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Abstract
Cosmological models can be studied effectively using dynamical systems techniques.
Starting from Brown’s formulation of the variational principle for relativistic fluids,
we introduce new types of couplings involving a perfect fluid, a scalar field, and
boundary terms. We describe three different coupling models, one of which turns out
to be particularly relevant for cosmology. Its behaviour is similar to that of models
in which dark matter decays into dark energy. In particular, for a constant coupling,
the model mimics well-known dynamical dark energy models while the non-constant
couplings offer a rich dynamical structure, unseen before. We are able to achieve
this richness whilst working in a two-dimensional phase space. This is a significant
advantage which allows us to provide a clear physical interpretation of the key features
and draw analogies with previously studied models.

Keywords Cosmology · Dynamical systems · Couplings · Dark energy

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Lagrangian formulation and field equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Gravitational and fluid action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Total action and interaction terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Variations and field equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Cosmological field equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4 Constant interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 General properties and dynamical systems formulation . . . . . . . . . . . . . . . . . . . . 10
4.2 The matter dominated case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 A non-constant interaction model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1 Equations of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Critical points and stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

B Christian G. Böhmer
c.boehmer@ucl.ac.uk

Antonio d’Alfonso del Sordo
a.dalfonsodelsordo@ucl.ac.uk

1 Department of Mathematics, University College London, Gower Street, LondonWC1E 6BT, UK

2 Astrophysics Research Centre, School of Mathematics, Statistics and Computer Science, University
of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10714-024-03260-6&domain=pdf


75 Page 2 of 33 C. G. Böhmer, A. d. del Sordo

5.3 Phase space diagrams and physical interpretation . . . . . . . . . . . . . . . . . . . . . . . 23

6 Conclusions and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Appendix: Fixed points and classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1 Introduction

Cosmology, the scientific study of the universe as a whole, has undergone remarkable
advances in recent decades and General Relativity (GR) provides a good model to
describe cosmological gravitational phenomena [1–4]. On the other hand, open ques-
tions in cosmology remain, foremost amongwhich are the dark energy and darkmatter
problems. The nature of dark energy, which is responsible for driving the universe’s
late-time accelerated expansion, is not well understood, and it is often assumed to
be a cosmological constant. Since the first observational evidence of an accelerated
expansion [5, 6] of the universe, a plethora of cosmological models to explain dark
energy has emerged, for a review see [7].

The addition of a positive cosmological constant � to the Einstein field equa-
tions, originally introduced by Einstein [8] for his static universe, is one of the most
straightforward candidates for dark energy. This paves the way for the � Cold Dark
Matter (�CDM) model. However, the �CDMmodel fails to explain why the inferred
value of � is so small compared to the vacuum energy density expected from particle
physics [9]. It is also unclear why its value is comparable to the matter density today.
This constitutes the so-called coincidence problem [10, 11].

One way to begin to address this issue is to allow for a dynamical cosmological
constant [7], that is, to introduce some dynamical field able to reproduce the late-
time acceleration behaviour and mimic the properties of the cosmological constant.
The simplest such model is a canonical scalar field φ with flat potential V (φ), which
drives the accelerated expansion of the universe. Any model of this type is referred
to as quintessence [12]. Scalar fields play a major role in modern cosmology as they
are also able to drive inflation, the early-time epoch of accelerated expansion [13–15].
Scalar field models have also been used as candidates for dark matter models, see [16].
We are primarily interested in scalar fields as models to drive a period of accelerated
expansion, at both early and late times of the universe’s evolution.

Another approach is to consider dark energy as evidence for the incompleteness
of GR and, hence, seek extensions or modifications of GR [17–19]. Several models
to describe the dark energy interaction with dark matter have been proposed [20–27]
while some authors, e.g. [28], have emphasised a strong distinction between modified
theories of gravity and dark energy models.

From a theoretical point of view, in GR, one usually restricts the Lagrangian to a
linear function of the Ricci scalar, minimally coupled with matter. However, there is
no reason, a priori, to assume such a restriction. So, one can modify the gravitational
part of the action to allow non-linear corrections to the Lagrangian [29, 30], this
is the general approach followed by f (R)-theories of gravity [31, 32]. Some other
extensions of GR increase the number of spacetime dimensions or introduce non-
minimal matter couplings to boundary and topological terms [33–42]. These are terms
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in the Lagrangian that describe how matter couples to geometrical quantities. Non-
minimally coupled terms involving curvature vanish in the limit of special relativity.

We will follow the approach suggested in [43, 44], and, therefore, build models
of quintessence interacting with dark matter. This involves introducing couplings at
the level of the action which characterise both quintessence and dark matter [45, 46].
In particular, we extend the Lagrangian formulation by Brown [47] which describes
a perfect fluid [48]. Motivated by [43, 44], we introduce new couplings containing a
boundary term and a pseudovector related to the boundary term.

In [40, 49], a dynamical system analysis where teleparallel quintessence is non-
minimally coupled to a boundary term is presented. In the same spirit, we study the
background cosmology within this framework and apply dynamical systems tools to
investigate the dynamics of the different models. Our ultimate goal is to examine the
behaviour of these dark energy models. Dynamical systems theory has emerged as a
vital tool in cosmology [50], and has been employed successfully to study modified
theories of gravity in the cosmological context [51–53].

The paper is organised as follows. In Sect. 2, we present the Lagrangian formulation
of our models, and, in Sect. 3, we focus on the cosmological field equations and
introduce the cosmological variables which will be used for our analysis. Section4
contains our analysis of the dynamical systems for a constant interaction term, and
we highlight the analogies with previous models [54]. In Sect. 5, we present the rich
and novel dynamical structure in the case of a non-constant interaction term, which,
for some choice of the parameters, features both early-time and late-time accelerated
expansion. In Sect. 6, we discuss our results and suggest potential directions for future
investigations.

Notation and conventions.
Unless otherwise specified, we employ standard relativistic notation throughout.

The signature of the metric tensor gμν is assumed to be (−,+,+,+), Greek indices
are space-time indices taking values in {0, 1, 2, 3}. The coupling constant appearing
in the Einstein field equations is denoted by κ = 8πG/c4, where c is the speed of
light and G the Newton’s gravitational constant. We use natural units, with c = 1
and G = 1. A dot denotes differentiation with respect to cosmological time, a prime
denotes the derivative with respect to the argument, or in the case of the dynamical
system equations a prime denotes a derivative with respect to the logarithm of the
scale factor log(a).

