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Summary 

Background 

Efficient biomarker discovery and clinical translation depends on fast and accurate 

analytical output from crucial technologies such as multiplex imaging. However, 

reliable cell classification often requires extensive annotations. Label efficient 

strategies are urgently needed to reveal diverse cell distribution and spatial 

interactions in large-scale multiplex dataset.  

Methods 

This study proposed Self-supervised Learning for Antigen Detection (SANDI) for 

accurate cell phenotyping while mitigating the annotation burden. The model first 

learns intrinsic pair-wise similarities in unlabelled cell images, followed by a 

classification step to map learnt features to cell labels using a small set of annotated 

references. We acquired four multiplexed immunohistochemistry dataset and one 

imaging mass cytometry dataset, comprising 2825 to 15258 single cell images to 

train and test the model. The efficacy of SANDI was tested among various 

annotation burdens. We further assessed the potential of SANDI to identify biological 

meaningful cell-cell interactions. 

Findings 

With 1% annotations (18 – 114 cells), SANDI achieved weighted F1-scores ranging 

from 0.82 to 0.98 across the five datasets, which outperformed the other self-

supervised methods and was comparable to the fully supervised classifier trained on 

1828 - 11459 annotated cells (-0.002 - -0.053 of weighted F1-score). In ovarian 

cancer, analysis of this single cell data reveals spatial expulsion between PD1 

expressing T helper cells and T regulatory cells, suggesting an interplay between 

PD1 expression and T regulatory cell-mediated immunosuppression. 

Interpretation 

By striking a fine balance between minimal expert guidance and the power of deep 

learning to learn similarity within abundant data, SANDI presents new opportunities 

for efficient, large-scale learning for histology multiplex imaging data. 
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Research in context 

Evidence before this study 
 
We searched PubMed (https://pubmed.ncbi.nlm.nih.gov/) for studies using self-

supervised learning or weakly-supervised learning to identify cell phenotypes in 

multiplex images. We found two relevant studies (PMID: 35758799; PMID: 

35217454). In 2022, Murphy et al. trained a self-supervised model to learn features 

relevant to the targeted genes from unlabelled immunohistochemistry images of 

kidney, and to predict the cell type specificity of the image using single-cell 

transcriptomic data as references. The approach estimated the presence of cell 

types in a tissue region stained with a single marker but was unable to locate and 

classify single cells defined by a combination of antibodies. In the same year, Daniel 

Jiménez-Sánchez et al. proposed a deep learning framework to associate clinical 

characteristics of the patient to tumour microenvironment elements inferred from the 

multiplex-stained cancer tissues. The study regarded cell phenotyping as a side 

product of the pipeline, which was designed to reveal the cell types contributed to the 

clinical parameters rather than unbiasedly classify all cells targeted by the markers. 

To date, dedicated approaches for cell classification on multiplex images, especially 

on multiplex immunohistochemistry images where the intensities and combinations 

of staining are inferred from RGB images, has not yet been proposed.  

https://pubmed.ncbi.nlm.nih.gov/


 

Added value of this study 

The current study designed a self-supervised based pipeline for label-efficient cell 

classification on multiplex immunohistochemistry and mass cytometry images. The 

method was evaluated on five datasets containing slides from ovarian cancer, lung 

squamous cell carcinoma, ductal carcinoma in situ, myeloma and pancreas. The 

method dramatically reduced the annotation to 1%, equalling to 18 – 114 cells 

across five datasets, while achieving a performance comparable to the model trained 

on 1828 - 11459 cells. Therefore, in the context of current research, this new study 

presents an efficient and accurate method with new functionalities to 1) classify 

single cells on multiplex stained tissue sections with a small set of user-specified 

examples. 2) be adopted to multiplex immunohistochemistry images without colour 

deconvolution or marker channel separation. 3) automatically recommended prone-

to-misclassified cells for manual correction to efficiently improve model performance. 

4) facilitate hypothesis-driven anlaysis of cellular spatial distributions on a large 

scale. 

 

Implications of all the available evidence 

By mitigating the annotation burden for accurate cell classification, the proposed 

pipeline demonstrated great potential to accelerate the multiplex imaging analysis, 

which would promote the biomarker discovery and clinical applications.  

Introduction 

The abundance and spatial distribution of cell subsets are crucial to our understanding 

of disease progression and response to therapies1. Rapid development of multiplex 

imaging techniques such as multiplex immunohistochemistry (mIHC) and imaging 

mass cytometry (IMC) has enabled the accurate quantitative localization of cellular 

markers in situ2. However, co-expression of antigens and the coexistence of abundant 

and rare cell types impose unique challenges for automated cell phenotyping in these 

images3. 

 

The field of multiplex image analysis is currently dominated by supervised learning4. 

Model training is often required for each panel with specific marker colours and cellular 



locations, resulting in dramatically increased annotation burden as the number of 

panels increases. Typically, fully supervised methods require >1000 annotations per 

cell type per panel3,5, summed to >10 hours of work from a pathologist to annotate for 

a panel with 3 markers. Also, existing methods could be sensitive to the class 

imbalance issue often observed in multiplex images3. Unsupervised methods which 

mainly rely on colour decomposition, are often limited to 4-6 colour channels6, and can 

be prone to background staining noise7. 

