
RCA-IDS: A Novel Real-time Cloud-based Adversarial IDS
for Connected Vehicles

Zahra Pooranian∗, Mohammad Shojafar†, Pedram Asef‡, Matthew Robinson§, Harry Lees¶, and Mark Longden¶
∗ Department of Computer Science, University of Reading, UK

z.pooranian@reading.ac.uk
† 5G/6GIC, Institute for Communication Systems (ICS), University of Surrey, Guildford, UK

m.shojafar@surrey.ac.uk
‡ Dept. of Mechanical Engineering, University College London, London, UK

pedram.asef@ucl.ac.uk
§ Dept. of Engineering and Technology, University of Hertfordshire, Hatfield, UK

m.robinson20@herts.ac.uk
¶ R&D Group RL Auto Ltd, Basingstoke, UK

{harry.lees, mark.longden}@rlauto.com

Abstract—This paper focuses on the requirement for creating
novel frameworks to monitor and identify cyberattacks in Con-
nected Vehicles (CVs). The health of the sensors in CVs becomes
crucial when performance predictions and communication-
related errors can compromise the resilience of the sensory
network. To meet the evolving demands of connected vehicle (CV)
systems, Intrusion Detection Systems (IDS) must be regularly
updated and tailored as powerful monitoring entities. To equip
cloud-tied operators with the ability to comprehend unusual
sensor data originating from vehicles at the cloud level, we
designed an innovative Real-time Cloud-based Adversarial IDS
called RCA-IDS. This system exclusively focuses on detecting
and explaining instances of sensor data manipulation caused
by poisoning attacks. Two attack mechanisms were created
utilizing random-based and silhouette-based clustering methods.
Subsequently, two defence mechanisms based on multi-layer
neural network-type deep learning were proposed to counter
these attacks. The newly introduced RCA-IDS demonstrates a
minimum accuracy of 90% in detecting cyberattacks.

Index Terms—Connected Vehicle, Machine Learning, Sensors,
Cyberattack, Intrusion Detection Systems (IDS).

I. INTRODUCTION

Implementing vehicle networks using the Intelligent Trans-
portation System (ITS) provides road users more connectivity,
safety, and convenience. The use of ITS assists in advancing
Connected Vehicles (CVs) and offers traffic management capa-
bilities [1], [2] for system administrators. The growing degree
of self-sufficiency in vehicles, the incorporation of numerous
wireless communication technologies, and the trend of net-
work virtualization and cloud computing have led to elevated
concerns regarding potential cyber-attacks in the achievement
of connected and self-driving cars [3], [4]. Connected and
self-driving cars are considered a system critical to preserving
life. As a result, implementing adequate security measures is
crucial to shield CVs from cyber-attacks and ensure the safety
of the driver, passengers, other motorists, and the environment.
A security mechanism with great potential for safeguarding
networks is the intrusion detection system (IDS), which mon-
itors network components’ input and output traffic. Several va-

rieties of IDS exist, categorized by their methods of identifying
possible intrusions. A kind of IDS known as anomaly-based
detection uses a preset model to define normal behaviour and
compares incoming traffic against this model. When unusual
behaviour is detected, it is classified as an attack. Despite
considerable research, traditional IDS solutions face significant
obstacles in detecting novel attacks. They cannot provide
the required level of detection effectiveness, especially in
the context of highly dynamic vehicular networks. Hence,
academics and industry have attracted significant attention to
using Cloud-based solutions in response to the 5G technology
trend. Recent research works [5], [6] have shown that the
accuracy of detection systems can be significantly increased by
incorporating Machine Learning (ML) capabilities into IDS.

ML algorithms can precisely forecast patterns in data, but
some data may originate from untrustworthy and uncertain
sources. Attackers can exploit this weakness in Adversarial
Machine Learning (AML) attacks. A specific type of AML is
called a Poisoning attack when attackers inject malicious data
into the training dataset to decrease the model’s accuracy by
disrupting the learning process. Label-flipping is a form of data
poisoning where attackers can control the label assigned to the
training samples and manipulate them to reduce the system’s
performance substantially.

In [7], AML techniques focus on two main aspects: i) Attack
Complexity, which aims to simplify the creation of a malicious
attack, and ii) Attacker’s Knowledge, which pertains to the
attacker’s understanding of the architecture, algorithm, and
training examples, to gain insight into the detector. A type of
attack known as a white-box attack occurs when the attacker
knows training data, features extracted from applications, or
the architecture, as described in some approaches such as [8]).
Alternatively, the attack is classified as a black-box attack [9]
when the adversary’s understanding is restricted.

The concept of adversarial specificity can take either a
targeted or non-targeted approach. The attacker can fool
a classifier in detection systems in a targeted manner by

predicting all adversarial samples as a class. This strategy
also increases the likelihood of achieving the desired targeted
adversarial outcome. On the other hand, non-targeted attackers
can target a class arbitrarily. They achieve this by carrying out
various targeted attacks and choosing the one with the minor
disturbance or reducing the likelihood of the correct category.

