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ABSTRACT 

High-resolution (HR) crack images provide detailed structural assessments crucial 

for maintenance planning. However, the discrete nature of feature extraction in 

mainstream deep learning algorithms and computational limitations hinder refined 

segmentation. This study introduces a rendering-based lightweight crack 

segmentation network (RLCSN) designed to efficiently predict refined masks for 

HR crack images. The RLCSN combines a deep semantic feature extraction 

architecture—merging Transformer with a super-resolution boundary-guided 

branch—to reduce environmental noise and preserve crack edge details. It also 

incorporates customized point-wise refined rendering for training and inference, 

focusing computational resources on critical areas, and an efficient sparse training 

method to ensure efficient inference on commercial mobile computing platforms. 

Each RLCSN's components are validated through ablation studies and field tests, 

demonstrating its capability to enable unmanned aerial vehicle (UAV)-based 

inspections to detect cracks as narrow as 0.15 mm from a distance of 3 meters, 

thereby enhancing inspection safety and efficiency.

 

1 INTRODUCTION 

Cracks are key indicators in mechanical performance tests of 

concrete and are crucial for routine bridge inspections (Deng 

et al., 2022; Tian et al., 2022). For concrete bridge structures, 

the presence of cracks can lead to the spalling of protective 

layers and corrosion of steel reinforcements. These 

degradations not only diminish the structure's durability but 

also directly compromise its strength and stability. 

Furthermore, severe through-cracks may even lead to 

significant structural damage and greatly endanger the 

structure's safety (Chu et al., 2023). Accurate crack detection 

results can intuitively reflect the damage level of concrete 

structures and further reveal the bridge structure's mechanism 

of force, which holds substantial importance for maintenance 

staff in safeguarding the structural integrity of bridges 

throughout their operational lifespan (Chun et al., 2021). 

Conventional methods for detecting cracks in bridges have 

largely relied on manual inspections, which is not only 

inefficient and imprecise but also subject to variability due to 

the inspectors' expertise and the quality of inspection 

equipment, resulting in inconsistent detection outcomes 

(Ellenberg et al., 2016; Jeong et al., 2020). Moreover, the 

effectiveness of human visual inspection is significantly 

impacted by lighting conditions and is incapable of assessing 

areas like bridge towers and tall piers, thereby posing 

challenges in the representation of complete and objective 

crack information (Yeum and Dyke, 2015; Abdallah et al., 

2022). These drawbacks make current manual inspections 

unable to meet the requirements of numerous bridge crack 

detections in terms of economy, efficiency, accuracy, and data 

management (Sacks et al., 2018). 

In recent years, segmentation networks based on encoder-

decoder architecture have made significant progress and are 

expected to become the paradigm for high-precision intelligent 

crack detection. However, as shown in Figure 1, most typical 

encoder-decoder architectures such as FCN (Long et al., 2015) 

and UNet (Ronneberger et al., 2015) still face a major 

limitation in segmenting cracks from HR images: the 

segmentation results show ambiguous boundary predictions. 
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The underlying reason is that the grayscale values of pixels at 

the crack edges are typically similar to those of adjacent pixels, 

which, coupled with the segmentation algorithms' inadequate 

emphasis on boundary area pixels, frequently results in 

inaccurate automated segmentation. Imprecise segmentation in 

boundary areas significantly impedes the application of 

automatic segmentation algorithms in bridge inspections. 

Given that crack width is an essential metric for quantitative 

analysis and is distinctly defined as a vital indicator within 

detection protocols, the foundational requirement for 

extracting accurate crack width data lies in the boundary 

precision of the crack segmentation mask (Alipour et al., 2019; 

Ni et al., 2019). To address the issue of blurred boundaries, 

researchers have dedicated efforts to devising numerous 

methods that concentrate specifically on boundary information, 

such as manually adding parameters for post-processing 

(Mohan and Poobal, 2018), and adding boundary constraints 

in the network (Takikawa et al., 2019; Lee et al., 2020). 

 

 

FIGURE 1 Coarse Segmentation Performance Exhibited by the FCN and Unet Architectures at the Crack Boundaries 

when Dealing with High-resolution (HR) Crack Images. 

 

Crack segmentation presents a long-standing challenge in the 

dense prediction tasks of computer vision. Although numerous 

studies have been conducted to enhance crack segmentation 

quality (Liang et al., 2020; Yuan et al., 2020; Li et al., 2022), 

the challenges of refined crack boundary prediction remain 

inadequately addressed.  

In fact, the issue of unclear boundary areas in crack image 

segmentation parallels the issue of aliasing artifacts that arise 

in the realm of computer graphics when images or graphics 

become pixelated on display devices. Researchers in the field 

of computer graphics chiefly concentrate on developing 

rendering technologies for achieving edge anti-aliasing, 

extensively applied within the realms of gaming and film 

special effects (Cole et al., 2021; Hu et al., 2023). These efforts, 

to a significant degree, symbolize the zenith of technological 

advancement in the field of computer vision. Thus, the authors 

seek inspiration from the rendering-based anti-aliasing 

technique for performing segmentation with refined and 

unabridged edges for HR crack images. The authors noted that 

in computer graphics, the recently proposed edge-aware 

rendering is an effective anti-aliasing technique (Barron et al., 

2021; Chen et al., 2023), primarily concentrating on dense 

computation in the edge areas of the entire image, aiming to 

reduce aliasing, blurring, and other artifacts in the target edge 

areas. Based on importance sampling and dynamic resolution 

adjustment techniques, the edge-aware rendering can even 

ensure output at 4K resolution, simulating the refraction and 

reflection of light at the edges of transparent objects in real 

time. 

Therefore, the authors aim to introduce this advanced edge-

aware rendering technique from computer graphics into the 

task of refined segmentation of HR crack images. However, 

crack semantic segmentation focuses on the semantic 

understanding of crack pixels, while image rendering 

emphasizes generating realistic 2D images from the entire 3D 

scene or 3D model, posing fundamental differences in the 

objectives of the two tasks. Therefore, directly applying image 

rendering, which belongs to the image pre-processing method, 

to the post-processing crack segmentation task poses several 

challenges: 

1. Firstly, unlike most objects in natural scenes, cracks are 

found in environments and backgrounds characterized by high 

levels of non-uniformity. These complex backgrounds, along 

with various environmental noises, substantially impede fine 

edge segmentation. 

2. Secondly, segmentation tasks have more specific objectives 

compared to image rendering tasks, in that they focus solely 

on segmenting crack pixels, rather than all pixels as in 

rendering tasks. Indiscriminately incorporating a rendering 

head into the segmentation architecture would burden the 

model with unnecessary computational resources, resulting in 

computational redundancy. 

3. Finally, incorporating rendering methods might 

significantly increase the model's complexity and 

computational cost. Because rendering methods in computer 

graphics usually involve complex lighting and shadow 

computations and need to consider material and texture 

information, which would increase the parameter count and 

operations in deep learning (DL) models. Therefore, 

considering the practicality and widespread applicability, it is 

necessary to design efficient model structures and training 

strategies. 
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Thus, a specialized algorithm based on rendering 

representation is required for accurate boundary  segmentation 

of crack images. 

To this end, this study proposes a rendering-based lightweight 

crack segmentation network (RLCSN), inspired by the refined 

rendering graphic representation architecture in computer 

graphics. It is noteworthy that the RLCSN is the first network 

that applies the emerging refined representation theory from 

computer graphics – rendering technology – to the 

segmentation of high-resolution (HR) crack images, an area 

that has not been fully explored. It specifically addresses the 

three issues described above with three targeted improvements 

on the basis of the high-precision rendering head, allowing the 

advantages of rendering methods to be fully utilized in 

accurate segmentation of crack images. The network 

architecture is shown in Figure 2. 

The first innovation is the design of a crack deep semantic 

feature extraction architecture that combines Transformer with 

a super-resolution boundary-guided branch, reducing 

environmental noise interference while effectively preserving 

crack edge details. Second, two types of point-wise refined 

rendering point sampling methods were customized for 

training and inference stages, enabling effective concentration 

of computational resources on ambiguous crack edges and tiny 

crack areas. Thirdly, for the initially built RLCSN, an efficient 

sparse training method was designed, incorporating an L1 

norm of weights into the loss function and performing pruning 

at the weight level, achieving lightweight deployment of the 

model. With these customizations, the refined scene rendering 

methods originally used in computer graphics can be 

effectively applied to the fine segmentation of crack images. 

This customized adaptation maintains the high precision and 

GPU-friendly attributes characteristic of rendering 

representation techniques. 

The main contributions of this paper are as follows: 

1. An HR crack image fine segmentation architecture named 

RLCSN is proposed. As the first network architecture to 

employ rendering technology for crack segmentation, the 

RLCSN achieves fine segmentation of crack images with 

dispersed topological structure distribution on a low-cost GPU. 

2. When integrated with the unmanned aerial vehicle (UAV) 

equipped with the HR imaging device, the RLCSN offers a 

safer and more efficient method for the crack detection of real 

bridges. 

3. Through comprehensive ablation studies, visualization, and 

comparative analysis, this paper thoroughly investigates the 

operational mechanism of the RLCSN. It demonstrates the 

network's exceptional performance, attributable to its 

computational approach of executing predictions for crack 

edges in a dense representation fashion, facilitated by 

boundary point rendering technology. 

2 LITERATURE REVIEW 

2.1 DL-based Crack Detection 

As summarized above, semantic segmentation algorithms can 

extract crack features more precisely. However, most of the 

semantic segmentation algorithms used in existing crack 

recognition research are based on Convolutional Neural 

Network (CNN) architecture (Bang et al., 2019; Zou et al., 

2019). The essence of feature extraction in CNNs lies in the 

convolution kernels, which capture local spatial information 

accurately due to their translational invariance and local 

sensitivity (Li et al., 2022; She et al., 2023). Nevertheless, 

convolution kernels lack a global understanding of the image, 

making it difficult to establish dependencies between features, 

resulting in challenges for CNN-based segmentation 

architectures to maintain the integrity of global crack 

segmentation (Ni et al., 2019; Alzubaidi et al., 2021). 

