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Abstract

We develop an algorithm for jointly estimating the posterior and the noise parameters in Bayesian
inverse problems, which is motivated by indirect measurements and applications from
nanometrology with a mixed noise model. We propose to solve the problem by an expectation
maximization (EM) algorithm. Based on the current noise parameters, we learn in the E-step a
conditional normalizing flow that approximates the posterior. In the M-step, we propose to find
the noise parameter updates again by an EM algorithm, which has analytical formulas. We
compare the training of the conditional normalizing flow with the forward and reverse
Kullback—Leibler divergence, and show that our model is able to incorporate information from
many measurements, unlike previous approaches.

1. Introduction

In a variety of healthcare and other contemporary applications, the variables of primary interest are obtained
through indirect measurements, such as in the case of magnetic resonance imaging and computed
tomography. For some of these applications, the reliability of the results is of particular importance. The
accuracy and trustworthiness of the outcomes obtained through indirect measurements are significantly
influenced by two critical factors: the degree of uncertainty associated with the measuring instrument and
the appropriateness of the (forward) model used for the reconstruction of the parameters of interest
(measurand). In this paper, we consider Bayesian inversion to obtain the measurand from signals measured
by the instrument and a noise model that mimics background noise coming from the instrument and the
variation of the measurement, depending on the forward model. Within this framework, we developed an
extension of the expectation maximization (EM) algorithm that is able to handle a Bayesian inversion with a
measurement noise model. As a result, we obtain the posterior distribution for the parameters of interest
(distribution of the measurand), which is a measure of the reliability of the measurement results. To
demonstrate the applicability and effectiveness we apply the algorithm to two real examples in
nanometrology, i.e. EUV Scatterometry. The key focus of the work is the development of a noise-adapted
posterior sampler based on DeepGEM [24], which can incorporate information from several measurements
simultaneously.

In this context we consider Bayesian inverse problems

Yp = F(X) + 9, (1)

with a possibly nonlinear forward operator F: R? — R" and a random noise variable 1y which depends on
an unknown parameter 6 and on F(X). Note, Y describes the signals of the instrument whereas X are the
parameters of interest. The posterior (parameter distribution) Px)y,—, for observations y will ultimately
depend on these parameters 0, as the likelihood Py, x—, depends on them. Therefore, we aim to estimate the
parameter 6 from observations y; € R",i =1,...,N, where N is possibly small. There exists plenty of
literature on estimating the standard deviation o within the Gaussian noise model 79 = 17, ~ N (0,0°I,).

© 2024 The Author(s). Published by IOP Publishing Ltd
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However, motivated by applications in nanometrology [30], we are interested in a mixture of additive and
multiplicative Gaussian noise of the form

Mo ="Nap) =m+m, m~N(0,aL),;m~N (0, b*diag (F(x)z)) : (2)

where F(x)? = (F;(x)?)"_, and the identity in R"*" is given by I,,.. For convenience we assume that the
instrument noise and other sources can be described by the simple Ansatz made here. In general different
noise models may appear in the applications. The noise model equation (2) was used in several previous
studies in optics [29, 30, 32, 59] and analyzed in [19]. A similar noise model appears in analytical chemistry
[58] and the study of gene expression arrays [57]. It belongs to the class of heteroskedastic noise models [22]
and an algorithm for parameter estimation in a slightly different problem was proposed in [23]. Learning the
noise model without any parametric form was done using NFs in [1].

The standard approach for parameter estimation is maximum likelihood estimation. That is, we choose 6
as the minimizer of the negative log likelihood function

£0) =55 log(po ().

i=1

where py is the probability density function of Y. However, in our case this function involves a
high-dimensional integral of the form [ py, |x=.(y)dPx(x) which is intractable to compute. As a remedy, we
exploit EM algorithms which were introduced in [16], see also [10] for an overview and [50, 51] for
applications for parameter estimation in inverse problems. The basic idea is to iteratively compute the
posterior distribution PX1y, ) =n for a current estimate (") of # and then updating this estimate to §("+1)
based on this posterior distribution. Here, the computation of Px|y -, is called E-step, while the update of
0 is called M-step. Intuitively, this corresponds to the idea that the distribution of F(X) is approximately
concentrated on a lower-dimensional manifold and consequently the distance of the y; to this manifold
contains the information of the noise parameters 6.

Recently, Gao et al [24] proposed to solve the E-step by a normalizing flow (NF) [18] using the
reverse/backward Kullback-Leibler (KL) divergence as loss function. For the M-step, they apply a stochastic
gradient ascent algorithm. Note that in general the same procedure can be applied to estimate parameters of
the forward operator instead of the noise level, see [41]. This approach has several drawbacks. The model
needs to be retrained for every new observations y and cannot profit from many observations that follow the
same error parameters. Furthermore, the reverse KL is known to be mode-seeking. That is, it tends to recover
only one mode of multimodal distributions, which incorporates a significant approximation error, see the
discussions in [26, 48, 67] for more details. Very related is also the JANA framework [55], where the authors
propose to learn forward (likelihood), posterior and summary network together in an amortized
(i.e. conditional manner). However, they optimize it not iteratively, since they do not treat it as an EM
framework and do not discuss noise modelling. The main idea of this paper was presented by some of the
authors in a one-page extended abstract in [56].