Numerous studies in the literature have concentrated on
detecting and addressing the issue of poisoning attacks.For
instance, an algorithmic technique assesses how the efficiency
of the learning algorithm can be affected by each training
sample [10]. Although this approach may be successful in
specific instances, it is not universally applicable to a large
dataset. Other defensive tactics, such as outlier detection,
are employed to recognize and eliminate suspicious samples.
Nevertheless, this technique’s performance is restricted, partic-
ularly concerning its accuracy when faced with label-flipping
attacks [11]. Another research area concentrates on developing
learning tactics that can be utilized to flip labels. There are
two main categories of solutions to this problem. The initial
category entails acquiring knowledge directly from the flipped
labels, while the second category focuses on clean data. In the
initial scenario, the label-flipping module identifies accurately
labelled data [12], [13]. It then adjusts the label changes to
restore the data’s terms within the loss function. The efficacy
of this approach is notably influenced by the accuracy of
cleaning labels and the precision of estimating the flipped
samples. The second group of techniques employs an extra
collection of malicious data to direct the learning process
in handling flipped data [14]. Both categories have common
drawbacks despite showing good outcomes. They attempt to
correct flipped labels or adjust the weights for data samples,
which results in errors for specific data samples.

Motivated by these considerations, this study introduces a
Real-time Cloud-based Adversarial IDS (RCA-IDS) architec-
ture that addresses identifying malicious data in Connected
Vehicle (CV) systems. This paper illustrates a fleet-based
scenario where vehicle sensor data, including tire pressure,
temperature, and location, is measured, gathered, and sent to
a cloud server via a 5G cellular network. We assume that
the attacker’s ability is the weakest. The attacker does not
have enough information about the loss function, learning
algorithm, features, or initial training data. We demonstrate
that improved outcomes can be achieved if the system detects
and retrains incorrect labels and our suggested semi-supervised
training method is employed. Thus, we propose a solution that
addresses mislabeled data points and enhances the classifica-
tion algorithm’ accuracy. Our approach requires having correct
labels for a small portion of the training set while ignoring
returned labels associated with other data. We then train a
multi-layer neural network utilizing this selected data semi-
supervised. To sum up, this study’s key contributions are:
• Our primary focus is on efficiently detecting intrusions

across CV systems, and to this end, we introduce RCA-IDS
architecture that enables the testing of flipped data.

• We suggest two label-flipping poisoning techniques that tar-
get the deep learning-based detection of CVs: one involves

randomly flipping labels without knowing which feature is
significant. In contrast, the other technique involves silhou-
ette clustering to determine which sample is appropriate to
flip its label.

• We propose two defence mechanisms to combat label-
flipping attacks in CV systems: the first involves K-
means clustering. In contrast, the second involves a semi-
supervised DL-based technique that leverages Label Spread-
ing (LS) and Label Propagation (LP) algorithms to predict
new labels for the training set.

• We deployed our proposed cyber detection algorithms to the
cloud and tested their effectiveness in a pilot trial using live
vehicles.

• We perform experiments on a real-world CV systems dataset
from RL Capital company with four types of features. The
experiments include two attack scenarios and are compared
with the non-attack method. We thoroughly review the
resulting trade-offs.
This paper is organized as follows. In Section II, the

problem definition, architecture, and related components are
discussed in detail. Section III outlines the proposed attack
model, inspired by Adversarial Machine Learning algorithms
(AML), and presents the proposed defence strategies against
the raised attacks in Section IV. The real-time verification
algorithm presents in Section V. Section VI presents the exper-
iments’ results. Finally, Section VII summarises the findings
and outlines plans.

II. SYSTEM MODEL AND PROPOSED ARCHITECTURE

Section II-A presents the problem definition. Then, the
proposed intrusion detection architecture is introduced in
Section II-B. Section II-C explains the proposed classification
algorithm used in the paper.

A. Problem definition
Let’s examine the datasets in the following manner.

D = {(xi, yi) ∈ (X ,Y)}, i = 1, . . . , n (1)

Here, n represents the count of malicious samples. If xi

possesses the j feature, then xij equals 1. If not, xij is set to 0,
and X is a subset of a k-dimensional space, where X consists
of elements in the set {0, 1}k. The samples are labelled with
yi values that belong to the set {0, 1}, and the D has an
undisclosed distribution over X × Y . It is assumed that the
training set is defined in the following manner.

S = {(xk, yk)}, k = 1, . . . ,m (2)

where S denots the set of lables. The label-flipping attack
aims to discover a set, denoted as P , which consists of samples
from S. The attacker intends to minimize the desired target by
flipping the labels. For simplicity, we assume that the attacker
aims to maximize the loss function, defined as L(w, (xj , yj)).

Definition 1: The specific type of poisoning attack is called
Label Flipping Attack (LFA), in which the attacker attempts to
modify feature labels using specific algorithms, which alters
the range of each sample within a cluster.

B. Proposed architecture

Fig. 1 displays our real-time cloud-based adversarial IDS
(RCA-IDS) architecture, which is introduced as a solution
for detecting malicious attacks within CV systems. In this
architecture, each vehicle in the fleet is equipped with a
temperature and pressure sensor on every wheel, which mea-
sures the internal pressure and temperature. Additionally, the
Global Positioning System (GPS) receiver determines the
position of each vehicle. A 5G Telematic Unit (TU) is used
to connect the location, pressure, and temperature sensors.
This TU collects the data and transmits sensor updates to a
cloud-based database. To send this data to the database, the
TU employs a 5G modem with 4G and satellite feedback in
case of any manipulation, ensuring reliable communication in
this new setup. Within this sensory system, temperature is
recorded in degrees Celsius, pressure is recorded in Pounds
per Square Inch (PSI), and location is recorded in degrees of
Latitude and Longitude. In the RCA-IDS system, we assume
that the vehicles communicate, and the incoming data stream
data obtained from CVs is stored in a cloud-based database.
Additionally, it is assumed that an attacker could access some
CV sensors, allowing them to manipulate data transmitted
between vehicles or the cloud. Consequently, the data traffic
of each vehicle could potentially contain information from
malicious vehicles, which are represented in the figure by
the devil symbols. Each vehicle generates a unique feature
vector with different labels, whether malicious or benign. The
attackers aim to deceive machine learning models and prevent
malicious detection by introducing perturbations into the data.
Consequently, in this architecture, adversaries can infiltrate
the dataset and alter the labels by introducing perturbations
to the existing ones. The last element of our framework
encompasses our suggested defence algorithms and a machine
learning model, forming the detection system. Using our
architecture, it is possible to enhance the resilience of the
detection system against label-flipping attacks, subsequently
enhancing the classification accuracy between malicious and
benign entities. The following section details our proposed
attack and defence algorithms.