Following this, Vaswani et al. (2017) introduced self-attention, 

achieving notable results in overcoming the dependency 

features of long-distance words in machine translation tasks, 

which garnered widespread attention from computer vision 

researchers. On this basis, Dosovitskiy et al. (2020) proposed 

the Vision Transformer (VIT), applying self-attention to image 

classification tasks for the first time. Tests on multiple large-

scale open-source datasets (such as ImageNet and Cifar-100) 

demonstrated the effectiveness and potential of self-attention 

in capturing global features for image processing. 

Subsequently, Liu et al. (2021) introduced Swin Transformer 

based on sliding window self-attention, achieving better results 

in semantic segmentation tasks than most CNNs while 

significantly reducing the model parameters. Recently, 

network architectures composed of concatenated Transformer 

blocks have been applied to crack recognition tasks. 

Zhou et al. (2023) , building upon the DeepLabv3+ encoder-

decoder architecture, introduced Swin Transformer and CNN 

inverse residual blocks, enhancing the model's capability to 

capture global information of cracks while preserving the 

performance of local detail representation. Xiang et al. (2023) 

proposed a dual-encoder network integrating transformer and 

CNN, improving segmentation results of crack pixels in 

complex backgrounds and demonstrating robustness across 

multiple open-source datasets while maintaining high 

inference speed. To effectively address the challenge of 

incomplete segmentation results for slender cracks in complex 

backgrounds, Guo et al. (2023) proposed an encoder-decoder 

architecture based on Swin Transformer and UperNet, 

enhancing the segmentation result's completeness by learning 

global and remote semantic features of crack pixels. Quan et 

al. (2023) introduced a crack pixel-level segmentation 

architecture incorporating ViT, leveraging ViT's captured 

global context information to establish global dependencies for 

dispersed crack pixels, thus significantly improving 

segmentation accuracy. However, the prediction heads at the 

end of the decoders in the above methods treat edge and main 

body pixels equally, resulting in insufficient computational 

resource allocation in the hard sample areas (i.e., crack edge 

pixels) and leading to ambiguous prediction results at the edges 

of the predicted masks. 

2.2 Boundary-aware Semantic Segmentation and 

Lightweight Models 

Shen et al. (2022) and Cheng (2020) observed that the deep 

receptive fields and downsampling processes in traditional DL 
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architectures tend to smooth out sharp edges in feature spaces 

(Rafiei et al., 2017; Hassanpour et al., 2019; Martins et al., 

2020), making segmentation predictions more errors at the 

boundaries. To address these issues, one of the most common 

methods is to combine boundary prediction with segmentation 

tasks for multi-task training. Yu et al. (2018) designed a 

segmentation network called DFNet, which features a 

boundary prediction branch. This branch enhances supervision 

for binary boundaries, thereby correcting ambiguous boundary 

predictions. Xu et al. (2018) proposed PAD-Net, which 

includes a contour detection branch. This multi-task network 

improves depth prediction and scene parsing performance 

through multimodal information sharing. Additionally, some 

works have attempted to utilize the predicted boundary masks 

in the forward process, rather than simply adding boundary 

detection as an auxiliary task. Takikawa et al. (2019) proposed 

a dual-stream network, Gated-SCNN, which uses a shape 

stream to extract boundary semantic information for each 

target independently, combining the extracted features with the 

output of the regular segmentation stream for prediction, to 

achieve refined representation of target boundary areas. Li et 

al. (2020) proposed DepairSegNets, which include a feature 

distortion sub-network branch capable of independently 

decoupling edge features for enhanced representation of target 

boundary details. Ding et al. (2020) introduced CGBNet, 

which utilizes a Boundary Deteched Result (BDR) module to 

recover lost boundary information. The BDR module 

effectively suppresses low-level features far from boundaries 

while enhancing details in high Signal-to-Noise Ratio 

boundary regions. However, these works always classify 

boundary and interior pixels as two distinct classes when 

optimizing the auxiliary pixel boundary classification task. 

Since boundary pixels are forcibly distinguished from interior 

pixels, intra-class consistency is disrupted. As different class 

boundary pixels are classified into the same boundary class, 

these methods also reduce inter-class differences, particularly 

at the boundaries. 

There are also works based on pairwise affinity or graphs to 

improve boundary segmentation quality. Ding et al. (2019) 

proposed an affinity-based boundary-aware feature 

propagation module, which uses a directed acyclic graph to 

propagate semantic information within boundaries and 

maintain object-internal consistency. Bertasius et al. (2017) 

introduced the Random Walk Network to jointly optimize 

pairwise affinities, capturing semantic relations between 

objects through a random walk layer to enhance boundary 

performance in segmentation results. Chen et al. (2021) 

adopted GALD, which employs a local affinity matrix with 

global priors in an adaptive manner for reinforced 

representation of boundary information. Building on this, Ke 

et al. (2018) proposed the concept of Adaptive Affinity Field 

to capture and match relationships between adjacent pixels in 

semantic label space, using adversarial loss for reinforced 

learning of boundaries. Borse et al. (2021), based on the 

homography transformation associating boundary hypotheses, 

proposed InverseForm to refine target boundaries by 

measuring and supervising the similarity between predicted 

and ground-truth boundaries. However, as these types of 

methods treat all homogeneous pixels equally and do not select, 

they not only propagate discriminative information but also 

noise. 

Other works have improved boundary segmentation results 

through post-processing methods. Krähenbühl and Koltun 

(2011) introduced DenseCRF, which refines coarse 

segmentation results' boundaries through Conditional Random 

Fields. Bertasius et al. (2016) proposed the Boundary Neural 

Field, globally optimizing segmentation results based on edge 

maps and boundary-based pixel affinity functions, which 

assign low similarity between pixels separated by strong 

boundaries. Replacing BNF's boundary map with the output 

edge map from CED (Wang et al., 2018) further improves 

BNF's refined segmentation results. 

Recently, Li et al. (2022) adopted an additional boundary-

aware branch to enhance mask feature boundary perception, 

which could, to some extent fix optimization biases, but the 

increased computational cost of the boundary branch restricted 

its implementation to low-resolution images. Liu et al. (2023) 

proposed a Dual-Stream Boundary-Aware Crack segmentation 

network, achieving fine recognition of edges through dynamic 

feature fusion, but it was also limited by computational 

resources and could only conduct inference on low-resolution 

images. Additionally, the authors noted that in the field of 

computer vision, PolyTransform (Liang, Homayounfar, Ma, 

Xiong, Hu and Urtasun, 2020) and SegFix (Yuan, Xie, Chen 

and Wang, 2020) could serve as post-processing solutions to 

improve the quality of crack boundary segmentation. 

Specifically, Liang et al. (2020) developed PolyTransform, 

which uses a deformation network with clipped instance 

patches to predict polygon vertex offsets, but it incurs a high 

computational cost. Yuan et al. (2020) developed SegFix, 

which uses a deformation network with clipped instance 

patches to predict polygon vertex offsets. However, the 

aforementioned post-processing methods cannot be used to 

conduct end-to-end inference. In contrast, end-to-end 

approaches provide a streamlined process that inherently 

learns to correct errors, which can be advantageous for 

achieving higher accuracy in boundary segmentation tasks. 

In addition, several studies have addressed the computational 

efficiency and deployment constraints of DL models by 

implementing lightweight architectures for crack segmentation. 

For instance, a streamlined network named MiniCrack has 

been developed for detecting narrow cracks under resource-

limited conditions, utilizing PixelShuffle and PixelUnshuffle 

to counteract the drawbacks of pooling (Lan and Dong, 2022). 

Additionally, Kim et al. (2021) introduced a hierarchical CNN-

based approach that reduces inference time by 65.90% 

compared to traditional segmentation networks. Reference 

(Xie et al., 2022) presents a crack segmentation model that 

combines sparse sensing encoders and superpixel decoders, 

surpassing other models in accuracy and efficiency. Wang and 

Su (2021) devised a lightweight crack segmentation model 

using a bilateral segmented network and a contextual path for 
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rapid downsampling of feature maps. Chen et al. (2023) 

managed the knowledge distillation process with a temperature 

parameter, introducing high-temperature and non-isothermal 

distillation strategies for efficient training of lightweight 

models. However, their method's requirement for strict 

alignment between the teacher and student networks imposes 

constraints that are overly restrictive for semantic 

segmentation tasks. 

 

 

FIGURE 2. Implementation Process of the Rendering-based Lightweight Crack Segmentation Network (RLCSN) 

 

3 Rendering-based Lightweight Crack 

Segmentation Network 

The RLCSN proposed in this study consists of three main 

components: the main backbone for coarse crack feature 

extraction 𝐵𝑇𝑟𝑎𝑛𝑠, the boundary-guided branch 𝐵𝐸𝑑𝑔𝑒 , and the 

refined rendering head 𝐻𝑅𝑒𝑛𝑑 . 𝐵𝑇𝑟𝑎𝑛𝑠  is composed of an 

encoder architecture built on Transformer, 𝐵𝐸𝑑𝑔𝑒  is based on a 

fixed-parameter edge detector and a super-resolution encoding 

structure, and 𝐻𝑅𝑒𝑛𝑑  is constructed as a lightweight Multi-

Layer Perceptron (MLP) based on point-wise refined 

rendering. The deep coarse semantic features 𝐹𝐶𝑜𝑎𝑟𝑠𝑒  captured 

by 𝐵𝑇𝑟𝑎𝑛𝑠 are concatenated with the fine semantic features of 

crack boundaries 𝐹𝐸𝑑𝑔𝑒  outputted by 𝐵𝐸𝑑𝑔𝑒  to form an 

enhanced crack feature map 𝐹enhanced. 𝐹enhanced serves as the 

information source for 𝐻𝑅𝑒𝑛𝑑  to execute refined rendering, and 

refined crack mask prediction is carried out based on the 

specialized rendering points sampling method. Figure 2 

visually presents certain algorithmic details and computational 

logic of the proposed RLCSN. 

