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ABSTRACT: Addressing the sampling problem is central to
obtaining quantitative insight from molecular dynamics simu-
lations. Adaptive biased sampling methods, such as metadynamics,
tackle this issue by perturbing the Hamiltonian of a system with a
history-dependent bias potential, enhancing the exploration of the
ensemble of configurations and estimating the corresponding free
energy surface (FES). Nevertheless, efficiently assessing and
systematically improving their convergence remains an open
problem. Here, building on mean force integration (MFI), we
develop and test a metric for estimating the convergence of FESs
obtained by combining asynchronous, independent simulations
subject to diverse biasing protocols, including static biases,
different variants of metadynamics, and various combinations of
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static and history-dependent biases. The developed metric and the ability to combine independent simulations granted by MFI
enable us to devise strategies to systematically improve the quality of FES estimates. We demonstrate our approach by computing
FES and assessing the convergence of a range of systems of increasing complexity, including one- and two-dimensional analytical
FESs, alanine dipeptide, a Lennard—Jones supersaturated vapor undergoing liquid droplet nucleation, and the model of a colloidal
system crystallizing via a two-step mechanism. The methods presented here can be generally applied to biased simulations and are
implemented in pyMFI, a publicly accessible, open-source Python library.

1. INTRODUCTION

Molecular dynamics (MD) simulations have become a
powerful tool for studying and predicting the dynamics and
thermodynamics of molecular systems. They allow scientists to
develop insight into the collective behavior of complex systems
at the atomistic scale. The quantitative assessment of
equilibrium properties in molecular systems and their
interpretation is associated with estimating free-energy surfaces
(FES) as a function of a low-dimensional set of collective
variables (CVs), s. An FES provides information on a
molecular system of interest by quantifying the equilibrium
probability of ensembles of configurations corresponding to
relevant states and providing information on low-energy
transition pathways. However, molecular systems are often
characterized by multiple metastable states, separated by high
free-energy barriers. This renders transitions between states
rare and the sampling necessary to converge thermodynamic
properties computationally inaccessible. Numerous methods
have been proposed to overcome the sampling problem and
enhance the exploration of configuration spaces despite the
presence of high-energy barriers.'

A subclass of these methods is based on perturbing the
system Hamiltonian via an opportunely defined bias potential,
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which allows for efficient exploration of the relevant
conﬁguration space. Multiple approaches belong to this
class.”**™® Among these, two widely used methods are
Umbrella sampling (US)*'’ and metadynamics (MetaD).”’
These two methods exemplify two opposite and comple-
mentary ways of defining a potential to enhance the sampling
of rare transitions. US introduces multiple, independent
replicas—often referred to as windows—in which a time-
independent, harmonic bias potential defined in CV space is
introduced to localize the sampling on a specific set of
configurations. On the other hand, MetaD, as well as other
adaptive sampling methods,""'” introduces a history-depend-
ent bias potential that evolves dynamically with the system and,
in the long-time limit, provides an estimate of the free energy
in the CV space explored. While in US a global FES is obtained
by merging the sampling obtained in each window with
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algorithms such as the weighted histogram analysis method®"?

or Umbrella integration (U1),"*7'¢ MetaD provides a global
FES directly as a function of the cumulative bias potential,”*
or via reweighting.”'”~*° However, since static bias approaches
such as US are based on independent windows, they are
trivially parallel and enable a systematic sampling augmenta-
tion to reduce the uncertainty of the reconstructed FES. On
the other hand, MetaD offers an autonomous exploration of
the configuration space, essential when pathways connecting
metastable states in CV space are unknown a priori.

Recently, we demonstrated that a single global FES can be
obtained from multiple independent asynchronous MetaD
replicas by mean force integration (MFI).”' Here, we build on
this result to develop a systematic approach to combine the
information obtained from sampling phase space with multiple
independent MD simulations performed under the effect of
various biases, both static and history-dependent. For instance,
using MFI to reconstruct an FES from independent US and
MetaD simulations opens up the possibility of systematically
improving the uncertainty of FESs by sampling poorly
converged regions. In addition, based on the MFI formalism,
we develop a systematic estimation of local and global
convergence of the target FES that can be computed on-the-
fly and applied to multiple asynchronous replicas subject to
different biasing methods. Such measures can be used to
inform and systematically improve free-energy estimates by
concentrating the sampling in poorly converged regions of CV
space.

