) to be finite and non-negative.
If b(t) = 0 for some fixed t, the set {s ∈ (0, ∞) : s ≤ b(t)}
becomes empty such that one should not exercise the Open
Forward at time t for any price level.†

Generally speaking, when the rates are positive (negative),
it is optimal to early exercise the contract when the spot price
is sufficiently high (low). The financial intuitions are largely
the same as in section 3.1: positive (negative) domestic inter-
est rate encourages early realisation of gain (loss) which is
achieved by early exercising the contract when the spot is
sufficiently high (low). There exists a single time-dependent
threshold b(t) separating the waiting and continuation region.
Unlike an American call option, disconnected waiting region
(as in Battauz et al. 2015, 2022a) can never arise even when
interest rates are negative because of the lack of optionality
within an FX Open Forward as discussed in section 3.1.

† In the case of negative rates, if the model parameters are described
by case (6)(b) of theorem 1, then V∞(s) = s − K for s ≤ b1 and in
turn we can deduce V (t, s) = s − K for all s ≤ b1 and t ∈ [0, T), for
some given constant b1 > 0. The second part of proposition 3 can
then be sharpened to conclude that the boundary function b(t) is
indeed strictly positive. In such case, it is always optimal to early
exercise the FX Open Forward when spot price is sufficiently low.
Moreover, even if the model parameters do not satisfy the conditions
in case (6)(b) of theorem 1, we can still conclude that b(t) becomes
strictly positive when t approaches T. See part 3 of proposition 4.
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The proposition below lists the key behaviours of the early
exercise boundary b(t) with respect to the current time t.

Proposition 4 The early exercise boundary function b :
[0, T) → [0, ∞) has the following properties:

(1) b is decreasing (resp. increasing) if rd > 0 and rf > 0
(resp. rd < 0 and rf < 0).

(2) b(t) ≥ rd
rf

K (resp. b(t) ≤ rd
rf

K) if rd > 0 and rf > 0
(resp. rd < 0 and rf < 0) for all t ∈ [0, T).

(3) b is continuous and b(T) := limt→T b(t) = rd
rf

K.

As the maturity is approaching, the premium brought by the
possibility to early exercise decreases and hence the con-
tract holder is more likely to early exercise. The continua-
tion region shrinks and consequently the exercise threshold
decreases when rates are positive or increases when rates are
negative. When time to expiry is very small, the exercise
boundary is approximately given by rdK/rf . The associ-
ated intuition is similar to the one given in Andersen and
Lake (2021). Suppose the current spot is ST−� = s where the
contract will expire after � unit of time. The immediate pay-
off is s − K if the contract is exercised now. Otherwise, the
discounted risk-neutral expected payoff at the expiry date is
se−rf � − Ke−rd� ≈ s(1 − rf �) − K(1 − rd�). Early exercise
is therefore beneficial if and only if s − K > s(1 − rf �) −
K(1 − rd�), which is equivalent to s > rdK/rf if rd > 0 and
rf > 0, or s < rdK/rf if rd < 0 and rf < 0.

For American call option under negative interest rates
where double-continuation region arises, Battauz et al. (2015)
characterise the optimal exercise behaviours by two differ-
ent boundary functions, 	(t) and u(t), such that the stopping
set is in form of D = {(t, s) ∈ [0, T) × (0, ∞) : 	(t) ≤ s ≤
u(t)} ∪ {{T} × (0, ∞)}. Theorem 3.3 of Battauz et al. (2015)
shows that the upper and lower thresholds have different
monotonicity and near-maturity properties. On comparing our
proposition 4 against their results, one can see that the early
exercise boundary b(t) of FX Open Forward shares the same
qualitative behaviours as that of the upper boundary u(t) of an
American call under negative interest rates. It is not entirely
not surprising: as discussed in section 3.1, the upper con-
tinuation region (characterized by u(t)) of an American call
option is driven by the incentive to defer gain under negative
interest rates while the lower continuation region (character-
ized by 	(t)) is driven by the optionality of the contract. Only
the former consideration is relevant to FX Open Forward and
hence we expect the optimal exercise region of the FX Open
Forward behaves similarly as that of the upper continuation
region of an American call.

We now state the asymptotic expression of b when t ≈ T in
the following proposition.

Proposition 5 Let y∗ ≈ −0.6387 be a constant such that
−y∗ is the unique solution to the equation G(x) = 0 on x ∈
(0, 1/

√
2] with

G(x) := E

[∫ 1

0
(x − √

vZ)1(Z≥x(1−√
1−v)/

√
v) dv

]

where Z is a standard normal random variable. Then

lim
t↑T

b(T) − b(t)

σb(T)
√

T − t
=
{

y∗, if rd > 0, rf > 0;

−y∗, if rd < 0, rf < 0.
(12)

Proof The result follows from an application of theorem 1
in Lamberton and Villeneuve (2003) to the function

f (t, x) := e−rt(e(rd−rf −σ 2/2)t+σx − K) (13)

and a straightforward modification of theorem 2 in Lamberton
and Villeneuve (2003) on noting that

Lf (t, x) := ∂f

∂t
(t, x) + 1

2

∂2f

∂x2
(t, x) (14)

is C1×2 everywhere. �

As a technical remark, the near-maturity analysis of the
early exercise boundary with American forward is indeed
much easier than that with American option. The linearity
of forward payoff guarantees the smoothness of the operator
defined in (14), and this in turn leads to a parabolic behaviour
of the exercise boundary. When an American call option is
involved, we have to replace the function f in (13) by

f (t, x) := e−rd t(e(rd−rf −σ 2/2)t+σx − K)+. (15)

Similar parabolic behaviour in form of (12) holds if the f
in (15) is smooth near (t = 0, x = 1

σ
ln b̃(T)) with b̃(T) being

the limiting value of the (an) early exercise boundary for an
American call option, or equivalently b̃(T) �= K. But there
are many settings under which an American call option leads
to an early exercise boundary with b̃(T) = K. For example,
in the positive rates case, b̃(T) = max(K, rd

rf
K) and as such

b̃(T) = K when rd ≤ rf (see Evans et al. 2002).† In the neg-
ative rates case, a double-continuation region arises and the
lower exercise boundary tends to K ( theorem 3.3 of Battauz
et al. 2015). In those scenarios, the corresponding early exer-
cise boundaries will have a different asymptotic expression in
a parabolic–logarithmic form. Meanwhile, for American for-
ward, the expression in (14) is robust to the model parameters
and holds even when rd = rf such that b(T) = K.

