LONDON’S GLOBAL UNIVERSITY

DEVELOPMENT AND EVALUATION OF MULTICHANNEL NANO-FIBRE
PIEZOELECTRIC ACOUSTIC TRANSDUCERS: LEVERAGING NEURAL NETWORKS

AND EXPLORING NOVEL STRUCTURAL FABRICATIONS

Amirbahador Moineddini

Supervised by:
Professor Wenhui Song
Dr Hamid Rassoulian

Thesis submitted in partial fulfilment
of the requirements for the degree of
Masters in philosophy
of
University College London

Division of Surgery & Interventional Science
University College London
September 2023

Acknowledgement:

I would like to thank my supervisors Professor Song and Dr. Hamid Rassoulian as well
as my peers in the team. Special thanks to Dr. Jinke Chang for his support in
completing the project. I would like also to thank the supporting staff at UCL division
of Surgery and Interventional sciences at Royal Free Hospital for the training and

their support throughout this project.

I would like to extend my gratitude to my friends and colleagues at Division of Surgery
at the Royal Free Hospital for their support and time throughout this project and
making the past few years very memorable. Special thanks to Patricia Santos, Kelly

Bokea, Alex Gray, Christina Christodoulou, Dr Lei Wu and Dr Naheem Yaqub.

Abstract:

This MPhil research project focuses on developing a test platform for the
characterization of a novel class of acoustic sensors developed by the Division of
Surgery and Interventional Sciences at UCL. Additionally, the project explores
fabrication methods and materials to enhance the performance of these sensors. To
achieve this objective, an automated test instrument (testbed) was designed and
manufactured in the lab for precise and automated data collection. Furthermore, a
data analysis algorithm was developed to standardize data collection and automate the
testing and analysis of data collected from the devices. The hardware and software for
this project were tightly integrated with bioinspired piezoelectric nanocomposite
nanofiber-based acoustic sensors, showing promising results for the next generation

of self-powered cochlear implants.

The testbed developed in this project serves as a normalized test platform that enables
testing various sensors, recording data, and analysing the performance of different
iterations of these sensors using a new neural network algorithm for speech and spatial
recognition (sound source localisation). The device can automatically collect and
process data from multiple sensor channels and train neural networks for testing these
devices. These acoustic sensors have been systematically characterized and
demonstrated high-frequency selectivity and multifunctional capabilities in speech
recognition and localization. This is attributed to the specific geometry of the sensors
electrodes and the piezoelectric properties of highly aligned radially polymer
nanofibers made of poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE)

doped with Barium Titanate (BaTiO3) nanoparticles.

Moreover, using the testbed, it was demonstrated that a single multichannel
asymmetrical device could localize sound sources, in contrast to human hearing,

which requires both ears for localization. This attribute results from the asymmetrical

| iii

nature of the sensor combined with the design of the neural network used for the

sensors.

Additionally, this report proposes a new method of fabricating the sensors using
Electrohydrodynamic direct printing instead of the electrospinning process currently
used. This method offers more control over the diameter, orientation, and placement
of the fibres on the electrode, making the fabrication process slower but more
repeatable. Finally, the report discusses how the fibre structure could be modified

using coaxial printing to improve the endurance and performance of the sensors.

Contents

COMIEEIILS ... tieivieeetieeeteeeetteeeteeeeteeesaeeesstee e saeaesteeesseaesseaanssaaansseeansseesssseesnsseenssseesssnannnes 1
LISt Of FIGUTS ...ttt 4
| o) A I 1o) £SO UORUSRRP 9
A DDTEVIATIONS: ..eiieiiiiiieeiiecie ettt e et e st e e beeeeaeeteessbeeseeesbeeseesnseessaesseesssesseenseens 10
1. INErOAUCTION ..eiviiiiiciieciecee ettt ettt eae e aeeebe e raeeaeessaeenbeessneenns 11
1.1. BacKground.......ssssssssssssssssssns 11
1.2. Bilateral Hearing in humans.......ccn. 15
1.3. What are piezoelectric materialcconmsmmmsmnsmssssmssssmssssssessssns 17

3.

1.4. Whatare Convolutional Neural Networks (CNNs) and their use

cases in for pattern recognition in acoustic Sensing:couvsssesesnssssnns 20
1.5. Aim, Hypothesis and Objectives........cummmmmmmmsmsmssmsmmmssssssssseseens 22
Design of the bio-inspired Implantsccccocevveniniininiieninininnneeeeeeee 24
2.1. BacKground:......sssssssss s 24
2.2. Design of the device: ... ————— 26
2.3. Fabrication of the devices:........cnmm—————— 28

Design, instrumentation, integration and data collection of a multi-channel

CANILOVET ACOUSTIC A@VICE ..ot e e e e e ee e e e e e e e eeeeeeeeeeerereeeneneeenenas 31

Contents | 2

3.1. BacKkground........ssssssss——n 31
3.2. Aims and Objectives.......mmmmm—————— 31

3.3. Preliminary spatial recognition testing using CNN with spiral

Asymmetrical multichannel device to check the feasibility...........ce.uu 33
700 700 L (= 4 U0 (0 (o o 2PN 34
3.3.2 Results and DISCUSSION ... 37
3.4. Speech Recognition........ussssn. 39
S 7200 SR Y U= o Lo 1o (0] (0= o T 39
3.4.2. Results and Discussion of speech recognition..........courereerereereenens 43
3.5. Spatial localization Recognition..........unnnsnssnsssssse: 45
3.5.1 Instrumentation and integration for spatial recognitioncccecreunee. 45
TSI\ (= 4 Uo Yo (o) o TR 46
3.5.3. Result and discussion of spatial recognitioncmeemeneserneenseneenes 48
3.6. CONCIUSIONS ..o ——— 53
4. Design, Fabrication and material improvements:cccceceveeeeereeneeneenennenn 54

4.1. Manufacturing multichannel single micro/nano fibre device...54

4.1.1. BacKGrOoUNd ..o sssssssssesssssssssens 54
4.1.2. AimS and ODJECtIVE. ... sssaes 55
4.1.3. Specialised Slicer: From design to waypointsoreereererneeneen. 55
4.1.4. Electrohydrodynamic Printing Stageccmrenenerneenesneeneseenesseesessesnenns 56

4.1.4.1. Cartesian AXiS STAZE ... sesssssesssssesssssesssssesees 56

4.1.4.2 Radial AXiS STAZE ..ccverrrererrerrerreerernee s sessssesees 58

4.1.4.3 Motionless Printingunnneneneesesssesessessesseesessessessessesees 59
4.2. Exploring new Material ... 60
421 BaCKGIrOUNd ...t 60
4.2.2 AIMS aNd ODJECLIVES ...cuueeerceerreresrerseesere s ssses s 60
4.2.3 1LY L2300 0T (0] (0] = 2 ST 61

4.2.4 ReSUltS and diSCUSSION ... s sesseess e sesse s ssesessssssessssensssns 61

Contents |3

5. Conclusions and future of the researchccoveeviiiiiiiiiinne 65

5.1. Conclusion: ... —————— 65

5.2. lIMitations: ... —————— 66

5.3. Future worki ... 66
6. REFETEIICES ...ttt 69
APPENAIX Aottt ettt sttt 74
APPENIX Bt 83
APPENAIX Cooee ettt st 84
APPENAIX Dbt 106
APPENAIX E .ottt 111
APPENAIX F oo 115
APPENAIX Gttt sttt 159
APPENAIX H ..ot 162
APPEIIAIX Lt 171
ADPPEIIAIX J ittt sttt sttt st e et 172

List of Figures | 4

List of Figures

Figure I Tllustrates the number of people who have received a surgery to get cochlear
implant over 10 years. The database split the data by the age group “(Some centres may
class under 19 as ‘children’; others may use under 18)” and whether they received
unilateral operation, simultaneous bilateral and sequential bilateral operation. The data
shows that there is an overall increasing in cochlear implant operations despite of the

delays and cancelation caused by the pandemic. [4].......ccccocevverenininininiineneneneneeens 12

Figure 2: current cochlear implant design illustration. The microphone, speech processor
and transmitter comprise of the external detachable parts which is connected to the

internal implanted receiver and electrode array with a magnet.[7]cccceccevervenencnennns 14

Figure 3: 3D Tonotopic mapping of the human cochlear using Synchrotron radiation
phase-contrast imaging (SR-PCI) [9]. The Cochlear can cover the frequencies from 20Hz

to 20.1kHz. Using the scale provided, the size of the cochlear is about 6.02 in 9.2mm. .25

Figure 4: Average human audiogram and audible range for different frequencies and the
region used for listening to music and a normal conversation [27] [28] [29]. The figure
illustrates that while the range of audible frequency is between 20 to 20kHz, the intensity
(sound pressure level) is variable and cochlear covers a wider range of sound pressure
between the frequencies of 75 to 10kHz and is most sensitive to the frequencies between

100 to 3kHz which is the encapsulates the speech and music frequency range............... 26

Figure 5: The design and the STFT graph of the frequency response of the devices to
different sound frequency generated by the mouth simulator. a) shows the frequency
response of the 7 channels on the symmetrical circular device and b) shows the frequency

response of the 4 channels asymmetrical spiral device.........cccoeeveinecineninincnnincccnenns 27

Figure 6: shows the measurement of the fibre displacement of each channel measured by
the laser vibrometer and the voltage output of each channel of the asymmetrical spiral

device in response to the frequency sweep by the mouth simulator. Provided by Dr Chang.

