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Abstract—Existing pulmonary nodule detection methods often

train models in a fully-supervised setting that requires strong

labels (i.e., bounding box labels) as label information. However,

manual annotation of bounding boxes in CT images is very

time-consuming and labor-intensive. To alleviate the annota-

tion burden, in this paper, we investigate pulmonary nodule

detection by leveraging both strong labels and weak labels

(i.e., center point labels) for training, and propose a novel

hybrid-supervised pulmonary nodule detection (HND) method.

The training of HND involves a heterogeneous teacher-student

learning framework in two stages. In the first stage, we design

a point-based consistency calibration network (PCC-Net) as a

teacher, which is pre-trained to generate high-quality pseudo

bounding box labels given point-augmented CT images as inputs.

In the second stage, we develop an information bottleneck-

guided pulmonary nodule detection network (IBD-Net) as a

student to perform pulmonary nodule detection. In particular,

we introduce information bottleneck to learn reliable pulmonary

nodule-specific heatmaps under the guidance of PCC-Net, largely

enhancing the model’s interpretability and improving the final

detection performance. Based on the above designs, our method

can effectively detect pulmonary nodule regions with only a

limited number of bounding box labels. Experimental results on

the public pulmonary nodule detection dataset LUNA16 show

that our HND method achieves an excellent balance between the

annotation cost and the detection performance. The code will be

released soon.

Index Terms—Heatmap learning, Hybrid-supervised learning,

Pseudo label generation, pulmonary nodule detection.

I. INTRODUCTION

L
UNG cancer is the leading cause of cancer-related deaths
worldwide over the past few years [1]. Computed tomog-

raphy (CT) examination of pulmonary nodules often serves
as a crucial indicator of lung cancer [2]. Early diagnosis of
pulmonary nodules can significantly decrease the incidence
of lung cancer. Accordingly, a variety of pulmonary nodule
detection methods [3]–[5] have been developed and they often
train models in the fully-supervised setting, which requires
strongly-labeled CT images (i.e., the bounding box labels of all
pulmonary nodules or tumors). However, accurately annotating
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Fig. 1: The comparison between (a) the homogeneous teacher-
student framework and (b) our heterogeneous teacher-student
framework.

CT images is very time-consuming and labor-intensive due to
the significant diversity of the location, size, and appearance
of pulmonary nodules.

To alleviate laborious annotations, several semi-supervised
methods [6], [7], which leverage both strongly-labeled and
unlabeled data for model training, have been proposed. Mean-
while, some recent efforts [2], [8], [9] have been made
based on weakly-supervised learning with weak labels (such
as electronic medical records (EMR), image-level labels,
point labels, or scribble labels). Although the annotation
cost is greatly reduced by using semi-supervised or weakly-
supervised methods, their performance is still much worse than
fully-supervised methods.

To balance the annotation cost and the detection perfor-
mance, in this paper, we study a hybrid-supervised setting,
which involves a relatively small amount of strong labels and
a large amount of weak labels. Compared with the fully-
supervised setting, the annotation cost in the hybrid-supervised
setting is much smaller. Moreover, the hybrid-supervised set-
ting can be easily implemented in practice since only a small
amount of strongly-labeled data are required. In this paper,
considering that the center point label takes less labeling cost
than the scribble label and involves richer information than
the image-level label, we choose the center point label as
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the weak label. Generally, annotating the center point of a
nodule is usually faster and simpler than annotating a bounding
box. According to [10], annotating a bounding box consumes
about 18 times more than clicking a center point of an object.
Annotators can observe the nodule in the image or volume
data and select a representative point as the center point of the
nodule. In contrast, annotating the bounding box of a nodule
requires more operations and time. Annotators need to draw
a rectangular box around the nodule in the image or volume
data, ensuring that the bounding box accurately encompasses
the contour of the nodule [11]. This often involves adjustments
based on the shape, size, and location of the nodule to obtain
the best bounding box result.

Existing hybrid-supervised methods [12]–[14] mainly work
on natural image segmentation or detection tasks. For example,
Luo et al. [14] deal with strongly-labeled and weakly-labeled
data separately by designing a strong-weak dual-branch net-
work. Pan et al. [15] introduce a label-efficient hybrid-
supervised framework to perform medical image segmentation.
However, these methods only employ weak annotations of
weakly-labeled data for training without generating strong
labels for these data.

Recently, some methods [13], [16] leverage a homogeneous
teacher-student framework, which takes the same form of
inputs for both the teacher and student. This framework
generates pseudo labels for weakly-labeled data by using the
teacher model trained on strongly-labeled data and guides the
learning of the student model with both strong labels and
pseudo labels, as illustrated in Fig. 1 (a).

On the one hand, the pseudo labels (which are generated
based on the model trained only with strongly-labeled data)
may contain much noise, increasing the difficulty of learning
an accurate student model. On the other hand, these methods
often provide prediction results without justification, lack-
ing interpretability and transparency. Although some recent
methods [12] generate the class activation maps (CAM) from
the teacher model as the guidance of the student model, the
detection performance can be significantly affected if CAM
fails to give reliable heatmaps (since CAM tends to give
many false positives and overestimate the response regions
[17]). Note that different from the objects in natural images,
pulmonary nodule regions are small abnormal areas in the
lungs, demanding a more dedicated and flexible way for
hybrid-supervised learning. Hence, how to properly combine
strongly-labeled and weakly-labeled CT images to generate
high-quality pseudo labels and learn reliable heatmaps merits
further investigation.