4. Numerical illustrations

This section is dedicated to the numerical experiments illus-
trating the technical results developed previously. Some com-
parisons between standard ‘Fixed Forwards’ versus Open
Forwards, as well as American call/put options versus Open
Forwards, are also studied. All numerical results in this
section are obtained by finite difference methods.

† A contemporary analysis of the limiting value of the early exercise
threshold can also be found in Battauz et al. (2022b).
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4.1. Forwards and Open Forwards

A classical ‘Fixed Forward’ is a derivative contract between
two parties to buy or sell an asset, at a specified future time
T at a pre-agreed delivery price K. The party agreeing to buy
the underlying asset assumes a long position (which we will
refer to as a ‘purchase forward’), and the party agreeing to sell
the asset assumes a short position (which we will refer to as a
‘sale forward’). The payoff at maturity is given by

fT =
{

ST − K, for a long position;

K − ST , for a short position,

and the fair or present values (pv) of such contracts are

pv =
{

e−rf T S0 − e−rd T K, for a long position;

e−rd T K − e−rf T S0, for a short position.

The pv’s of Fixed Forwards are model independent and in par-
ticular do not depend on the model volatility σ . Meanwhile,
we have shown in propositions 1 and 2 that an Open Forward
is equivalent to an American derivative with exercise payoff at
any time t given by St − K for a currency purchase or K − St

for a currency sale. Consequently, the pv of an Open Forward
has an early exercise premium which depends on the volatil-
ity level σ . Figures 1(a,b) show the pv differences between
forward and Open Forward for currency purchase and sale,
respectively, as a function of volatility σ . Model and market
parameters are S0 = 1, K = 1, T = 2, rd = 5%, rf = 5%. We
observe the early exercise premium associated with the Open
Forward increases with the volatility level. At 20% volatil-
ity, the pv differences are about 56 bps. And at 35%, we get
almost 1% premium, which is financially significant.

4.2. American options and Open Forwards

4.2.1. Positive interest rates. We now compare the early
exercise boundaries between American call/put options and
Open Forwards when interest rates are positive. Figure 2 is for
American call and purchase Open Forward, while figure 3 is
for American put and sale Open Forward. Model and market
parameters are S0 = 1, K = 1, T = 2, rd = 5%, rf = 5%, σ =
30%. We observe that the boundaries are significantly dif-
ferent. The optimal exercise boundary for American call is
higher than that of a purchase Open Forward. It means the
holder of a purchase Open Forward will exercise earlier (i.e.
early exercise over a strictly larger set of spot prices) in com-
parison to the holder of an American call option (figure 2 a).
This can also be illustrated via figure 2(b), which shows the
intrinsic and fair values of the American call and purchase
Open Forward. Obviously, the payoff of American call dom-
inates that of purchase Open Forward, and this ranking holds
for their fair values as well. Since the early exercise boundary
can be inferred from the critical price level at which the fair
value function touches the payoff function, figure 2(b) shows
that the early exercise boundary for purchase Open Forward
is lower than that of American call option.

Similarly, the exercise boundary for American put is lower
than that for a sale Open Forward (see figure 3 a). Thus the

holder of a sale Open Forward will exercise earlier relative
to the holder of American put option. Figure 3(b) provides a
similar illustration of the early exercise boundaries via the fair
versus the intrinsic values.

4.2.2. Negative interest rates. In a negative rate environ-
ment, it is known that in a Black–Scholes model there could
exist double waiting region: exercise is optimally postponed
when the option is deeply in-the-money or out-of-money (see,
e.g. Battauz et al. 2015, Andersen and Lake 2021). For Amer-
ican put option, this phenomenon occurs when the following
model parameter conditions are satisfied:

rd < 0, μ − σ 2

2
> 0. (16)

and (
μ − σ 2

2

)2

+ 2rdσ
2 > 0, (17)

where μ = rd − rf .
Figure 4(a) shows the present value of an American put

option and its payoff where a double waiting region is clearly
observed using the following model parameters from Bat-
tauz et al. (2015): S0 = 1, K = 1.2, T = 1, rd = −4%, rf =
−12%, σ = 20% (i.e. there are two disconnected sets of spot
prices where the option fair value strictly dominates its pay-
off). In comparison, for Open Forward contract, disconnected
waiting region can never arise even when interest rates are
negative (see propositions 3 and A.5). An illustration is pro-
vided in figure 4(b) which shows the present value of a sale
Open Forward option and its payoff function against spot
price under the same model parameters. Here, with nega-
tive rates, exercise of the sale Open Forward is optimally
postponed if the spot level is sufficiently low.

4.3. Open Forwards exercise boundaries

The signs of interest rates play an important role in the deter-
mination of the exercise boundary shapes. Figure 5 shows
the exercise boundary as a function of time for purchase
Open Forward. In figure 5(a), interest rates are positive given
by rd = rf = 5%. In figure 5(b), negative rates rd = rf =
−2% are considered. Other model and market parameters
are S0 = 1, K = 1, T = 2, σ = 30%. We observe a decreas-
ing b(t) exercise boundary under positive interest rates, b(t) ≥
1 = rd

rf
K and b(t) is converging to 1 as t approaches the matu-

rity of T = 2. When interest rates are negative, b(t) is increas-
ing, dominated by the rd

rf
K = 1 and converging towards this

bound as t tends to T. These results are in line with proposi-
tion 4 for the case of rd > 0, rf > 0. Similarly, figure 6 shows
the exercise boundary as a function of time for sale Open For-
ward. In figure 6(a), b(t) is increasing under positive interest
rates rd = rf = 5%, dominated by rd

rf
K = 1 and converging to

this bound as t → T = 2. In figure 6(b), when interest rates
are negatives, b(t) is decreasing, dominating rd

rf
K = 1 and

approaching this bound when time to expiry shortens. These
results are in line with proposition A.6 given in appendix 2.
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Figure 1. PV comparison between forwards and Open Forwards as functions of volatility σ . Model and market parameters:
S0 = 1, K = 1, T = 2, rd = 5%, rf = 5%. (a) Currency purchase forward and Open Forward and (b) Currency sale forward and Open
Forward.

Figure 2. Comparison between American call and purchase Open Forward. Model and market parameters:
S0 = 1, K = 1, T = 2, rd = 5%, rf = 5%, σ = 30%. (a) Exercise boundaries for American call and purchase Open Forward, above
which early exercise is optimal and (b) Fair values of American call and purchase Open Forward as functions of spot price.