List of Figures |5

Figure 7: The fabrication stages piezoelectric sensor devices using electrospinning. The
electrode is grounded and rotating around while simultaneously the high voltage needle

moves side to side extruding the PVDF nanofibers..........cccccoceeiviniiiiniinnninciinne 29

Figure 8: The final assembly of the device. The device was clamped between two acrylic

CUL-OULS OF ThE SEIISOT. «eeeevveieiiiieeeeeeeeeeeeeeeeeetteeeeeeeseesereeeeessessssnsrteeeesssssssssnsseeeesssssnnnnnes 29

Figure 9: a) Symmetrical circular sensor b) Asymmetrical spiral sensor.c..c........ 31

Figure 10: Initial data collection set up for directional recognition testing. The speaker is
stationary and a set of holes on the sensor holder are used to place the sensor at different

angles and the data are collected.ccueeviririinininiininiicicceeee s 33

Figure 11: demonstrates raw data collected at 45° and split into individual sweep response

reading by the SENSOTS.c..ccoiiiiiriiiiiiciicc s 34

Figure 12:illustrates the STFT of plot of an individual at reading at 45° obtained from the
voltage output of the device in response to a sweep from 1.5kHz to 80Hz over a second at
1dB. This plot is used for creating a bandwidth filter to reduce the noise and highlight the

difference in output of different devices...........ccccceviviiininiiiniiniiii 35

Figure 13: demonstrates filtered and detrended data at 45° using the Butterworth filter

which was used IN featire EXETACTION. ...uvveiiteeeseeeesesrreeeeeeeesas 36

Figure 14: Initial Neural Network to architecture for classification of the angles designed
and implemented in MATLAB. The CNN uses a single layer Convolution layer connected
to fully connected layer for classification and a SoftMax layer at the end is used to filter

the highest probability class and oUtPULS it.ccccecererererenencnenerere e 37

Figure 15: The resulting confusion matrix illustrating the predicted classification vs the
true class for the testing data. The graph shows 100% accuracy for all both the 45°

increment (5 classes) and 30° increment (12 classes)......cccccverveevieereerieesieeneeereeieeseeeens 38

Figure 16: Preprocessing which include a) filtering and detrending the raw data and b)
breaking down the data collection into individual samples. This stage helped us to save

tImME 1N dAtA COLLECTION. tuieeeereeiieie ettt ettt eee e e e e e e eeare et eeeessssssaaaeeeeessssssssareeeeessssas 40

List of Figures | 6

Figure 17: An example plot that was used in the CNN for training and testing. The image
consists of a waveform plot of the voltage time graph and the STFT voltage output rotated
90 degrees and concatenated together into a single image. This is to preserve important
information in each figure when squeezed into a square. For STFT plot, the impactful
information lies in the position of the peaks regarding time and in the waveform data, the
import information is in the shape of the waveform while removing the temporal

information that could be used to distinguish between long and short phrases. 41

Figure 18: Initial Neural Network to architecture for speech recognition was designed
and implemented in Python. The CNN uses double convolutional layers followed by
Maxpooling layers to reduce the dimension connected to fully connected layers for
classification. Dropout layers were introduced within the network to prevent from over

fitting the data.cccoeiriiiiii et 42

Figure 19: a) Testing Confusion Matrix illustrating high accuracy and precision for the
speech recognition CNN using the 10% original data set.b) Illustrates the real time speech

recognition testing show high level accuracy.ccoccceiiiiniiniii, 43

Figure 20: Illustrates the result of the classification test confusion matrix of the single
channel spiral device for speech recognition. The figure shows that the device can

perform speech recognition very well with 100% accuracy with 188 supports for the test.

Figure 21: The architecture of the spatial data collection and testing setup. An Arduino
Mega was used for data collection and Arduino Uno was used for controlling the motor.
All the collection and control were coordinate through a central computer using Python.
The code for this section is available in appendix B (data collection), E (stage controller),
F (main python code), Appendix G (Real-time spatial recognition testing) and Appendix

H (the testbed CAD DESIZN). ..c.ueoviiirierieiiiiieniertenententestestesteste sttt sre e saennens 45

Figure 22: Solid works design and final assemble instrument to test directionality
recognition. The stage moves the speaker around the sensor automatically and collects its

OULPUL ITECELY . c.oiiiiiiieieeeeeee et 46

List of Figures | 7

Figure 23: Typical data preprocessing and feature extraction for the directional
recognition CNN. The collected data was 1) filtered and detrended and 2) the resulting
data was separated using the STFT plot to determine where one sample point ended and
where the next sample started. 3) the individual samples were used to make a lower

resolution STFT plot and 4) the plots were combined into a single image. 47

Figure 24: Initial neural network to architecture for spatial recognition classification was
designed and implemented in Python. The architecture used for spatial recognition is the

same as the one used for speech recOgNItion.cccocecevevieinienieinienininceecece 48

Figure 25: The spatial recognition confusion matrix results. 8 indicates the 360°
directional recognition testing in plane with the sensor. ¢ indicates the 360° directional
recognition testing in the orthogonal direction to the sensor and xindicates the distance

recognition from the SENSOT.cccciiiriiiiiniiiiiice s 49

Figure 26: Different configuration of 4 channel device tested to find the correlation
between the number of channels and resolution. In the figure, a) is the different
configurations explored for spatial localisation, b) is the result of the experiment for the
software adjusted signal to match the configuration and c) is the where the electrode

connections were manually altered to match the configuration..........c..ccceceeveininnnnnee. 52

Figure 27: The process of getting the waypoints for the EHD printing. a) STL file can be
obtained from CAD software, b) is the snapshot of the Slicer designed in MATLAB
specially programmed for the EHD printer and c) is the waypoints generated by the

program. The code for the slicer is available in Appendix L.ccccccoviiiiiiiniinnnne. 56

Figure 28: The cartesian EHD printer and controller designed for the Stage. The image
on the left illustrates the stage as it sits in the electrospinner’s enclosure and the image on
the right is the custom PCB designed to control the stage. The full design CAD and code

available in Appendix K and J......ccccoceeiririnininineniene e 57

Figure 29: Show the circuit designed CAD in KiCad which was manufactured for
controlling the EHD printer. The circuit is designed as an Arduino Mega shield to control

stepper motors and read the data from limit switches for initial homing of the stage. The

List of Figures |8

code for the Arduino was written specifically for the shield to enable controlling the EHD

printing stage precisely Full schematics of the Figure available in Appendix K. 58

Figure 30: Diagram of a potential radial printing stage. In the figure a) shows the needle
used to eject the polymer fibre controlled by a linear actuator horizontally by the amount

r from the centre of the stage and b) shows the stage sitting on top of a motor that controls

the stage radially by the angle 0.ccccocooiriiiiinin e 59
Figure 31: A single-fibre sensor with high sensitivity and flexibility [36]. 60
Figure 32: Optimisation result of the aqueous 400,000Mv PEO electrospinning. 61

Figure 33: Program for extracting the average diameter of the fibre for PVDF and various
PEO concentration and printing conditions. To automatically measure the diameter of
the fibres, the program first takes in a calibration value and then uses edge detection to
create a mask to get then position of each fibre. As fibres are in different distance from
the detector when taking the image, the code only uses fibres with a certain
predetermined intensity and only measure the diameter of those fibres to ensure a correct

estimation for the mean diameter of the fibres.ooovvviviiiiiiii 62

Figure 34: Average Diameter of the electrospun PVDF and PEO for different

concentration of PEO and various feeding rates.cccoeeevirieinenininenineniecneiecnnenes 63

List of Tables | 9

List of Tables

Table 1: Compares different piezo materials structure, density, piezoelectric
coefficient Dielectric constant and offer some of the applications in the industry and

research fOr @aCh MAtETIAL. ... e e e ee e 18

Table 2: Phrases used to test the speech recognition as well as the their ID used for

identification in the CONTUSION MATTIX. ceeeeeeeeeeeeeeeeeeeee e e e e ee e ee e e e e eeeeeeeeeeeeeeaeaeaeens 39

Abbreviations:

110

Abbreviations:

ITD

ILD

MSO

HRTF

PZT

PVDF

GaN

PVDF-TrFE

CI

BTO

CNN

EHDP

Interaural Time Difference

Interaural Level Difference

Medical Superior Olive

Head-Related Transfer Function

Lead Zirconate Titanate

poly(vinylidene fluoride)

Gallium Nitride

poly(vinylidene fluoride-co-trifluoroethylene)

Cochlear Implant

Barium Titanate-BaTiO3

Convolutional Neural Network

Electrohydrodynamic Printing

Introduction | 11

Chapter 1

1. Introduction

1.1. Background

This research focuses on designing an instrument to test the performance and
capability of a new bioinspired cochlear implant. The new device uses composite
piezo nano-fibres to fabricate a new class of self-powered cochlear implant, which
rethinks the architecture of the implant. The device offers a higher frequency
selectivity than the current generation of implants available to patients suffering from
extreme hearing loss either due to birth defects or serious injuries to the inner ear.
This research will also take a brief look a more suitable fabrication method for

depositing the fibres on the electrode and for controlling the composite structure of

the fibre.

It is crucial for scientists to continue researching and developing new cochlear
implants around the world because while these implants improve the lives of
countless people around the world and they are still far from perfect. These devices
are implanted in adults and children with severe hearing loss who will not see any
benefit from using hearing aid [1]. Moreover, the damage to the inner ear and hearing
loss which lead to the need for cochlear implant could cause severe tinnitus and the
cochlear implants could significantly reduce the severity of the tinnitus and improve

quality of life for users. [2]

British Cochlear Implant Group (BCIG) has been publishing a yearly report for the
past 12 years (excluding 2012-2013) where they collect all the cochlear implant
operations in Britain between the 1st of April of each year to the 31st of March of the
next year. In the report of the implants between April of 2021 to March of 2022 claims
that 868 new adults and 440 new children received cochlear implants across Britain

[3]. The chart in Figure 1 summarises all the operations carried across 10 years sorting

Introduction | 12

them by the type of operation. As shown in the graph, there has been an increase in
the number of operations each year until post 2020 where the number of operations

were drastically reduced due to the COVID 19 pandemic.

Number of new cochlear implants in adults and children yearly
between 2011 and 2022

Adults Unilateral

Adults Bilateral: Simultaneous
Adults Bilateral: Sequential
Children Unilateral

Children Bilateral: Simultaneous
Children Bilateral: Sequential

1000

800

600

400

Number of new implants

200

D el 0 13
(\-LQ‘\ (\-Ld\ (\1’0‘\ ‘\1'0‘\ ‘\10'\ (\7'0‘\ (\1'0‘\ (\1'01 (\1'01 (\1‘01
) 5 R’@ N \Ko o & %’\4\‘0 4 & ") o > 0’\1\3 y\ha
9(\ > 9(\10 o \10\, o \10\, o \7'0\, o 0 o ° & ‘:16& o) ﬂ'dl &) \'161
W W 3 3 3 3 b B B 3

Time period

Figure I: 1llustrates the number of people who have received a surgery to get cochlear implant
over 10 years. The database split the data by the age group “(Some centres may class under 19
as ‘children’; others may use under 18)” and whether they received unilateral operation,
simultaneous bilateral and sequential bilateral operation. The data shows that there is an
overall increasing in cochlear implant operations despite of the delays and cancelation caused

by the pandemic. [4]

US National Institute of Deafness and Other Communication Disorders (NIDCD)

estimates that there are approximately 737,000 registered devices worldwide by the

Introduction | 13

end of 2019 and the worldwide cochlear implant market was valued at USD 1.5 billion
in 2021 and expected to expand at a compounding annual growth rate of 8.71% from
2022 to 2030 [5] [6]. The enormous number of patients in need of this life changing
implant, the market value and its potential growth has incentivised researchers
around the world to work on making strides in development of these implants over

past decades since the first single channel implant in 1972.