2. THEORETICAL BACKGROUND: MFI

The FES F(s), as a function of a low-dimensional set of CVs s,
in the presence of a bias potential defined in CV space V(s),
can be expressed as”'**!

F(s) = —kyTlnp(s) — V(s) — kyTIn(e ") (1)

where kg is the Boltzmann constant, T is the temperature, and

p(s) is the biased probability density sampled under the effect

of the bias potential V(s). The term —kBTln(e_ﬂ V(s)) is the
reversible work associated with the introduction of the bias
potential V(s) in the unperturbed ensemble.

Inspired by UL""*~'® MFI relies on the calculation of the
mean thermodynamic force in s, —V,F(s). The advantage of
computing the gradient of the free energy in s, instead of
directly estimating F(s), lies in the fact that the former does

not require the estimate of the term —kBTln(e_/}V(s) ). In fact,
such a term is independent of s and represents a constant offset
of the free energy in eq 1. As a consequence, the mean force
—V,F(s) can be estimated from simulations performed under
the effect of different bias potentials without evaluating
alignment constants between samples obtained under the
effect different biases. We note that several techniques have
been developed to obtain such constants for simulations
evolving under the effect of static' > and MetaD”"”~*" biases.

By focusing on the derivative of the free energy, MFI"' is
similar in spirit to force-based methods for the calculation of
probability densities from atomistic data,”>** which have been
shown to converge to a smoother estimate of the probability
density and have been recently used in conjunction with
MetaD to accelerate the convergence of FES estimates from ab
initio MetaD calculations.”

Moreover, as shown by Awasthi et al ¢ combining US and
WTmetaD, that is, static and history-dependent biases, can be
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beneficial in several use cases. MFI provides an alternative,
flexible framework for combining multiple independent
simulations carried out asynchronously with different biasing
approaches, thus enabling the systematic refining of FES
estimates by mixing data obtained with different sampling
protocols.

2.1. MetaD with MFI. In this section, we summarize the
main features of MFI applied to obtain an FES from MetaD in
a monodimensional CV space s to provide a basis for
introducing additional bias potentials and mean force
convergence estimators. For history-dependent biasing meth-
ods such as MetaD, the simulation time is divided into time
windows of constant bias denoted by subscript i. Without loss

dE(s)

of generality, the mean force of time-window i, ——, in
10,14,21

a

monodimensional CV space s, can be written as

dE(s) _
s

dinp (s) dvi(s)
ds ds

kT 2)
where p,(s) is the bias probability density, sampled during a
time-window i under the effect of a constant bias potential
Vi(s). In ref 21, it has been shown that this expression holds in
the case of a MetaD bias potential updated in discrete time-
steps.

The average mean force obtained after an arbitrary number

of N time-windows can be obtained as a weighted average of

) with weights proportional to p;(s)

2o
< > 3N e 3)

Both eq 3 and the first term in eq 2 require an estimate of the
bias probability density, which is constructed from config-
urations sampled during some time-window i. The time-
window i starts at time t, when the system is first sampled
under the effect of a new (updated) bias potential V,(s) and
ends with the last sample under the effect of that bias at time ¢
+ 7, where 7 is the time between two consecutive updates of
the bias potential. Thus, the bias probability density of time-
window i is estimated as a sum of Gaussian kernels

fc © (S_St)z
h\/ﬂge}{p{_ 212 ]

dF(s)
ds

p(s) =
(4)

where h is the bandwidth of the Gaussian kernel and f, is the
height, which corresponds to the sampling rate of config-
urations. The term f./h serves as a scaling factor that facilitates
the combination of bias probability densities that employ
different h or f.. This choice leads to the following expression
of the first term in eq 2
{_@—wﬂ
P 21

t+7 (S_St)z
2imy e"*’{‘ 2w ] (5)

