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1 Recently, the pharmaceutical industry reported alarming rates of drug recalls
and expanding time to launch a new drug for relying on outdated technologies

[1].

1 The industry consequently embraced a new framework to incorporate industry
4.0 technologies into drug manufacturing to guarantee quality and accelerate

? Introduction and Motivation

commercialization [1].

d In accordance, this work presents pharmaceutical applications of a novel
cloud-based platform driven by optimal

deployed from University College London to remotely control experimentation
in a smart flow reactor system situated at University of Leeds [2].

& Methodology

experimental

design software

 Fig. 1 shows the cloud-based platform with the cloud anchoring data and

design of experiments (DoEs) communication between the LabBot reactor

hardware and the Python-coded SimBot software [2].
1 The optimal experimental design software integrates model-free and model-

based DoE techniques.
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Fig. 1: The novel cloud-based platform
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A Differential and algebraic equations (DAEs):

f(x(7), x(7), u(z),6,7) = 0
y(t) = g(x(7)); x(0) = x,
¢ — [uT’ T, xOT]T; X(T) S x

Eg. 1
Eq. 2
Eqg. 3

Eq. 1 describes the reactor DAEs model initialised and measured using Eq. 2
within the design space described by Eq. 3.
AModelling objectives [3]:

o

— Max
IPPE PED

o

rival models):

= IMax
l/)MD PED

o

V. response covariance matrix with elements o;°, Q: sensitivities to model parameters df/ad80, y: objective function; N;: measurements
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x(t): state variable, y(t): measurements, u(t): control variables, 8: parameters, t: time; y: model expectation, N,: sampling points;

« Parameter estimation (Module 3 for maximizing the log-likelihood function):
N ~ 1/
(—1) [log(2m)™s™ + %32, 7,2 log det Vy, + (3 = )TV, ' (¥ — y))

Eqg. 4

» Model-based DoE for model discrimination (for maximizing divergence among

T ~1 ~1

(O =9 ) +(v3) |6 - )]

» Model-based DoE for model parameter precision (for maximizing a scalar
measure of the Fisher information matrix):

Eg.5

Eqg. 6

Case Study 1: Homogeneous amide formation

J Amides are a promising group of organic compounds for producing drugs [4].

 In the homogeneous amide formation, two mechanisms can be inferred from
literature: forward-step and reversible-step.

3 ¥? lack-of-fit test integrated in the cloud-based platform (Table 1) accepted
the reversible model (with 4 parameters) as the best model for the amide

formation (Module 3).

J MBDoE for parameter precision (i.e., robust model performance) subsequently
selected the most informative experiment that improved the reversible model
predictions as shown in the results in Fig. 2 with full-factorial experimental

designs for model validation (Module 5).

Table 1:Two candidate kinetic models of amide formation with their y? performances

Chemical equations Rate equations | y? test
Model 1 | RCOOR' + R"NH, — RCONH, + R"OR' e = kfclcz ¥ =494.1
(Xrer = 23.7)
Model 2 | RCOOR" + R"NH, = RCONH, + R"OR' e = kfclcz x4 =729-107°
r, = kycac, | (Xrer = 21.03)

¢, = RCOOR'; ¢, = R NH,; c; = RCONH,; ¢, = R OR
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1 after MBDoE
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Fig. 2: A: Parameter precision, B: Fisher information map, C:. Design space showing the
locations of preliminary (blue), MBDoE (red) and validation (black) experiments; and D: Model
validation parity plot. PDoE: Preliminary DoE; CBDoE: Control-bound DoE.

Case Study 2: Heterogeneous hydrogen borrowing

. Hydrogen borrowing is a widely used protocol in the pharmaceutical industry
to diversify alcohols over several hydrogen borrowing cycles in new drug

discovery [5].

1 Fig. 3 shows the classical mechanistic theory for describing a hydrogen

borrowing cycle [5].

 The platform via sequential parameter estimation and MB
discrimination, reduced 6 initially tested candidate kinetic moc
with identifiable parameters (Table 2) and allowed to test the

silico for distinguishability (Fig. 4).
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Conclusions

J A novel cloud-based platform for kinetic model identification has been
developed, integrating optimal experimental designs software to remotely
coordinate experimentation in a smart flow reactor.

d The platform has been demonstrated in two pharmaceutical applications for
autonomous model identification, a crucial tool for achieving Quality-by-
Design in drug manufacturing.
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