The current implants consist of the following main surgically implanted internal
components and removable external components that need to be recharged: 1) An
external microphone to pick up the sound, 2) An external speech processor to process
the sound 3) An external Transmitter which is magnetically attached to an internal
Receiver to transfer data from external component to the electrodes, 4) An electrode
array that sits inside the cochlear to stimulate different regions of the auditory nerves
directly (Figure 2). Moreover, it is important to note that the current cochlear
implants do not cure deafness or hearing impairment and current implants can only
give a representation of the sounds in the environment to the user; Majority of users,
especially the unilateral implant users, lose directionality recognition of the sound.
Additionally, all users have to spend months getting used to hearing the implant and
interpreting the information and they will suffer from a condition known as the
cafeteria or restaurant effect where they cannot focus on a single source of audio and

targeted audio will drown in the background. [1] [7]

Introduction | 14

Ear with cochlear implant
Transmitter

Speech
processor

— Receiver/stimulator

?/*\\:
' A

. Electrode array
q

Figure 2: current cochlear implant design illustration. The microphone, speech processor and
transmitter comprise of the external detachable parts which is connected to the internal

implanted receiver and electrode array with a magnet.[7]

This is mostly because the cochlear implant electrode array bypasses the damaged hair
cells and directly stimulates the Spiral Ganglion Neurons (SGNs). While the array has
over a hundred ef frequency channels, it can only be optimised and tuned for a few
dozen channels and frequencies in the cochlear due to poor localisation and control
over targeting in the cochlear during surgery, which leads to less intelligible signal
and only the presentation of the sound. Consequently, cochlear implant users are
unable to enjoy tunes and music [5] [8] [9]. Nevertheless, There have been major
developments in all the components of cochlear implants such as increasing both the
frequency channels between the implant and the SGN and the number of channels in
the array by reducing the size of the electrodes in it, advances in signal processing
algorithms and taking advantage of deep neural networks to reduce transient noise,
which can be personalised depending on the user preferences, better transmitter and

receiver interface to reduce the transmission noise. [10].

Finally, all cochlear implants are battery-powered and either use rechargeable
batteries which last between 19 to 40 hours depending on the size of the battery or

use disposable ones which last up to about 48 hours. Given all the limitations of the

Introduction | 15

current cochlear implants mentioned, the motivation behind this project is to take
advantage of the piezo fibres to create a new generation of powerless cochlear

implants inspired by cochlear itself to address all the issues.

1.2. Bilateral Hearing in humans

Bilateral hearing refers to the ability of humans (and many other species) to hear with
both ears. This binaural (two-eared) hearing provides several significant advantages

that enhance auditory perception [11]:

1. Localization: [12] [13]One of the most prominent benefits of bilateral hearing
is sound localization. This refers to the ability to determine the direction from
which a sound originates. Differences in time and intensity with which a
sound reaches each ear are used to locate the sound source.

a. Interaural Time Differences (ITD):

e Sound waves from a source located to one side of the head will reach
the nearest ear slightly before they reach the farthest ear.

e The brain can detect these tiny differences in arrival times, using them
primarily for horizontal sound localization.

e The superior olivary complex in the brainstem plays a pivotal role in
processing ITDs.

b. Interaural Level Differences (ILD):

e Apart from the time difference, sounds coming from one side will be
slightly louder in the nearer ear than the farther ear due to the
"shadowing" effect of the head.

e ILDs are mainly used for sounds at higher frequencies, where the head
is more effective at blocking or attenuating the sound.

e ILD processing also takes place in the superior olivary complex.

c. Coincidence Detection:
e Inthe auditory system, particularly in the medial superior olive (MSO)

of the brainstem, there are neurons that act as coincidence detectors.

Introduction | 16

e These neurons fire when they receive simultaneous input from both

ears, playing a key role in detecting ITDs.

d. Spectral Cues:

e.

o The shape and size of the outer ear (pinna) introduce frequency-
dependent alterations to incoming sounds, which the brain uses to help
determine the elevation of a sound source.

o This is especially useful for vertical sound localization.

Head-Related Transfer Function (HRTF):

e Each individual has a unique HRTF, which is the way sounds are
filtered by the body, head, and outer ear.

e The brain learns to recognize these unique filters and uses them to aid

in sound localization.

2. Central Auditory Processing:

a.

Better Hearing in Noise: Once the auditory nerve has relayed information
to the brainstem, a series of complex processes, particularly in the superior
olivary complex and later in the auditory cortex, further refines sound
location and perception. These processes help in distinguishing sounds,
understanding speech in noisy environments, and more.

Improved Sound Quality: Sounds are perceived as richer and fuller when
heard through both ears due to the combined auditory input.

Increased Loudness: A phenomenon called "binaural summation" means
that sounds are perceived as louder when heard by both ears as opposed to

just one.

3. Redundancy and Fusion:

Binaural redundancy means that each ear sends a version of the same
acoustic signal to the brain. This redundancy can enhance the signal-to-
noise ratio and improve detection in noisy environments.

Binaural fusion refers to the brain's ability to integrate information from

both ears into a single perceptual image. With two ears, if one misses some

Introduction | 17

elements of a sound due to transient noise or other interference, the other
might still pick it up, ensuring a more consistent auditory experience.
4. Plasticity:
e The auditory system can adapt to changes over time, especially with
experiences or hearing loss. This plasticity ensures that the brain continues

to effectively process sounds even under varying conditions.

1.3. What are piezoelectric material
Piezoelectric materials are a class of materials that have the capacity to either produce
an electric charge in response to mechanical stress (the direct piezoelectric effect) or
change shape in response to an applied electric field (the inverse piezoelectric effect).
Due to this exceptional quality, they are useful in a variety of applications,
including sensors, actuators, energy harvesting, and more. Some common

piezoelectric materials include: [14]

1. Quartz - This is one of the most well-known and widely used piezoelectric
materials. It is a crystalline form of silica and is often used in various electronic
components.

2. Lead Zirconate Titanate (PZT) - PZT is a ceramic material that exhibits strong
piezoelectric properties. It is commonly used in sensors, actuators, and
transducers.

3. Polyvinylidene fluoride (PVDF) - This is a polymer with piezoelectric
properties. It is flexible and can be used in a variety of applications, including
flexible sensors.

4. Gallium Nitride (GaN) - GaN is a semiconductor material that also exhibits

piezoelectric properties. It is often used in high-frequency electronic devices.

Introduction

|18

Table 1: Compares different piezo materials structure, density, piezoelectric coefficient

Dielectric constant and offer some of the applications in the industry and research for each

material.
Property PVDF PVDF PZT Quartz Gallium
(ax-phase) (B-phase)
Chemical (C2H2F2)n | (C2H2F2)n | Pb(Zr,Ti)O3 | SiO2 GaN
Formula
Crystal Semi- Semi- Perovskite Trigonal Waurtzite
Structure crystalline crystalline
polymer polymer
Alternating | All Trans
trans-gauche | conformation
conformation | (TTTT)
(TGTG)
Density 1.78 1.78 7.8-8.0 2.65 6.1
(g/cm®)
Piezoelectric | 8-10 20-30 200-600 2.3-25 3.1-3.3
Coefficient
(d33) (pC/N)
Dielectric 8-10 12 1200-1700 45-55 8.9
Constant
Applications | Low- High- Medical Oscillators, | High-
performance | performance | devices, frequency | frequency
Sensors, Sensors, actuators, standards electronics,
packaging actuators, Sensors LEDs
materials energy
harvesting

Piezoelectric materials have found various applications in the field of medicine
because of these effects and used across many industries. Piezoelectric transducers are
at the heart of ultrasound imaging systems. When an electric voltage is applied to
these transducers, they generate ultrasonic waves. These waves travel through tissues

and bounce back, creating echoes that are detected by the same transducer. These

Introduction | 19

echoes are then used to create an image of the internal structures of the body.
Common piezoelectric materials used in ultrasound transducers include lead zirconate
titanate (PZT) and polyvinylidene fluoride (PVDF) [15] [16]. One of the most
common applications is in energy harvesting. Piezoelectric materials can convert
mechanical vibrations or deformations into electrical energy. This is particularly

useful in environments where there is ambient mechanical energy available.

The evolution of material research in the realm of biomedical applications has been
marked by continuous advancements, and the quest to improve cochlear implant (CI)
technology is a testament to this journey. There is an emergence of groundbreaking
research in CI takes advantage of the piezo materials and their properties that
challenges traditional CI operational principles. For example, a novel fully
implantable thin film piezoelectric transducer uses a cantilever-based design PLD-
PZT transducer. The choice of PLD-PZT as a material demonstrates a remarkable
intersection of material science and biomedical engineering, achieving an
unprecedented voltage output of 114 mV under conditions mirroring the eardrum's
natural behaviour. Beyond setting new benchmarks in thin film piezoelectric
transducers, this feat illuminates the immense potential of fine-tuning material
properties to foster next-generation biomedical tools. The meticulously designed
multi-frequency acoustic sensor, encompassing eight distinct cantilever beams,
underscores the power of material optimization. Each beam, tailored to resonate at
specific frequencies within the human acoustic range, exemplifies the synergy of
material science and design. The prototype's compactness and sensitivity, made
possible by material advancements, present a pioneering solution to challenges in
fully implantable cochlear implant (FICI) applications. This research not only
underscores the transformative role of materials in reshaping cochlear implantation
but also charts a blueprint for leveraging material innovations in devising advanced,

fully implantable biomedical devices. [17] [18] [19]

Polyvinylidene fluoride (PVDF) is a piezoelectric polymer that has gained attention

for its use in various applications, including piezoelectric fibres. PVDF piezoelectric

Introduction | 20

fibres are known for their flexibility, lightweight nature, and ease of integration into

a wide range of devices and structures.

PVDF, specifically the 3 -phase PVDF, is a popular choice for piezoelectric fibres due

to its unique properties:

1. Flexibility: PVDF piezo fibres are highly flexible, making them suitable for
applications where conformability to complex shapes or structures is required.

2. Lightweight: PVDF is a lightweight material, which is advantageous in
applications where weight is a critical factor, such as wearable devices.

3. Biocompatibility: PVDF is biocompatible, meaning it can be used in medical
applications without causing adverse reactions in the body.

4. Low Density: PVDF has a low density, which makes it an excellent choice for

applications where weight reduction is important.

One of the key applications of PVDF piezo fibres is in the development of flexible and
conformable sensors for various purposes, including biomedical, structural health

monitoring, and wearable technology. [20] [21]

In the continuous endeavour to improve cochlear implant (CI) technology, a
groundbreaking approach has emerged that challenges traditional CIs, using the
mentioned properties of the piezoelectric nanofibres to create a bio-inspired, highly

frequency selective and self-powered implants.

