Human Genetics (2024) 143:1207-1221
https://doi.org/10.1007/500439-024-02684-z

ORIGINAL INVESTIGATION

®

Check for
updates

Fine mapping of candidate effector genes for heart rate

Julia Ramirez'%? . Stefan van Duijvenboden®*? . William J. Young®” - Yutang Chen*® - Tania Usman®.
Michele Orini® - Pier D. Lambiase®” - Andrew Tinker*'° . Christopher G. Bell* - Andrew P. Morris'"2.
Patricia B. Munroe?®'°

Received: 28 February 2024 / Accepted: 19 June 2024 / Published online: 6 July 2024
© The Author(s) 2024

Abstract

An elevated resting heart rate (RHR) is associated with increased cardiovascular mortality. Genome-wide association stud-
ies (GWAS) have identified > 350 loci. Uniquely, in this study we applied genetic fine-mapping leveraging tissue specific
chromatin segmentation and colocalization analyses to identify causal variants and candidate effector genes for RHR. We
used RHR GWAS summary statistics from 388,237 individuals of European ancestry from UK Biobank and performed
fine mapping using publicly available genomic annotation datasets. High-confidence causal variants (accounting for > 75%
posterior probability) were identified, and we collated candidate effector genes using a multi-omics approach that com-
bined evidence from colocalisation with molecular quantitative trait loci (QTLs), and long-range chromatin interaction
analyses. Finally, we performed druggability analyses to investigate drug repurposing opportunities. The fine mapping
pipeline indicated 442 distinct RHR signals. For 90 signals, a single variant was identified as a high-confidence causal
variant, of which 22 were annotated as missense. In trait-relevant tissues, 39 signals colocalised with cis-expression QTLs
(eQTLs), 3 with cis-protein QTLs (pQTLs), and 75 had promoter interactions via Hi-C. In total, 262 candidate genes
were highlighted (79% had promoter interactions, 15% had a colocalised eQTL, 8% had a missense variant and 1% had
a colocalised pQTL), and, for the first time, enrichment in nervous system pathways. Druggability analyses highlighted
ACHE, CALCRL, MYT1 and TDPI as potential targets. Our genetic fine-mapping pipeline prioritised 262 candidate genes
for RHR that warrant further investigation in functional studies, and we provide potential therapeutic targets to reduce
RHR and cardiovascular mortality.
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Introduction

An elevated resting heart rate (RHR) has been associated
with an increased cardiovascular morbidity and mortality
independent of traditional risk factors (Zhang et al. 2016).
Reduction of heart rate using pharmacological intervention
is an important component of therapy of a number of car-
diovascular conditions including angina pectoris and heart
failure. For example, direct inhibition of the pacemaker
current with ivabradine reduces cardiovascular events in
heart failure (Cargnoni et al. 2006), suggesting that RHR
is a modifiable risk factor. However, the exact mechanisms
linking RHR to risk are still not clear.

Genetics contributes to up to 20% of the interindividual
variance in RHR (van de Vegte et al. 2023) and, at pres-
ent, genome-wide association studies (GWAS) and exome-
array wide association studies have identified>350 loci
for RHR explaining > 5% of this variance (den Hoed et al.
2013; Eijgelsheim et al. 2010; Eppinga et al. 2016; Guo et
al. 2019; van de Vegte et al. 2023; van den Berg et al. 2017).
The underlying effector genes remain unknown for most
of these loci, which limits our understanding of the genetic
and biological mechanisms of RHR. Utilising a fine-map-
ping approach could identify responsible effector genes and
biological pathways explaining the mechanisms underlying
RHR and its relation to cardiovascular risk, as well as novel
therapeutic targets.

One promising avenue to improve prioritization of
causal variants and candidate genes is the integration of
GWAS with functional genomic information data to fine
map GWAS loci. Previous studies have shown it can sub-
stantially improve the causal-variant resolution for risk
loci for Type-2 diabetes (Mahajan et al. 2018) and blood
pressure(van Duijvenboden et al. 2023). These studies lev-
eraged European ancestry GWAS to avoid the calibration
issues of fine-mapping across multi-ancestry meta-analysis
GWAS (Kanai et al. 2022).