 

To leverage the latest advantages of deep learning and to minimize the annotation 

burden, we proposed to apply self-supervised deep learning-based approach that 

utilizes intrinsic features from unlabelled data to facilitate cell phenotyping. Unlike 

supervised models trained using manual labels, self-supervised learning models can 

learn the inherent similarities of unlabelled data without pre-existing knowledge (Fig. 

1a). Self-supervised learning has shown great promise in the classification of natural 

scene images8,9, haematoxylin and eosin histology images10,11, and microscope cell 

image data12,13. Additionally, previous applications of self-supervised learning on 

immuno-stained tissue sections either aimed at estimating cell type compositions in a 

region14, or revealing cell types associated with patient-level clinical characteristics15. 

So far, dedicated approaches have not yet been developed for classification of single 

cells on multiplex images with their unique experimental set up, often consisting of 

multiple panels and therefore resulting in particularly heavy annotation burden.  

Mitigating the annotation bottleneck of cell classification using self-supervised learning 

can produce fast and precise mapping of cell phenotypes, thereby accelerating the 

biomarker discovery and the clinical translation of multiplex imaging.  

 

Here we propose SANDI with a self-supervised learning framework leading to a 

significant reduction of pathologist time. By leveraging the intrinsic similarities in 

unlabelled cell images, SANDI was able to perform cell classification with a small 

reference set containing as few as 10 annotations per type, while achieving a 

comparable performance with that of the supervised model trained on thousands of 

cell annotations.  

 

We validated the efficacy of SANDI by comparing its performance with the fully 

supervised model, and two state-of-the-art self-supervised frameworks, SimCLR8 and 



MoCo9 across a range of annotation burdens. We also examined the performance of 

SANDI with automatically selected reference set, as an approach to further reduce the 

necessary annotations for desirable classification accuracy. We conducted the 

experiments on four mIHC datasets and one IMC dataset, consisting of slides from 

ovarian cancer16, lung squamous cell carcinoma (LUSC), ductal carcinoma in situ 

(DCIS)17, myeloma18 and pancreas19 (Table 1). We focused on the classification of 

immune cell types, whose distribution and abundance are known to have impact on 

the disease progression and prognosis of different cancer types, and are therefore 

being targeted by a majority of multiplex imaging studies.  

 

Figure. 1 Overview of the SANDI pipeline. a, Cartoons illustrating label-based and pairwise 
comparison-based training strategies of supervised and self-supervised learning. Supervised training 
is based upon a large number of manual labels, whereas self-supervised learning first infers distinct 
features of cell types by learning from the pairwise similarities, then classifies unlabeled cells using a 
small reference set. b, Schematic representation of the SANDI pipeline. In the data preparation 
process, we selected multiple regions on the WSI that contain a variety of cell types. Then a pre-
trained cell detection model was applied to the selected regions to map the coordinates of cells. 
Single-cell patches of 28x28 pixels were retrieved to constitute the training dataset. The patches were 
then randomly paired and cropped into 20x20 pixel sub-patches. Subpatch pairs that originated from 
the same patch were labeled as positive (𝑃+), otherwise negative (𝑃−). Pairs of input sub-patches 



were processed by two identical encoders to generate a feature vector of 32 dimensions. The 
encoded features were concatenated as inputs for the similarity model, which learnt to discriminate 
between 𝑃+ and 𝑃−. The output score represents the pairwise similarities between a pair of sub-
patches. A small set of cells were labeled by the pathologists as references. Both the reference and 
the unknown cell image patches were cropped into 9 overlapping sub-patches of 20x20 pixels, which 
were then processed by the trained encoder to yield a feature vector of 9x32 dimensions. A support 
vector machine (SVM) classifier was trained on features extracted from the references and to classify 
features extracted from unknown cells. c, Architecture of the self-supervised model.  

 

Material and methods 

Datasets 

For experiments conducted in the study, the model was trained and validated on four 

mIHC datasets and one IMC dataset, including 9 ovarian cancer slides stained with 

CD8/CD4/FOXP3/PD1, 4 LUSC slides with CD8/CD4/FOXP3/haematoxylin, 12 DCIS 

slides with FOXP3, 6 Myeloma slides with CD8/CD4/FOXP3, and 100 IMC slides with 

CD4/CD8 channels extracted. Details of the five datasets are summarized in Table 1. 

Slides were scanned at 40x magnification and were down-sampled to 20x before 

processing.  

 
Table 1. Composition of the 5 datasets used in the study. 

