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M I C R O B I O L O G Y

Identification of intracellular bacteria from multiple 
single-cell RNA-seq platforms using CSI-Microbes
Welles Robinson1,2,3,4,5*†, Joshua K. Stone6†, Fiorella Schischlik1, Billel Gasmi4, Michael C. Kelly7, 
Charlie Seibert7, Kimia Dadkhah7, E. Michael Gertz1, Joo Sang Lee8, Kaiyuan Zhu1,9,10, Lichun Ma1, 
Xin Wei Wang6, S. Cenk Sahinalp1, Rob Patro2,3, Mark D. M. Leiserson2,3, Curtis C. Harris6,  
Alejandro A. Schäffer1‡, Eytan Ruppin1*‡

The study of the tumor microbiome has been garnering increased attention. We developed a computational pipe-
line (CSI-Microbes) for identifying microbial reads from single-cell RNA sequencing (scRNA-seq) data and for analyz-
ing differential abundance of taxa. Using a series of controlled experiments and analyses, we performed the first 
systematic evaluation of the efficacy of recovering microbial unique molecular identifiers by multiple scRNA-seq 
technologies, which identified the newer 10x chemistries (3′ v3 and 5′) as the best suited approach. We analyzed 
patient esophageal and colorectal carcinomas and found that reads from distinct genera tend to co-occur in the 
same host cells, testifying to possible intracellular polymicrobial interactions. Microbial reads are disproportionately 
abundant within myeloid cells that up-regulate proinflammatory cytokines like IL1Β and CXCL8, while infected tumor 
cells up-regulate antigen processing and presentation pathways. These results show that myeloid cells with bacteria 
engulfed are a major source of bacterial RNA within the tumor microenvironment (TME) and may inflame the TME 
and influence immunotherapy response.

INTRODUCTION
In addition to malignant and nonmalignant human cells, the tumor 
microenvironment (TME) consists of microbes including viruses, 
bacteria, and fungi, collectively referred to as the tumor microbiome. 
Early studies of the tumor microbiome focused on viruses that are 
estimated to cause ~10 to 15% of human cancers worldwide, includ-
ing Merkel cell polyomavirus, which is detectable in ~75% of Merkel 
cell carcinomas and Hepatitis B and C viruses, which are collectively 
estimated to cause more than 60% of liver cancers (1–4).

Some more recent experimental and computational studies ex-
panded the scope of the tumor microbiome to include tumor-resident 
bacteria and fungi (5–8). For example, early studies of bacteria in tumors 
reported the increased prevalence of the bacterium Fusobacterium 
nucleatum in colorectal carcinoma compared to adjacent nontumor 
tissue (9, 10). Larger-scale reports demonstrate that many, if not all, 
solid tumor types have a microbiome, possibly distinct and distin-
guishable from the microbiome of nearby nontumor tissue (6, 8–10). 
Further studies have demonstrated the functional importance of 
specific members of the tumor microbiome to multiple hallmarks of 

tumorigenesis including mutagenesis, metastasis, and immune eva-
sion as well as response to chemotherapy (9–15). Tumor microbiome 
studies have shifted partly to intracellular microbes due to recent 
findings that the vast majority of intratumoral bacterial taxa, includ-
ing F. nucleatum, appear to reside intracellularly within the TME (6, 
7, 16). Despite these advances, it has remained an important, open 
challenge to identify which microbial taxa reside intracellularly and 
whether they reside exclusively or preferentially inside tumor cells, 
immune cells, or cells of the noncancerous tissue adjacent to the 
solid tumor.

One increasingly popular approach for studying intracellular or 
host cell–associated microbes is the analysis of microbial reads 
from single-cell RNA sequencing (scRNA-seq) in the settings of 
viral infection or of cancer (17–21). To provide context for our 
work, we mention two recently published reports analyzing micro-
bial reads from scRNA-seq in the context of cancer (19, 21). One of 
these studies introduced a computational approach (SAHMI) for 
decontaminating droplet-based scRNA-seq data, which it applied 
to analyze two 10x 3’ v2 datasets of pancreatic cancer (19). The other 
introduced an experimental scRNA-seq approach and analysis 
pipeline termed INVADE-seq that aims to increase the capture of 
bacterial reads by including a primer for a conserved region of the 
bacterial 16S ribosomal RNA (rRNA) in 10x 5′ polyA capture, 
which was applied to analyze seven oral squamous cell carcinomas 
(21). These studies present distinct methods for filtering out poten-
tial environmental contaminants (22), which have been a concern 
with the application of traditional 16S rRNA-seq and bulk DNA- 
and RNA-seq–based microbiome studies. SAHMI uses multiple 
decontamination steps, while the INVADE-seq study does not 
discuss methods for filtering potential contaminants. While mak-
ing important contributions, each of these two studies focused on 
studying one single scRNA-seq wet laboratory method, leaving 
open the challenge of providing comparative guidance regarding 
scRNA-seq technology selection for future scRNA-seq studies that 
profile the microbiome.
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To compare microbial read detection of different scRNA-seq tech-
nologies, we developed a reproducible computational pipeline, named 
CSI-Microbes. We then comprehensively applied CSI-Microbes to 
study multiple plate-based (Smart-seq2 and plex-Well) and droplet-
based (10x 3’ v2, 3’ v3, and 5’) scRNA-seq datasets of human cells ex-
posed in vitro to select bacteria. Specifically, we found that plate-based 
technologies capture the most microbial reads, but approximately half 
of these microbial reads map to putative contaminant genera (Fig. 1). 
By comparison, 10x technologies capture relatively few reads from 
putative contaminants, but more successfully capture reads mapping 
to the in vitro–exposed bacteria (Fig. 1). Their capture levels depend 
on the specific chemistry, with at least an order of magnitude more 
microbial reads detected by the newer 10x chemistries (10x 3’ v3 and 
10x 5’) compared to the earlier 10x 3’ v2 chemistry. These findings thus 
identify the newer 10x protocols as the preferred methods for study-
ing the tumor microbiome (Fig. 1).

Armed with these insights, we next applied CSI-Microbes to in-
terrogate the intratumoral microbiome of patient colorectal and 
esophageal carcinomas by analyzing large, recently published 10x 

3’ v3 and 5’ datasets. We show that intracellular bacteria are dis-
proportionately found in myeloid cells and have identified bacterial 
genera that co-occur in the same cells more than expected under a 
random model (Fig. 1). Last, we combined the microbial and host 
cell transcriptomic reads to reveal cell type–specific transcriptomic 
signatures that are shared between in vitro– and in vivo–infected cells 
(Fig. 1). Those include the up-regulation of antigen processing and 
presentation pathways in infected tumor cells and the up-regulation 
of proinflammatory cytokines IL1Β and CXCL8 in myeloid cells with 
bacteria engulfed, whose potential therapeutic relevance is discussed.

Our work makes four contributions. First and foremost, we de-
veloped a new pipeline, CSI-Microbes, for identifying microbial reads 
from both plate- and droplet-based scRNA-seq technologies, distin-
guishing intracellular bacteria reads from those of contaminants 
and determining cell types enriched with bacterial reads. The second 
most important is that we produced a new dataset, herein called 
Robinson2023, of multiple cell lines exposed in vitro to F. nucleatum 
with appropriate controls sequenced with multiple scRNA-seq tech-
nologies. Leveraging our first two contributions, we compared capture 

Fig. 1. Overview of CSI-Microbes. Overview of the CSI-Microbes analysis pipeline for analysis of intracellular bacteria from scRNA-seq datasets (a more detailed overview 
is available in fig. S1A). Key findings of the differences in detection of microbial reads between scRNA-seq technologies from analysis of human cells infected in vitro from 
both this study and previous studies. Results from CSI-Microbes applied to scRNA-seq of patient esophageal and colorectal carcinoma including enrichment of bacterial 
UMIs in myeloid cells, co-occurrence of bacterial UMIs in the same human cells, and myeloid and tumor cell–specific transcriptomic associations with bacterial UMIs.
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rates for intracellular bacteria and contaminants across different 
scRNA-seq technologies and found that 10x 3’ v3 and 5’ chemistries 
are superior to earlier chemistries and plate-based approaches. Last, 
we applied CSI-Microbes to colorectal and esophageal patient 10x 3’ 
v3 and 5’ datasets to find an enrichment of bacterial reads in my-
eloid cells within the TME.

RESULTS
Overview of CSI-Microbes
We developed a computational pipeline, CSI-Microbes (https://
github.com/ruppinlab/CSI-Microbes-identification), to identify mi-
crobial reads from plate-based and 10x scRNA-seq datasets [when 
comparing plate-based and 10x datasets, we use the word “reads” to 
refer to unique molecular identifiers (UMIs) when describing 10x 
data for consistency] (fig. S1A). The modules of CSI-Microbes are 
described in Materials and Methods; for some of the more technical 
parts of Results, it is useful to be aware that the module that aligns 
reads to genomes can use different approaches for aligning nonhu-
man reads to microbial genome(s) including PathSeq (23) (which was 
used also by the INVADE-seq study) and CAMMiQ (24) to align to 
many microbial genomes and SRPRISM (25) to align to a (few) spe-
cific microbial genome(s). Unless otherwise specified, the results 
presented in this study use the PathSeq option for sequence alignment. 
In total, we applied CSI-Microbes to five different datasets (Table 1).

Results is composed of two main parts, A and B, each consisting 
of a few subsections. Part A describes a series of controlled experi-
ments and analyses that evaluate the efficacy of different scRNA-seq 
technologies in uncovering the microbiome of infected cells in vitro. 
In part B, we analyze patients’ tumor data using the most informa-
tive sequencing platforms identified in part A to interrogate host-
microbe interactions.