2 Lagrangian formulation and field equations

2.1 Gravitational and fluid action

It is well known that a total derivative term can be isolated from the Ricci scalar,
yielding the Gamma squared action. This action also gives rise to the Einstein field
equations when variations with respect to the metric are considered. However, the
underlying Lagrangian is no longer a coordinate scalar as it differs from a true scalar
by the total derivative term. We prepend the word ‘pseudo’ to highlight quantities
which appear to be scalars or tensors but are not invariant under general coordinate
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transformations. As shown in [42], this allows one to write the Einstein–Hilbert action
as

SEH = 1

2κ

∫
LEH d4x = 1

2κ

∫
R
√−g d4x = 1

2κ

∫
(G + B)

√−g d4x . (2.1)

The bulk term G is defined as

G := gμν
(
�λ

μσ �σ
λν − �σ

μν�
λ
λσ

)
, (2.2)

and the boundary term B is given by

B := 1√−g
∂ν

(
∂μ (ggμν)√−g

)
= 1√−g

∂σ

(√−gBσ
)
, (2.3)

where we have introduced the boundary pseudovector Bσ given by

Bσ = gμν�σ
μν − gσν�λ

λν . (2.4)

We note that G and B are pseudoscalars.
By construction, the bulk termG is quadratic in the Christoffel symbols and hence

the action

SE = 1

2κ

∫
G

√−g d4x = 1

2κ

∫
gμν(�λ

μσ �σ
λν − �σ

μν�
λ
λσ )

√−g d4x , (2.5)

is called the Gamma squared action or, sometimes, the Einstein action, to distinguish it
from theEinstein–Hilbert action. Recent progresswasmade in [42, 55] on constructing
modified theories of gravity based on this decomposition. These models can be linked
naturally to a variety of other modified gravity models, either within the context of
GR or in the metric-affine framework.

The Christoffel symbols are usually interpreted as the gravitational field strengths.
We can motivate this by recalling that they contain the first partial derivatives of the
metric, which represent the gravitational potentials. The bulk term is thus quadratic in
the field strengths, similar to other field theories, like Yang-Mills theories or elasticity
theory. This analogy provides the primary motivation for splitting the Ricci scalar as
in (2.1). This split naturally yields a boundary term which could be coupled to other
fields present in the model. Couplings of this type are interesting as they are purely
geometrical and thus have no direct links with classical physics. This is similar to
Brans–Dicke theories, where a scalar field is coupled to the curvature scalar. By iso-
lating the bulk and boundary terms, we can therefore consider more intricate couplings
involving those two parts, which make up the curvature scalar.

Matter is introduced into the theory by considering a total action of the form

Stot = SEH + Smatter , (2.6)
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where Smatter is the matter action. This gives rise to the energy-momentum tensor

Tμν := −2√−g

δSmatter

δgμν
. (2.7)

Generally, a matter action would depend on matter fields, and variations with respect
to those matter fields yield the equations of motion of the matter component. As we
will see in the following, this is non-trivial if one wishes to model relativistic fluids
using the variational approach.

Brown [47] introduced a Lagrangian formalism for relativistic perfect fluids based
on the Lagrangian (density) given by

Lfluid = −√−gρ(n, s) + Jμ
(
ϕ,μ + sθ,μ + βAαA

,μ

)
, (2.8)

where

• n is the particle number density
• s is entropy density per particle
• ρ(n, s) is the energy density of the matter fluid, a function of n and s
• Jμ is the vector-density particle-number flux, which is related to n by

Jμ = √−g n Uμ , |J | = √−gμν Jμ J ν , n = |J |/√−g , (2.9)

where Uμ is the fluid’s 4-velocity satisfying UμUμ = −1
• ϕ, θ , and βA are all Lagrange multipliers with A taking values in {1, 2, 3}, and the
components αA are the Lagrangian coordinates of the fluid.

The independent dynamical variables of the Lagrangian (2.8) are gμν , Jμ, s, ϕ, θ , βA,
and αA. We note that, in this approach, the pressure of the fluid p is defined as

p := n
∂ρ

∂n
− ρ , (2.10)

which is consistent with the first law of thermodynamics.

2.2 Total action and interaction terms

We can now set up the total action which contains gravity, a fluid, a scalar field φ, and
an interaction term. This means

Stot =
∫

(LEH + Lfluid + Lφ + Lint)d
4x , (2.11)

where Lφ is the scalar field Lagrangian (density) given by

Lφ = −√−g
(1
2
gμν∇μφ∇νφ + V (φ)

)
, (2.12)
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with given scalar field potential V . The Lagrangian (density) Lint is an interaction
coupling term, which allows us to couple the fluid to the scalar field.

Due to the presence of the various independent variables in Brown’s approach, one
can propose some types of coupling terms which do not exist in other settings. More-
over, such terms have no natural special relativistic analogue, making this potentially
interesting in the context of cosmology. In previous work [43, 44], one of the authors
proposed interaction terms of the form f (n, s, φ) and f (n, s, φ)Jμ∂μφ. Thesemodels
gave rise to some unexpected dynamics. In particular, as we wish to take into account
boundary terms, we identified the following terms as the suitable possibilities

(a) algebraic scalar coupling: −√−g f (n, s, φ,B)

(b) algebraic vector coupling: −√−g f (n, s, φ)Bμ Jμ
(c) derivative coupling: Lint := −√−g f (n, s, φ)Bμ∂μφ.

Note that Bμ was defined in (2.4). Depending on the specific interaction term chosen,
one should also note that the physical dimensions of f differ in the different couplings.

Coupling (b) is very restrictive in the context of cosmology. We find that the con-
sistency of the cosmological equations implies that f is proportional to n, thereby
eliminating the scalar field from the coupling. Consequently, we find equations which
largely coincide with the standard cosmological equations, and the model does not
exhibit novel behaviour.

For the remainder of this paper, we will consider the interaction term (c) and Lint
will denote this interactionLagrangian. This termwas found to have behaviour relevant
to cosmology, and gave rise to manageable cosmological equations. In principle, our
analysis can be repeated for term (a), and potentially for more complicated terms. For
example, f could contain an explicit dependence on G, or the Ricci scalar, or there
could be higher order couplings containing terms like (Bμ Jμ)(Bν∂νφ), etc.