Dataset Contributo
rs 

cell phenotypes No. of 
annotations 

Total no. of 
annotations 

Training Testing Training Testing 

Ovarian T 
cells 

Tami 
Grunewald 

et al.16 

CD4+FOXP3+ 292 197 1828 
(4 slides) 

997 
(5 slides) CD4+FOXP3- 596 168 

PD1+CD8+ 726 347 

PD1-CD8+ 139 203 

PD1+CD4+ 39 60 

PD1+CD8-CD4- 36 22 

LUSC T 
cells 

Teresa 
Marafioti 
and John 
Le Quesne 

 

CD4+FOXP3+ 746 228 2407 
(2 slides) 

1383 
(2 slides) CD4+FOXP3- 1225 696 

CD8+ 204 200 

Haematoxylin-
stained 

232 259 

DCIS 
FOXP3 

Hwang et 

al.17 

FOXP3+ 1030 576 11459  
(7 slides) 

3799  
(5 slides) FOXP3- 10429 3223 

Myeloma Yong et 

al.18 

CD8+ 866 979 3269  
(4 slides) 

1588  
(2 slides) CD4+FOXP3- 2244 493 

CD4+FOXP3+ 159 116 

IMC CD4-
CD8 

Damond et 

al.19 

CD4+ 987 828 3954 
(80 
slides) 

1085 
(20 slides) CD8+ 2967 257 

 



Overview of the SANDI pipeline 

The SANDI pipeline incorporated key strategies tailored for digital pathology to:  (1) 

rapidly generate abundant examples of each cell type in regions of interest selected 

by pathologists, which can be achieved in minutes; (2) perform a series of operations 

to assign cell pairs as similar or dissimilar, generate shift-invariant representation of 

the cells, and extract distinctive features from unlabelled cell images; (3) convert learnt 

features into cell phenotyping based on a small set of references using a Support 

Vector Machine (SVM) classifier (Fig.1b).  

 

The self-supervised model of SANDI was built on a convolution neural network with 

two identical encoders20 (Fig. 1c). The model was trained to discriminate between pairs 

of subpatches that originated from the same cell image (𝑃+), and different cell images 

(𝑃−) (Methods). Each subpatch was encoded into a vector of 32 features (Fig. 1c). 

The objective of the training step was to minimize the loss function as a combination 

of normalized temperature-scaled cross-entropy loss (NT-XEnt)8 and the weighted 

cross-entropy loss (Methods). The loss function is designed to keep features derived 

from the same cell in close proximity, and features derived from different cells to be 

far away in the feature space.  

 

The trained self-supervised model of SANDI was able to extract discriminating 

features for different cell phenotypes by learning to predict the pair-wise similarities 

(Fig. 1c). To convert the encoded features into cell identities, we collected a small set 

of representative cell images as references. The encoder of the trained self-

supervised model was used to extract features from both subpatches of reference and 

unknown cells. A linear SVM trained on features of the references was used to classify 

unknown cells.  

Single-cell patches sampling 

All slides were analysed for single-cell detection using a pre-trained deep learning 

model21 prior to the proposed pipeline. To build the dataset for self-learning purposes, 

the first step was typically to sample single-cell patches from the whole slide image 

(WSI)22. In an ideal situation where the percentage of each cell type present in the 

dataset is balanced, we can randomly sample from the pool of all detected cells and 



expect an equal chance of capturing each cell type of interest. However, in 

pathological data, cell type imbalance is common, which might cause some rare cell 

types to be missed out by random sampling. 

 

To tackle this problem and to investigate the impact of data imbalance on the model 

performance, we introduced a data sampling step to capture a variety of cell 

phenotypes and ensure the inclusion of rare cell types. First, small regions on the WSI 

enriched with diverse cell types were manually identified. Then, a pathologist will label 

the class of each cell within these regions by annotating the cell centre using different 

colours to denote different cell types. The selection of regions ensures that a 

considerable number of each cell type are included in the training dataset. Manual 

labels revealed the composition of cell types within the regions and provided ground 

truth for model evaluation. A 28x28 pixel patch around each dot annotation was 

retrieved to form the dataset. All patches from slides used for model training were 

pooled together and randomly allocated to training or validation set with a 4:1 ratio.  

Patch cropping and pairing 

Given a dataset containing n 28x28 pixel (12.32x12.32 μm2) single-cell image 

patches 𝐷𝑛 =  {𝑥𝑖, . . . , 𝑥𝑛}, we first generated all possible combinations 𝐶2 =

{(𝑥𝑖, 𝑥𝑗) ∈ 𝐷|𝑖 ≠ 𝑗}. For each batch, N pairs(𝑥𝑖, 𝑥𝑗) were randomly sampled from 𝐶2 

without replacement. For each pair of single-cell image patches, the acquired 

patches 𝑥𝑖 , 𝑥𝑗 were each randomly cropped into 20x20 pixel (8.8x8.8 μm2) sub-

patches 𝑥𝑑𝑖 ,𝑠𝑖
. Sub-patches retrieved from the same patch and the paired patch were 

labelled as positive (𝑃+) and negative (𝑃−) respectively, indicating that they were 

from the same cell or different cells. These are described as follows:  

 

𝑃+ = {(𝑥𝑑𝑖,𝑠𝑖
, 𝑥𝑑𝑗,𝑠𝑗

) ∈ 𝐶2| 𝑑𝑖 = 𝑑𝑗, 𝑠𝑖 ≠ 𝑠𝑗} 

𝑃− = {(𝑥𝑑𝑖,𝑠𝑖
, 𝑥𝑑𝑗,𝑠𝑗

) ∈ 𝐶2| 𝑑𝑖 ≠ 𝑑𝑗, 𝑠𝑖 ≠ 𝑠𝑗} 

 

The total number of 𝑃+and 𝑃− in a batch is 2N with N set to 256 in the experiment. 

