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Abstract: Renewable energy markets, particularly wind energy, have experienced remarkable growth,
predominantly driven by the urgent need for decarbonization in the face of accelerating global
warming. As the wind energy sector expands and turbines increase in size, there is a growing
demand for advanced composite materials that offer both high strength and low density. Among these
materials, graphene stands out for its excellent mechanical properties and low density. Incorporating
graphene reinforcement into wind turbine blades has the potential to enhance generation efficiency
and reduce the construction costs of foundation structures. As a pilot study of graphene reinforcement
on wind turbine blades, this study aims to investigate the variations of mechanical characteristics
and weights between traditional fiberglass-based blades and those reinforced with graphene platelets
(GPLs). A finite element model of the SNL 61.5 m horizontal wind turbine blade is used and
validated by comparing the analysis results with those presented in the existing literature. Case
studies are conducted to explore the effects of graphene reinforcement on wind turbine blades
in terms of mechanical characteristics, such as free vibration, bending, and torsional deformation.
Furthermore, the masses and fabrication costs are compared among fiberglass, CNTRC, and GPLRC-
based wind turbine blades. Finally, the results obtained from this study demonstrate the effectiveness
of graphene reinforcement on wind turbine blades in terms of both their mechanical performance
and weight reduction.

Keywords: wind turbine blades; graphene reinforcement; graphene platelet-reinforced composites
(GPLRC); mechanical characteristics; finite element structural analysis

1. Introduction

Abnormal weather conditions have occurred worldwide due to the use of fossil fuels
over the past centuries and the resulting surge in carbon emissions. International efforts
have been made to prevent such climate change, including the Paris Agreement [1] and the
International Maritime Organization (IMO)’s regulations on greenhouse gas emissions [2].
As alternatives to existing fossil fuels, renewable energy sources that are sustainable with
less environmental destruction, such as wind energy, solar energy, and hydroelectric energy,
have garnered attention. Among them, wind energy is expected to represent over 30% of
the world’s electricity generation by 2050 [3].

With the recent expansion of the wind energy market, the size of wind turbines has
gradually increased, including the development of ultra-large wind turbines of more than
15 MW. In addition, research is being actively conducted to increase power generation
efficiency and decrease initial construction costs. Most of all, wind turbine blades are key
structures that directly affect power generation efficiency and construction costs. Fiberglass
composites are being used as the primary material for wind turbine blades, but research
cases on the application of new materials such as basalt–carbon hybrid fibers, SiO2 and
Al2O3, bamboo, and carbon fibers have been reported of late.
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Mengal et al. [4] presented a comparison of material properties between glass and car-
bon fibers used for wind blades. They reported that the traditional glass and carbon fibers
can be partially replaced with basalt fibers, improving economic efficiency. Chikhradze
et al. [5] compared the mechanical properties of hybrid composites using basalt, glass, and
carbon fibers, and reported that expensive carbon fibers can be partially replaced with
basalt fibers. Ong and Tsai [6] examined the economic efficiency according to the proportion
of carbon fibers reinforced into hybrid composites. Holmes et al. [7,8] reported that bamboo-
epoxy laminated composites have sufficient strength and stiffness to replace conventional
glass fiber composites for the use of wind turbine blades. Shen-xue et al. [9] found from
their experimental study that bamboo materials have sufficient strength for wind turbine
blades. Ennis et al. [10] assessed the commercial viability of developing cost-competitive
carbon fiber composites suited for wind turbine blades. Paquette et al. [11] demonstrated
the use of carbon fiber in subscale blades and investigated advanced structural concepts
through the blade system design study.