In the present work, we performed an annotation-
informed fine-mapping analysis using a European ancestry
GWAS to identify causal variants and candidate effector
genes for RHR. Prioritisation of candidate effector genes
was based on evidence from functional annotation, colo-
calisation analyses with expression and protein quantitative
trait loci (eQTLs and pQTLs) and promoter capture Hi-C
interactions in relevant RHR tissues. We investigated the
biological pathways of the prioritised effector genes. We
also investigated additional evidence of support for effector
genes from mouse and human phenotypes and differential
expression. Finally, we assessed the potential of the priori-
tised effector genes for drug target identification and repur-
posing opportunities. An overview of the study is shown in
Fig. 1.

@ Springer

Methods

Identification of distinct associations signals for
fine-mapping

We conducted a fine-mapping analysis of RHR GWAS sum-
mary statistics of 388,237 individuals of European ancestry
from UK Biobank (Mensah-Kane et al. 2021). The work
was undertaken as part of UK Biobank application 8256.
We initially defined loci as mapping 500 kb up- and down-
stream of each lead SNV (at genome-wide significance,
P <5x10~%). Where loci boundaries overlapped, they were
combined as a single locus. We then performed approximate
conditional analyses using GCTA-COJO(Yang et al. 2012)
to detect distinct association signals at each locus using
unrelated individuals with European ancestry as a reference
for linkage disequilibrium (LD). Within each locus, variants
attaining genome-wide significance (P<5x107%) in the
joint GCTA-COJO model were selected as index SNVs for
distinct association signals.

Enrichment of RHR associations for genomic
annotations

We used fGWAS(Pickrell 2014) to identify genomic anno-
tations from a total of 253 functional and regulatory annota-
tions (via GENCODE and Roadmap Epigenomics)(Harrow
etal. 2012; Kundaje et al. 2015) that were enriched for RHR
association signals (Supplemental Methods). We then used
an iterative approach to identify a joint model of enriched
annotations using a forward-selection approach. At each
iteration, we added the annotation to the joint fGWAS
model that maximised the improvement in the penalised
likelihood. We continued until no additional annotations
improved the fit of the joint model (P < 0.00020, Bonferroni
correction for 253 annotations).

Fine-mapping distinct association signals for RHR

For each j th variant at the 5 th distinct signal, we first esti-
mated its prior probability of causality using an annotation-
informed prior model:

= [X, ]

,where the summation is over the enriched annotations, 3,
is the estimated log-fold enrichment of the % th annotation
from the final joint {GWAS model, and Zj* is an indicator
variable taking the value 1 if the j th variant maps to the £
th annotation, and 0 otherwise. We then approximated the
Bayes’ factor, A;;, using the European ancestry summary
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Fig. 1 Overview of the study and summary of main findings. Created
with BioRender.com. eQTL, expression quantitative locus; GWAS,
genome-wide association study; Hi-C, long-range chromatin interac-

statistics, as previously described(van Duijvenboden et al.
2023) (Supplemental Methods). Finally, we estimated the j
th variant posterior probability of causality as Tij X 7V; A,;j .
Next, we derived a 99% credible set for the 4 th distinct
association signal by: (i) ranking all SN'Vs according to 7ij;
and (ii) including ranked variants until their cumulative pos-
terior probability attains or exceeds 99%(van Duijvenboden
et al. 2023). The credible set would, then, include the mini-
mum number of variants that jointly explained > 99% of the

RNA or protein
differential expression
(45 genes)

Drug target
identification and
repurposing potential
(21 genes)

S 0

y —4

tion; pQTL, protein quantitative locus; RHR, resting heart rate; RNA,
ribosomal nucleic acid

posterior probability of driving the RHR association under
the annotation-informed prior. We defined high-confidence
causal variants as single variants from the credible sets
accounting for more than 75% of the posterior probability.

Functional annotation of variants

We used variant-effect predictor (VEP) analysis(McLaren
et al. 2016) to annotate the high-confidence causal variants

@ Springer



1210

Human Genetics (2024) 143:1207-1221

from the credible sets, and selected those annotated as mis-
sense variants.

Colocalisation with gene expression data

We integrated genetic fine-mapping data with cis-eQTL in
adrenal gland, artery, heart, nerve and brain tissues from the
GTEx Consortium version 8 (tissue selection was informed
by tissue enrichment analysis from prior GWAS(Eppinga
et al. 2016) and biological mechanisms known to regu-
late RHR, Supplemental Methods). We first did a lookup
of significant lead eQTL variants in the 99% credible sets.
For each signal where we detected overlap, we formally
assessed whether the annotation informed Bayes’ factor for
the credible set variants of the corresponding signal colo-
calised with the eQTL results, as previously described(van
Duijvenboden et al. 2023).