RGB-valued images were normalized to the range [0,1] before being fed into the 

network. The rationale behind comparing sub-patches randomly cropped from 

(1) 

(2) 



single-cell images is to mimic the inspection by pathologists where a slight shift in 

the field of view does not affect the judgment of cell identities. 

 

Network architecture and training 

As shown in Fig.1c, the self-supervised network consists of two identical encoders 

conjoined at their last layers, followed by a single branch responsible for computing 

the pairwise similarity between the outputs of the two encoders. Each encoder 

contains a series of convolution, activation, batch normalization, max-pooling, and 

dropout layers, which encode the input image into a vector of 32 features. The single 

branch concatenates the outputs from two encoders and feeds them through a dense 

layer, followed by linear activation, batch normalization, Relu activation, and Sigmoid 

activation. The last layer generates a value between 0 and 1, which corresponds to 

the predicted similarity score between the image pairs. A higher score indicates more 

similarity between the two images.  

 

For cell phenotyping purposes, the network was expected to generate a high score for 

cells from the same class and a low score for cells from distinct classes. However, 

since the network was trained to identify similar or dissimilar pairs randomly sampled 

from the unlabelled dataset, two images from the same class might have been labelled 

as negative during the data preparation, which biased the network towards features 

that discriminate against images from the same class. To reduce the impact of 

uncertainty in negative labels, we modified the binary-entropy loss function by applying 

lower weights to the 𝑃− than to 𝑃+. 

𝐿𝑤𝑏𝑐𝑒 =  −
1

𝑁
∑ (𝑤+𝑙𝑜𝑔(𝑓𝑠(𝑃𝑖

+)) + 𝑤−𝑙𝑜𝑔(𝑓𝑠(𝑃𝑖
−)))𝑁

𝑖=1   

 

Where 𝑓𝑠 denotes the similarity branch, N is the total number of 𝑃+ or 𝑃− within a 

batch. 𝑤+, 𝑤−denote the pre-defined weights applied to the entropy loss of positive 

pairs 𝑃𝑖
+ and negative pairs 𝑃𝑖

−. In the experiment, 𝑤+and 𝑤−were set as 0.7 and 0.3 

respectively. 

 

To further constrain the latent representations to maximize the agreement between 

𝑃+, we combined 𝐿𝑤𝑏𝑐𝑒 with the normalized temperature-scaled cross entropy loss 

(NT-XEnt)8, which is expressed as 

(3) 



 

𝐿𝑁𝑇−𝑋𝐸𝑛𝑡 =  −𝑙𝑜𝑔
𝑒𝑥𝑝(𝑠𝑖𝑚(𝑧𝑖, 𝑧𝑗)/𝜏)

∑ 𝑙[𝑘≠𝑖]𝑒𝑥𝑝(𝑠𝑖𝑚(𝑧𝑖, 𝑧𝑘)/𝜏)2𝑁
𝑘=1

 

 

where 𝑧𝑖 denotes the 𝑙2 normalized embedding of sub-patch 𝑥𝑑𝑖,𝑠𝑖
, 𝑠𝑖𝑚 denotes 

cosine similarity, 𝑙[𝑘≠𝑖] equals to 1 if 𝑘 ≠ 𝑖, otherwise 0. 𝜏 denotes the temperature 

parameter, which is set as 0.1 in the experiment. For a given sub-patch 𝑥𝑑𝑖,𝑠𝑖
, the NT-

XEnt loss treats the sub-patch 𝑥𝑑𝑖,𝑠𝑗
 originated from the same patch as positive 

samples, and all the other (2𝑁 − 2) sub-patches within the batch as negative 

samples. 

 

The combined loss is the combination of 𝐿𝑤𝑏𝑐𝑒 and 𝐿𝑁𝑇−𝑋𝐸𝑛𝑡, as given by 

 

𝐿𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝐿𝑤𝑏𝑐𝑒 + 𝐿𝑁𝑇−𝑋𝐸𝑛𝑡 
 

For rigorous assessment of models, all training was performed on an Intel i7-9750H 

CPU for 100 epochs with a batch size of 256 and optimized using Adam with a 

learning rate of 10-3. The model with the least validation loss was selected for 

evaluation. 

Reference-based cell classification 

Identification of cells from multiplex images is dependent on stain concentrations and 

the morphology of the cell, which can be affected by experimental artifacts and out-of-

focus regions. The noise in the data/label is a well-known issue affecting model 

performance in digital histology image analysis23,24. Motivated by the need to reduce 

the annotation burden, we selected a set of reference images 𝑅𝑛 =  {𝑥𝑖 , . . . , 𝑥𝑛} from 

the training dataset D as representations of each cell type. Each cell in a hold-out 

testing set is treated as a query image 𝑥𝑞𝑖
. Both the reference image 𝑥𝑟𝑖

 and query 

image 𝑥𝑞𝑖
 were cropped into 9 20x20 pixel sub-patches and processed by the trained 

encoder to yield the latent embeddings 𝑓(𝑥𝑟𝑖,𝑠𝑖) and 𝑓(𝑥𝑞𝑖,𝑠𝑖) of size 32x9. Assembling 

features of sub-patches allows the local regions neighbouring to the cell to be 

incorporated for downstream classification, which has shown to generate more 

accurate predictions21. 

