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We discuss boson stars and neutron stars, respectively, in a scalar-tensor gravity model with an explicitly 
time-dependent real scalar field. While the boson stars in our model – in contrast to the neutron stars – 
do not possess a hard core, we find that the qualitative effects of the formation of scalar hair are similar 
in both cases: the presence of the gravity scalar allows both type of stars to exist for larger central 
density as well as larger mass at given radius than their General Relativity counterparts. In particular, 
we find new types of neutron stars with scalar hair which have radii very close to the corresponding 
Schwarzschild radius and hence are comparable in density to black holes. This new branch of solutions 
is stable with respect to the decay into individual baryons.
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1. Introduction

With increased interest in astrophysical objects and, in partic-
ular, their gravitational properties, compact objects have come to 
the focus of theoretical research again. These objects are normally 
defined to have strong gravitational fields and as such are a good 
testing ground for the momentarily accepted best model of the 
gravitational interaction – General Relativity (GR) – as well as ex-
tensions thereof and even alternative gravity models. Compact ob-
jects come in two varieties: either they are star-like with a globally 
regular space-time or they possess a physical singularity shielded 
from observation by event horizons. The former are neutron stars 
and boson stars, respectively, the latter black holes. While neutron 
stars and black holes are known to exist and can now be studied 
with unprecedented precision, boson stars [1] are hypothetical ob-
jects made principally of scalar bosonic particles. Evaluating and 
testing gravity theories is also vital in order to understand two of 
the great puzzles of current day physics: the nature of dark mat-
ter and dark energy. While dark matter is understood to be some 
kind of matter that interacts only gravitationally and probably has 
its origin in physics beyond the Standard Model of Particle physics, 
the nature of dark energy remains elusive. Consequently, sugges-
tions for a modification of GR have been made on the ground 
of so-called “scalar-tensor” gravity models [2–4], an idea that re-

* Corresponding author.
E-mail address: bhartmann@ifsc.usp.br (B. Hartmann).
https://doi.org/10.1016/j.physletb.2020.135906
0370-2693/© 2020 The Author(s). Published by Elsevier B.V. This is an open access artic
SCOAP3.
lates back to Horndeski [5]. Classes of scalar-tensor gravity models 
have then been studied thoroughly and a classification, named “Fab 
Four”, was achieved [6,7]. In this paper, we are interested in a 
particular model dubbed “John” in this exact classification. As has 
been shown in [8], static, spherically symmetric black holes can 
carry scalar hair in this model if the scalar field is explicitly (and 
linearly) time-dependent. In particular, the Noether current associ-
ated to the shift symmetry of the Galileon-type gravity scalar does 
not diverge on the horizon in this model. In [10], neutron stars 
have been studied for a specific polytropic equation of state and it 
has been claimed that the astrophysical objects resulting from the 
model are viable and not in conflict with constraints from observa-
tions. Here, we revisit these results and compare them with those 
related to another EOS used in [11]. We find that the solutions 
obtained with the EOS of [11] (a) are in perfect agreement with 
results obtained in [11] and (b) only this EOS leads to neutron 
stars possessing the proper mass-radius relation. While neutron 
stars are matched to the Schwarzschild solution at the exterior 
radius, we also discuss boson stars in this paper that reach the 
Schwarzschild solution only asymptotically and hence do not pos-
sess a “hard core”.

Our paper is organized as follows: in Section 2 we discuss 
the scalar-tensor gravity model coupled to an appropriate energy-
momentum content. In Section 3, we present our results for boson 
stars, while Section 4 contains our findings for neutron stars. We 
summarize and conclude in Section 5.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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2. The model

In this paper, we present our results for a scalar-tensor grav-
ity model of Horndeski type coupled minimally to an appropriate 
matter content with Lagrangian density Lmatter. The action reads:

S =
∫ (

κR+ η

2
Gμν∇μφ∇νφ +Lmatter

)√−gd4x , (1)

where κ = (8πG)−1. This action contains the standard Einstein-
Hilbert term as well as a non-miminal coupling term – first dis-
cussed in [6,7] – that couples a gravity scalar φ to the Einstein 
tensor Gμν via a coupling constant η. For η = 0, we recover stan-
dard General Relativity (GR).