Long-range chromatin interaction (Hi-C) analyses

We identified potential target genes of regulatory SNVs
using long-range chromatin interaction (Hi—C) data from
adrenal gland, aorta, left and right ventricles, hippocampus
and cortex(Jung et al. 2019) - similar tissues as selected for
eQTL analysis. Hi—C data was corrected for genomic biases
and distance using the Hi—C Pro and Fit-Hi-C pipelines
according to Schmitt et al(Schmitt et al. 2016). From the
Hi—C data, we report the target genes with which these high
regulatory potential SN'Vs interact (Supplemental Methods).

Colocalisation with protein expression data

We additionally integrated genetic fine-mapping
data with protein quantitative trait loci (cis-pQTL) in
plasma(Ferkingstad et al. 2021). We performed the same
Bayesian statistical procedure as for eQTL colocalisation to
assess whether those signals for which a 99% credible set
variant was the lead pQTL variant, colocalised with pQTL
results.

Prioritisation of candidate effector RHR genes

A full list of candidate effector genes for RHR was collated
from the results of our fine-mapping pipeline and computa-
tional approaches, similar to our studies on blood pressure
as reported recently(van Duijvenboden et al. 2023). A gene
was indicated for a signal if there was support from a cod-
ing and high-confidence variant in the gene at the locus, or
if the gene was indicated from eQTL, pQTL colocalization
or promoter capture Hi-C analyses.

@ Springer

Effector gene pathway analysis

We used the Gene2Function analysis tool in FUMA (v1.4.0)
to perform gene set enrichment on the prioritised list of can-
didate genes, and to identify significantly associated Gene
Ontology (GO) terms and pathways(Watanabe et al. 2017).
Redundant GO terms were removed using the Reduce and
Visualize Gene Ontology (REVIGO) web application(Supek
et al. 2011). Dispensability cut off <0.7 was used in this
analysis to remove redundant terms.

Additional evidence for effector genes from mouse
and human phenotypes and differential expression

We collated additional information for each prioritised can-
didate gene using data from GeneCards (https://genealacart.
genecards.org). This included evidence from mouse model
phenotypes, from the Human Phenotype Ontology database,
from differential RNA and protein expression of the candi-
date gene in the GTEx database in cardiovascular tissues
(Supplemental Methods).

Druggability of prioritised effector genes

To identify candidate druggable targets, a look-up was done
of the prioritised list of candidate genes in a previously pub-
lished database of the druggable genome (Finan et al. 2017).
This database categorises gene targets into tiers according
to whether they are existing targets of approved drugs or
drugs under development (Tier 1), greater than 50% shared
protein sequence identity to existing targets (Tier 2), and
extracellular proteins or members of key druggable gene
families not already in Tier 1 or Tier 2 (Tier 3). To identify
opportunities for drug repurposing, a look-up of each can-
didate gene was performed for Tier 1 to identify targets of
licensed medication using the KEGG drug database (Sup-
plementary Methods). The open targets database was inter-
rogated to identify disease associations with each gene to
identify overlap that could indicate a promising drug target.
To identify enrichment of candidate effector genes in clini-
cal indication categories and potentially re-positional drugs,
we utilised the Genome for REPositioning drugs (GREP)
software. A pathway-set enrichment analysis was also per-
formed using Gene2Drug to identify drug repositioning
candidates. Using RHR significant GO biological processes
as input, pathway expression profiles are created and ranked
according to the p-value of their Kolmogorov-Smirnov sta-
tistic that is used to search for drugs that up-regulate or dys-
regulate most pathways in the set(Napolitano et al. 2017).
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Fig. 2 Results from genomic enrichment annotation
for RHR. Estimate and 95% confidence interval of the
log-fold enrichment at the most significant annotations
for RHR, calculated using functional GWAS. UTR,
untranslated region; TSS, transcription start site; RHR,
resting heart rate
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Fig. 3 (a) Distinct RHR association signals. Summary of distinct association signals for RHR. A single signal at 221 genomic regions and at least
two at 52. (b) Distribution of the posterior probability of causality of the variants in credible sets. RHR, resting heart rate

Results

Fine-mapping and genomic annotation reveals
high-confidence causal variants

There were 307 genome-wide significant loci in the Euro-
pean GWAS performed by Mensah-Kane et al. (Mensah-
Kane et al. 2021). We partitioned these loci into a total of
442 distinct association signals (Supplemental Table 1). We
observed significant joint enrichment for RHR associations
mapping to protein coding exons and 5’ UTRs, enhancers
in the heart, and promoters in the right ventricle (Fig. 2,
Supplemental Table 2).