To address the above problems, we propose a hybrid-
supervised pulmonary nodule detection (HND) method, which
can generate high-quality pseudo bounding box labels and
learn reliable pulmonary nodule-specific heatmaps based on a
novel heterogeneous teacher-student learning framework, for
pulmonary nodule detection, as shown in Fig. 1 (b). The
training of HND involves two stages. In the first stage, we
propose and pre-train a teacher model, called point-based
consistency calibration network (PCC-Net), to obtain high-
quality pseudo bounding box labels given point-augmented CT
images as inputs. In the teacher model, we design two different

self-supervised tasks (supervised by the consistency regression
loss and the consistency classification loss, respectively) and
apply them to the regression task and the classification task,
respectively. Inspired by the multi-path detection calibration
network (PDC-Net) [18], we also develop a two-path calibra-
tion network (TCN) to extract features from different layers for
classification and regression. Different from PDC-Net which
employs multi-path calibration, we incorporate self-supervised
tasks with TCN to train a consistency calibration network.
By integrating TCN into the teacher model, we leverage
features from different layers of the model to formulate the
consistency classification loss, leading to more accurate clas-
sification. In the second stage, based on the pre-trained PCC-
Net, we develop and train a student model, called information
bottleneck-guided pulmonary nodule detection network (IBD-
Net), to detect pulmonary nodules of the input CT images
by transferring the knowledge from the teacher model to the
student model.

Our contributions can be summarized as follows:
• To the best of our knowledge, we are the first to study

pulmonary nodule detection in the hybrid-supervised set-
ting. We develop a novel HND method with a heteroge-
neous teacher-student learning framework for detecting
pulmonary nodule regions. As a result, our method can
obtain an effective student model with only a limited
number of strong labels and a relatively large number
of weak labels.

• We develop PCC-Net and integrate self-supervised tasks
into its regression and classification networks, generating
high-quality pseudo bounding box labels for weakly-
labeled CT images. Furthermore, we design an informa-
tion bottleneck-guided heatmap generation (IHG) module
to learn reliable pulmonary nodule-specific heatmaps.
Such a way provides intuitive explanations for the model,
enhancing its transparency and interpretability.

• Our method performs favorably against state-of-the-art
methods, demonstrating the great potential of hybrid-
supervised learning for pulmonary nodule detection.

The remainder of this paper is organized as follows. We
begin with a review of related work in Section II, followed by
a detailed description of our proposed method in Section III.
Then, in Section IV, we conduct extensive experiments on the
representative pulmonary nodule detection dataset. Finally, we
draw the conclusion in Section V.

II. RELATED WORK

In this section, we review the methods closely related to
our method. We first introduce pulmonary nodule detection in
Section II-A. Then, we briefly review weakly-supervised and
hybrid-supervised learning in Section II-B. Finally, we review
the information bottleneck in Section II-C.

A. Pulmonary Nodule Detection

Pulmonary nodules have been extensively studied, including
pulmonary nodule classification, detection, and segmentation.
Zhu et al. [19] introduces a comprehensive framework that
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includes both a classification network and an explanation net-
work to distinguish between benign and malignant pulmonary
nodules. Wang et al. [20] develop a novel DSNet architecture
that incorporates a detailed representation transfer module and
a soft mask-based adversarial training framework to perform
accurate lung nodule segmentation. Existing automated pul-
monary nodule detection methods typically involve two steps:
nodule candidate detection and false positive reduction. Early
methods [21] are based on the 2D image analysis. Recently,
3D-based methods have become very common. For example,
Tang et al. [3] jointly train the detection and segmentation
tasks and use decoupled feature maps to improve the accuracy
of detecting pulmonary nodules. Wang et al. [22] utilize 3D
Faster R-CNN for nodule detection and subsequently employ a
deep 3D dual-path network to classify the nodules as benign or
malignant. Mei et al. [4] introduce a slice-grouped non-local
(SGNL) module to the encoder network, which can capture
long-range dependencies of one slice group by considering
cross-channel information, for pulmonary nodule detection.
Based on SGNL, Xu et al. [23] propose to use short-distance
slice grouping (SSG) and long-distance slice grouping (LSG)
alternately. In this way, any similarities across multiple slices
(regardless of their distance from each other) can be taken into
account.

B. Weakly-Supervised and Hybrid-Supervised Learning

The annotation cost of fully-supervised learning is very
high. To reduce the annotation cost, weakly-supervised learn-
ing [24]–[26] is developed by leveraging weak labels (such
as image-level labels, point labels, scribble labels, electronic
medical records (EMR), or response evaluation criteria in solid
tumors (RECIST)) that are less laborious to be annotated than
strong labels. Ibrahim et al. [13] train two models to generate
pseudo labels of weakly-labeled data for image segmentation,
and they employ a self-correction module to improve the
quality of pseudo labels. Chen et al. [27] propose a casual
CAM (C-CAM) method for weakly-supervised semantic seg-
mentation on medical images. Based on image-level labels,
two casual chains are designed to address the problem of am-
biguous boundaries and co-occurrence. Note that Momoki et
al. [2] address the challenge of limited annotated training data
by using radiology reports for the automatic characterization
of pulmonary nodules, facilitating radiologists in determining
malignancy. Unlike [2], we annotate simple center points in
the CT images to reduce the burden of annotation costs.

Zhu et al. [8] apply the expectation-maximization algorithm
to exploit nodule-related information in EMR and propose a
deep 3D convolutional neural network for pulmonary nodule
detection. Yang et al. [9] leverage information (such as the
presence of nodules in CT scans, the number of nodules,
and related slice information) from EMR to address the
problem of weakly-supervised pulmonary nodule detection.
Shen et al. [28] introduce a two-stage weakly-supervised lung
cancer detection and diagnosis network WS-LungNet. WS-
LungNet consists of semi-supervised computer-aided detection
and cross-nodule attention computer-aided diagnosis for seg-
menting nodules in CT images and performing patient-level

diagnoses, respectively. Feng et al. [29] train a convolutional
neural network for weakly-supervised segmentation of pul-
monary nodules.

Despite the great progress achieved by weakly-supervised
learning methods, their performance is still far from being sat-
isfactory. Recently, hybrid-supervised learning, which jointly
takes advantage of both strong and weak labels during training,
has received much attention. Ning et al. [30] leverage a marco-
micro framework to segment AS-OCT images. Pan et al.
[15] propose a label-efficient hybrid-supervised framework for
medical image segmentation.

In this paper, we study pulmonary nodule detection in a
hybrid-supervised setting, which is an important but little-
explored task. Notably, considering that pulmonary nodule
regions are small abnormal areas in the lungs, we design a
heterogeneous teacher-student learning framework to generate
high-quality pseudo labels and learn reliable heatmaps. Such a
way greatly reduces false positives and improves the detection
performance.