RCA-IDS Model
(Detector)

Cloud-based Adversarial
Cyber Attack Detection

Malicious

Benign

DB

Perturbation
Flip Labels

CV System

TU

Satellite

5G Modem Tier Press./Temp. & GPS
Sensors

4G
 N

et
w

or
k

5G
 N

et
w

or
k

Fig. 1: Architecture overview of Real-time Cloud-based Adversarial
IDS (RCA-IDS) in CVs environment; Temp:= Temperature; Press:=
Pressure; TU:= Telematic Unit; DB:= Database.

C. Classification algorithm

The paper incorporates a Sequential deep-learning model in
order to classify the samples. Fig. 2 illustrates the Sequential
architecture proposed for the classification algorithm. The
figure shows that the classification algorithm utilizes three
sequential layers of dense, each with 32, 16, and 8 units, and
activation functions of tanh, relu, and tanh, respectively. After
these layers, a dense layer is utilized with a Sigmoid activation
function to complete the classification algorithm, resulting in
the data being classified.

… … …

Sequential Layers

dense_1(32, tanh) dense_2(16, relu) dense_3(8, tanh)

… …

Input Layer

dense(64, none)

Output Layer

dense(1, sigmoid)

Fig. 2: The architecture of the proposed classification algorithm;
(A,B) = (units, activation).

III. ADVERSARIAL APPROACHES FOR INTRUSION
DETECTION SYSTEM

Our attack approach is targeted, which involves creating
misclassified samples to infect a specific vehicle. This section
details our attack strategies, which are categorized into two
scenarios discussed in subsequent subsections. Table I lists
this paper’s primary symbols and notations.

TABLE I: Main notations.

Notation Description
X Input data, x ∈ {0, 1}m, | X |= n
Y Benign labels in the classification problem, y ∈ {0, 1}m
X ∗ Adversarial sample
Y∗ Adversarial labels in target adversarial sample
M Number of features, a ∈M, | M |= m
F Machine Learning model, F : X → Y
T Percentage of features

An attack plan shows how attackers can compromise the
system by considering their goals, understanding, and capa-
bilities. Below, we provide a brief overview of each attack
scenario.
Scenario 1: The attacker employs a random approach to
modify the labels of malicious applications without knowing
which features are most important. This attack is called a
Random-based Label Flipping Attack (RLFA).
Scenario 2: The Silhouette-based Label Flipping Attack
(SLFA) is an attack where the attacker calculates the Silhouette
Value (SV) and attempts to flip the labels of the training set
by adding some perturbation to the existing labels when the
SV is negative.

We divide the training and testing datasets into Malicious
and Benign groups based on the class parameters for both
scenarios. We execute each algorithm ten times and choose

Algorithm 1 Random-based Label Flipping Attack (RLFA)
Input: X , Y , T
Output: X ∗, Y∗

1: Randomly select T features from X
2: for each attribute a ∈ T in X do
3: if (X [a] = 0) then
4: X [a]← 1
5: X ∗ ← x
6: if (F (X ∗) = Y∗) then
7: break
8: end if
9: end if

10: end for
11: return X ∗, Y∗

the average values for each parameter. Moreover, we select
specific proportions of features from the malicious samples
and modify their labels. To be more precise, we opt for
a feature that has not been previously chosen and alter its
labels. Then, we include these altered malicious samples in
the training set and utilize classification techniques to classify
the dataset.

A. Attack strategy: Random-based Label Flipping Attack
(RLFA)

We use a randomization method to implement LFA. In this
approach, the attacker randomly manipulates the malicious
applications’ labels without knowing which feature is promi-
nent. We call this attack Random-based Label Flipping Attack
(RLFA).
Description of the Algorithm 1. The list variable T in line 1
refers to the features used. To clarify, we select and modify one
feature from the list and subsequently repeat this procedure
for all the features in the list. We analyze the chosen sample
during each loop iteration and focus on the selected feature a
from the T set. We modify instances where the element has
a zero value to become one, then save that modified sample
in X ∗ (lines 2-5 of Algorithm 1). Afterwards, verifying the
altered sample and determining whether it has transformed
into a benign sample is crucial. To determine whether this
condition is met, we depend on evaluating F (X ∗) = Y∗. If
this evaluation satisfies the requirement, we can classify X ∗

as an adversarial sample generated by Algorithm 1.