Figure 3. Comparison between American put and sale Open Forward. Model and market parameters:
S0 = 1, K = 1, T = 2, rd = 5%, rf = 5%, σ = 30%. (a) Exercise boundaries for American put and sale Open Forward, below which
early exercise is optimal and (b) Fair values of American put and sale Open Forward as functions of spot price.
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Figure 4. Comparison between American put and Sale Open Forward with negative rates. Model and market parameters:
S0 = 1, K = 1.2, T = 1, rd = −4%, rf = −12%, σ = 20%. (a) American put payoff and fair value as functions of spot and (b) Sale Open
Forward payoff and fair value as functions of spot.

Figure 5. Exercise boundaries comparison for purchase Open Forward with positive rates (rd = rf = 5%) and negative rates
(rd = rf = −2%). Others model and market parameters: S0 = 1, K = 1, T = 2, σ = 30%. (a) Exercise boundary of purchase Open Forward
under positive rates and (b) Exercise boundary of negative Open Forward under positive rates.

Figure 6. Exercise boundaries comparison for purchase Open Forward purchase with positive rates (rd = rf = 5%) and negative rates
(rd = rf = −2%). Others model and market parameters: S0 = 1, K = 1, T = 2, σ = 30%. (a) Exercise boundary of sale Open Forward
under positive rates and (b) Exercise boundary of sale Open Forward under negative rates.



FX Open Forward 1049

5. Summary and concluding remarks

In this paper, we first show that the vested flexibility of
converting any amount of domestic currency into foreign cur-
rency at any time within the contract life of an FX Open
Forward is indeed redundant. The optimal strategy has a
‘all-or-nothing’/‘bang-bang’ form where the contract holder
always settles the full notional at once. This result simplifies
significantly the problem and reduces the analysis to that of
a standard American derivative. Then we focus on a Black–
Scholes model to theoretically analyse the pricing and the
optimal exercise strategy. An important theoretical insight is
that the form of the exercise strategy crucially depends on the
signs of the interest rates, and the optimal exercise strategy of
FX Open Forward is significantly different from that of Amer-
ican call/put option when interest rates are negative because
the lack of optionality precludes the continuation region over
the out-of-money regime of spot price.

We outline a few possible interesting directions of future
research. Inspired by the observation that the form of the
early exercise strategy is heavily influenced by the interest
rates’ signs, one natural extension is to incorporate stochastic
interest rates and study how the state of interest rates inter-
acts with the early exercise decision. Such considerations are
particularly important for models that allow for negative inter-
est rates, which have gained popularity as negative interest
rate regime has become an important stress testing scenario
as recommended by the Basel Committee.

Another important modelling element to be considered is
time-varying/stochastic volatility to better capture volatility
skew/smile. Although we have observed that the pricing of
FX Open Forward has rather muted vega under the Black–
Scholes model, it will be interesting to further quantify how
the early exercise strategy and the early exercise premium are
affected by the volatility dynamics in some stochastic and/or
local volatility models (such as Heston, Schobel and Zhu,
Dupire and so on).

Finally, in an incomplete market featuring unhedgable risk
factors or transaction costs, one may consider alternative pric-
ing rules via say utility indifference pricing or minimisation of
hedging error. When valuation is no longer performed using
a single pricing measure, we expect that partial early exer-
cise may be financially relevant again. Such setup is likely to
offer an interesting and non-degenerate theoretical problem of
stochastic control, while offering alternative predictions over
the empirical settlement patterns of the contract holders.
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Appendices

Appendix 1. Proofs

Before proving theorem 1, it is useful to first derive the moment
generating function of Tα the first passage time of a drifting
Brownian motion reaching level α. Standard textbooks typically
derive the expression of E[e−rd Tα ] when rd > 0 (e.g. Shreve 2004,
theorem 8.3.2) but we need to extend the result to cover negative
interest rate.

Lemma A.1 Let X = (Xt)t≥0 be a drifting Brownian motion in form
of Xt := νt + σBt with ν, σ > 0. Define the first passage time Tα :=
inf{t ≥ 0 : Xt = α} for α > 0. Then

E(ezTα ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp

⎡
⎣αν

σ 2

⎛
⎝1 −

√
1 − 2σ 2

ν2 z

⎞
⎠
⎤
⎦ , z ≤ ν2

2σ 2 ;

+∞, z >
ν2

2σ 2 .

Proof It is known that Tα ∼ IG( α
ν

, α2

σ 2 ), where IG(θ , λ) denotes
an inverse Gaussian distribution with location parameter θ and
shape parameter λ. The result follows from evaluating the moment
generating function of such random variable. �

Proof of theorem 1. We first argue that for any τ ∈ T0,∞,

E[eσBτ − σ2

2 τ ] ≤ 1. Define τn := min(τ , n) for n ∈ N and τ ∈ T0,∞.

Then using optimal sampling theorem, E[eσBτn − σ2

2 τn ] = 1 for each n
as τn is bounded. The claim follows from an application of Fatou’s

lemma to the sequence of random variables (eσBτn − σ2

2 τn)n∈N and the
fact that τn ↑ τ almost surely.

(1) With rd ≤ 0 ≤ rf ,

e−rdτ (Sτ − K) = se−rf τ eσBτ − σ2

2 τ

− Ke−rdτ ≤ seσBτ − σ2

2 τ − K

and thus

V∞(s) ≤ s sup
τ≥0

E

[
eσBτ − σ2

2 τ

]
− K ≤ s − K.

But we also have V∞(s) ≥ s − K as τ = 0 is an admissi-
ble strategy. Hence V∞(s) = s − K and τ∗ = 0 is an optimal
early exercise rule.

(2) Since τ = T is an admissible strategy for any arbitrary T > 0,

V∞(s) ≥ E[e−rd T (ST − K)]

= se−rf T E

(
eσBT − σ2

2 T
)

− Ke−rd T

= se−rf T − Ke−rd T → +∞
as T ↑ +∞ if rf < 0 ≤ rd .

(3) When rf = 0 < rd , we have e−rdτ (Sτ − K) ≤ seσBτ − σ2

2 τ

and hence

V∞(s) ≤ s sup
τ≥0

E

[
eσBτ − σ2

2 τ

]
≤ s.

On the other hand, there exists a sequence of stopping times
in form of τn = n under which E[e−rdτn(Sτn − K)] = s −
Ke−rd n → s as n → ∞. Hence V∞(s) = s.

(4) If rf = 0 = rd , the value function simplifies to

V∞(s) = s sup
τ≥0

E

[
eσBτ − σ2

2 τ

]
− K ≤ s − K.

To show that V∞(s) = s − K, one just needs to show that

there exists τ such that E[eσBτ − σ2

2 τ ] = 1. This can for
example be achieved by any constant stopping time.