While many studies have been conducted on the development and application of
new materials, academia and various industries have paid attention to graphene platelets
(GPLs) as the nanofiller for composite reinforcement. GPLs, known as ultra-light and high-
strength nanomaterials, have similar material properties to CNTs, but their production and
sales costs are lower. Moreover, GPLs have a significantly larger surface area than CNTs,
enabling more flexible interaction and load transfer within the matrix [12]. For this reason,
GPL-reinforced composites (GPLRC) have attracted more attention than CNT-reinforced
composites (CNTRC) over the last ten years [13], and numerous research cases can be found
in the literature. Notably, Rafiee et al. [14] theoretically and experimentally proved the
superiority of the epoxy composite reinforced with 0.1 wt.% of GPLs in terms of mechanical
properties (e.g., strength, stiffness, and fracture toughness) to pure epoxy materials as
well as single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) with the same
weight fraction. Rafiee et al. [15] proved that reinforcement with 0.1 wt.% of GPLs increased
the buckling strength of the beam by 51.5% compared to pure epoxy materials, and the
critical buckling strength by 42.8 and 31.8% compared to the cases reinforced with the same
weight of SWCNTs and MWCNTs, respectively. In addition, various research cases on GPL
reinforcement have been summarized systematically in the existing literature [16–18].

As mentioned earlier, nanomaterials, such as GPLs, have been considered promising
future materials because they have a large reinforcement effect even in small amounts;
however, the industrial use of most nanomaterials (e.g., CNTs) is limited because mass
production methods at low cost have not been developed yet. GPLs, however, can be
utilized in various industries because their mass production is possible at relatively low
cost [19]. The actual cases that applied GPLs to metals, concrete, electronic equipment, and
sensors can be found in the literature [20–22]. Although various structures that apply GPLs
have been developed, there is still no reported case on the application of GPLs to wind
turbine blades.

In this context, the effects of the application of GPLs on the mechanical characteristics
of wind turbine blades, such as natural frequency, bending, and torsion, are closely investi-
gated, and the applicability of GPLs as future materials is examined in this study. In this
study, to obtain more reliable and realistic results, the finite element model was created
by referring to the SNL 61.5 m model, which is a 5 MW-class wind turbine blade [23],
and the aerodynamic loads acting on the blade were calculated at the rated wind speed
based on the blade element momentum theory (BEMT). Consequently, the mechanical
characteristics of the wind turbine blade according to the volume fraction of GPL were
analyzed in detail through numerical analysis based on the finite element method, and the
blade was compared with those composed of existing fiberglass composites to examine the
superiority of GPL-reinforced wind turbine blades.
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2. Finite Element Modeling of GPL-Reinforced Wind Turbine Blade
2.1. Material Modeling of GPLRC

In this study, effective material properties were calculated by mixing the material
properties of GPLs (nanofiller) and epoxy (matrix) to model GPLRC (nanocomposite). The
interfaces between the matrix and GPLs are assumed to be perfectly bonded. Table 1 lists
the material properties of these materials. The effective material properties of Poisson’s
ratio ν and the density ρ are calculated using Equations (1) and (2) based on the linear rule
of mixture.

νe f f = VGPL νGPL + Vm νm (1)

ρe f f = VGPL ρGPL + Vm ρm (2)

where V is the volume fraction of the material. Subscripts e f f , GPL, and m represent the
effective material property, GPL, and matrix (epoxy).

Table 1. Material properties of Epoxy and GPL [24].

Material E (GPa) ν12 ρ (kg/m3)

Epoxy 3.0 0.340 1200
GPL 1010.0 0.186 1060

The effective elastic modulus of GPLRC, Ee f f , was modeled using the Halpin–Tsai
micromechanical modeling technique presented in Equation (3), where L, T, GPL, and m
represent the longitudinal direction, transverse direction, graphene platelet, and matrix.

Ee f f =
3
8
· 1 + ξLηLVGPL

1 − ηLVGPL
Em +

5
8
· 1 + ξTηTVGPL

1 − ηTVGPL
Em (3)

where Em and VGPL indicate the elastic modulus of the matrix and the GPL volume fraction,
respectively. Two parameters, ηL and ηT , are defined by

ηL =
EGPL − Em

EGPL + ξLEm
, ηT =

EGPL − Em

EGPL + ξTEm
(4)

with the geometry parameters given by

ξL =
2lGPL
tGPL

, ξT =
2wGPL
tGPL

(5)

Here, the length lGPL, width wGPL, and thickness tGPL of GPLs were set to lGPL = 2.5 µm,
wGPL = 1.5 µm, and tGPL = 1.5 µm, according to the values presented in a study by Rafiee
et al. [14]. Table 2 shows the calculated effective material properties of GPLRC as examples
of the material modeling technique introduced above.