Evaluating CSI-Microbes across sequencing platforms
CSI-Microbes identifies reads from known intracellular 
microbes from specifically designed plate- and droplet-based 
scRNA-seq technologies
To compare the capture of bacterial reads by different scRNA-seq 
technologies, we designed in vitro infection experiments, which we 
assayed using multiple scRNA-seq technologies (Fig. 2A). First, we 
selected three scRNA-seq technologies to compare using the same ex-
perimental design: 10x 3’ v3 and 10x 5’ (droplet) and plexWell (plate). 
Second, we included three cell lines of various tissues of origin, 

including epithelial cells (HCT116, colorectal cancer), monocytes 
(THP1), and T cells (Jurkat T). Third, we used three experimental 
treatment groups for each cell line: naïve or unexposed cells for 
background microbial UMI signal, heat-killed F. nucleatum (HK-​Fn 
exposed), and live F. nucleatum–exposed cells (live-​Fn exposed). 
Fourth, we included empty wells in the plexWell capture to account 
for well carryover as a possible source of contamination.

We evaluated the invasion by F. nucleatum of the three cell lines 
using two orthogonal approaches. First, using an RNAscope (26) probe 
specific for F. nucleatum 23S rRNA, we observed that 25, 70, and 80% 
of live-​Fn–exposed Jurkat T, THP1, and HCT116 cells were positive 
for F. nucleatum (fig. S1B). Second, we measured colony-forming units 
(CFUs) following cell lysis to compare the number of live intracellular 
bacteria and only recovered viable bacteria from live-Fn–exposed 
HCT116 cells (fig. S1C). Combining the results from the two ap-
proaches suggests that while the detection of bacterial RNA does not 
imply the presence of live intracellular bacteria, higher levels of bac-
terial RNA are associated with live intracellular bacteria, except for 
THP1, which we discuss later.

From the plate-based dataset, we identified 393,380 Fusobacterium 
reads (mean, 4574 per cell) from live-​Fn–exposed cells, including 
significantly more Fusobacterium reads in HCT116 cells compared to 
Jurkat T cells and 202 reads (mean, 13 reads per cell) from HK-​Fn– 
exposed cells (Fig. 2B and fig. S2 and S3). Unexpectedly, we identified 
292 Fusobacterium reads from unexposed cells and empty wells (mean, 
11 reads per cell) likely from cross-well contamination (Fig. 2B). We 
also found many reads from putative contaminants (other, unexpected 
bacterial, fungal, and viral genera), which comprised 45% (317,250 
of 710,630) of the genera-resolution microbial reads from live-​Fn– 
exposed cells (Fig. 2C and table S1). The large number of reads assigned 
by PathSeq to a non-​Fusobacterium genus could indicate either con-
tamination or some algorithmic flaw in PathSeq due to its heuristic 
alignment method and incomplete genome database. To investigate 
the latter possibility, we identified all 1,223,238 reads assigned by 
PathSeq to a taxon that is at genus level or below and does not belong 
to genus Fusobacterium. Among these reads, 4889 (0.4%) had a 
significant alignment to Fusobacterium, which we defined formally 
as a blastn match of E value <1 × 10−15 to at least 1 genome among 
16 Fusobacterium genomes (table S1D), which include all those used 
by PathSeq and more; in this analysis, blastn was run with word size 11, 
which is the lowest value allowed and hence finds the most possible 
matches. Among these 4889 reads, a small proportion (~5%) were as-
signed by PathSeq to a different genus in order Fusobacteriales due to 

Table 1. Datasets analyzed. 

Abbreviation scRNA-seq technology Description NCBI Bioproject Accession Source/reference

Aulicino2018 Smart-seq2 (plate-based) moDCs exposed in vitro to S. 
enterica

PRJNA437328 (27)

Ben-Moshe2019 10x 3’ v2 PBMCs exposed in vitro to S. 
enterica

PRJNA503437 (28)

Robinson2023 plexWell (plate-based) and 
10x 3’ v3 and 5’ v2

HCT116, THP1 and Jurkat 
T exposed in vitro to F. 

nucleatum

PRJNA970826 This paper

Pelka2021 10x 3’ v2 and 3’ v3 Colorectal carcinoma PRJNA723926 (29)

Zhang2021 10x 5’ Esophageal carcinoma PRJNA672851 (33)
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incomplete coverage in PathSeq’s database, but the vast majority were 
completely mis-assigned, indicating that they come from sequences that 
are similar in highly divergent bacteria. We conclude that PathSeq 
has a modest (0.4%) false positive rate, but the vast majority of 
sequences classified in table S1A as non-​Fusobacterium are correctly 
classified as something other than Fusobacterium and got into the 
samples by wet laboratory contamination.

From the droplet-based datasets, we identified 1401 and 926 
Fusobacterium UMIs from live-​Fn–exposed cells sequenced using 10x 
3’ v3 (mean 0.51 UMIs per cell) and 10x 5’ (mean, 0.19 UMIs per 
cell), respectively (fig. S4), and this difference was significant after 
correcting for sequencing depth (8.1 versus 3.1 Fusobacterium UMIs 
per million human reads for 3′ v3 and 5′, respectively; P < 2.2 × 10−16). 
We observed that most Fusobacterium-​positive (≥1 UMI) cells were 

Fig. 2. Comparison of the performance of CSI-Microbes on droplet versus plate-seq platforms. (A) Experimental design for F. nucleatum (Fn) exposure and scRNA-seq 
for this paper (Robinson2023). (B) The number of reads (spike-in normalized and log2 transformed) per cell mapping to the genus Fusobacterium from Jurkat T and HCT116 
cells grouped by cell type and exposure condition and sequenced using plate-based scRNA-seq (Robinson2023-plexWell). (C) The percentage of genera-resolution micro-
bial reads mapped to Fusobacterium and other genera (suspected contaminants) from live-​Fn–exposed cells sequenced using plexWell. (D) The percentage of cells with 
at least one read from Fusobacterium from Jurkat T, HCT116, and THP1 cells grouped by cell type and exposure condition sequenced using 10x 3’ v3 and 5’ (Robinson2023). 
We chose to use bar plots because most of the data points have the value 0. (E) The number of UMIs from genus Fusobacterium per cell grouped by cell line (only cells with 
≥1 Fusobacterium UMI were included) (F) The percentage of genera-resolution microbial reads mapped to Fusobacterium and other genera (suspected contaminants) 
from live-​Fn–exposed cells sequenced using 10x 3’ v3 and 5’. (G) UMAP visualization of cells sequenced using 10x 3’ v3 including cell type, transcriptomic cluster, treatment 
group, and Fusobacterium UMIs. *P < 0.05; **P < 0.01; ***P < 0.001. For statistics used to determine P values, see Cell type enrichment (plate-based protocols) and Cell type 
enrichment (10x Genomics protocols) subsections of Materials and Methods. n.s., not significant.
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HCT116 and THP1 (Fig. 2D), and Fusobacterium-​positive HCT116 
and THP1 cells had more Fusobacterium UMIs per cell compared to 
Jurkat T (Fig. 2E). We identified 21 Fusobacterium UMIs from HK- 
​Fn–exposed cells (67% from THP1 cells) and 0 from unexposed cells. 
We found relatively few UMIs from putative contaminants, which 
made up 2% (21 of 947) and 1% (10 of 1411) of the microbial reads 
from live-​Fn–exposed cells sequenced using 10x 5′ and 3′ v3, re-
spectively (Fig. 2F and table S1).

Next, we examined the microbial UMIs associated with empty 
droplet cell barcodes in samples exposed to live F. nucleatum and 
found more microbial UMIs from empty-droplet barcodes compared 
to cell-associated barcodes (10,676 versus 2532) of which 98% (10,462 
of 10,676) microbial UMIs mapped to Fusobacterium (fig. S4). These 
results suggest that empty droplets, which (unlike empty wells) con-
tain low-quality cells and are filtered out, can be retained and used for 
microbial read detection at the sample level but not at the single-cell 
level (as done by SAHMI). Furthermore, empty droplets should not 
be used for identification or filtering of contaminant genera.

Next, we overlayed Fusobacterium reads and treatment groups 
onto cell clusters derived using only human genes, which revealed 
that host transcriptomic changes to bacteria were cell line dependent 
(Fig. 2G and fig. S1D). The host transcriptomic clusters of Jurkat T 
cells, which were the least infected cell line, did not separate by treat-
ment groups. In contrast, the clusters of HCT116 cells, which were 
highly infected, showed clear treatment group-specific subcluster-
ing. While one cluster of THP1 cells included almost all unexposed 
cells, the other THP1 cluster contained a mix of live-​Fn–exposed 
and HK-​Fn–exposed cells. The similar response to live and heat-
killed F. nucleatum suggests that THP1 cells may be engulfing the 
bacteria, which would explain why viable bacteria could not be 
cultured from lysed cells despite high levels of Fusobacterium RNA 
detected with RNAscope (Materials and Methods) and scRNA-seq.