(4) 

(5) 



 

An SVM classifier with a linear kernel implemented in the libsvm library25 was trained 

on feature embeddings of references 𝑓(𝑥𝑟𝑖,𝑠𝑖) and predicted cell phenotypes for 

embeddings of unlabelled samples 𝑓(𝑥𝑞𝑖,𝑠𝑖).  

Automatic expansion of the reference set 

Although SANDI can obtain high accuracy using a limited number of labels, being 

trained on a small set of representatives may lead to an underestimation of the intra-

cell-type variations in stain intensities, colour combinations, and morphologies3,26,27. 

By contrast, a larger training set can expose the model to higher variability in the data 

but can also deteriorate model performance if poor-quality data is included26,28. An 

ideal approach to capture a good level of variation while ensuring adequate data 

quality is to leverage information learnt by self-supervised training to inform the 

pathologist of cells that are prone to misclassification and thereby, create ground truth 

feedback to improve model performance. For this purpose, we proposed the automatic 

expansion method for iteratively adding human interpretation of the least confident 

instances as training events. 

 

The flowchart illustrating the pipeline is shown in Fig. 2a. Firstly, we nominated 1 

image for each cell phenotype as a representative, and then the minimal Euclidean 

distance 𝑑𝑖𝑠𝑡 between embeddings of unlabelled images 𝑓(𝑥𝑞𝑖,𝑠𝑖) and each reference 

image 𝑓(𝑥𝑟𝑖,𝑠𝑖) was used to determine the cell type. This distance-based classification 

method is described by:  

 

𝑝 (𝑦|𝑑𝑖𝑠𝑡 (𝑓(𝑥𝑟𝑖,𝑠𝑖), 𝑓(𝑥𝑞𝑖,𝑠𝑖)))  

 

Second, as an automated reference set expansion, for each group of cells as class K, 

the cell with the maximum Euclidean distance to any of the reference cells from the 

same class K was selected and manually labelled. These newly selected cells were 

then added to the previous reference set, while ignoring repeated instances. The two 

steps were repeated for 10 rounds and the weighted F1-score computed on the testing 

set was examined using the reference set from each round. 

(6) 



Assessment of model performance 

To evaluate the model performance under various annotation budgets, we trained 

linear SVM classifiers on feature embeddings of randomly sampled training subsets 

containing 1%, 3%, 5%, 10%, 20%, and 30% of annotated samples of each cell type. 

The training of SVM was repeated five times on different randomly sampled training 

sets, and the mean weighted F1-scores were reported on hold-out testing sets 

containing cells from slides excluded from training. Results were compared against 

the performance of SVM trained features generated by two state-of-the-art self-

supervised methods SimCLR8 and MoCo9, and a supervised classifier trained on 10%, 

20%, 30%, and 100% of the annotations.  

 

For fair comparisons, the supervised classifier, SimCLR, and MoCo were constructed 

with the same encoder as SANDI, and only random flipping was applied for data 

augmentation. All methods were trained on the same training/validation set split, and 

were tested on the same hold-out testing set as SANDI.  

 

Performance of the model was evaluated using the weighted F1-score, which is the 

average of F1-score for each class weighted by the number of their instances: 

 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐹1 =
1

𝑛
∑ 𝑛𝑖 ∗

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁

𝑘
𝑖=1  

 

Where n is the total number of instances, 𝑘 is the number of classes, and 𝑛𝑖 is the 

number of instances for class 𝑖. 

Results 

Evaluation of SANDI for cell classification across various 

annotation burdens 

The effectiveness of SANDI in discriminating diverse cell types was first evaluated by 

visualizing the embeddings of testing images in the latent space, which was performed 

using the t-distributed stochastic neighbour embedding (t-SNE). To capture the 

variability in cell appearance, each testing image was represented by the embeddings 

of nine sub-patches in its neighbourhood. The t-SNE plot revealed compact and 

(7) 



distinguishable clusters corresponding to each cell type, suggesting that the model 

has captured discriminative features for different cell classes (Fig. 2a).  

 

To investigate the size of reference set required for SANDI to achieve reasonable 

performance, we first trained linear SVM on feature embeddings of randomly sampled 

reference sets containing 1%, 3%, 5%, 10%, 20%, and 30% of annotated samples of 

each cell type. When the budget was limited to 1%, the number of annotations ranged 

from 1 for PD1+CD8-CD4- cells in the ovarian T dataset, to 104 for the FOXP3- cells 

in the DCIS FOXP3 dataset (Table 1).  

