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Introduction and Motivation

Conclusions

❑ Industry 4.0 has birthed a new era for the chemical manufacturing sector,
transforming reactor design and automating process control [1].

❑ Towards autonomous chemistry development, on-demand manufacturing, and
real-time optimization, we have developed a cloud-based platform driven by
model-based design of experiment (MBDoE), an optimal experimental design
algorithm, to coordinate remotely the LabBot, a smart flow reactor, situated at
the University of Leeds.

❑ The platform has modelled and enriched two pharmaceutically-relevant case
studies: nucleophilic aromatic substitution and homogeneous amide
formation.

❑ Figure 2.1 illustrates the communication within the cloud-based platform.
❑ The MBDoE algorithm is Module 4 within the Python-coded SimBot software

that computes and sends experimental designs while the LabBot – the
experimental setup with 4 compartments – executes and sends experimental
data.

Simbot modelling and optimisation structure

Results

❑We have developed a novel cloud-based platform driven by MBDoE to
remotely coordinate experimentation in a smart flow reactor.

❑ The platform in few experiments autonomously identified structure and
parameters in kinetic models suitable for pharmaceutical applications.
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❑Differential and algebraic equations (DAEs):
𝒇 ሶ𝒙 𝜏 , 𝒙 𝜏 , 𝒖 𝜏 , 𝜽, 𝜏 = 𝟎 (2.1)
ෝ𝒚 𝑡 = 𝒈(𝒙(𝜏)) (2.2)
𝒙 0 = 𝒙0 (2.3)
𝝓 = 𝒖𝑇 , 𝜏, 𝒙0

𝑇 𝑇 (2.4)
𝒙 𝜏 ∈ 𝓧 (2.5)

Eq.(2.1) describes the reactor measured and initialised by Eqs. (2.2) and (2.3) 
within the design space described by Eqs (2.4) and 2.5) combined.

❑Modelling objectives:
❖ Parameter estimation (Module 3 for maximizing the likelihood function) [2]:

𝜓𝑃𝐸 = min
𝝓∈𝜱

𝒚 − ෝ𝒚 𝑇𝑽−1 𝒚 − ෝ𝒚 (2.6)

❖ Precision MBDoE (for maximizing a scalar measure of the Fisher information 
matrix (FIM), in this work the determinant) [3]: 

𝜓𝑀𝐵𝐷𝑜𝐸 = max
𝝓∈𝜱

σ𝑟=1
𝑟=𝑛σ𝑠=1

𝑠=𝑛 𝜎1
𝑟𝑠𝑸𝒓

𝑻𝑸𝒔 (2.7)

𝒙 𝑡 : state variable, ෝ𝒚 𝑡 : measurements, 𝒖 𝑡 : control variables, 𝜽: parameters, 𝑡: time; 𝒚: model expectation,

𝑽: response covariance matrix with elements 𝜎1
𝑟𝑠, 𝑸: parameter model sensitivities Τ𝝏𝒇 𝝏𝜽, 𝜓: objective function

Case Study 1: Nucleophilic aromatic substitution

❑ The reaction mechanism in this case study shown below has been reported [4].
❑ The resulting kinetic model (Module 1) is reported in Eqs. (3.1) – (3.5).
❑ On applying MBDoE (Module 4), the parameter statistics and model accuracy

improved.

Scheme of reaction steps: nucleophilic aromatic
substitution of 2,4-difluoronitrobenzene

Figure 3.1: Significant reduction in model prediction

uncertainty and improved model accuracy impacted by

MBDoE

Case Study 2: Homogeneous amide formation

❑ Two mechanisms can be inferred from literature: forward-step and reversible-
step.

❑ 𝜒2 lack-of-fit test accepted the reversible model (with 4 parameters) as the
best model for the amide formation (Module 3).

❑ The MBDoE module subsequently selected the most Fisher informative
experiment that improved the reversible model precision and predictions as
shown below by the validation results (Module 5).

Kinetic modelling

Table 3.1: Parameter values and statistics

calculated before and after MBDoE

Figure 3.2: A: Parameter precision, B: Fisher information map, C: Design space, and D: Model

validation parity plot. PDoE: Preliminary DoE; CBDoE: Control-bound DoE.
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