Table 2. Examples of effective material properties of GPLRC.

VGPL Eeff (GPa) νeff ρeff (kg/m3)

0.01 (1%) 11.8 0.338 1199
0.02 (2%) 20.7 0.337 1197
0.03 (3%) 30.0 0.335 1196
0.04 (4%) 38.5 0.334 1194

2.2. Geometry and Composite Layup of Wind Turbine Blade

The main materials that constitute wind turbine blades these days are fiberglass com-
posites. It is necessary first to identify the characteristics of existing fiberglass composite-
based blades before analyzing the changes in the mechanical characteristics of wind turbine
blades caused by GPL reinforcement. Therefore, a finite element model for static bending
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and twisting and free vibration of a fiberglass composite-based blade was created in this
study by referring to the SNL 61.5 m model, a 5 MW-class wind turbine blade. As the
name of the target model suggests, the blade span length is 61.5 m. Table A1 shows the
parameters required to create the blade geometry, including the airfoil type, chord length,
and aerodynamic center. In Table A1, the twist angle represents the initial twist angle of
each airfoil cross-section, as shown in Figure 1. Other detailed geometric information for
the target model is included in the report by Resor [23].
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Figure 1. Airfoil distribution of the SNL 61.5 m wind turbine blade.

As shown in Figure 2, the cross-section of the wind turbine blade consists of structures,
such as the leading edge (LE), LE panel, spar cap, trailing edge (TE), TE reinforcement,
and TE panel. The materials used and layup vary depending on each structure and the
position in the span direction. Gelcoat, E-LT-5500 (UD), Saertex (DB), SNL (Triax), Foam,
and Carbon (UD) materials are used in the composite laminate of the SNL 61.5 m blade
model. The material properties of each material are listed in Table 3. Here, E-LT-5500
(UD) and Saertex (DB) are composed of uni-axial fiberglass and double-bias fiberglass,
respectively, while SNL (Triax) is a material that uses both [23].
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Figure 2. Cross-section view of wind turbine blade.

Table 3. Material properties of laminates [23].

Material E11 (GPa) E22 (GPa) G12 (GPa) ν12 ρ (kg/m3)

Gelcoat 3.44 - 1.38 0.3 1235
E-LT-5500(UD) 41.8 14.0 2.63 0.28 1920

Saertex(DB) 13.6 13.3 11.8 0.49 1780
SNL(Triax) 27.7 13.65 7.2 0.39 1850

Foam 0.256 0.256 0.022 0.3 200
Carbon(UD) 114.5 8.39 5.99 0.27 1220

As aforementioned, the material and thickness of the composite laminate vary de-
pending on the cross-sectional structure of the blade and the position in the span direction.
Tables A2 and A3 list the stack IDs, names, and stacking sequences of composites, whereas
Figure 3 shows the thickness distribution of each stack, where R and r denote the blade
length and the position in the blade span direction, which is consistently used hereafter.
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In this study, the target model was created using midas-NFX, a commercial finite element
analysis program, and the composite laminate model was created using the composite shell
element. The element size was determined to be 80 mm × 80 mm by referring to the finite
element model in a report by Resor [23]. Figure 4 shows the finite element model created
for numerical analysis in this study, in addition to boundary and loading conditions.
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2.3. Aerodynamic Loads Acting on Wind Turbine Blade

During the operation of a wind turbine, various loads, such as aerodynamic loads,
inertial loads, and gravitational loads, act on the blade. In particular, it is known that
large-deflection bending and torsional deformation of the blade are mainly caused by
aerodynamic loads. Therefore, it is necessary to conduct finite element analysis by reflecting
similar aerodynamic loads to reality to analyze the mechanical characteristics of the blade
precisely. Computational fluid dynamics (CFD) and BEMT have been mainly used to
calculate the aerodynamic loads applied to wind turbine blades [25]. Since CFD is costly
and requires considerable modeling work and analysis time, BEMT-based aerodynamic
load calculation methods have been used widely.