CSI-Microbes and INVADE-seq provide improved sensitivity in 
microbial read identification compared to SAHMI
Next, we compared CSI-Microbes to the SAHMI and INVADE-seq 
pipelines on the Robinson2023-10x dataset (Materials and Methods). 
We did not compare the tools on Robinson2023-plexWell because 
INVADE-seq explicitly only supports 10x datasets, while SAHMI 
implicitly assumes the presence of cell barcodes and UMIs, which 
are not used in many plate-based protocols, including those used to 
generate Robinson2023-plexWell and Aulicino2018. We report two 
sets of results for the SAHMI comparison: SAHMI-raw, which in-
cludes all microbial reads, and SAHMI-hits, which includes only reads 
from genera that pass the SAHMI decontamination tests. SAHMI 
reported two genera to be “hits” from each of the 3′ v3 samples (un-
exposed, heat-killed, and live-exposed) and 32 genera to be hits from 
the 5′ v2 live-exposed sample. SAHMI identified Fusobacterium 
to be a hit in both the 3′ v3 and 5′ live-exposed samples. Across all 
four samples, SAHMI-raw and SAHMI-hits identified more mi-
crobial reads than CSI-Microbes and INVADE-seq (211,605 and 
97,949 versus 2590 and 1462, respectively) (Fig. 3). However, a much 
smaller percentage of microbial reads identified by SAHMI-raw and 
SAHMI-hits mapped to Fusobacterium compared to CSI-Microbes 
and INVADE-seq (1.8 and 3.9% versus 98.7 and 99.3%, respectively). 
Thus, we conclude that CSI-Microbes performs much more accu-
rately than SAHMI on Robinson2023-10x. By varying some pa-
rameter settings, we further determined that nearly all the differences 
between CSI-Microbes and INVADE-seq could be explained by more 
permissive PathSeq parameters used by CSI-Microbes, especially the 
alignment length required (36 bases in CSI-Microbes versus 60 bases 
in INVADE-Seq). The simplest to state advantage of CSI-Microbes 
over INVADE-Seq is that CSI-Microbes can analyze all available 
scRNA-seq data types, while INVADE-Seq is limited to only 10x 
datasets. Another important advantage of CSI-Microbes is the set of 

A B C D

Fig. 3. CSI-Microbes, INVADEseq, and SAHMI comparison using Robinson2023-10x. (A) Each bar represents average relative (top) or absolute (bottom) abundance 
for all cell lines not exposed to F. nucleatum within Robinson2023-10x, as calculated by each package. SAHMI (raw) and (hits) refer to the total microbial UMIs identified 
and those which passed the contamination filtering, respectively. (B to D) As described in (A), separated by F. nucleatum treatment group: heat-killed bacteria (B), live 
bacteria sequenced with 3’ v3 (C) or 5’ v2 (D).
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downstream analysis tools for enrichment, which has no counter-
part in INVADE-Seq.

To evaluate whether our findings could be generalized to other 
datasets, we then analyzed two publicly available scRNA-seq datasets 
of human cells exposed in vitro to the known invasive bacterium 
Salmonella enterica in a controlled manner. The first dataset, which 
we term Aulicino2018 (Table 1), is a plate-based scRNA-seq (Smart-
seq2) dataset of monocyte-derived dendritic cells (moDCs) exposed 
to S. enterica (live-​Se exposed) as well as unexposed control cells (27). 
The authors divided the live-​Se–exposed moDCs into “infected” or 
“bystander” cells depending on whether the presence of CellTrace-
labeled S. enterica could be detected using fluorescence-activated 
cell sorting (FACS). Like our analysis of Robinson2023-plexWell, we 
identified 756,327 reads (mean, 2886 reads per cell) mapping to the 
Salmonella genus, which were enriched in the infected cells but still 
detected in unexposed control cells (fig. S5A). As in Robinson2023-
plexWell, we detected high levels of putative contaminants as 57% 
(986,581 of 1,742,908) of the microbial reads in live-​Se–exposed 
moDCs mapped to genera other than Salmonella (fig. S5B and 
table S1).

The second dataset, which we term Ben-Moshe2019 (Table 1), 
is a droplet-based (10x 3’ v2) scRNA-seq dataset of human peripheral 
blood mononuclear cells (PBMCs) exposed to S. enterica as well as 
unexposed control cells (28). FACS analysis in the original study 
revealed that monocytes were enriched for the red fluorescent pro-
tein expressed by S. enterica in the authors’ model system. In stark 
contrast to our results from Robinson2023-10x, we only observed 
eight UMIs mapping to Salmonella from Ben-Moshe2019 (mean, 
0.0023 reads per cell), although Salmonella-positive cells (≥1 

Salmonella UMI) were enriched in monocytes and Salmonella 
UMIs were not detected in the unexposed control cells (fig. S5C). 
We found 28 UMIs from putative contaminants, which constituted 
77% (28 of 36) of the total microbial UMIs due to the low number 
of Salmonella UMIs (fig. S5D).

Although there are important technical differences between the 
F. nucleatum and S. enterica invasion experiments, we hypothesized 
that some of the difference in number of reads captured from the in-
fecting bacterium in the 10x datasets may be related to which chemis-
try was used, which has been shown to strongly influence which human 
genes are sequenced (https://kb.10xgenomics.com/hc/en-us/articles/ 
360026501692-Do-we-see-a-difference-in-the-expression-profile-of-
3-Single-Cell-v3-chemistry-compared-to-v2-chemistry-). To test for 
differences in chemistry within a single dataset, we analyzed the data-
set Pelka2021 (Table 1), which is a large scRNA-seq atlas of colorectal 
carcinomas sequenced with either 10x 3’ v2 or 10x 3’ v3 chemistries 
(29). Although nearly twice as many cells were sequenced using 10x 3’ 
v2, we identified substantially more microbial reads from the tumor 
samples sequenced using 10x 3’ v3 compared to those sequenced using 
10x 3’ v2 using the absolute number of microbial reads (9580 versus 
1460 genera-resolution microbial reads, respectively), the sequencing 
depth–normalized number (Fisher exact test P < 1 × 10−300; odds 
ratio = 6.24), the percentage of cells with ≥1 microbial UMI (Fisher ex-
act test P < 4.6 × 10−260; odds ratio = 3.4), and the number of microbial 
UMIs per cell (Wilcoxon rank sum test P = 4 × 10−30) (Fig. 4, A and B, 
and fig. S6). We also observed differences in the genera detected 
(Fig. 4C) and noted that a significantly higher percentage (64% or 6155 
of 9580) of the 3′ v3 microbial reads map to genera found enriched in 
colorectal carcinoma by a meta-analysis study (30) compared to only 
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23% (342 of 1467) of the 3’ v2 microbial reads (hypergeometric enrich-
ment test P < 3 × 10−194). The increased number of microbial UMIs 
combined with the higher proportion of these UMIs mapping to known 
resident microbes provides an estimate that 10x 3’ v3 captures 36-fold 
more resident microbial reads per cell compared to 10x 3’ v2.

We next aligned the nonhuman reads directly to the F. nucleatum 
genome using SRPRISM (25) to analyze the type of bacterial transcripts 
identified because bacterial mRNAs are polyadenylated at a much lower 
frequency and with substantially shorter polyA tails compared to 
eukaryotic mRNA (31). We found that most bacterial transcripts cap-
tured by scRNA-seq protocols are rRNA (82, 92, and 95% of plexWell, 
10x 5′ and 10x 3’ v3 F. nucleatum reads) and not mRNA (Fig. 4D), 
which is reassuringly comparable to previous reports from bulk polyA-
capture RNA-seq and 10x Visium spatial transcriptomics (21, 32).

In summary, our analysis identified important differences between 
the scRNA-seq technologies and identified two important factors for 
the study of intracellular bacteria. The first challenge is the removal of 
environmental contaminants, which we demonstrate to be a bigger 
problem in plate-based technologies compared to droplet-based tech-
nologies, consistent with the idea that contaminants are more likely to 
reach an exposed well handled by people compared to droplets con-
trolled by a microfluidics system. The second challenge is distinguish-
ing infected cells with live, intracellular bacteria from bystander cells 
that may contain bacterial RNA but not live, intracellular bacteria. For 
example, RNA from F. nucleatum is detected in 6, 10, 88, and 25% of 
live-​Fn–exposed Jurkat T cells using 10x 3’ v3, 10x 5’, plexWell, and 
RNAscope, respectively, but no live bacteria were cultured from 
live-​Fn–exposed Jurkat T cells. Similarly, we detect Salmonella RNA 
from 97% (123 of 127) of bystander moDCs from Aulicino2018, 
although no or very few viable bacteria were recovered from bystander 
moDCs (a consistent number of bacteria were recovered from infected 
moDCs) (27). In both experiments, we observed significantly more 
bacterial reads from the cell type from which live bacteria could be 
cultured (except for the THP1 cells in Robinson2023).

Given the lower levels of environmental contamination from 10x 
compared to plate-based technologies, we focused on solving the 
above problems for 10x 3’ v3 and 5’. Using Robinson2023-10x, we ob-
served that a simple threshold of ≥2 microbial UMIs per cell effectively 
eliminates contaminants (Fusobacterium was the only genus with ≥2 
UMIs in a single cell) and strongly enriches for live-​Fn–exposed HCT116 
and THP1 (of the 334 cells with ≥2 Fusobacterium UMIs, 6 are live- 
​Fn–exposed Jurkat, 1 is HK-​Fn–exposed THP1, and the remaining 
327 are live-​Fn–exposed HCT116 and THP1) (fig. S2B). We subse-
quently use the term infected to refer to any cell with ≥2 UMIs from 
the same genus, except for myeloid-derived cells (like the THP1 cell 
line), which we refer to as “myeloid cells with bacteria engulfed” follow-
ing (21) because of the difficulty distinguishing between cells with 
bacteria engulfed and cells with live bacteria using microbial UMIs 
alone. To evaluate the robustness of our key findings to the choice of 
UMI threshold, we repeat our key analyses of infected cells using a 
range of UMI cutoffs (one to five microbial UMIs).