3.1 Crack Feature Encoding Architecture 

3.1.1 Coarse Crack Feature Extraction 

Backbone Based on Transformer 

The coarse crack feature extraction backbone based on 

Transformer comprises a Patch embedding layer and an 

encoder. Initially, the Patch embedding layer divides the input 

crack image into non-overlapping image blocks with a 

resolution of 4×4 pixels, and then a convolutional layer maps 

the channel number of each image block to a specified 

dimension. The encoder sends the divided image block 

sequence into stacked Transformer modules to learn 

contextual feature representations, merging image blocks 

through downsampling layers to reduce the resolution of the 

feature map and increase the channel dimension. Since 

multiple Transformer encodings and downsampling are 

required, the encoder learns multi-scale hierarchical feature 

representations, which will help the network to enhance the 

representation of tiny crack details. 

Specifically, the Patch embedding layer's function is to divide 

the input HR crack image 𝑥 ∈ ℝ𝐻×𝑊×3  into a set of non-

overlapping image block sequences 𝑥𝑝 ∈ ℝ
𝐻

𝑃
×
𝑊

𝑃
×(3𝑃2)

. Here, 

𝑃 represents the size of the image block. It is evident that there 

are 
𝐻

𝑃
×

𝑊

𝑃
 image blocks, and each image block, when unfolded, 

has a channel number of 3𝑃2 , which after a further linear 

transformation, maps to the specified dimension 𝐶 , as 𝑥𝑝 ∈

ℝ
𝐻

𝑃
×
𝑊

𝑃
×𝐶

. In practice, 𝑃 = 4  is chosen, and a convolution 

operation is performed on the input image using a convolution 

kernel of size 4×4, stride 4, and output channel C. Through this 

process, the generated image blocks, combined together, form 

an initial feature map with a resolution of 1/4 of the original 

input and a channel dimension of C. 

The Transformer module consists of Layer Normalization 

(LN), Multi-Head Self-Attention (MSA), residual connections, 

and Multi-Layer Perceptron (MLP). In MSA, to reduce 

computational load, the study adopts the sliding window 

method of Swin Transformer to perform self-attention 

calculations within non-overlapping local windows of each 

block. The details of Swin Transformer can be found in the 

reference (Liu et al., 2021). It should be noted that each self-
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attention head models attention from different representational 

spaces, enabling accurate extraction of richer crack semantic 

information from crack images with complex backgrounds. 

After the multi-head self-attention computation, the block 

sequence features maintain their original scale and are input 

into the refined rendering head 𝐻𝑅𝑒𝑛𝑑 after 8× upsampling. 

3.1.2 Boundary-Guided Branch 

To ensure that the point-wise refined rendering head, built on 

shared-weight MLP, is effectively guided to the crack edge 

areas, it is essential to preserve refined boundary details within 

the deep semantic features extracted by the encoding 

architecture. Therefore, the Boundary-Guided Branch 𝐵𝐸𝑑𝑔𝑒  is 

proposed. 

During the boundary guidance process, a morphological edge 

detector built on the basis of the Sobel operator with fixed 

parameters is initially used as an edge-guided encoder to 

preliminarily extract crack contours from the original HR 

crack image (Nhat-Duc et al., 2018). The extracted binary 

crack contour image, along with the original crack image, is 

then input into a custom-designed super-resolution encoding 

architecture based on residual attention. This architecture 

refines the encoding of crack edge features, enabling them to 

guide the implicit function in performing refined pixel 

restoration in subsequent lower-dimensional latent spaces. 

The super-resolution model based on residual attention, 

serving as the core architecture for achieving the above 

objectives, primarily consists of two parts: a shallow feature 

extraction module and a deep feature extraction module. The 

shallow feature extraction module uses 3×3 convolution to 

extract 64-channel features from the concatenated RGB crack 

image and edge binary image, followed by nonlinear 

rectification through a PReLU activation function. The deep 

feature extraction module is composed of several concatenated 

residual attention modules, with skip connections between the 

outputs of each module to facilitate more effective information 

transfer. The computational process is represented by the 

following equations: 

𝐹1 = 𝐹𝐿 + 𝐻1(𝐹𝐿)                             (1) 

𝐹2 = 𝐹1 + 𝐻2(𝐻1(𝐹𝐿))                           (2) 

Where 𝐻1(𝐹𝐿)  is the output of the first residual attention 

module applied to the shallow features 𝐹𝐿, which is then added 

to 𝐹𝐿  as input 𝐹1  for the second residual attention module. 

Similarly, the output of the second residual attention block is 

𝐻2(𝐻1(𝐹𝐿)), where the input to each residual attention module 

is the sum of the input and output of the previous module. This 

process continues until the output of the last layer of the deep 

feature extraction module, 𝐹𝐷, is obtained. 

It is important to note that, to improve the transmission 

efficiency of tiny crack feature information in HR images 

within the network, the authors customized each residual 

attention module. Firstly, the original residual module was 

replaced with a lightweight WDSR-B residual module, which, 

while sharing network weights, increased the number of 

feature channels before activation and the utilization of 

information in the network, effectively mitigating the feature 

transmission barrier caused by the ReLU activation function in 

the original residual module. Additionally, the feature 

extraction network in the WDSR-B residual module uses 1×1 

convolution instead of 3×3 convolution, significantly reducing 

computational costs. When performing operations in the 

residual attention module, the input feature map first 

undergoes 1×1 convolution with 256-channel dimensions, 

allowing more high-frequency features containing tiny crack 

details to be extracted. Then, after nonlinear rectification, it is 

followed by 1×1 convolution to compress the feature channels. 

Subsequently, 1×1 convolution is used to expand the channels 

to match the input feature channels, allowing more shallow 

features to be conveyed within the network and reducing the 

loss of feature information. Moreover, a coordinate attention 

branch is introduced to enhance the representation of refined 

crack features using spatial location coordinate information. 

This coordinate attention branch performs feature 

enhancement along both the width and height directions of the 

input feature map. Specifically, it involves decomposing the 

feature matrix into aggregated features along the x and y 

spatial axes, compressing the channels with 1×1 convolution, 

then batch normalization and nonlinear regression to encode 

crack spatial information along the x and y axes, ultimately 

achieving a refined representation of tiny crack details in the 

form of aggregated channel parameters. Finally, the boundary 

features 𝐹𝐸𝑑𝑔𝑒 , extracted by the super-resolution 

reconstruction encoding architecture, are upsampled by 8 

times to match the size of the original HR input image. They 

are then concatenated with the coarse crack feature map 

𝐹𝐶𝑜𝑎𝑟𝑠𝑒  extracted by the Transformer backbone to form the 

crack-enhanced feature 𝐹𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑  used for refined 

segmentation. 

3.2 Refined Rendering Head 

To perform a GPU-friendly refined decoding for the 

previously extracted crack deep semantic features with 

boundary details, the authors, inspired by the PointRend model 

(Kirillov et al., 2020), developed a point-rendering-based 

refined prediction head for crack targets. This refined 

prediction head, necessary for effective decoding of the 

enhanced crack features, requires two steps: firstly, the 

selection of point-wise refined rendering points along the 

boundaries, and then the point-by-point refined rendering 

based on MLP. For the MLP-based point-by-point refined 

rendering operation, the authors adopted the same architecture 

as PointRend, because MLPs, compared to traditional CNNs, 

offer computational efficiency and predictive accuracy 

advantages due to their shared weights and point-by-point 

prediction. In terms of the strategy for selecting refined 

rendering points along the boundaries, considering that the 

PointRend architecture is primarily designed for traditional 

large-size natural scene targets and is not suitable for small 

crack targets with elongated topological structures, the study 

customizes it for crack targets. 
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Training Phase Rendering Point Sampling Method: Each 

input image has refined labels to effectively supervise the 

learning process of the model. Extracting boundary 

information from these refined labels has advantages in 

computational efficiency and avoiding cumulative errors 

compared to the uncertain point method used in the PointRend 

architecture. Therefore, these existing refined labels can be 

directly used to guide the network, focusing on the crack 

boundary areas. Specifically, during the training phase, 

boundary information is directly extracted from the refined 

labels of crack images to provide guidance for sampling points. 

The edge detection algorithm is utilized to extract the edges of 

the refined labels, and some of the sampling points originally 

uniformly distributed across the background and cracks are 

concentrated in the extracted boundary areas. It is important to 

note that to avoid a decline in model performance due to an 

imbalance in the ratio of positive and negative samples, and to 

ensure efficient training, the total number of sampling points 

on each image is set to 𝑁 =
𝐻×𝑊

20
, with all sampling points 

randomly distributed at a ratio of 0.3:0.4:0.3 respectively in the 

main crack area, the crack boundary (as the accuracy in the 

boundary area is fifty-fifty), and the background area. For a 

more intuitive demonstration of this refined label-based 

training phase sampling point guidance method, Figure 3 

visually presents the point sampling method for a randomly 

selected training sample. Finally, all the sampling points 

determined on the label are mapped to the corresponding 

enhanced crack feature map for model training. 

 

 

 

FIGURE 3. Rendering Point Sampling Strategy during the Training Phase 

 

 

FIGURE 4. Rendering Point Sampling Strategy during the Inference Phase 

 

Inference Phase Rendering Point Sampling Method: 

Refined labels are available only after the inference is 

completed; therefore, it is not feasible to use refined labels for 

guiding sampling points during the inference process. To 

address this, a boundary-guided rendering point sampling 

strategy based on a probability heatmap was specifically 

designed for the inference phase, enabling the model to 

effectively concentrate computational resources on difficult-

to-predict tiny cracks and crack boundary areas. Specifically, 

the refined probability heatmap was adopted to achieve 
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efficient boundary rendering point guidance. As illustrated in 

Figure 2, this probability heatmap is primarily obtained by 

adding two convolution blocks after the crack feature map, 

which is a concatenation of outputs from the encoder and the 

boundary-guided branch. Compared to the original 

PointRend's strategy of guiding rendering point sampling 

based on coarse segmentation masks, the generation process of 

probability heatmaps is computationally more direct and 

efficient. More importantly, probability heatmaps can reflect 

the likelihood of each pixel belonging to each category, rather 

than merely assigning it to a simple category. This 

probabilistic information provides a continuous confidence 

measure for each pixel, rather than categorizing pixels in a 

binary manner like in coarse masks, thereby preserving more 

uncertainty and subtle differences about image areas, which is 

crucial for understanding refined structures and complex 

scenes within the image. 