2.3 Variations and field equations

We begin with the variations of action (2.11) with respect to the the fields ϕ, θ , βA,
and the Lagrangian coordinates αA, respectively. This yields

δϕ : Jμ
,μ = 0 , (2.13)

δθ : (
s Jμ

)
,μ

= 0 , (2.14)

δαA : (
βA J

μ
)
,μ

= 0 , (2.15)

δβA : αA
,μ J

μ = 0 . (2.16)

These equations are independent of the gravitational action and are also independent
of the interaction term. Next, variations of (2.11) with respect to the entropy density,
s, give

δs : nUμθ,μ = ∂ρ

∂s
+ ∂ f

∂s
Bμ∂μφ , (2.17)
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where the final term depends on the choice of f . Variations with respect to Jμ yield

δ Jμ : ϕ,μ + sθ,μ + βAαA
,μ + ∂ρ

∂n
Uμ + ∂ f

∂n
UμB

σ ∂σ φ = 0 . (2.18)

Again, we have one term which depends on the coupling.
Variations with respect to the scalar field φ yield a modified Klein Gordon equation

δφ : �φ − V ′(φ) − ∂ f

∂φ
Bμ∂μφ + ∇μ( f Bμ) = 0 , (2.19)

where � := ∇μ∇μ.
Finally, variations with respect to themetric tensor yield the Einstein field equations

δgμν : Gμν = κ(T (fluid)
μν + T (φ)

μν + T (int)
μν ) , (2.20)

where Gμν is the Einstein tensor and

T (fluid)
μν = (ρ + p)UμUν + pgμν, (2.21)

T (φ)
μν = ∂μφ∂νφ − gμν

(1
2
∂μφ∂μφ + V (φ)

)
. (2.22)

Both are the standard forms of the energy-momentum tensors of a perfect fluid and a
scalar field, respectively. The energy-momentum tensor related to the interaction term
is more complicated and is given by

T (int)
μν = gμν f (n, s, φ)Bσ ∂σ φ + 1

2
n
∂ f

∂n

(
UμUν + gμν

)
Bσ ∂σ φ

−2
√−g gμνg

αβ∂α

(
1√−g

f (n, s, φ)∂βφ

)

+2
√−g ∂(μ

(
1√−g

f (n, s, φ)∂ν)φ

)
. (2.23)

The second line of this tensor appears due to variations of the boundary pseudovector
with respect to the metric. This requires integration by parts and thus leads to the
second derivative terms of the scalar field. We note that one could rewrite the partial
derivatives of the metric determinants using the Christoffel symbols. However, for the
purposes of this work, this would not introduce additional insights.

We motivated the introduction of Lint as a new interaction term which could model
an interaction between the fluid and the scalar field. However, one can adopt a different
interpretation, namely to view (2.23) as an independent fluid of unusual form.
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3 Cosmological field equations

In this section, we provide a brief overview of the necessary background material
required to study the cosmological field equations of our coupled models. We do this
via a dynamical systems formulation, which has proved to be a powerful tool when
studying cosmological equations.

In line with current observational evidence [2, 56, 57], let us begin with the homo-
geneous, isotropic, and spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW)
line element

ds2 = −N 2(t)dt2 + a2(t)(dx2 + dy2 + dz2) , (3.1)

where a(t) is the scale factor and N (t) is the lapse function. For all models under con-
sideration, we will be able to set N = 1, which simplifies the cosmological equations
further. In this case, t is cosmological time. In this cosmological setting, (2.20) yields
the cosmological Einstein field equations given by

3H2 = κ
(
ρ + 1

2
φ̇2 + V − 6 f H φ̇

)
, (3.2)

3H2 + 2Ḣ = −κ
(
p + 1

2
φ̇2 − V + 2 f φ̈ + 2φ̇2 ∂ f

∂φ

)
, (3.3)

and (2.19) leads to the modified Klein-Gordon (KG) equation

φ̈ + 3H φ̇ + ∂V

∂φ
− 6 f (3H2 + Ḣ) + 18nH2 ∂ f

∂n
= 0 . (3.4)

Here the dot denotes differentiation with respect to cosmological time, and we remark
that ρ and p are the energy-momentum density and pressure of the fluid, respectively.

A direct, but lengthy, calculation verifies that the three Eqs. (3.2)–(3.4) imply the
fluid’s energy-momentum conservation equation ρ̇ + 3H(ρ + p) = 0. This is a
non-trivial result which is, perhaps, unexpected given that the coupling contains an
unspecified function. Let us also note that the only dependence on the scale factor a(t)
in the field equations is via the Hubble function H and its derivative. These equations
feature both first and second derivatives of the scalar field, φ. However, following [54],
one can introduce a new variable which depends on the first derivative of the scalar
field, leading to field equations which are first order. In short, this is the key idea behind
the dynamical systems formulation.

If we assume that the potential is non-negative, we can introduce the well-known
dimensionless variables, first proposed in [54],

x =
√

κφ̇√
6H

, y =
√

κV√
3H

, σ =
√

κρ√
3H

. (3.5)

We restrict to the case that H > 0, i.e. that the universe is expanding (choosing H < 0
would correspond to a contracting universe). It follows that the variables y and σ are
non-negative.
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In line with previous studies, we assume V has the exponential form

V (φ) = V0 exp (−κλφ) , (3.6)

where V0 > 0 is a constant and λ ≥ 0 is a dimensionless parameter. We note that this
form for V is invertible, whichwill allow us to viewφ as a function of V . This potential
is most convenient as the exponential form allows one to close the autonomous system
of equations without the introduction of an additional variable.

When the FLRW metric is considered in (2.13) and (2.14), one immediately finds
that the entropy density s = s0 is a constant. Consequently, the coupling function is of
the form f (n, φ) only. Moreover, (2.13) and (2.14) also imply that the particle number
density is n = n0a−3, where n0 is a constant, which is expected.

Going back to Brown’s formulation (2.8), we have that the energy density is a
function of n, since the fluid’s entropy s is constant, thus ρ = ρ(n). On the other
hand, in standard cosmology, it is customary to assume a linear equation of state of
the form p = wρ. We will now demonstrate that, given the definition of pressure in
(2.10), this is equivalent to the assumption that the density is a power of the particle
number density. To begin with, let us consider ρ = nw+1, for some w, which implies

p = n
∂ρ

∂n
−ρ = n(w+1)nw−nw+1 = (w+1)nw+1−nw+1 = wnw+1 = wρ. (3.7)

For the matter dominated case, w = 0, this gives that p = 0. On the other hand,
integrating (2.10) with the assumption that p = wρ implies ρ = nw+1.

Dividing Eq. (3.2) by 3H2 and using the variables (3.5), one obtains

x2 + y2 + σ 2 − 2
√
6κ x f (n, φ) = 1 . (3.8)

We note that f must be chosen to have the same dimensions as κ−1/2 to ensure that
this equation is consistent. As it is derived from the Friedmann constraint equation, we
will generally refer to it as the constraint equation. This is motivated by the fact that
it is an algebraic relation between all the variables, which implies that the variables
are not all independent.

We finish this Section by noting that for f (n, φ) = 0, we retrieve the model studied
in [54], which we can view as our baseline model. When interpreting our results, we
draw analogies and highlight differences with this baseline model. In that work, the
constraint Eq. (3.8) is solved for the matter variable σ which is then eliminated from
the other equations, reducing the system to two differential equations and we follow
the same approach here.
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4 Constant interaction

To begin our study, we consider perhaps the simplest non-trivial model, where the
coupling function is a constant

f (n, s, φ) = k√
24κ

, (4.1)

for some constant k. This model shares some similarities with [54] and is an ideal
prelude to the study of more complicated models.