C. Information Bottleneck
Information bottleneck [31], [32] characterizes a limit on

the amount of mutual information between the original input
and the latent representation obtained from the encoder. Li et
al. [33] employ the information bottleneck theory to extract
the minimal sufficient statistics of WSI. By leveraging the
principle of information bottleneck, information bottleneck at-
tribution (IBA) [34] has been proposed to provide interpretable
visual explanations. IBA introduces noise into a feature map
of a pretrained model to limit the information flow. In this
way, an IBA heatmap can be obtained by summing along
the channel axis of the Kullback-Leibler (KL) divergence
term of the information loss. In addition to IBA, various
other attribution methods (e.g., Grad-CAM [35], Layer-Wise
Relevance Propagation (LRP) [36], IBA, and InputIBA [37])
have gained widespread use. Compared with Grad-CAM, IBA
can give more accurate heatmaps, as validated in [34]. Demir
et al. [17] design a visual attribution method using the IBA and
show the superiority of the IBA over Grad-CAM in medical
imaging diagnosis and prognosis. Wang et al. [38] employ the
IBA heatmap obtained from the cancer classification branch
to give location guidance to the tumor segmentation branch,
leading to performance improvements. The IBA heatmap is
directly adopted as a fixed weighting matrix for enhancing
feature representations.

In this paper, instead of using fixed heatmaps, we de-
sign a module to learn reliable heatmaps without relying
on extra models or point labels, enabling the network to
capture effective information. By doing this, we can generate
reliable heatmaps for predictions in the student model without
using the teacher model. Such a way greatly reduces the
computational cost for inference.

III. PROPOSED METHOD

In this section, we introduce our interpretable heteroge-
neous teacher-student learning method for hybrid-supervised
pulmonary nodule detection. First, we give an overview of
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Fig. 2: The network architecture of HND. It consists of a two-stage heterogenous teacher-student learning framework (first
pre-train PCC-Net (Sec. III-B) and then train IBD-Net (Sec. III-C)). In the first stage, a point-based consistency calibration
network (PCC-Net) is pretrained as the teacher model to generate high-quality pseudo labels given point-augmented images
as inputs. In the second stage, the student model (IBD-Net) leverages information bottleneck to learn reliable heatmaps and
transfer knowledge from the teacher model. Details of symbols in the figure are given in Sec. III.

our method in Section III-A. Then, we introduce the key
components (including the PCC-Net and the IBD-Net) of our
proposed method in Sections III-B and III-C, respectively.

A. Overview

In this paper, we propose a novel hybrid-supervised pul-
monary nodule detection (HND) method based on a het-
erogeneous teacher-student learning framework. The network
architecture of HND is given in Fig. 2. The training of HND
involves two stages. In the first stage, a teacher PCC-Net
is pre-trained to generate high-quality pseudo bounding box
labels given point-augmented CT images as inputs. In the
second stage, a student IBD-Net is trained with both the
original labels and generated pseudo bounding box labels for
all CT images. In IBD-Net, we leverage information bottleneck
to obtain pulmonary nodule-specific heatmaps from PCC-Net.
Based on these heatmaps, an IHG module is designed to learn
reliable heatmaps in IBD-Net. Note that different from the
conventional homogeneous teacher-student framework (which
usually considers the same inputs for both the teacher and
student), our heterogeneous teacher-student learning frame-
work leverages different inputs for the teacher and student
while exploiting the rich knowledge in the learned teacher
model to guide the training of the student model. Based on
the framework, PCC-Net can generate high-quality pseudo

labels and guide IBD-Net to learn reliable heatmaps, greatly
enhancing the detection performance.

B. Point-Based Consistency Calibration Network (PCC-Net)

PCC-Net consists of a backbone, a 3D region proposal
network (RPN), and a two-path calibration network (TCN).
Following [4], 3D RPN consists of a 3⇥3⇥3 convolutional
layer followed by two parallel 1⇥1⇥1 convolutional layers to
predict classification probability and regression terms for each
voxel. To make full use of center point labels, we incorporate
the point representations into CT images and use them as the
inputs of PCC-Net. Based on this, we apply self-supervised
learning to the input and its flipped version, where we impose
the consistency loss on both regression and classification
networks, enhancing the network learning ability.

Specifically, we generate a Gaussian heatmap by fitting a
Gaussian (with a fixed variance) to the center point of each
nodule region in the i-th input CT image Xi, so that the regions
around the point are activated. In the Gaussian heatmap, the
values near the center point are close to 1 while those far from
the center point are close to 0. Then, the Gaussian heatmap
is concatenated with the i-th CT image along the channel
dimension and reshaped into a 2-channel input tensor (a point-
augmented CT image) Ti. Next, the input tensor Ti is flipped
along the z-axis to obtain the flipped version T0

i
. Both Ti and
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T0
i
, which involve the point representations, are used as the

inputs of PCC-Net.
Consistency Regression Loss. Given Ti and T0

i
as in-

puts, we denote the regression results (predicted by RPN)
of the k-th candidate bounding box w.r.t. Ti and the k0-
th candidate bounding box (the opposite location along
the z-axis of the k-th candidate bounding box) w.r.t. T0

i

as dk

RPN
= [�czk,�cyk,�cxk,�dk, �hk,�wk] and

dk
0

RPN
= [�ĉzk

0
,�ĉyk

0
,�ĉxk

0
,�dk

0
,�hk

0
,�wk

0
], respec-

tively, where the elements in both dk

RPN
and dk

0

RPN
represent

the displacements of the center and scale coefficients of a
candidate box. Thus, the consistency regression loss for the
k-th and k0-th candidate boxes is

Lk,k
0

con reg,i
=

1

6

✓����czk �
⇣
��ĉzk

0
⌘���

2
+

����cyk ��ĉyk
0
���
2

+
����cxk ��ĉxk

0
���
2
+

����dk ��d̂k
0
���
2
+
����hk ��ĥk

0
���
2

+
����wk ��ŵk

0
���
2
◆
.