1.4. What are Convolutional Neural Networks (CNNs) and their use cases in for

pattern recognition in acoustic sensing:

To test the devices for localization, traditional methods of data collection and analysis
are insufficient because the variations from different angles are minuscule and
undetectable with conventional mathematical models. Therefore, a more powerful
tool is required to examine each data point and identify differences in data from
various directions. In recent years, researchers globally have been exploring a myriad

of machine learning methodologies with the objective of expediting data processing

Introduction | 21

and bolstering pattern detection within datasets. This endeavour aims to elucidate the
intricate relationships among an expanding set of variables in sophisticated systems
and experiments. Notably, deep learning has emerged as one of the most efficacious
and flexible instruments within the machine learning domain. Neural networks are
computational models inspired by the brain's neural structures, designed to recognize
patterns by processing data through interconnected layers of artificial neurons,

enabling tasks such as classification, regression, and clustering in diverse domains.

A Convolutional Neural Network (CNN) is a type of deep neural network designed
for processing structured grid data, such as images. It is specifically engineered to
recognize spatial hierarchies in data, which traditional multilayer perceptrons (MLPs)
might struggle with due to their fully connected nature. CNNs operate by using
convolutional layers to extract the spatial hierarchies of features automatically and
adaptively from input data. These features, increasing in complexity across layers, are
then processed through pooling and fully connected layers to make final predictions,
facilitating tasks like image classification and object detection with remarkable

efficiency and accuracy. [22]

The adaptability of CNNs stems from its uniquely crafted layers tailored for data

extraction from given inputs. A brief overview of these layers follows: [23]

¢ Convolutional Layer: The cornerstone of CNNs. It employs a
mathematical operation called convolution to slide a filter (or kernel)
over input data (like an image) to produce a feature map, capturing spatial
hierarchies and patterns in the input data.

e Pooling Layer: Used to reduce spatial dimensions while retaining
significant information. The most common pooling operation is max
pooling, where the maximum value from a group of values is chosen.

e Fully Connected Layer: In the end, after multiple convolutional and
pooling layers, CNNs often use one or more fully connected layers to
classify the extracted features into various categories or make other

determinations.

Introduction | 22

e Activation Function: activation function introduces non-linearity to the
model, enabling it to learn and represent more complex relationships in
the data. It determines the output of an artificial neuron given a set of
inputs, effectively deciding whether a particular neuron should be
"activated" or not. ReLU is one of the most popular activation functions
which replaces any negative values with zeros, allowing only positive
values to pass through.

e Dropout: A regularization technique used in CNNs to prevent overfitting.
It randomly sets a fraction of input units to zero at each update during

training time.

Using Convolutional Neural Networks (CNNs) for classifying data from acoustic
signals is an evolving area of research. Acoustic signals, whether they are speech,
music, or environmental sounds, are typically waveforms that change over time.
When represented appropriately, these waveforms can be viewed as 1D (time domain)
or 2D (time-frequency domain) data, making them amenable to CNN-based
approaches. CNNs already have many applications in classification and pattern
recognition in acoustics. Here are some of the notable application areas where CNNs

are being used: [24] [25]

1. Speech Recognition: Distinguishing spoken words or phrases.

2. Speech Emotion Recognition: Identifying emotional content in speech.

3. Environmental Sound Classification: Recognizing sounds like rain, traffic,
or birds chirping.

4. Music Genre Classification: Categorizing music tracks by genre.

5. Bioacoustics Signal Classification: Analysing animal calls or underwater

marine sounds.
1.5. Aim, Hypothesis and Objectives

The aim of this research is to create a new class of cochlear implants that is inspired

by the human cochlear to capture and deliver more audio information to the user than

Introduction | 23

the current commercially available implants. The implant should take advantage of
the piezoelectric polymeric nanofibers to be self-powered and remove the need for

battery and recharging.

From the response of the devices, it is hypothesised that the asymmetrical spiral
device could be used for sound localisation on it own and either one of the
symmetrical circular and asymmetrical spiral devices capture all the information
needed for speech recognition. To prove this hypothesis, a rotary testbed was designed
to that enables to normalize and collect data from different devices at all directions to

train a convolution neural network to localise and recognise simple phrases.

It is hypothesised that, by improving the current design and adding more electrodes,
more audio information can be captured, so as to improve on the spatial recognition
of the current generation of the device. Another hypothesis is that direct laying the
fibres with higher control of the length and placement of the individual fibre on the
electrode will improve the higher accuracy and the resolution of the response of the

sensor.

Over the subsequent five chapters, a detailed exploration of strategies to address the
specified challenges will be presented. This exploration begins with the design,
instrumentation, and integration of a test platform intended to assess each device
iteration for spatial and speech recognition. Subsequent sections delve into novel
fabrication techniques and materials. The project culminates with an examination of
the device design's influence on frequency selectivity, cellular toxicity evaluations,

and in vitro studies assessing neuronal responses to the device.

Design of the bio-inspired Implants | 24

Chapter 2

2. Design of the bio-inspired Implants

2.1. Background:

“Neurons at various levels in the auditory pathway are topographically arranged by
their response to different frequencies. This organization, referred to as tonotopy or
cochleotopy, mirrors the distribution of receptors in the cochlea, with a gradient
extending between neurons that preferentially respond to high frequencies and those

that respond best to low frequencies” [26].

As shown in Figure 3 Human cochlear has an auditory range between 20Hz to
20.5kHz. The current device that we are working on is most sensitive to frequencies
between 80 to 500Hz due to the low stiffness of the piezoelectric fibres, which is the
range of frequency that current clinical cochlear implants fail to respond. However,
not all frequencies are the same and humans are more sensitive to some frequencies
than others. Figure 3 illustrates a typical adult human audible range and the frequency
and intensity range that a typical conversation or music uses. This means that the
current device will not be able to capture the desirable audio information in a wider
range of higher frequency, which results in low intelligibility. This was clear when
the data collected for the speech recognition were converted back to audio. Despite
that the signal still contained rich information, it was difficult to interpret the original
phrase used in the speech recognition from the audio file. Therefore, to expand the

range of frequency, the current design requires further improvement or re-design so

Design of the bio-inspired Implants | 25

that the device can cover higher frequencies as well as by development hybrid and

stiffer piezoelectric composite nanofibres.

Figure 3: 3D Tonotopic mapping of the human cochlear using Synchrotron radiation phase-
contrast imaging (SR-PCI) [9]. The Cochlear can cover the frequencies from 20Hz to 20.1kHz.

Using the scale provided, the size of the cochlear is about 6.02 in 9.2mm.

To overcome this issue, a new nanocomposite fibre must be designed and a device that
resonate with a wider range of frequencies so that the maximum amplitude of the
output signal corresponds to the larger range of the audible frequency range that we
use in our day-to-day life. By controlling the length, diameter and elasticity of the

fibres, we could control the resonant frequency of the fibres in a wider range.

Design of the bio-inspired Implants | 26

Threshold of feeling

—
N
o

Al

Audible range

[
=2
— 100
Q
=
Q
— 80
Q
| -
=
a 60
Q
| -
(o
= 40
C
o
A 20
0 Throeshold of hoaring
| | |] |] | | | L
20Hz 60 100 200 600 1k 2k Bk 10k 20kHz
Frequency

Figure 4: Average human audiogram and audible range for different frequencies and
the region used for listening to music and a normal conversation [27] [28] [29]. The
figure illustrates that while the range of audible frequency is between 20 to 20kHz,
the intensity (sound pressure level) is variable and cochlear covers a wider range of
sound pressure between the frequencies of 75 to 10kHz and is most sensitive to the
frequencies between 100 to 3kHz which is the encapsulates the speech and music

frequency range.

2.2. Design of the device:

This work is the improvement over the previous research carried out by Professor
Song group in PVDF piezoelectric nano fibres [30] with collaboration with Dr. Jinke
Chang to design the device. The hypothesis of research carried out by the group was
that a device with different size channels and consequently different length of fibres
between these channels will different natural frequencies. Therefore, a device with

multiple channels with different dimeter (similar to the spiral structure of the

Design of the bio-inspired Implants | 27

cochlear illustrated in Figure 3) will have multiple natural frequencies with that can
be studied and design to match the human cochlear. To test hypotheses, two device
was tested with using the vibrometer setup to measure the voltage output of each
channel of an asymmetrical spiral multichannel and a symmetrical circular
multichannel device in response to a sweep of frequency between 2500 to 100Hz at
1dB played by a mouth simulator perpendicular to the device from the distance of

5c¢m with sampling frequency of 20kHz.

a

Displacement (m)

=

Figure 5: The design and the STFT graph of the frequency response of the devices to different
sound frequency generated by the mouth simulator. a) shows the frequency response of the 7
channels on the symmetrical circular device and b) shows the frequency response of the 4

channels asymmetrical spiral device.

As shown in Figure 5, while the voltage output of the symmetrical circular device
measured at 7 different positions along the sensor has very similar output, the voltage
output of each channel of the asymmetrical device to the same stimuli under the same
condition is different. Figure 6 shows the displace of each channel over time and

voltage output of each channel over times under the above conditions.

Displacement (ym)

20

Design of the bio-inspired Implants

|28

(a) 2004 Chl §55Hz. 120Hz, (b) Chl §55Hz 1—’?“:
0 o e——
-200 4 : -1300 4 h
T 200{ Ch2 310Hz 1 _ 1589 Ch.2 310Hz, | ¢
z o el g 0 \
2 200 L 2, 1300 : . i
g 200 cp3 T 20HI,
£ 0 _* = 0 ~”
a] 1
~ 0 = :
200 Cch4 19 .'-:_.-;_i Chd 190Hz K
SR} M A — TR 0 -8
L -\"".1'4 w I||
= 200 H = -1300]
2 2000 [it g 2000 :
2 2000 T L 8 2000 T .
= 1000 T < 1000 T i
2 0 : i Z 0 ; , _—
“os 20 25 30 LR & 0 25 30
Time (s) Time (s)

Figure 6: shows the measurement of the fibre displacement of each channel measured by the
laser vibrometer and the voltage output of each channel of the asymmetrical spiral device in

response to the frequency sweep by the mouth simulator. Provided by Dr Chang.
2.3. Fabrication of the devices:

The devices were fabricated by Dr. Jinke Chang using electrospinning.
Electrospinning employs high voltage to electrify liquid droplets, generating a jet
between the high-voltage needle extruding the liquid and the grounded electrode.
The liquid droplets are provided to the system by gradually feeding the polymer
solution through a syringe needle using a syringe infusion pump, which allows control
over the speed of injecting the solution into the system. In this case, the PVDF-TrFE
polymer, along with the BTO nanoparticles, was dissolved in a mixture of DMF and
acetone[30]. To create PVDF-TrFE nanofibers, DMF is the primary solvent used to
dissolve the PVDF, while acetone is added to accelerate the evaporation of the solvent,
ensuring that the liquid droplets form fibres. If there is insufficient acetone in the
solvent, the liquid droplets will not form a jet, causing polymer droplets to fall instead.