1.1. Contributions

First, we propose to use the conditional NFs [7, 66] in the E-step. This allows the incorporation of several
measurements from the same error model and to solve the inverse problem for all measurements
simultaneously. Fortunately, the forward KL [7] can be used as loss function for training the conditional NFs
which makes the method mode covering. Second, we propose an inner EM algorithm for solving the M-step
more efficiently. For our special noise model (2), we deduce analytic expressions for E- and M-steps of this
inner algorithm. The performance of our approach will be demonstrated on two applications from
nano-optics. In particular, we propose a conditional version of DeepGEM and benchmark it against forward
conditional DeepGEM, where the reverse KL is replaced by a forward KL.

1.2. Organization

We start in section 2 by recalling the general EM algorithm. Then, in section 3, we construct the E-step and
M-step for our application. That is, we show how conditional NFs can be incorporated into the E-step and
describe how the M-step can be solved for our noise model with an ‘inner’ EM algorithm which steps can be
given in a closed analytical form. Some of the technical computations are postponed to appendix A. We test
our algorithms on two nano-optics problems, which is done in section 4. Finally, conclusions are drawn in
section 5.
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2. EM algorithm

In this section, we introduce the EM algorithm as a maximization-maximization algorithm of an evidence
lower bound. A general introduction into the EM algorithm can be found, e.g. in [10].

Let {Yp : 0 € ©} be a family of n-dimensional random variables having probability density functions pg,
0 € ©. Given i.i.d. samples yy, ...,y € R” from Yy+ for some unknown 6*, which we want to approximate
by computing the maximum log-likelihood estimator

N
1
6= L), L£0):=-—Y"1 ).
argmax (0) (0) N; og (pe (i)

In the literature, the term log(py(y)) is also called evidence of y under 6. As in many applications it is hard to
maximize £, we introduce an absolute continuous d-dimensional auxiliary random variable X such that the
joint density px.y, exists and is easy to evaluate. Then, it holds by the law of total probability and Jensen’s
inequality, for any probability density function q on R, that

g (9o ) =tog | pu ()] =tog ([ 2B g0

> [ tog (22520 ) gy as = 7 0.0,

We call the random variable X the hidden variable and the expression F (g, 0|y) the evidence lower bound
(ELBO). Now, instead of maximizing the log-likelihood function directly, the EM algorithm is a
maximization-maximization algorithm for the ELBO, i.e. starting with an initial estimate 6 it consists of
the following two steps:

E-step: qf”’l) = argmax.JF (q,ﬂ(r) |yi) , i=1,..,N, (3)
qepdf(d)
N
M-step: AU+ = argmafo <q§r+1),9|yi) ; (4)
be0 o

where pdf is the space of d-dimensional probability density functions.

The E-step (3) can be solved based on the following standard lemma which can be found, e.g. in [9,
section 9.4]. For convenience, we provide the simple proof. Recall that the Kullback—Leibler (KL) divergence
of two probability measures P, Q with densities p, g is defined by

KL(P.Q) = [ plologlS ax

if P is absolutely continuous with respect to Q, and KL(P, Q) = +oco otherwise. Further, we use the
convention 0log0 = 0.

Lemma 1. Let X € RY be a absolute continuous random variable and let Q be an absolutely continuous measure
on R? with probability density function q. Then it holds, for any y € R", that

log (po (y)) — F (q,0ly) = KL (Q, Pxjy,—,) -

Proof. By definition of the conditional distribution, we have

log(pe (7)) — F (q,0y)

—tog o) - | attog

R4

4() )d"
~tog(po )~ [ a(los(pa )t | atoriog (1Y an
X|Yo=y
- 10g(P0 (}’)) —log(pg ()/)) +KL (Q’PX|Y9=}’) = KL(QaPX\Ye,w:)’)'
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As the KL divergence KL(Q, P) is minimal if and only if Q = P, the lemma implies that the solutions g; of
the E-step (3) are given explicitly by

E-step: qi(rH) =Pxy, =y 1 =1, N. (5)

For solving the M-step (4), we decompose the ELBO as

]:(q’ 9‘)’) = Ex~q [log (PX,YQ (X,)/))] - Evaq [log (q (x))] . (6)

Note, that only the first summand depends on 6. Using this decomposition and the explicit form (5) of the g;
in the M-step, we obtain the classical EM algorithm as proposed in [16]:

M-step: 67D = argmaxQ (0,9(’)> ; (7)
9co

N
E-step: Q (0, a(f)) = ZEXNPX\Ye(o _,, llog (px,v, (x.y:))]-

i=1

A convergence analysis of the EM algorithm based on KL proximal point algorithms was done in [13, 14]. In
particular, we obtain the following convergence properties.