Using the enriched annotations, for each of the 442 dis-
tinct signals, we derived 99% credible sets of variants. The
median 99% credible set size was 26 variants (Supplemen-
tal Table 1). For 90 (20.4%) RHR signals, a single SNV
accounted for > 75% of the posterior probability of driving
the RHR association under the annotation-informed prior,

which we defined as “high-confidence” for causality (Fig. 3,
Supplemental Table 3).

Missense variants implicate causal genes

From the 90 high-confidence variants, 22 were missense
variants in 21 genes (Table 1), of which seven were anno-
tated as damaging and deleterious by PolyPhen and SIFT,
respectively.

Four variants were annotated as probably damaging and
deleterious were in CCDC141 (rs17362588, p.Arg379Trp
and rs10497529, p.Alal41Val), APOE (157412,
p.Argl76Cys), and LAMBI (rs80095409, p.Arg819Gly),
Table 1). We found two missense variants in CCDCI41.
This gene is involved in axon guidance and cell adhesion
and plays a critical role in radial migration and centrosomal
function(Saengkaew et al. 2021). It has been identified by
previous analyses for RHR(van den Berg et al. 2017), RHR
dynamics(Ramirez et al. 2018; Verweij et al. 2018) and sick
sinus syndrome(Thorolfsdottir et al. 2021). However, there

@ Springer
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are yet no functional studies investigating the mechanistic
link of CCDCI41 and RHR. The APOE variant, rs7412,
determines the APOEZ2 isoform, which has been shown
in both human and animal studies to be protective against
Alzheimer’s Disease and is additionally associated with lon-
gevity independent of Alzheimer’s Disease (Shinohara et al.
2020). Previous studies suggest that laminins have impor-
tant roles in human heart development and function(Haag et
al. 1999). In particular for LAMBI (Laminin Subunit Beta 1)
zebrafish embryos had mild morphogenetic defects and pro-
gressive cardiomegaly, as well as a limited heart size during
cardiac development(Derrick et al. 2021).

Three missense variants were annotated as possibly
damaging and deleterious by PolyPhen and SIFT: FHOD3
(rs61735998, p.Val822Phe), ARHGEF40 (rs12889267,
p-Lys293Glu) and GABI (rs28925904, p.Pro311Leu). The
variants in FHOD3 and ARHGEF40 had a 100% pos-
terior probability of driving the RHR signal. FHOD3 is
essential for myofibrillogenesis at an early stage of heart
development(Kan-O et al. 2012) and has been identified as
a causal gene for hypertrophic cardiomyopathy with related
heart rate abnormalities in humans (Ochoa et al. 2018).
ARHGEF40 has previously been associated with all-cause
mortality (Eppinga et al. 2016), but is less functionally char-
acterised and encodes a protein similar to guanosine nucleo-
tide exchange factors for Rho GTPases. Finally, GAB/ is
an adapter protein that plays a role in intracellular signal-
ling cascades triggered by activated receptor-type kinases
(Yousaf et al. 2018). Cardiac-specific GABI knock-out in
mice has been reported to lead to dilated cardiomyopathy
associated with mitochondrial damage and cardiomyocyte
apoptosis (Zhao et al. 2016).

Genes identified using gene expression in disease
relevant tissues

Convincing support for colocalization with gene expression
in at least one tissue was identified for 39 distinct signals at
40 genes (Supplemental Table 4). A total of 21 signals (for
21 genes) colocalised at a single tissue, 18 at heart or arterial
tissue and 3 at brain. There were no specific colocalisations
in adrenal gland tissues (Supplemental Fig. 1). We observed
14 signals (for 14 genes) that colocalised at more than one
tissue. For the 4 remaining signals, one signal indicated two
genes (AC009264.1 and CHRM?) in the heart left ventricle,
there were two signals for one gene (CPNES) in the heart
left ventricle, and for the last signal two genes (FLCN and
PLD6) were colocalised in multiple tissues (brain, heart and
artery).