In the following, we will assume the matter content of the 
model to be that of (a) a complex valued scalar field and (b) a 
perfect fluid with a given equation of state, respectively. In the 
latter case, the model has solutions in the form of neutron stars, 
while the complex scalar field in curved space-time describes bo-
son stars. The gravity equations then read

κGμν + η

(
∂αφ∂αφGμν − 1

2
εμασρ Rσργ δενβγ δ∇αφ∇βφ

+ gμαδ
αρσ
νγ δ ∇γ ∇ρφ∇δ∇σ φ

)
= Tμν , (2)

where Tμν denotes the energy-momentum tensor of the matter 
content. The model has a shift symmetry φ → φ + c, where c is 
a constant, which leads to the existence of a locally conserved 
Noether current

Jμ = −ηGμν∇νφ , ∇μ Jμ = 0 . (3)

In the following, we will assume a spherically symmetric Ansatz 
for our solutions [8]

ds2 = −b(r)dt2 + dr2

f (r)
+ r2

(
dθ2 + sin2 θdϕ2

)
,

φ(t, r) = qt + F (r) , (4)

i.e. the tensor part is static, while the gravity scalar has an explicit 
time-dependence. The non-vanishing components of the Noether 
current (3) then read

J t = ηq
f ′r + f − 1

r2b
, J r = ηφ′ f

(−b′r f − bf + b
)

r2b
, (5)

where the prime now and in the following denotes the derivative 
with respect to r. The norm of the Noether current is

Jμ Jμ = η2

[
−q2 ( f ′r + f − 1)2

r4b
+ φ′2 f

(
b′r f + bf − b

)2

r4b2

]
. (6)

Since f (r � 1) ∼ 1 + f2r2 and b(r � 1) ∼ 1 +b2r2 with f2, b2 con-
stants (see below for explicit expressions), the norm of the Noether 
current is finite for all r ∈ [0 : ∞).

We want to consider a non-vanishing energy-momentum tensor 
that sources the tensor and scalar gravity fields. In the following, 
we will choose the energy-momentum tensor to be of the form

T ν
μ = diag(−ρ, Pr, Pt, Pt) , (7)

where ρ is the energy-density, while Pr and Pt are the radial and 
tangential pressures, respectively. The gravity equations are then a 
set of coupled, non-linear ordinary differential equations that have 
to be solved numerically. However, we can simplify the analysis 
by noting that the equation for the gravity scalar φ, which comes 
2

from the rr-component of (2), can be solved algebraically in terms 
of the other functions:

η(φ′)2 = 2r2

f
Pr + 1 − f

bf
ηq2 . (8)

This allows the elimination of φ from the remaining equations and 
we are left with the equations for the metric functions which read:

F1 f ′ +F2 = 0 ,
b′

b
= 1 − f

f r
(9)

with

F1 = 4κbr + 2br3 Pr − 3ηq2r f (10)

and

F2 = 3ηq2 f (1 − f ) + 2b

[
ρr2( f + 1) + 2 f r2 Pr + 4 f r2 Pt

+ 2κ( f − 1)

]
. (11)

Note that the second equation in (9) ensures that the Noether cur-
rent Jμ is covariantly conserved, i.e. ∇μ Jμ = 0 and is, in fact, the 
rt-component of the Einstein equation.

Star-like astrophysical objects are typically characterized in 
terms of their mass-radius relation. The gravitational mass MG of 
this solution is given in terms of the asymptotic behavior of the 
metric function f (r):

f (r) −−−→
r→∞ 1 − MG

4πκr
+O(r−2) , (12)

while the radius will be defined differently in the case of boson 
stars and neutron stars, see below. Since asymptotically, the met-
ric function b(r) becomes equal to f (r) and we assume in the 
following that either the pressure Pr tends exponentially to zero 
asymptotically (in the case of boson stars) or is strictly zero (in 
the case of neutron stars), we observe that the mass MG can also 
be read off from the behavior of the gravity scalar at infinity. Using 
(8) we find that

(φ′)2 −−−→
r→∞

MG

4πκr
q2 . (13)

In other words: MGq2/(4πκ) constitutes the “charge” associated 
to the scalar field (φ′)2.