(1)

where k·k denotes the L2 norm.
Consistency Classification Loss. Given Ti and T0

i
as inputs,

we denote the extracted features at the middle layer of the
backbone as fm and fflip

m
, respectively, while the features at

the bottom layer of the backbone as fb and fflip
b

, respectively.
The k-th bounding box bk

RPN
predicted by RPN is first flipped

along the z-axis and we obtain bk,flip

RPN
. Then, the features

fm and fflip
m

are respectively cropped by using bk

RPN
and

bk,flip

RPN
, followed by a 3D max pooling layer, to obtain the

features pm and pm,flip, respectively. Similarly, we repeat the
same operations for fb and fflip

b
, and obtain pb and pb,flip,

respectively. Finally, pm and pm,flip are fed into one path
of TCN (consisting of two fully-connected layers) to get the
classification scores sk

TCN1
and sk,flip

TCN1
, respectively, for the k-

th candidate bounding box. Meanwhile, pb and pb,flip are fed
into another path of TCN (consisting of two fully-connected
layers) to get the classification scores sk

TCN2
and sk,flip

TCN2
,

respectively. Hence, the consistency classification loss for the
k-th candidate bounding box is defined as

Lk

con cls,i
= Q

⇣
sk
TCN1

, sk,flip
TCN1

⌘
+Q

⇣
sk
TCN2

, sk,flip
TCN2

⌘
, (2)

where Q(·) denotes the Jensen-Shannon Divergence.
Then, the overall consistency loss for the i-th point-

augmented CT image is obtained by the average of loss values
from all bounding box pairs:

Lcons(i) = E(Lk,k
0

con reg,i
+ Lk

con cls,i
). (3)

where ‘E’ denotes the expectation operation.
Joint Loss. The joint loss for PCC-Net is defined as

LPCC =
1

N

NX

i=1

(Lcons(i) + LR+T

cls
(i)) +

1

Ns

NsX

i=1

LR+T

sreg
(i)

+
1

Nw

NwX

i=1

LR+T

wreg
(i),

(4)

where LR+T

cls
(i) = LR

cls
(i) + LT

cls
(i), LR+T

sreg
(i) = LR

sreg
(i) +

LT
sreg

(i), and LR+T
wreg

(i) = LR
wreg

(i) + LT
wreg

(i). N , Ns,
and Nw represent the numbers of total training images,
strongly-labeled images, and weakly-labeled images, respec-
tively. LR+T

cls
(i) denotes the classification loss on RPN and

TCN for the i-th image. LR+T
sreg

(i) and LR+T
wreg

(i) denote the
regression losses on RPN and TCN for the i-th strongly-
labeled image and the i-th weakly-labeled image, respectively.
Note that weak annotations only consist of point coordinates
(i.e., the center point of a bounding box). Hence, we can only
calculate the regression losses based on these coordinates.

We exploit consistency learning on a point-augmented CT
image and its flipped version, where we impose constraints on
both the regression and classification of candidate bounding
boxes. Note that the flipping transformation is used due to
its simplicity and effectiveness in augmenting training data.
In particular, the flipping can help capture variations in the
nodule orientation and improve the model’s learning abil-
ity. Moreover, the predicted bounding boxes are comprised
of the regression results of RPN and the ensemble of the
classification results of RPN and TCN. RPN mainly focuses
on localization while TCN focuses on classification. Hence,
we apply the consistency regression loss and the consistency
classification losses to different modules (RPN and TCN). This
greatly facilitates the model to learn the scale knowledge. In
this way, PCC-Net can generate high-quality pseudo bounding
box labels for weakly-labeled CT images. Note that CSD [39]
introduces the consistency constraints on the final classifier
only. Different from CSD, we impose the consistency regres-
sion loss on RPN and the consistency classification loss on
TCN. This enables RPN and TCN to focus on their respective
tasks.

C. Information Bottleneck-Guided Pulmonary Nodule Detec-
tion Network (IBD-Net)

To ensure the generalization capability, IBD-Net adopts
a simple structure, which consists of a backbone, an RPN,
and a one-path calibration network (OCN). The structures of
the backbone and RPN is the same as those of PCC-Net.
One simple way to train IBD-Net is to directly use all the
CT images (with the original labels and generated pseudo
bounding box labels) as training data. However, this way
does not well exploit the pre-trained teacher PCC-Net that
incorporates the point supervision information. Therefore, it is
desirable to train the student IBD-Net under the guidance of
PCC-Net. To achieve this, knowledge distillation, which uses
the features of the teacher to guide the learning of the student,
is a natural choice. Unfortunately, naive knowledge distillation
is not applicable to our task, since PCC-Net and IBD-Net use
different inputs. Here, we introduce information bottleneck
(IB) to generate pulmonary nodule-specific heatmaps from
PCC-Net. Based on this, we develop an IHG module to learn
reliable heatmaps (rather than directly using the IB-generated
heatmap as a weighting matrix in MIB-Net [38] which requires
the annotated information for model learning).
Information Bottleneck Loss. We insert an information bot-
tleneck layer into the middle layer of the backbone in the pre-
trained PCC-Net. Suppose that the input of the information
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bottleneck layer is denoted as Fi and its predicted label is
denoted as Yi. Generally, all available information in Fi is
used to predict Yi. The information bottleneck can depict a
limitation of available information. It introduces a variable
Mi to limit the information used to predict the label Yi.
Mathematically, the information bottleneck maximizes the
shared information between the variable Mi and the label Yi

while minimizing the shared information between the variable
Mi and the input Fi, that is,

max I [Yi;Mi]� �I [Fi;Mi] , (5)

where I [; ] represents the mutual information and the pa-
rameter � determines the trade-off between accurate label
prediction and minimal utilization of information from Fi.
Typically, Mi is the feature representation calculated by adding
noise to Fi, i.e.,

Mi = �Fi + (1� �) ✏, (6)

where the tensor � has the same dimension as Fi, and it
controls the signal reduction and noise injection. ✏ is the noise
that has the same mean and variance as Fi. Usually, � is
set to � = sigmoid(↵) and ↵ is the learnable parameters of
the information bottleneck (initialized as 5 as done in [34]).
Hence, the information loss is defined as

Linfo = EFi [DKL [P (Mi|Fi) ||Q (Mi)]] , (7)

where P (Mi|Fi) represents the probability distribution and
Q(Mi) = N (µFi ,�Fi). µFi and �Fi are the mean and
variance of Fi, respectively.