Conversely, if there is an excessive amount of acetone in the solution, the polymer

will be overly diluted, and insufficiently aligned fibres will be formed.

To get the fibres highly aligned radially on the electrode, all the terminals on the
electrodes were grounded to a rotary stage in the electrospinner while the needle was

attached to a high voltage source on a linear moving stage as shown in Figure 7. Both

Design of the bio-inspired Implants | 29

the needle and electrodes were moving together simultaneously to make sure that the

fibres are radially aligned.

PVDF-TiFE with BTOﬁ
nanoparticles » Motorised
high voltage
needle

S
Electrode /

\(/_j\

Figure 7: The fabrication stages piezoelectric sensor devices using electrospinning. The

electrode is grounded and rotating around while simultaneously the high voltage needle

moves side to side extruding the PVDF nanofibers.

Finally, the sensor fabricated by assembling the electrospun electrode with a mirror
design electrode on top with a PET film in the middle to prevent any short circuit
between the two electrodes. In the experiments, the voltage produced between the 2
electrodes is measures which is produced by the vibration of the PVDF piezoelectric

fibres.

Figure 8: The final assembly of the device. The device was clamped between two acrylic cut-

outs of the sensor.

Design of the bio-inspired Implants | 30

As illustrated in Figure 8, the device is assembled between to acrylic parts
permanently to make sure the clamping force holding the assembly together remains
constant between trials. This was done as the initial testing showed that depending
on clamping force holding the whole assembly together in the test bench of the
vibrometer, the response of the device and voltage output changes. More details about
the structure of the device and assembling is currently protected for a patent

application.

Design, instrumentation, integration | 31

Chapter 3

3. Design, instrumentation, integration and data collection

of a multi-channel cantilever acoustic device

3.1. Background

In the lab, a number of bio-inspired piezoelectric acoustic sensors were designed and
manufactured by electrospinning 6wt% Barium Titanate Poly(vinylidene fluoride-
trifluoroethylene) (BTO/PVDF-TrFE) nanocomposite fibres on single-channel
symmetrical circular (SSC) and multi-channel asymmetrical spiral radial electrodes
(MAS) (Figure 9) through an EPSRC funded project. Both devices could be used in a
single and multi-channel configuration, for the speech and spatial recognition testing,
however, analysis of a large quantity of output data including voltage output of each
device under various acoustic signals was challenging, in particular, the complexity

and amount of data for multi-channel MAS devices were substantially increased.

a) b) d=30mm.~ " 40mm
7 = N

o

”
-

SN

Figure 9: a) Symmetrical circular sensor b) Asymmetrical spiral sensor.
3.2. Aims and Objectives

The aim of this chapter is to develop a robotic rig for data collection and deep learning
method to analyse the complex voltage signals of the devices in response to various

acoustic stimulation.

Design, instrumentation, integration | 32

To achieve the objectives set for this project, it was broken down into 5 sections
starting with design and manufacturing an instrument to test the spatial recognition
(localisation) using the MAS and speech recognition using both MAS and SSC by
taking advantage of a deep convolutional neural network trained and tested on the
voltage output from the devices that has already been fabricated in the lab for an
initial benchmark and testing any future devices as mean of standardising them and
evaluating their performance against each other. The initial testing for spatial
recognition was carried out using the laser vibrometer setup and the mouth simulator
with a modified sensor holder that allowed for tracking of the angle change for data

collection.

The hypothesis for these devices is that the well aligned piezoelectric nanofibres
between electrodes can produce large enough voltage consistently when stimulated
by acoustic signals. Thus, the devices can be used for speech recognition. The most
intriguing novelty of the multi-channel spiral device lies that, due to its asymmetrical
design, the complex signals captured from such a device indicated the relative position
of the stimuli source for spatial recognition. To quantify and prove the concept and
performance of the device, for the first part of the project, the focus was on developing
a platform that enable to collect voltage output produced by the sensors for the
duration of experiments by various stimuli, such as mouth simulators and commercial
speakers, while simultaneously controlling the exact position of the acoustic stimuli
source relative to the sensor. Furthermore, a number of CNNs with different
architectures were designed and created for analysis of the voltage data in order to
determine the accuracy and precision of the spatial recognition of the MAS device

and the speech recognition of the MAS and SSC device.

Design, instrumentation, integration | 33

Figure 10: Initial data collection set up for directional recognition testing. The speaker is
stationary and a set of holes on the sensor holder are used to place the sensor at different

angles and the data are collected.

3.3. Preliminary spatial recognition testing using CNN with spiral Asymmetrical

multichannel device to check the feasibility.

During initial tests, both device configurations exhibited potential for speech
recognition when visually comparing the waveform of the signals produced with
those from a conventional off-the-shelf microphone. Demonstrating these devices'
capability to pinpoint a sound source necessitated a comprehensive experiment, given
the challenge of discerning sound waveforms originating from various directions by
visual inspection alone and show the merit of the experiment. Thus, prior to allocating
resources to manufacture a testbed for spatial recognition, preliminary tests were
conducted to validate the hypothesis that the MAS device can be used for spatial
recognition to its asymmetry. This involved integrating an angle placement extension
into the current sensor test stage (Figure 10) and manually gathering data from varied
sensor configurations in multiple directions (at every 30°). Data collected from the
spiral asymmetrical multichannel device enabled the training of a CNN that
efficiently extracted features and patterns, achieving precise sound source localization.
Conversely, several CNN algorithms applied to the symmetrical device data for spatial
recognition proved unsuccessful because none of the CNNs trained on the

asymmetrical device was unable to classify any of the test dataset correctly.

Design, instrumentation, integration | 34

Given the positive outcomes of the experiment, the construction of a robotic rig was
pursued to autonomously evaluate sensors under varied configurations, with an eye
towards future device optimization. Section 2.3.1 is dedicated to the initial manual
evaluations conducted on the spiral asymmetrical multichannel device for spatial
recognition, along with a discussion of the findings. The code used for this section is

listed in Appendix A.

3.3.1 Methodology

1) data collection and preprocessing

Initially, data were collected from each of the four channels 100 times concurrently
at intervals of both 45° and 30°. Utilizing the frequency data recorded by the laser
vibrometer along with the raw data, the data from each channel was segmented into

100 distinct datasets for evaluation.

Raw voltage-time series recording of the four channels response to the sweep of
1500Hz to 80Hz spitted into 100 distinct data points.

45 Degree Channel 1 45 Degree Channel 2

20.005

Voltage (V)

0.015

10000 10000

8000 8000
6000 6000
4000 4000

2000

Time (x10%s)

2000
Time (x107% 5)

45 Degree Channel 3 45 Degree Channel 4

Voltage (V)

10000 10000

8000 8000
6000 6000

4000

20
Itrations @ 6 Time (>(|0’4 s)

Time (xlO'4 s)

Figure 11: demonstrates raw data collected at 45° and split into individual sweep response

reading by the sensors.

Design, instrumentation, integration | 35

Acknowledging the parameters and constraints of the experiment and using the Short
Time Fourier Transformation (STFT) of the raw data, a bandwidth Butterworth digital
filter was constructed and subsequently applied to the signal, which was then

detrended during the preprocessing phase of the experiment.

STFT plot of individual channels of a single reading recorded at 45°

Short-Tlme Fourier Transform Channel 1 Short—Tlme Fourler Transform Channel 2

* I 4 T * W T,
45 I\- "“I un“p ”“ i Huﬁﬁ M:{h i”;!l‘i 'wﬂw .) ash ‘Ill‘lr‘ ”‘ |‘IJ' :\‘:'n | 5.‘ ;““‘II\"I‘:_I | Il, 30
’ II\ G Tt 4.‘..\. 5 i I'""-"‘.‘f“'l“nr
. L\‘ | 1-';. .I”” ?) 1?"} ‘|~‘¥:]fu‘m|l blé:;ll"\{llll " I.!\ i “'l.hn I 'L H' 4,|n i '1"‘I.r":'lu'¥|“‘ 40
!‘ ! LWM] bt it L
g° !.,.u "' i ‘l‘ﬁ"“"'ﬂ"\‘]e"lﬁl*,” “ 4 5 ';1 .] g ;.,!l“,w L W/ ."‘."'.:q‘
5. [l ”w@h\ﬂh ‘,L LN *{M'é 3 525 LR {ﬂ"""' A '!"‘!L""' !
5 T AR I~ 5] ol bt alont (O TRt o
E . labdainbinsmninaininainsnsanusnrin = £ 2y !!i!!l"“l!! L im pl
REETTTT T DR i e b '“
'd‘"‘é‘h 5’ T l\ I‘l i .,1}«: “v"ﬁ.-'”k “‘x H‘, , H ﬂ'h"hh‘ I:um p
Pl d e iy m n"l"“l ‘l".l i » “‘ ' \‘ !]‘I i
05 wl k%”n* Il os [t i
100 200 300 4“—;-‘"‘5:1(()'“:;00 700 800 900 100 200 300 4(?_"“;‘(1“:’0" 700 800 900
Slmrt Tlme Fourler Transform Channel 3 Shrt Time Fourler Transform Channel 4
- ﬂ]"‘?‘ﬁ*”-u; et] BT
i |‘|~“.: llln"ﬁ grﬁ ‘ f - 15 : ! M dnlh 1y '|\, 60
I ‘ i T L l‘n‘f.*’ﬂ).*fi jfl
l (] 05 &'%l &}W‘l‘, ‘ i II th&' i
) i h ,\Hi ;

AN
100 200 300 400 500 600 700 00 900

Time (ms) Time (ms’

Figure 12: illustrates the STFT of plot of an individual at reading at 45° obtained from the
voltage output of the device in response to a sweep from 1.5kHz to 80Hz over a second at 1dB.

This plot is used for creating a bandwidth filter to reduce the noise and highlight the

difference in output of different devices.

Design, instrumentation, integration | 36

Preprocessed voltage-time series recording of the four channels response to the
sweep of 1500Hz to 80Hz spitted into 100 distinct data points.

45 Degree Ofset Filtered Channel 1 45 Degree Ofset Filtered Channel 2

Voltage (V)
Voltage (V)

10000 10000

Itration o

Time (x10%s) Time (x10%s)

45 Degree Ofset Filtered Channel 3 45 Degree Ofset Filtered Channel 4

10000
8000
6000

4000

2000

20
Itration 0 0 Time (x107*s)

Time (x10%s)

Figure 13: demonstrates filtered and detrended data at 45° using the Butterworth filter

which was used in feature extraction.