In [9], an action similar to (1) has been discussed, however, 
with an additional “standard” kinetic term for the scalar field. 
Hence, the exact argument of loss of hyperbolicity of the metric 
cannot be translated to our case, but we can modify it accordingly. 
The question is whether φ ≡ 0 is stable in our model. For that, 
note that we can interpret the scalar field equation as an equation 
in an “effective” metric solely given by the Einstein tensor:

g̃μν = −ηGμν , (14)

which using the Einstein equation and the form of the energy-
momentum tensor (7) has determinant

g̃ = −g
(η

κ

)4
ρ Pr P 2

t , (15)

where g is the determinant of gμν . This expression demonstrates 
that the argumentation is independent of the actual sign of η
and that – since ρ and Pr are positive – the determinant of g̃μν

has always opposite sign to the determinant of gμν . This might 
cause problems if a mass term (or self-interaction terms) would 
be present for the scalar field, however is irrelevant for the case 
studied here.
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Fig. 1. We show the gravitational mass MG as function of the Noether charge Q (left) as well as the Noether charge Q as function of ω (right) for GR boson stars (η = 0) 
and boson stars with time-dependent scalar hair for several values of ηq2.
3. Boson stars

In the case of boson stars, the energy-momentum content is 
that of a complex valued scalar field �, which – in contrast to the 
neutron star model discussed in Section 4 – is not of perfect fluid 
type. The energy-momentum tensor reads:

Tμν = −gμν

[
1

2
gαβ

(
∂α�∗∂β� + ∂β�∗∂α�

) + m2��∗
]

+ ∂μ�∗∂ν� + ∂ν�∗∂μ� , (16)

where m denotes the scalar boson mass. This model contains an 
additional conserved Noether current due to the internal global 
U(1) symmetry � → exp(iχ)ψ , where χ is a constant. This reads

jμ = − i

2

(
�∗∇μ� − �∇μ�∗) , ∇μ jμ = 0 . (17)

With the standard spherically symmetric Ansatz for boson stars

�(r, t) = exp(iωt)H(r) , (18)

where ω > 0 is a constant, the non-vanishing components of the 
energy-momentum tensor read

ρ = f (H ′)2 +
(

m2 + ω2

b

)
H2 ,

Pr = f (H ′)2 −
(

m2 − ω2

b

)
H2 ,

Pt = − f (H ′)2 −
(

m2 − ω2

b

)
H2 . (19)

The locally conserved current and associated globally conserved 
Noether charge are:

jt = −ωH2

b
, Q = −

∫
d3x

√−g jt = 4πω

∫
dr r2 H2√

bf
(20)

Note that in the model with ungauged U(1) symmetry, the Noether 
charge Q is frequently interpreted as the number of bosonic par-
ticles of mass m that make up the boson star. Finally the field 
equation for � reads:

H ′′ + 1

2

(
4

r
+ f ′

f
+ b′

b

)
H ′ + 1

f

(
ω2

b
− m2

)
H = 0 . (21)

The asymptotic behavior of H(r) that can be read of from (21) is:

H(r) −−−→ 1
exp

(
−

√
m2 − ω2r

)
, (22)
r→∞ r

3

i.e. although the scalar field making up the boson star decays fast, 
the star does not have a “hard surface” like the neutron star dis-
cussed below. Rather, its energy density ρ and pressures Pr and 
Pt , respectively, tend to zero only asymptotically. We can, how-
ever, use an estimate of the radius R of the boson star which is 
given as follows:

〈R〉 = 1

Q

∫
d3x

√−g r jt = 4πω

Q

∫
dr r3 H2√

bf
. (23)

The equations (9) and (21) have to be solved with boundary 
conditions that guarantee the regularity of the solution at the ori-
gin and its finiteness of energy. The appropriate conditions read:

b′(0) = 0 , H ′(0) = 0 , b(∞) = 1 , H(∞) = 0 (24)

where the constant H(0) ≡ H0 is an a priori free parameter that 
determines the value of ω as well as the central density of the bo-
son star, see (19), via ρ(0) = (m2 + ω2/b(0))H2

0. As is well known 
from boson stars in GR, the parameter H(0) can be increased ar-
bitrarily such that a succession of branches of boson stars exists 
that end only for H(0) → ∞ and b(0) → 0 in this limit. This will 
be different for the scalar-tensor boson stars studied here. The ex-
pansion of the fields around the origin already gives hints that this 
should be the case. We find:

b(r) = b0

[
1 + 4H2

0(2ω2 − b0m2)

3(4κb0 − 3ηq2)
r2 +O(r4)

]
,

f (r) = f0

[
1 + 1

6

(
m2 − ω2

b0

)
r2 +O(r4)

]
, (25)

where b0 = b(0) and f0 = f (0). This implies that we have to re-
quire 4κb0 − 3ηq2 �= 0. As we will demonstrate in the following, 
this condition is crucial in the limitation of the domain of existence 
of the solutions for η > 0. Note that for η < 0 another limitation 
exists, related to the requirement of positivity of the right hand 
side of (8).