B. Attack strategy: Silhouette-based Label Flipping Attack
(SLFA)

Silhouette clustering is a method that can interpret and
confirm data clusters’ coherence, providing a brief graphic
representation of object categorization. The Silhouette clus-
tering technique is used to implement LFA, and we call this a
silhouette-based Label Flipping Attack (SLFA). This approach
introduces a measure known as the SV, which quantifies the
similarity or cohesion of an object within its cluster compared
to other clusters or separations, and it ranges from [−1, 1].
In SLFA, we assign a range of values from [−1, 1] to each
sample to indicate its membership in the correct cluster. If SV
has a negative value, it indicates that the selected sample is
a potential candidate for label flipping and firmly belongs to

a distinct cluster according to the silhouette algorithm. There-
fore, we modify the label of such a sample. This paper adopts
a Euclidean distance approach to determine SV. Consider Li as
the label assigned to the i-th sample out of the total n samples
in the dataset. Then, we can express it as equation (3).

Li =

{
(xi, yi), SV > 0

(xi, |1− yi|), otherwise
(3)

Algorithm 2 Silhouette-based Label Flipping Attack (SLFA)
Input: X_trn,Y_trn
Output: Poisoned_Y_trn

1: MK ←Generate Model with two Clusters Using K-means clustering
2: lbl←Predict labels of X_train using MK

3: SV ← Compute Silhouette values using X_trn using lbl
4: for each row ∈ X_trn do
5: if (SV [row] ≤ 0) then
6: Poisoned_Y_trn[row] = abs(1− Y_trn[row])
7: end if
8: end for
9: return Poisoned_Y_trn

Description of the Algorithm 2. The algorithm presents
a new method called SLFA, which involves changing the
training sample’s label. The foundation of this technique lies
in the principles of the K-means clustering algorithm. The
algorithm starts in line 1 by building a machine learning
model using K-means to classify the training samples (Xtrn)
into two clusters, and then in line 2 predicts a new label for
each sample. Subsequently, we compute the Silhouette Value
for both the samples and the predicted labels assigned to
them (line 3). As mentioned, values near 1 indicate that the
sample is appropriately classified within the cluster, while SVs
below 1 and near -1 indicate that the data point is categorized
incorrectly. In our approach, we altered the sample’s label with
SV below zero, meaning we may have picked the samples that
could belong to the alternate cluster (lines 4-8).

IV. DEFENSIVE STRATEGIES AGAINST ATTACKS

This section provides explanations of two countermeasures
to address the attacks mentioned above. Specifically, we ex-
plain K-mean-based Clustering Defence (KCD) and Label-
based Clustering Defence (LCD), which are presented in
Sections IV-A and IV-B, respectively. We assume that the
data is partially labelled. Defence mechanisms analyze the
training samples’ validation data to identify potential instances
of label flipping. Then, new labels are predicted for the data,
and replace the original labels with the new predicted labels.

A. Defence strategy: K-mean based Clustering Defence
(KCD)

This subsection outlines the proposed techniques to defend
the classification model against the adversarial RLFA attack.
The defence methodology includes the process of retrain-
ing the classification algorithm [15]. The critical distinction
between the updated retrained classification and the exist-
ing version lies in including the poisoned data within the

training dataset. Classification algorithms work by evaluating
the similarity between samples. Classifiers that employ the
similarity approach can predict the label of a test set sample
by evaluating its similarities with the training set samples’
labels and the samples’ inter-similarity. This paper utilised
the K-mean classification model, and the nearest-neighbour
approach was employed for the suggested defence method.
Our method is founded on the concept that when examining
a sample’s neighbourhoods, the distances will have distinct
labels and that two close samples will have identical labels.
The underlying idea is that samples with similar features
and matching labels are unlikely to have been tampered
with. However, it is common for training datasets to contain
nearby points with differing labels. The KCD technique aims
to correct the perturbed training set by utilising the nearest
neighbour of a given sample. If we aim to locate the most
similar vectors in training set to vector x, which is a part of
the test set, y would be considered the most similar element
if equation (4) is satisfied.

dis(x, y) ≤ dis(x, z) ∀z ∈ train_set (4)

The expression dis(x, y) refers to the distance between
x and y, commonly referred to as the distance. Various
techniques have been discussed previously for computing
the distance, including the Hamming distance and Euclidean
distance. We will demonstrate that the outcomes of all these
approaches are comparable due to the samples’ nature, which
means there is no ambiguity in selecting a particular method.
Accordingly, we can summarize the proposed intrusion detec-
tion method as follows:
Description of the Algorithm 3. The KCD algorithm is
introduced in this paper to address the label-flipping issue in
the training samples, which is based on the K-means clustering
approach. In the initial phase, we apply the K-means algorithm
on the Xtrn samples to generate a model that categorizes them
into two clusters and predicts each sample’s label (lines 1-
4). Subsequently, we compute the Euclidean distances, mean
values for the samples, and predicted labels in lines 5-6. Our
proposed method involves flipping the labels of the samples
with a distance that is lower than the mean value. This way, we
can likely choose the appropriate label for the values within
the same cluster (lines 7-12).