(5) Denote by V C∞ the function constructed in (6). It is straight-
forward to show that V C∞ is a convex function satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ 2s2

2

d2V C∞
ds2 + (rd − rf )s

dV C∞
ds

− rd V C
∞ = 0 and

V C∞(s) ≥ s − K, s < b2;

σ 2s2

2

d2V C∞
ds2 + (rd − rf )s

dV C∞
ds

− rd V C
∞ ≤ 0 and

V C∞(s) = s − K, s ≥ b2.

Now, we can apply generalised Ito’s lemma to Mt :=
e−rd tV C∞(St) which gives

dMt = e−rd t

{[
σ 2S2

t

2
∂2

ssV
C
∞ + (rd − rf )St∂sV

C
∞ − rd V C

]
dt

+ σSt∂sV
C
∞ dBt

}
= e−rd t

[
(rd K − rf St)1{St≥b2} dt + σSt∂sV

C
∞ dBt

]
.

Next, we show that b2 ≥ rd K/rf which is equivalent to
showing that γ2/(γ2 − 1) > rd/rf . Since γ2 > 1, the claim
is obviously true if rd ≤ rf . It remains to consider the case
of rd > rf . Let γ̂2 := 1/γ2. As γ2 is the larger, positive root
to the quadratic equation (7), γ̂2 is the larger, positive root to
the quadratic equation

f (γ̂ ) := −rd γ̂ 2 +
(

rd − rf − σ 2

2

)
γ̂ + σ 2

2
= 0.

Then we have

f

(
rd − rf

rd

)
= −σ 2

2

rf

rd
< 0

such that 1/γ2 = γ̂2 < 1 − rf /rd , and in turn γ2/(γ2 − 1) >
rd/rf .

We therefore conclude that (rd K − rf St)1{St≥b2} ≤ 0 and
as such M is a local supermartingale, and indeed a super-
martingale since Mt = e−rd tV C∞(St) is bounded from below
by −K. By optimal stopping theorem,

E[e−rdτ g(Sτ )] ≤ E[Mτ ] ≤ M0 = V C
∞(s).

Taking supremum over τ leads to V∞(s) ≤ V C∞(s).
To show the reverse inequality V∞ ≥ V C∞, it is sufficient

to show that the choice of

τ∗ = inf{t ≥ 0 : S0,s
t ≥ b2}

= inf

{
t ≥ 0 :

1

σ

(
rd − rf − σ 2

2

)
+ Bt ≥ 1

σ
ln

b2

s

}

results in E[e−rdτ ∗
(Sτ ∗ − K)] = V C∞(s). This can be easily

verified with the help of lemma A.1.
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(6) (a) If rf < rd < 0, then for any T we have

V∞(s) ≥ E[e−rd T (ST − K)]

= e−rd T (se(rd−rf )T − K) → +∞
as T ↑ +∞.

In the corner case of rd = rf < 0, the above conclu-
sion is still true for s > K such that V∞(s) = +∞ for all
s > K. If s ≤ K, then for some b > K consider an early
exercise strategy in form of

τ :=
{

1 if τb > 1;
τb + T if τb ≤ 1,

where T > 0 is a constant and τb := inf{t ≥ 0 : St = b}.
In words, τ is a strategy where the contract holder either
exercises at time 1 if St does not visit level b over the
time interval t ∈ [0, 1], or T unit of time after S reaches
level b if it happens before time 1. Then

V∞(s) ≥ E[e−rdτ (Sτ − K)]

= E

[
e−rd (τb+T)1{τb≤1}(Sτb+T − K)

]
+ E

[
e−rd 1{τb>1}(S1 − K)

]
= E

[
e−rdτb 1{τb≤1}

]
[e−rd T (be(rd−rf )T − K)]

+ E
[
e−rd 1{τb>1}(S1 − K)

]
≥ e−rd T (b − K)E

[
1{τb≤1}

]− Ke−rd

= e−rd T (b − K)P(τb ≤ 1) − Ke−rd → +∞
as T ↑ +∞. Here we have used the fact that S vis-
its any arbitrary level within the time interval [0, 1]
with strictly positive probability. Specifically, P(τb ≤
1) ≥ P(S1 ≥ b) = �(

ln(s/b)−σ 2/2
σ

) > 0. Hence we can
conclude V∞(s) = +∞ for all s.

Suppose rd < rf and σ > |√−2rd −√−2rf |. As
rd < rf , we have |√−2rd −√−2rf |2 < 2(rf − rd ) <

|√−2rd +√−2rf |2. There are two possibilities. If
|√−2rd −√−2rf | < σ <

√
2(rf − rd ) < |√−2rd +√−2rf |, then consider the quadratic function (in σ 2)

f (σ 2) := σ 4

4
+ (rd + rf )σ

2 + (rd − rf )
2.

The two roots of the equation f (σ 2) = 0 are given by

σ 2
± = −(rd + rf ) ±√4rd rf

1/2
= (
√

−2rd ±
√

−2rf )
2.

Hence f (σ 2) < 0 ⇐⇒ σ 2− < σ 2 < σ 2+ ⇐⇒ |√−2rd

−√−2rf | < σ < |√−2rd +√−2rf |. Thus |√−2rd −√−2rf | < σ < |√−2rd +√−2rf | implies(
rd − rf − σ 2

2

)2

+ 2rdσ 2

= σ 4

4
+ (rd + rf )σ

2 + (rd − rf )
2 = f (σ 2) < 0.

For any s > K, pick some b ∈ (K, s) and consider an
early exercise strategy in form of

τb := inf{t ≥ 0 : St ≤ b}

= inf

{
t ≥ 0 : − 1

σ

(
rd − rf − σ 2

2

)
t

− Bt ≥ 1

σ
ln

s

b
> 0

}
,

i.e. the contract is early exercised when the positively
drifting Brownian motion − 1

σ
(rd − rf − σ 2

2 )t − Bt first

reaches level 1
σ

ln s
b . Note that τb is finite and in turn

Sτb = b almost surely as a positively drifting Brown-
ian motion reaches any positive level in finite time with
probability one. Then we conclude

V∞(s) ≥ E[e−rdτb(Sτb − K)]

= (b − K)E(e−rdτb) → +∞

because E(e−rdτb) diverges to infinity under rd +
1

2σ 2 (rd − rf − σ 2

2 )2 < 0 due to lemma A.1. Hence
V∞(s) = +∞ for all s > K, and the same conclusion
extends to any s > 0 since St reaches any arbitrary level
above K with positive probability as per the argument in
the proof of part 6(a).