 

Across 5 datasets, SANDI achieved an impressive performance using only 1% of 

annotations (18 - 114 cells, Fig. 2b), comparable to a supervised classifier constructed 

using the same encoder trained on 1,828 - 11,459 annotations (-0.002 - -0.053 of 

weighted F1-score, Table 2). With a budget of below 30% of annotation data (11-3129 

cells per type), SANDI outperformed the supervised classifier, and the other two state 

of the art self-supervised frameworks SimCLR8 and MoCo9 in all the five datasets (Fig. 

2b, Table 2). Even when the size of the reference set was limited to 1%, 3%, and 5% 

of annotations, SANDI still achieved a higher or comparable (+- 0.05) weighted F1-

score than the supervised classifier trained on 10% of annotations (Fig. 2b, Table 2). 

Thus, SANDI can obtain an adequate classification accuracy using 100 times fewer 

annotations than the conventional supervised training methods. Importantly, the 

superiority of SANDI in the ovarian T cells, lung squamous cell carcinoma (LUSC) T 

cells and myeloma datasets with substantial data imbalance suggests a key 

advantage of SANDI in multiplex image analysis. Furthermore, we observed that the 

weighted cross-entropy loss improved over the non-weighted version; and when 

combined with the contrastive loss NT-XEnt to learn co-occurring modalities, resulted 

in best overall performance regardless of image types (Table S1). Thus, SANDI is 

capable of boosting the performance of unbiased cell identification regardless of cell 

abundance, possibly because of its loss function design and independence of prior-

defined labels29.  



 

Fig. 2 Performance of SANDI on five datasets. a, The t-SNE representation of test image 
embeddings. Cell labels are represented as color codes. b, Comparison of the performance based on 
weighted F1-score of three self-supervised methods (SANDI, SimCLR and MoCo) and the supervised 
classifier over increasing amounts of training data. For SANDI, SimCLR and MoCo, the mean and 
standard error from five random sampling were shown.  

 

Table 2. The weighted F1-score of the SVM classifier trained on features generated by different 
methods and with various percentages of annotations. All results are the average over 5 trials with 
different random seeds.  

Annotatio
ns 

1% 3% 5% 10% 20% 30% 100% 

Ovarian T cells 

No. of cells 18 54 91 182 365 548 1828 

Supervise
d 
classifier 

- - - 0.452 0.711 0.838 0.856 

SimCLR 0.707 0.782 0.789 0.831 0.839 0.850 0.863 

MoCo 0.527 0.671 0.718 0.767 0.776 0.785 0.800 

SANDI 0.820 0.817 0.829 0.845 0.853 0.849 0.846 

LUSC T cells 

No. of cells 24 72 120 240 481 722 2407 

Supervise
d 
classifier 

- - - 0.861 0.903 0.890 0.935 

SimCLR 0.716 0.757 0.806 0.857 0.880 0.898 0.910 

MoCo 0.664 0.725 0.776 0.808 0.827 0.854 0.898 

SANDI 0.883 0.886 0.887 0.898 0.916 0.922 0.934 

DCIS FOXP3 

No. of cells 114 343 572 1145 2291 3437 11459 

Supervise
d 
classifier 

- - - 0.989 0.980 0.984 0.988 

SimCLR 0.965 0.979 0.977 0.976 0.981 0.982 0.987 

MoCo 0.983 0.982 0.982 0.980 0.985 0.986 0.989 



SANDI 0.986 0.982 0.984 0.984 0.985 0.985 0.986 

Myeloma 

No. of cells 32 98 163 326 653 980 3269 

Supervise
d 
classifier 

- - - 0.885 0.930 0.953 0.965 

SimCLR 0.879 0.917 0.949 0.953 0.962 0.968 0.982 

MoCo 0.844 0.876 0.912 0.928 0.949 0.967 0.985 

SANDI 0.912 0.942 0.952 0.965 0.975 0.977 0.983 

IMC CD4-CD8  

No. of cells 39 118 197 395 790 1186 3954 

Supervise
d 
classifier 

- - - 0.892 0.921 0.935 0.958 

SimCLR 0.867 0.908 0.916 0.925 0.933 0.940 0.947 

MoCo 0.777 0.820 0.844 0.859 0.875 0.878 0.892 

SANDI 0.921 0.930 0.932 0.933 0.942 0.942 0.957 

Performance with the automatic expansion of the reference 

set 

To effectively select reference images that contribute the most to model performance 

improvement, we designed an automatic expansion of the reference set. This is 

achieved by iteratively estimating the confidence of cell phenotyping performed by the 

trained model, and recommending the least confident instances for manual labelling 

(Fig. 3a, Methods). The reference set was initialized with one arbitrarily selected image 

for each cell type (Fig. 3b). With 10 iterations, we gathered a reference set containing 

10 most diverse representations of the same cell type. Initial references and example 

cells classified at the 10th iteration were shown in Fig. S1. As expected, performance 

fluctuated at 1 random reference per cell type, but quickly gained stability (Fig. 3c), 

achieving higher weighted F1-scores than randomly sampled reference sets with 

about the same number of annotations (3% for Ovarian T cells and LUSC T cells, 1% 

for Myeloma and IMC CD4-CD8 datasets, Table 2, 3). These results suggest that the 

confidence-based reference selection scheme can effectively boost classification 

accuracy using as few as 10 annotations per cell type. 