The second term in eq 2 is straightforward. It represents the
contribution to the mean force associated with the bias
potential V,(s) and is computed as the derivative of the MetaD
potential accumulated up to time-window i as a sum of
Gaussian kernels centered in s;, with height w;, and width oy,

t+r (s—s,)

dlnpi (s) Zt:q W
A
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dVi(s Now(s —s s —s.)?
f) 3 nga4jhﬁg}

i=1 GM,i
By combining eqs 2—6, the unbiased average mean force for
N consecutive time-windows is estimated in a closed analytical

(6)

. . dF .
form.”" The resulting unbiased average mean force (%) is

then integrated numerically to obtain the FES F(s). In analogy
with Ul, obtaining F(s) by integrating the mean force, while
general, is practically limited by the dimensionality of the CV
space used to define the bias potential, and therefore, as U],
MFI is practically applicable for CV spaces with dimensionality
<3. Moreover, integration can introduce numerical errors in
the calculation of F(s). As discussed in detail by Kastner in ref
16 for UI, such errors are significantly smaller than inherent
sampling errors. This is empirically observed in all the
analytical potentials studied in this work, where the MFI
estimate of F(s) achieves vanishingly small deviations from the
analytical free energies. Finally, integration accuracy and
efficiency depend on the algorithm adopted and on the
density of the chosen integration grid. In ref 21, we show
convergence for increasingly dense grids using finite-differ-
ences integration methods. Here, we obtain analogous results
by adopting either finite-differences”’ or a fast Fourier
transform integration.16

2.2. Combining Independent Simulations. As men-
tioned above, the strength of MFI is the possibility of
combining the sampling obtained from independent and
asynchronous simulations. This can be done by appropriately
extending the weighted average given by eq 3 to include the
mean forces of multiple independent simulations. The
resulting equation combines the average mean forces (dF(s)/
ds); of simulations j, with a weight corresponding to the biased

probability density of that simulation Hs) = Zfil p(s). The
combined average mean force over M independently biased

trajectories can thus be determined using a weighted average
analogous to eq 3, as

< > _ 2 HOEE|

M
()

Combining independent simulations in this fashion opens
the door to asynchronous MetaD simulation campaigns that
may optimize the use of computational resources but also
allow for local refinement of the sampling of configurations.

In the following, we discuss how, within the framework of
MF], one can estimate the convergence of average mean force
and the FES to identify regions of configuration space that
require additional sampling. Later, we lay out methods to
combine static and history-dependent bias potentials to
systematically improve the sampling as well as parallel and
serial simulation structures. We do so by demonstrating these
features for Langevin models in mono- and bidimensional CV
spaces, for the ever-present alanine dipeptide and for a more
challenging collective process of liquid droplet nucleation from
a supersaturated argon vapor and for a colloidal crystal
nucleating from solution. The methods and analyses reported
here are implemented in pyMFI, a publicly accessible Python
library available at https://github.com/mme-ucl/pyMFIL Ex-
ample scripts using pyMFI are reported in the Supporting
Information.

dF(s)
ds

(7)
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3. CONVERGENCE

With bias-enhanced sampling simulations, practitioners
typically pursue two concurrent objectives. The first is the
exploration of relevant configurations that are rarely sampled
during standard MD simulations. The second is the estimate of
the equilibrium probability of such configurations. History-
dependent biased sampling methods combine these two
objectives by evolving under the effect of a bias potential
that encourages the autonomous exploration of configuration
space and that enables the estimate of the equilibrium
probability of appropriately defined sets of configuration.
Therefore, a useful convergence metric for biased sampling
simulations should acknowledge these two complementary
aspects by accounting for the uncertainty in the FES
calculation and for the extent of the sampling. Typically, the
convergence of the FES is estimated using block averaging
techniques,”””® and error propagation.”” This approach is
carried out a posteriori, often requiring the assumption of a
time-independent bias, even though time-dependent reweight-
ing techniques can also be used.”'*~*°
3.1. On-the-Fly Assessment of Biased Sampling
Convergence. With MFI, the time-independent average
mean force (dF(s)/ds) is estimated as the running weighted
average with eq 3. This implies that the uncertainty of the
average can be estimated by computing the weighted
variance®”*! of the mean forces of each time window, with
weights proportional to the biased probability density p;(s)
sampled in the respective time window.'”'* Employing the
notation introduced so far, the variance of the average mean
force can be expressed as
(8)