4.1 General properties and dynamical systems formulation

Let us start with the Klein–Gordon equation (3.4), which simplifies to

φ̈ + 3H φ̇ + ∂V

∂φ
=

√
3

2

k√
κ

(
3H2 + Ḣ

)
=: Q , (4.2)

where we introduce the quantity Q to match previous work on dark sector cou-
plings [45]. The energy density and pressure of the scalar field are given by ρφ =
φ̇2/2 + V and pφ = φ̇2/2 − V , respectively. This allows us to re-write Eq. (4.2) in
the well-known form

ρ̇φ + 3H(ρφ + pφ) =
√
3

2

k√
κ

φ̇(3H2 + Ḣ) = Qφ̇ , (4.3)

hence Q can be re-expressed as

Q = H2

√
3

2

k√
κ

(
3 + Ḣ

H2

)
= H2

√
3

2

k√
κ

(2 − q), (4.4)

where q = −1− Ḣ/H2 is the standard deceleration parameter. It is well known from
dark sector coupling models [45, 46] that Q > 0 means an energy transfer from dark
matter to dark energy and Q < 0 a transfer in the opposite direction.

For k > 0, Eq. (4.4) implies that an epoch of accelerated expansion, q < 2, gives
a positive coupling, leading to energy going into the scalar field. In turn, this leads
to an epoch of further acceleration and can be seen as a self-reinforcing effect. The
above argument is reversed for f < 0 (i.e. k < 0). Given that the late-time universe
is dark energy dominated while the early universe contains considerably more dark
matter than dark energy, it is reasonable to consider f > 0 (i.e. k > 0) and it will turn
out that such models indeed evolve into epochs of late-time accelerated expansion.

Next, we consider a fluid with equation of state p = wρ, which, as discussed at the
end of Sect. 3, is equivalent to setting ρ = n1+w. The constraint Eq. (3.8) then reads

x2 − kx + y2 + σ 2 = 1 . (4.5)
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The quantity σ 2 is the relative energy density of matter, sometimes denoted by
�m when discussing explicit cosmological models. For a scalar field, it is helpful to
introduce the equation of state

wφ = pφ

ρφ

=
1
2 φ̇

2 − V
1
2 φ̇

2 + V
. (4.6)

Here, wφ ∈ [−1, 1] and we get wφ = −1 when φ̇ = 0, as is expected for dark energy.
The energy density of the scalar field is given by

�φ := x2 + y2 . (4.7)

Hence, (4.5) can also be written as

�m + �φ − kx = 1 . (4.8)

At this point, it is clear that one can introduce improved variables by completing
the square of the x-term in (4.5). Namely, we write

(
x − k

2

)2

+ y2 + σ 2 = 1 + k2

4
, (4.9)

and now divide by the new right-hand side so that we arrive at

X2 + Y 2 + �2 = 1 , (4.10)

where

X = x − k/2√
1 + k2/4

, Y = y√
1 + k2/4

, � = σ√
1 + k2/4

. (4.11)

These variables will prove particularly useful for our subsequent qualitative analysis.
Using Eqs. (3.2)–(3.4), one can obtain the acceleration equation

1 + q = − Ḣ

H2 = 3

2

[
(1 + w) − (w − 1)X2 − Y 2

(
(1 + w) − λk√

6

)]
, (4.12)

which can be integrated to find a(t) at any given fixed point (X0,Y0). The right-hand
side, at a fixed point, is constant. If this constant is non-zero, it is straightforward
to show that the scale factor evolves as a power law in cosmological time, that is,
a ∝ (t − t0)μ, where μ is that power. We therefore have that μ is given by

1

μ
= 3

2

[
(1 + w) − (w − 1)X2

0 − Y 2
0

(
(1 + w) − λk√

6

)]
= 1 + q . (4.13)

Here t0 is an integration constant. When the right-hand side of (4.12) vanishes at some
fixed point, the scale factor a(t) evolves exponentially. This corresponds to H being
constant at this point, that is, a universe undergoing a de Sitter expansion.
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It can be useful to define the total energy density and total pressure of the cosmo-
logical model

ρ̃ = ρ + 1

2
φ̇2 + V + ρint , (4.14)

p̃ = p + 1

2
φ̇2 − V + pint , (4.15)

where we set ρint = −kH
√
6/κ + φ̇ and pint = kφ̈/

√
6κ , as suggested by (3.2)

and (3.3). This naturally leads to the effective equation of state parameter w̃ = p̃/ρ̃.
For power law models, this effective equation of state parameter is directly related to
the power μ, and one has

μ = 2

3(1 + w̃)
, or w̃ = 2

3μ
− 1 . (4.16)

We note that the power μ, the effective equation of state parameter w̃, and the decel-
eration parameter q, all encode the same physical information.

Similar to previously studied models, the positivity of the matter variable and
Eq. (4.10) imply that 0 ≤ � ≤ 1, and hence 0 ≤ X2 + Y 2 ≤ 1. Together with
the fact that Y ≥ 0, since we are considering an expanding universe, this means that
the phase space for the variables X and Y is a semicircle of radius one.

We are now ready to state the dynamical equations of the system, using the conve-
nient variables defined in (4.11). This leads to two independent equations

X ′ = 1

4

[√
6λ

√
k2 + 4 Y 2 + X

(
Y 2

(√
6λk − 6w − 6

)
− 6(w − 1)

(
X2 − 1

))]
,

(4.17)

Y ′ = −1

4
Y

[√
6λ

√
k2 + 4 X +

(
Y 2 − 1

) (
−√

6λk + 6w + 6
)

+ 6(w − 1)X2
]
.

(4.18)

Here a prime denotes a derivative with respect to the logarithm of the scale factor
log(a). One can now follow the standard dynamical systems approach to study this
system, for a review see [50]. We begin with the fixed points of (4.17)–(4.18). We
note that these are two polynomial equations of degree three, meaning that one could
find up to nine real distinct critical points, by Bézout’s theorem. If Y = 0, the second
equation is automatically satisfied, and this leads to the solutions X ∈ {−1, 0,+1}.
Next, excluding Y = 0, one notes that Y appears only as Y 2 in the equations, meaning
that there are up to four more solutions. Two of these are at negative values of Y ,
which we exclude, again because we are considering an expanding universe (Y ≥ 0).
Assuming λ > 0 and −1 ≤ w ≤ 1, we obtain a total of five critical points, shown in
Table 1.
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Note that Point B is always located on the boundary of the phase space while Point
C is generally inside the phase space, if it exists. For the special value

k = 2

√
2

3

3(1 + w) − λ2

(3 + 3)λ
, (4.19)

the lower existence bound, Point C is also on the boundary. Next, one needs to study
the eigenvalues of the stability matrix at each of the critical points. For more details
about their classification, see Appendix 1. For the first four points, O , A±, and B,
these are given in Table 2. Note that we will discuss the occurrence of possible zero
eigenvalues separately to keep the discussion more straightforward. For example, one
may immediately note that the choice w = 1 implies at least one zero eigenvalue for
the Points O and A±.