Based on the above, we optimize the information bottleneck
by using the following IB loss:

LIB = LPCC

s
+ �Linfo, (8)

where LPCC
s

denotes the detection loss (including the classi-
fication and regression losses) for PCC-Net. � is a parameter
empirically set to 10 as done in [34].

Accordingly, we calculate the three-dimensional heatmap ri
by performing a summation along the channel dimension:

ri =
cX

j=0

DKL

⇥
P
�
M[j,d,h,w]|F[j,d,h,w]

�
||Q

�
M[j,d,h,w]

�⇤
,

(9)
where c, d, h, and w denote the channel, depth, height, and
width of the features, respectively.
IHG Module. Unlike Grad-CAM [35], IB tends to give more
accurate heatmaps [17], [34]. Once IB is trained, we can obtain
a pulmonary nodule-specific heatmap ri from PCC-Net for Xi.
Based on ri from PCC-Net, IHG is trained to learn a reliable
heatmap ti for the feature f

0

m
(extracted from the middle layer

of the backbone in IBD-Net). Technically, the IHG module
contains a 1⇥1⇥ 1 convolutional block and a softmax layer.
We use a distance loss to enforce ti to be similar to ri:

Lh =

����
ti

ktikF
� ri

krikF

����
F

, (10)

where k·k
F

represents the Frobenius norm. The learned
heatmap ti is used to activate pulmonary nodule-specific
regions in f

0

m
(see Fig. 2).

Then, we combine the heatmap ti with the feature f
0

m
by

fp = f
0

m
�
⇣
f
0

m ⌦ ti
⌘
, (11)

where fp is the enhanced feature by incorporating the reli-
able heatmap. � and ⌦ represent element-wise addition and
element-wise multiplication, respectively.
Joint Loss. The joint loss for IBD-Net is defined as

LIBD =
NX

i=1

(LR+O

reg
(i) + LR+O

cls
(i)) +

NX

i=1

Lh(i),

LR+O

reg
(i) = LR

reg
(i) + LO

reg
(i),

LR+O

cls
(i) = LR

cls
(i) + LO

cls
(i),

(12)

where LR
reg

(i) and LO
reg

(i) are the regression losses on RPN
and OCN for the i-th CT image Xi, respectively. LR

cls
(i) and

LO

cls
(i) are the classification losses on RPN and OCN for the

i-th CT image Xi, respectively.

IV. EXPERIMENTS

In this section, we first introduce the datasets and evaluation
metrics in Section IV-A. Then, we give the implementation
details in Section IV-B. Next, we conduct ablation studies in
Section IV-C and give some visualization results in Section-D.
Finally, we compare our method with several state-of-the-art
methods in Section IV-E.

A. Datasets and Evaluation Metrics

We conduct extensive experiments on the public LUNA16
dataset [40] to evaluate the detection performance. The
LUNA16 dataset is collected based on the LIDC-LDRI dataset
[41], which is a widely used public dataset for studying
pulmonary nodules.

For the LUNA16 dataset, similar to NoduleNet [3], we
use 583 CT images with 1,131 nodules in our experiments.
Specifically, we randomly select 483 CT images and 100
CT images for training and testing, respectively. For each
round of training, we randomly select 48 (⇠ 10% of the
training data) and 435 (⇠ 90% of the training data) CT images
as strongly-labeled and weakly-labeled images, respectively,
from the whole dataset. The rest is used for testing.

As done in [40], Free-Response Receiver Operating Char-
acteristic (FROC) and the competition performance metric
(CPM) are used as the evaluation metric. The horizontal
axis of FROC represents the false positive rate per scan
(FPs/scan) while the vertical axis represents the sensitivity.
Mathematically, the sensitivity is calculated as

Sensitivity =
TP

TP + FN
, (13)

where TP and FN represent the true positive and the false
negative, respectively.

For calculating CPM, several values of FPs/scan are first
selected (such as 0.125, 0.25, 0.5, 1.0, 2.0, 4.0, and 8.0),
and then the corresponding sensitivity values are calculated.
Finally, CPM is the average of these sensitivity values.
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TABLE I: Ablation studies for different variants of our HND method on the LUNA16 dataset. CPM is used for performance
evaluation. The values from the second to eighth columns are nodule detection sensitivities (unit:%) under a specific false
positive rate per scan (FPs/scan). The values in the last column are the average sensitivities. The best results are marked in
bold.

Method 0.125 0.25 0.5 1.0 2.0 4.0 8.0 Avg.

Baseline 52.63 57.89 66.08 78.36 80.12 84.21 86.55 72.26
HND w/o point 52.04 62.57 72.51 81.29 84.21 88.30 90.64 75.94
HND w/o CL 47.37 59.06 73.10 80.12 87.72 90.64 92.40 75.77
HND w/o CRL 56.73 63.16 74.85 83.04 87.72 88.89 91.81 78.03
HND OCN 57.31 61.99 73.10 81.87 85.96 89.47 92.98 77.53
HND w/o IHG 60.23 64.33 73.68 80.12 84.80 90.06 90.06 77.61
HND 60.23 67.25 77.19 84.80 87.72 90.64 92.40 80.03

B. Implementation Details
Each CT image is pre-processed and cropped into a 3D

patch with the size of 128⇥128⇥128 for LUNA16. The
models are trained for 200 epochs and 300 epochs in two
stages, respectively, by using SGD with an initial learning rate
of 0.001. The learning rate is divided by 10 after 100 and 160
epochs. We iteratively feed the strongly-labeled images (with
a batch size of 8) and weakly-labeled images (with a batch
size of 1) to the network in each learning stage. In PCC-Net
and IBD-Net, 3D ResNet-50 [42] is adopted as the backbone.
In IBD-Net, the information bottleneck is trained every ten
epochs. We adopt IBD-Net, which is trained based on only the
regression and classification losses with bounding box labels
and center point labels, as our baseline method. For strongly-
labeled data, we utilize their bounding box labels and category
labels in the classification and regression losses. For weakly-
labeled data, we employ their center point labels and category
labels in the classification and regression losses. During the
test phase, we only use the student model for inference, where
the original CT images are taken as inputs.