2) Feature extraction

To extract the features from each data and creating a database for training and testing
the CNN, each data point was first split into its individual channels, then the voltage-
time signal of the channel was used to find its Wigner-Ville Distribution plot which
is the representation of the time-frequency intensity of the signal. Then the plots for
each channel was combined into a single black and white image and stored in the
database indicating the position of where the data was recorded. In this plot, as shown

in Figure 14, the darker the area, the lower the intensity of the frequency captured.

Design, instrumentation, integration | 37

This will highlight the intensity of the response of the natural frequencies each

channel relative to each channel.

3) Training, testing and validation:

Finally, the resulting data was split into the Training, Testing and Validation by 80%,
10% and 10% randomly to create a database for training and testing of the proposed
CNN. This split of data is recommended by both MATLAB and TensorFlow as best

practices and it draws its justification from the Pareto principle.

Figure 14 illustrates the architecture of the deep CNN used in MATLAB to classify the
angles of the acoustic source. The produced figures were first downsized to 227x227
pixels and then passed through a Convolutional Layer with an 8x20pixels filter and a
Rectified Linear Units (ReLU) activation function to add non-Linearity to the
resulting feature map image. The image is then passed through a maxpooling layer to
reduce the dimensions of the feature before feeding the features to the fully connected
layer for classification. Finally, a fully connected layer (Dense layer) outputs 12

probability for each class and the label with the highest probability is outputted using

a SoftMax Layer.
N
\(
/, X ‘ﬁ\)—4> \
. /N -
|:> |:> |:> _ X |:> Output Class
—~
e / \ /
i z\
S)
Input Image Convolution with MaxPooling Fully Connected layer SoftMax layer
227x227 pixels ReLU Activation [2 2] with stride [3 3] 12 Output

8x20 pixels Filter
Figure 14: Initial Neural Network to architecture for classification of the angles designed and
implemented in MATLAB. The CNN uses a single layer Convolution layer connected to fully
connected layer for classification and a SoftMax layer at the end is used to filter the highest

probability class and outputs it.

3.3.2 Results and Discussion
The results were very promising with the neural network being able to correctly
classify 100% of the results (Figure 15). The limitation of this setup was that the angle

placement was inaccurate and more importantly the sensor was moved manually by

Design, instrumentation, integration | 38

hand relative to the speaker (Figure 10). The current iteration of the sensor is still
sensitive to environmental change and fragile which means that the smallest
alteration could give widely different results. This was apparent in the collected data
and we tried to mitigate this issue by placing the sensor in an acrylic holder to protect
the device and minimise alteration to the result caused by the environment and the

movement of the sensor.

4 channel 5 classifier training test result using 4 channel 12 classifier training test result using
winger-Ville distribution. Winger-Ville distribution.
2) (45° increment localisation) b) (30° increment localisation)

135 100.0% 120

180 100.0%

2
2
U

100.0%

True Class
True Class

45 100.0% 300

90

90 |

135 180 225 45 90 0 120 150 180 210 240 270 30 300 330 60 90
Predicted Class Predicted Class

Figure 15: The resulting confusion matrix illustrating the predicted classification vs the true
class for the testing data. The graph shows 100% accuracy for all both the 45° increment (5

classes) and 30° increment (12 classes).

Additionally, there was concerns that the 100% accuracy in classification might be
resulting from overfitting of data as all the data for this test was collected at once over
a short period of time. However, the current setup was not best suited for collected
large dataset over a long period of time in different conditions because the accuracy
of rotating the device was extremely limited. To address all these issues and eliminate
this in future tests and automate the testing process to allow for rapid testing of new
devices under different circumstances, a new instrument (Figure 22) was designed,
manufactured and assembled that allows to run multiple tests with higher accuracy
and close integration with the sensors to allow us to test future iterations of sensors

and comparing their performance with minimal bias.

Design, instrumentation, integration | 39

3.4. Speech Recognition

To evaluate the devices for speech recognition, both the SSC and MAS devices were
used with a 2 layered CNN trained for speech recognition using some predetermined
phrases, which was written in python and utilised Keras and Tensor Flow for the
training. The CNN is trained on the voltage output from the devices at sampling
frequency of 4 kHz. The data from the sensor is collected using an Arduino Mega, sent
over to the main PC over serial communication and fed into the algorithm for
processing. For this test, a portion of Shakespeare’s Hamlet we chosen and broken into
the 6 phrases which was played for the devices over days while their voltage output
was recorded. The code used for this section is available in Appendix B (data collection
Arduino), Appendix C (the main python code) and Appendix D (real-time testing).

Table 2: Phrases used to test the speech recognition as well as the their ID used for

identification in the confusion matrix.

ID Phrase

A To be or not to be

B That is the question

C Whether this nobler in the mind to suffer the slings and arrows of outrageous
fortune

D Or To take Arms against a sea of troubles and by opposing end them

E To sleep no more

F To die

3.4.1. Methodology

1) Data processing and Preprocessing:

To expedite data gathering, audio files containing 100 repetitions per phrase,
interspersed with 2-second intervals, were created. Each audio files were played 3
times over 3 days to at the device and the corresponding voltage output was used to
create the dataset for training and testing. As with the prior test, data preprocessing
involved filtering, detrending, segmenting into individual phrase samples, and
databasing. In this particular experiment, a low-pass Butterworth filter, tailored from
the experimental parameters, was utilized. With the data collector's sampling rate in

mind and applying the Nyquist frequency theorem, the highest usable frequency of

Design, instrumentation, integration | 40

the obtained data was determined, serving as the filter's cut-off frequency to eliminate
high-frequency disturbances. Subsequently, the signal underwent detrending. Yet,
segmenting the data into distinct intervals and filtering them presented more
challenges than in the subsequent spatial recognition test where a sweep of a known

frequency was employed.

The next stage of the preprocessing was to segment the collected signal into individual
phrases, suitable for training, validation and initial testing of the neural network. To
find the suitable points in the signal to separate the intervals, comparison was
performed between the large amplitude of the signal to the much smaller amplitude
from the 2-second delay and the two intervals along with the expected length of the
phrase to segment the signal in the correct intervals. Finally, Using the time period
for the phrase, an algorithm was developed that removed any corrupted compromised
or incomplete data to ensure that the data used in training and validation was a good

representation for each class and did not affect the classification negatively (Figure

16).
a)
3
; 0 E
= P
S’ | S
- - v - ~+ ~ - 22
b) o s 4 L3 Tlr;“e (l;) w " s

, Time ()

12 14 16

Sgnal
® Low amplitude pesks
® Large amplitude peak

S

Voltage (V)

—

low amplitude Peak Distribution Density

Voltage (V)

o B

Density

Signal Peak Distribution Density

15

J -1.0

] 2 4 6 L 10 12 14 16

Time (s)
Figure 16: Preprocessing which include a) filtering and detrending the raw data and b)

°

breaking down the data collection into individual samples. This stage helped us to save time

in data collection.

Design, instrumentation, integration | 41

2) Feature extraction

Two figures were plotted from the resulting preprocessed data for each of the phrase
voltage output and were concatenated together and saved into a single PNG image
that was used for training the neural network classifier. The former plot is the scatter
plot of the waveform of the signal where the points with higher voltage output
magnitudes are more pronounced by using larger and whiter points relative to the
black background to highlight the shape of the of the waveform (Figure 17). The latter
plot is the STFT of the signal to highlight the relative frequency intensity of the phrase.
To ensure that the signals between different phrases are distinguishable, the
amplitude of the waveform plot and the frequency for the STFT plot range (the y-axis
range) of the plot were kept the same across all the plots for all the phrases (Figure

17).

0.00 4

Voltage (V)

025 030 075 25 150 175 .00

T“ljme:(;s)

\

Figure 17: An example plot that was used in the CNN for training and testing. The image
consists of a waveform plot of the voltage time graph and the STFT voltage output rotated 90
degrees and concatenated together into a single image. This is to preserve important
information in each figure when squeezed into a square. For STFT plot, the impactful
information lies in the position of the peaks regarding time and in the waveform data, the
import information is in the shape of the waveform while removing the temporal information

that could be used to distinguish between long and short phrases.

3) CNN architecture and classification

Figure 18 illustrates the architecture of the CNN used for the classification of the

phrases. The input image of the CNN is a resized horizontal rectangular image

Design, instrumentation, integration | 42

composed of an image of the waveform concatenated with an image of the STFT plot
of the data resized into a 64x64 pixels square image as shown in the Figure 17.
Therefore, given that one side of the plot was going to be squeezed, the plots was
oriented in a way to ensure that the features from each plot were preserved. For the
STFT data, it was crucial to preserve the timing information because the frequency
range on the y-axis was constant for all the phrases where the period for each phrase
and where the time of frequency intensity was different; Therefore, we rotate the
STFT figures by 90 degrees to ensure any timing information was kept and the
frequency data was scaled down uniformly across all the plots. In the waveform plot,
the outline of all the peaks and how they are all correlated to each other were analysed.

Therefore, to preserve continuity, the waveform plot was kept the same.

To speed up the processing time, two larger convolutional filters were used and each
of the convolutional layers was followed by a Maxpooling step to reduce the size of
the node. The 2-stage convolutional layer filter works very well in creating a feature
map for extracting and comparing features to classification while light enough to train
and run on any computer. However, this leads to CNN overfitting the data during
training. To combat this, two dropout layers were added, one after the second
convolution and the other one in the dense layer, to remove some nodes at random
to discourage complexity and overfitting [31]. The final CNN architecture was
achieved by a small manual adjustment through trial and error on the filter and the
fully connected layers sizes to avoid over fitting while maximising the accuracy and

minimising loss.
128 Dense — 25% Dropout — 6 Dense

- | [:> o

Input Image Convolution with MaxPooling Convolution with MaxPooling ~ 50% Dropout Fully Connected layer
64x64 pixels ReLU Activation [22] ReLU Activation [22]
32x3 pixels Filter 64x3 pixels Filter

Figure 18: Initial Neural Network to architecture for speech recognition was designed and

implemented in Python. The CNN uses double convolutional layers followed by Maxpooling

Design, instrumentation, integration | 43

layers to reduce the dimension connected to fully connected layers for classification. Dropout

layers were introduced within the network to prevent from over fitting the data.

