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Introduction and Motivation

Conclusions

❑ Recently, the pharmaceutical industry reported alarming rates of drug recalls 
and expanding time to launch a new drug for relying on outdated technologies 
[1]. 

❑ The industry consequently embraced a new framework to incorporate industry 
4.0 technologies into drug manufacturing to guarantee quality and accelerate 
commercialization [1]. 

❑ In accordance, this work presents pharmaceutical applications of a novel 
cloud-based platform driven by optimal experimental design software 
deployed from University College London to remotely control experimentation 
in a smart flow reactor system situated at University of Leeds [2].

❑ Fig. 1 shows the cloud-based platform with the cloud anchoring data and 
design of experiments (DoEs) communication between the LabBot reactor 
hardware and the Python-coded SimBot software [2].

❑ The optimal experimental design software integrates model-free and model-
based DoE techniques.

Simbot modelling and optimisation structure 

Results

❑ A novel cloud-based platform for kinetic model identification has been 
developed, integrating optimal experimental designs software to remotely 
coordinate experimentation in a smart flow reactor.

❑ The platform has been demonstrated in two pharmaceutical applications for 
autonomous model identification, a crucial tool for achieving Quality-by-
Design in drug manufacturing.
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❑Differential and algebraic equations (DAEs):
𝒇 ሶ𝒙 𝜏 , 𝒙 𝜏 , 𝒖 𝜏 , 𝜽, 𝜏 = 𝟎  Eq. 1
ෝ𝒚 𝑡 = 𝒈(𝒙(𝜏)); 𝒙 0 = 𝒙0   Eq. 2
𝝓 = 𝒖𝑇 , 𝜏, 𝒙0

𝑇 𝑇; 𝒙 𝜏 ∈  𝓧  Eq. 3
Eq. 1 describes the reactor DAEs model initialised and measured using Eq. 2 
within the design space described by Eq. 3.

❑Modelling objectives [3]:
❖ Parameter estimation (Module 3 for maximizing the log-likelihood function):

𝜓𝑃𝐸 = max
𝝓∈𝜱

−1 log 2𝜋 𝑁𝑠𝑁𝑦 + σ𝑠=1
𝑁𝑠 σ

𝑘=1

𝑁𝑦 log det 𝑽𝒚 + ෝ𝒚 − 𝒚 𝑇𝑽𝒚
−1 ෝ𝒚 − 𝒚  

                     Eq. 4
❖ Model-based DoE for model discrimination (for maximizing divergence among 

rival models): 

𝜓𝑀𝐷 = max
𝝓∈𝜱

𝒚𝟏 − 𝒚𝟐 𝑇
𝑽𝒚

𝟏 −1
+ 𝑽𝒚

𝟐 −1
𝒚𝟏 − 𝒚𝟐   Eq. 5

❖ Model-based DoE for model parameter precision (for maximizing a scalar 
measure of the Fisher information matrix): 

   𝜓𝑃𝑃 = max
𝝓∈𝜱

𝜓 σ𝑟=1
𝑟=𝑛 σ𝑠=1

𝑠=𝑛 𝜎1
𝑟𝑠𝑸𝒓

𝑻𝑸𝒔       Eq. 6

𝒙 𝑡 : state variable, ෝ𝒚 𝑡 : measurements, 𝒖 𝑡 : control variables, 𝜽: parameters, 𝑡: time; 𝒚: model expectation, 𝑁𝑠: sampling points; 

𝑽: response covariance matrix with elements 𝜎1
𝑟𝑠, 𝑸: sensitivities to model parameters  Τ𝝏𝒇 𝝏𝜽, 𝜓: objective function; 𝑁𝑠: measurements

Case Study 1: Homogeneous amide formation

❑ Amides are a promising group of organic compounds for producing drugs [4].
❑ In the homogeneous amide formation, two mechanisms can be inferred from 

literature: forward-step and reversible-step.
❑ 𝜒2 lack-of-fit test integrated in the cloud-based platform (Table 1) accepted 

the reversible model (with 4 parameters) as the best model for the amide 
formation (Module 3).

❑MBDoE for parameter precision (i.e., robust model performance) subsequently 
selected the most informative experiment that improved the reversible model 
predictions as shown in the results in Fig. 2 with full-factorial experimental 
designs for model validation (Module 5). 

Fig. 2: A: Parameter precision, B: Fisher information map, C: Design space showing the 

locations of preliminary (blue), MBDoE (red) and validation (black) experiments; and D: Model 

validation parity plot. PDoE: Preliminary DoE; CBDoE: Control-bound DoE.
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Case Study 2: Heterogeneous hydrogen borrowing

❑ Hydrogen borrowing is a widely used protocol in the pharmaceutical industry 
to diversify alcohols over several hydrogen borrowing cycles in new drug 
discovery [5]. 

❑ Fig. 3 shows the classical mechanistic theory for describing a hydrogen 
borrowing cycle [5]. 

❑ The platform via sequential parameter estimation and MBDoE for model 
discrimination, reduced 6 initially tested candidate kinetic models to 2 models 
with identifiable parameters (Table 2) and allowed to test the latter models in 
silico for distinguishability (Fig. 4).

Fig. 3: Classical hydrogen borrowing 

mechanism [4]

Table 2 𝜒2  model adequacy and 

Fisher information analyses for the 

six models

Table 1:Two candidate kinetic models of amide formation with their 𝜒2 performances  

Mechanistic 
description

SimBotLabBot

Cloud

Model-free 
DoE module

Reactor model 
module

Parameter 
estimation module

Model validation 
module

1

2

4

T Piece

SV

HPLC

Product 
collection

Tubular 
reactor 

Local PC Control

T. const.

𝐶𝐴0

𝐶𝐵0

𝐶𝐶0

Reactor 
Ctrl

Matlab 
Automated 

Interface 

BPR

BPR = Back-pressure regulator
SV   = Sampling valve

Reactant 
pumps

Model-based 
DoE module

Input data Output DoEs

3

5

Fig. 1: The novel cloud-based platform 

Fig. 4: In-silico divergence region 

to distinguish Models 1 and 2.
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