The system of equations is unchanged under the following 
rescalings

r → r

m
, ω → mω , H → √

κ H , η → κη , φ → φ

m
, (26)

which rescales the radius, mass and Noether charge of the boson 
star as follows:

〈R〉 → 〈R〉
m

, MG → MG

m
, Q → κ

m2
Q . (27)

In the following we will choose κ = 1, m = 1, η = ±1 without loss 
of generality.
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Table 1
We give the maximal values of the mass MG,max as well as the maximal value of 
the Noether charge Q max for different values of ηq2. Also given is the mean radius 
〈R〉∗ , the angular frequency ω∗ , the central density ρ(0)∗ as well as the central 
pressure Pr(0)∗ = Pt (0)∗ ≡ P (0)∗ at the maximal value of the mass, i.e. at MG,max.

ηq2 MG,max Q max 〈R〉∗ ω∗ ρ(0)∗ P (0)∗

0 15.91 16.40 3.10 0.85 0.19 0.04
0.01 15.50 15.81 3.22 0.86 0.15 0.03
0.1 15.32 14.27 3.54 0.87 0.12 0.02
1.0 10.46 2.10 6.44 0.96 3 · 10−3 2 · 10−4

−1.0 16.68 35.93 2.84 0.83 0.47 0.11
−10.0 17.90 416.81 2.50 0.79 4.13 1.00

Fig. 2. We show the Noether charge Q (red) and the gravitational mass MG (black), 
in dependence of ηq2 for the boson star solutions with ω = 0.99 (solid), ω = 0.97
(dashed) and ω = 0.90 (dotted-dashed) respectively.

Fig. 3. We show the gravitational mass MG in function of the mean radius 〈R〉 of 
the boson star with time-dependent scalar hair for several values of ηq2. For com-
parison we also show the mass-radius relation for the GR limit (η = 0).

3.1. Numerical results

We have solved the equations numerically using a collocation 
method for boundary-value differential equations using damped 
Newton-Raphson iterations [12]. The relative errors of the solu-
tions are on the order of 10−6 − 10−10. The constants to be varied 
are the combination ηq2 as well as ω (or equivalently H(0)). From 
(22) we know that with the rescalings (26) the angular frequency 
is restricted by: ω2 ≤ 1.

In Fig. 1 we show the relation between Noether charge Q and 
gravitational mass MG (left) and the dependence of the Noether 
charge on ω (right), respectively, for several values of ηq2 in-
cluding the GR case η = 0. While for η = 0, we can increase the 
value of H(0) arbitrarily, this is no longer the case in the scalar-
tensor gravity model studied here. For ηq2 > 0, the curves shown 
4

Fig. 4. We show the energy density ρ as function of the pressure P in natural units 
(8πG = c = h̄ = 1) for the BSk20 equation of state. In comparison we show the 
three polytropic equations of state used in this paper, see (29). For EOSI, EOSII and 
EOSIII we have chosen K = 1.5, K = 0.67 and K = 0.16, respectively, corresponding 
to the maximal mass value.

in Fig. 1 are limited by the requirement discussed above which, 
with our choice of constant, reads: 4b0 − 3ηq2 > 0. We find that 
the branches of solutions stop at 4b0 − 3ηq2 = 0. For the GR case 
and H(0) → ∞ the value of the metric function b(r) at r = 0, b0, 
tends to zero. This is obviously no longer true and hence boson 
stars with time-dependent scalar hair are limited in their cen-
tral density of the star. For ηq2 sufficiently large, see the curves 
for ηq2 = 1.0, this also leads to the observation that the Noether 
charge Q is strongly limited and much smaller than in the GR 
case. On the other hand, the mass MG is of the same order of 
magnitude. Hence, scalar-tensor boson stars with time-dependent 
scalar fields and ηq2 > 0 are comparable in mass, but consist of 
an order of magnitude smaller number of scalar bosonic particles 
as compared to their GR counterparts. Moreover, their central den-
sity ρ(0) and central pressure Pr(0) = Pt(0) ≡ P (0) is comparable 
to the GR case, see Table 1 as long as ηq2 is not too large. For 
ηq2 = 1.0, we find that both the central density as well as the 
central pressure is very small.

