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Abstract—A novel reinforcement learning-based algorithm is
proposed in this paper for the optimal torque allocation among
the four wheels of an all-wheel-drive (AWD) electric vehicle (EV)
through a direct yaw moment control approach. A hierarchical
structure was utilized for the control procedure, in which a
linear quadratic regulator (LQR) controller is exploited for the
high-level controller to generate yaw moments and a novel deep
deterministic policy gradient (DDPG) algorithm is employed for
the low-level controller. The DDPG agent possesses the ability
to interact with the environment and learn to optimally split
torque among four wheels. The vehicle is modeled via a nonlinear
model with seven degrees of freedom (7 DOF), while the reference
signals are generated by a bicycle model with two degrees of
freedom (2 DOF). For enhanced precision in vehicle modeling, the
tire model is characterized by the Pacejka Magic Formula (MF),
which offers a rigorous and empirically validated representation
of tire behavior. The proposed model is verified through a
scenario of the response of the vehicle while circumnavigating a
curve on a slippery road. The obtained results depict improved
performance and enhanced dynamic stability compared to the
conventional model with the average torque distribution method.
Control over the yaw behavior and increased dynamic stability
are achieved, while the understeer and oversteer are avoided.

Index Terms—Direct yaw control, Electric vehicle, Reinforce-
ment learning, Torque vectoring, Vehicle dynamics

I. INTRODUCTION

The trend towards the eradication of fossil fuels and ob-
taining sustainable resources has attracted much attention in
recent years [1]–[3]. The surge in electric vehicle (EV) adop-
tion marks a shift towards sustainable transportation and the
elimination of internal combustion engines (ICEs) with EVs
leading the charge due to their efficiency and low emissions.
The exploitation of electrical machines (EMs), as the heart of
EVs, has provided the opportunity, especially for EVs with

the all-wheel drive (AWD) architecture, to take advantage of
improved dynamic stability owing to the control in distributing
torque among all wheels [4], [5].

Direct yaw control (DYC) stands as an effective improve-
ment in the realm of advanced vehicle stability systems, pri-
marily aimed at developing the stability and maneuverability
of vehicles under various driving scenarios [6]. DYC systems
can directly influence the yaw behavior of a vehicle, coun-
teracting undesirable motions, such as understeer or oversteer
[7], [8]. An intelligent torque vectoring (TV) approach was
proposed in [9] based on a fuzzy approach to estimate vertical
tire forces and control yaw moment. Torque values applied
to the wheels were determined using a conventional method
for average torque allocation, taking into account the required
longitudinal and lateral torques. PID and LQR controllers
were used for a TV approach [10], and both controllers have
been tested for a Formula Student prototype. An integrated
adaptive control strategy was proposed in [11] to increase
the dynamics of a vehicle founded on DYC. A study was
conducted in [12] on how to control the deviation in mass
of the vehicle and tire-road friction coefficient. The low-level
controller aimed to allocate braking torque in response to
the additional yaw moment. In [13], a hierarchical control
strategy was introduced, encompassing high-level and low-
level controllers, with the goal of enhancing dynamic stability.
This approach featured a torque allocation technique to address
the issue of uniform torque distribution found in conventional
average torque allocation methods. The design of the optimal
torque allocation algorithm was centered around an objective
function.



Even though plenty of research has focused on DYC en-
hancement, the development of a controller with the ability
to adaptively learn from the driving environment remains an
essential need. A reinforcement learning (RL)-based approach
was presented in [14] to calculate a balanced coefficient
between the energy consumption and stability of a vehicle.
However, there is a requirement for an intelligent control
approach for the optimal torque distribution across the four
wheels.

This paper presents a novel method to provide the low-level
controller with an intelligent-based torque distribution method
exploiting a deep deterministic policy gradient (DDPG) algo-
rithm. This RL-based approach promises to dynamically adapt
torque distribution in real time, ensuring optimal vehicular
stability and performance through continuous learning from
the environment. The utilization of the intelligent low-level
controller is an effective solution for handling complicated
nonlinear interactions in AWD systems. Moreover, the unique
learning capability of the DDPG agent allows for customiza-
tion and fine-tuning to align with the characteristics of the
vehicle. This work is structured as follows. Section II will
delve into the DYC and model of the system, and Section III
will introduce the active safety layer. The focus of Section IV
will be on the RL-based method for torque allocation. The
simulation outcomes will be discussed in Section V, with the
conclusion outlined in Section VI.