N OAN
Zi=1pi(s)<T)
>p(s)
where o(s) is the weighted standard deviation, and BC
represents the Bessel correction for the variance of the
weighted mean, defined as

6%(s) = BC x

dF(s) >2
ds

BC = neff(s) _ [ Zfilg(s)]z
neg(s) — 1 [Eilﬂ(s)]z _ Zzlil [E(S)]z )

where n g = [Zfilpi(s)]z/ Zfil p (s)]? is the effective sample

size. The standard error of the weighted mean is expressed as

_—
[

) = | 2

et (S )

(10)

All the terms appearing in eqs 8—10 can thus be computed
based on the history of the simulation up to time-window i. As
such, the local estimate of the variance obtained from egs
8—10 provides an on-the-fly, local measure of convergence of
the mean thermodynamic force. By averaging o3(s) value over
the sampled CV space, we can obtain a global convergence
estimator of the mean force: Gp.

Furthermore, we note that G; can only be evaluated in
explored regions of s since in unexplored regions, the force is
not determined. To develop a convergence metric incorporat-
ing both the uncertainty in the FES calculation and the extent
of the configurational volume explored, we divide oy by v, a
measure of the volume of CV space explored by the simulation.
In this work, we express v as a nondimensional quantity by
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Figure 1. (a) Comparison between the MFI estimate of a monodimensional multiwell FES obtained postprocessing a single MetaD simulation
(solid blue line) with the exact FES (dashed blue line), and the normalized standard error of the mean force, o(s)/ oy (solid gray line), normalized
by its average value over the sampled CV space, Gy (dashed gray line). (b) CV space exploration (gray symbols) and normalized average variance
of the mean force (solid red line). (c) Alanine dipeptide FES, function of the @ and ¥ dihedral angles. (d) Standard error of the mean force

mapped in the @ and W torsional angles. (e) Average standard error of the mean force (blue) and ratio of configurational space explored (red) as a
function of the simulation time.
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Figure 2. Comparing the dynamic evolution of the average error of the mean force normalized by the sampled volume (left y-axis) and the AAD
normalized by the sampled volume (right y-axis). The former can be computed on-the-fly based on the history of the biased simulation without
knowledge of an external reference FES. The latter can only be estimated only for toy examples with a known exact FES. (a) Multiwell one-
dimensional FES (see Figure 1a). (b) Alanine dipeptide (see Figure 1c).

dividing the volume of the sampled configuration in CV Space and for Alanine Dipeptide, a typical example of a two-
by the total volume of the domain in CV space considered to dimensional FES.
be relevant for the problem studied. The former is evaluated as In Figure la (in gray, right axis) and Figure 1d, we report for

these two systems o%(s), the standard error of the weighted
mean mapped onto the CV space s. In Figure la, og(s) is
normalized by its average value estimated over the entire
sampled CV space, Gp.

In Figure 1b, it can be seen that the dynamic evolution of
o5(t) captures the overall convergence of the sampling in s. In

the volume of the CV domain where the biased histogram of
configurations H](s) is larger than a lower-bound arbitrary
threshold.