The second possibility is that we have |√−2rd −√−2rf | <
√

2(rf − rd ) ≤ σ . Then rd − rf + σ 2

2 ≥ 0,
and

E[e−rdτ (Sτ − K)]

= E

[
eσBτ − σ2

2 τ e−rf τ

(
s − Ke

(
−rd+rf + σ2

2

)
τ−σBτ

)]

= Ẽ

[
e−rf τ

(
s − Ke

(
−rd+rf + σ2

2

)
τ−σBτ

)]

= Ẽ

[
e−rf τ

(
s − Ke

−
(

rd−rf + σ2

2

)
τ−σ B̃τ

)]
,

where we have defined a new measure Q̃ via the Radon–

Nikodym derivative dQ̃
dQ

|Ft = eσBt− σ2

2 t and B̃t := Bt −
σ t is a Brownian motion under Q̃. For any b > 0,
consider an early exercise strategy in form of τb :=
inf{t ≥ 0 : −(rd − rf + σ 2

2 )τ − σ B̃τ ≤ −b}. Note that

rd − rf + σ 2

2 ≥ 0 implies τb < ∞ almost surely and in

turn E[e−rdτb(Sτb − K)] = (s − Ke−b)Ẽ[e−rf τb ]. If rf +
1

2σ 2 (rd − rf + σ 2

2 ) < 0, then Ẽ[e−rf τb ] = +∞ for any

b > 0 and hence V∞(s) = +∞ on s > Ke−b, and in
turn V∞(s) = +∞ for all s. Else if rf + 1

2σ 2 (rd − rf +
σ 2

2 ) ≥ 0,

Ẽ
[
e−rf τb

] = exp

(
− b

σ

(
− 1

σ

(
rd − rf + σ 2

2

)

+
√

1

σ 2

(
rd − rf + σ 2

2

)2

+ 2rf

⎞
⎠
⎞
⎠

by lemma A.1. But rf < 0 and hence

− 1

σ

(
rd − rf + σ 2

2

)

+
√

1

σ 2

(
rd − rf + σ 2

2

)2

+ 2rf < 0

such that Ẽ[e−rf τb ] → +∞ as b ↑ +∞. Therefore,
V∞(s) ≥ (s − Ke−b)Ẽ[e−qτb ] → +∞ as b ↑ +∞.

(b) With some algebra, one can check that the conditions
of rd < 0, rf < 0, rd < rf and σ ≤ |√−2rd −√−2rf |
ensure that equation (7) admits two distinct positive roots
with the smaller root γ1 being larger than one. The rest
of the arguments is largely similar to part (5) of the
proof. We can show that V C∞, defined as the function
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constructed in (8), satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ 2s2

2

d2V C∞
ds2 + (rd − rf )

s
dV C∞

ds
− rd V C

∞ = 0 and

V C∞(s) ≥ s − K, s > b1;

σ 2s2

2

d2V C∞
ds2 + (rd − rf )

s
dV C∞

ds
− rd V C

∞ ≤ 0 and

V C∞(s) = s − K, s ≤ b1.

Generalised Ito’s lemma applied to Mt := e−rd tV C(St)
now gives

dMt = e−rd t

{[
σ 2S2

t

2
∂2

ssV
C
∞ + (rd − rf )St∂sV

C
∞

− rd V C
]

dt + σSt∂sV
C
∞ dBt

}
= e−rd t

[
(rd K − rf St)1{St≤b1} dt + σSt∂sV

C
∞ dBt

]
.

However, the argument in part (5) of the proof does
not apply because with rd < 0 we no longer have
(e−rd tV C∞(St))t≥0 being uniformly bounded by −K from
below.† Nonetheless, the quadratic variation of the
stochastic integral

∫ t
0 e−rd uSu∂sV C∞(Su) dBu is∫ t

0
e−2rd uS2

u(∂sV
C
∞)2 du

=
∫ t

0
e−2rd uS2

u(∂sV
C
∞)21{Su≤b1} du

+
∫ t

0
e−2rd uS2

u(∂sV
C
∞)21{Su>b1} du

=
∫ t

0
e−2rd uS2

u1{Su≤b1} du

+
∫ t

0
e−2rd uS2

u

(
Su

b1

)2γ1−2

1{Su>b1} du

≤ b2
1

1 − e−2rd t

2rd
+ b2−2γ1

1

∫ t

0
e−2rd uS2γ1

u du.

Then since

E

[∫ t

0
e−2rd uS2γ1

u du

]

=
∫ t

0
s2γ1 e2[−rd+(rd−rf −σ 2/2)γ1+σ 2γ 2

1 ]u du

= s2γ1

∫ t

0
eσ 2γ1u du = s2γ1

eσ 2γ1t − 1

σ 2γ1

where we have used the fact that γ1 is a solution to (7),
we conclude E[

∫ t
0 e−2rd uS2

u(∂sV C∞)2 du] < ∞ for all t.

Hence the stochastic integral
∫ t

0 e−rd uSu∂sV C∞(Su) dBu is
a true martingale. M is then a supermartingale. The proof
is concluded by following the same arguments in part
(5).

�

† This kind of technical difficulty does not arise for American option
which payoff is always non-negative.

In what follows, we collect some regularity results of the value
function. We only briefly sketch the proofs as they are standard and
can be easily adapted from similar proofs for American options.

Proposition A.1 The map (t, s) → V (t, s) is continuous.

Proof Since separate continuity implies joint continuity if the func-
tion is monotonous in one of the arguments (Young 1910), in view
of part 2 and 3 of lemma 2 it is sufficient to show that t → V (t, s)
is continuous. This can be done by following the same line of argu-
ments in chapter 25.2.3 of Peskir and Shiryaev (2006) in the context
of American put option. �

Proposition A.2 On the continuation set C, V (t, s) ∈ C1×2 and it
satisfies

LV := ∂V

∂t
+ σ 2s2

2

∂2V

∂s2 + (rd − rf )s
∂V

∂s
− rd V = 0. (A1)

Proof This can be established from the facts that (e−rd (u∧τ ∗)V (u ∧
τ∗, St,s

u∧τ ∗))u≥t is a martingale for τ∗ = inf{u ≥ t : (u, St,s
u ) /∈ C)}

together with standard existence and uniqueness results of a
parabolic PDE with operator L. See, for example, proposition 2.6
of Jacka (1991). �

Proposition A.3 For any t ∈ [0, T], the map s → V (t, s) is C1. In
particular, if b(t) > 0 then smooth pasting holds at s = b(t) such that
∂sV (t, b(t)) = 1.