In this study, aerodynamic loads acting on the blade were calculated based on BEMT
and then reflected in finite element analysis. Figure 5 shows the process of calculating
aerodynamic loads using BEMT. Here, zero is used as the initial values of the axial and
angular induction indices a0 and a′0, and the inflow angle φ is calculated through the
following equation.

tan φ =
(1 − a)V0

(1 + a′)Ωr
(6)
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where V0 is the free-stream velocity (wind speed in this paper). r and Ω are the position in
the blade span direction and the angular velocity of the rotor, respectively. In this study,
the rated wind speed (11.4 m/s) and rated rotor speed (12.1 rpm) of the 5 MW-class blade
model presented in the NREL report were used [26].
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Subsequently, the angle of attack can be calculated using Equation (7). The calculated
angle of attack is used to determine aerodynamic coefficients, such as the lift, drag, and
pitching-moment coefficients. Figure 6 shows the lift coefficient CL, drag coefficient CD, and
pitching-moment coefficient CM according to the angle of attack of each airfoil, which were
experimentally obtained. a0 and a′0 are updated using the inflow angle and aerodynamic
coefficients calculated above, as shown in Equation (8), and iterative calculations must be
performed until the convergence condition presented in Equation (9) is met. In this study,
the convergence condition ε was set to 0.001.

α = φ − θ (7)

a =
1

4 sin2 φ
σ(CL cos φ+CD sin φ)

+ 1
, a′ =

1
4 sin φ cos φ

σ(CL sin φ−CD cos φ)
− 1

(8)

|ak − ak−1| < ε and
∣∣a′k − a′k−1

∣∣ < ε (9)

where α is the angle of attack, θ is the twist angle of the airfoil, and σ = Bc/2πr holds. B is
the number of blades in the wind turbine and c is the chord length.
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Once the values of a0 and a′0 are finally determined, the lift, drag, and pitching
moment acting on the aerodynamic center can be calculated using Equations (10)–(12).
The lift and drag forces can be converted into normal and tangential forces through
Equations (13) and (14). Figure 7 illustrates the distribution of the normal force, tangential
force, and pitching moment calculated through the above processes.

L = 0.5ρcV2
relCLdr (10)

D = 0.5ρcV2
relCDdr (11)

M = 0.5ρc2V2
relCMdr (12)

where ρ is the air density, and the relative velocity is calculated as

Vrel =
√

[(1 − a)V0]
2 + [(1 + a′)Ωr]2.

FN = L sin φ − D cos φ (13)
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FT = L cos φ + D sin φ (14)
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3. Results and Discussion
3.1. Validation of Finite Element Model

Before applying GPLRC to the wind turbine blade, it is necessary to verify the reliabil-
ity of the developed analysis model through a comparison with the results presented in
previous studies. Table 4 compares the weight of each material used in the analysis models
of the present study and a previous study. The weight of each material and the total weight
of the analysis model are similar to the values presented in the previous study [27].

Table 4. Mass of materials used in the SNL 61.5 m wind turbine blade.

Model
Mass (kg)

Gelcoat E-LT-5500 (UD) Saertex (DB) SNL (Triax) Foam Carbon (UD) Total

Present 29 338 921 8726 4160 2655 16,829
Ref. [27] 29 376 916 8784 3953 2638 16,696

Table 5 compares the natural frequencies of the SNL 61.5 m blade model obtained in
this study and previous studies. Although the natural frequencies of the analysis models
presented in Table 5 were different, the reliability of the analysis model and free vibration
analysis of the present study has been verified in that the magnitudes of the natural
frequencies were similar; furthermore, all of the observed mode shapes were the same as
the mode order increased.

Table 5. Comparison of the natural frequencies of the SNL 61.5 m wind turbine blade.