Specifically, this study divides the areas on the probability map 

into three parts based on the differences in prediction 

probabilities: the background area with a probability close to 

0, the crack area with a probability close to 1, and the 

ambiguous area with a probability around 0.5. The area with 

probability near 0.5 is considered the region requiring point-

wise refined rendering point guidance. Following this principle 

of area division, and to avoid excessive inference on simple 

samples (main crack and background), during the inference 

process, point-wise refined rendering point sampling is 

performed only in the areas of the probability map where the 

probability fluctuates around 0.5, focusing solely on these 

ambiguous prediction areas for refined rendering. For areas on 

the probability map with probabilities close to 0 and 1, direct 

mapping to background pixels and crack pixels will be 

performed on the prediction results, avoiding redundant 

computation. Notably, the reason for not using the coarse 

segmentation guidance from the original PointRend is that 

coarse segmentation, which involves multiple downsampling 

processes, results in a significant loss of tiny cracks and crack 

edge details in the crack image. In contrast, the probability 

heatmap undergoes only one downsampling based on the 

original image, preserving as much crack detail as possible 

while consuming less computational resources. To visually 

represent the refined rendering point sampling method during 

the inference phase, Figure 4 provides a visualization example 

of a randomly selected probability heatmap. It is evident that 

on the probability heatmap, the probabilities in the background 

and main crack areas are concentrated around 0 and 1 

respectively, while in the boundary area, due to manual 

annotation errors and insignificant color differences, pixel 

probabilities on the heatmap fluctuate around 0.5. The study 

sets the hard-to-recognize pixel probability range at 0.3-0.7, 

and in the subsequent refined rendering phase, only hard-to-

recognize samples with probabilities between 0.3-0.7 undergo 

refined inference. The parameter settings for the sampling 

points during the training and inference phases will be detailed 

in Section 4.4.2. 

4 EXPERIMENTS 

4.1 Datasets 

A sufficient number of image samples is a prerequisite for 

obtaining high-performance DL models. In fact, researchers in 

the field have already open-sourced several datasets with 

pixel-level annotations, facilitating the performance testing of 

models. Table 1 provides a statistical overview of the relevant 

information on the current mainstream crack segmentation 

datasets. 

 

TABLE 1. Summary of Some Commonly used Open-source Datasets in The Field of Crack Segmentation 

Dataset Capture Device Resolution Scenes No.Images 

CrackForest Dataset Iphone5 480 × 320 Road surface 118 

CrackLS315 Line-array camera 512 × 512 Road surface 315 

Cracktree200 Area-array camera 800 × 600 Road surface 206 

FIND Line-array camera 256× 256 Bridge deck, Road surface 2500 

DeepCrack Unknown 544 × 384 Asphalt & concrete 537 

Stone331 Area-array camera 512 × 512 Stone Surface 331 

Bochum Crack DataSet Smartphones 512 × 512 Concrete building 370 
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FIGURE 5. Acquisition Process for HR Crack Images and Their Corresponding Refined Masks for Model Performance 

Evaluation 

As shown in Table 1, two clear phenomena can be observed 

regarding these datasets: Firstly, most crack image datasets 

originate from roads; secondly, the resolution of almost all 

crack images does not exceed 600×800 pixels, which are 

considered low-resolution images. Regarding the former, 

considering that the method proposed in this study primarily 

targets concrete structure cracks, which differ in data 

distribution types from road crack images. Hence, directly 

using open-source datasets for model training cannot fully 

exploit the model's potential. As for the latter, training with 

lower-resolution crack images requires fewer computational 

resources and is easier for model convergence. After 

systematically considering two aspects’ factors, some low-

resolution open-source road crack image datasets were 

selected for preliminary model training, followed by fine-

tuning the model with a small number of collected concrete 

cracks, as detailed in Section 4.3.1. It is noteworthy that the 

preference for road crack images over concrete crack images 

for preliminary training stems not only from the greater 

availability of road crack images but also from their highly 

detailed pixel-level annotations. These annotations are 

essential for training the proposed fine-grained crack 

segmentation model. In contrast, the available concrete crack 

datasets typically do not offer this degree of detailed 

annotation, rendering them less suitable for the specific 

requirements of this research. Specifically, for the road crack 

data used in preliminary model training, to ensure enough 

number of images, three open-source crack image datasets 

including EdmCrack600 (Mei et al., 2020), Aigle-RN 
(Chambon and Moliard, 2011), and Crack500 (Yang et al., 

2019) were selected as training data sources. All images were 

uniformly resized to 256 × 256 pixels for training on 

commercial GPUs. In total, 860 crack images with various 

background textures and crack patterns were obtained, of 

which 620 were used for training, 120 for validation, and 120 

for preliminary testing. 

Regarding the collection process of onsite captured images, as 

shown in Figure 5, three different buildings' concrete walls in 

Changsha city were selected as the sources for crack image 

collection, using a Nikon D5300 camera to capture 300 

original 6K resolution crack images from various parts of the 

walls. Among the images, 220 original HR images were 

randomly selected and cropped to produce 800 low-resolution 

images, each with a resolution of 256×256 pixels. These 

images were used to fine-tune the performance of a model that 

was initially trained on open-source crack datasets. 

Additionally, 80 4K HR crack images were selected and 

cropped from the remaining 250 original HR images for further 

testing of the proposed method's performance with HR crack 

images. The reason of using HR crack images for further 

testing is that higher resolution crack images require higher 

downsampling in the inference process, making the boundary 

areas more prone to ambiguous predictions, thus refined 

processing for HR crack images more significantly highlights 

the importance of this study. Moreover, it is important to note 

that for accurate evaluation results, all onsite collected crack 

images were annotated with precision by the author. The 

following three measures were mainly taken to ensure accurate 

and reliable annotation results: 

1. HR Image Source: To ensure annotators could confidently 

and comprehensively annotate, the crack boundaries in the 

images had to be very clear. Therefore, after image collection, 

two rounds of selection by different professionals were 

arranged to remove blurred crack images due to imprecise 

focus. Additionally, during image collection, the camera's 

photo storage mode was adjusted to the maximum size mode 

(6K resolution). By using these HR images, small target details 

could be clearly presented. And more pixel-level information 

was provided, aiding in more accurate marking of small targets. 

2. Professional Annotation Tools: Professional open-source 

annotation tool LabelMe was used, which allowing annotators 

to easily draw pixel-level labels. This annotation tool offers a 

convenient interface and tools to improve the accuracy of 

annotations. 

3. Training Multiple Annotators and Mutual Verification: Prior 

to the start of the marking process, annotators were trained, 

especially in terms of accuracy and consistency when 

annotating small targets. Trained personnel were guided to 
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annotate correctly based on the sample images and label 

references provided in Figure 5. To avoid annotation errors due 

to individual subjective judgments, labels after each annotation 

were reviewed by another trained professional annotator for 

timely correction of subjective errors. 

4.2 Evaluation Method 

For the quantitative evaluation of the experimental outcomes, 

we employed two widely recognized metrics: the Intersection 

over Union (IoU) and the Dice Similarity Coefficient (Dice). 

Additionally, to underscore the efficacy of our proposed 

approach in delineating boundaries, we utilized the Mean 

Boundary Accuracy (mBA) as a metric, a concept pioneered in 

the study by CascadePSP (Cheng, Chung, Tai and Tang, 2020). 

The essence of mBA lies in determining the IoU specifically 

within the boundary region, comparing the Ground Truth (GT) 

with the predicted segmentation mask. Figure 6 provides a 

depiction of the procedure for calculating mBA. 

 

 

FIGURE 6. Visualization of Mean Boundary Accuracy 

Calculation Method 

 

4.3 Implementation Details 

4.3.1 Hardware Equipment and 

Hyperparameters 

The data processing and all semantic segmentation inference 

experiments mentioned in this paper were conducted and 

deployed on a desktop workstation in the laboratory. The 

hardware configuration of the workstation, including the 

Central Processing Unit (CPU), Graphics Processing Unit 

(GPU), and Random Access Memory (RAM), is detailed in 

Table 2. Additionally, a virtual Python environment was 

established using Anaconda, configured with the Pytorch DL 

framework. The specific versions of the related software are 

also listed in Table 2.  

During the training phase, the Adam optimizer was utilized as 

the optimizer for network training. the Adam optimizer was 

chosen for its well-documented efficiency in handling sparse 

gradients and its adaptability to large datasets with HR images. 

This choice is particularly beneficial for DL tasks involving 

detailed feature recognition such as in crack segmentation. 

Compared to other common optimizers like SGD (Stochastic 

Gradient Descent) and RMSprop, Adam combines the 

advantages of adaptive gradient algorithm and root mean 

square propagation, providing an automated adjustment of 

learning rates (Reyad et al., 2023). This leads to better handling 

of noise and faster convergence in training deep neural 

networks, which is crucial for the high variability seen in crack 

images. Furthermore, Adam's robustness against the vanishing 

learning rate problem often observed with SGD, coupled with 

its capability to stabilize the updates due to its momentum 

component, makes it especially suitable for our application. 

These characteristics ensure more effective training outcomes 

in scenarios requiring high precision, as is the case with the 

segmentation of fine details in crack images.  

In addition, a hybrid loss function combining Binary Cross-

Entropy (BCE) loss (Zhang and Sabuncu, 2018) and Dice loss 

(Sun and Li, 2022) was adopted to effectively balance the 

segmentation accuracy and model sensitivity. The final chosen 

loss function can be formulated as: 𝐿𝑜𝑠𝑠 = 0.9 × 𝐵𝐶𝐸 +

0.1 × 𝐷𝑖𝑐𝑒 . This weighting strategy was meticulously 

designed to optimize the segmentation of HR crack images 

using rendering technology, prioritizing precision in 

identifying crack boundaries while maintaining general 

segmentation integrity. 