An interesting gene with heart-specific colocalisation
is PLEC. PLEC knock out mouse models show right bun-
dle branch block and abnormal heart morphology, and a

missense variant in PLEC has been reported to increase risk
of atrial fibrillation in humans(Thorolfsdottir et al. 2017).

There were a few genes with brain-specific colocali-
sations, including NKX2-5, LEMD?2 and UCKI. NKX2-
5’s reported function is a regulator of cardiovascular
development(Bruneau 2008), with mouse and zebrafish
models showing abnormalities in heart rate, among other
cardiovascular phenotypes (Table 2). However, the function
of NKX2-5 in the brain is not reported. There are LEMD?2
mouse and human models that include an arrhythmogenic
cardiomyopathy phenotype(Gerull and Brodehl 2020).
Finally, UCKI phosphorylates uridine and cytidine to uri-
dine monophosphate and cytidine monophosphate (Gene-
Cards), but there is no data indicating association with RHR
or cardiovascular phenotypes.

Identification of genes using long-range chromatin
interactions

Promoter interactions were identified for 75 distinct signals
mapping to 207 genes at 66 loci (Supplemental Table 5).
A total of 107 genes were indicated in a single tissue, of
which 14 (13%) were in left or right ventricle, 83 (78%)
in brain, and 10 (9%) in the adrenal gland. From the genes
specifically indicated in heart tissue, SCN10A has been
thoroughly characterised as a RHR modifier(Eppinga et al.
2016; Ramirez et al. 2018)Table 2) and CASZ] is involved
in cardiac morphogenesis and development, and there are
abnormal mouse phenotypes including congenital and
structural cardiomyopathies(Spielmann et al. 2022). There
are also some genes that do not have experimental support
for cardiovascular traits, these include CABLESI, BETI and
SLC22A17. CABLESI encodes a protein involved in reg-
ulation of the cell cycle through interactions with several
cyclin-dependent kinases(Malumbres 2014). BETI encodes
a golgi-associated membrane protein that participates in
vesicular transport from the endoplasmic reticulum to the
Golgi complex(Hay et al. 1996). SLC22A417 is a cell surface
receptor for Lipocalin 2, an antibacterial protein that acts by
sequestering iron during bacterial infection and has recently
been reported to be involved in various pathophysiological
conditions in various organs and tissues, including the heart
and brain(Lim et al. 2021).

Two genes indicated in brain tissue with a low (2a)
regulome score include CEP68, and CISD3 (Supplemen-
tal Table 5). CEP68 has a mouse cardiovascular phenotype
(increased heart weight), and variants at this locus have
previously been associated with atrial fibrillation (Christo-
phersen et al. 2017). CISD3 may play a role in regulating
electron transport and oxidative phosphorylation(Wiley et
al. 2007), and diseases associated with this gene include
Wolfram Syndrome, a disorder which is associated with
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Table 2 Twenty-three candidate genes for RHR with additional evidence of support from mouse or human phenotypes and RNA or protein dif-

ferential expression

Bioinformatics support Gene
Signal ID rsID Index SNV Missense eQTL Hi.C gene pQTL

high-confi-  colocalisation colocalisation

dence SNV
28 1 rs12724121 1:236852282:A: T ACTN2(1) ACTN2*
513 rs17362588 2:179721046:G: A CCDCI141 CCDCI141
67_1 NA 3:37551515:C: CT ITGA9(1) ITGA9
67 4 rs7372712 3:38686192:C: T SCN10A(1) SCN104*
70 3 rs9819463 3:53672471:T: C CACNAID(1) CACNAID*
108 1 rs12514461 5:79041057:A: G CMYAS CMYAS5
119 1 rs10071514 5:172669771:A: G NKX2-5(2) NKX2-5*
146_3 13244629 7:100509253:A: C ACHE(4) ACHE*
153_1 rs1424569 7:136569416:T: C CHRM2(1) CHRM?2*
188 1 rs10787270 10:112459906:G: A RBM20(2) RBM20*
205 3 rs7102584 11:128782012:C: G KCNJ5 KCNJ5*
221 2 rs10774625 12:111910219:A: G SH2B3 SH2B3(1) SH2B3
2311 15365990 14:23861811:A: G MYHG6 MYH6*
231 3 rs117526881 14:23908895:G: C IL25(1) 1L25
254 1 rs8048448 16:30692208:T: C FBXL19(5) FBXL19
254 1 rs8048448 16:30692208:T: C YPEL3(2) YPEL3
2731 14800401 18:20003625:C: T GATA6(3) GATAG*
276_3 rs61735998 18:34289285:G: T FHOD3 FHOD3*
290 1 rs190712692 19:45425178:G: A CKM(1) CKM
296 1 1s6123471 20:36840156:T: C GHRH(1) GHRH
296 1 186123471 20:36840156:T: C TGM2(1) TGM2*
298 1 rs148377517  20:42939693:C: T FITM?2 FITM?2
3051 rs749085725 22:20098887:CT: C SCARF2(1) SCARF2