B. Defence strategy: Label-based Clustering Defence (LCD)

In this section, we develop an LCD algorithm that prior-
itizes Semi-Monitoring Learning (SML) techniques. Hence,
validation data is sent as input to SML to predict new labels
for each instance and then rank the predicted labels. The
primary objective of LCD is to identify examples where the
labels are expected to be correct in the perturbed training
set. Once we have identified these samples, we must label
them to the Semi-Supervised Learning (SSL) algorithm. Es-
tablishing a validation set is necessary to supervise the training
procedure and select monitor parameters. The LCD approach
starts by ranking the samples in each category and saving
the labels with the highest scores. A multi-way classification

Algorithm 3 K-mean based Clustering Defence (KCD)
Input: X , X ∗, Y , Y∗

Output: YCorrected

1: Xtrn ← X ∪ X ∗

2: Ytrn ← Y ∪ Y∗

3: MK ← Generate Model with two clusters using K-means clustering
(Xtrn,Ytrn)

4: lbl← Predict labels of X_trn using MK

5: dis← Compute Euclidean Distances using X_trn and lbl
6: mean ← Compute Mean value for X_trn
7: for each row ∈ X_trn do
8: if (dis[row] ≤ mean[row]) then
9: YCorrected[row] = 0

10: else
11: YCorrected[row] = 1
12: end if
13: end for
14: return YCorrected

neural network ranks the points if a clean set is unavailable.
Therefore, the original training dataset was used to train the
ranking system. This defence algorithm consists of training
the classifier while clean labels are accessible and separating
data with flipped and clean labels. In the initial stage, the
defence strategy involves using the Label Propagation (LP)
algorithm to allocate labels to data points that do not have
labels. Next, the Label Spreading (LS) method is employed
in the subsequent phase to reduce the noise that occurs while
labelling the samples. The objective of the LCD method is
to create a technique that functions like an ensemble learning
approach, leveraging propagation models to forecast flipped
labels. To achieve this goal, a framework consisting of two
stages for reverse label learning is proposed. The subsequent
sections explain LP and LS.

• Label Propagation (LP). LP is a machine learning algo-
rithm with a semi-supervised approach that assigns labels to
unlabeled samples. It operates by assigning labels to a small
subset of the dataset and using that to make classifications.
Then, it predicts labels for the remaining unlabeled data
points. LP can reveal the community organization within
complex networks [16]. Unlike other methods, LP has a
significantly shorter processing time and does so without
the need for prior knowledge about the data points before
propagation. However, LP may generate multiple solutions
for any given set of samples.

• Label Spreading (LS). The LS algorithm belongs to a
class of propagation methods that leverage a normalized
Laplacian graph and apply soft clamping on an affinity
matrix to adjust the labels. Furthermore, it can make the loss
function more noise-resistant by reducing its regularization
properties [17]. The LS algorithm iteratively operates on an
altered data point graph and normalizes the edge weights by
calculating the matrix of the normalized Laplacian graph.

In the initial step of the LCD approach, the validation
dataset is used to train the LP and LS, and after that, to predict
labels for the training samples. During the second phase,
all accessible labels, including LP output, LS output, and
poisoned labels, are gathered, and select the most frequently

occurring one through voting. The overall LCD algorithm
based on semi-supervised learning is presented in Algorithm 4.

Description of the Algorithm 4. This algorithm proposes
a semi-supervised defence mechanism that relies on Label
estimation. In lines 3-5, the LS algorithm is employed to fore-
cast the training data labels through training on the validation
data. Likewise, in lines 6-8, the LP, another semi-supervised
technique, is utilized to forecast the training data labels. To
complete the LCD method, the last stage entails merging the
outcomes from the three methods and the poisoned label. This
is accomplished through a voting mechanism to determine the
label for each training sample.

Algorithm 4 Label-based Clustering Defence (LCD)
Input: X_val,Y_val,X_trn, Poisoned_Y_trn
Output: YCorrected

1: X ← X_trn
2: Y ← Y_val
3: Mls ←Generate Model using LS algorithm
4: Fit the Mls Model on X and Y
5: Lls ← Predict labels of X_trn using Mls

6: Mlp ← Generate Model using LP algorithm
7: Fit the Mlp Model on X and Y
8: Llp ← Predict labels of X_trn using Mlp

9: YCorrected = Voting(Poisoned_Y_trn,Lls,Llp,Lcnn)
10: return YCorrected

V. REAL-TIME VERIFICATION

We integrate the proposed cybersecurity detection models,
KCD and LCD, on a cloud-assisted connected vehicle en-
vironment (called RCA-IDS) to detect our proposed RLFA
and SLFA adversarial attacks. The connected vehicle streams
real-time sensor data (benign and malicious samples) to the
cloud network. The complete data stream is inserted into the
proposed cybersecurity detection algorithms to show the ro-
bustness of our proposed algorithms in detecting the poisoned
data. The proposed defence ML-based algorithms on the cloud
perform analytics on the received data and raise the flag of
whether it is malicious or benign. Our system accesses the
raw data and the analytics results and displays them side by
side to the end user within our user-friendly front-end display.
The overall RCA-IDS algorithm is presented in Algorithm 5.

Description of the Algorithm 5. This algorithm proposes real-
time adversarial detection verification on live vehicles in the
pilot trial. The algorithm loads the pre-trained AML models
(lines 1-3). These models are KCD or LCD models from our
training phases. Then, line 4 is used to predict the labels
of the testing data by AML models. If the model predicts
the label equal to 1 (0) for each predicted label, it informs
the detector module by raising a significant security alarm. It
sets the sample status to Malicious (Benign) (lines 5-11). The
output of the RCA-IDS algorithm is the alert flag shown on
the customer dashboard (line 12).

Algorithm 5 Real-time Cloud-based Adversarial IDS (RCA-IDS)
Input: X , X ∗, Y , Y∗

Output: flag
1: Xtest ← X ∪ X ∗

2: Ytest ← Y ∪ Y∗

3: model← Load pre-trained AML (KCD/LCD) model
4: Labels← Predict labels of X_test using model
5: for each label ∈ Labels do
6: if (label == 1) then
7: flag = Malicious
8: else
9: flag = Benign

10: end if
11: end for
12: return flag

VI. EXPERIMENTAL EVALUATION

The simulation results of our proposed methods for attack
(RLFA and SLFA) and defence (KCD and LCD) are presented
in this section.