The maximum number of training iterations on the low-

resolution open-source crack image dataset was set to 800. The 

batch size was set at 8, with an initial learning rate of 0.007, 

and a decay of 0.0001 after every 10 training cycles. After 

completing preliminary training, the same hyperparameter 

configuration was continued, using the onsite collected 

concrete crack images to fine-tune the model for 200 cycles, 

obtaining the final model for subsequent crack segmentation. 

Training 100 epochs on the workstation used in this study took 

less than 4 hours. Figure 7 visually displays the changes in loss 

during the model training process. 

 

TABLE 2. Visualization of Edge Accuracy Calculation 

Method 

Hardware/Software Parameters/Version 

CPU Inteli7-8700k 

GPU GeForce RTX 3090 24GB 

RAM 64GB 

System Ubuntu 18.04 

Anaconda 3-4.4.10 

Python 3.6.5 

PyTorch 1.8.0 
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FIGURE 7. Training and Validation Loss Curves for the 

RLCSN 

 

4.3.2 Sparse Training Method 

To further enhance the model's prediction speed, reduce 

computational load, and minimize model size, sparse training 

and pruning operations were implemented. Given that the 

complexity of parameters mainly stems from the Transformer 

architecture within the encoding structure, sparse training and 

pruning were focused on the Transformers in both the coarse 

crack feature backbone and the boundary guidance branch. 

Sparse training involves adding an L1 norm of weights into the 

loss function during the model's training process. The L1 norm 

tends to favor a smaller number of significantly large features 

during weight updates, penalizing the complexity of the model. 

The improved model's loss function, as shown in Equation (3), 

incorporates the added L1 regularization term. The 

hyperparameter is α and the weights of the convolution kernel 

is ω. The numeric value of the hyperparameter will affect the 

sparsity of the final weight. 

𝐿 = −∑ 𝑦𝑖𝑙𝑜𝑔𝑝𝑖 + 𝛼‖𝜔‖𝑇
𝑗=1                         (3) 

Pruning the model primarily involves weight pruning, channel 

pruning, and convolution kernel pruning. Weight pruning 

calculates the importance of neurons based on certain rules and 

prunes them according to an importance threshold. The pruned 

network is then fine-tuned until the target accuracy is reached, 

but weight pruning still occupies runtime memory. Channel 

pruning focuses on feature channels and typically prunes 

channels based on their effectiveness evaluated by an 

importance factor. Channel pruning does not rely on specific 

libraries for computational acceleration. Convolution kernel 

pruning introduces a regularizing term during weight updates 

and prunes weights within the convolution kernel based on a 

threshold. It does not change the output's channel count and 

does not affect the structure of the next layer's input. 

In this study, the weight pruning of convolution kernels was 

based on the magnitude of connections. After sparse training, 

the weights of each convolution kernel were sorted by their 

absolute values, assuming that larger absolute values indicate 

higher importance and smaller weights contribute less to the 

output. During sparse training, weights continually reduce to 

zero. The degree of model sparsity can be determined by 

setting different levels of sparsity during training. The number 

of parameters to be retained is decided by setting a threshold. 

The weights are sorted by their absolute values, and if the 

pruning rate is set at 30%, the top 70% of the weights are 

retained. 

4.4 Ablation Study 

4.4.1 Ablation Study for Crack Feature 

Encoding Architecture 

In this section's ablation experiments, five representative 

CNN-based feature extraction architectures were selected as 

the backbone for crack feature extraction. All model 

experiments were conducted on the crack image dataset 

collected as mentioned in Section 4.1, to validate the 

advantages of the Transformer architecture introduced in the 

crack feature extraction backbone. Specifically, ResNet50 (He 

et al., 2016), ShuffleNet (Zhang et al., 2018), DenseNet-121 
(Huang et al., 2017), and HRNet (Wang et al., 2020) were 

chosen for experimental analysis. Additionally, the 

effectiveness of the Boundary Guidance Branch (𝐵𝐸𝑑𝑔𝑒) was 

comparatively examined on each set of models using different 

crack feature extraction backbones. The results of these 

comparative experiments are shown in Table 3. They provide 

a comparative analysis of the models built with different 

encoding architectures across three aspects: model inference 

speed, model parameter quantity, and accuracy. 

 

TABLE 3. Ablation Experiment Results on the Selection of Backbone Networks in Crack Feature Architecture and the 

Presence or Absence of Boundary Guidance Branch 

Coarse Crack Feature 

Enhancement 

Extraction 

Architecture 

Inference Speed (FPS) Para. (M) IoU(%) mBA(%) Dice(%) 

W/ 

𝐵𝐸𝑑𝑔𝑒 

W/O 

𝐵𝐸𝑑𝑔𝑒 

W/ 

𝐵𝐸𝑑𝑔𝑒 

W/O 

𝐵𝐸𝑑𝑔𝑒 

W/ 

𝐵𝐸𝑑𝑔𝑒 

W/O 

𝐵𝐸𝑑𝑔𝑒 

W/ 

𝐵𝐸𝑑𝑔𝑒 

W/O 

𝐵𝐸𝑑𝑔𝑒 

W/ 

𝐵𝐸𝑑𝑔𝑒 

W/O 

𝐵𝐸𝑑𝑔𝑒 

ResNet50 12.35 15.67 25.64 21.29 78.20 77.45 80.11 76.35 82.97 81.58 

ShuffleNet 25.82 31.63 8.32 3.97 76.55 75.29 79.10 75.12 82.38 80.97 

DenseNet-121 10.16 13.76 14.37 10.02 78.76 77.17 81.69 77.06 84.13 83.43 

HRNet 6.54 8.61 31.53 27.18 81.32 80.33 84.53 80.07 85.16 83.76 

SWIN Transformer 12.76 15.76 29.15 24.80 83.21 81.98 85.68 81.31 86.74 85.33 
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Through parallel comparison of crack recognition models 

constructed using five different feature extraction architectures, 

it is observed that the encoder employing the SWIN 

Transformer model to achieve the best balance in terms of 

inference speed, model parameter quantity, and recognition 

accuracy. It can achieve recognition results with IoU, mBA, 

and Dice scores of 83.21%, 85.68%, and 86.74%, respectively, 

at an inference speed of 12.76 FPS on 4K resolution crack 

images. This represents an average improvement of 4.50%, 

4.32%, and 3.08%, compared with the remaining four groups 

of architectures based on CNNs in the three accuracy metrics. 

This is because the Transformer model, compared to CNN, 

incorporates an additional multi-head self-attention 

mechanism, which gives the model the ability to establish 

long-distance dependencies for crack targets dispersed 

throughout the global image. This enables the model to 

perform self-attention operations on multi-scale feature maps, 

effectively eliminating the interference of background noise. 

This makes the Transformer model stronger in recognition 

performance and robustness when dealing with cracks against 

complex backgrounds than traditional architectures built with 

CNNs. When considering the quantity of the model's 

parameter and inference speed, in practical engineering 

applications, improving the accuracy and recall rate of crack 

detection is often more of a concern for inspection departments 

than the speed and efficiency of recognition. Of course, this 

fact does not mean that the model can indiscriminately 

sacrifice efficiency for improved recognition accuracy. Instead, 

the inference speed and model parameter size of the 

architecture built using SWIN Transformer meet the 

requirements of practical engineering crack detection tasks, 

which will be validated in the UAV-based field experiments in 

Section 5. Additionally, comparing all models with the added 

edge guidance branch, it is observed that the edge guidance 

branch, with a parameter size of 4.35M, brings an average 

improvement of 1.16%, 4.24%, and 1.26% in IoU, mBA, and 

Dice, respectively. The most significant improvement is in 

mBA, further illustrating the effectiveness of 𝐵𝐸𝑑𝑔𝑒  in 

improving crack boundary detail information in the deep 

semantic feature maps of cracks. 

4.4.2 Ablation Study for Point Rendering Head 

To fully demonstrate the effectiveness of the decoding 

architecture proposed in this study in refining crack details, a 

parallel comparison was made to compare it with the most 

advanced self-attention-based decoding architectures at first. 

To ensure the validity of the experimental results, the 

comparison decoding architectures used the same training 

parameters as the method proposed in this study, ensuring that 

the models converged to their optimal state. The corresponding 

experimental results on the test set are shown in Table 4. From 

the first two rows of Table 4, it can be seen that the point 

rendering-based decoding architecture achieves a certain 

degree of improvement over traditional decoding architectures 

in IoU, Dice, and mBA, with the most noticeable improvement 

in mBA, reaching 86.98%. This is because the MLP in the 

point rendering-based decoding architecture is position-

sensitive, calculating the prediction value independently for 

each pixel. Therefore, it can flexibly capture details and spatial 

relationships in crack images. In contrast, although the self-

attention-based decoding architecture can enhance the mutual 

representation of global tiny cracks through self-attention 

during decoding, it struggles to capture local crack details due 

to the discrete feature sampling method.  

After validating the effectiveness of the proposed decoding 

architecture, it is necessary to conduct parameter performance 

experiments on the architecture to obtain the most suitable 

parameter configuration for the model structure. As detailed in 

Section 3.2, two different types of point-wise refined rendering 

point sampling methods were adopted for the training and 

inference phases. Therefore, two sets of parameter 

performance experiments will be conducted next, to obtain 

relatively optimal point sampling parameters for the training 

and inference processes. 

Training Phase Point Sampling Parameter Experiment: 

Before conducting the parameter experiment, it can be known 

from the probability heatmap that the areas most likely to 

produce incorrect predictions are mainly distributed around the 

crack boundary, not just a single-pixel-wide crack boundary 

contour. This is due to the unavoidable errors between the real 

boundary and the label boundary caused by the subjectivity of 

manual annotation. Therefore, if only the boundary training 

point sampling method shown in Figure 3 is used, which 

samples only the boundary with a width of one pixel, it cannot 

effectively avoid the above-mentioned bias guidance, 

negatively impacting the model's ability to refine boundaries. 