C. Ablation Studies
We perform extensive ablation studies to evaluate the key

components of our method. The results obtained by the
baseline and several variants of our HND method are given in
Table I. The LUNA16 dataset is used for ablation studies. We
use 10% of the training data and 90% of the training data as
strongly-labeled and weakly-labeled data, respectively.
Effectiveness of the Two-Stage Learning framework. In
this paper, we develop a heterogeneous two-stage teacher-
student learning framework. We evaluate the effectiveness of
the two-stage learning framework. The baseline method is
trained based on the one-stage learning framework.

From Table I, the baseline method performs much worse
than the other variants (trained with the two-stage learning
framework). Notably, HND outperforms the baseline method
by a large margin (7.77% improvements in terms of the
average sensitivity). This shows the superiority of the two-
stage learning framework, which generates pseudo labels in
the first stage and trains the pulmonary nodule detection model
in the second stage.
Effectiveness of Point-Augmented Representations. We pro-
pose to use point-augmented representations as inputs of PCC-
Net to fully exploit both strong labels and weak labels. To

Fig. 3: Performance comparisons of (a) the quality of pseudo
labels and (b) different data proportions.

demonstrate the effectiveness of the heterogeneous teacher-
student framework, we also evaluate the homogeneous teacher-
student framework, where both the teacher and student net-
works adopt the same inputs (without any point augmentation).
The homogeneous teacher-student framework is HND that
uses only the original CT images as the inputs of PCC-Net
and is denoted as “HND w/o point”.

As shown in Table I, by comparing the “HND w/o point”
method with HND, HND obtains better performance than the
“HND w/o point” method. Specifically, the average sensi-
tivity obtained by the HND method is improved by 4.09%
in comparison with that obtained by the “HND w/o point”
method. This indicates the importance of enhancing input
representations by the point information in the first stage. Such
a way is beneficial to generate high-quality pseudo labels of
CT images.
Effectiveness of the Consistency Loss. We evaluate the
performance of our HND without the overall consistency loss
(denoted as “HND w/o CL”) and without only the consistency
regression loss (denoted as “HND w/o CRL”).

As shown in Table I, the “HND w/o CRL” method achieves
better results than the “HND w/o CL” method. This is because
that the consistency classification loss enables the model to
better distinguish the nodules from non-nodules and further
reduce false positives. Meanwhile, by adding the consistency
regression loss, HND obtains better performance than the
“HND w/o CRL” method. This indicates the importance of
predicting the scale displacement of the bounding box by using
the consistency regression loss. These two losses complement
each other, leading to the improvement of the detection per-
formance.
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TABLE II: Ablation studies for the influence of different center points.

� 0.125 0.25 0.5 1.0 2.0 4.0 8.0 Avg.
0 60.23 67.25 77.19 84.80 87.72 90.64 92.40 80.03

1 60.82 65.50 76.02 80.70 85.38 91.23 92.98 78.95
2 57.31 68.42 76.61 81.87 85.38 90.06 92.40 78.86
3 61.40 71.35 76.61 81.29 84.21 87.72 89.47 78.86

Effectiveness of TCN. We evaluate the effectiveness of TCN.
HND that uses a one-path calibration network (OCN) in PCC-
Net is denoted as “HND OCN”.

As shown in Table I, HND outperforms HND OCN in terms
of different sensitives (about 2.5% improvements in terms of
the average sensitivity). Therefore, the adoption of TCN in
different layers of the teacher model is beneficial for extracting
different levels of information, further reducing false positive
rates for detecting pulmonary nodules.
Effectiveness of the IHG Module. We evaluate the effective-
ness of the IHG module. HND trained without using the IHG
module is denoted as “HND w/o IHG”.

As given in Table I, HND achieves better performance than
HND w/o IHG. The IHG module can effectively learn reliable
heatmaps that encode pulmonary nodule-specific information,
reducing false positives and highlighting response regions. The
learned heatmaps can then be used to activate pulmonary
nodule-relevant areas in the features. Therefore, the IHG
module successfully facilitates the transfer of information
between the teacher network and the student network, leading
to enhanced detection performance.
Comparison of the Quality of Pseudo Labels. We compare
the quality of pseudo labels obtained by different methods. We
evaluate four variants of HND (including “HND w/o point”,
“HND w/o CL”, “HND w/o CRL”, and “HND OCN”). Root
Mean squared error (RMSE) is used to measure the difference
between pseudo labels and ground-truth labels. The smaller
the difference is, the higher the quality of pseudo labels is.
Results are given in Fig. 3(a).

From Fig. 3(a), we can observe that HND achieves a smaller
RMSE than HND w/o point, HND w/o CL, HND w/o CRL,
and HND OCN. This shows that the quality of pseudo labels
is improved by using the point-augmented representations, the
consistency loss, and TCN, respectively.
Comparison of Different Data Proportions. We evaluate
HND with different proportions of weakly-labeled CT images
(the number of strongly-labeled images is fixed). Results are
given in Fig. 3(b).

The performance of HND is improved when the propor-
tion of weakly-labeled CT images is increased from 0% to
100%. This can be ascribed to the fact that CT images with
point annotations can provide useful weak information. When
more annotation information is used, the performance can be
effectively enhanced.
Comparison of Different Center Points. We impose vari-
ations to the original ground-truth center point by adding
zero-mean Gaussian noise with standard deviation � to each
point. Table II shows the results obtained by our method with
different levels of Gaussian noise.

(a)

(b)

(c)

(d)

Fig. 4: Visualizations of some generated heatmaps (the first
row), some detection results (the bounding boxes with green
borders in the second row), and ground-truths (the bounding
boxes with yellow borders in the second row) obtained by
using (a) our IBA, (b) Saliency Maps [43], (c) GuidedBP [44],
and (d) GradCAM [35]. The images without green bounding
boxes indicate that no nodule is detected.

