# Applications of MBDoE techniques to a cloud-based platform for automated chemical manufacturing in flow reactor systems

Emmanuel Agunloye<sup>a</sup>, Panagiotis Petsagkourakis<sup>a</sup>, Muhammad Yusuf<sup>b</sup>, Ricardo Labes<sup>b</sup>, Thomas Chamberlain<sup>b</sup>, Frans L. Muller<sup>b</sup>, Richard A. Bourne<sup>b</sup>, and Federico Galvanin<sup>a\*</sup>

<sup>a</sup>Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom

<sup>b</sup>School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom

\*corresponding author: f.galvanin@ucl.ac.uk



### ? Introduction and Motivation

- ☐ Industry 4.0 has birthed a new era for the chemical manufacturing sector, transforming reactor design and automating process control [1].
- ☐ Towards autonomous chemistry development, on-demand manufacturing, and real-time optimization, we have developed a **cloud-based platform driven by model-based design of experiment (MBDoE)**, an optimal experimental design algorithm, to coordinate remotely the LabBot, a smart flow reactor, situated at the University of Leeds.
- ☐ The platform has modelled and enriched two pharmaceutically-relevant case studies: nucleophilic aromatic substitution and homogeneous amide formation.

## Methodology

- ☐ Figure 2.1 illustrates the communication within the cloud-based platform.
- The MBDoE algorithm is Module 4 within the Python-coded SimBot software that computes and sends experimental designs while the LabBot the experimental setup with 4 compartments executes and sends experimental data.



#### Simbot modelling and optimisation structure

□ Differential and algebraic equations (DAEs):

 $f(\dot{x}(\tau), x(\tau), u(\tau), \theta, \tau) = \mathbf{0}$   $\hat{y}(t) = g(x(\tau))$   $x(0) = x_0$   $\phi = [u^T, \tau, x_0^T]^T$ (2.1)
(2.2)
(2.3)

 $\boldsymbol{\phi} = [\boldsymbol{u}^T, \tau, \boldsymbol{x}_0^T]^T \qquad (2.4)$   $\boldsymbol{x}(\tau) \in \boldsymbol{\mathcal{X}} \qquad (2.5)$ 

Eq.(2.1) describes the reactor measured and initialised by Eqs. (2.2) and (2.3) within the design space described by Eqs (2.4) and 2.5) combined.

☐ Modelling objectives:

❖ Parameter estimation (Module 3 for maximizing the likelihood function) [2]:

 $\psi_{PE} = \min_{\boldsymbol{\phi} \in \boldsymbol{\Phi}} (\boldsymbol{y} - \widehat{\boldsymbol{y}})^T \boldsymbol{V}^{-1} (\boldsymbol{y} - \widehat{\boldsymbol{y}})$ 

Precision MBDoE (for maximizing a scalar measure of the Fisher information matrix (FIM), in this work the determinant) [3]:

 $\psi_{MBDoE} = \max_{\boldsymbol{\phi} \in \boldsymbol{\Phi}} \sum_{r=1}^{r=n} \sum_{s=1}^{s=n} \sigma_1^{rs} \boldsymbol{Q}_r^T \boldsymbol{Q}_s \qquad (2.7)$ 

x(t): state variable,  $\hat{y}(t)$ : measurements, u(t): control variables,  $\theta$ : parameters, t: time; y: model expectation, V: response covariance matrix with elements  $\sigma_1^{rs}$ , Q: parameter model sensitivities  $\partial f/\partial \theta$ ,  $\psi$ : objective function

## $\frac{dc_4}{d\tau} = r_2 - r_4$ $\frac{dc_5}{d\tau} = r_3 + r_4$

 $\frac{dc_2}{d\tau} = -r_1 - r_2 - r_3 - r_4$ 

**Kinetic modelling** 

 $\frac{dc_1}{d\tau} = -r_1 + r_2$ 

 $\frac{dc_3}{d\tau} = r_1 - r_3$ 

 $c_i$   $i^{th}$  species concentration;  $r_j$  is the reaction rate (mol/s.L) of the  $j^{th}$  reaction

#### Results

#### Case Study 1: Nucleophilic aromatic substitution

- ☐ The reaction mechanism in this case study shown below has been reported [4].
- $\Box$  The resulting kinetic model (Module 1) is reported in Eqs. (3.1) (3.5).
- ☐ On applying MBDoE (Module 4), the parameter statistics and model accuracy improved.



Scheme of reaction steps: nucleophilic aromatic substitution of 2,4-difluoronitrobenzene



Figure 3.1: Significant reduction in model prediction uncertainty and improved model accuracy impacted by

Table 3.1: Parameter values and statistics calculated before and after MBDoE

| $k_i(M^{-1}s^{-1})/E_{a_i}(kJ/mol)$                       | $k_1$ | $E_{a_1}$ | $k_2$  | $E_{a_2}$ | $k_4$ | $E_{a}$ |
|-----------------------------------------------------------|-------|-----------|--------|-----------|-------|---------|
| Parameter values                                          | 1.21  | 34.53     | 0.21   | 27.84     | 0.057 | 42.49   |
| <i>t</i> -before<br>( <i>t<sub>ref</sub></i> (99%)= 2.68) | 9.61  | 39.04     | 16.91  | 5.89      | 0.45  | 0.23    |
| t-MBDoE<br>(t <sub>ref</sub> (99%)= 2.40)                 | 55.04 | 260.76    | 136.65 | 73.08     | 27.60 | 15.60   |

#### Case Study 2: Homogeneous amide formation

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

☐ Two mechanisms can be inferred from literature: forward-step and reversible-step.

**MBDoE** 

- $\square \chi^2$  lack-of-fit test accepted the reversible model (with 4 parameters) as the best model for the amide formation (Module 3).
- ☐ The MBDoE module subsequently selected the most Fisher informative experiment that improved the reversible model precision and predictions as shown below by the validation results (Module 5).



Figure 3.2: A: Parameter precision, B: Fisher information map, C: Design space, and D: Model validation parity plot. PDoE: Preliminary DoE; CBDoE: Control-bound DoE.

## **C** Conclusions

- ☐ We have developed a novel cloud-based platform driven by MBDoE to remotely coordinate experimentation in a smart flow reactor.
- ☐ The platform in few experiments autonomously identified structure and parameters in kinetic models suitable for pharmaceutical applications.

#### Acknowledgement

This project received funding from the EPSRC with the grant name: cognitive chemical manufacturing and reference: EP/R032807/1. The support is gratefully acknowledged.

#### References:

- Galvanin, F., Hartman, R. L., Kulkarni, A. A., Nieves-Remacha, M. J., 2022. React. Chem. Eng., 7, 792, DOI: 10.1039/d2re90011d
   Bard, Y. Academic Press 1974.
- 3. Franceschini, G., Macchietto, S., 2008. Chem Eng Sci, 63, 19, <a href="https://doi.org/10.1016/j.ces.2007.11.034">doi.org/10.1016/j.ces.2007.11.034</a>
- 4. Hone, C. A., Holmes, N., Akien, G. R., Bourne, R. A. and Muller, F. L., 2017. *React. Chem. Eng.*, 2, 103, DOI: 10.1039/c6re00109b
- Hone, C. A., Holmes, N., Akien, G. R., Bourne, R. A. and Muller, F. L., 2017. React. Chem. Eng., 2, 103, DOI: 10.1039/c6re0010
   Petsagkourakis, P., and Galvanin, F., 2021. Comp. and Chem. Eng., 151 107339, DOI: 10.1016/j.compchemeng.2021.107339