3.4.2. Results and Discussion of speech recognition
For the single channel circular symmetric device, from the original dataset 300 sample
points per class collected to create a total of 1800 sample dataset for training,
validation and testing. To evaluate the neural network and device, 10% of the data
was used. After optimising the algorithm and ensuring that the input image had
enough information, we proceeded to run a blind real-time test where the algorithm
chose a random phrase and look at the response of the device and algorithm. Figure
19 shows the confusion matrix for the testing data and the real-time test. The
confusion matrix for the testing data illustrates that the device collects enough
information to be used for speech recognition. While the real-time test was also
accurate, there are slight variations and overall lower accuracy. This is because the
training, validation and testing data collection and real-time testing happened on
different days and the sensor tends to produce slightly different outputs depending on
the environmental condition (Especially the humidity and temperature). This slight
variation can be overcome by either making an environmental protection case for the
sensor to reduce the environmental effects or running the test on multiple days and

using a much larger dataset to train the neural network to account for this change.

a) Confusion Matrix b) Confusion Matrix for the blind test

- 1.0
< 0.00 0.00 0.00 0.00 0.00

o - 000 0.85 0.00 0.08 0.08 0.00

\
Label
C
o
[=
o
=
[~]
o
o
S
(-]
o
o
3
o
o

Label

0.00 0.00 0.0

D

w 0.00 0.00 0.00

0.04

- 0.0

3 B

€ F A 8 C D E F

Prediction Prediction
Figure 19:a) Testing Confusion Matrix illustrating high accuracy and precision for the speech
recognition CNN using the 10% original data set.b) Illustrates the real time speech recognition

testing show high level accuracy.

Design, instrumentation, integration | 44

The data showed that such a piezoelectric sensor with its current simple design, can
collect large amount of information from the acoustic stimuli that can be used for
speech recognition. This is apparent from the confusion matrix illustrated in Figure
19 where the device was able to classify the test data collected and only miss classify
2 test samples in addition to being able to perform extremely well classifying never

seen before inputs in the blind test in real-time.

Due to time limits, a smaller dataset of 1200 sample was collected from the single-
channel asymmetric spiral device as opposed to the 1800 collected from the
symmetrical circular device. Similar to the symmetric device, the data was randomly
split into 80%, 10% and 10% for training, validation and evaluating the neural
network. This was much smaller dataset compared to the one used to train the
symmetrical device; however, it yielded a much more accurate model which was able
to predict all the test figures correctly and efficiently. The Figure 20 below shows the

result of the experiment in a confusion matrix.

Confusion Matix

1.0
0.00 0.00 0.00 0.00

0.8

— - 0.6
b
0
[(v]

- - 0.4

-0.2

| i - 0.0

A B C D E F
Prediction

Figure 20: Illustrates the result of the classification test confusion matrix of the single channel
spiral device for speech recognition. The figure shows that the device can perform speech

recognition very well with 100% accuracy with 188 supports for the test.

Design, instrumentation, integration | 45

3.5. Spatial localization Recognition

3.5.1 Instrumentation and integration for spatial recognition

Databasing the
collected data

oy

S

Motor Controller

Data Collector
d=30mm - 4mllllll LR
™ A 1 E = =
[Jf——> {—>: Y —
4 ._l_l_ = - -
fomite 1] TTTTTT sRERER
Acoustic Sensor Data Collector

Figure 21: The architecture of the spatial data collection and testing setup. An Arduino Mega
was used for data collection and Arduino Uno was used for controlling the motor. All the
collection and control were coordinate through a central computer using Python. The code
for this section is available in appendix B (data collection), E (stage controller), F (main python
code), Appendix G (Real-time spatial recognition testing) and Appendix H (the testbed CAD
Design).

The testbed is shown in show in the fire which consist of an aluminium arm to hold the sound
source (mouth simulator) attached to a hollow rotary stage with sensor sitting in the middle
of the stage. There is a hall effect sensor on board on the rotary stage which is used to set the
home position (zero degrees) for data collection. Since the process of data collection is
automated, the stage will zero itself to ensure that it is in the correct position and has not lost
its bearing due to obstructions such as entangled wires. When in calibration mode, zeroing
its position, it will calculate the angle it turns to reach zero position and compares it to the
angle that it assumed it was. If the assumed position and actual position does not match, it

will send an error and remove all the data collected since last calibration sequence.

To assess a directionality of the sensor, an automatically controlled rotatory stage was
designed, manufactured and integrated with the multi-channel data collection system.
To collect data, an Arduino Mega with a custom shield that takes advantage of the
Arduino’s analogue pins were used for data collection from the sensor. The system
allows to rotate the sound source around the sensor accurately and collect data for a
different range of tests so as to measure the position and corresponding voltage output
of the sensor with high accuracy, realising its full potentials for precise positioning in

three dimensions and overcoming the limitations of previous Platform L. The

Design, instrumentation, integration | 46

aluminium parts were waterjet cut by UCL Institute of Making. The general overview
of the architecture of how different components are connected and communicate
with each other is shown in Figure 21 and the CAD design for the stage and the final

stage is shown in Figure 22.

Figure 22: Solid works design and final assemble instrument to test directionality recognition.

The stage moves the speaker around the sensor automatically and collects its output directly.

The device was placed at the centre of the stage and connected to an Arduino MEGA
for data collection. The device had to be at the same height as the speaker and we had
to ensure that none of the wires were tangled and interfered with each other as the
stage was programmed to be able to move 360" around the sensor. To ensure that the
wires do not tangle and the speaker is free to rotate about the device, the Arduino is

placed on top of the sensor.

3.5.2. Methodology

1) Data processing and Preprocessing:

Analogous to the previous experiments and setups, the collected data was first
processed as shown in Figure 23. As shown in step 1, initially the raw data was filtered
by passing the collected data through a digital bandwidth Butterworth filter deriving
from the STFT plot and removing the noise, and then detrended. As this was a known
sweep frequency input signal, the breakdown of the signal into individual sweeps was
a straightforward task to the speech recognition data segmentation. By plotting the

STFT of the data, it is clear to see where one sweep has ended and where the next has

Design, instrumentation, integration | 47

started, which can be used to separate them into individual intervals. By using this
method in step 2, the input signal collected was segmented into individual complete

intervals of sweeps. Any incomplete sweep was removed from the data set.

2) Feature extraction

Finally, in steps 3 and 4, the signal was verified by evaluating the frequency sweep
range to ensure that the sweep is complete and correct data is being used for testing
and then the grayscale STFT of each channel was created and concatenated together
to form the final image for the CNN training, validation and testing. Similarly, to the
other 2 experiments, the data was split into 80%, 10% and 10% for training, testing

and validation respectively.

Voltage-time graph of the sactioned data
Channel 1 Channel 2

Voltage-Time graph of the raw data
Channel 1 Channel 2

" Channel 3 " Channela

1 channels cranne
“ “

l" Preprocessing "‘3

Voltage-Time graph of the processed data ShortTim
Channel 1 Channel 2

Feature Extraction

Voltage (V)
Voltage (V)

Frequency (Hz)

T TTEh -

'|' a0y -

Voltage (V)

The STFT of each channel
combined into a single image
for the input of the neural
network

Voltage (V)

Time (s)

Figure 23: Typical data preprocessing and feature extraction for the directional recognition
CNN. The collected data was 1) filtered and detrended and 2) the resulting data was separated
using the STFT plot to determine where one sample point ended and where the next sample
started. 3) the individual samples were used to make a lower resolution STFT plot and 4) the

plots were combined into a single image.

Design, instrumentation, integration | 48

3) CNN architecture and classification

Similar to the CNN used in Section 2.4.1, the neural network takes an image of the
combination of 4 STFTs of the 4 channels and then downsized to 150x 150 pixels from
1220x900. This would increase the speed of training and testing. The neural network
takes these images and feeds them through a network with similar architecture as the
one used for speech recognition with the major difference being in the 12 output

classes (the 12 angle positions) as opposed to the 6 classes for speech recognition

(Figure 24).

128 Dense — 25% Dropout — 6 Dense

% $Olllpl“(‘]as>

Input Image Convolution with MaxPooling Convolution with MaxPooling ~ 50% Dropout Fully Connected layer
150x150 pixels ReLU Activation [22] ReLU Activation [22] 12 Output
32x3 pixels Filter 64x3 pixels Filter 50

Figure 24: Initial neural network to architecture for spatial recognition classification was
designed and implemented in Python. The architecture used for spatial recognition is the

same as the one used for speech recognition.

3.5.3. Result and discussion of spatial recognition

1) Spatial recognition of asymmetric spiral devices:

As shown in the Figure 25, three set of experiments were conducted in 1) planar
Azimuth (0) and 2) orthogonal (¢) directionality recognition and 3) distance (x)
recognition on the device for 3D sound source localisation. All three experiments
showed a high level of accuracy. Despite the lengthy period of time for the data
collection and the changes to the environmental conditions, the performance and
accuracy of their cognition was reproducible. Moreover, because the data for each
angle was collected over few days multiple times, the range of data was large and
various in environmental changes to ensure that they were not over fitted or trained.
This shows that the frequency selectivity and asymmetry of the device can be utilised
for spatial recognition. The device showed 100% accuracy in distance recognition,
94% accuracy in the orthogonal (¢) direction and 97% accuracy in the planar (0)

direction. Because the data for all these experiments were collected over days with

Design, instrumentation, integration | 49

plenty of variations in the data, it shows that the neural network is generalised and

able to localise the sound source very well as evident by the confusion matrixes in the

Figure 25.
- - x
a) 8- Confusion Matrix b)
10
0 4% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30 -0.04 %M 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
60 -0.00 0.02bR=N 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.8
a 90 -0.00 0.00 0.00p%1:30.01 0.00 0.00 0.00 0.00 0.00 0.000.01
9' 120 -0.00 0.00 0.00 0.00[*=k0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.6 y
R 150 -0.00 0.00 0.00 0.00 0.04 5=k 0.04 0.00 0.00 0.00 0.00 0.00 ". @
5 180 -0.00 0.00 0.00 0.00 0.00 0.03 85K} 0.03 0.00 0.00 0.00 0.00 ¢|l
E 210 -0.00 0.00 0.00 0.01 0.00 0.00 0.03[$%[80.00 0.00 0.00 0.00 - 04 rT™ v
2 240 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 p¥sls} 0.00 0.00 0.00 H
270 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 p¥l¢ 0.00 0.00 -0.2 .