Proof Since V (t, s) = s − K on D and it is known that V (t, s) is
C1×2 on C, it is sufficient to show that s → V (t, s) is C1 at s = b(t)
in the case of b(t) > 0. Hence one just needs to show ∂+

s V (t, b(t)) =
∂−

s V (t, b(t)) = 1. This can be verified by following the arguments in
chapter 25.2.4 of Peskir and Shiryaev (2006). �

Proposition A.4 V (t, s) is strictly convex in s on C.

Proof Similar proofs can be found in corollary 3.1 of Pham (1997),
for example. The idea is that if there existed (t̄, s̄) ∈ C such that
∂ssV (t̄, s̄) = 0, then the consideration of a suitable Dirichlet prob-
lem and Feynman–Kac formula would lead to ∂ssV (t, s) = 0 for all
(t, s) ∈ C. This contradicts the definition of the continuation set C
which by Corollary 1 is non-empty. �

We are now ready to prove proposition 4 in the main text.

Proof of proposition 4. We prove the result for the case of rd < 0
and rf < 0, where the case of rd > 0 and rf > 0 can be handled sim-
ilarly. The proof follows closely to Jacka (1991) but some extra care
is needed to handle the negative interest rates.

(1) Note that (t, b(t)) ∈ D when b(t) > 0. Now fix t1, t2 such that
0 ≤ t1 ≤ t2 < T . If b(t1) = 0, then obviously b(t2) ≥ 0 =
b(t1). Else if b(t1) > 0, the fact that V (t, s) is decreasing in t
leads to b(t1) − K = V (t1, b(t1)) ≥ V (t2, b(t1)) ≥ b(t1) − K
and hence V (t2, b(t1)) = b(t1) − K, i.e. (t2, b(t1)) ∈ D. Thus
we must have b(t2) ≥ b(t1).

(2) For (t, s) ∈ D where D denotes the interior of D, the value
function is given by V (t, s) = s − K which is C1×2 on D.
As (e−rd tV (t, St))t≥0 is a supermartingale, we can apply Ito’s
lemma to deduce

∂V

∂t
+ σ 2s2

2

∂2V

∂s2 + (rd − rf )s
∂V

∂s
− rd V ≤ 0.

Hence we have (rd − rf )s − rd (s − K) ≤ 0 =⇒ −rf s +
rd K ≤ 0. This inequality is true for all (t, s) ∈ D ⇐⇒ s <
b(t) and therefore −rf b(t) + rd K ≤ 0 and finally b(t) ≤ rd

rf
K

as rf < 0.
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(3) If b(t) = 0 for all t ∈ [0, T) then we are done. Otherwise,
define

t0 := inf{t ∈ [0, T) : b(t) > 0}
such that b(t) > 0 on t ∈ (t0, T) due to the monotonicity of
b. Obviously b(t) = 0 for all t ∈ [0, t0) on which b is contin-
uous. It remains to show that b is continuous on (t0, T) and
b(t0) = 0.

Fix some small δ > 0. The monotonicity of b implies that
b has right limit at any t ∈ [t0 + δ, T) and in particular b(t) ≤
b(t+). Now, consider a sequence (tn)n≥1 where tn ↓ t such
that b(tn) ≥ b(t0 + δ) > 0. Then (tn, b(tn)) ∈ Dδ for each n,
where

Dδ := D ∩
{

[t0 + δ, T] ×
[

b(t0 + δ),
rd

rf
K

]}

= {(t, s) ∈ [t0 + δ, T]

×
[

b(t0 + δ),
rd

rf
K

]
: V (t, s) = s − K

}
.

Since V is continuous, Dδ is a closed set which implies
(t, b(t+)) ∈ Dδ ⊂ D and in turn b(t+) ≤ b(t). Hence we
conclude b(t) = b(t+), i.e. b is right continuous on [t0 +
δ, T). As δ > 0 is arbitrary, b is right continuous on (t0, T).

We now show that b(t) is left continuous on t ∈ (t0, T).
The monotonicity of b implies the existence of a left-
limit everywhere. Hence using the closeness of Dδ again,
(t, b(t−)) ∈ Dδ ⊂ D for any t ∈ (t0 + δ, T). Assume on con-
trary that there exists t̄ ∈ (t0 + δ, T) such that b(t̄−) < b(t̄).
Define ξ := 1

2 (b(t̄) + b(t̄−)) such that b(t̄−) < ξ < b(t̄) ≤
rd K/rf . Choose an arbitrary u ∈ (t0 + δ, t̄) such that 0 <
b(u) ≤ b(t̄−) < ξ < b(t̄) ≤ rd K/rf . As (u, b(u)) ∈ D, value
matching and smooth pasting properties of the value function
lead to V (u, b(u)) = b(u) − K and Vs(u, b(u)) = 1. Now,

V (u, ξ) − (ξ − K) = [V (u, ξ) − ξ ] − [V (u, b(u)) − b(u)]

=
∫ ξ

b(u)

(Vs(u, y) − 1) dy

=
∫ ξ

b(u)

∫ y

b(u)

Vss(u, z) dz dy. (A2)

For any (t, s) ∈ C, V (t, s) satisfies − ∂V
∂t − σ 2s2

2
∂2V
∂s2 − (rd −

rf )s
∂V
∂s + rd V = 0. Hence for any u ∈ (t0 + δ, t̄)

lim
s↓b(u)

σ 2s2

2

∂2V

∂s2 (u, s)

= lim
s↓b(u)

[
rd V (u, s) − (rd − rf )s

∂V

∂s
(u, s) − ∂V

∂t
(u, s)

]

≥ lim
s↓b(u)

[
rd V (u, s) − (rd − rf )s

∂V

∂s
(u, s)

]

= rd (b(u) − K) − (rd − rf )b(u)

= rf b(u) − rd K > rf ξ − rd K > 0

since ∂V
∂t ≤ 0, V and ∂V

∂S are continuous in s with V (t, b(t)) =
b(t) − K, ∂V

∂s (t, b(t)) = 1 for any t ∈ (t0, T), and b(u) < ξ <

rd K/rf . As ∂2V
∂s2 > 0 on C due to Proposition A.4, the map

(t, s) → σ 2s2

2
∂2V
∂s2 attains a strictly positive minimum, say ε >

0, over the compact set cl([0, T] × (0, ξ) ∩ C). Then (A2)
leads to

V (u, ξ) − (ξ − K) ≥
2r2

f ε

r2
d K2σ 2

∫ ξ

b(u)

∫ y

b(u)

dz dy

=
r2

f ε

r2
d K2σ 2

(ξ − b(u))2.