Proposition 2. Let the sequence (q\"),0")) be generated by the EM algorithm. Then, the following holds true.

(i) The sequence of ELBO-values (F(q",0(")), is monotone increasing.
(ii) The sequence of likelihood values L(0(")) is monotone increasing.

Remark 3 (generalized EM algorithms). Several papers propose so-called generalized EM algorithms [34, 42,
46, 52]. The key idea of these generalizations is to replace the maximization steps (3) and (4) by increase steps.
More precisely, in each iteration the values q,g ™1 and ¢+ are chosen such that

F(a7,00) = F (a,00)), éf(qf’“)ﬁ(’“)v) > éf(qf’“)ﬁ(’) ).

Using such increase steps, generalized EM algorithms often achieve simpler and faster steps, than the original
EM algorithm even though they might require more steps until convergence. By construction, part (i) of pro-
position 2 remains for generalized EM algorithms, while part (ii) is not longer proved for certain of these
algorithms.

3. Parameter estimation in Bayesian Inverse Problems

Now we consider the inverse problem (1), where we assume that X has density px. Given N observations

Y1, .-, yn of Yo, we aim to determine the parameter 6. We will derive an EM algorithm for this problem,
where the hidden variable is given by the ground truth random variable X. In particular, we will deal with the
noise model (2). Here the parameter § = (a,b) can be updated in the M-step analytically.

3.1. E-Step: conditional NFs
As we have seen in (5), the E-step corresponds to finding the posterior densities

Px|Y, () =y = argmingF (q79(f) ‘)’i) , i=1,...,N,

for given A("). We propose to approximate these posteriors by conditional NFs. This extends the so-called
DeepGEM from [24] to the conditional case. We will see that our approach brings the forward KL instead of
the reverse KL into the play which has several advantages, see remark 4.

A conditional NF is a mapping 75 : R” x R? — R? depending on some parameters ¢ such that 7, (y, ) is
invertible for any y € R”. In this paper, 7Ty is a neural network. There were several architectures for NFs
proposed in the literature. They include GLOW [39], real NVP [18], invertible ResNets [8, 12, 33] and
autoregressive Flows [15, 20, 36, 53]. They were extended to the conditional setting in [7, 17, 27, 40, 66]. The
parameters ¢ are learned such that

—1
PzoTy (yir') = Ts ir') yPz = Pxjy,  =p>

4
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foralli =1,...,N, where P is some latent distribution, usually a standard Gaussian one. Once we have
learned the conditional NF 7 for an appropriate parameter § this provides us with a desired approximation
of the posterior. In other words, given y € R”, we can sample z from Z and produce a sample from Px|y—, by
T (7.2).

Now we could learn the conditional NF 7, by minimizing the loss function

N N
u7reverse (¢) = Z]: (p’TMy,,-)#PZ;e(r) |y1> o8 ZKL (7:15 (yia ')#PZ7PX|Y9:)/,-) )
i=1

i=1

where the last relation follows from lemma 1 and ‘<’ indicates equality up to a constant. In literature, this
loss function is known as reverse or backward KL loss function. Applying the change of variable formula for
push-forward measures and Bayes’s formula this can be rewritten as

N
L7reverse ((b) X ZKL (pZa% (yia );&1 PX|Y9(r) :y,-)
i=1

N
=3 Bau, [10g (pr, ) 1x=7u 1) () +108 (px (T (:2))) +log (|det (V.75 (3,2)) )],

i=1
see [2, 3, 40] for a detailed explanation and applications. In order to evaluate these terms we have to be able
to evaluate the prior density px as well as the conditional densities Py, Ix=x (y), which contains the forward

operator and the noise model for given parameters §("). Unfortunately, it is known from the literature that
the reverse KL is prone to mode collapse, see [48]. That is, in the case that Px|y,—,, is multimodal, it tends to
generate only samples from one of the modes.

As a remedy, we interchange the arguments in the KL divergence in Jeverse and replace the sum over the
yi by the expectation over Py_ . Then, we arrive at the so-called forward KL loss function

Tforward (¢) = EyNPYG(r) |:KL (PX\YB(,) =y 7:# (y7 ')# PZ>:|

E. » log DXy, =y (x)
o= PT() 427 (%)

X ~Egeprys , [108 (b2 (To ()7 () ) +logldet (VT3 ()™ () 1]

frng E ~
4 Pys(r)

To compute these terms we need samples (%;,7;),j = 1, ..., N from the joint distribution Px,y,,, - Note that
such samples can be generated from just knowing the X; by evaluating the forward operator and the noise
model. In this setting, we do not need access to the prior density px or the conditional densities Py, [X=x-
The forward KL is more standard in (conditional) generative modelling [7, 18, 66] due to these properties
and is also known as maximum likelihood training [67].