For ηq2 < 0, we observe the exact opposite: the boson stars can 
contain many more scalar particles. The Noether charge increases 
strongly, while the mass remains of the same order of magnitude. 
We present some numerical values of our results in Table 1. As 
can be clearly seen here in combination with the data presented 
in Fig. 2, the mass MG varies only slightly with ηq2 and decreases 
when increasing ηq2. The Noether charge Q on the other hand 
varies strongly with ηq2. Moreover, as can be seen from Fig. 2 a 
gap in ηq2 exists for which scalarized boson stars are not possible. 
This gap depends on the value of the frequency ω and increases 
when ω decreases, i.e. when ω decreases.

Finally, and since we want to compare neutron stars with scalar 
hair with boson stars with scalar hair in this paper, we show the 
mass-radius relation for the boson stars in Fig. 3 for several val-
ues of ηq2, see also Table 1 for some values. We find that boson 
stars with large radius are practically not influenced by the scalar-
tensor coupling, but very compact boson stars are. The radius of 
the boson star at maximal mass, 〈R〉∗ (see Table 1) is larger for all 
positive ηq2 that we have studied, however smaller for all negative 
values of ηq2.

If we use the standard argument that a boson star can be 
thought of as a system of a number Q of scalar particles of mass 
m, we can compare the actual mass MG of the boson star and the 
mass of Q scalar bosons which is mQ . For MG < mQ , we expect 
the boson star to form a bound system of these individual bosons 
and hence be stable with respect to the decay into those particles. 
Note that with our rescalings, the scalar boson mass m ≡ 1. In-
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Fig. 5. We show the mass M̃G as function of the radius R̃ of the neutron star solutions for η = 0 and three different EOS, see (29), respectively (left). We also show MG,phys
in units of solar masses M� as function of K for the same EOS and R = 10 (right).
spection of Fig. 1 demonstrates that decreasing ηq2 from zero, the 
binding between the scalar particles increases, suggesting that for 
η < 0 the non-minimal coupling has effectively an attractive na-
ture. On the other hand, for ηq2 > 0, we find that MG > Q for a 
part of the second branch of solutions (see ηq2 = 0.01) or that – 
for sufficiently large ηq2 – all boson star solutions are unstable to 
decay into Q individual bosons (see curves for ηq2 ≥ 0.01).

4. Neutron stars

The energy-momentum tensor for a neutron star is typically 
assumed to be that of a perfect fluid with Pr = Pt ≡ P and an 
equation of state (EOS) relating ρ and P . In addition to the gravity 
equation (2), we then also have to solve the Tolman-Oppenheimer-
Volkoff (TOV) equation which reads:

P ′ = − b′

2b
(P + ρ) . (28)

In the following, we will use different equations of state to study 
the properties of neutron stars. These will be of the general poly-
tropic form

ρ = C P + K P 1/� (29)

where C and K are constants and � is the so-called adiabatic in-
dex. We have restricted our analysis to some specific cases:

• the first equation of state (“EOSI” in the following) has been 
used in [10] in the exact same context as in our work and has 
C = 1 and � = 3/2,

• the second equation of state (“EOSII”) has C = 1 and � = 5/3,
• the third equation of state (“EOSIII”) has 1/C = � − 1 and � =

2.34. This has been used in [14] as a good fit to a realistic 
equation of state.

Note that although we use the letter K in (29) for all three 
equations of state, this coupling has different mass dimensions in 
the individual cases. Remembering that ρ and P have mass dimen-
sion −2 in natural units, the mass dimension of K is −2 + 2/�.

In Fig. 4, we show a realistic equation of state [15] – the so-
called BSk20 EOS, which is based on Hartree-Fock-Bogoliubov mass 
models, in comparison to the polytropic EOSI, EOSII and EOSIII, re-
spectively. We have chosen the respective values of K correspond-
ing to the maximal value of the gravitational mass (for details see 
our numerical results below). This figure demonstrates that espe-
cially the polytropic equation of state EOSIII fits the realistic BSk20 
equation of state very well at high density and high pressure.