On sending u ↑ t̄, using the continuity of V we have

V (t̄, ξ) − (ξ − K) ≥
r2

f ε

r2
d K2σ 2

(ξ − b(t̄−))2 > 0,

but this contradicts the fact that 0 < ξ < b(t̄) which would
have implied (t̄, ξ) ∈ D and in turn V (t̄, ξ) = ξ − K. We
therefore conclude b(t) is left-continuous on (t0, T) as δ > 0
is arbitrary.

The conclusion that b(t0) = 0 follows from a similar argu-
ment. Suppose on contrary that b(t0) > 0 and set ξ := b(t0)

2 ∈
(0, b(t0)). Then for any arbitrary u ∈ [0, t0) we can use the
same previous arguments to establish

V (u, ξ) − (ξ − K) ≥
r2
f ε

r2
d K2σ 2

(ξ − b(u))2

for some ε > 0. Using the fact that b(t0−) = 0, taking
limit u ↑ t0 leads to V (t0, ξ) − (ξ − K) > 0. But this contra-
dicts the fact that 0 < ξ < b(t0) which would have implied
V (t0, ξ) = ξ − K.

Finally, we show that b(T) := limt→T b(t) = rd
rf

K. Since

b(t) ≤ rd K/rf for all t ∈ [0, T), it is sufficient to argue that
b(T) ≥ rd K/rf . Suppose on contrary that b(T) < rd K/rf .
Write ξ := 1

2 ( rd K
rf

+ b(T)) ∈ (b(T), rd K
rf

). Using the same

arguments for the left-continuity proof, we can deduce

V (u, ξ) − (ξ − K) >
r2

f ε

r2
d K2σ 2 (ξ − b(u))2 for any u < T and

some ε > 0. But limt↑T V (t, s) = V (T , s) = s − K, contra-
diction will again be obtained when we let u ↑ T .

�

Appendix 2. Put-call symmetry and extension to sale FX
Open Forward

Put-call symmetry is a convenient tool to establish a linkage between
the pricing results of call and put options (both European and Ameri-
can). See Detemple (2001) and the references therein. This symmetry
result also holds for forward payoffs.

Write J(t, s, K, rd , rf ; τ) := E(t,s)[e−rd (τ−t)(Sτ − K)] which is the
time-t risk-neutral expected value of a purchase FX Open Forward
with maturity T under an exercise strategy of τ ∈ Tt,T , initial spot s,
delivery price K, domestic interest rate rd and foreign interest rate rf .
Define Ĵ(t, s, K, rd , rf ; τ) = E(t,s)[e−rd (τ−t)(K − Sτ )] similarly for a
sale FX Open Forward. Now,

Ĵ(t, s, K, rd , rf ; τ) = E(t,s)
[
e−rd (τ−t)(K − Sτ )

]

= E(t,s)
[

e−rd (τ−t)(K − se

(
rd−rf − σ2

2

)
(τ−t)+σ(Bτ −Bt)

)

]

= E(t,s)
[

e−rf (τ−t)eσ(Bτ −Bt)− σ2

2 (τ−t)

×
(

Ke
−
(

rd−rf − σ2

2

)
(τ−t)−σ(Bτ −Bt) − s

)]

= Ẽ(t,s)
[

e−rf (τ−t)
(

Ke

(
rf −rd− σ2

2

)
(τ−t)−σ(B̃τ −B̃t) − s

)]

= J(t, K, s, rf , rd ; τ), (A3)

where we have defined a new measure Q̃ via the Radon–Nikodym
derivative

dQ̃

dQ

∣∣∣∣∣
Ft

= eσBt− σ2

2 t
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under which B̃t := Bt − σ t is a Brownian motion under Q̃. Upon
taking supremum over stopping times τ , we have

sup
τ∈Tt,T

Ĵ(t, s, K, rd , rf ; τ) = sup
τ∈Tt,T

J(t, K, s, rf , rd ; τ). (A4)

In other words, the pricing properties of a sale FX Open Forward can
simply be inferred from that of a purchase FX Open Forward upon
swapping spot price with delivery level, and domestic interest rate
with foreign interest rate.

A.1. Perpetual sale FX Open Forward

Using put-call symmetry, we now state a mirror version of theorem 1.
Let

V̂∞(s) := sup
τ∈T0,∞

E
[
e−rdτ (K − Sτ ) | S0 = s

]
(A5)

be the fair price of a perpetual sale FX Open Forward.

Theorem A.1 For problem (A5):

(1) If rf ≤ 0 ≤ rd , V̂∞(s) = K − s and τ∗ = 0 is optimal to
problem (A5).

(2) If rd < 0 ≤ rf , V̂∞(s) = +∞ and τ∗ = +∞ is optimal to
problem (A5).

(3) If rd = 0 < rf , V̂∞(s) = K and τ∗ = +∞ is optimal to
problem (A5).

(4) If rd = 0 = rf , V̂∞(s) = K − s which can be attained by any
non-negative stopping time τ .

(5) If rd > 0 and rf > 0,

V̂∞(s) =
⎧⎨
⎩−b1

γ1

(
s

b1

)γ1

, s > b1;

K − s, s ≤ b1,
(A6)

where γ1 < 0 is the smaller root to the quadratic equation (7)
and b1 := γ1

γ1−1 K. The optimal early exercise strategy is
τ∗ = inf{t ≥ 0 : St ≤ b1}, i.e. to early exercise the contract
when the spot price level is sufficiently low.

(6) If rd < 0 and rf < 0:
(a) If rd ≤ rf , or rf < rd and σ > |√−2rd −√−2rf |, then

V̂∞(s) = +∞.
(b) If rf < rd and σ ≤ |√−2rd −√−2rf |, then

V̂∞(s) =
⎧⎨
⎩

K − s, s ≥ b2;

−b2

γ2

(
s

b2

)γ2

, s < b2,
(A7)

where γ2 < 0 is the larger root to the quadratic
equation (7) and b2 := γ2

γ2−1 K. The optimal early exer-
cise strategy is τ∗ = inf{t ≥ 0 : St ≥ b2}, i.e. to early
exercise the contract when the spot price level is suffi-
ciently high.

Proof Results follow upon direct replacement of rd by rf and s by
K in Theorem 1. A useful observation is that if γ̂1 < γ̂2 are the roots
to the equation

σ 2

2
γ 2 +

(
rf − rd − σ 2

2

)
γ − rf = 0,

then we have γ1 = 1 − γ̂2 and γ2 = 1 − γ̂1 where γ1 < γ2 are the
roots to the quadratic equation in (7). �

A.2. Finite-maturity sale FX Open Forward

For a finite-maturity purchase FX Open Forward, we know that there
exists a function b = b(t) that divides the exercise region and con-
tinuation region. Similar results hold for a sale FX Open Forward.