Interrogating the intratumoral microbiome of colorectal and 
esophageal carcinomas
Overview of the analysis
Having demonstrated that our pipeline correctly and specifically 
identified reads from Fusobacterium in a controlled experiment, we 
next sought to examine the intracellular tumor microbiome of patient 
tumors in publicly available datasets. We decided to focus on colorectal 

and esophageal cancers because there are available 10x 3’ v3 and 5’ 
scRNA-seq datasets with large numbers of patients; Fusobacterium 
has been previously reported to be intracellular when present in tumors, 
which is not necessarily the cause for other bacteria reported in tumor 
samples and is associated with worse prognosis in both cancer types. 
Furthermore, the tumor microbiome of these cancer types has not been 
previously explored by scRNA-seq (the INVADE-seq paper included 
microbiome analysis of colorectal carcinoma using spatial transcrip-
tomics and proteomics but not scRNA-seq) (9, 10, 29, 33–35). The 
colorectal carcinoma cohort (a subset of the above Pelka2021 dataset) 
includes 30 tumor samples and 4 adjacent nontumor tissue samples 
from 20 tumors sequenced using 10x 3’ v3, after filtering out 10x 3’ 
v2 samples to their separate clustering, low number of microbial UMIs, 
and high number of Mycoplasma UMIs, which is a known wet and dry 
laboratory contaminant (Fig. 5A and fig. S6) (36, 37). The esopha-
geal carcinoma cohort, Zhang2021, includes 110 tumor samples 
(divided into CD45-positive and -negative cells) and 8 adjacent non-
tumor tissue samples from 55 esophageal carcinomas sequenced us-
ing 10x 5′ (Fig. 5A).

Next, we analyzed the tumor samples and observed a consistent 
range of the percentage of infected cells across patients in Pelka2021 
(mean, 0.7% and range, 0 to 8.2% of the total number of cells) and 
Zhang2021 (mean, 4.25% and range, 0 to 21.7%), except for six tumor 
samples from three patients in Zhang2021 in which nearly 100% of 
cells were infected predominately by Flavobacterium (fig. S7), a previ-
ously reported cell culture contaminant (38). After excluding these six 
contaminated samples, we found a total of 569 infected cells (0.7% of 
the cells sequenced) from Pelka2021 and 6550 infected cells (3.4% of 
the cells sequenced) from Zhang2021 (see fig. S8 for UMAP of cell 
types and microbial UMIs). Fewer cells from the adjacent nontumor 
tissue samples were infected compared to the matched tumor tissue 
samples in both datasets (0.1 and 1.3% of cells from the paired nontu-
mor in Pelka2021 and Zhang2021, respectively). Comparison of paired 
nontumor and tumor tissue after filtering for 10x 3’ v3 samples in 
Pelka2021 and Flavobacterium-low samples in Zhang2021 revealed 
no change in taxa diversity, microbial load, or number of infected 
cells (fig. S9). Overall, we found 91 genera that infect at least one cell 
in either dataset (table S2). Setting a threshold of ≥10 infected cells, 
we identified 17 common genera, including 10 genera found in both 
datasets, 6 genera specific to Zhang2021, and 1 genus specific to 
Pelka2021 (Fig. 5B).
Microbial UMIs are enriched in myeloid cells compared to 
other cell types in the TME
Given our previous in vitro finding that the proportion of bacterial 
read–positive cells can differ significantly between cell lines (Fig. 2D), 
we next asked whether specific cell types in the TME are also dispro-
portionately infected. We found that myeloid cells were the only cell 
type with significantly more infected cells than expected in both 
Pelka2021 (P = 2 × 10−10; log2FC = 0.9) and Zhang2021 (P < 1 × 
10−300; log2FC = 1.1); other cell types may have absolute or relative 
differences, but they were not statistically significant (Fig. 5, C 
and D, and Materials and Methods). Within the myeloid cell com-
partment, monocytes were the only myeloid cell subtype with bacte-
ria engulfed significantly more than expected in both Pelka2021 
(log2FC = 0.88; P = 0.006) and Zhang2021 (log2FC = 1.65; P = 5 × 
10−247) (Fig. 5, E and F). This enrichment in myeloid cells was not 
due to a small number of genera, as 15 of 17 of the commonly found 
genera and all other genera combined are found in myeloid cells more 
than expected in at least one dataset (Fig. 5B and table S2). This 
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Fig. 5. The cell type–specific bacterial landscape of CRC and ESCA patient tumors. (A) Overview of the samples analyzed in Pelka2021 and Zhang2021 scRNA-seq 
datasets. (B) The number of cells infected (≥2 UMIs) by each microbial genera where node size is relative to the number of infected cells (node sizes are normalized by the 
number of cells in each dataset), and node color indicates the log2FC in myeloid cells (>0 indicates enrichment in myeloid cells). We imposed a threshold of ≥10 infected 
cells to focus on the subset of genera seen in the highest number of cells. Complete unfiltered results are found in table S2. (C and D) The number of infected cells com-
pared to expectation per sample for the top-level cell types from Pelka2021 (C) and Zhang2021 (D). (E and F) The number of infected cells compared to expectation per 
sample for the myeloid cell subtypes from Pelka2021 (E) and Zhang2021 (F). (G and H) The number of total microbial UMIs identified per infected cell by main cell type 
from Pelka2021 (G) and Zhang2021 (H). (I and J) The number of total microbial UMIs per cell by myeloid cell subtypes from Pelka2021 (I) and Zhang2021 (J). (K) The intra-
cellular microbe co-occurrence network from colorectal tumor C163. Node size is relative to the number of cells infected by each microbe (Bacteroides is the largest node 
with n = 160 infected cells). Edges appear between microbes that co-occur in the same cell more than expected (FDR < 0.05), and edge width is proportional to the sta-
tistical significance of the co-occurrence. *P < 0.05; **P < 0.01; ***P < 0.001. For statistics used to determine DEGs and GSEA, see the Host cell transcriptomic analysis and 
Gene set enrichment analysis and visualization subsections of Materials and Methods.
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enrichment in myeloid cells is robust for all UMI cutoffs analyzed (one 
to five microbial UMIs) in both Pelka2021 and Zhang2021 (table S2).

Next, we compared the number of microbial UMIs per infected cell 
across cell types and found that myeloid cells with bacteria engulfed 
contained significantly more microbial UMIs compared to infected 
nonmyeloid cells in Zhang2021 (P < 1 × 10−300) but not Pelka2021 
(Fig. 5, G and H). Within the myeloid cell compartment, monocyte 
cells with bacteria engulfed contained significantly more microbial 
UMIs than the other myeloid cell subtypes in Zhang2021 but not in 
Pelka2021 (Fig. 5, I and J). These results showcase the importance of 
myeloid-derived cells, particularly monocyte cells, as the predominant 
source of bacterial RNA in the intracellular tumor microbiome.
Bacterial genera exhibit specific co-occurrence relationships in 
the same cells
We observed that many more cells were infected by multiple bacterial 
genera than expected by chance alone (64 versus 18 in Pelka2021; 
205 versus 108 in Zhang2021). This was true for both myeloid cells 
(10 versus 3.5 in Pelka2021; 134 versus 91 in Zhang2021) and non-
myeloid cells (54 versus 15 in Pelka; 64 versus 34 in Zhang2021) in 
both datasets. To evaluate the possibility that these coinfected cells 
are the same cell-type doublets, we compared the number of (human 
gene) UMIs between coinfected and single infected cells. We observed 
significantly more UMIs in coinfected cells compared to infected cells 
in Zhang2021 (Wilcoxon rank sum test P = 0.006) albeit with a moder-
ate increase (9058 versus 7851 median UMIs) and did not observe 
any statistically significant difference in Pelka2021 (Wilcoxon rank 
sum test P = 0.72). We conclude that there may be some doublets in 
the Zhang2021 dataset that the original authors failed to detect, but 
those doublets are not a serious problem in the Pelka2021 dataset. 
As specific bacterial genera including Fusobacterium, Leptotrichia, 
and Campylobacter have been described as co-enriched in colorectal 
tumors (39, 40), we examined whether co-infection relationships be-
tween specific bacterial genera could be detected within single cells 
of individual tumors (Materials and Methods). In total, we found 12 
significant coinfection relationships in Pelka2021 and 9 significant 
coinfection relationships in Zhang2021 (FDR-corrected P < 0.05; 
table S3, which contains separate sheets for the two datasets). Occa-
sionally, we observed infection of the same cell by three or more bacte-
rial genera (n = 19 and n = 15 in Pelka2021 and Zhang2021). One 
extreme example of this phenomenon is colorectal tumor C163 in 
which we found 14 cells coinfected by three or more genera, including 
a single tumor cell positive for six genera, including Fusobacterium 
(150 UMIs), Campylobacter (96 UMIs), and Bacteroides (42 UMIs) 
(Fig. 5K). Our results suggest that bacterial genera may preferentially 
coinfect the same single cells in the TME, which agrees with a previous 
report that primary F. nucleatum infection greatly increased secondary 
invasion rates of other species in vitro (41). The enrichment of coin-
fected cells is robust to the UMI threshold (one to five microbial UMIs) 
in both Pelka2021 and Zhang2021 (table S3).
Intracellular bacteria induce the up-regulation of antigen 
presentation genes in infected host tumor cells but their 
down-regulation in infected myeloid cells
Next, we sought to identify any host transcriptomic changes associ-
ated with the presence (or engulfment) of intracellular bacteria in 
host cells. We first examined principal components (PCs) between 
uninfected and infected cells to determine whether any global tran-
scriptomic changes were associated with infection (Materials and 
Methods). We observed that most of the five PCs were significantly 
different between infected and uninfected cells for most cell types in 