A. Simulation setup

The following section explains the evaluation metrics,
datasets, features, parameters used for classification, and the
defence algorithm being compared.

1) Test metrics: In order to conduct a thorough assessment
of our attack and defence methods, we utilize the subsequent
indices:
• True Positive (TP): refers to a situation where a malicious

sample is accurately identified as malicious.
• True Negative (TN): denotes the count of legitimate appli-

cations accurately detected by the classification algorithm.
• False Positive (FP): refers to the count of benign applica-

tions that have been wrongly classified.
• False Negative (FN): refers to the count of malicious files

inaccurately classified as normal samples.
• False Negative Rate (FNR): can be used to identify samples

where the condition is true, but the assessment fails to detect
it. This measurement can be computed using the following
formula:

FNR =
TP

TP + FP
. (5)

• True Positive Rate (TPR): This measure reflects the accuracy
of predictions for the positive class. It is calculated as the
ratio of accurate predictions to all predictions using the
following formula:

TPR =
TP

TP + FN
. (6)

• Accuracy: This value indicates the proportion of accurate
predictions made by the algorithm compared to the total
number of input examples. When the accuracy value is
higher, the algorithm will more likely correctly identify the
samples’ labels. As a result, we obtain the following:

Accuracy =
TP + TN

TP + TN + FP + FN
. (7)

• Precision: This refers to the portion of relevant samples
present within the retrieved samples. As a result, we obtain
the following:

Precision =
TP

TP + FP
. (8)

• Recall: This value corresponds to the fraction of retrieved
samples to the overall number of relevant examples. Thus,
recall and precision measures are rooted in the concept and
assessment of relevance. We can express this as:

Recall =
TP

TP + FN
. (9)

• F1-Score: This metric is known as the harmonic mean of
Recall and Precision and is defined in the following manner:

F1− Score =
1

1
Recall

+ 1
Precision

=

2 ∗ Precision ∗Recall

Precision+Recall
.

(10)

• Area Under Curve (AUC): determines the best class pre-
diction model by considering all potential thresholds. The
primary objective of AUC is to overcome the issue of
unbalanced samples within a dataset and to avoid overfitting
the model to the class with a higher number of instances.
We can express this as:

AUC =
1

2

(
TP

TP + FP
+

TN

TN + FP

)
. (11)

2) Datasets: We conducted our experiments on a server
provided by RL Automotive using the AutoAlign dataset,
which contains data on the Temperature, Pressure, and Lo-
cation of numerous fleets and vehicles. AutoAlign is an R&D
development project to determine wheel misalignment in real
time that, saves fuel costs and reduces air pollution.

3) Features: The AutoAlign dataset records the sensor data
in the table. The vehicle sensor received data are shown in
Table II. This paper considers various sample features like
temperature, pressure, latitude, and longitude. We summarize
them as follows:
• Temperature: This sensor has been specifically designed

to measure a tire’s highly transient surface temperature,
providing invaluable information for chassis tuning and
driver development.

• Pressure: The tire-pressure monitoring system, known as
Pressure, monitors the air pressure within the pneumatic
tires on vehicles. This system provides the driver with real-
time information on tire pressure using a gauge, pictogram
display, or a primary low-pressure warning light.

• Latitude: It is a GPS sensor to get a vehicle’s position
consisting of longitude and latitude.

• Longitude: It is a GPS sensor to get a vehicle’s position
consisting of longitude and latitude.
4) Parameter setting: Evaluating the performance of a

model solely based on the training dataset can result in a
biased score. To overcome this, the model is assessed using a
separate held-out sample to provide an unbiased estimation of
its performance. This approach, commonly called the train-
test split, evaluates algorithms. In this study, the dataset
is randomly divided for each test, with 60% designated as

TABLE II: Vehicle sensor received data; Temp:= Temperature;
Press:= Pressure; Lat:= Latitude; Lng:= Longitude.

Timestamp Sensor ID Temp Press Lat Lng
12/18/21 23:46 001e1c 6 124.154 51.036 -2.027
12/18/21 23:45 001e2 10 105.721 41.503 -3.631
12/18/21 23:45 001e58 9 132.086 51.543 -2.651
12/18/21 23:46 23097a 5 106.365 50.718 -3.083
12/18/21 23:46 005ec0 8 70.779 51.2 -1.111
12/18/21 23:46 002321cb 4 78.961 61.126 -1.35

training samples, 20% as validation samples, and 20% as
testing samples. We select four features from the dataset.
Unique seeds are used for each of the 10 sets of training,
validation, and testing. We repeated this process ten times
for each algorithm and calculated the average results. The
experiments were conducted on an Intel Xeon CPU E5-2667
3.3GHz virtual machine with 190 GB RAM and 32 CPU cores,
running Ubuntu server 18.04.

B. Training Phase: Experimental results

We employed the Multilayer Perceptron (MLP) model to
classify benign and malicious data. The benign data were
obtained from the AutoAlign dataset, while the malicious
data were generated using outlier data. This section tests our
proposed attack algorithms (RLFA and SLFA) on the classifier
we initially trained and validates our defence algorithms (KCD
and LCD) on the AutoAlign dataset.

1) Comparing methods based on Accuracy and Loss: The
goal of this test scenario is to compare the accuracy (as shown
in Table III) and loss (as shown in Table IV) of the attack and
defence methods when compared to data that has not been
subjected to any attacks, i.e., no-attack on train, validation,
and test data.