The different components of the convergence estimator
/v are illustrated in Figure 1: panels a and c report the FES

computed by integrating the average mean thermodynamic particular, it can be seen that Gy(t) relaxes rapidly, with the
force computed with eq 3 for a monodimensional Langevin system reversibly sampling numerous transitions between the
dynamics model evolving on an analytical potential defined as multiple local basins characterizing the FES for s < 0.5. Such
relaxation is representative of the increasing confidence in the

E () =5 - 103¢-(F19)/007 _ g3,~(+05)7/0.05 estimate of the local mean force. When the system discovers a

new metastable state, for s > 0.5 at ~1.7 X 10° steps, the mean

—s%/0.03 —(s—0.5)*/0.03 —(s—1)*/0.1
— 70e™ /%% 4+ 50e (s-05)7/003 _ S0e =17/ force in the newly discovered metastable state is characterized
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Figure 3. FESs from independent, biased simulations. FES, total biased probability density ( Zj\il H}(s)), CV map of the mean force error, and

absolute deviation from the analytical FES for a two-dimensional double-well model potential. (a—d) Single, long WTmetaD simulation (e—h)
twenty randomly initialized WTmetaD simulations (i—1) ten randomly initialized WTmetaD simulations and 10 WTmetaD simulations are subject
to a two-dimensional harmonic potential localized in CV space [the harmonic potential centers are represented as circles in (j)]. (m) Error of the
mean force normalized by the explored CV-space volume as a function of the number of simulation steps. (n) AAD from the analytical FES,
normalized by the explored CV-space volume as a function of the number of simulation steps.

by a lower level of confidence, thus resulting in a sudden
increase in og(t).

A similar trend can be seen in Figure le, displaying the
dynamic evolution of Gy(t) of alanine dipeptide (blue, left
axis) together with the total CV space sampled (red, right
axis). At the start of the simulation, the low-energy region of
the left basin is being sampled, causing an immediate decrease
in the mean force error. As the height of the MetaD potential
increases, higher energy regions are discovered, and oy(t)
stops decreasing.

It should be noted that 6y(s), and G5 enable to assess the
convergent behavior of the simulations but provide only a
qualitative measure of the real error in the mean force due to
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correlations in the mean force that might be present at small
sample sizes. Notably, however, the normalized convergence
estimator Gy/v correlates strongly with the normalized average
absolute deviation (AAD/v) of the FES from an independent
reference, as shown in Figure 2a for the monodimensional FES
and for alanine dipeptide in Figure 2b. This is an important
observation as, while the AAD is arguably an objective and
accurate measure of convergence, it cannot be computed for
any realistic application, while G/v can be computed on-the-
fly and enables a systematic assessment of FES convergence.
3.2. Convergence for Sets of Independent Biased
Simulations. The measure of convergence discussed in the
previous section can be naturally extended to cases where the

https://doi.org/10.1021/acs.jctc.4c00091
J. Chem. Theory Comput. 2024, 20, 5418—5427


https://pubs.acs.org/doi/10.1021/acs.jctc.4c00091?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00091?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00091?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00091?fig=fig3&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00091?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

FES is computed from multiple independent simulations by
computing the variance of the time-averaged mean force over
M independent simulations (see eq 7) as
dE(s)
>2

T (42 <
(11)

M
=)

where the Bessel correction now takes into account the total

weight of each simulation via n(s) defined as

(X, BT
Z;Vil [I{](S)]z (12)

For such cases, the mean forces obtained from individual
simulations are not correlated and can be used to estimate the
FES error with a bootstrapping analysis.”® This is demon-
strated in the first example of Section 5.

dFE(s)
ds

6%(s) = BC X

neff(s) =

4. COMBINING MULTIPLE BIASES AND
INDEPENDENT SIMULATIONS

The ability to estimate the local convergence of the mean force
in CV space on-the-fly combined with the possibility of locally
refining the sampling in specific regions of phase space by
merging the information obtained from independent simu-
lations through eq 7 suggests that to efficiently achieve local
refinement of free energy estimates one may aim to apply
different biasing strategies at different stages of exploration/
convergence. In particular, to locally enhance the accuracy of
FES estimates, it might be useful to combine static and time-
dependent biases. By introducing ny bias potentials that
simultaneously act on a system, the mean force of a generic
time-window i becomes

dE(s) dln p (s)
= —kT -
ds ds

o dVi(s)

zds

k (13)

d%6s)
ds
bias. Typical choices that enable to focus the sampling in

specific regions of the CV space of interest include harmonic
potentials upper and lower walls, but static biases are not
restricted to these cases.