both Pelka2021 and Zhang2021 (table  S4). This effect was most 
prominent in epithelial and myeloid cells, where at least four of five 
PCs were significantly different in both datasets. We then performed 
differential expression analysis between infected and bacterial-negative 
cells for each cell type and each dataset separately. We observed sig-
nificant overlap between the differentially expressed genes (DEGs) 
identified using UMI ≥ 2 and those identified using the thresholds 
≥1, 3, 4, and 5 UMIs demonstrating the robustness of the DEGs to 
the microbial UMI threshold (table S4). Intriguingly, we found that 
myeloid cells and tumor cells had many DEGs between infected and 
bacterial-negative cells (means, 396 and 390 DEGs for myeloid and 
tumor cells, respectively) compared to few DEGs in T/natural killer 
(NK)/innate lymphoid (ILC) cells (mean, 49 DEGs) (table S4). We 
found 286 DEGs in stromal cells compared to only 19 DEGs in B cells 
in Zhang2021 but only two and four DEGs in stromal and B cells in 
Pelka2021. Subsampling analysis to control for cell number identi-
fied very few DEGs in any cell type in Pelka2021 using the number 
of infected and uninfected stromal cells, suggesting that the low 
number of DEGs is due to cell number. In contrast, the number of 
DEGs for all cell types in Zhang2021 and myeloid, epithelial, and T/
NK/ILC cells in Pelka2021 was consistent across subsampling. We 
also observed substantially more DEGs for live-​Fn–exposed HCT116 
epithelial cells (571 and 156 DEGs compared to unexposed and HK- 
​Fn–exposed cells, respectively) and THP1 monocytic cells (1985 and 
249 DEGs) compared to Jurkat T cells (143 and 61 DEGs) from 
Robinson2023-10x (table S4). Given these results, we focused our 
analysis on myeloid and tumor cells and performed gene set enrich-
ment analysis (GSEA) (42) on the DEGs identified between infected 
and bacterial-negative cells. We further clustered gene sets with over-
lapping genes using EnrichmentMap (43, 44).

Myeloid cells with bacteria engulfed in both datasets shared a 
cluster of up-regulated gene sets associated with response to mole-
cules of bacterial origin, which points to the potential and consistent 
functional impact of these bacterial UMIs (Fig. 6, A and B, and 
table S5). We previously observed that monocytes disproportionately 
engulf bacteria relative to other myeloid cells in both datasets (Fig. 5, 
E and F), so we repeated our analysis comparing monocytes with 
bacteria engulfed to bacteria-negative monocytes and found similar 
enriched pathways (fig. S10, A and B), which suggests that the iden-
tified enriched pathways are not due to different myeloid subtype 
specificities.

At the individual gene level, 15 genes were up-regulated in infect-
ed myeloid cells in both datasets (>50-fold over-enrichment; P < 1 × 
10−25), and 33 were down-regulated in both datasets (>8-fold over-
enrichment; P < 1 × 10−20) (Fig. 6, C and D; fig. S10, C and D; and 
table S5). Repeating this analysis, shuffling the infection labels (50 
times using a specified seed), identified zero DEGs in 96 and 100% of 
the iterations in the Pelka2021 and Zhang2021 datasets, respectively, 
and consequently zero overlapping DEGs, testifying to the statistical 
significance of the identified overlap. These 15 up-regulated genes 
shared by Pelka2021 and Zhang2021 strongly overlapped with both 
the set of up-regulated genes in THP1 cells exposed to live F. nucleatum 
in Robinson2023-10x (12-fold over-enrichment; P < 4 × 10−13) and 
the set of genes with nuclear factor kappa B (NF-κB) promoter sites 
(NF-κB target genes) (23-fold enrichment; P = 1 × 10−12) (https://
bu.edu/nf-kb/gene-resources/target-genes/) (fig. S10C and table S5). 
NF-κB can be activated by several up-stream mechanisms including 
Toll-like receptors, which recognize conserved microbial molecules 
(pathogen-associated molecular patterns). Of the 10 NF-κB target 
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Fig. 6. Host cell transcriptomic changes associated with bacterial infection. (A) EnrichmentMap of clustered gene ontology (GO) biological processes (BP) gene sets 
up and down-regulated in infected myeloid cells from Pelka2021. (B) EnrichmentMap of clustered GO BP gene sets up- and down-regulated in infected myeloid cells from 
Zhang2021. (C) Volcano plot showing differentially expressed genes (DEGs) between infected and bacterial-negative myeloid cells from Pelka2021. (D) Volcano plot show-
ing DEGs between infected and bacterial-negative myeloid cells from Zhang2021. (E) EnrichmentMap of clustered GO BP gene sets up- and down-regulated in infected 
tumor cells from Pelka2021. (F) EnrichmentMap of clustered GO BP gene sets up- and down-regulated in infected tumor cells from Zhang2021. (G) Volcano plot showing 
DEGs between infected and bacterial-negative tumor cells from Pelka2021. (H) Volcano plot showing DEGs between infected and bacterial-negative tumor cells from 
Zhang2021. For statistics used to determine P values, see Calculation of number of expected infected cells per cell type (10x Genomics protocols) and Calculation of co-
infection relationships in colorectal cancer and esophageal cancer datasets subsections of Materials and Methods.
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genes up-regulated in all datasets, CXCL8 is potentially the most rel-
evant clinically because high levels of interleukin-8 (IL-8) (the protein 
encoded by CXCL8) in the serum and the TME have been associated 
with a reduced clinical benefit from immune-checkpoint inhibitors 
across multiple cancer types (45, 46). One of these previous reports 
found that intratumoral IL-8 production was driven primarily by 
CXCL8-​high myeloid cells that up-regulated IL-1 response genes (ob-
served in both datasets) (Fig. 6, C and D, and fig. S11) (46). Combin-
ing these findings suggests that myeloid cells with bacteria engulfed 
in the TME causes the production of IL-8, which decreases response 
to immune checkpoint blockade, a hypothesis for future experimen-
tal investigation.

Beyond the binary differential expression analysis, we further hy-
pothesized that the actual number of microbial UMIs per cell would 
be a direct function of the number of infecting microbes, and these 
numbers may be associated with host cell gene expression changes. 
By analyzing gene expression at the single-cell level and averaging 
over cells, we identified genes whose expression significantly corre-
lated with the number of microbial UMIs per cell in myeloid cells 
(excluding bacteria-negative myeloid cells) in both datasets (table S6). 
Reassuringly, we found the rho values for dysregulated genes to be 
significantly correlated between Pelka2021 and Zhang2021 (Spearman 
rank correlation rho = 0.14, P < 2 × 10−58) and observed that previ-
ously discussed genes were positively correlated (CXCL8 and IL1B) 
with microbial load in both datasets. We then repeated this analysis 
using only one genus (Pseudomonas, which is the most abundant 
genus in Zhang2021) and identified similar results (table S6). In addi-
tion, we provide a table of all significant associations between micro-
bial load and gene expression for all 17 common genera and all cell-types 
in both datasets (table S6). These results emphasize “microbial load” 
as an important factor in modulating host cell gene expression, some-
thing to be considered in future scRNA-seq–based explorations of the 
tumor microbiome.

Next, we analyzed tumor cells and observed the largest cluster of 
up-regulated gene sets in infected tumor cells to be associated with 
antigen processing and presentation and cell killing by leukocytes in 
both Pelka2021 and Zhang2021 (Fig. 6, E to H). At the individual 
gene level, we found 23 genes up-regulated in infected tumor cells in 
both cancer types (13-fold over-enrichment; P < 1 × 10−19), includ-
ing the cytoskeletal gene KRT7, which is up-regulated by F. nucleatum 
infection and promotes metastasis of colorectal carcinoma (47), and 
12 genes involved in antigen processing and presentation of pep-
tides on human leukocyte antigen (HLA) class I and class II (see 
fig. S10, E and F for the complete list). The up-regulation of HLA 
genes by infected tumor cells is unexpected on two levels. First, in-
tracellular bacteria have been reported to decrease HLA expression 
levels in host cells to evade the immune system (27). Second, tumor 
cells also have frequent HLA alterations including HLA loss of het-
erozygosity (48, 49) and HLA down-regulation (50) to evade the 
immune system. While the idea that tumor cells and intracellular 
bacteria may cooperate to evade the immune system together is in-
tuitive, our transcriptomic data suggest that tumor cells respond to 
intracellular bacteria by up-regulating antigen processing and pre-
sentation, which may increase the presentation of neo-antigens and 
lead to tumor killing by the immune system.

Collectively, our analyses of the proportion of infected cells, the 
number of microbial UMIs per infected cell, and host transcriptom-
ic changes associated with infection from patient tumor scRNA-seq 
datasets suggest a model of the tumor microbiome. In this model, 

bacteria predominately reside within or are engulfed by myeloid 
cells that trigger inflammatory pathways like tumor necrosis factor 
and IL-1 via NF-κB pathway activation. In contrast, while bacterial 
UMIs are strongly enriched in tumor samples (compared to nontu-
mor adjacent tissue), they are not enriched in tumor cells by either 
the proportion of infected cells or the number of microbial UMIs per 
infected cell. One potential explanation for this is the up-regulation 
of HLA genes in infected tumor cells, which suggests that tumor 
cells respond to bacterial invasion by “raising the alarm” even at risk 
of being detected and killed by the immune system.

DISCUSSION
In this study, we sought to analyze intracellular microbes in cancer via 
the analysis of microbial reads from scRNA-seq data. Our first main 
goal was a methodological one—to systematically study the detection 
capabilities of different sequencing platforms compared to orthogo-
nal approaches for studying intracellular bacteria. Because of the lack 
of suitable published positive control datasets, we performed in vitro 
F. nucleatum infection of cell lines of distinct lineages, which we vali-
dated using RNAscope and CFU counting and sequenced using both 
plate- and droplet-based scRNA-seq approaches. By analyzing this data-
set (Robinson2023) along with other related publicly available data-
sets, we systematically identified important differences in the number 
of bacterial reads sequenced from known intracellular microbes and 
contaminants, both between plate and droplet-based approaches and, 
further, within droplet-based approaches (10x 3’ v2 vs. 3’ v3 and 5’).