The classifiers’ accuracy is noticeably above 99% when
there is no attack. The loss value without an attack is 0.18%.
However, the RLFA algorithm adds random noise to the
samples, resulting in an accuracy value of about 52% but a
loss value of about 18%. This method does not make specific
modifications, so the accuracy is lower than the SLFA attack.
Table III demonstrates the increase in accuracy through the
proposed defence mechanisms.

TABLE III: Comparing the accuracy of algorithms on train, valida-
tion, and test samples (%).

Algorithms Train Valid Test
No attack 99.795920 99.857146 99.833333

RLFA 80.020410 80.047619 52.700001
SLFA 87.653059 88.190478 68.766665
KCD 99.755102 99.190474 99.299997
LCD 87.877554 87.476188 99.366665

2) Comparing methods based on Recall, Precision, and F1-
score: This scenario aims to provide a comparison between
the defence algorithms (refer to figure 3a) and the attack
procedure (refer to figure 3b) using data that does not
include any attack, meaning no-attack. Specifically, in Fig 3a,
we present the Recall, Precision, and F1-score for different
defence methodologies. Precision and Recall measures show

TABLE IV: Comparing loss of algorithms on train, validation, and
test data (%).

Algorithms Train Valid Test
No attack 0.002305 0.002046 0.001836

RLFA 0.119700 0.121009 0.180553
SLFA 0.075652 0.073716 0.115980
KCD 0.002142 0.008091 0.006649
LCD 0.075199 0.078686 0.058709

the errors generated. The total amount of malicious detected
can be measured by the recall value. That is, the proportion
of correctly detected cases is the sum of all malicious cases
(i.e., cases correctly detected by malicious plus cases falsely
detected by benign). We aim to develop a machine-learning
model to detect malicious behaviour with high recall values.
Fig. 3a presents the dataset’s Recall, Precision, and F1-score
values. The figure illustrates the classification algorithms ap-
plied without an attack strategy, which resulted in a Recall
and F1-score of 99%. Two important observations can be
made from this figure: i) the KCD and LCD algorithm’s
Precision/Recall and F1-score values are close to those of
No-Attack, indicating that our proposed defence algorithm
can correctly identify benign samples; ii) the KCD algorithm
outperforms the LCD algorithm in terms of Recall and F1-
score values. Since our data contains malicious outlier data,
the FP will be zero for all algorithms, affecting other metrics
like Precision. Therefore, the Precision for all algorithms has
the same value.

Fig. 3b presents Recall, Precision, and F1-score for attack
algorithms, RLFA and SLFA, compared to the feature values
of the dataset when there is no attack. This figure shows that
the proposed attack method can deceive the ML model, cause
misclassification, and significantly reduce the F1 score and
recall values. Recall drops by approximately 46% for RLFA
and about 62% for SLFA. The attacker aims to undermine
the ML model’s ability to classify data accurately. Therefore,
our attack strategy is advantageous in such situations, and
its harmful consequences are more visible in the dataset’s
features.

3) Comparing defence/attack algorithms based on FNR,
TPR, and AUC: This section compares algorithms using FNR,
TPR, and AUC, which are presented in Figs. 4a and 4b. A
TPR value close to one (i.e., 100%) indicates higher precision
in the model, whereas a value close to zero indicates poor
performance in accurately identifying the samples. Comparing
the TPR of different algorithms in Fig. 4a and 4b reveals that
the KCD method outperforms the LCD method. Specifically,
the KCD method has a rate of about 90% in identifying
malicious samples. The FNR metric measures the rate of
misclassification of data in a dataset. The rate of FNR is known
to increase in the case of a flipping attack, while it can decrease
when defence algorithms are employed.

Furthermore, based on the AUC and FNR values, we have a
decrease in the AUC rate and an increase in the FNR rate after
performing a label-flipping attack. FNR values are beneficial
to the attacker as they increase during an attack. Defence

(a) Defence Algorithms

(b) Attack Algorithms

Fig. 3: The comparison between defence/attack algorithms based on
Precision, Recall, and F1-Score. (No-Atck= No Attack)

strategies aim to minimize the FNR or the misclassification
rate for malicious samples. Fig. 4a shows that our defence
algorithms have a lower FNR, confirming our previous obser-
vations. Furthermore, since our data is composed of outliers,
the FP rate is zero for all algorithms, which impacts the AUC
values that are the same for all algorithms.

C. Testing Phase: Experimental results

This section presents experimental results for the RCA-
IDS algorithm by introducing two scenarios, selected and
full features, to verify real-time detection. First, we rank the
features using the Random Forest Regressor (RF) algorithm
to show which features impact the classification most. Then,
we repeat our experiments for the higher-ranked features to
determine which features more favourably affect the attack
and defence algorithms. We select one feature (One-S-F), two
features (Two-S-F), and three features (Three-S-F) with the
highest ranking to evaluate our algorithms.

Table V presents the accuracy results of the attack and
defence algorithms compared to the data without the attack
based on the number of features we selected from all of them.
The table indicates that the accuracy of the classifiers, in the
absence of an attack, surpasses 99% when utilizing the full set
of features. However, the accuracy decreases as the number
of selected features reduces. The value of 99% shows how
accurate our proposed AML models are, even in real-time
scenarios. The RLFA algorithm randomly injects noise into
the samples. Therefore, the accuracy of the RLFA algorithm
is about 50%, which is slightly higher than the SLFA attack.