As shown in Table II, our method achieves the best results
when � = 0. Meanwhile, the performance of our method
only slightly changes when different values of � are used.
These results show the robustness of our method against small
perturbations of center points.
Influence of the Layer of the Backbone to Insert the

Information Bottleneck.

We insert the information bottleneck into different layers of
the backbone and evaluate the final performance. We denote
the four layers after the first four blocks of the backbone as
“Layer 1”, “Layer 2”, “Layer 3”, and “Layer 4”, respectively.
The performance of our method by inserting the information
bottleneck into the four layers of the backbone is given in
Table III.

We can see that our method achieves the best average
sensitivity when the information bottleneck is inserted into
Layer 2 of the backbone. The features from the middle layers
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TABLE III: Ablation studies for the influence of different layers of the backbone that the information bottleneck is inserted
into.

Layer 0.125 0.25 0.5 1.0 2.0 4.0 8.0 Avg.
Layer 1 52.63 63.74 70.76 80.70 85.38 88.89 90.06 76.02
Layer 2 60.23 67.25 77.19 84.80 87.72 90.64 92.40 80.03

Layer 3 56.73 64.91 73.68 80.12 83.63 88.89 90.06 78.86
Layer 4 60.82 69.59 78.36 83.04 85.96 89.47 91.23 79.78

TABLE IV: Ablation studies for the influence of IBA and other interpretable strategies employed in our method when 10% of
training data is used as strongly-labeled data.

Strategy 0.125 0.25 0.5 1.0 2.0 4.0 8.0 Avg.
IBA [34] 60.23 67.25 77.19 84.80 87.72 90.64 92.40 80.03

GuidedBP [44] 49.71 55.56 64.91 70.76 77.19 80.12 83.63 68.84
GradCAM [35] 38.01 42.69 48.54 52.05 57.31 63.16 70.18 53.13
Saliency [43] 38.01 40.35 43.27 52.05 55.56 59.06 61.40 49.96

TABLE V: CPM (%) comparisons obtained by fully-supervised methods on the LUNA16 dataset.

Methods
False positive rate per scan

Data Type
0.125 0.25 0.5 1.0 2.0 4.0 8.0 Average

Roth et al. [45] 49.90 59.80 66.60 70.50 75.60 80.30 82.90 69.40 2D
Lee et al. [46] 26.20 35.90 47.20 58.60 67.40 71.30 76.60 54.80 2D

Setio et al. [47] 63.60 72.70 79.20 84.40 87.60 90.50 91.60 81.40 2D
Liao et al. [48] 59.38 72.66 78.13 84.38 87.50 89.06 89.84 80.13 3D
Dou et al. [49] 67.70 73.70 81.50 84.80 87.90 90.70 92.20 82.70 2D
Tang et al. [3] 65.18 76.79 83.93 87.50 91.07 92.86 93.75 84.43 3D

Zhang et al. [50] 73.70 76.40 80.40 84.70 89.00 92.10 93.70 84.30 2D
Mei et al. [4] 71.17 80.18 86.49 90.09 93.69 94.59 95.50 87.39 3D
Lin et al. [51] 72.15 79.22 86.53 90.13 93.20 94.77 95.78 87.39 3D
Jian et al. [52] 76.43 82.14 85.71 89.29 92.86 94.29 95.71 88.08 3D
Luo et al. [5] 74.30 82.90 88.90 92.20 93.90 95.80 96.40 89.20 3D

HND 77.78 84.21 89.47 92.40 92.98 92.98 94.15 89.14 3D

contain both spatial and contextual information, which can be
useful for learning reliable heatmaps.

D. Visualization Results
In this section, we visualize several examples of heatmaps

generated by our IBA and other interpretable methods, in-
cluding three gradient-based methods (Saliency maps [43],
Guided Backpropagation (GuidedBP) [44] and GradCAM
[35]) on LUNA16, as shown in Fig. 4. GradCAM [35],
Saliency maps [43], and GuidedBP [44] are all gradient-
based methods. GradCAM, Saliency maps, and GuidedBP all
utilize the backpropagation algorithm to compute the relevance
between image pixels and the model output, thereby generating
heatmaps based on the gradient information. This enables them
to visualize the input regions that the model focuses on. IBA
introduces perturbations or masking to the input, evaluating
the influence on the model’s predictions. In this way, IBA can
generate heatmaps based on the results calculated from using
the information bottleneck theory.

For a fair comparison, we apply these methods to obtain
activation maps (typically having the same size as the input
images) from the pretrained PCC-Net. The activation maps
extracted from the PCC-Net are resized to the same dimension
as the feature f

0

m
and used to guide the learning of the IHG

module. Here, we employ 10% of training data in LUNA16
as strongly-labeled training data and visualize the heatmaps
learned by the IHG module.

From Fig. 4, the heatmaps generated by our method contain
much less noise than our method with other interpretable
methods. By using our IBA, our method can generate dense
and reliable heatmaps that cover all the targeted areas. The pre-
dicted bounding boxes and the ground-truth labels are similar.
This demonstrates the effectiveness of our IBA in removing
unrelated information. In this way, the pulmonary nodule-
specific heatmaps obtained by our IBA can effectively teach
the IBD-Net to learn reliable heatmaps and further improve the
final performance. Saliency Map and GradCAM capture too
much background information when locating nodules and they
easily miss some nodules (e.g., the third column in Fig. 4(b)
and the fourth column in Fig. 4(d)). Compared with Saliency
Map and GradCAM, GuidedBP can depict the position of
nodules more accurately but focuses only on a small portion
of nodules, resulting in a significant deviation between the
detection results and the ground-truth labels (e.g., the first and
last examples in Fig. 4(c)).

The visualization results demonstrate that our method is ca-
pable of providing accurate predictions while offering intuitive
explanations through heatmaps. Moreover, we also evaluate

Page 9 of 13 IEEE Transactions on Circuits and Systems for Video Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

TABLE VI: CPM (%) comparisons obtained by semi-
supervised and hybrid-supervised methods on LUNA16.