The difference in microbial reads across 10x chemistries sheds 
further light on the distinct approaches to contamination taken by 
alternative existing scRNA-seq microbiome pipelines like SAHMI 
and INVADE-seq. SAHMI analysis of 10x 3’ v2 pancreatic datasets 
would have necessitated multiple decontamination protocols (19), 
given the relatively poor microbial read recovery of this assay. While 
the INVADE-seq study does not discuss contamination, it sets a 
comparable threshold (≥ 3 UMIs versus ≥ 2 UMIs, respectively) for 
host cell differential expression analysis for their 10x 5’ assay custom 
modified to detect bacterial 16S rRNA transcripts (21). Our analysis 
suggests an intermediate stringency with which unmodified 10x 3’ 
v3 and 5’ datasets (many of which have already been generated) can 
be analyzed for cell host–associated microbes using a simple thresh-
old for removing contaminants and bystander cells.

On the basis of the findings related to our first, methodological 
analysis, we turned to our second, thematic goal: analyzing the in-
tracellular microbiome of esophageal and colorectal carcinoma, to 
answer two basic questions: (a) What is the cell type–specific tumor 
microbiome landscape in these tumors? (b) What are the cell type–
specific host transcriptomic changes that are associated with these 
infections? In response to the first question, we find that microbial 
UMIs can be found predominately (but not exclusively) within my-
eloid cells in the TME and that some intracellular bacteria co-occur 
within the same cells in the TME. Answering the second question, 
we find that myeloid cells with bacteria engulfed and infected tumor 
cells have cell type–specific transcriptomic alterations with potential 
functional impact.

Our analysis of the host transcriptomic changes in infected cells 
suggests that bacteria may play an important role in modulating im-
mune processes, which suggests that intratumoral microbial load 
may affect the efficacy of cancer immunotherapy. Myeloid cells with 
bacteria engulfed appear to up-regulate expression of CXCL8 (and 
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likely production of IL-8), and high levels of IL-8 have been reported 
to be associated with decreased response to immune checkpoint 
blockade (46). In contrast to myeloid cells with bacteria engulfed, 
infected tumor cells transcriptionally up-regulate antigen process-
ing and presentation and other pathways that may make them more 
susceptible to killing by T cells. These results suggest that not only 
microbial load, but also type of infected cell, are important consid-
ering factors in designing immunotherapy regimens.

There are several important limitations of our study, most nota-
bly our hypothesis that the microbial UMIs we identified across 
scRNA-seq datasets are indicative of viable intracellular bacteria in 
nonmyeloid cells. First, although we show multiple lines of evidence 
that 10x 3’ v3 appears to better capture bacterial RNA compared to 
10x 3’ v2, we lack the gold standard comparison of the same sample 
exposed to an intracellular bacterium and sequenced using both 
technologies because 10x had already discontinued the 10x 3’ v2 kit 
when we performed our in vitro infection experiments. Second, our 
arbitrary cutoff of ≥2 UMIs may not be sufficient to distinguish in-
fected from bystander cells. Third, one cannot rule out that at least 
some of the polymicrobial communities we describe as intracellular are 
actually extracellular but adhere to the cell surface via biofilm forma-
tion. Polymicrobial biofilms featuring Fusobacterium and Bacteroides 
have been described in colorectal cancer (51). Fourth, it is also possible 
that some of the RNA reads may emanate from vesicles, such as outer 
membrane vesicles, either freely circulating or merged with eukaryotic 
cells, and are misattributed to being intracellular bacteria in our analy-
ses. Fifth, microbial contaminants may be introduced during labo-
ratory manipulation of tissue samples, which we find evidence of in 
the esophageal dataset. Nearly 100% of cells showed infection in three 
patients, and the identified genus was common between all three 
samples. Although this is, to the best of our knowledge, the first re-
port of contamination within scRNA-seq data, we note that labora-
tory contamination has been recognized as an important issue in cell 
cultures with implications for cell phenotype and biology (11).

In summary, we have introduced a computational pipeline and 
scRNA-seq dataset, which together enabled a systematic evaluation 
of multiple scRNA-seq technologies for their efficacy in recovering 
microbial UMIs from intracellular bacteria and contaminants. We 
found that 10x 3’ v3 and 5’ chemistries are superior to both earlier 
chemistries and plate-based approaches. To demonstrate the utility of 
our pipeline and this finding, we analyzed two scRNA-seq cancer 
datasets, which identified the enrichment of bacterial UMIs in my-
eloid cells and the association of bacterial UMIs with cell type–specific 
gene expression signatures.

MATERIALS AND METHODS
Experimental design
This study aimed to investigate whether reads from intracellular bac-
teria could be detected (and distinguished from contaminants) using 
scRNA-seq technologies (and which technology would perform 
best) to explore the intracellular tumor microbiome. To answer our 
first question, we built a computational pipeline to analyze microbial 
reads from scRNA-seq technologies. Next, we first set up an in vitro 
infection model system using the intracellular bacterium F. nucleatum 
and three cell lines (THP1, Jurkat T, and HCT116), which we vali-
dated using CFU counting and RNAscope. We included multiple cell 
lines of different cell type origin to investigate whether bacterial inva-
sion rates differed by cell type. Next, we performed scRNA-seq using 

three technologies (Seq-Well plexWell, 10x 3’ v3, and 10x 5’ v2) on 
cells exposed in vitro to F. nucleatum and appropriate controls. We 
analyzed the results from these datasets in conjunction with publicly 
available scRNA-seq datasets and decided that 10x 3’ v3 and 10x 5’ 
were the best technologies for analyzing the intracellular tumor mi-
crobiome. We identified and analyzed two large published scRNA-
seq datasets of colorectal and esophageal carcinoma sequenced using 
10x 3’ v3 and 5’. We investigated and found enrichment of bacterial 
UMIs in specific cell types (myeloid-derived cells) and found host 
cell DEGs associated with bacterial UMIs. Unexpectedly, we also no-
ticed that different bacterial genera were found in the same host cells 
more than expected by chance alone.

Cell and bacterial culture
HCT116 (colorectal carcinoma) cells were grown in McCoy’s 5A me-
dia containing 10% fetal bovine serum (FBS, Corning, #10-050-CV). 
Jurkat T (T cell acute lymphoblastic leukemia) and THP-1 (acute 
monocytic leukemia) cells were each grown in RPMI 1640 containing 
10% FBS (Corning, #10-040-CV). All cell lines were maintained in a 
37°C incubator with 5% CO2. F. nucleatum [American Type Culture 
Collection (ATCC) 25586] was cultured anaerobically in Columbia 
broth (BD Difco, #294420) at 37°C with 200-rpm shaking. All cell 
lines and bacterial strains were obtained from the ATCC (Manassas, 
VA). Cell line identities were authenticated by the ATCC.

To reduce the possibility of cell line contamination, we performed 
the following QC steps: (i) All cell work was handled in a biological 
safety cabinet under biosafety level 2 conditions; (ii) cells were rou-
tinely and periodically tested for Mycoplasma spp. contamination; (iii) 
we detected only one Mycoplasma spp. UMI by CSI-Microbes; and (iv) 
bacterial invasion was verified by colony counting on blood agar, which 
returned only one colony morphology (consistent with F. nucleatum) 
after incubation with F. nucleatum and no colony growth from unex-
posed cells or cells exposed to heat-killed F. nucleatum.

Invasion assay
Cell lines were seeded at a density of 106 before infection. Bacteria 
were grown to late log phase, and then 5 μM CellTrace Violet (Ther-
mo Fisher Scientific, #C34571) was added to the broth culture for 
20 min with shaking. Bacteria were pelleted and washed in sterile 1× 
phosphate-buffered saline (PBS, Corning, #21-031-CV) and then 
added to cell culture media at a multiplicity of infection of 100:1. Cells 
were infected for 10 hours, and then the medium was removed and 
cells were washed twice with 1× PBS. Fresh media containing genta-
micin (200 μg/ml; Thermo Fisher Scientific, #15750060) and metro-
nidazole (200 μg/ml; Thermo Fisher Scientific, #AC210340050) were 
added to the cells for 1 to 2 hours to kill extracellular bacteria. After 
antibody incubation, cells were washed twice with sterile 1× PBS and 
then collected for downstream analysis by trypsinization (HCT116 
only). Bacterial invasion efficiency was determined by serial dilution 
and plating on trichostatin A + 5% sheep’s blood (Remel, #R01200) 
following a 10-min incubation of cells in 1% Triton X-100 (Sigma-
Aldrich, #T8787). Agar plates were incubated anaerobically for 72 hours 
before colony enumeration.

RNAscope analysis
Following bacterial infection and antibiotics treatment as described 
above, cells were washed twice with sterile 1× PBS and then resus-
pended in 25 μl of human plasma. Next, 25 μl of thrombin was added 
and mixed by pipetting and then allowed to clot for 1 to 2 min. 
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Clots were fixed overnight in 10% formalin (Thermo Fisher Scien-
tific, #032-059) and then sectioned at 5-μm thickness. RNAscope 
2.5 LSx Reagent Kit-RED (ACD, #322750) was used according to 
the manufacturer’s protocol using the Leica BOND RX instrument 
with probe against F. nucleatum 23S rRNA (ACD, #485418). The 
number of positive cells was evaluated by a pathologist on a bright-
field microscope.