The final critical point, C , is more difficult to study as the eigenvalues are much
more involved. They are the solutions of the characteristic polynomial in ξ

0 = ξ2 + 3

2
(1 − w)ξ − 3(1 − w)

2(k2 + 4)λ2

×
(
3λ2k2(w + 3) + √

6λk(2λ2 − 3(w + 1)(w + 5)) + 12(w + 1)(−λ2 + 3w + 3)
)
.

(4.20)

Solving this quadratic equation is easy, however, the explicit solutions do not offer
much insight given that they contain three free parameters. For concrete parameter
choices, we discuss this point in more detail below. One easy result to extract is the
sum of the eigenvalues ξ1 and ξ2 at this point, that is,

ξ1 + ξ2 = −3

2
(1 − w) . (4.21)

As this number is negative for w < 1, this point cannot have two positive eigenvalues
and therefore will have at least one stable direction. This implies that Point C is a
saddle point, stable node, or stable spiral.

There will be many parameter choices resulting in zero eigenvalues, w = 1 being
the obvious one. However, the choice kλ = √

6(1+ w) would also give a zero eigen-
value for Point O . The stability analysis of such points requires techniques beyond
linear stability theory. These are well known and their applications in cosmology were
discussed in [50, 58, 59]. However, for the purposes of this work, we will assume a
matter dominated universe w = 0 and employ linear stability theory. We note that our
analysis can also be performed for the radiation dominated case w = 1/3 where one
finds qualitatively similar results.

4.2 Thematter dominated case

In what follows, we set w = 0. Points O , A± and B are independent of w and all
results discussed above apply. The location of Point C , if it exists, depends on w and
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Table 3 Physical properties of
the fixed points for the matter
dominated case, for
system (4.17)–(4.18)

Point w̃ q

O 0 1/2

A− 1 2

A+ 1 2

B
2
√
6

(
λ2 − 3

)
+ 9kλ

6
√
6 − 3kλ

√
6

(
λ2 − 2

)
+ 4kλ

2
√
6 − kλ

C 0 1/2

Fig. 1 Existence and stability regions in (k, λ)-plane. The plotted curves follow from the stability criteria
shown in Table 2

so do its corresponding eigenvalues. We now outline some physical properties of the
critical points of the system, with the values of effective equation of state parameter
w̃ and the deceleration parameter shown in Table 3.

In order to analyse the stability of the fixed points, we look at the different regions
in the (k, λ)-plane, see Fig. 1, and we recall that λ > 0. First, we remark that the
fixed Points O and A± exist for all values of λ and k. Moreover, there are four distinct
regions of values of k and λ, which yield different stability properties of the critical
points, and, hence, different cosmological phenomena. We discuss these four different
cases and comment on their suitability as a cosmological model.

Region I. For values within Region I, there are only three critical points, namely O
and A±. In particular, O is a stable node, A− is an unstable node, and A+ is a saddle.
Since O is the only attractor of the system, all trajectories will eventually approach
it. The Point A− can be thought of as the past-time attractor, in the sense that all
trajectories would start at A−. Lastly, some trajectories are attracted towards A+, but
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Fig. 2 Phase space with k = 1 and λ = 2. B is a stable node, that is, the only attractor describing a scaling
solution with w̃ = w = 0. No acceleration region present

are eventually repelled and move towards O . This case is not of physical interest. We
do not show a phase space diagram.

Region II. In Region II, Point B does not exist. We therefore have four critical
points: the unstable node at Point A−, the stable node at PointC , and the saddle Points
O and A+. We note that here, Point C represents the scaling solution [60] as the
effective equation of state parameter matches the matter one (w̃ = w = 0). Hence, the
universe expands as if it was completely matter dominated despite the scalar field’s
influence, according to (4.13).We note that this is not an accelerated expansion but this
solution is of physical relevance for the coincidence problem. The type of dynamics
is illustrated by Fig. 2, where we set k = 1 and λ = 2. We remark the analogy with
one of the cases discussed in [54], however we also point out that, in our example, no
acceleration region is present.

Region III. In Region III, there are five critical points in the phase space. Points
A−, O , and C , still behave as an unstable node, a saddle point, and a stable node,
respectively. Point A+ is now an unstable node. Point B exists and is a saddle point.
This is shown in Fig. 3, where k = 1/2 and λ = 3/2. Point C always lies outside the
acceleration region, so it does not represent a late-time inflationary solution. This is,
again, a scaling solution.We highlight the analogy with another case discussed in [54].
All trajectories connect Points A± to Point C , with the exception of the orbits along
the boundary.

Region IV. In Region IV, there are again four fixed points since PointC lies outside
the physical space. Here, Point A− is always an unstable node and can be seen as
the past attractor. Similar to Region III, A+ is an unstable node. Point O is a saddle
point, whereas Point B is a stable node and therefore the late-time attractor. We note
that here Point B lies within the region of accelerated expansion, hence we are in the
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Fig. 3 Phase space with k = 1/2 and λ = 3/2. Here the only attractor is Point C where the universe
expands as if it is completely matter dominated (scaling solution), while Point B is a saddle point. The
shaded region represents the area of the phase space where there is accelerated expansion

Fig. 4 Phase space with k = 1 and λ = 1/2. Here Point B is the only attractor and represents a late-time
inflationary cosmological solution. The shaded area represents the part of the phase space where there is
accelerated expansion

presence of a cosmological solution with accelerated expansion. This is illustrated in
Fig. 4. Once again, we emphasise the analogy with one of the cases discussed in [54].
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5 A non-constant interactionmodel

5.1 Equations of themodel

We are now considering a model with a non-constant interaction term. As we wish to
exploit dynamical systems techniques without increasing the number of independent
variables, we consider an interaction of the form [61, 62]

f (n, φ) = k

2
√
6κ

nα/(2(1+w))V−α/2 , (5.1)

where α is a fixed power. Let us make the following observations to motivate this
particular choice for f . In cosmology, s = s0 and n = n0a−3. Moreover, if we
consider the linear equation of state p = wρ and the definition of p from Brown’s
fluid model, one has ρ = nw+1. Therefore, this specific form allows us to use the
variables introduced in (3.5) directly, so (3.8) becomes

1 − x2 − y2 − σ 2 + k x
σα

yα
= 0 . (5.2)

The dynamics of the system depends on the parameters w, λ, k, and α. We note that
one could consider the limit α → 0 and recover Eq. (4.5).