Proportion
Method Average

Strongly-Labeled Weakly(Un)-Labeled

100% 0%

NoduleNet (N2) [3] 84.43
SANet [4] 87.39
HS-SANet 83.29

SS-ND 84.89
HND 89.14

50% 50%

HS-SANet 81.12
HS-LSSANet 74.94

SS-N 84.02
SS-N+ 79.65
SS-ND 81.58
HND 87.30

25% 75%

HS-SANet 75.52
HS-LSSANet 66.83

SS-N 78.07
SS-N+ 80.80
SS-ND 78.33
HND 84.46

10% 90%

HS-SANet 49.96
HS-LSSANet 39.77

SS-N 64.16
SS-N+ 67.34
SS-ND 77.44
HND 80.03

the influence of our IBA and other interpretable methods on
the performance of our method in Table IV. Our method
achieves the best results across all metrics, consistent with
the visualization results in Fig. 4.

E. Comparison with State-of-the-Art Methods

In this subsection, we evaluate our methods on the represen-
tative pulmonary nodule detection dataset LUNA16. Table V
gives the comparison results obtained by fully-supervised
methods on the LUNA16 dataset. Table VI gives the compari-
son results obtained by semi-supervised and hybrid-supervised
methods on the LUNA16 dataset. The state-of-the-art meth-
ods include fully-supervised methods [3]–[5], [45]–[50], two
hybrid-supervised methods (HS-SANet and HS-LSSANet),
and three semi-supervised methods (SS-ND, SS-N, and SS-
N+). Since most of the hybrid-supervised methods work on
2D image segmentation and natural image detection tasks,
they cannot be directly applied to our task. Hence, for a fair
comparison, we construct a simple hybrid-supervised method
(denoted as “HS-SANet”) based on SANet [4]. In this method,
SANet is first pre-trained by strongly-labeled CT images
to predict pseudo bounding box labels for weakly-labeled
images. Then, SANet is fine-tuned with the original strong
labels and generated pseudo labels. Similarly, we construct
another hybrid-supervised method based on LSSANet [23]
(denoted as “HS-LSSANet”). For the semi-supervised method,
we remove the point-related operations in HND and denote
this method as “SS-ND”. Based on NoduleNet [3] “SS-N” is
constructed by utilizing a similar two-stage learning strategy.
In the first stage, “SS-N” generates pseudo labels for unlabeled

images, whereas, in the second stage, both labeled images and
unlabeled images are trained alternately. We extend “SS-N” to
“SS-N+” by adding two self-supervised tasks designed by us.

From Table V and Table VI, our HND method achieves
much better performance than other methods in different cases.
This can be ascribed to the two-stage teacher-student learning
framework, which involves the pre-training of PCC-Net and
the training of IBD-Net under the guidance of PCC-Net.
Compared with fully-supervised methods, SCPM-Net (average
sensitivity: 89.20%) and SANet (average sensitivity: 87.39%)
using 100% of strongly-labeled data, HND using only 50% of
strongly-labeled data can achieve close performance (average
sensitivity: 87.30%), significantly reducing annotation costs by
only requiring half of strongly-labeled CT images. Moreover,
as shown in Table VI, the average sensitivity (87.30%) of
HND using 50% of strongly-labeled data outperforms those
(84.43% and 83.29%) of fully-supervised methods (NoduleNet
and HS-SANet). Note that the time of annotating 100% of the
training data is significantly greater than that of annotating
50% of the training data. When only 10% and 25% of strongly-
labeled data are available, HND still outperforms other hybrid-
supervised and semi-supervised methods (HS-SANet and SS-
ND) by a large margin.

In SANet, a SGNL module is introduced in the encoder
network to capture long-term dependencies within a slice
group. Based on the SGNL module, LSSANet further exploits
SSG and LSG to detect pulmonary nodules. In this way, when
the slices are far apart, the similarity between them can still be
exploited for feature extraction. HS-LSSANet performs worse
than HS-SANet. This is because SSG and LSG in LSSANet
are easily affected by the different sizes of test images, making
HS-LSSANet fail to perform well in LUNA16 containing
images with different sizes.

In Table V, our method performs better than most fully-
supervised methods. Most pulmonary nodule detection meth-
ods detect nodules in the form of 3D bounding boxes, while
SCPM-Net detects pulmonary nodules in the form of 3D
bounding spheres. When predicting bounding boxes, the model
is required to predict scale offsets in three directions. In
contrast, only the scale offsets in one direction (the radial
direction) are predicted for bounding spheres. This simplifies
the prediction of bounding spheres, improving the perfor-
mance. Note that SCPM-Net is specifically designed under
a fully-supervised setting, while our method focuses on a
hybrid-supervised setting. Although the sensitivities of our
method are slightly lower than that of SCPM-Net, our method
exhibits a performance increase in comparison with SCPM-
Net at low false positive rates per scan (5.23% and 1.31%
improvements at 0.125 and 0.25, respectively). The above
experiments validate the effectiveness of our method.

V. CONCLUSION AND FUTURE WORK

In this paper, we develop a novel HND method for pul-
monary nodule detection in a hybrid-supervised setting, which
requires only a small number of labeled bounding boxes and
a relatively larger number of labeled center points for train-
ing. HND is trained via an interpretable heterogeneous two-
stage teacher-student learning framework. In the first stage,
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PCC-Net is pre-trained as a teacher to generate high-quality
pseudo bounding box labels. In the second stage, IBD-Net
is trained as a student to detect pulmonary nodule regions
under the guidance of PCC-Net. In IBD-Net, an IHG module
is introduced to learn reliable heatmaps that closely resemble
the pulmonary nodule-specific heatmaps extracted from PCC-
Net. Experimental results on the public LUNA16 dataset show
the superiority of our method against state-of-the-art methods.

Although our method can achieve excellent performance
for hybrid-supervised pulmonary nodule detection, the training
complexity of our method is relatively high. The training of
our method involves a heterogeneous teacher-student frame-
work, where a teacher model is trained in the first stage while a
student model is trained in the second stage under the guidance
of the teacher model. In future work, we plan to simplify the
model architecture to reduce the training complexity.
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