 



 

Fig. 3 Automatic expansion of reference sets. a, The automatic expansion scheme of reference 
sets to effectively select reference images that contribute most to the improvement of model 
performance.  The unlabeled cell images from the training set D and an initial reference set Rn 
containing 1 reference image for each cell type K were provided in the first round. Images in D and Rn 
were cropped to 9 20x20 pixel sub-patches and processed by the trained feature encoder. The 
unlabeled cells were assigned with cell type K based on the Euclidean distance between embeddings 
of references and unlabeled cells. The instance with the maximal Euclidean distance was selected for 
manual labeling and merged with Rn from the previous round to form the new reference set. In the 
experiment, the process was repeated 10 times. b, Examples of initial reference sets for each of the 
five datasets. c, Weighted F1-score on testing sets for the linear SVM classifier trained on the 
reference set generated from each round of automatic expansion. The process was repeated three 
times with different initial reference images. The error bar indicates the standard error. The yellow 
horizontal line denotes the weighted F1 score achieved by the supervised classifier trained on 100% 
annotations. 

 

Table 3. Weighted F1-score on testing set for the linear SVM classifier trained on reference set 
generated from each round of automatic expansion of reference set. Bold values are within 0.005 below 
the best. 

Datasets Rounds 1 2 3 4 5 6 7 8 9 10 

Ovarian 
T cells 

Ref. Size 6 12 18 24 30 36 42 48 54 60 

Weighted 
F1-score 

0.758 0.903 
 

0.878 
 

0.866 
 

0.878 
 

0.873 
 

0.889 
 

0.894 
 

0.891 
 

0.892 
 

LUSC T 
cells 

Ref. Size 4 8 12 16 20 24 28 32 36 40 

Weighted 
F1-score 

0.852 
 

0.934 
 

0.919 
 

0.946 
 

0.952 
 

0.948 
 

0.953 
 

0.944 
 

0.939 
 

0.924 
 

DCIS 
FOXP3 

Ref. Size 2 4 6 8 10 12 14 16 18 20 

Weighted 
F1-score 

0.771 
 

0.986 
 

0.982 
 

0.976 
 

0.973 
 

0.956 
 

0.960 
 

0.955 
 

0.957 
 

0.970 
 

Myeloma Ref. Size 3 6 9 12 15 18 21 24 27 30 

Weighted 
F1-score 

0.840 0.789 
 

0.831 
 

0.830 
 

0.906 
 

0.900 
 

0.924 
 

0.934 
 

0.942 
 

0.948 
 

IMC 
CD4-
CD8 

Ref. Size 2 4 6 8 10 12 14 16 18 20 

Weighted 
F1-score 

0.441 0.652 0.850 0.830 0.878 0.871 0.927 0.922 0.924 0.929 



SANDI reveals association between PD1 expression and T 

regulatory cell proximity in the Ovarian T cells dataset 

To examine the capability of SANDI in identifying biological meaningful cellular 

distributions, we performed it on cells auto-detected by a pre-trained neural network5 

on 9 slides from the Ovarian T cells dataset. It is worth noting that the auto-detected 

dataset contains tissue backgrounds that were over-detected as cells (Fig. S2). 

Despite such noise within the data, SANDI trained on 4431 auto-detected cells from 

19 regions achieved a weighted F1-score of 0.855 with the linear SVM classifier 

trained on 20% of randomly selected training samples and evaluated on the same 

testing set as previously described, suggesting its robustness against incorrect 

detection of cells. Additionally, SANDI is capable of correcting over-detected cells 

using patches of tissue background as references (Fig. S2).  

 

We applied SNADI to classify the six immune cell subsets using the 10th iteration of 

the automatic expansion scheme. The classified cells exhibit a diverse composition 

across the 9 samples (Fig. 4a), with PD1-CD4+FOXP3-, PD1+CD8+ and PD1-CD8+ 

being the top three abundant cell types (Fig. 4b). We observed negative associations 

between percentages of PD1-CD4+FOXP3- T helper cells (Th) and PD1-CD8+ cells 

(Rho = -0.922, p = 0.0004), PD1-CD4+FOXP3+ T regulatory cells (Treg) and 

PD1+CD8-CD4- cells  (Rho = -0.720, p = 0.029), and between PD1+CD8+ cells and 

PD1+CD8-CD4- cells (Rho = -0.759, p = 0.018, Fig. 4c). PD1 expression has been 

associated with activation and exhaustion of CD8+ and CD4+ T cells30. To quantify 

the impact of PD1 expression on the T regulatory cell (Treg) mediated 

immunosuppression, we measured the distance of PD1+ and PD1- T cells to the 

nearest PD1-CD4+FOXP3+ Treg cell. We constrained the analysis to distance within 

250um, which was shown to be the maximal distance of effective cell-cell 

interactions31. This approach showed that PD1-CD4+FOXP3- T helper cells (Th) were 

nearer to Treg cells than PD1+CD4+FOXP3- Th cells (Fig. 4d), whereas PD1+CD8+ 

cells were closer to Treg cells compared to PD1-CD8+ cells (Fig. 4e). It has been 

documented that CD4+ cells with low PD1 expression displayed reduced cytokine 

production and was associated with poor overall survival in follicular lymphoma32. By 

contrast, high expression of PD1 is known to charaterise the dysfunctional CD8+ T 

cells30, and the irreversible exhaustion is partly attributed to the Treg interaction33. 