The radius R of the neutron star is defined differently than that 
of the boson star. Here, the star has a “hard core”, i.e. a surface 
5

Fig. 6. We show the mass MG in function of the central pressure P (0) of the neu-
tron star solutions for η = 0 and three different EOS, see (29), respectively.

outside of which the space-time is given by the Schwarzschild so-
lution. The relevant conditions to impose in this case are:

P (R) = 0 , b(R) = f (R) . (30)

To connect the results to physically realistic values for the mass 
and radius of the neutron stars, K has to be chosen accordingly. 
However for the purpose of our study, we note that the equations 
of motion are invariant under the following rescaling:

r → λr , MG → λMG , P → λ−2 P , ρ → λ−2ρ ,

K → λ−2+2/�K . (31)

Then, a dimensionless radius R̃ and a dimensionless mass M̃G of 
the configuration can be defined according to

R̃ = R K �/(2�−2) , M̃G = MG K �/(2�−2) . (32)

Note that we are using natural units here with h̄ = c = 8πG ≡ 1. 
Reinstalling the natural constants, we find that the mass MG and 
R given in Fig. 7 are related to the dimensionful mass MG,phys and 
dimensionful radius Rphys as follows

MG,phys [M�]

Rphys [km]
≈ 0.68

MG

R
= 0.68

M̃G

R̃
. (33)

In the following, it will also be useful to define the number NB

of baryons of mass mB that make up the neutron star. This is the 
equivalent of the Noether charge Q for the boson star and can be 
used to estimate whether the constructed solutions are stable to 
decay into a number of individual baryons or if they form a bound 
system. We follow the discussion in [13]. As argued in this latter 
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Fig. 7. We show the mass M̃G as function of the radius R̃ of the neutron star solutions for � = 3/5 (left) and � = 2.34 (right) for several values of ηq2. The mass-radius 
relation of the corresponding Schwarzschild black hole is indicated by “BH”.
paper, the particle number conservation follows from the energy-
momentum conservation when

n′

n
= ρ ′

ρ + p
, (34)

where n is the particle number density n = n(r). Combining this 
with the TOV equation (28) gives

n(r) =
√

b(ρ + p)

mB

√
1 − 2MG

R

, (35)

where the integration constant has been fixed by assuming the 
conditions on the surface of the star to be p(r = R) = 0, ρ(r = R) =
ρ0, n(r = R) = n0 and using the relation between ρ and n: ρ0 =
mBn0. The globally conserved quantity associated to the particle 
density current nuμ , uμ the 4-velocity of a particle, is the total 
baryon number

NB =
∫ √−gnu0d3x = 4π

mB

√
1 − 2MG

R

R∫
0

(ρ + p)

√
b

f
r2dr (36)

where we have used that for a particle at rest u0 = 1/
√

b. Com-
paring mB NB with MG will tell us whether the neutron star is 
stable (mB NB > MG ) or unstable (mB NB < MG ), respectively, to de-
cay into NB individual baryons of mass mB .

4.1. Numerical results

In this first part, we will discuss and review already existing 
results to clarify our construction and compare the three different 
EOS discussed above in the GR limit. We will then turn to new 
scalar-tensor neutron stars using EOSII and EOSIII, respectively.

4.1.1. Neutron stars in GR
In Fig. 5 (left) we show the dimensionless quantity M̃G in func-

tion of the radius R̃ of the neutron star in the GR limit and for the 
three different equations of state. Note that using (31), the axes 
in this plot have to be rescaled by the same factor K in order to 
find the physical values of mass and radius of the neutron star. 
Contrary to what is presented in [10], we find that for a typical 
neutron star of radius Rphys = 10 km (corresponding to the max-
imum of the curve) the ratio M/M� ≈ 0.6, and not M/M� ≈ 1.2
as stated in [10]. Moreover, the qualitative relation between mass 
and radius is different to that in Fig. 2 of [10].

Comparing e.g. with the gravitational wave detections
GW170817 from a binary neutron star merger [16] which suggests 
that the two neutron stars in the merger had masses between 
0.86M� and 2.26M� and radii between 10.7 km and 11.9 km 
6

Fig. 8. We show the physical mass MG,phys in solar mass units as function of the 
radius R in km of the neutron star solutions for � = 2.34 for several values of ηq2. 
The mass-radius relation of the corresponding Schwarzschild black hole is indicated 
by “BH”.