II. DIRECT YAW CONTROL AND SYSTEM MODEL

The enhancement of vehicular stability and maneuverability
of a vehicle necessitates a sophisticated control approach and
a model of the system to handle safety issues. For this aim,
an active torque distribution method can be employed to
independently apply different torque values to each wheel and
control the traction of the vehicle.

A. Torque vectoring framework

In this study, a feasible TV approach is implemented to
boost the stability of an AWD EV. The TV framework is struc-
tured around a high-level controller designed to calculate the
yaw moment and a low-level controller tasked with splitting
the required torque among the four wheels of the vehicle. A
linear quadratic regulator (LQR) controller is utilized for the
high-level hierarchy to minimize a quadratic cost function.
Additionally, an intricate representation of the dynamics of a
vehicle is estimated using a nonlinear model that incorporates
seven degrees of freedom (7 DOF), while the reference yaw
rate and sideslip angle are derived from a two degrees of
freedom (2 DOF) bicycle model.

B. Nonlinear vehicle model with 7 DOF

A nonlinear model with 7 DOF is used to evaluate the
performance of an AWD EV [15], as demonstrated in Fig.
1. The longitudinal velocity (Vx), lateral velocity (Vy), yaw
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Fig. 1: Diagram of vehicle model with 7 DOF

TABLE I: VEHICLE DYNAMIC PARAMETERS OF THIS STUDY

Description Unit Value
Total mass of the vehicle kg 1411
Vehicle yaw inertia kg.m2 2031
Distance from COG to front axle m 1.04
Distance from COG to rear axle m 1.56
Wheel tread m 1.48
Wheel radius m 0.3
Cornering stiffness of tires N/rad 45000
wheel inertia kg.m2 1.46

rate (ψ̇), and the angular velocity of four wheels (ωij) are
accounted for 7 DOF.

m
(
V̇x − ψ̇Vy

)
= (Fxfl + Fxfr) cos δ−

(Fyfl + Fyfr) sin δ + Fxrl + Fxrr (1)

m
(
V̇y + ψ̇Vx

)
= (Fyfl + Fyfr) cos δ+

(Fxfl + Fxfr) sin δ + Fyrl + Fyrr (2)

Izψ̈ = ℓf (Fxfl + Fxfr) sin δ + ℓf (Fyfl + Fyfr) cos δ−

ℓr (Fyrl + Fyrr) +
ℓw
2

(Fxfr − Fxfl) cos δ+

ℓw
2

(Fxrr − Fxrl) +
ℓw
2

(Fyfl − Fyfr) sin δ (3)

Iωω̇ij = Tij − FxijRw (4)

where ij = {fl, fr, rl, rr} represent front-left, front-right,
rear-left, and rear-right wheels. Fxij and Fyij are the lon-
gitudinal and lateral forces of four wheels, respectively. m
is the total mass of the vehicle, δ is the steering front wheel
angle, Rw is the tire effective radius, Iz is the vehicle moment
of inertia around the vertical axis, ℓf is the distance between
center of gravity (COG) and the front axle, ℓr is the distance
between COG and rear axle, ℓw is the wheel tread, Iω is the
wheel inertia, and Tij is the torque of wheels. The magic
formula (MF) is employed to model the complex behavior of
tires. The vehicle parameters are tabulated in Table I.



C. Bicycle model with 2 DOF

To generate the reference signals, a bicycle model is ex-
ploited with 2 DOF [16], [17], as depicted in Fig. 2.