Remark 4 (forward versus Reverse KL). Note that in the case that 7y is an universal approximator, we have
for both loss functions that the optimal parameters  fulfills 7;;()/1-, Pz = PX1y, ) =ni- This is important, as
we propose to replace the reverse KL in the E-step by the forward KL. Moreover, the assumptions for training
and the approximation properties differ. For the reverse KL, we have to be able to evaluate the density px of
the prior distribution, while the forward KL needs samples from Py. In practice it depends on the problem
which assumption is more realistic. On the other hand, the forward KL loss function is not that prone to mode

collapse. The universality of conditional NFs has been discussed in [44].

3.2. M-Step: inner EM for mixed noise model
As described in (7), the M-step is given by

N
g+ = argmaxZ]EXprly
0

i=1

[log (px.v, (x,7i))] - (8)

o(n) =i

Unfortunately, to the best of our knowledge, an analytic solution of (8) is not available. Therefore, we
discretize the expectation in (8) by

N M

glr+1) — argmaXZ Zlog (PX,Ye (x{'(’yi)) ’ ®)

b o1 k=1
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where the xf, k=1,...,M are sampled from Px|y  —,. This can be solved by various iterative methods,
e.g. by a stochastic gradient algorithm [38] as done in [24].

For our special noise model (2) with § = (a, ), we propose to use again an EM algorithm, since both the
E- and M-step of the ‘inner’ EM can be computed analytically, which will be shown in the following
paragraphs. We use that for this noise model we have

Pyoix=x ) =N (y|F (x) ,a’I, + b*diag (F(x))) .

For simplicity, we assume that we have only M = 1 samples. The case M > 1 can be reduced to this case by
considering M copies of y;. In our EM algorithm for (9) we use Vg ~ aA (0, 1) as hidden variable, which
corresponds to the ‘additive part’ of the noise.

3.2.1. Inner E-step
We have to compute the conditional distribution Py,|(x,v,)=(x,y)- Using Bayes’ formula, we obtain

108 (Pvy | (x,v0)= () (V) <108 (Pyy vy =, x=x (7)) + 108 (P, x=x (V)
(Xz":_ i-FEx-v)" %
2D%F; (x)* 2a?
aziLsz dlag (u?fbfé?i)z ) ) ) ’

where the quotients in the last line are understood componentwise and ‘<’ indicates, that we have equality
up to an additive constant independent of v. Consequently, the conditional distribution Py, (x,v,)=(x,y) i
given by

j=1

o log (./\/ (v

a’(y—F(x)) @b’ F(x)?
Py, |(x,Ye)=(xy) = N <a2+b2F(x)2’d <a2+b2F(x)2)> :

3.2.2. Inner M-step
We will just outline the final result. The quite technical proof is deferred to appendix A, where the M-step can
be rewritten as

00+t = argmax A (b) + A, (a),
0=(a,b)ERL

where

1
1o

520 —nlog(a) + const,

1
A (b) = 2bzcg)—rH—log(bH—const, A, (a) =

with
0 LR D B@) OO B (@060)°
| N;; ((a(r)) + (bOF; (xi )2> <a(r))2+(b(’)Fj(xi))2

ARy ")’ (y; — F (x))) >2+ (P bOF; (x;))
l; Z( ) (b(‘f)) ( )2 (ﬂ(r))z-i-(b(r)f'}-(xi))z )

and y; = (yi1,...,yin) and F= (F,...,F,): RY — R". By setting the derivatives of A, and A, to zero, this is
equivalent to

which are the update rules we will use.
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Algorithm 1. EM algorithm mixed noise estimation via CNFs.

Input: y1,...,yn € R", conditional normalizing flow 7" and initial estimate a'®, 5*), number of x in total K = 2000 > N.
forr=0,1,...,Rdo
E-Step:

forp=0,1,...,P do update T according to

argmin¢EprYe [KL (px‘ye =P, (},7.)#}72)] (reverse KL)

or

argmin¢Ey~pYS [KL (p7—¢ () P22 PXIYg :y)] (forward KL)
via a gradient descent method where 6 = (a’,0").
end for

Repeat 7= (J1,.,¥1,-- N, - - -yn) € RE™,
Sample x; ~ T (7i,2) for standard normal z;.
M-Step:

for/=0,1,..,Ldo

S S ) Cd WO (L)
T TR s (@O (08 ) @0 0 he)