Signal.ID, distinct signal identifier, based on the locus number and signal number within the locus; rsID, rsID of the lead SNV in the signal;
Index.SNV, chromosome: base pair in build 37:reference allele: other allele; SNV, single-nucleotide variant; eQTL, expression quantitative
locus; Hi.C, long-range high-chromatin interaction; pQTL, protein quantitative locus. The number in brackets in the eQTL and Hi.C columns
indicate the number of tissues at which we found support. *Indicates there is a mouse or human abnormal heart rate phenotype, as indicated in

Supplementary Table 7

childhood diabetes, optic atrophy and deafness (OMIM
number 222,300).

Genes identified using protein expression

We identified significant pQTLs for three genes, GCKR,
ENO3 and MXRA7 (Supplemental Table 6). These three
genes also had support from other analyses; missense anno-
tation (GCKR), and eQTL analyses (ENO3 and MXRA7).
GCKR regulates glucokinase by forming an inactive com-
plex with this enzyme. Postprandial triglyceridemia is an
emerging risk factor for cardiovascular disease and GCKR
gene polymorphisms affect postprandial lipemic response in
a dietary intervention study(Shen et al. 2009). ENO3 has
demonstrated increased differential expression in the left
ventricle in rats(Giusti et al. 2009). The role of MXRA7
(matrix-remodeling-associated protein 7) in potentially
modulating RHR and cardiovascular disease is less known;
but it has previously been associated with a cardiorespira-
tory fitness polygenic risk score(Cai et al. 2023).

@ Springer

Candidate gene prioritisation

From the complementary fine mapping and computational
approaches, we prioritised a total of 262 candidate genes for
RHR that had at least one line of evidence (Supplemental
Table 7). This list includes 21 genes with high-confidence
missense variants (Table 1), 40 genes with colocalised
eQTLs (Supplemental Table 4), 207 genes with Hi-C inter-
actions (Supplemental Table 5) and 3 genes with colocalised
pQTLs (Supplemental Table 6).

Biological pathways

To gain insights into the biological role of the 262 candidate
genes for RHR, we performed gene-set enrichment analy-
ses via FUMA (Methods). We found significant enrichment
for 41 unique GO biological processes (Supplemental Table
8). The most significant biological processes included cel-
lular component morphogenesis (P=2.1x10~%), neuron
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differentiation (P=4.6x10"%), and neuron development
(P=8.9x107%).

Additional functional evidence for RHR candidate
effector genes

To explore the function of the 262 prioritised candidate
genes, additional evidence for each candidate effector gene
was assessed using mouse model data, human cardiovas-
cular phenotypes and assessing differential expression of
RNA/protein in cardiovascular tissues. We observed 74 of
the 262 prioritised candidate genes (28.2%) to have support
from mouse model data and 45 (17.2%) from human cardio-
vascular phenotypes (96 genes had support from mouse or
human cardiovascular phenotypes). We also found 45 can-
didate genes (4.2%) had support from RNA or protein dif-
ferential expression. In total, 23 candidate genes (9.2%) had
additional functional evidence from both phenotypes and
differential expression, and 12 of these 23 genes directly
showed an abnormal heart rate phenotype in mouse or
human experimental models (Table 2, Supplemental Table
7).

Drug target identification and repositioning
opportunities

We found 21 of the 262 candidate effector genes were exist-
ing targets of small molecules or biotherapeutics and clinical
drug candidates (Tier 1, Supplemental Table 9). Of these, 5
were among the 23 candidate genes with additional func-
tional evidence, SCN10A, CACNAID, ACHE, CHRM?2 and
MYHG (all directly liked to RHR through abnormal mouse
or human phenotypes). CACNAID, MYH6 and SCNI10A
had a cardiovascular disease as their top disease association
(sinoatrial node dysfunction, hypertrophic cardiomyopathy
and AF, respectively). CHRM2 and CACNAID are estab-
lished targets of drugs with an intention to either increase
(atropine) or decrease (Diltiazem, Verapamil) RHR. In the
remaining genes, the cardiovascular system was not impli-
cated as top disease association, suggesting potential drug
repurposing. For example, ACHE is a target of drugs for
Alzheimer’s disease, including Donepezil and Galantamine,
which cause bradycardia as a side effect.