ψ̇des =
Vx

L+KUSV 2
x

δ (5)

βdes =
1

L+KUSV 2
x

(
ℓr −

ℓf
L

m

2Cαr
V 2
x

)
δ (6)

where L is ℓf + ℓr, Cαf and Cαr are the cornering stiffness
of the front and rear tires, respectively. KUS is the understeer
gradient, which is defined as:

KUS =
m(ℓrCαr − ℓfCαf )

2CαfCαrL
(7)

Nevertheless, the admissible range for the desired yaw rate is
constrained by the tire-road friction coefficient, in which the
desired yaw rate is subject to an upper limit:

ψ̇limit = 0.85
µg

Vx
(8)

Tires deviate from their linear characteristics and approach the
adhesion limit at high sideslip angles. To avoid a large sideslip
angle, an upper bound can be defined based on the following
empirical expression:

βlimit = tan−1(0.02µg) (9)

III. ACTIVE SAFETY CONTROL LAYER

The active safety control of the torque vectoring system
employs a dual-level control hierarchy to improve the dynamic
stability of AWD EVs.

A. High-level controller

The LQR serves as the high-level controller to regulate the
behavior of the dynamic system [18]. The desired system dy-
namics are captured by state-space representations. Therefore,
the relationship between the additional yaw moment and the
deviation of the motion can be expressed as:[

∆β̇

∆ψ̈

]
= A

[
∆β

∆ψ̇

]
+B0∆Mz (10)

where ∆β and ∆ψ̇ are the difference between the reference
and actual sideslip angle and yaw rate, respectively. A and
B0 are matrices to define the state space equation. The cost
function is defined as:

J =

∫ ∞

0

(xTQx+ uTRu)dt (11)
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Fig. 2: Bicycle model with 2 DOF

The cost function aims to achieve a trade-off between the state
values and the control effort by penalizing the state deviations
and the control effort, represented by Q and R, respectively.
The linear control law is defined as:

u = Kx (12)

where
K = −R−1BTP (13)

The high-level controller output can be determined through
the following calculation:

Mz = Kx(t) = k1(β − βd) + k2(ψ̇ − ψ̇d) (14)

B. Low-level controller with average torque allocation method

The low-level controller aims to optimally split the torque
across the four wheels of the AWD EV. The yaw moment
calculated by the LQR controller is applied to a low-level
controller to distribute torque among wheels based on the
average distribution algorithm [19].

Tfl =
Rw

1 + 1
ρL

(
Fx,t

2
− Mz

ℓw

)
(15)

Tfr =
Rw

1 + 1
ρR

(
Fx,t

2
+
Mz

ℓw

)
(16)

Trl =
Rw

1 + ρL

(
Fx,t

2
− Mz

ℓw

)
(17)

Trr =
Rw

1 + ρR

(
Fx,t

2
+
Mz

ℓw

)
(18)

where Mz is the yaw moment, and Fx,t is the total demand
force. ρR and ρL can be obtained as follows:

ρL =
Fz,fl

Fz,rl
(19)

ρR =
Fz,fr

Fz,rr
(20)

where Fz,ij are vertical tire forces.

IV. REINFORCEMENT LEARNING-BASED TORQUE
ALLOCATION METHOD

The reinforcement learning-based torque allocation method
introduces a paradigm shift by applying optimal torque values
to each wheel of the AWD EV through the utilization of a
DDPG algorithm. This novel approach enables the system
to learn optimal torque distribution policies directly from the
interaction of the vehicle with its environment, allowing for
real-time adaptation to varying road conditions and driving
scenarios. Unlike traditional control methods, this RL-based
system continuously improves its performance through trial
and error, leading to a more intuitive and dynamic adaptation
of torque distribution that enhances vehicle stability and ma-
neuverability. The schematic of the proposed control algorithm
is demonstrated in Fig. 3.
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Fig. 3: Schematic of the proposed control structure

TABLE II: HYPERPARAMETER SETTINGS OF THE DDPG

Parameter Value
Critic learn rate 1e-3
Actor learn rate 0.9e-4
Noise model Ornstein Uhlenbeck (OU)
Noise option standard deviation 0.6
Variance decay rate 1e-5
Discount factor 0.99
Target smooth factor 1e-3
Mini batch size 64

The observation signals can be expressed as:

St = {ψ̇, ψ̇e,

∫
ψ̇e, β̇, β̇e,

∫
β̇e, vx, ve,

∫
ve,

ωij , sx,ij , Fx,total,Mz} (21)

Four actions are known as the outputs of the DDPG agent:

at = {Tfl, Tfr, Trl, Trr} (22)

The reward function has an impressive impact on the perfor-
mance of the control algorithm, which can be defined as:

rt(st, at) = R1 +R2 +R3 +R4 +R5 (23)

where R1 is a boolean term to guide the agent to make the
yaw rate error less than a specific value:

R1 =

{
w1 if

∣∣∣ψ̇e

∣∣∣ ≤ 0.0001rad

0 otherwise
(24)

where w1 is 4, w2 is 10, w3 is 2, and w4 is 1. R2, R3 and
R4 are defined as:

R2 = −w2 ∗ (ψ̇e)
2 (25)

R3 = −w3 ∗ (βe)2 (26)
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Fig. 4: Steering wheel angle

R4 = −w4 ∗ (ve)2 (27)

R5 is defined to penalize the excessive control effort taken by
the agent:

R5 = −∆u(t)T ∗ w5 ∗∆u(t) (28)

where ∆u(t) is [∆Tfl,∆Tfr,∆Trl,∆Trr] and w4 is
diag(0.1, 0.1, 0.1, 0.1)4∗4 The hyperparameter settings are
summarised in Table. II.

V. SIMULATION RESULTS

The performance of the proposed control algorithm can be
assessed by implementing the scenario of applying a constant
steering wheel angle as illustrated in Fig. 4. To test the appli-
cability of the proposed control algorithm under challenging
conditions that are likely to stress the vehicle dynamic stability,
the scenario involves the vehicle traveling at a speed of 90
km/h on a snowy road, where the road adhesion coefficient
is 0.2.

The results of the simulation are demonstrated in Fig. 5. As
demonstrated in Fig. 5a, the proposed torque allocation method
based on DDPG algorithms depicts an improved performance
compared to the conventional one. Fig. 5b compares the
sideslip angle of the novel DDPG algorithm and the conven-
tional method. Fig. 5c shows the trajectory of the vehicle,
in which the proposed method provides the vehicle with the
capability to follow the desired path better than the conven-
tional average torque allocation method. The AWD EV takes
advantage of the proposed DDPG algorithm to obtain higher
stability and maneuverability on a snowy road with slippery
conditions. Fig. 5d demonstrates the lateral acceleration of the
vehicle for the conventional and DDPG approaches. Finally,
the wheel torques and angular velocities are illustrated in Fig.
5e and Fig. 5f, respectively. As shown, the proposed approach
allocates the optimal torque to the wheels in favor of obtaining
improved stability.

The RL agent demonstrates a remarkable ability to maintain
vehicle stability, minimize sideslip angles, and adhere to the
desired path, outperforming the traditional method. These
results not only verify the effectiveness of the RL-based
approach but also highlight its potential to revolutionize active
safety systems in AWD EVs. Through continuous learning and
adaptation, the RL-based system promises enhanced stability
and performance, paving the way for more intelligent experi-
ences in the future.

VI. CONCLUSION

A novel torque allocation method is introduced in this paper
established on the DDPG algorithm in enhancing the dynamic
stability and maneuverability of an AWD EV. The proposed
algorithm exploits the LQR as the high-level controller, while
the novel RL-based torque allocation method is utilized for
the torque allocation. The integration of this advanced control
strategy has proven to optimize torque distribution among
the wheels, ensuring superior maneuverability and stability
in comparison with the conventional model with the low-
level average torque allocation method. The findings of this
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Fig. 5: Simulation results: (a) Yaw rate, (b) Sideslip angle, (c) Trajectory, (d) Lateral acceleration, (e) Wheel torques, (d) Wheel
angular velocities

research verify the superior performance of the proposed
DDPG algorithm through the reduced error of the yaw rate
and sideslip angle, while the vehicle is capable of adhering to
the intended path and avoiding understeer and oversteer.
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