Model
Natural Frequency (Hz)

1st
Flapwise

1st
Edgewise

2nd
Flapwise

2nd
Edgewise

3rd
Flapwise

1st
Torsion

Present 0.8415 0.9930 2.7269 3.5918 5.7255 6.7280
Ref. [23] 0.87 1.06 2.68 3.91 5.57 6.45
Ref. [28] 0.90 - 2.85 - 6.41 6.65
Ref. [29] 0.9194 1.0552 2.8106 3.8870 5.6904 6.7152
Ref. [30] 0.84 0.969 2.41 - - -
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Figure 8a,b compares the blade deflection in the flapwise and edgewise directions
between the analysis models of the present study and previous studies. The deflection
in the flapwise direction is quite similar to the results of previous studies, but the results
presented in each study are different from each other for the deflection in the edgewise
direction. The analysis model of the present study showed the largest deflection in the
edgewise direction, but the maximum deflection that occurred at the blade tip was similar
to the result of Ref. [31].
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Figure 9 compares the torsional deformation of the analysis models of the present study
and previous studies. All the results are quite similar in terms of torsional deformation.
Since the results in Figures 8 and 9 are analysis results obtained using the aerodynamic
loads calculated based on BEMT, the reliability of the aerodynamic loads calculated in this
study has also been verified.
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Ref 4: [34]).

3.2. Application of GPLRC to Wind Turbine Blade

In this section, the mechanical characteristics (e.g., deflection, torsion, and natural
frequency) of wind turbine blades reinforced with GPLs are analyzed. The analysis model
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was created using GPLRC with the same thickness instead of E-LT-5500 (UD), Saertex (DB),
and SNL (Triax), which are existing fiberglass composites. Finite element analysis was
conducted while changing the volume fraction of GPL, V∗

CNT . Figure 10a compares the
flapwise deflection of the GPL-reinforced wind turbine blade and the existing fiberglass
composite wind turbine blade in the span direction. When GPL reinforcement was per-
formed with V∗

GPL between 2.0 and 4.0%, similar behavior to the flapwise deflection of the
fiberglass composite-based wind turbine blade can be seen. The GPL content that exhibits
similar behavior to the fiberglass composite-based wind turbine blade can be identified
more precisely in Figure 10b. When V∗

GPL is 2.7%, the maximum flapwise deflection that
occurs at the blade tip is similar to that of the fiberglass composite-based blade.
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Figure 11a compares the edgewise deflection of the GPL-reinforced wind turbine blade
with that of the existing fiberglass composite-based blade in the span direction. Similar to
flapwise deflection, the edgewise deflection is similar to that of the fiberglass composite-
based blade when V∗

GPL is between 2.0 and 3.0%. Compared to the flapwise deflection
in Figure 10, the edgewise deflection seems to be quite sensitive to the change in V∗

GPL.
This is due to the edgewise deflection being significantly smaller compared to the flapwise
deflection, even though the changes in flapwise deflection and edgewise deflection caused
by the change in V∗

GPL are similar. Figure 11b shows the maximum edgewise deflection
according to V∗

GPL. As with the flapwise deflection, the maximum edgewise deflection that
occurs at the blade tip is similar to that of the fiberglass composite-based blade when V∗

GPL
is 2.7%.

Figure 12a compares the torsional deformation of the GPL-reinforced wind turbine
blade with that of the existing fiberglass composite-based blade in the span direction accord-
ing to V∗

GPL. The torsional deformation of the GPL-reinforced wind turbine blade was quite
similar to that of the fiberglass composite-based blade when V∗

GPL was 2.0%. Figure 12b
illustrates the maximum torsional deformation according to V∗

GPL. The maximum torsional
deformation of the GPL-reinforced wind turbine blade is similar to that of the fiberglass
composite-based blade when V∗

GPL is 2.0%.
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Based on the above results, the natural frequencies of the wind turbine blades were
compared at V∗

GPL = 2.0% and V∗
GPL = 2.7%, which exhibited mechanical characteristics

similar to those of the existing fiberglass composite-based wind turbine blades. In addition,
the weight difference of the wind turbine blade with GPLRC (ultra-light and high-strength
nanomaterial) was also compared to analyze the degree of weight reduction compared
to the use of the existing fiberglass composite. Table 6 shows the natural frequencies and
weight of the fiberglass composite-based wind turbine blade and the GPL-reinforced wind
turbine blade. The natural frequency of the GPLRC-based wind turbine blade was higher
than that of the fiberglass composite-based wind turbine blade at all mode orders. The
natural frequency increased as the volume fraction of GPL increased. This tendency is at-
tributed to the relatively high stiffness and low mass of GPLRC, and it is in good agreement
with the well-known natural frequency characteristics of GPL-reinforced composites. The
weight of the GPLRC-based wind turbine blade was approximately 3620kg lower than that
of the fiberglass composite-based blade, indicating that a weight reduction of more than
20% will be possible. Based on the results of this study, the application of GPLRC to wind
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turbine blades instead of existing fiberglass composites is expected to significantly reduce
weight while maintaining strength that withstands aerodynamic loads at a similar level.