The 262 candidate effector genes were enriched for
gene-sets targeted by drugs for the nervous system, anaes-
thetics and gastrointestinal disorders (Supplemental Table
10). Pathway-directed investigation identified 48 drugs
with support that dysregulate the GO biological processes
either by up or down-regulation, including Isoprenaline and
Atenolol (Supplemental Table 11). Of the top 10 drugs, Bus-
pirone (5-Hydroxytryptamine 1 A receptor antagonist)(Osei-
Owusu and Scrogin 2004) and Oxybuprocaine (anaesthetic)

(Hung et al. 2010) have experimental evidence for an effect
on RHR but are not current drug targets for cardiovascular
diseases. The compound 2,6-dimethylpiperidine has previ-
ously demonstrated antiarrhythmic activity in a dog model
however to the best of our knowledge, has not undergone
further investigation (Hoefle et al. 1991).

Discussion

In the present work, we employed a functionally informed
statistical framework to advance from initial broadly associ-
ated genomic regions to the prioritisation of 262 candidate
effector genes for RHR. From these, 23 had additional func-
tional evidence and 21 were existing drug targets.

We used a functionally informed fine-mapping approach
to specify plausible causal variants and 262 candidate genes
for RHR using biologically interpretable annotations that
were identified without prior knowledge of the trait. A
recent paper by Van de Vegte et al., used a scoring system
for gene prioritisation based on four criteria: proximity,
coding, eQTL and evidence from Data-driven Expression
Prioritized Integration for Complex Traits (DEPICT). They
highlighted a lower number of effector genes, 39 genes with
high level of support, PHACTR2, ENO3 and SENP?2 being
their top effector genes(van de Vegte et al. 2023). A direct
comparison with our results is difficult because of method-
ological differences. First, our pipeline ranks variants based
on annotation-informed posterior probability of causality,
instead of P-values. Second, we included evidence from
Hi-C interactions (79% of candidate effector genes had Hi-C
interaction support). Third, our study focused on individuals
with European ancestry, whereas they conducted a multi-
ancestry approach, hence reporting additional loci from
their GWAS, therefore the number of starting signals is dif-
ferent. However, looking at their 39 prioritised genes, we
found 32 of the genomic regions where these genes mapped
to were genome-wide significant in our European GWAS,
demonstrating positional overlap (Supplemental Table 12).
At these 32 signals, our fine-mapping pipeline indicated 18
had a high-confidence variant and were, thus, considered
for candidate effector gene prioritization. Our methodol-
ogy provided support for 12 genes indicated by the 18 sig-
nals (31% of the genes prioritised by van de Vegte et al.),
including ENO3, and 5 of these 12 (42%) were in our list
of 23 genes with additional evidence (CCDC141, CMYAS,
KCNJ5, MYH6 and FHOD3, Supplemental Table 12). At
the remaining 6 signals, our methodology prioritised a dif-
ferent effector gene. The comparison between studies high-
lights that our annotation-informed fine-mapping approach,
which utilises numerous layers of multi-omics data follow-
ing the identification of signals with high-confidence causal
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variants, along with validating previously reported effector
genes, has prioritised important candidate genes for RHR
for the first time.

Previous studies have reported enrichment of associa-
tions in pathways involved in cardiac tissue development,
muscle cell differentiation and pro-arrhythmic pathways for
RHR(den Hoed et al. 2013; van de Vegte et al. 2023; van
den Berg et al. 2017). Experimental studies have generally
focused on providing functional evidence for RHR genes
involved in the cardiovascular system(Liaqat et al. 2019).
However, our enrichment results provide, for the first time,
support for nervous system pathways, a role that is sup-
ported by existing knowledge for autonomic regulation of
heart rate. The genes involved in these pathways, therefore,
warrant further investigation in functional studies.