To demonstrate the feasibility of combining different biases
and using an on-the-fly convergence metric to monitor the
behavior of the calculations, we investigate a two-dimensional
double-well analytical potential often used in the enhanced
sampling literature.'”*” The exact free energy for such model is
defined as F, (s, 5,) = 1.35s% + 1.90535,4+3.93s3s3 — 6.44s7 —
1.90s,s3 + 5.59s;s, + 1.33s5, + 1.35s3 — 5.56s3 + 0.90s, + 18.59.

4.1. Combining Multiple Short MetaD Simulations. As
discussed in the introductory section, an advantage of MFI is
the ability to construct an FES from multiple asynchronous
MetaD simulations. This can be exploited by running
simulations in a trivially parallel manner and increasing the
sampling for configurations that, while having been visited by
previous trajectories, are far from convergence. This provides
additional flexibility for running MetaD simulations and allows
for a more efficient use of computational resources.

To present this feature, we compare a long MetaD
simulation with 20 short simulations totaling the same number
of steps. The short MetaD simulations are performed under a

where the term ZZB can include any differentiable static
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set of parameters identical to the long simulation (see the
Supporting Information for details) and are initialized in a
random configuration. We note that, for atomistic examples,
random reinitialization would only be possible within the set of
configurations that have already been explored by existing
trajectories. This is demonstrated and discussed in the Results
section for the condensation of a LJ vapor, where many short
simulations are initialized from the two known metastable
states, that is, liquid droplet in vapor and supersaturated vapor,
and in ref 33, where an analogous approach is used to study the
free-energy landscape associated with reactive events.

The long simulation, depicted in the first row of Figure 3,
shows a similar result to the alanine dipeptide example
reported in Figure 1c—e. In comparison, the short simulations
depicted in the second-row sample less of the configuration
space. Given the same simulation and biasing parameters, the
short simulations do not have the time to build up a MetaD
potential that enables a reversible crossing of the free energy
barriers separating two metastable states. However, crucially, at
least some of these simulations can undergo a transition. As a
result, even if no back and forth recrossings are observed in any
individual simulation, the transition region is captured with a
moderate error, while the relative stability of the metastable
states is captured with accuracy comparable to that granted by
the long simulation reference (top row of Figure 3).
Nonetheless, for a more accurate estimate of the FES, further
sampling of the transition region is required, which can be
done efficiently by employing other biasing methods.

4.2. Combining MetaD with Static Harmonic Poten-
tials. The results presented in the section above exemplify the
fairly typical situation in which the convergence of an FES
needs to be locally improved in specific regions of CV-space. In
such cases, additional simulations can be performed using a
combination of biases aimed to locally improve the accuracy of
the free energy estimate for configurations mapped in those
undersampled regions. To demonstrate this approach, we
consider improving the FES calculation for the first ten short
simulations from those employed in the section above. In
Figure 3f, it can be seen that the region connecting the two
basins is poorly sampled. To increase sampling in this region,
we perform ten additional short MetaD simulations subject
also to a two-dimensional harmonic potential centered in the
red circles depicted in Figure 3j. The combination of ten
exploratory MetaD and ten MetaD simulations localized in a
specific region CV-space leads to the results reported in the
third row of Figure 3. As can be observed, the reconstructed
FES provides a better estimate of the equilibrium probability
not only in the local minima corresponding to metastable
states but also for high-free energy, low-probability config-
urations.

In Figure 3m,n, we report the on-the-fly convergence to
measure /v side by side with the AAD/v. It can be seen that
the global convergence of the different sets of simulations can
be systematically monitored and compared, quantitatively
capturing the improvement introduced by focusing on under-
sampled CV regions with time-independent harmonic
potentials.