These findings raised the possibility that high PD1 expression on CD8+ T cytotoxic 

cells may be linked to increased interaction with Treg cells and co-orchestrate 

immunosuppression, while having an opposite effect on Th cells. Overall, these results 

demonstrated the potential of SANDI not only to classify cellular components but also 

to facilitate hypothesis-driven analysis of cell-cell interactions in complex tissues. 



 

Fig. 4 Cellular composition and cell-cell distance in the Ovarian T cells dataset revealed by 
SANDI. a. The percentage of immune cell subsets in each of the 9 ovarian slides. b. Overall 
compositions of six immune cell subsets. c, Correlation heatmap to illustrate the association between 
percentages of six immune cell subsets. d. Density plots showing the distribution of PD1-
CD4+FOXP3-, PD1+CD4+FOXP3-, PD1-CD8+, and PD1+CD8+ T cells within 250um to the nearest 
PD1-CD4+FOXP3+ Treg cells. The mean distance is shown as the horizontal line. 

 



 

 

Discussion 

In this work, we developed and demonstrated the performance of a self-supervised 

framework SANDI for cell classification on multiplex images to minimize the workload 

of pathologists. The results obtained in datasets acquired from 5 different sites show 

that, with an average of 10 labels per cell type, the performance of SANDI was 

comparable to that of the fully supervised classifier trained on more than 1800 single 

cell annotations. Specifically, SANDI achieved a weighted F1-score -0.002 below that 

of the fully supervised classifier in the Ovarian T dataset. We also showed that SANDI 

outperformed other self-supervised frameworks when the annotation budget was 

below 10%, indicating that our proposed framework is highly effective at reducing the 

number of annotations required for accurate classification. We achieved these results 

by using a self-supervised model that learns the distinct features of cell classes using 

pairwise similarities between subpatches of the same cell and different cells as labels. 

Additionally, we showed that the trained encoders can help identify cells that are prone 

to misclassification, thus guiding the annotation efforts towards cells that can 

effectively improve classification accuracy. With SANDI applied to the Ovarian T cell 

slides, we revealed a distinct association of PD1 expression on CD8+ and CD4+ cells 

with the Treg mediated immunosuppression. These results demonstrate the capability 

of SANDI in deconstructing cellular spatial organisation at scal and suggest its 

potential application in biomarker discovery and clinical translations. 

 

This work has several limitations. First, the pipeline still requires manual selection of 

regions that contain a variety of cell phenotypes to ensure that a considerable number 

of cells of interest are included in the training. Future work to evaluate automated 

methods to guide region selection will help address this issue. Second, the training 

images of the self-supervised model is currently limited to cell-containing images, 

which involves a pre-trained detecting model applied prior to the pipeline to locate 

image patches of single cells. Classification on automatically detected cells showed 

that SANDI was capable of distinguishing cell-containing images from the tissue 

background when representative images of background were provided as references. 

It would be of interest to identify background patches using the self-supervised model 



trained on randomly cropped image patches to reduce false positives in the cell 

detection. Additionally, the increase in classification performance as the automatic 

expansion of the reference set was inconsistent. Therefore, a labelled validation set is 

required to determine the optimal iteration and corresponding reference set that 

boosts the classification accuracy. Lastly, future work should tailor this method to other 

multiplex imaging techniques, such as phenocycler34 and multiplexed ion beam 

imaging35 to facilitate the cell phenotyping in the context of a large number of 

antibodies. 

 

In conclusion, SANDI enables cost-effective cell phenotyping in multiplex images with 

minimal manual inputs, which facilitates the analysis of large-scale datasets and paves 

the way for translating multiplex image analysis into clinical practice. By employing the 

prediction of pairwise similarity as the pretext task, self-supervised learning leverages 

intrinsic information from the rich amount of unlabelled data independent of prior 

knowledge of cell phenotypes. This strategy greatly reduces the expert annotations 

required for desired classification performance, and establishes self-supervised 

learning as a promising new technology in medical artificial intelligence.   

Data availability 

The images and annotations of the DCIS FOXP3, Myeloma, and the IMC CD4-CD8 

datasets can be obtained from the corresponding publication. Raw data of the Ovarian 

T cells and the LUSC T cells datasets are available upon reasonable request. 

Code availability 

The scripts for implementing and validating the pipeline are available at 

https://github.com/yuerua/SANDI. 

https://github.com/yuerua/SANDI


Supplementary 

Table S1. Weighted F1-score of cell classification using SANDI trained with different 
loss functions. 

Figure S1. Initial references and example cell images classified using the automatic 
expansion scheme. 

Figure S2. Example region from the ovarian T cell dataset containing auto-detected 
cells. 
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