It is clear that larger (integer) values of α canmake the study of this system difficult,
since the constraint (5.2) would become a polynomial equation of high order. At the
same time, even the values α = ±1 introduce challenges as one has to deal with
cubic equations. In fact, the two simplest cases that can be studied explicitly, without
introducing further complications, are α = ±2. In what follows, we consider α = 2
and w = 0, and note that the radiation dominated case (w = 1/3) leads to broadly
similar results.

When α = 2, the constraint (5.2) can be written as

y2
(
1 − x2 − y2 − σ 2

)
+ k xσ 2 = 0 ,

⇔ y2
(
1 − x2 − y2

)
+ σ 2

(
kx − y2

)
= 0 ,

⇔ σ 2 = y2
(
1 − x2 − y2

)
y2 − kx

, (5.3)

allowing us to eliminate σ from the equations, so that the dynamical system remains
two-dimensional. Moreover, as σ 2 ≥ 0, we have

y2(1 − x2 − y2)

y2 − kx
≥ 0 . (5.4)
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This gives rise to the physical regions of the phase space

1 − x2 − y2 ≥ 0 and y2 − kx > 0 , (5.5)

1 − x2 − y2 ≤ 0 and y2 − kx < 0 . (5.6)

Since the non-constant coupling leads to a considerably more complicated dynam-
ical system, we restrict our study to the matter dominated case w = 0. The dynamical
equation for x is given by

x ′ =
2y4

(
3x3 − 3x

(
y2 + 1

) + √
6λy2

)
− kA + k2 B

4y4 − 8kxy2 + k2
(
x4 + 2x2

(
y2 + 1

) + (
y2 − 1

)2) , (5.7)

where the functions A and B are defined by

A = y2(x2 − 1)(x2(2
√
6λx + 3) − 3) + 3y4(

√
6λ(x3 + x) − 6x2 − 2)

+ y6(
√
6λx + 3) , (5.8)

B = x
[√

6λx(x4 + (x2 + 3)y2 − 1) − 3(x4 + 4x2y2 − y4) − 6y2 + 3
]
. (5.9)

Similarly, the y equation reads

y′ = −4y5(−3x2 + √
6λx + 3y2 − 3) − k C + k2 D

2
[
4y4 − 8kxy2 + k2

(
x4 + 2x2

(
y2 + 1

) + (
y2 − 1

)2)] , (5.10)

where

C = 2y3
(
2
√
6λx4 + 6x3 + 3

√
6λx2

(
y2 − 2

)
− 18x

(
y2 − 1

)
+ √

6λy2
(
y2 − 1

))
,

(5.11)

D = xy
(√

6λ
(
3x4 + x2

(
4y2 − 6

)
+ y4 − 1

)
− 24x

(
y2 − 1

))
. (5.12)

Here a prime denotes a derivative with respect to the logarithm of the scale factor
log(a). This way of writing the dynamical equations, namely isolating the terms in
powers of k, is useful as it allows us to consider the limit k → 0 easily. In that case
these equations reduce to those of [54].

We remark that the acceleration equation, which follows from (3.2) and (3.4), is

Ḣ

H2 = 6y4
(−x2 + y2 − 1

) + k E + k2 F
4y4 − 8kxy2 + k2

(
x4 + 2x2

(
y2 + 1

) + (
y2 − 1

)2) (5.13)
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where the functions E and F are given by

E = C
2y

+ 4
√
6λx2y2 , (5.14)

F = x
(
12x

(
y2 − 1

)
− √

6λ
(
x2 + y2 − 1

) (
2x2 + y2

))
. (5.15)

5.2 Critical points and stability

To find the critical points, we need to solve the equations x ′ = 0 and y′ = 0 simulta-
neously, which is a non-trivial task since both numerators are polynomials of degrees
seven, giving up to 49 roots. Many of those will lie outside the physical phase space,
while others will come in complex conjugate pairs which also have no physical sig-
nificance. At this point, it is not clear how many physical critical points this system
will have for arbitrary λ and k and hence one has to investigate the system carefully
to extract them.

One way to find the critical points is to draw inspiration from the previous model.
For example, setting y = 0 in (5.10) leads to y′ = 0, while setting y = 0 in (5.7)
means that x ′ = 0 simplifies to

x
(
x2 − 1

) (√
6λx − 3

)

1 + x2
= 0 . (5.16)

This yields the first set of critical points (−1, 0), (0, 0), (1, 0), and (
√
3/2 /λ, 0).

Secondly, we investigate critical points on the unit circle. By substituting x = cos θ

and y = sin θ into (5.7) and (5.10), at a critical point we obtain

1

2

(√
6λ − 6 cos θ

)
sin2θ = 0 , (5.17)

1

2

(√
6λ − 6 cos θ

)
sin θ cos θ = 0 . (5.18)

This gives another critical point at (λ/
√
6,

√
1 − λ2/6).

Lastly, one can verify that setting x0 = √
3

/
(
√
2λ) in the dynamical equations

gives four additional solutions, other than y0 = 0, which are

(ŷ±)2 = 6 + √
6kλ

8λ2
± 1

8λ2

√
36 + 2kλ

(
3kλ + 2

√
6

(
4λ2 − 15

))
. (5.19)

We are not able to find other critical points in the physical phase space, either analyt-
ically or numerically. The critical points discussed above are summarised in Table 4,
together with their corresponding value of the effective equation of state parameter
and the value of the deceleration parameter. Note that there will be parameter regions
where the critical points with y-coordinate ŷ±, called D±, may not exist or where only
one of these exits, see Fig. 5.
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Table 4 Critical points of the dynamical system (5.7) and (5.10), for which an explicit expression could be
found

Point x y w̃ q Existence

O 0 0 −1 −1 all λ, k

A− −1 0 1 2 all λ, k

A+ 1 0 1 2 all λ, k

B λ/
√
6

√
1 − λ2/6 −1 + λ2/3 −1 + λ2/2 λ ≤ √

6

C
√
3

/ (√
2λ

)
0 −1 + 12/(3 + 2λ2) −1 + 18/(3 + 2λ2) λ �= 0

D+
√
3

/ (√
2λ

)
ŷ+ 0 1/2 see Fig. 5

D−
√
3

/ (√
2λ

)
ŷ− 0 1/2 see Fig. 5

Fig. 5 Point D+ exists in the whole shaded region. Point D− exists only in the dark grey region

We are now ready to investigate the stability of the critical points. This is straight-
forward for the Points O , A±, B, and C . The result are collected in Table 5.

For the Points D±, the closed form expressions for the eigenvalues are very long
and do not offer physical insight. However, when presenting specific cases, we give
numerical values for the eigenvalues and discuss the various critical points in more
detail.