Droplet-based single-cell partitioning, library preparation, 
and sequencing (10x Genomics)
Single-cell suspensions were prepared and concentration and vi-
ability measured on an automated dual-fluorescence cell counter 
with acridine orange and propidium iodide stain (Luna Fx7, Logos 
Biosystems). Single-cell partitioning and RNA-seq library prep-
aration was performed using 10X Genomics Chromium Next-
GEM 5’ v2 chemistry (user guide CG000331) or 10X Genomics 
3’ v3.1 chemistry (user guide CG000204) according to vendor 
recommendations. Sample viability was above 80% for all condi-
tions. Six to eight thousand cells were targeted to be captured for 
each sample. Libraries were sequenced on the NovaSeq 6000 with 
a target depth of 50,000 reads per cell using read parameters rec-
ommended by 10x Genomics user guides. Reads from multiplexed 
sequencing runs were demultiplexed using cellranger mkfastq 
v7.0.0 (10x Genomics).

Plate-based single-cell partitioning, library preparation, and 
sequencing (SeqWell PlexWell)
Single-cell suspensions were prepared and sorted on a BD FACS 
Aria IIU into 96-well polymerase chain reaction plates that were 
prepared with lysis buffer according to seqWell plexWell Rapid 
Single-Cell method (user guide v20210402) and containing ERCC 
spike-in mix (Invitrogen # 4456740) at a dilution of 1:1E7. Follow-
ing deposition of single cells into prepared plates, they were snap-
frozen and stored at −80C until further processing. Single-cell 
cDNA and libraries were generated for each sorted sample accord-
ing to seqWell plexWell Rapid Single-Cell user guide. Multiplexed 
libraries containing indexed scRNA-seq libraries were sequenced on 
the either the NextSeq 2000 or NovaSeq 6000 with a target read 
depth of 2 million reads per cell using the following read parame-
ters: read 1, 61 base pairs (bp); index 1, 8 bp; index 2, 8 bp; and read 
2, 61 bp. Raw sequencing data were demultiplexed into individual 
sample fastq sets using bcl2fastq v2.20.0.

Plate-based single-cell dataset alignment to the human 
genome and downstream analysis
Raw FASTQ files were trimmed using fastp (52) v0.20.1 with the ar-
guments “--unqualified_percent_limit 40 --cut_tail --low_complexity_
filter --trim_poly_x”. The trimmed FASTQ files were aligned to the 
reference human genome (GRCh38 gencode release 34) and any 
applicable spike-in sequences using STAR (53) 2.7.6a_patch_2020-
11-16 with the arguments “--soloType SmartSeq --soloUMIdedup 
Exact --soloStrand Unstranded --outSAMunmapped Within.” For 
analysis, we used the previously described workflow “Lun 416B cell 
line (Smart-seq2)” from “Orchestrating Single-Cell Analysis with 
Bioconductor” (http://bioconductor.org/books/3.16/OSCA.work-
flows/lun-416b-cell-line-smart-seq2.html#lun-416b-cell-line-
smart-seq2) to specifically handle ERCC spike-in sequences. Quality 
filtering was performed using the quickPerCellQC function from 
scuttle (54) v1.8.0.

10x single-cell dataset alignment to the human genome and 
downstream analysis
Raw FASTQ files were aligned to the reference human genome (GRCh38 
Gencode release 34) using CellRanger (55) v5.0.1 (https://support. 
10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/
what-is-cell-ranger). The annotated polyA and template sequence oligo-
nucleotide sequences were trimmed, the unmapped reads were con-
verted to the FASTQ file format trimmed and filtered using FASTP as 
described above before being converted to BAM files. For quality filter-
ing, we removed genes found in fewer than three cells and removed 
cells with fewer than 3000 gene features or greater than 15% of reads 
mapping to mitochondrial genes.

Annotation of cell types
For the Plex-Well dataset generated by this study, we sorted cells with 
known identity (HCT116 or Jurkat T) into wells or intentionally left 
wells empty. For the 10x datasets, we performed low-resolution cluster-
ing using Seurat (resolution = 0.1) and annotated clusters using marker 
genes for HCT116 (EPCAM), Jurkat T (CD3E), and THP1 (CD64/ 
FCGR1A).

For previously generated datasets, we used the cell type annota-
tions provided by the original authors. We syntactically harmonized 
annotations between the esophageal (Zhang2021) and colorectal 
(Pelka2021) datasets as follows. From the esophageal dataset, we 
grouped endothelial, FRC, fibroblast, and pericytes as stromal cell 
(the top-level annotation for these cell types used in the colorectal 
carcinoma dataset). From the colorectal dataset, we grouped plasma 
cells as B cells and mast cells as myeloid cells using the author-
supplied top-level annotations. The cell-type annotation harmoniza-
tion resulted in five major cell-type groupings: epithelial (tumor), 
stromal, B, T/NK/ILC, and myeloid.

Alignment of unmapped reads to microbial genomes
The unaligned reads were assigned to microbial taxa using PathSeq (23) 
v4.1.8.1 (http://software.broadinstitute.org/pathseq/) with the argu-
ments “--filter-duplicates false --min-score-identity .7.” We constructed 
the reference microbial genome database by downloading the set of 
complete viral, bacterial, and fungal genomes from RefSeq release 201 
(56). We subsampled at least one genome from each species including 
any genomes annotated as either “reference genome” or “representative 
genome” as well as the genomes of the three Salmonella strains used in 
the analyzed datasets. To mitigate vector contamination, we identified 
regions of suspected vector contamination (including “weak” matches) 
in the genomes using Vecscreen_plus_taxonomy (https://github.com/
aaschaffer/vecscreen_plus_taxonomy) with the UniVec database (ftp://
ftp.ncbi.nlm.nih.gov/pub/UniVec/) and filtered any reads that aligned 
to these regions (57).

PathSeq uses alignment to a finite database of reference ge-
nomes. As explained in the Results section entitled “CSI-Microbes 
and INVADE-seq provide improved sensitivity in microbial read 
identification compared to SAHMI,” the PathSeq alignment pa-
rameters can be stringent and INVADE-seq sets one key parameter 
even more stringently than CSI-Microbes. The stringent parameter 
setting is sensible in a setting where one does not have prior knowl-
edge about which microbial taxa are expected. The experimental 
setup in our analysis of Robinson2023-plexWell, for example (table 
S1A), is different in that we expect to find reads from the genus 
Fusobacterium. Therefore, we did a targeted assessment of which 
reads counted in table  S1A as mapped to non-​Fusobacterium 
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could plausibly originate from Fusobacterium and could be de-
tected as such if one used a more permissive alignment method. 
Specifically, we used blastn (58). The blastn alignments sought 
could have been missed by PathSeq either because the PathSeq 
internal settings were too stringent or because the coverage of 
Fusobacterium diversity was insufficient in PathSeq’s database of 
reference genomes. We did the main search with the non-defautlt 
blastn command:

blastn -query <input sequence file>.fa -db Fuso -outfmt 6 -out 
<output sequence file>.out -evalue 1e-15 -perc_identity 95 -word_
size 11.

Eleven is the smallest permitted value of word_size that defines 
the minimum length of the initial seed alignment, which is later 
extended and hence is the most permissive word size. Here, Fuso 
is a database of 16 Fusobacterium genomes (table S1D), which 
contains genomes in PathSeq database and other genomes. To find 
useful Fusobacterium genomes to add to the blastn database Fuso, 
we i) sampled sequences that had much less significant matches to 
the PathSeq Fusobacterium genomes and then ii) queried those se-
quences against National Center for Biotechnology Information 
(NCBI’s) databases of genomes with default web-blastn parame-
ters to find better alignments to other Fusobacterium genomes. 
Not all the 16 genomes used are from the species F. nucleatum, 
which is the infecting microbe used in our wet laboratory ex-
periment. Thus, the sequences found by blastn may not be real 
matches. They represent a cautious upper bound on how many se-
quences in table S1A classified as non-​Fusobacterium may be false 
positives.

Comparison of CSI-Microbes with INVADE-seq and 
with SAHMI
We ran two alternative pipelines (INVADE-seq and SAHMI) for 
the detection of microbial reads from scRNA-seq datasets on 
Robinson2023-10x (19, 21). We used the same microbial database 
files as described above and used for CSI-Microbes. The exact code 
used to run these pipelines is available on the CSI-Microbes-
identification GitHub and explained in the README.md. Specifi-
cally, the code used to run SAHMI is in the file run-SAHMI.smk in 
the Robinson2023-10x directory (https://github.com/ruppinlab/
CSI-Microbes-identification), and the code to run INVADE-seq is 
in the file run-SAHMI.smk in the Robinson2023-10x directory 
(https://github.com/ruppinlab/CSI-Microbes-identification).

At a high level, we used the shell commands in https://github.com/
FredHutch/Galeano-Nino-Bullman-Intratumoral-Microbiota_2022/
blob/37049d3d8e7f78f09a1f5dc505e5544b9b503434/patient_samples/
patient_samples_GEX_pipeline.sh for INVADE-seq and convert-
ed them to a file of steps for snakemake. SAHMI provided a RE-
ADME (but not a shell script) that specified the functions to run, 
which we used to generate the set of commands for snakemake. 
For the outcomes reported above in Results, we included all of 
the steps except for the sample k-mer correlation test function 
due to the small number of samples (n = 4 in Robinson2023-10x) 
and because each sample constituted a separate experimental 
condition. To check whether including the sample k-mer corre-
lation test would substantially change the results, we ran it on 
all four samples together and found only two (spurious) species 
(Acinetobacter cumulans and Georgenia faecalis) and zero genera 
were significantly (P < 0.05) and positively (r > 0) correlated 
across samples.