Moreover, the optimal exercise boundaries of these two contracts are
explicitly linked.

Before we state the results, we first present a useful scaling prop-
erty of the optimal exercise boundary. Define by b(t) = b(t; K, rd , rf )
the optimal exercise boundary function of a purchase FX Open For-
ward under delivery level K, domestic interest rate rd and foreign
interest rate rf .

Lemma A.2 The optimal exercise boundary for a purchase FX Open
Forward is homogeneous in K with degree 1, i.e. b(t; K, rd , rf ) =
Kb(t; 1, rd , rf ) for any K > 0.

Proof Starting from the definition, we have

V (t, s) = V (t, s; K) := sup
τ∈Tt,T

E[e−rd (τ−t)(St,s
τ − K)] = K

× sup
τ∈Tt,T

E

[
e−rd (τ−t)

(
St,s
τ

K
− 1

)]

= K sup
τ∈Tt,T

E

[
e−rd (τ−t)

(
St,s/K − 1

)]
. (A8)

Suppose rd > 0 and rf > 0. The optimal exercise time of prob-
lem (A8) is given by

τ∗ = inf
{

u ∈ [t, T] : St,s/K
u ≥ b(u; 1, rd , rf )

}

= inf

{
u ∈ [t, T] :

St,s
u

K
≥ b(u; 1, rd , rf )

}

= inf
{
u ∈ [t, T] : St,s

u ≥ Kb(u; 1, rd , rf )
}

.

But on the other hand, it is also known that the optimiser of
supτ∈Tt,T

E[e−rd (τ−t)(St,s
τ − K)] is

inf
{
u ∈ [t, T] : St,s

u ≥ b(u; K, rd , rf )
}

.

We therefore must have b(t; K, rd , rf ) = Kb(t; 1, rd , rf ). The argu-
ment is the same for the case of rd < 0 and rf < 0. �

Proposition A.5 Denote by

V̂ (t, s) := sup
τ∈Tt,T

E

[
e−rd (τ−t)(K − Sτ ) | St = s

]
(A9)

the time-t fair value of a sale FX Open Forward. Let

D̂ := inf{(t, s) ∈ [0, T] × (0, ∞) : V̂ (t, s) = K − s} and

Ĉ := inf{(t, s) ∈ [0, T] × (0, ∞) : V̂ (t, s) > K − s}
be the associated stopping set and continuation set.

(1) If rd > 0 and rf > 0, then there exists a strictly positive

function b̂(t) = b̂(t; K, rd , rf ) ∈ (0, ∞) such that

Ĉ := {(t, s) ∈ [0, T) × (0, ∞) : s > b̂(t)},
D̂ := {(t, s) ∈ [0, T) × (0, ∞) : s ≤ b̂(t)} ∪ {{T} × (0, ∞)}.

(2) If rd < 0 and rf < 0, then there exists a strictly positive func-

tion (which may take value of infinity) b̂(t) = b̂(t; K, rd , rf ) ∈
(0, ∞] such that

Ĉ := {(t, s) ∈ [0, T) × (0, ∞) : s < b̂(t)},
D̂ := {(t, s) ∈ [0, T) × (0, ∞) : s ≥ b̂(t)} ∪ {{T} × (0, ∞)}.

Moreover, write b̂(t) = b(t; K, rd , rf ) as the optimal exercise bound-
ary function of a sale FX Open Forward under delivery level K,
domestic interest rate rd and foreign interest rate rf , then

b̂(t; K, rd , rf ) =
⎧⎨
⎩

K

b(t; 1, rf , rd )
, b(t; 1, rf , rd ) > 0;

+∞, b(t; 1, rf , rd ) = 0.
(A10)
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Proof Starting from (A4) and (A3), we have

V̂ (t, s) := sup
τ∈Tt,T

Ĵ(t, s, K, rd , rf ; τ) = sup
τ∈Tt,T

J(t, K, s, rf , rd ; τ)

= sup
τ∈Tt,T

Ẽ(t,s)
[

e−rf (τ−t)(Ke

(
rf −rd− σ2

2

)
(τ−t)−σ(B̃τ −B̃t) − s)

]
.

(A11)

The optimiser associated with (A11) can be inferred from the base-
line result of a purchase FX Open Forward. Suppose rd < 0 and
rf < 0. Then by proposition 3, the optimiser is then

τ∗ = inf

{
u ∈ [t, T] : Ke

(
rf −rd− σ2

2

)
(u−t)−σ(B̃u−B̃t) ≤ b(u; s, rf , rd )

}

= inf

{
u ∈ [t, T] : Ke

(
rf −rd+ σ2

2

)
(u−t)−σ(Bu−Bt) ≤ b(u; s, rf , rd )

}

= inf

{
u ∈ [t, T] : e

(
rd−rf − σ2

2

)
(u−t)+σ(Bu−Bt)b(u; s, rf , rd ) ≥ K

}

= inf
{
u ∈ [t, T] : St,s

u b(u; 1, rf , rd ) ≥ K
}

= inf
{

u ∈ [t, T] : St,s
u ≥ b̂(t; K, rd , rf )

}
,

where we used lemma A.2 in the second last equality. The optimal
strategy is thus to exercise the sale FX Open Forward when the spot

price St is at or above b̂(t) = b̂(t; K, rd , rf ). The case of rd > 0 and
rf > 0 can be handled similarly. As a remark, in the case of negative
rates b(t) may take value of zero under which it is suboptimal to
early exercise the purchase FX Open Forward at all spot levels. This
translates into b̂(t) = +∞ where financially it means that at time t
one should defer exercising the sale FX Open Forward at all spot
levels. �

Proposition A.6 View t → b̂(t) = b̂(t; K, rd , rf ) as a function of t.
Then:

(1) b̂ is increasing (resp. decreasing) if rd > 0 and rf > 0 (resp.
rd < 0 and rf < 0).

(2) b̂(t) ≤ rd
rf

K (resp. b(t) ≥ rd
rf

K) if rd > 0 and rf > 0 (resp.

rd < 0 and rf < 0) for all t ∈ [0, T).

(3) b̂ is continuous and b̂(T) := limt→T b̂(t) = rd
rf

K.

In the case of rd > 0 and rf > 0, the domain of b̂ is [0, T). In the

case of rd < 0 and rf < 0, the domain of b̂ is restricted to (t0, T),
where

t0 := inf{t ∈ [0, T] : b(t; 1, rf , rd ) > 0}.

Proof It follows immediately from proposition 4 and (A10). �
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