~ 2 2
) _ 1K n (a0) (5=F (=) (aD00F ()
Q" =g lia <Zj=l ((u(f))2+(b("))zF,'(Xi)2 + (a6 Ex))? | °

(r.1)

()
Update (a"D)? = —2—, (brD)2 = 9
end for
Set (a+V)2 = (a"WDY2, (pUHDY2 = (pD)Y2
end for

3.3. Resulting algorithm

The summary of the two nested algorithms can be seen in algorithm 1. Here, both the E-steps and the
M-steps are not run for 1 iteration, but several. In particular the analytical M-step is cheap, and therefore it is
intuitive to make use of this. For the E-step we take usually 10 steps to perform posterior updates. The
initialization of a, b are done in such a way that we approximate the posterior distribution ‘from above’. This
is important so that the observed measurements are included in the distribution Py,, which is similar to the
logdet schedule proposed in [63]. It indeed can be shown that making the logdet term larger corresponds to
scaling the noise higher for additive Gaussian noise, which makes the estimated distributions broader and
therefore prevents mode missing, although we still found that this does not solve the problem completely.

4. Experiments

We will benchmark our algorithm on two problems from nano-optics, the first one being low-dimensional
and the second one harder and more recent. The first was introduced in [29, 30] and the second one is part
of a current research project. The goal of this is to learn both a reasonable posterior reconstruction as well as
the error parameters a, b jointly. To showcase the advantages of making the models conditional we also vary
the number of measurements and hope that more measurements lead to better reconstructions.

Generally, we use the PyTorch framework [54] and use FrEia package for implementation of the
conditional NFs [6]. The code is available on GitHub". We train our models using the Adam optimizer [38]
and fix some hyperparameter choices across the experiments. In particular, we only use a learning rate of
1 x 1073, P=10, set K = 2000, R = 5000 in 1 and L = 20. The choice of K is in particular constant no matter
how many measurements N are used. This allows us to compare whether the information of many
measurements is beneficial for the estimation of a and b. However, these hyperparameters were not
optimized in a grid search and therefore it is likely that one can improve the performance. We generate
synthetic measurements via surrogate forward operators with known noise levels airye, birue, Similar as in [3,
section 3]. In both these experiments, we take these surrogate neural networks as forward operators. The
extension to real world measurements and the relation to the true PDE inverse problem is left for future
work. This allows us, given some noise parameters, to sample (x, y) data on the fly.

4 https://github.com/PaulLyonel/ConditionalDeepGEM.
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Then we apply our proposed algorithms to learn a and b as well as the posterior reconstructions. Then we
are able to compare the models and error parameters on two metrics. The metrics and models evaluated are
summarized below.

4.1. Models evaluated

We will evaluate two EM-based models, one is the conditional version of the DeepGEM method [24] which
we combined with our M-step. Note that amounts to using the reverse KL divergence in algorithm 1.
However we propose to use the forward KL divergence which we call conditional forward DeepGEM. To see
the general comparison of EM algorithms, we also implement a grid search over (a, b) and save the ‘best’
model of this. The grid search is still possible since we are searching over a two dimensional space, but
becomes quickly infeasible for higher dimensional noise models. We will call this grid conditional NF and
also evaluate its forward and reverse KL version.

4.2. Metrics
We are going to benchmark the models using the following two metrics.

e Distance to true a and b: we will consider synthetic data, where the a, b the observations were generated with,
are known. This metric is given by

D(@,5), (due, biue)) = 12— el y [0 Bruc]
Qtrue btrue
However, this is a terrible metric as there can be other combinations of a and b which explain the
observations equally well. However, we hope that for sufficient observations we will converge to the true
aandb.

e ELBO: from lemma 1 we see that maximizing the ELBO F leads to minimizing the KL distance to the true
posteriors as well as maximizing the likelihoods of the observations under the estimated error parameters
a,b. This is a good proxy, as both the likelihood of the observations as well as the KL distance to the posteriors
are intractable in high dimensions.

By the above discussion, we also obtain a suitable model selection criterion. We train all the models for the
same amount of steps, but we validate it after every EM-step according to the ELBO for the measurements.
We then load the best model for every run and evaluate our metrics.

4.3. Scatterometry
For chip manufacturing the control of nanopattern in the lithography process is essential and
non-destructive measurement methods with high throughput are desirable. In addition to standard scanning
electron microscopy (low throughput, destructive) scatterometry is gaining importance. Scatterometry is a
non-destructive optical measurement technique for assessing lithography’s periodic nanostructures’ critical
dimensions [37]. In this measuring method, nanostructured periodic surfaces are illuminated with light and
refraction patterns are detected. From these patterns geometry parameters are reconstructed by solving an
inverse problem. According to equation (1) observations are given by the refraction patterns, the forward
operator is determined by time-harmonic Maxwell’s equations and the noise is given by the instrument as
well as the model error.