Statistical analysis
Cell type enrichment (plate-based protocols)
We define the abundance of a particular microbe in each cell to 
be the number of reads assigned unambiguously to the relevant 
genome(s) by PathSeq. The abundances are normalized using the 
computeSpikeFactors function from scran (59) v1.16.0 (https://
github.com/MarioniLab/scran), which computes the library size 
factors using the sum of the spike-in sequences. To limit the number 
of hypotheses, we only test microbial taxa with counts per million mi-
crobial reads >10 in at least 50% of the cells from a cell type. The 
logged normalized read counts are compared across cell types using 
the findMarkers function from scran v1.16.0 with arguments “test= 
‘wilcox,’ lfc=0.5, block= ‘plate’”. The findMarkers function from scran 
v1.16.0 makes inconsistent assumptions about how to distribute the 
values of the null distribution depending on whether the user speci-
fies “direction = ‘up’” or “direction = ‘down’” (a one-sided test) or the 
user specifies “direction = ‘any’” when the parameter lfc is greater than 
zero (https://github.com/MarioniLab/scran/issues/86). The assump-
tion for the one-sided test models our intent, so we ran the compari-
son twice, once using with “direction = ‘up’” and once with “direction=  
‘down,’” selected the result with the smaller P value for each microbial 
taxa, and converted the one-sided P value to the two-sided P value by 
taking the minimum of 1 and 2*P value as described in a standard 
reference (60) (page 79).
Cell type enrichment (10x Genomics protocols)
The analysis of microbial reads in single-cell sequencing data is a 
relatively new area with few established statistical methods. For this 
reason, we chose to not make any assumptions about the underlying 
distribution of microbial reads in scRNA-seq. Following this deci-
sion, we chose to use nonparametric statistical tests. We observed 
from our in vitro infection experiments that most cells sequenced 
by the 10X platform contained zero bacterial UMIs. Therefore, we 
decided to categorize cells as either infected or uninfected using 
a threshold of ≥ X UMIs assigned unambiguously to the relevant 
genome(s) by PathSeq and to use a test of categorical data to calcu-
late cell type enrichment. We chose Fisher’s exact test as our test of 
categorical data instead of Chi-squared approximation because “for 
the chi-square approximation to be valid, the expected frequency 
should be at least 5” (https://itl.nist.gov/div898/handbook/eda/sec-
tion3/eda35f.htm), and this condition is not met for many sample, 
cell type, and genus combinations.

It is important to evaluate cell-type enrichment in individual 
samples instead of evaluating cell-type enrichment using all cells 
(and ignoring samples). We illustrate this using the following toy 
example with two samples (s1 and s2) and two cell types (ct1 and ct2)

s1: 100 cells; 80 cells are ct1, and 20 cells are ct2; 16 (20%) ct1 cells 
are infected, and 10 (50%) ct2 cells are infected.

s2: 100 cells; 20 cells are ct1, and 80 cells are ct2; 0 ct1 and 0 ct2 
cells are infected.

Looking only at sample s1, ct2 is enriched in infected cells com-
pared to ct1 (50 versus 20%). However, combining s1 and s2 would 
show that 16 (16%) of ct1 cells were infected compared to only 10 
(10%) in ct2, leading to the erroneous conclusion that ct1 is enriched 
in infected cells.

We illustrate our approach by comparing the enrichment of in-
fection by any genera in myeloid versus nonmyeloid cells in sample 
C169_T_1_1_0_c1_v3 from patient C169 from Pelka2021 using 
X = 2 as the threshold for infection. This sample had 2245 cells, of 
which 473 cells were myeloid and 1772 cells were nonmyeloid. We 
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first compare the proportion of cells infected by a given microbial 
taxa between two cell types in a sample using the fisher_test func-
tion from SciPy.

For sample C169_T_1_1_0_c1_v3, 2.3% (51 of 2245) of cells are 
infected, including 5.5% (26 of 473) of myeloid cells and 1.4% (25 
of 1772) of nonmyeloid cells. We calculate the P value using Fisher’s 
exact test (code and contingency table shown below), which is 
(rounded) equal to 1.68 × 10−06.

fisher_test([[26, 447], [25, 1747]], alternative = “greater”)
To calculate the effect size, we first calculate the number of ex-

pected infected cells per cell type under the null hypothesis using 
the formula

Using this formula, we calculate the number of expected infected 
myeloid cells to be 10.75 [473*(51/2245)] and the number of ex-
pected infected nonmyeloid cells to be 40.25 [1772*(51/2245)]. 
Comparing the number of infected myeloid cells to the number of 
expected infected myeloid cells yields 2.4-fold increase (26/10.75) or 
a 1.3 log2 fold increase [log2(26/10.75)] in the number of infected 
cells relative to expectation.

To calculate the log2 fold change for a given cell type across a 
cohort, we first sum the number of infected cells of that cell type 
across all samples. Next, we sum the number of expected infected 
cells of that cell type across all samples. Last, we calculate the log2 
fold increase as shown above.

To calculate the significance of the infection enrichment for a 
particular cell type across a cohort, we first calculate the per sam-
ple P value for the given cell type using alternative = “greater” (we 
use alternative = “less” to calculate the significance of the infec-
tion depletion for a particular cell type). Next, we combine the 
per sample P values for a given cell type using Stouffer’s Z-score 
method (using the combine_pvalues function with argument 
`method = “stouffer”` from SciPy) weighting the P values using 
the number of expected infected cells (as samples with very few 
infected cells or very few cells of the cell type of interest will not 
be informative). We set the maximum per sample P value to be 
0.9999 as combine_pvalues function with method = “stouffer” re-
turns (-Inf, 1) when any P value = 1 (https://github.com/scipy/
scipy/issues/8506).

Calculation of coinfection relationships in colorectal cancer 
and esophageal cancer datasets
In each dataset (Pelka2021 and Zhang2021), we calculated coinfec-
tion relationships only for genera that infect ≥10 cells. We initially 
calculate coinfection relationships per sample. Given genera g1 and 
genera g2, we calculate the coinfection relationship using the hyper-
geometric enrichment to ask whether the number of cells infected 
by both g1 and g2 are more than expected knowing the total number 
of cells, the number of cells infected by g1, and the number of cells 
infected by g2 (using the hypergeom function from SciPy). Next, for 
a given coinfection relationship, we combine the per-sample P val-
ues using Stouffer’s Z-score method (using the combine_pvalues 
function with argument method = stouffer from SciPy) weighting 
the P values using the number of expected coinfected cells (as samples 
with very few infected cells of g1 or g2 will not be informative). We 
set the maximum per sample P value to be 0.9999 as combine_
pvalues function with method = stouffer returns (-Inf, 1) when any 
P value = 1 (https://github.com/scipy/scipy/issues/8506).

Host cell transcriptomic analysis
We performed differential gene expression analysis between infected 
(≥2 microbial UMIs) and bacterial-negative (0 microbial UMIs) 
human cells for myeloid and tumor cells. We used the function 
FindMarkers from Seurat (v4.3.0) using the default value for the 
host transcriptomic results.

Principal components analysis
To identify PCs associated with infection status, we processed all cells 
from a particular cell type (i.e., myeloid) and dataset (i.e., Pelka2021) 
through Seurat (v4.3.0) up to and including the RunPCA function. 
Next, we extracted the values of the first five PCs for every cell using 
the function FetchData from Seurat (v4.3.0). Last, we compared the 
values for each PC between uninfected and infected (≥2 microbial 
UMIs) cells using the function ranksums from scipy.stats.

GSEA and visualization
For GSEA, we performed differential gene expression analysis as 
described above using the additional argument of “logfc.threshold = 
-Inf, min.pct = -Inf, min.diff.pct = -Inf ” to return a P value and 
avg_log2FC for every gene. We ranked genes using the formula: 
avg_log2FC*−log10(P value +1 × 10−300). We added 1 × 10−300 to 
avoid errors when the P value equaled to zero. We ran GSEAPre-
ranked (42) (v4.3.2) using preranked genes (described above) and 
the Gene Ontology Biological Processes v.7.5.1 gene sets using the 
default parameters and seed = 0.

We visualized the enriched gene sets using Cytoscape (61) (v3.9.1) 
and Enrichment Map (44) (v3.3.5) (https://enrichmentmap.readthedocs.
io/) with parameters: P < 0.001 (node cutoff) and Jaccard Overlap 
Combined Index (k constant = 0.5) > 0.5 (edge cutoff). Clustering 
was performed on the graph using MCL Cluster from AutoAnnotate 
(62, 63) (v1.4.0). Annotations were manually reviewed and edited 
where appropriate.

Correlation of host gene expression and microbial load
We used the R function corr.test (with the argument method = 
“spearman”) to identify correlations between normalized expression 
for all genes and the number of genera-resolution microbial UMIs. 
We excluded all cells with zero microbial UMIs to focus on micro-
bial load and avoid identifying genes simply associated with infec-
tion. We used the R function corr.test (with the argument method = 
“spearman”) to compare the correlations for overlapping genes in 
Pelka2021 and Zhang2021.

Supplementary Materials
This PDF file includes:
Figs. S1 to S11
Legends for tables S1 to S6

Other Supplementary Material for this manuscript includes the following:
Tables S1 to S6
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download the data from the datasets above, is available on GitHub (https://github.com/
ruppinlab/CSI-Microbes-identification) although the identification module has some 
dependencies to the NIH Biowulf server. A reproducible Snakemake workflow for analyzing 
microbial reads to identify intracellular microbes is available on GitHub (https://github.com/
ruppinlab/CSI-Microbes-analysis). To facilitate reproduction of our analyses, we have uploaded 
the microbial reference files needed to generate the database used in this study to Zenodo 
(https://doi.org/10.5281/zenodo.10454909) and uploaded the relevant intermediate data files 

(generated by CSI-Microbes-identification) to Zenodo (https://doi.org/10.5281/
zenodo.10455337).
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