[17] (compare also very new results in [18]), we find that EOSI 
seems to have neutron stars of too low mass. We have hence con-
sidered EOSII and EOSIII, respectively. In Fig. 5 we show the mass 
M̃G in function of the radius R̃ (left) and MG,phys in solar mass 
units M� in function of K for R = 10 (right) for EOSI, EOSII and 
EOSII. The combination of the data shown in this figure gives a 
maximal mass of a R = 10 neutron star of MG,phys ≈ 0.95M� at 
K = 1.23 for EOSI, of MG,phys ≈ 1.17M� at K = 0.67 for EOSII and 
MG,phys ≈ 1.94M� at K = 0.16 for EOSIII, respectively. Note that 
these are also the values of K used in Fig. 4. We conclude that 
EOSIII seems to be a good approximation to the realistic BSk20 
equation of state for high pressure and high density neutron stars, 
but that we have also computed stars with low density and found 
consistency. In order to make sure that non-uniqueness does not 
exist for the neutron stars using the EOSI, EOSII and EOSII for the 
given parameters, we have plotted MG in function of the central 
density P (0) of the star in Fig. 6. This demonstrates clearly that 
there is one solution for a given value of P (0) for all equations of 
state that we have studied in this paper.

4.1.2. Scalar-tensor neutron stars
We now turn to the description of the influence of the non-

minimal scalar-tensor coupling on the neutron star solutions con-
structed with EOSII and EOSIII.

We find that the existence of neutron stars – very similar to 
that of boson stars – is limited by the requirement of positivity of 
the denominator in the expansion (25) for ηq2 > 0 and by the re-
quirement of positivity of φ′ 2 (see (8)) for ηq2 < 0, respectively. 
Our results for the mass-radius relation of neutron stars for differ-
ent values of ηq2 are shown in Fig. 7. The maximal mass MG,max of 
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Fig. 9. Left: We show the profiles of the pressure P (solid) and the energy density ρ (dashed) of a scalar-tensor neutron star with radius R = 10 for ηq2 = −0.25, P (0) = 0.66
and EOSII. Right: We also show the metric functions b (solid) and f (dashed) as well as φ2

r ≡ φ′2 (dotted-dashed) for the same solution (right).

Fig. 10. Left: We show the ratio MG /(mB NB ) between the mass MG of the neutron star and the mass of NB individual baryons of mass mB in function of MG for EOSIII and 
several values of ηq2. Right: We show the difference in energy between NB baryons of mass mB and the mass MG of the neutron star in function of mB NB .
the scalarized neutron stars is reached at roughly the same value 
of R ≈ 10, however, when increasing ηq2, the value of the maximal 
mass decreases as compared to the GR limit. When decreasing ηq2

from zero, we find an interesting new phenomenon which appears 
for both EOSII and EOSIII. Let us choose the value ηq2 = −0.25
for EOSII to explain this in more detail: when increasing the cen-
tral pressure of the star, P (0), we find a branch of solutions for 
P (0) ≤ 0.009 (in our units) corresponding to R > 11.4. The solu-
tions constructed for larger P (0) (and R ≤ 11.4) have (φ′)2 < 0
in some region and are therefore not acceptable, i.e. we find an 
interval of P (0) for which no scalarized neutron stars exist. Inter-
estingly, we observe that when increasing P (0) sufficiently (in fact, 
P (0) > 0.12) a new, second branch of scalarized neutron stars for 
which (φ′)2 > 0, exists. The reason for the existence of this new 
branch can be understood when considering (8) and the plot of 
the energy density ρ , pressure P , the metric functions f (r) and 
b(r) as well as φ′ 2 given in Fig. 9 for neutron star corresponding 
to the second branch of solutions. This neutron star has R = 10
and P (0) = 0.66. Clearly, all functions are well behaved, in partic-
ular φ′ 2 ≥ 0 inside the star. The reason for the existence of these 
solutions then also becomes clear: since b(r) is very small every-
where inside the star by inspection of (8) the value of φ′ 2 can 
become positive again. The crucial point is hence the presence of 
the explicit time-dependence of the scalar field, i.e. the fact that 
q �= 0. Not surprisingly, these neutron stars are very dense: as Fig. 7
demonstrates (see also Fig. 8) they are very close to the branch 
of Schwarzschild black holes. Note that for � = 2.34 and ηq2 =
−0.0625, the second branch of solutions exists for R ≥ 12.15, i.e. 
is not visible in the figure. At R = 12.15, the mass of these solu-
tions is MG ≈ 6.07, i.e. is very close to the black hole limit. When 
decreasing ηq2 further, see the curve for ηq2 = −1.0 in Fig. 7, we 
find that there exists a continuous branch of solutions along which 
the central pressure P (0) increases and (φ′)2 stays always positive. 
7