In the following, we consider two examples to demonstrate the performance of the developed algorithm
for applications in nanometrology of chip production. The first example considers a typical photomask for
extreme ultra violet light (EUV) and the second a line grating.

4.3.1. Photo mask

The EUV-photomask considered here consists of periodic absorber lines, capping layers and a multilayer
stack functioning as a mirror for 13.4 nm wavelength waves (EUV range). Key geometry parameters include
the line width, height and the angle of the sidewall (3 parameters). The refraction patterns comprise 23
intensities (maxima of the refractive orders) and the measurement/model noise is assumed to be distributed
according to our mixed noise model.

The problem has x-dimension 3 and y-dimension 23 and therefore is well-suited for first experiments.
Furthermore, by [30] it is known that the posterior is indeed multimodal. The prior is chosen uniformly in
[—1,1] and its density is approximated like in [26] for the reverse KL. For the example we train both the
conditional DeepGEM as well as the conditional forward DeepGEM using data from the finite element
method (FEM) based forward model [30], which is approximated by a surrogate neural network. The
forward DeepGEM is a bit quicker to train. The true a and b used to generate simulated signals of the
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Table 1. Distance of estimated a and b to the true ones over 10 runs. The best values are indicated in bold.

Number measurements 1 2 4 8
Forward condDeepGEM 0.50 0.37 0.33 0.20
Reverse condDeepGEM 0.60 0.36 0.31 0.22
Forward gridCNF 0.65 0.41 0.44 0.32
Reverse gridCNF 0.53 0.34 0.31 0.42
0.50 0.60
o a gs51
T 045 kel
c [=
© @ 0.50
© 040 ©
[ Y 045
c 2
E 0.35 E 0.40 4
S 030 Y 0351
c c
© (]
-‘E 0.25 E b
o el
0.25
0.20
1 2 3 a 5 6 7 8 1 2 3 a 5 6 7 8
number of measurements number of measurements
(a) Forward KL conditional DeepGEM. (b) Reverse KL conditional DeepGEM.

Figure 1. Distance to the hyperparameters (a) and (b) for forward and reverse KL conditional DeepGEM.

Table 2. ELBO of the algorithms over 10 runs. Calculated for the measurements based on 2000 samples. The best values are indicated in
bold.

Number measurements 1 2 4 8

Forward condDeepGEM 81.12 80.55 79.36 79.20
Reverse condDeepGEM 80.92 79.80 78.62 78.59
Forward gridCNF 77.54 76.89 76.33 76.61
Reverse gridCNF 78.99 77.55 76.32 76.50

instrument were set to 0.005 and 0.1 respectively. We benchmark now the four methods, the conditional
DeepGem with forward and reverse KL as well as the grid conditional NFs (gridCNF) with forward and
reverse KL. For the grids we chose an equispaced grid with 8 points for a and for b. For a this ranged from
0.001 to 0.03 and for b from 0.01 to 0.2. Concerning training time, the forward and reverse conditional
DeepGEM were similar with 9 min per run. The grid versions took approximately 13 min to train, where we
took 1200 optimizer steps per grid point. Generally, we can see that the grid methods get outperformed by
our EM versions, although they take a longer time. From table 1 and figure 1 we can see that the forward KL
and the reverse KL have both similar performance in terms of distance to the true a and b, where the forward
KL seems to have a slight edge in the case of many measurements. However, in terms of ELBO, we observe in
table 2 that the forward KL performs favorably. This is somewhat remarkable, as the reverse KL is the ELBO
objective when ignoring the parameters independent of the flow. Considering posterior measures obtained
form simulated measurements we realize that the reverse KL does not exactly reproduce the modes in some
of the examples, see figure 2 whereas the forward KL performs quite well. The inability of the reverse KL to
detect the correct modes of the posterior can indeed explain the better performance of the forward
conditional DeepGEM. Both algorithms are improving with more measurements, see figures 1(a) and (b).

4.3.2. Line grating with oxid layer

The second example involves a periodic line grating consisting of a silicon bulk and an oxide layer on top.
Similar samples were investigated e.g. in [43]. In addition to the geometry parameters, as used in the
previous example, the optical constants (OC) of the materials are assumed to be not accurately known. In
practice this is often the case if the material composition was changed due to oxidation and contamination of
the sample. So for each material, there are two parameters for the complex refractive index (real and
imaginary part) [31], which depend on the material density. Hence we change the OC by varying the
densities of the material, i.e. silicon and silicon-oxide. This results in two parameters changing the OC and
five parameter describing the geometry of the line grating. The refraction pattern are detected for a single
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(¢) Posterior reconstruction for forward KL (d) Posterior reconstruction for reverse KL
conditional DeepGEM for another simulated condltlonal DeepGEM for another simulated
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Figure 2. Posterior reconstructions for different measurements using forward/reverse conditional DeepGEM via one dimensional
histograms on the diagonal and two dimensional on the offdiagonal. Ground truth x is depicted by the blue line.