(a) Defence Algorithms

(b) Attack Algorithms

Fig. 4: The comparison between defence/attack algorithms based on
AUC, TPR, and FNR. (No-Atck= No Attack)

From the results, we can see how much accuracy is increased
through the proposed defence mechanisms.

TABLE V: The comparison between attack and defence algorithms
in percent (%) based on Accuracy; Alg.:= Algorithm; -F:= Feature;
-S:= Selected.

Alg. Full-F One-S-F Two-S-F Three-S-F
No-Atck 99.139 73.973 92.25 99.028
RLFA 50.195 50.028 50.028 50.084
SLFA 50.028 50.028 50.028 50.028
KCD 98.75 73.973 91.75 98.917
LCD 93.473 74.362 93.084 99.056

ACKNOWLEDGEMENT

This work has been funded by the European Space Agency
(ESA) as part of the AutoTrust Project, Grant number
4000135646/21/UK/ND.

VII. CONCLUSION

This paper discusses a new real-time Cloud-based Adver-
sarial IDS, RCA-IDS, to detect cyberattacks on CV systems.
Two attacks, the Random-based Label Flipping Attack (RLFA)
and the Silhouette-based Label Flipping Attack (SLFA), and
defence algorithms, the K-mean-based Clustering Defence
(KCD) and the Label-based Clustering Defence (LCD) algo-
rithms, to mitigate these attacks introduced in this system.
The performance of the defence algorithms using different
features compares with the non-attack data in the AutoAlign
dataset from the RL capital. An MLP classification algorithm

is used to test our models. The results show that our proposed
attacks can significantly reduce accuracy, from 99% (without
attack) to 50% and 60% for RLFA and SLFA, respectively.
However, after applying the defence algorithms, the accu-
racy improves to 99.99% and 99.8% for KCD and LCD,
respectively. In future research, we suggest exploring semi-
supervised methods that incorporate deep learning techniques
such as autoencoders and different Generative Adversarial
Networks (GANs), which can be combined with clustering
methods in an ensemble learning framework to enhance the
results against label-flipping attacks.

REFERENCES

[1] A. Lamssaggad, N. Benamar, A. S. Hafid, and M. Msahli, “A survey
on the current security landscape of intelligent transportation systems,”
IEEE Access, vol. 9, pp. 9180–9208, 2021.

[2] Z. Yu, J. Hu, G. Min, Z. Zhao, W. Miao, and M. S. Hossain, “Mobility-
aware proactive edge caching for connected vehicles using federated
learning,” IEEE Transactions on Intelligent Transportation Systems,
vol. 22, no. 8, pp. 5341–5351, 2020.

[3] H. Liu, S. Zhang, P. Zhang, X. Zhou, X. Shao, G. Pu, and Y. Zhang,
“Blockchain and federated learning for collaborative intrusion detection
in vehicular edge computing,” IEEE Transactions on Vehicular Technol-
ogy, vol. 70, no. 6, pp. 6073–6084, 2021.

[4] R. Jin, J. Hu, G. Min, and J. Mills, “Lightweight blockchain-empowered
secure and efficient federated edge learning,” IEEE Transactions on
Computers, 2023.

[5] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep
learning for cyber security intrusion detection: Approaches, datasets, and
comparative study,” Journal of Information Security and Applications,
vol. 50, p. 102419, 2020.

[6] J. Mills, J. Hu, and G. Min, “Multi-task federated learning for person-
alised deep neural networks in edge computing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 33, no. 3, pp. 630–641, 2021.

[7] N. Papernot et al., “The limitations of deep learning in adversarial
settings,” in Proc. of IEEE EuroS&P, 2016, pp. 372–387.

[8] K. Grosse et al., “Adversarial examples for malware detection,” in
European Symposium on Research in Computer Security. Springer,
2017, pp. 62–79.

[9] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Proc. of NIPS, 2014, pp. 2672–2680.

[10] A. N. Bhagoji, D. Cullina, and P. Mittal, “Dimensionality reduction as
a defense against evasion attacks on machine learning classifiers,” arXiv
preprint arXiv:1704.02654, 2017.

[11] A. Paudice, L. Muñoz-González, and E. C. Lupu, “Label sanitization
against label flipping poisoning attacks,” in Joint European Confer-
ence on Machine Learning and Knowledge Discovery in Databases.
Springer, 2018, pp. 5–15.

[12] N. Natarajan, I. S. Dhillon, P. K. Ravikumar, and A. Tewari, “Learn-
ing with noisy labels,” in Advances in neural information processing
systems, 2013, pp. 1196–1204.

[13] H. Xiao, B. Biggio, B. Nelson, H. Xiao, C. Eckert, and F. Roli, “Support
vector machines under adversarial label contamination,” Neurocomput-
ing, vol. 160, pp. 53–62, 2015.

[14] M. Ren, W. Zeng, B. Yang, and R. Urtasun, “Learning to reweight
examples for robust deep learning,” arXiv preprint arXiv:1803.09050,
2018.

[15] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” arXiv preprint arXiv:1607.02533, 2016.

[16] A. I. Aviles-Rivero, N. Papadakis, R. Li, S. M. Alsaleh, R. T.
Tan, and C.-B. Schonlieb, “Beyond supervised classification: Ex-
treme minimal supervision with the graph 1-laplacian,” arXiv preprint
arXiv:1906.08635, 2019.

[17] “Label propagation,” https://scikit-learn.org/stable/modules/label_
propagation.html, [Online; accessed 15-July-2019].

View publication stats

https://www.researchgate.net/publication/374470352