Table 6. Natural frequencies and weights of 5 MW wind turbine blades with fiberglass and GPLRC.

Material

Natural Frequency (Hz)
Weight

(kg)1st
Flapwise

1st
Edgewise

2nd
Flapwise

2nd
Edgewise

3rd
Flapwise

1st
Torsion

Fiberglass 0.8415 0.9930 2.7269 3.5918 5.7255 6.7280 16,829

GPLRC
V∗

GPL = 2.0% 0.8744 1.0352 2.9168 3.5834 6.1258 7.7406 13,216
V∗

GPL = 2.7% 0.9412 1.1074 3.0376 3.9987 6.4612 8.6913 13,209

Table 7 compares the total masses and the estimated fabrication costs between fiber-
glass, CNTRC, and GPLRC. The fabrication costs for CNTs and GPLs were estimated by
referring to the data provided by CTI Materials [35], where MWCNTs were chosen for
CNTs. For the sake of conservative evaluation, industrial-grade (i.e., relatively lower cost)
CNTs were selected, while research-grade (i.e., relatively higher cost) GPLs were chosen.
The other fabrication cost was estimated based on the data provided by Bortolotti et al. [36].
The total masses of CNTRC and GPLRC blades are assumed to be the same based on the
similar structural stiffness of CNTs and GPLs. From the table, it is found that the total
fabrication cost of a CNTRC blade is 45.3% higher than one fiberglass blade. However, the
total fabrication cost of a GPLRC blade is found to be only 5.7% higher than a fiberglass
blade, even though the cost was assumed to be relatively higher. Thus, it has been justified
that the total fabrication cost can be significantly reduced by replacing CNTs with GPLs,
and the total weight of a wind blade can be remarkably reduced by replacing fiberglass
with GPLs even though the total fabrication costs slightly increase.

Table 7. Masses and fabrication costs of 5 MW wind turbine blades with fiberglass, CNTRC, and
GPLRC [35,36].

Material
Material

TotalGelcoat E-LT-
5500(UD)

Saertex
(DB)

SNL
(Triax) Foam Carbon

(UD) Epoxy MWCNT GPL

Cost per Mass
(USD/kg) 7.23 1.87 3.00 2.86 7.23 30.00 3.63 450.00 90.00

Mass
(kg)

Fiberglass 29 338 921 8726 4160 2655 - - 16,829
CNTRC 29 - - - 4160 2655 6213 152 - 13,209
GPLRC

(V∗
GPL = 2.7%) 29 - - - 4160 2655 6213 - 152 13,209

Cost
(USD)

Fiberglass 210 632 2763 24,956 30,077 79,650 - - - 138,288
CNTRC 210 - - - 30,077 79,650 22,553 68,400 - 200,890
GPLRC

(V∗
GPL = 2.7%) 210 - - - 30,077 79,650 22,553 - 13,680 146,170

4. Conclusions

In this study, the mechanical characteristics (e.g., deflection, torsion, and natural
frequency) of the graphene platelet-reinforced composite (GPLRC) wind turbine blade
were analyzed. The geometry and material properties of the finite element analysis model
were modeled by referring to the SNL 61.5 m model, a 5 MW-class wind turbine blade
model. The effective material properties of GPLRC were modeled using the Halpin–Tsai
micromechanical model and the modified linear rule of mixture. Aerodynamic loads, the
most crucial factors for the deflection and torsion of wind turbine blades, were calculated
based on the blade element momentum theory (BEMT). The numerical analysis model was
created using GPLRC with the same thickness instead of E-LT-5500 (UD), Saertex (DB), and
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SNL (Triax) materials. The applicability of GPLRC as future materials for wind turbine
blades was examined through the numerical static bending, free vibration, and torsional
stiffness. The numerical results draw the following main observations:

• A similar performance to the existing wind turbine blade was observed when V∗
GPL

was 2.7% for flapwise and edgewise deflection and 2.0% for torsional deformation.
• The natural frequency of the GPLRC-based wind turbine blade is higher than that of

the existing fiberglass composite-based blade when V∗
GPL is 2.0% and 2.7%.