wavelength of the incoming light beam under an angle of incidence of 30°, from the sample plane and a set
of seven azimuth angles between 0° and 6°, the sample is rotated by in the plane. In sum we obtained 77
simulated intensities and hence end up with x-dimension seven and y-dimension 77. For simulations the
forward model was solved with the software package JCMsuite®, based on the FEM which solves a boundary
value problem following from the Maxwell’s equations [21]. In order to get a strong response for the OC of
the oxide layer we used a wavelength of 12.99 nm, right before the absorption edge [4, 31]. For this work we
standardized the data from the forward simulation [11] on [0, 1] and chose a uniform prior for the x-data.
Again, we plot two example posterior distributions calculated. The distribution shapes seen in 3 clearly
reflect the sensitivity of the forward operator against the line height (parameter 0), the silicon oxide density
(parameter 4) and non-sensitive against the layer roughness (parameter 6). The true a and b were set to 0.03
and 0.25 respectively. Again as in the first scatterometry example we can see in tables 3 and 4 that the forward

3 https://jcmwave.com/.
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Table 3. Distance of estimated a and b to the true ones over 5 runs. The best values are indicated in bold.

Number measurements 1 2 4 8
Forward 0.93 0.19 0.09 0.08
Reverse 1.07 0.20 0.10 0.11

Table 4. ELBO of the algorithms over 5 runs. Calculated for the measurements based on 10 000 samples. The best values are indicated in
bold.

Number measurements 1 2 4 8
Forward 195.9 196.0 190.5 188.1
Reverse 195.8 196.1 189.1 186.9
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(a) Posterior reconstruction for forward KL (b) Posterior reconstruction for reverse KL
conditional DeepGEM for one simulated conditional DeepGEM for one simulated
measurement. measurement.

(¢) Posterior reconstruction for forward KL (d) Posterior reconstruction for reverse KL
conditional DeepGEM for another simulated conditional DeepGEM for another simulated
measurement. measurement.

Figure 3. Posterior reconstructions for different measurements using forward/reverse conditional DeepGEM.
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Figure 4. Distance to the hyperparameters (a), (b) for forward and reverse KL conditional DeepGEM.

KL performs a bit better in distance to the true a and b as well as ELBO. Similarly, one can observe that the
first x-component, the height can be multimodal, where the reverse KL can indeed miss the mode. This can
be observed in figure 3. Similarly, the distance to the true a and b decreases by adding more simulated
measurement values, which can be seen in figure 4.

5. Conclusions and limitations

We developed a nested EM algorithms, one for estimating the posterior distribution via a conditional NF and
a second one to solve the M-step within the former EM algorithm to estimate the error model parameters.
For the special kind of non-additive noise appearing in our applications we derived analytic formulas for the
inner E- and M-steps. We showed advantages of using the forward KL for modelling multimodal
distributions. The reverse KL often led to mode collapse. However, there has been a plethora of literature
tackling this issue of the reverse KL, namely [5, 45, 47, 64]. It would be interesting to compare these
approaches to the forward KL. Moreover, we could replace the conditional NF by other methods for
posterior sampling like score-based diffusion models [35, 60], conditional GANs [49] or posterior MMD
flows [25]. Furthermore, we chose synthetic ae and bye. One of the next steps is to test these approaches
on real world measurements. Even if the novel algorithm was applied to two specific real world experiments,
it may have an impact to a wide range of applications where indirect measurements are involved. The
extension of the algorithm to other noise distributions than Gaussian is analogous. An advantage over
standard approaches like Markov-Chain Monte Carlo methods is the fact that once the network has been
trained, further similar measurements can be evaluated very quickly. This benefit opens the possibility of
scatterentry and similar measurement techniques for real time applications, e.g. important for process
control. In terms of limitations, it would be also interesting to test the algorithm on other inverse problems.
Intuitively, we believe that the scatterometric inverse problem is particularly well-suited for these estimations
since the observed f(X)-data is living on a low-dimensional manifold in a nominal high-dimensional space.
One can indeed easily think of an inverse problem, where recovering noise parameters is much harder if the
observed data already lies in the full space.