Table 4 suggests that PointC is of particular interest to us. This point has an effective
equation of state parameter w̃ < −1/3 if λ <

√
15/2, and it is not located on the

boundary of the phase space. For such a choice of λ, we note
√
15/2 > 3/

√
2, which
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Table 5 Stability properties of the critical points assuming λ > 0 for the non-constant interaction model

Point Eigenvalues Classification

O 3, 0 unstable

A− −√
6λ − 3,

√
3

2
λ + 3 saddle point (λ > 0)

A+ 3 −
√
3

2
λ,

√
6λ − 3 unstable node if

√
3/2 < λ <

√
6; saddle if λ <

√
3/2 or λ >

√
6

B
1

2

(
λ2 − 6

)
, λ2 − 3 stable if λ <

√
3; saddle if √

3 < λ <
√
6; unstable if λ >

√
6

C
18

2λ2 + 3
− 3

2
,

18

2λ2 + 3
− 3 unstable if λ <

√
3/2; saddle if√3/2 < λ < 3/

√
2; stable

if λ > 3/
√
2

means this point will be an attractor of the dynamical system. In turn, such a model
will naturally give rise to a period of late-time accelerated expansion. Moreover, since√
15/2 >

√
6, Point B will not exists in this case.

The physical phase space for these models is delineated by the upper semicircle
of unit radius centred at the origin and the parabola x2 = y/k, as described by (5.5)
and (5.6). Subsequent figures will make clear which regions form the physical phase
space. For all k, the semicircle and the parabola will intersect, creating two regions
which meet at a point, and which trajectories can traverse. Note that the intersection
point is, in general, not a critical point.

5.3 Phase space diagrams and physical interpretation

Different choices of λ and k result in rather different cosmological models, since
the number of critical points and their location vary significantly. Below we consider
several cases which illustrate the diversity of the dynamical behaviour exhibited by
the model. We select values of λ and k systematically, but do not necessarily include
every possible scenario which could arise in these models.

Case (i).We begin with λ = 3/2 and k = 8, as shown in Fig. 6. In this case, PointC
does not exist, however, the other six critical points do exist. The phase space contains
a region of accelerated expansion and we note that only Point O is in this region. Point
O is an early-time attractor of the phase space, hence, this point could correspond to an
early-time universe undergoing accelerated expansion. The other early-time attractor is
Point A+ which has an effective equation of state parameter w̃ = 1, and corresponds
to the scalar field’s kinetic energy being dominant. Trajectories starting at O will
eventually reach the stable Point B, where the effective equation of state parameter
is w̃ = −1/4. We note that this is negative but not less than −1/3, and therefore,
not accelerating. Depending on the initial conditions chosen, some trajectories will
approach Point D− with w̃ = 0, which is matter dominated. On the other hand,
trajectories starting at A+ will either also terminate at B, or reach D+. This latter
point is a stable spiral with w̃ = 0, and hence corresponds to a matter dominated
universe. It is interesting to note that trajectories in this case can briefly go through
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Fig. 6 The parameter values are λ = 3/2 and k = 8. The eigenvalues of D+ are −0.75 ± 1.3713i and the
eigenvalues of D− are −2.1570 and 0.6570. The shaded area represents the part of the phase space where
there is accelerated expansion

a region of accelerated expansion before reaching D+. While these parameter values
yield an interesting phase space with a rich structure, this specific model has limited
applicability for modern cosmology, since the stable fixed points do not lie within the
accelerated region of the phase space.

Case (ii). Next, we consider the case λ = √
3 and k = √

8, see Fig. 7. In this
particular case, Point D− coincideswith Point B, this is true for all k. As in the previous
case, Point C does not exist in the physical phase plane. Point O , as before, is an
unstable node and acts as an early-time attractor. Point A− is a saddle and corresponds
to the to other possible early-time attractor. According to Table 5, we note that Point B
has eigenvalues 0 and −3/2, which means that we are dealing with a non-hyperbolic
point. This point is a centre and one can verify that it is unstable. While this can be
shown rigorously, it essentially follows from the fact that trajectories near B move
towards the attractor D+, which is a stable spiral. It has eigenvalues −3/4± i

√
15/4.

Similar to the previous case, Point O is an early-time attractor corresponding to an
early-time universe undergoing accelerated expansion. There is no late-time attractor
within the acceleration region.

Case (iii). We will briefly comment on the case where λ = 3/
√
2 and k = 2/

√
3.

For this particular choice, Points C and D− do not exist, while the Point D+ is located
at the intersection of the two regions of the phase space. This case is mathematically
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Fig. 7 The parameter values are λ = √
3 and k = √

8. B is an unstable centre and D+ is a stable spiral.
The shaded region represents the part where the phase space is accelerating

quite interesting, however, less so from a physical point of view. Of mathematical
interest are the following facts: D+ is a critical point of the system, however, both
the numerators and the denominators of (5.7) and (5.10) vanish while giving a finite
limit. The stability matrix is singular at this point, meaning that linear stability theory
cannot be used. We will not discuss this case further.

Case (iv). Next, we consider the case λ = k = 1, which turns out to be physically
interesting as a cosmological model, see Fig. 8. There are two unstable nodes, Points O
andC , which act as early-time attractors. As in the previous cases, Point O corresponds
to an early-time universe undergoing accelerated expansion. Trajectories starting near
O will eventually leave the acceleration region and be partially attracted to the saddle
Point A−, after which they will reach the late-time attractor, the stable node at B. This
point is also in the accelerated region, which means that this model not only allows for
early-time acceleration (inflation) but also for late-time accelerated expansion. The
effective equation of state parameter at B is w̃ = −2/3, as can be seen from Table 4.
All trajectories starting out in the right part of the phase space will also be attracted
to B, making this the global attractor of the system. We remark that, in this sense, the
dynamical behaviour is similar to that shown in Fig. 4.

Case (v). We now present the case λ = 1 and k = 20, see Fig. 9. Here all the
fixed points we found analytically exist within the physical phase space. This model
not only has a rich dynamical structure, but is also of physical relevance. We have
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Fig. 8 The parameter values are λ = 1 and k = 1. The shaded region represents the part where the phase
space is accelerating

two early-time attractors, Point O in the acceleration region, similar to the previous
models, and Point C . Notice that Point C always satisfies w̃ > 1, and so is not of
physical interest. We are therefore most interested in trajectories starting from Point
O . These will initially move towards A−, before leaving the left part of the phase
space. By doing so, they will enter the acceleration region and move towards B where
w̃ = −2/3. Other than the various complications introduced by the other critical
points, and the more complicated phase space structure, the physical situation is again
somewhat similar to those shown in Figs. 4 and 8. Let us also mention that Point D+
represents scaling solutions as the effective equation of state parameter is zero, and the
universe evolves as if it were only matter dominated while also containing the scalar
field.