This analysis shows that the flexibility granted by using
multiple biasing potentials together with independent short
simulations enables to obtain, monitor and improve con-
vergence with independent simulations subject to different
biases.
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Figure 4. Combining multiple short simulations to estimate the FES associated with the nucleation of a liquid droplet from supersaturated vapor.
(a) FES associated with the number of molecules in the liquid phase® (see the Supporting Information for the simulation details) at different
supersaturation levels. The shaded region represents the standard deviation calculated with a bootstrap analysis. (b) Progression of the standard
deviation of the FES as a function of bootstrap iterations for various levels of supersaturation. (c) Progression of the standard error of the mean
force as a function of the number of simulations for various levels of supersaturation.

5. APPLICATIONS

In this section, we discuss how the approaches illustrated on
simple model systems in the previous sections can be used to
monitor and improve the convergence of FESs for complex
processes. We focus our attention on modeling nucleation, a
task where converging FESs are often limited by the inherent
slow dynamics in CV space and where combining multiple
simulations enables us to improve our ability to obtain accurate
FESs.

5.1. Liquid Droplet Nucleation from a Supersatu-
rated Vapor. The first application is the numerical calculation
of FESs associated with the nucleation of a liquid droplet from
a supersaturated vapor, a rare-event process initiating the
condensation of a liquid phase. In this case, a system with 512
argon atoms was simulated under the canonical ensemble at
four increasing supersaturation levels. Sampling this process
with brute force simulations is extremely impractical and only
possible for billion atom simulations.”® However, even
enhanced sampling techniques such as MetaD, while being
instrumental in efficiently recovering the kinetics of nuclea-
tion,>* are rather inefficient at determining the full FES. This is
due to the fact that a large, asymmetric, free energy barrier
separates the basins corresponding to the metastable parent
phase and the stable state. Moreover, the characteristic
fluctuations in CV space are orders of magnitude different in
the two states. As such, different WTmetaD parameters (such
as Gaussian width and bias factor) are desirable for efficiently
sampling the forward (condensation) and backward (evapo-
ration) transitions.
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Here, we show that the biasing strategy can be tailored
specifically to this problem by using MFI to postprocess the
simulation results. For the forward transition, a WTmetaD bias
is applied with narrow hills, whereas for the backward
transition, a MetaD bias with wider hills is applied. Moreover,
given the asymmetry of the barrier, forward transitions can take
place with much smaller bias factors than backward transitions.
Additionally, for the lowest supersaturation level, a higher
energy barrier is expected, and thus, an additional static bias
potential is added to the forward simulation, increasing the
efficiency of the construction of the bias potential necessary to
observe nucleation events. To adequately sample the whole
FES and provide sufficient data sampling configurations that
cross the free energy barrier, S0 forward simulations and 50
backward simulations were conducted until the other stable
state was reached. This protocol was repeated for various levels
of supersaturation. Additional information regarding the
simulation setup is reported in the Supporting Information.
The forces from all trajectories were calculated and patched
together with MFI to find the FES, depicted in Figure 4a, and
the convergence was monitored with the on-the-fly error of the
mean force, illustrated in Figure 4c. Additionally, a bootstrap
analysis was performed on the independent forces, yielding an
uncorrelated standard deviation of the FES. That was used as
error bars for the FES, and the progression of the global
average is presented in Figure 4b. The shape of the FES of the
nucleation event is captured well, and the bootstrap analysis
indicates a low error in the transition region, whereas the tail of
the FES has a larger error.
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Figure S. Improving and monitoring the convergence of FES by combining multiple independent WTmetaD simulations. (a) Converged FES (in
reduced units) obtained merging four independent WTmetaD and MetaD simulations performed with different biasing parameters. The CVs s, and
s, are GNN-based approximations of nucleation collective variables n and n(Q6) discussed in detail in ref 35. (b) Time series of the configurational
volume explored by the simulations (blue) and the CV-space averaged value of the standard error of the mean force in CV space. (c) Global &3/v
and local convergence estimators, demonstrating a systematic convergence of the FES associated with providing additional data obtained from

independent simulations performed with different biasing setups.