Hence, we find neutron stars that through a continuous deforma-
tion of the central pressure can reach mass densities that are very 
close to that of black holes. In order to get an idea of the astro-
physical scales of these objects, we have plotted the physical mass 
MG,phys in solar mass units versus the radius of the stars in km in 
Fig. 8.

We have also studied the stability of the neutron stars with 
respect to the decay into NB individual baryons with mass mB . 
For all solutions obtained, we observe that increasing ηq2 from 
zero leads to a decrease in the binding energy and that for suf-
ficiently large ηq2 the neutron star becomes unstable to decay 
into individual baryons. This is, however, different when decreas-
ing ηq2 from zero. Remember that the existence of solutions is 
linked to the requirement of the positivity of the quantity (φ′)2

and hence the domain of the parameter K for which solutions 
exist depends strongly on ηq2. This is shown in Fig. 10 (left) for 
some values of ηq2 < 0, where we give the ratio between MG and 
mB NB . A ratio smaller than one indicates stability of the neutron 
star with respect to this specific decay. As is apparent from Fig. 10, 
the inclusion of a gravity scalar with ηq2 negative increases the 
binding between the individual baryons. Moreover, when two sep-
arate branches of solutions are present, the branch closer to the 
BH limit has much stronger binding. The typical cusp-like structure 
for neutron stars in GR when plotting mB NB − MG versus mB NB is 
something we do not observe for neutron stars with ηq2 < 0, see 
Fig. 10 (right). Rather, the difference between the energy of NB in-
dividual baryons of mass mB and the mass of the neutron star MG
is a monotonically increasing function of mB NB .

5. Conclusions

In this paper, we have studied the properties of boson and neu-
tron stars in a scalar-tensor gravity models which contains an ex-
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plicitly time-dependent real scalar field. The norm of the Noether 
current associated to the shift symmetry of the gravity scalar is 
finite everywhere in the space-time. We find that the explicit time-
dependence does allow non-trivial scalar fields to exist in both the 
space-time of a boson star and neutron star, respectively. More-
over, the presence of the gravity scalar has interesting consequence 
for the properties of these objects. While the boson star’s mass 
does not vary strongly when increasing or decreasing the scalar-
tensor coupling from zero, it has a large effect on the number of 
scalar bosonic particles making up the boson star, the mean ra-
dius and central density and pressure. This means that while in 
the GR limit, boson stars of the type studied here, so-called “mini 
boson stars”, have radius of a few Schwarzschild radii (see e.g. [1]), 
the radius of the scalar-tensor counterparts could, in fact, be much 
closer to the Schwarzschild radius.

For neutron stars, we have investigated two polytropic equation 
of states out of which one seems to be a very good fit to realistic 
equations of state. While neutron stars have a “hard core” out-
side which the pressure is strictly zero, the change of properties is 
comparable to that of boson stars. In particular, for negative scalar-
tensor coupling and the gravity scalar changing slowly in time, we 
find that new branches of solutions of neutron stars exist that have 
a mass-radius relation very close to that of Schwarzschild black 
holes. Increasing the time change of the gravity scalar, we find 
that we can continuously deform “standard” mass neutron stars 
to these objects with large central pressure P (0). We observe that 
this phenomenon arises for both equations of state that we have 
investigated.

In summary, our results indicate that the presence of a grav-
ity scalar in the case of globally regular, compact objects pre-
vents these objects from collapsing to a black hole at the values 
known in GR due to an increased central pressure allowed inside 
the stars. Our results furthermore indicate that the scalar-tensor 
objects studied here are stable to decay into their individual con-
stituents. Surely this does not mean that they are generally stable 
under perturbations – a study outside the scope of this paper – 
but it indicates that when considering extensions of GR, the for-
mation of star-like objects that are close in density to that of black 
holes is a viable possibility.
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