To eliminate the negative impact of this incorrect guidance on 

the model's boundary recognition, an effective method is to 

expand sampling over the boundary and its adjacent areas. The 

expansion of the refined point sampling area to encompass 

regions prone to subjective errors effectively eliminates these 

errors through dense resampling. To implement boundary 

expansion, the study first used a Sobel operator-based edge 

detector to extract crack boundaries with a width of one pixel. 

Then, with this boundary as the dilation center, uniform 

dilation is carried out towards both the crack interior and the 

background areas, according to the preset dilation coefficient. 

Figure 8 shows four sets of different parameter boundary 

expansions. Considering the size of the crack images and the 

pixel width, the expanded boundary widths are 3, 5, 7, and 9 

pixels, respectively. Finally, the coordinates within the dilation 

area are mapped onto the crack feature map for feature 

sampling during training. The total number of sampling points 

on each training image is 𝑁 =
𝐻×𝑊

20
, with 30%, 40%, and 30% 

of the points randomly distributed in the background, 

expanded crack edge, and crack interior regions, respectively. 
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FIGURE 8. Visualization of the Label Boundary-guided Rendering Point Sampling on a Randomly Selected Crack Image 

at Different Dilation Coefficients 

Table 4 provides a detailed statistical analysis of the 

performance of models trained using different widths of 

expanded boundary guidance. Observation of Table 4 reveals 

that when the width of the expanded boundary is 7 pixels (i.e., 

a dilation coefficient of 3), the model's performance is 

relatively superior, with the average IoU, mBA, and Dice 

exceeding those of models trained using the other four 

expansion methods by at least 2.13%, 3.36%, and 1.49%, 

respectively. This is because the subjective annotation errors 

at the crack boundaries in the crack training dataset used in this 

study are precisely within the range of ±2 pixels from the 

boundary. A comprehensive analysis of the visualized results 

of Table 4 and the detailed visualization of the boundary 

heatmap in Figure 3 indicates that too narrow a boundary 

expansion area results in insufficient coverage of the 

subjective error area, leading to less significant performance 

improvement. Conversely, too wide an expansion area reduces 

performance enhancement because computational resources 

are scattered by simple sample areas outside the error range. 

Specifically, when the dilation coefficient is 1 or 2, the post-

dilation boundary area is insufficient to encompass the biases 

generated by manual annotation near the boundary area. When 

the dilation coefficient is 4, the main crack area and excessive 

background areas without manual annotation errors are 

included as ambiguous boundary regions requiring refined 

sampling. These unnecessary simple sample areas divert 

computational power that should be allocated to ambiguous 

boundary regions, thereby reducing the model's learning and 

representation capacity for such areas and limiting the 

performance improvement brought by boundary-guided 

sampling. 

Inference Phase Point Sampling Parameter Performance 

Experiment: To enable the model to achieve an effective 

balance between inference accuracy and efficiency, it is 

necessary to determine a reasonable probability range on the 

probability heatmap for areas with uncertain prediction results 

around 0.5. A larger probability range means more points 

require refined rendering, which increases accuracy but also 

significantly raises computational redundancy in the inference 

process. Conversely, a smaller probability range, while 

speeding up inference, may fail to render tiny cracks and 

boundary details effectively, severely impacting the final 

recognition accuracy. Therefore, choosing an appropriate 

range for refined rendering probability becomes a key issue to 

address. Specifically, two probability values are selected, 

namely, the critical probability value 𝛼  between the 

background and boundary areas, and the critical probability 

value 𝛽 between the boundary areas and crack pixels. 

For the critical probability value 𝛼 , this study set three 

different probability parameters: 0.2, 0.3, and 0.4. similarly, 

for 𝛽, three different probability parameters were set: 0.6, 0.7, 

and 0.8. These six critical probability values ( 𝛼  and 𝛽 ) 

collectively define nine different boundary regions with 

varying probability ranges. Table 5 statistically analyzes the 

inference results on the test set for the model that applied 

sampling using these nine different probability ranges. 

 

TABLE 4. Performance Comparison of Models Trained Using Different Feature Point Sampling Strategies 

Sampling point 

extraction method for 

the training phase 

No. 
Dilating 

coefficient 

Width of the boundary 

area after dilating 
IoU(%) mBA(%) Dice(%) 

Uniform sampling 1 / / 83.21 85.68 86.74 

Boundary guided 

sampling 

2 1 3 83.78 86.98 87.65 

3 2 5 84.77 87.68 87.93 

4 3 7 86.09 90.26 89.11 
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5 4 9 83.32 86.03 87.27 

TABLE 5. Performance Comparison of Models Guided by Different Boundary Probability Range Sampling Strategies 

During the Inference Phase 

Set No. 

Background 

area 

probability 

range 

Crack edge 

area 

probability 

range 

Crack body 

area 

probability 

range 

IoU Dice mBA 

1 （0.0,0.2） （0.2,0.6） （0.6,1.0） 86.09 90.26 89.11 

2 （0.0,0.2） （0.2,0.7） （0.7,1.0） 86.25 90.78 89.34 

3 （0.0,0.2） （0.2,0.8） （0.8,1.0） 86.97 91.29 90.06 

4 （0.0,0.3） （0.3,0.6） （0.6,1.0） 86.40 90.61 89.37 

5 （0.0,0.3） （0.3,0.7） （0.7,1.0） 88.37 94.06 93.25 

6 （0.0,0.3） （0.3,0.8） （0.8,1.0） 87.65 92.36 91.07 

7 （0.0,0.4） （0.4,0.6） （0.6,1.0） 85.03 87.32 87.66 

8 （0.0,0.4） （0.4,0.7） （0.7,1.0） 86.60 90.83 89.98 

9 （0.0,0.4） （0.4,0.8） （0.8,1.0） 87.35 91.16 92.30 

 

TABLE 6. Performance Comparison of Models Equipped with Coarse Crack Feature Extraction Backbones of Different 

Sparsity Levels 

Encoder type Sparsity 
IoU

（%） 

mBA

（%） 

Dice

（%） 

Inference 

speed 

（FPS） 

The number of 

model parameters

（M） 

Transformer - 88.37 94.06 93.25 4.76 29.15 

Prunning- 

Transformer 

20 87.57 93.66 92.78 5.14 23.84 

40 87.13 93.45 91.34 8.76 16.53 

60 78.67 89.76 84.31 11.92 11.22 

80 70.36 85.93 76.22 15.70 7.91 

 

As shown in Table 5, groups four, five, and six (experiments 

with background area probability range between 0.0 and 0.3) 

achieved relatively better IoU, Dice, and mBA scores. This is 

because, compared to the sampling group with a background 

probability range of 0.0 to 0.4, these three groups encompassed 

a wider background sampling area, helping to repair some tiny 

crack details undetected in the background. Simultaneously, 

the sampling group with a background probability range set 

between 0.0 and 0.2 misclassified too many pixels from the 

ambiguous boundary areas as background pixels. This resulted 

in a lack of sufficient sampling points for accurately repairing 

the boundary details, leading to a comparatively lower mBA. 

Additionally, comparing groups 4, 5, and 6, it's observed that 

the model's inference accuracy is highest when the boundary 

area's range is set between 0.3 and 0.7, with IoU, Dice, and 

mBA reaching 88.37%, 94.06%, and 93.25%, respectively. 

This is because the crack body area, compared to the 

background and edge areas, is a simpler sample with a higher 

prediction probability (often over 80%), thus not requiring a 

wider probability range. Whereas the boundary area, being a 

transitional zone between the background and crack body, 

often exhibits indistinct pixel colors and contrasts, leading to 

significant fluctuations in prediction probability, hence 

necessitating a broader probability range. Ultimately, the 

parameter configuration of group four was chosen as the 

optimal sampling parameter for the inference phase to control 

subsequent experiment inferences. Essentially, the experiment 

results also indirectly confirm that the main reason for 

inadequate crack segmentation accuracy concentrates in the 

ambiguous boundary area, which typically falls within the 
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probability range of 0.3 to 0.7 on the coarse segmentation 

probability map. Therefore, this study adopts this probability 

range for guiding refined rendering point sampling during the 

inference phase in subsequent experiments. 

Furthermore, it should be noted that although specific datasets 

and models may display distinct characteristics, the optimal 

thresholds determined in this study—0.3 and 0.7—provide a 

practical framework for other rendering-based fine-grained 

boundary segmentation tasks. These thresholds can be adapted 

based on further empirical analysis, such as ROC curve 

evaluations, to suit different data distributions or the specific 

needs of new segmentation models. This adaptability ensures 

that our findings are applicable across various contexts and 

enhances the precision of the rendering-based segmentation 

technique. 

4.4.3 Ablation Study for Pruning Operations 

To verify the effectiveness of model pruning and provide 

optimal parameter configurations for deployment on carrier 

devices, an ablation study was conducted on different pruning 

sparsities for the Transformer architecture in the encoding 

structure. Specifically, pruning sparsities of 20%, 40%, 60%, 

and 80% were set for the model's encoding architecture. The 

pruning training iterations were set to 500 epochs for each. The 

accuracy, inference speed, and parameter complexity of each 

model were compared to select the relatively optimal pruning 

parameters. The test results are shown in Table 6. 

The results indicate that with increasing pruning sparsity, the 

training and validation accuracy of the Pruning Transformer 

gradually decreases, along with a reduction in prediction time 

and model size. When the pruning sparsity is between 20%-

40%, the loss in accuracy is relatively slow, with average 

decreases in IoU, mBA, and Dice within 1.02%, 0.51%, and 

1.19% respectively. The decrease in mBA is not very 

significant, which suggests that pruning the coarse crack 

feature extraction encoding architecture does not impact the 

boundary-guided branch's ability to extract refined details of 

the cracks. This further demonstrates the beneficial 

contribution of the boundary-guided branch proposed in this 

study to the network's refined segmentation. However, as the 

sparsity of the coarse crack feature extraction backbone 

continues to increase, the drop in segmentation accuracy 

becomes more pronounced. This is because an overly sparse 

coarse crack feature extraction backbone will miss a large 

number of features in the crack body area outside the crack 

edges, and these lost crack body features cannot be effectively 

recovered from the boundary-guided branch. Specifically, 

when the sparsity is at 80%, although the total parameter count 

of the model is reduced to 27% of its original, the IoU drops 

nearly 20%, no longer meeting the detection requirements of 

practical engineering. After comprehensively considering the 

model's recognition accuracy, inference speed, and parameter 

complexity, the model with 40% sparsity is finally selected for 

subsequent practical engineering detection. This model 

achieves a lightweight deployment with 16.53 million 

parameters while ensuring a boundary recognition accuracy of 

93.45% for 4K resolution crack images at a real-time inference 

speed of 24.76 FPS. 