5.2. Two-Step Crystallization of a Colloidal System.
To demonstrate the application of the &y/v convergence
estimator when deploying a set of independent simulations in a
complex application, we analyze the convergence behavior of
multiple MetaD calculations modeling a colloidal system
undergoing a two-step nucleation process.”” The CVs used to
describe this process are n, counting the number of particles
with a coordination number above some threshold, and n(Q6),
counting the number of particles with a local Steinhardt order
parameter (Q6) above a representative threshold. In such
simulations, the CVs are efficiently computed via a graph
neural network (GNN) model, which offers orders-of-
magnitude gains in computational efficiency in the on-the-fly
evaluation of the CVs necessary when conducting biased
sampling. Additional information about the GNN method and
the simulation details can be found in ref 35 and in the
Supporting Information.

The system modeled consists of 421 particles in a cubic box
of length 92.830, modeled via a Derjaguin—Landau—Verwey—
Overbeek®®™*° potential. All simulations were performed in the
NVT ensemble, tempered at 2T*. This investigation entailed
four independent MetaD simulations. Three simulations
utilized WTmetaD with varying bias factors, while the fourth
was a nontempered MetaD simulation. Additional simulation
details*' ~*® are reported in the Supporting Information, input
files necessary to reproduce the relevant examples are available
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on PLUMED-NEST." The configurations sampled across all
simulations were postprocessed and combined into a single
FES using MFI. The combined FES is shown in Figure Sa,
where two main basins can be seen. The deeper basin at large
values of both s, and s, represents configurations embedding a
crystalline particle surrounded by a vapor of colloidal particles
in dynamic equilibrium with each other. The second basin, at
low s,, represents configurations where a dense liquid droplet is
present in the simulation box as a metastable intermediate
along the crystallization pathway. These two metastable states
are separated by a free energy barrier around n(Q6) ~ 1. In
Figure Sb, the progression of the on-the-fly error of the mean
force and the progression of the sampled volume is shown.
While the error G5 (blue line) shows a decreasing trend, there
are occasional upward fluctuations corresponding to an
increase in the explored space v (red line).

The overall convergent behavior of the four combined
simulations is exemplified by the convergence measure o/v,
reported in Figure Sc, clearly demonstrating the systematic
improvement of the FES obtained by combining self-consistent
data generated via independent MetaD simulations. A mapping
of o in CV space is reported in the insets of Figure S,
demonstrating that the overall, average convergent behavior of
the set of simulations performed here is indeed accompanied
by an overall convergent behavior across the entire CV space,
and it is not dictated by a local reduction of the error oy(s).
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6. CONCLUSIONS

In this work, we developed a measure of the convergence of
the sampling of configurational FESs based on MFI and biased
dynamics. Recognizing that convergence, in the context of
adaptive sampling, refers to the ability to visit new and relevant
molecular configurations, as well as the accurate determination
of their equilibrium probability, the convergence measure that
we propose is the error of the mean force in CV space,
normalized by a measure of the volume explored in CV space.
We show that this measure of biased sampling convergence can
be computed on-the-fly and correlates strongly with the FES
error computed a posteriori via bootstrapping independent
simulations or block averaging. In addition to providing a
measure of convergence, we show with examples and
applications that, postprocessing biased simulations with
MF], one can combine different static and dynamic biases,
thereby targeting the convergence of FES in specific regions of
CV space with significant flexibility. Combining the sampling
obtained under the effect of different biases also enables us to
systematically improve on simulations performed with
suboptimal setups without discarding data, thus making the
most of the often unreported computing time allocated to fine-
tune bias simulation parameters. The convergence estimators,
as well as different strategies for combining biases, are
demonstrated with a range of examples of increasing
complexity, including analytical models, conformational
changes of alanine dipeptide, the nucleation of a liquid argon
droplet from a supersaturated vapor and the nucleation of a
colloidal crystal from solution. All examples are implemented
via the pyMFI Python library, which is publicly accessible at
https://github.com/mme-ucl/pyMFI. Use cases and simple
examples of the use of pyMFI to postprocess biased
simulations are provided online and in the Supporting
Information.
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