• The production of 5 MW wind turbine blades using the materials discussed in this
paper is expected to reduce weight by more than 20% while maintaining mechanical
characteristics similar to those of existing blades.

• Reducing the weight of wind turbine blades is expected to significantly reduce the
total construction cost of wind turbine support structures.

• The application of GPLRC remarkably reduces the fabrication cost of wind blades
compared to other nanopillars such as CNT, and furthermore can also reduce the total
weight of wind blades simultaneously.

These major observations justify that GPLRC has high potential as a cutting-edge
material for the optimization of wind turbine blades.
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Appendix A. Geometry Dimensions and Material Properties of Wind Blade

Table A1. Aerodynamic properties of the SNL 61.5 m wind turbine blade [25].

Blade Span
(m) Airfoil Type Chord Length

LC (m)
Twist Angle

(º)
Aero. Center

x/LC

0 Circular 3.386 13.308 0.5
1.3667 Circular 3.386 13.308 0.5
10.25 DU99-W-405 4.557 13.308 0.275
14.35 DU99-W-350 4.652 11.480 0.275
22.55 DU97-W-300 4.249 9.011 0.275
26.65 DU91-W-250 4.007 7.795 0.275
30.75 DU91-W-250 3.748 6.544 0.275
34.85 DU91-W-210 3.502 5.361 0.275
38.95 DU91-W-210 3.256 4.188 0.275
43.05 NACA-64-618 3.010 3.125 0.275
47.15 NACA-64-618 2.764 2.319 0.275
51.25 NACA-64-618 2.518 1.526 0.275

54.6667 NACA-64-618 2.313 0.863 0.275
57.4 NACA-64-618 2.086 0.370 0.275

60.1333 NACA-64-618 1.419 0.106 0.275
61.5 NACA-64-618 1.086 0.000 0.275
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Table A2. Stack IDs, names, and materials [25].

Stack ID Stack Name Material

1 Gelcoat Gelcoat
2 Triax Skins SNL(Triax)
3 Triax Root SNL(Triax)
4 UD Carbon Carbon(UD)
5 UD Glass TE E-LT-5500(UD)
6 TE Foam Foam
7 LE Foam Foam
8 SW facesheet Saertex(DB)
9 SW core Foam

Table A3. Stacking sequence in each panel of the blade model along the span [25].

Blade Span (m) LE LE Panel Spar Cap TE TE Reinforcement TE Panel Shear Web

0 1,2,3,2 1,2,3,2 1,2,3,2 1,2,3,2 1,2,3,2 1,2,3,2 -
1.3667 1,2,3,2 1,2,3,2 1,2,3,2 1,2,3,2 1,2,3,2 1,2,3,2 8,9,8

1.5 1,2,3,2 1,2,3,7,2 1,2,3,4,2 1,2,3,2 1,2,3,5,6,2 1,2,3,6,2 8,9,8
6.8333 1,2,3,2 1,2,3,7,2 1,2,3,4,2 1,2,3,2 1,2,3,5,6,2 1,2,3,6,2 8,9,8

9 1,2,2 1,2,7,2 1,2,4,2 1,2,2 1,2,5,6,2 1,2,6,2 8,9,8
43.05 1,2,2 1,2,7,2 1,2,4,2 1,2,2 1,2,5,6,2 1,2,6,2 8,9,8

45 1,2,2 1,2,7,2 1,2,4,2 1,2,2 - 1,2,6,2 8,9,8
61.5 1,2,2 1,2,2 1,2,2 1,2,2 - 1,2,2 8,9,8
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