  

TABLE 7. Comparison of Segmentation Results on UAV-collected Images Between the Refined Segmentation Method 

Guided by Probability Heatmap Proposed in This Study and the Original Pointrend Architecture Guided by Different 

Coarse Segmentation Masks 

Meticulous 

segmentation 

architecture 

Source of the boundary sampling guidance 

Coarse segmentation 

accuracy 

Refined segmentation 

accuracy 

IoU mBA Dice IoU mBA Dice 

PointRend 
Coarse segmentation 

guidance 

SegNet 76.69 71.18 80.54 84.14 85.32 87.02 

UNet 78.38 74.37 82.12 84.21 85.66 87.17 

PSPNet 79.32 75.09 83.44 84.30 85.71 87.81 

BiseNet 79.45 75.56 83.89 84.32 85.89 87.92 

SANet 80.15 76.78 84.02 84.60 86.23 88.72 

RLCSN 
Probability heat map 

guidance 

Probability interval ∈
[0.3,0.7] 

/ 87.13 93.45 91.34 
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FIGURE 9. Comparison of Refined Segmentation Results on the Self-built HR Crack Image Dataset Using Different 

Coarse Segmentation Masks Guided by the Original Pointrend Architecture and the Probability Heatmap-guided 

RLCSN 

 

4.5 Performance Comparison between RLCSN 

and PointRend 

Since RLCSN is an architecture specifically proposed for 

crack target segmentation based on the original PointRend 

model, its main improvement lies in using a more accurate 

refined probability heatmap for guidance during the inference 

phase. To further illustrate the effectiveness of this 

improvement, this section compares the segmentation results 

of the PointRend model guided by different coarse 

segmentations with those guided by the probability heatmap 

proposed in this study, using HR crack images collected in the 

field. Specifically, five mainstream DL segmentation 

architectures of varying precision, from coarse to fine, 

including SegNet (Badrinarayanan et al., 2017), UNet 
(Ronneberger, Fischer and Brox, 2015), PSPNet (Zhao et al., 

2017), BiseNet (Yu et al., 2018), and SANet (Fan and Ling, 

2017), were selected as the coarse segmentation-generating 

networks for the original PointRend architecture. In contrast, 

the method proposed in this study performs boundary sampling 

point guidance for the point-rendering head based on the 

probability heatmap proposed from the enhanced crack 

features extracted by the encoder and boundary-guided branch. 

It's important to note that all coarse segmentation architectures 

and refined segmentation networks were trained in the same 

DL framework under the same configuration with default 

optimal parameters. Moreover, when predicting with the 

trained coarse segmentation models, all HR images were 

proportionally downsized to a long side of 900 pixels to avoid 

GPU memory overflow due to excessively high original 

resolutions. 

The experimental results are shown in Table 7. Firstly, 

observing the 2nd to 5th rows (from top to bottom) guided by 

coarse segmentation models, it's apparent that different coarse 

segmentation mask generating architectures produce 

noticeably varied prediction results. From SegNet, the least 

accurate, to SANet, the most accurate, the gaps in IoU, mBA, 

and Dice reach 3.46%, 5.60%, and 3.48%, respectively. 

However, after applying the original PointRend model for 

refinement, the differences in refined prediction results 

become less pronounced, with all five sets of experiment 

results fluctuating within 84.37±0.23% for IoU, 85.78±0.46% 

for mBA, and 87.87±0.85% for Dice. These results indicate 

that PointRend's refined segmentation method is indeed 

independent of specific coarse segmentation masks and robust 

to different sources of coarse-grained crack features. However, 

comparing the final experiment results with the best 

segmentation results guided by coarse segmentation generated 

by RefineNet in the PointRend group, it's found that the 

method guided by the probability heatmap further improves 

the accuracy of segmentation results, with IoU, mBA, and Dice 

reaching 87.13%, 93.45%, and 91.34%, respectively. Notably, 

the most significant improvement is observed in mBA, more 

than double the improvements in IoU and Dice, at 7.22%. This 

excellent robustness largely benefits from the edge-guided 

branch introduced in the feature extraction stage and the 

rendering point sampling strategy guided by the probability 

heatmap during the inference stage in this study. These two 

improvements effectively preserve edge areas and tiny crack 

pixels, allowing them to be finely characterized through dense 

point-by-point rendering. Especially the latter, which employs 

probability heatmaps congruent with the input image 

dimensions to supplant coarse segmentation masks for guiding 

rendering points, effectively mitigates the loss of tiny crack 

pixel details that typically occurs during the downsampling 

process involved in generating coarse segmentation masks. To 

further demonstrate the validity of the above conclusions, 
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Figure 9 visualizes the test results of five randomly selected 

HR crack images collected in the field. From the close-up 

details in Figure 9, it can be more intuitively seen that the 

method proposed in this study, which guides sampling points 

using a probability heatmap, significantly outperforms the 

traditional method guided by coarse segmentation in terms of 

performance in crack edge detail and tiny crack branch repair. 

5 A CASE STUDY 

To further evaluate the advantages of the proposed method in 

processing HR bridge crack images, the UAV was used to 

collect crack images of the approach bridge of Fuyuan Road 

Bridge in Changsha City. Fuyuan Road Bridge is a reinforced 

concrete beam-arch bridge, with the main span consisting of a 

combination structure of a basket-type steel arch and beams. 

The bridge is 3575 meters long and was opened to traffic in 

2012, serving as one of the most important river-crossing 

channels in the northern part of Changsha. With the increasing 

service years and traffic load, large areas of crack damage have 

appeared on the surfaces of some beams and pier structures. 

As shown in Figure 10, the DJI M300RTK UAV equipped 

with a 20-megapixel H20T multi-sensor camera was used for 

HR crack image collection of the beams and piers. It is 

important to note that random gusts encountered during the 

mission can negatively impact UAV flight safety and image 

collection quality. Therefore, this study implemented three 

specific controls during the image collection process to 

minimize negative effects on image quality. Firstly, to ensure 

UAV flight safety, the minimum distance between the camera 

and the beam was set at about 3 meters. This distance not only 

prevents collisions between the UAV and the bridge due to 

gusts but also ensures that tiny cracks with a width of 0.15 mm 

or more are fully presented in the collected RGB images as 

effective pixels. Secondly, a Z15 Aladdin searchlight was 

added to the lower gimbal for light supplementation to reduce 

lens defocus blurring due to uneven lighting in the field of view. 

Lastly, the UAV's flight speed during image collection was 

controlled at 1 m/s to ensure the camera lens had sufficient 

time to focus, and images were collected in video recording 

mode at 4K resolution to avoid missing detections due to 

insufficient image sampling frequency. Additionally, it is 

noteworthy that the high-precision inertial measurement unit, 

flight control system, visual positioning system, and laser 

rangefinder on the M300RTK, together forming a multi-modal 

positioning system, maintained a cruising accuracy error 

within 2 cm in three-dimensional space. This ensured the 

accurate execution of the collection process as planned, 

securing the collection of clear crack images at 4K resolution. 

Ultimately, this study extracted 100 4K resolution (3840 × 

2160) crack images from the UAV-collected videos. 

Following the same annotation guidelines as the CFD dataset, 

the study used the open-source labeling software Labelme to 

perform pixel-level annotations on all collected HR crack 

images, resulting in 100 images with pixel-level labels 

featuring refined edge details, used for accurate assessment of 

the detection results. 

 

 



1

8 
CHU ET AL. 

 

FIGURE 10. Details of Crack Image Collection for Fuyuan Road Bridge: (a) Manually Control the UAV for Crack Image 

Collection, (b) Inspection Areas, (c) UAV Equipment Information 

 

To effectively validate the advanced nature of the model 

proposed in this study, the most advanced segmentation 

methods for HR crack images were used to test UAV-collected 

images. The performance of all models involved in the 

comparison was assessed in terms of model complexity, 

inference speed, and crack recognition accuracy. The HR crack 

image segmentation technologies for comparison are divided 

into two categories: The first category includes low-resolution 

image segmentation frameworks integrated with image 

preprocessing techniques, and the second category consists of 

DL segmentation frameworks capable of directly processing 

HR crack images. Regarding the first category, researchers 

selected two typical image preprocessing techniques, 

including sliding windows and proportional scaling, and tested 

five representative low-resolution image segmentation 

frameworks from each era, including SegNet, UNet, PSPNet, 

BiseNet, and SANet. It is important to note that, to ensure 

fairness in the comparison, the size of the sliding window and 

the size of the images after proportional scaling were both set 

to 900 × 900. For the second category, this study chose the 

most advanced CascadePSP and Segfix network architectures, 

which perform refined inference for HR crack images from 

perspectives of cascaded refinement and global progressive 

refinement, respectively. Regarding the training of all models 

involved in the test, these models used default pretrained 

parameter configurations to ensure stable performance. 

Additionally, to ensure comparability between segmentation 

architectures developed for natural scene images and those 

specifically developed for crack scenes in this study, all 

models were fine-tuned using the crack image data described 

in Section 4.1. Furthermore, considering that the methods 

proposed in this study and CascadePSP rely on coarse 

segmentation masks as prior guiding information for inference. 