Twenty-nine of the 41 (> 50%) of the significant biologi-
cal pathways identified using the 262 prioritised candidate
genes implicate at least one of the 23 candidate genes with
additional functional evidence. We highlight two of these 23
not previously prioritised as candidate genes for RHR, CAC-
NAID and RBM20. CACNA1D, which was identified in this
work as an existing target of calcium channel blockers, is
present in the membrane of most excitable cells and mediates
calcium influx in response to depolarization(Fourbon et al.
2017). Associated diseases include sinoatrial node dysfunc-
tion and deafness(Liaqat et al. 2019). RBM20 acts as a regu-
lator of mRNA splicing of a subset of genes encoding key
structural proteins involved in cardiac development, such as
TTN, CACNA1C, CAMK2D or PDLIM5/ENH(Vieira-Vieira
et al. 2022). Mutations in this gene have been associated
with familial dilated cardiomyopathy(Hoogenhof et al.
2018).

Druggability analyses highlighted three candidate genes
as top gene targets for cardiovascular disease and four for
a neurological disease with repurposing potential, ACHE,
CALCRL, MYTI and TDPI. ACHE is a target of drugs for
Alzheimer’s disease including Donepezil and Galantamine,
which cause bradycardia as a side effect. CALCRL is a target
of drugs for migraine disorder. It is a receptor for adreno-
medullin, together with RAMP2(Mackie et al. 2018). One of
the reported mouse phenotypes is differences in heart rate of
heterozygous CALCRL female and male mice(Pawlak et al.
2017). MYT1I is a drug target for autism spectrum disorder
and is less characterised, it binds to the promoter regions of
proteolipid proteins of the central nervous system and plays
a role in the developing nervous system(Lee et al. 2019).
Finally, TDP1 is a drug target for spinocerebellar ataxia type
1 with axonal neuropathy(Hirano et al. 2007), which cor-
relates with cardiac autonomic dysfunction, predominantly
parasympathetic(Pradhan et al. 2008). Future work should
evaluate the causal link between these drug targets and
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RHR using Mendelian Randomisation analyses, as done
recently(Schmidt et al. 2020).

We found limited overlap across the different lines of
evidence for each candidate gene (Supplementary Table 7),
as previously described(Gazal et al. 2022). The use of cis-
eQTL analyses for candidate gene prioritisation has been
demonstrated to have a high precision but a lower recall,
whereas promoter-capture Hi-C data add specificity, result-
ing in a complementary approach. Nevertheless, the strong
benefit of including Hi-C data is that it provides evidence of
tissue-specific physical 3D contact between the candidate
cis-regulatory element and a specific protein coding gene’s
promoter. Furthermore, we observed that the Hi-C analysis
was the line of evidence contributing most of the genes. This
can be supported by a recent re-evaluation of the a priori
functional likelihood of eQTLs, due to their skew towards
promoter loci and large effect sizes(Mostafavi et al. 2023).

There are some limitations to our study, firstly the lack
of population diversity in our analyses. The annotation-
informed fine mapping analyses were performed in a Euro-
pean ancestry GWAS from UK Biobank despite larger
meta-analyses including other ancestries being available(van
de Vegte et al. 2023). The reason of this was to avoid the
calibration issues of meta-analysis fine-mapping and the
heterogeneities and noise in phenotyping found in large
meta-analyses(Kanai et al. 2022). An additional weakness
is that whilst benefitting from dense genotyping and imputa-
tion of common variants, this is not exhaustive in capturing
all the potential phenotypically associated genetic varia-
tion within each locus. This will miss the possible impact
of rare variants, as well as any poorly tagged larger variant
(copy number variants, short tandem repeats, inversions,
etc.). Finally, we used an established tool, f{GWAS(Pickrell
2014), to perform a joint analysis of functional genomic
and GWAS data, as done by other studies(Jagadeesh et al.
2022; Liu and Montgomery 2020), followed by a previously
reported methodology(Mahajan et al. 2018; Morris et al.
2019; van Duijvenboden et al. 2023) as our fine-mapping
approach. Other functionally informed fine-mapping tools,
like PolyFun(Weissbrod et al. 2020), could have alterna-
tively been used.

In conclusion, we have prioritised 262 candidate genes
using annotation-informed fine mapping and implicated,
along with previously observed enriched tissues, nervous
system pathways for the first time. Our findings inform fur-
ther investigations to improve the functional understanding
of the biology underlying RHR and may enable novel pre-
ventive and therapeutic opportunities.

Supplementary Information The online version contains
supplementary material available at https://doi.org/10.1007/s00439-
024-02684-z.
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