Case (vi). To complete this section, we consider a case where the sign of the
coupling is negative. We set k = −1/4 < 0 and λ = √

5, and the phase plane is
shown in Fig. 10. This model displays significantly different features than the cases
where the coupling is positive. Point O can still be seen as an early-time attractor in the
acceleration region. However, depending on the chosen initial condition, trajectories
will either terminate at Point D+ or Point C . Such trajectories can come close to the
saddle Point D−, where w̃ = 1/2. However, the effective equation of state parameter
is also quite large at the other two points, meaning that one cannot have a model with
a late-time behaviour close to a matter dominated universe. None of the late-time
attractors appear in the acceleration region. Moreover, the left-hand side of the phase
plane indicates the presence of a critical point at infinity, whichwill be the source of the
trajectories coming from this left region. While this model displays many interesting
mathematical features, it appears to be of more limited physical relevance.
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Fig. 9 The parameter values are λ = 1 and k = 20. The eigenvalues of D+ are −0.75 ± 1.11193i and
the eigenvalues of D− are −2.34057 and 0.840574. The shaded area represents the part of the phase space
where there is accelerated expansion

6 Conclusions and discussions

The entire field of cosmology has seen remarkable progress in recent decades, includ-
ing the use of dynamical system techniques to study the background behaviour of
cosmological models. These techniques offer a systematic approach to understand-
ing the underlying dynamics, which allows us to investigate the suitability of such
models as realistic approximations of the universe. Our analysis involves mapping the
cosmological equations onto a phase space, a step which relies heavily on the choice
of suitable variables. This is rather non-trivial as various different variables could be
employed and there is no particular reason to prefer one set of variables over any other.
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Fig. 10 The parameter values are λ = √
5 and k = −1/4. The eigenvalues of D+ are −0.75 ± 0.3654i

and for D− are −1.6598 and 0.1598. The shaded area represents the part of the phase space where there is
accelerated expansion

We therefore work with those variables that are known to be well suited for our task,
see the review [50].

One of the main motivations of this work was to study models derived from a
variational principle, in particular, we used Brown’s approach for the formulation
of the perfect fluid Langrangian for the cosmological matter. This approach allowed
us to introduce new coupling terms, including boundary term couplings which have
not been studied before in this context using fluids. So far, we have considered an
algebraic vector coupling of the form f (n, s, φ)Bμ Jμ and noted that, in cosmology,
one obtains the highly restrictive condition that f is proportional to n. Therefore,
such a coupling does not yield interesting phenomena. We therefore focused on a
derivative type coupling, f (n, s, φ)Bμ∂μφ, motivated by previous work [44]. In that
previous work, the coupling f (n, s, φ)Jμ∂μφ led to aminor change of the phase space
compared to [54]: the critical point at the origin moves along the x-axis, depending
on the choice of parameters. Our new coupling allows for a significantly different
dynamical behaviour with features unseen before. Of particular interest to cosmology
are situations where the model evolves through two periods of accelerated expansion,
which replicate inflation and dark energy in a single model.

To gain an initial understanding of the resulting cosmological model, we began
by studying the constant interaction model. This displayed similar behaviour to the
well-known exponential potential quintessence model [54], where no interacting term
is present. In fact, through a carefully chosen change of variables, we were able to
arrive at a phase space which mirrors the one studied by those authors. These results
demonstrate that our model can be seen as a natural extension of previous work.

We then proceeded to consider an interaction of the form nα/(2(1+w))V−α/2. This
choice was motivated by the fact that couplings of this form will not increase the
dimension of the phase space: it will remain two-dimensional. The key advantage of
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this assumption is that one can directly compare results with many previously studied
models. In particular, we focused on the matter dominated case, w = 0, and chose
α = 2. This choice leads to a rich dynamical structure with several distinct scenarios
that can be of physical relevance. We were able to obtain solutions with early-time
inflationary attractors, as well as late-time acceleration. Our models also included
scaling solutions, which have received recent attention, see [63], as they may help to
resolve the Hubble tension, that is, the discrepancy between the value of the Hubble
constant inferred from measurements of the early universe and those derived from
more recent observations [64, 65].

Our approach to constructing coupled models lends itself to a significant amount of
further study. First of all, one can study the constant coupling model in the radiation
dominated universe. Our preliminary work suggests that the results are qualitatively
similar to the matter dominated case, which is why we did not include them here, for
the constant coupling model. One could attempt to present a comprehensive study for
allw, however, this would not be without challenge as the convoluted equations would
make analysing the stability at fixed points difficult.

Regarding the non-constant coupling model we proposed, there are three obvious
extensions to our work, namely the cases α ∈ {−2,−1, 1}. For integer values of α, the
phase will remain two-dimensional. However, one encounters other challenges which
can be seen in Eq. (5.2). For example, when setting α = −2 one should eliminate
y from the equation instead of the matter variable σ . This is unusual and has rarely
been considered in the past. As a starting point, one would have to go back to the
baseline model [54] and study it using a different choice of variables. In this way,
comparisons could be drawn. For large values of α, on the other hand, one is dealing
with a polynomial of a high degree, which is difficult to handle. In such cases, the best
way forward would be to eliminate the variable x . This is equally unusual, and has
also not been considered in the past. Given the complexities of these models, we are
not able to predict the qualitative features of the resulting systems. The shape of the
phase space alone changes significantly when varying the parameter α.

On top of all of this, one could, of course, drop the assumption of working with an
exponential potential. It would be interesting to study our coupled models for power-
lawpotentials or others.Most ofwhat has been done herewill have to be re-investigated
from scratch. For example, it is not even clear which types of couplings will admit a
two-dimensional phase space. One would expect the constant coupling models to be
similar to the uncoupled models, however, we refrain from speculating about results
beyond this most basic of statements.

Appendix: Fixed points and classification

For a continuously differentiable f = ( f1, . . . , fn), depending on the variable x =
(x1, . . . , xn), the initial value problem

dx
dt

= f(x), x(0) = x0, (6.1)
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admits a unique solution, that is, the solution x(t) with the given initial condition x0
at t = 0. Fixed (or critical) points are points x∗ such that f(x∗) = 0. These points are
also known as steady states or equilibria of the system.

To determine the behaviour of trajectories near those fixed points, we can linearise
the system around its critical point, by using a Taylor expansion for f in the neigh-
bourhood of the fixed point. The dynamics of the linearised system are qualitatively
equivalent to the original system. The eigenvalues of the matrix ∇f(x∗), known as the
Jacobianmatrix or stabilitymatrix, contain the information about the local behaviour
of f near x∗. One generally speaks of stability or instability:

• if all eigenvalues have positive real parts, we have an unstable fixed point or repeller
• if all eigenvalues have negative real parts, we have a stable fixed point or attractor
• if at least two eigenvalues have real parts with opposite signs, the corresponding
fixed point is called a saddle point

• if an eigenvalue is zero and at least one other eigenvalue has positive real parts,
we have an unstable point

• if an eigenvalue is zero and all other eigenvalues have negative real parts, linear
stability theory does not suffice.

For more details, see for example [59].
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