Hence, to ensure the effectiveness of parallel comparison, all 

coarse segmentation masks were produced using the output of 

the SANet architecture, labeled No1 in the first category. Table 

8 provides a statistical summary of the performance of all 

models involved in the test. Firstly, by comparing the average 

performance of the two major categories of methods, it is 

evident that the first category, which requires image 

preprocessing before performing inference on low-resolution 

crack images, is not as effective as the second category that 

directly processes HR images. The second category, which 

performs inference directly on HR images, achieved average 

IoU, mBA, and Dice of 83.27%, 87.79%, and 88.74%, 

respectively, representing improvements of 3.92%, 11.97%, 

and 4.94% over the first category. The fundamental reason for 

this phenomenon is that sliding window operations and 

proportional scaling, respectively, cause the loss of semantic 

integrity among global pixels and local tiny crack details in HR 

images. CascadePSP, Segfix, and the methods proposed in this 

study, through cascaded, progressive repair, and rendering 

operations, respectively, rectify these negative impacts, 

thereby obtaining more accurate refined segmentation masks. 

While the field tests have confirmed the improvements in 

safety and efficiency of UAV-based bridge crack detection 

brought by RLSCN, there are some notable details that may 

constrain the effective dissemination of this method. Below are 

the enumerated limitations along with suggested 

improvements: 

 Dependence on High-Quality Probability Heatmaps: 

The performance of this method heavily relies on the 

accuracy of probability heatmaps. If the probability 

heatmaps cannot accurately predict the location and 

shape of the cracks, the final edge segmentation might 

be imprecise or could lead to mis-segmentation, 

resulting in blurred edges or lost crack information. The 

accuracy of the probability heatmaps largely depends on 

the feature extraction branch built on the Transformer, 

which is supervised by refined labels during the initial 

training phase. Thus, more refined training labels mean 

more accurate probability heatmaps. 

 Sensitivity to Noise and Outliers: Probability heatmaps 

might be overly sensitive to noise and outliers in the 

image, which could lead to incorrect crack edge 

generation during segmentation, especially in cases 

where the crack boundaries are not clear or the contrast 

with the background is low. Therefore, ensuring 

uniform illumination during the crack image collection 

process is an effective way to avoid such errors. 

 Complexity in Parameter Tuning: When using different 

DL models or facing crack images from different scenes, 

optimizing segmentation effects might require fine-

tuning the threshold parameters defined on the 

probability heatmaps that determine the crack edge 

areas, which can increase the difficulty of applying and 

extending the model in different scenes. However, it 

should be noted that although specific datasets and 

models may exhibit different characteristics, the 

optimal thresholds identified in this study (0.3 and 0.7) 

provide a reliable benchmark for other rendering-based 

fine-grained boundary segmentation tasks. These 

thresholds can be efficiently adjusted based on further 

empirical analysis (such as ROC curve evaluation) to 

adapt to different data distributions or specific 

requirements of new segmentation models. 
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TABLE 8. Comparison of Segmentation Performance on HR Crack Images Collected by the UAV Using Several Current 

Mainstream Methods for HR Crack Image Segmentation 

Method 

category 

Image 

preprocessing 

methods 

DL-based 

segmentation 

architecture 

IoU 

(%) 

mBA 

(%) 

Dice 

(%) 

Para. 

(M) 

Speed 

(FPS) 

GPU 

(GB) 

Coarse 

segmentation 

method 

sliding window 
SegNet 

77.34 74.23 82.07 
29.80 

31.42 
6.74 

downsampling 76.69 71.18 80.54 321.76 

sliding window 
UNet 

79.65 76.08 84.19 
31.12 

28.73 
9.23 

downsampling 78.38 74.37 82.12 294.16 

sliding window 
PSPNet 

80.58 77.34 85.15 
46.78 

21.37 
11.37 

downsampling 79.32 75.09 83.44 218.83 

sliding window 
BiseNet 

80.78 78.18 85.98 
15.67 

36.53 
8.43 

downsampling 79.45 75.56 83.89 374.07 

sliding window 
SANet 

81.30 79.33 86.57 
17.34 

29.46 
11.78 

downsampling 80.15 76.78 84.02 301.67 

Refined 

segmentation 

method 

Coarse mask 

guidance 
CascadePSP 81.88 85.23 87.60 47.56 3.78 13.03 

Coarse mask 

guidance 
Segfix 82.49 86.37 88.12 64.70 2.56 18.23 

Probability heat 

map guidance 
RLCSN 85.49 91.76 90.50 16.53 8.76 7.87 

 

Upon further observation of the method proposed in this study 

and the two HR crack image segmentation methods involved 

in the comparison, it is evident that the method proposed in this 

study has significant advantages in both recognition accuracy 

and inference efficiency. Compared to the previously highest-

performing Segfix model, RLCSN achieves IoU, mBA, and 

Dice scores of 85.49%, 91.76%, and 90.50%, respectively, on 

4K resolution crack images, with only a quarter of the model 

parameters and three times the inference speed. Moreover, 

among the three accuracy evaluation metrics, the most notable 

improvement of mBA in RLCSN, exceeding CascadePSP and 

Segfix by an average of over 5.96%. This once again confirms 

the effectiveness of the boundary point sampling-based 

training and inference strategy proposed in this study. It 

demonstrates that by rationally allocating computational 

resources from simple sample points concentrated in the 

background and crack interior areas to difficult boundary 

points, the model effectively improves the recognition 

accuracy of ambiguous boundary areas on coarse segmentation 

masks without increasing dependency on computational 

resources. To further substantiate these conclusions, Figure 11 

randomly selects and visually presents the prediction results of 

the second category models with relatively better recognition 

performance. A comparison of the prediction results and close-

up details clearly shows that the method proposed in this study 

outperforms the other methods in terms of crack recognition 

completeness and the refinement of boundary areas, further 

illustrating the effectiveness of the approach proposed in this 

study. 
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FIGURE 11. Visualization of the Segmentation Performance on Five Randomly Selected UAV-collected Images by the 

Current Two Most Advanced Coarse Segmentation-guided Refined Segmentation Methods and the Probability Heatmap-

guided RLCSN Proposed in this Study 

 

Furthermore, the field test has also demonstrated that the 

method proposed in this study not only excels in analyzing HR 

images for crack detection but also exhibits outstanding ability 

to detect tiny, subtle, and distant cracks, which are often 

difficult to identify using low-resolution methods. This 

capability is particularly important as it addresses a critical gap 

in current crack detection methodologies, where smaller or 

more distant cracks might go undetected, potentially impacting 

structural health assessments. 

6 CONCLUSION 

This study introduces the RLCSN, inspired by refined 

rendering graphic representation architectures in computer 

graphics. Addressing three key issues faced by high-precision 

rendering heads in HR crack image segmentation, the authors 

have made three targeted improvements, allowing the 

advantages of the rendering method in accuracy and 

computational resource friendliness to be fully realized in HR 

crack image segmentation. Firstly, a deep semantic feature 

extraction architecture combining Transformer with a super-

resolution boundary-guided branch was designed, effectively 

reducing background noise interference and preserving crack 

edge details. Secondly, two types of refined rendering point 

sampling methods were customized for the training and 

inference phases, enabling the model to concentrate 

computational power on ambiguous crack edges and tiny crack 

areas. Thirdly, an efficient sparse training method was 

developed for the initial RLCSN build, incorporating an L1 

norm of weights in the loss function and executing pruning at 

the weight level to achieve model lightweighting. Through 

these customizations, refined rendering methods originally 

used in computer graphics for scene rendering can be 

effectively applied to the refined segmentation of crack images. 

Especially, the rendering representation method's high 

precision and GPU resource-friendly characteristics in edge 

refinement are fully exploited. The main conclusions of this 

paper are as follows: 

1. RLCSN, as the first architecture to employ point rendering 

methods for refined segmentation of HR crack images, can 

generate finely detailed boundary prediction masks for 4K 

resolution crack images at a speed of 8.76 FPS on a 

commercial GPU with only 8GB of memory. The method 

achieved an IoU of 85.49%, an mBA of 91.76%, and a Dice 

coefficient of 90.50%. 

2. This study proposes a new viable paradigm for constructing 

refined segmentation network architectures for HR crack 

images in complex backgrounds. This paradigm replaces the 

decoder part of traditional encoder-decoder architecture 

segmentation models with a point-rendering head and 

introduces a detail-restoring boundary-guided branch and 

boundary point sampling strategy. This innovation allows the 

model to perform refined segmentation directly on HR crack 

images without additional computational resource 

requirements. 

3. In the training phase, introducing a reasonable boundary 

dilation coefficient to expand the sampling range in the 

boundary sampling process of the rendering head can eliminate 

the biased guidance caused by the discrepancy between the real 

boundary and the labeled boundary due to subjectivity in 

manual annotations, significantly enhancing the model's 

robustness. This ensures the model does not rely solely on 

finely annotated data for training. 
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4. The probability heatmap-guided boundary rendering point 

sampling strategy proposed for the inference phase 

concentrates limited computational power from simple 

samples scattered in the background and crack body areas onto 

difficult boundary sample areas. This significantly improves 

the model's recognition accuracy of ambiguous coarse 

segmentation boundaries without additional computational 

resource consumption. 

Deploying RLCSN on the UAV can significantly enhance the 

safety and efficiency of UAV-based bridge crack detection. 

Because RLCSN can directly perform high-precision inference 

on HR crack images, it alleviates issues like loss of crack detail 

information caused by image preprocessing in traditional low-

resolution crack image inference processes, which is 

significant for promoting safe and efficient bridge crack 

detection using UAVs. In the future, the authors will explore 

the development of multimodal fusion technology capable of 

processing data such as ultrasonic, laser point clouds, and 

infrared images, thereby further enhancing the model's ability 

to accurately segment tiny cracks in complex backgrounds. 

Additionally, the authors intend to investigate advanced and 

complex supervised machine learning and pixel-level feature 

fusion algorithms, including Neural Dynamic Classification 

algorithm (Rafiei and Adeli, 2017), Dynamic Ensemble 

Learning Algorithm (Alam et al., 2020), Finite Element 

Machine for fast learning (Pereira et al., 2020), and self-

supervised learning (Rafiei et al., 2022). These techniques aim 

to significantly improve the precision and robustness of 

rendering algorithms used for fine-grained crack segmentation 

in practical engineering tasks. 
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