Data availability statement

The code and data in the form of surrogate networks that support the findings of this study are openly
available. This means, the surrogates and the code for running and reproducing the experiments is available
under https://github.com/PaulLyonel/ConditionalDeepGEM. For the second photo mask problem we have
training data from the forward simulation/simulation of the measurement under https://doi.org/10.5281/
zenodo.10580011.
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Appendix A. Derivation of the inner M-step

For the simplicity of the notation, we use the abbreviation

o _ (a9 (i—Fe) . (a)(69) Fx)?
Q= Pvem (X Yy )=(xis) — N ( (a®) (b)) F(xi)? ,diag (a)*+ (60 ) F(x)? ' (A1)

Using the decomposition (6) of the ELBO, and noting that the second summand within (6) does not depend
on the parameters § = (a,b), we obtain that the optimization problem (4) is equivalent to

9t = argmaxz <Eva [log(pvy, x,vs (v:Xi,yi))]

beo
_ argenéaxz —E,wq [log (PVg Yol X=x; (v, y,))} +log (px (xi)) (A.2)
i=1
N
= argmaXZ —E,.q [log (pvg Yo |X=x; (v, y,))} .
beo o

Now, the objective function reads as

N
1
Z NEV’VQi [log (pVe,Ys [X=x; (V’yi))]

i=1

K] E,vq 10% PYG\VG_V X=x; (J’z)) +log (Pvg\xzx,- (V))] .

||Mz

As it holds by definition that py, v,y x= (i) = N (yi|F(xi) + v, b*diag(F(x))*) and py,|x=y (v) =
pv, (v) = N'(v|0,a%1,), this is equal to

Z I%Ewczi [log(V (i F(xi) + v, b diag(F(xi))*) + log(N (v]0,a°1))] = A:(b) + Ax(a),

where (leaving out constants with respect to a or b)

Z]EVNQ, IOg y1|F<x1) + v, b dlag( ( )) ):I

- 2Nb2 ZZ ( yii = Fi(x1))* = 2Buq, [] (v — Fi(x1) + Evna [Vﬂ ) - glog(bz)7

i=1 j=
and
1 N 1 N n "
= Dos W (0] =~ 33 [1] - Shea(e)

Now, by (A.1), the expressions E,q,[vj] and E, ¢, [VJZ] are the first and second moment of certain normal
distributions, such that

(a)” (s — B ()
(a)? + (b0)* F; (x:)?

Einq [v] =

and

E,o, [V]z] _ (((“m) (75 — F () ) N (al ) (b ) Fi(x;)
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Putting everything together, we obtain that (A.2) is equivalent to

U+l — argmax A; (b) +A; (a)
(“7b)eR2>O

with

l T
Ay (b) = T CE 0 nlog(b) + const, A, (a)= 22C ( ) _ nlog(a) + const,

where const denotes an unspecified constant independent of a and b. Further, the cgr)

T @V i—Be) \ (aDbOF (%)
_Nig Z((a’ + (b0)’ >+ 2 5 ]

(”)? F(x))  (a0)’ + (bOF;(x))

are given by

and

, 2 (a9)2(y— Fi(x))?
Cg) - ZZ ( i — Fj(xi))" — 2(a(r))2 + (]b(r))]ZFj(x,-)2

i=1j=1

@2 —F(x) \ | (aDbOF(x))?
@)+ (b 2E(x)? | T @0)2 + (b0F(x))?

Bringing the first three terms onto one denominator, this can be simplified to

& = (i — F (%) (60) " F; (%)’ ()’
;; (a(r)) (b(r)pj(xi))z)z (a")* + (bOF; (x;))*

(r)

Note that by definition ¢;”, i = 1,2 are non-positive. Thus, a"*!) and b+ are given by

a1 = argmaxA, (a), b+ = argmaxA, (b).
az0 b>0

By setting the derivatives of A; and A, to zero, this is equivalent to

(") (r)
At — 92 ety — O

n n’

Appendix B. Convergence plots of aand b

Here we showcase the convergence of the parameters a and b in the first scatterometry photo mask example.
For one particular run the convergence of a and b is shown, see figure B1. Note that both methods seem to
converge to the true a and b values, however the reverse KL trains more unstably, which might be tackable
with more careful hyperparameter selection or other stabilization techniques.

Appendix C. Sensitivity analysis of the forward model

To verify our results for the reconstruction of the line grating in 4.3.2, we make a sensitivity analysis of the
corresponding forward model. For the sensitivity analysis we have to determine the Sobol‘indices, which are
coefficients of a decomposition of the forward model and describe the impact of each parameter
combination on the forward model. Those indices are normalized to [0,1] and sum up to 1 [61, 62]. Making
an approximation of the forward model in a polynomial basis using Polynomial Chaos (PC) [21, 65] makes it
very easy to calculate the Sobol‘indices. The indices in figure C1 come from a PC-approximation with a
relative L,-error of about 0.076 and show the dependence on each single parameter. It is clearly seen, that the
height of the grating line and the density of the oxide layer and hence the OC for silicon-oxide has a huge
impact on the forward model. In general the sensitivity analysis fits very well to the reconstruction of the line
grating, since in figure 3 the distributions for parameter 0 and 4 are very sharp defined, while those which are
very broad distributed also show a low impact on the forward model. For the sensitivity analysis the source
software tool PyThia was used [28].
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