310 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 %81 0.00

330 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 p¥«l¢}
' '] ' ' ' ' ' ' ' ' -0.0
0 30 60 90 120 150 180 210 240 270 310 330

Predicted Azimuth (Deg)

c) d)

x- Confusion Matrix

¢- Confusion Matrix

PEN] 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.02

10 1.0

25

30 -0.00[EE] 0.00 0.000.00 0.03 0.00 0.000.00 0.00 0.00 0.03

60 -0.00 0.02 skl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.8 0.8
90 -0.00 0.00 0.00[s8}:10.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00
120 -0.00 0.00 0.00 0.03 [#8=F40.00 0.00 0.05 0.00 0.00 0.00 0.00

150 -0.00 0.00 0.00 0.00 0.00

- 0.6
pNile] 0.00 0.00 0.00 0.00 0.00 0.00
180 -0.00 0.00 0.00 0.00 0.00 0.00%l4 0.00 0.00 0.00 0.00 0.00
- 04

210 -0.00 0.00 0.00 0.00 0.00 0.00 0.00sX=l40.03 0.00 0.00 0.00

[%2]
240-0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 ¢KH0.10 0.00 0.00 5
270 -0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 WL 0.00 0.00 -02

310 -0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.04 0.00 0.04[«8:1] 0.07

Orthogonal (Deg)

-0.2

0.00 0.00

330 -0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.12 [}
R R S T . - 00 , , , , ,
0 30 60 90 120 150 180 210 240 270 310 330 o5 50 75 125 150 200

Predicted Orthogonal (Deg) Predicted Distance (cm)

-0.0

Figure 25: The spatial recognition confusion matrix results. 8 indicates the 360" directional
recognition testing in plane with the sensor. ¢ indicates the 360° directional recognition
testing in the orthogonal direction to the sensor and xindicates the distance recognition from

the sensor.

As illustrated in Figure 25a, the experiment conducted with azimuth angles to the
device shows lower accuracy between 30 degrees and 180 degrees. All misclassified
points are mistaken for their adjacent classes, indicating that the predictions are not
random but are off by only +30 degrees. This accuracy can be improved by collecting
more data to train the model, using more sophisticated models such as YOLOvVS8 to

YOLOV10, or employing higher resolution and RGB input images.

Design, instrumentation, integration | 50

Figure 25c illustrates that the model is least accurate when the sound source is
positioned towards the centre of the device, specifically between 330 degrees and 30
degrees on either side. One of the largest misclassifications occurs at 0 degrees, where
the sound source is incorrectly identified as being at 180 degrees, directly opposite
side of the device. Other misclassifications occur in adjacent classes, with the lowest
accuracy observed at 330 degrees, where the sound source is misclassified as being at

0 degrees.

These findings indicate that the misclassifications are not random; rather, the device
captures significant localization information. To improve accuracy, particularly at 330
degrees, a larger number of samples from this angle should be included in the training
set. Additionally, similar to the azimuth experiment, increasing the dataset, using
more sophisticated models such as YOLOv8 to YOLOv10, and employing higher
resolution and RGB input images could significantly enhance the device's

performance.

Finally, the directionality test in Figure 25d shows that the device is 100% accurate
in identifying the distance of sound source. This shows that the device is extremely
sensitive to the sound intensity and can identify sound source from different distances
very accurately. Because the data was collected over days in different environments,

it mitigated the chance of overfitting the model.
2) Electrode configuration and resolution of direction recognition

After verifying the hypothesis for spatial recognition, i.e. that the MAS device could
be used for sound source localisation, the correlation between the electrode
configuration and spatial recognition resolution and accuracy of the device, i.e. what
is the smallest angle deviation that the device can recognise was characterised.
Different data sets were collected from the different electrode channel numbers using
the same device as shown in Figure 26, and the sensor performance in response to the
different input configurations of feeding the collected data to the neural network was

also evaluated. Figure 26a illustrates the explored configurations and the results. In

Design, instrumentation, integration |51

the software-processed results as depicted in Figure 26b, voltage data were gathered
from each channel individually across all electrode configurations. These data were
then merged during the preprocessing stage. The subsequent voltage-time series was
utilized for feature extraction prior to input into the neural network. Conversely,
Figure 26c¢ displays outcomes where channel data were manually integrated, and the

cumulative signal was then acquired.

The aim of this experiment was to evaluate the effects of electrode configurations and
data process method on the resolution and accuracy of spatial recognition of the spiral
devices. The results will render guidance on further optimisation of electrode design
and data process. In other words, what is the cost-effective design of the number of
the electrodes with desired resolution and accuracy at reasonable costs of
manufacturing and data process and whether it is necessary to make as many as
possible ultra fine electrodes along the spiral device so as to achieve higher resolution
and accuracy through collecting voltage output generated from the piezo-nanofibres

with nearly continuous variable length along spiral channel arrays.

The result shows that the information is preserved in the signal and can be used to
spatial recognise with various resolutions and accuracy depending on the electrode
configuration. As expected, the higher the number of channels used to collect the data,
the higher accuracy of the neural network to pinpoint the source of the sound. From
the Figure 26b and 26c, it is apparent that all configurations are very accurate with
over 90% accuracy from 10 degrees and above. However, the computation and data
processing could be reduced by combining channels either through software or

hardware which leads to a faster response from the system for localisation.

This experiment demonstrated that the accuracy across all configurations dropped
rapidly below 5 degrees increments and while the four channels configuration shows
the best outcome, majority of the information is collected within a single channel,
regardless of being collected manually in a single channel or post-processed by the
software, which concluded that the increasing the number of electrodes will improve

the accuracy and precision of the device. Therefore, the spiral device with

Design, instrumentation, integration | 52

multichannel electrodes is capable of recognising the sound direction at high
resolution and accuracy. Using only one channel could provide reasonable accuracy
of spatial recognition with minimised data collection and process. Moreover, the
electrodes and the fibres do not have to be a discrete constant radius and can be a
continuous spiral to collect more information. This is because this experiment showed
that a single channel can collect all the information with very gradual losses. Figure
26b and 26c¢ shows that similar to 2 and 4 channel configurations, while the accuracy

is lower, it is still over 90% for a single channel device.

Spiral electrodes b) Software Signal Processing

a
)Configuration:

:uiv(l? » 3 —a— l
%
* 4 Channels: g
g ”
o
<
S LY
3
S
=)
* 2 Channels | | and X Configurations: 3 b, [:
3 é [Fo—4 cnanners |
Spiral electrodes Spiral electrodes g @ eS|
d=30mm” 40min d=30mm> 40mmn § [+ 1Cnannel |
. — = - S o
3) 0 10 20 30
C) Angle Division (deg)
N . N A . Manually Combining Channels
B80mm:. = — 50mm 60mm-. = — 50mm & 1w N - M =
oy "
4 - +
* 1 Channel g 2 g
< A
S w
Spiral electrodes g H
d=30mm - 40mm S
— [
- 8 [~==4Channels |
B |~®— 2 Channels Il
£ |~4— 2 Channels X|
A A 8 |»— 1 Channel
e (4]
60mm:. S 50mm o s " % »

Angle Division (deg)

Figure 26: Different configuration of 4 channel device tested to find the correlation between
the number of channels and resolution. In the figure, a) is the different configurations
explored for spatial localisation, b) is the result of the experiment for the software adjusted
signal to match the configuration and c) is the where the electrode connections were

manually altered to match the configuration.

In summary, the sensor demonstrates significant potential, exhibiting remarkable
accuracy in both speech and spatial recognition tasks. For efficiency in this research
endeavour, the dataset for each classification was confined to 210 data points, with
the objective of amassing all these points within a single day to mitigate
environmental influences on the experimental outcomes. Future enhancements could
encompass expanding the data points per class over an extended duration and

rigorously controlling environmental variables. Such refinements would likely

Design, instrumentation, integration | 53

augment the neural network's performance, leading to enhanced results in both real-

time and recorded assessments.
3.6. Conclusions

As hypothesized, a single MAS device can handle both sound source localization in
all directions and distances away from the device and sound pattern recognition
(speech recognition), whereas the SSC device is limited to speech recognition. The
sound localization capability of these devices stems from the electrode design, which
incorporates frequency selectivity similar to that of a healthy human cochlea. To
enhance these devices, further research is needed into the materials and fabrication
methods. This research should aim to improve the consistency of device responses
across different batches and allow for better control over the placement of fibres on
the electrodes. Such improvements would enhance frequency selectivity and reduce

the size of the devices.

To improve on the performance of the classification, there are number of techniques
that can be used. Mainly a better more complicated model can be employed and
retrained on the gathered to improve on the performance of the classification. Newer
models such as YOLOvVS, v9 and v10 have incredible practical applications for
classification in real time in industry using only consumer GPUs. Additionally, as they
use the RGB image input, they can use more information in classification than the

model used for these experiments.

Design, Fabrication and material | 54

Chapter 4

4. Design, Fabrication and material improvements:

4.1. Manufacturing multichannel single micro/nano fibre device

4.1.1. Background

The acoustic sensors that we have fabricated and tested to this point, illustrated a
number of desirable properties. The radially aligned piezoelectric nanofibres within
the four channels were obtained by the additional local static electrical field between
four pairs of electrodes and provide predictable frequency selectivity. Despite the
additional local electrical field, the fabrication process gives little control over where
the fibres will be positioned between the electrodes. As a result, the uniformity and
thickness of nanofibres coverage across all four channels become poorly controlled,
which leads to a membrane-like structure with crosstalk between channels and

uneven thickness.

For enhanced precision in the fibre positioning process, Electrohydrodynamic (EHD)
printing is employed. This method leverages a targeted fibre deposition via near-field
electrospinning combined with electrode movement, ensuring finer control during
fabrication via additive manufacturing techniques. This research delves into three
distinct EHD printing techniques to craft multichannel single fibre sensors, varying
in both diameter and radial properties, tailored for high-frequency selectivity. A pre-
existing slicer has been developed, which offers adaptability across all three

techniques.

One other limitation of the electrospinning fibres is the size limitation of the sensors.
The average cochlear in an adult is about 9.20 x 6.30 x 8.00mm, whereas the sensor
we have fabricated is much larger with the smallest channel coming at 30mm in two
dimensions. EHD printing will potentially allow us to reduce the size of the sensors

through controlling the length and the diameter of the fibre in three dimensions.

Design, Fabrication and material | 55

4.1.2. Aims and Objective
The primary objective of this research chapter is to design and implement a
fabrication stage that facilitates the precise deposition of piezo nanofibers onto
designated locations on an electrode. The stage should not only ensure control over
the exact positioning of the electrode but also offer meticulous speed control during
its movement. The significance of such precision arises from the relationship between
the stage's movement speed and the material feed-through rate from the needle. If the
movement outpaces the feed-through rate, the fibre risks elongation and thinning,
potentially culminating in breakage under extreme velocities. Consequently, the
uniformity and integrity of fibres across the device are contingent on this stringent
speed regulation. Furthermore, by achieving granular control over fibre thickness, the
research intends to elucidate the interplay between fibre diameter, its resonant
frequency, and the resultant piezoelectric output, providing insights into optimizing

the design and function of such devices.

4.1.3. Specialised Slicer: From design to waypoints
For precise EHD printing stage control, a method was devised to translate both simple
and intricate fibre patterns intended for electrode exploration into waypoints for the
printing bed (electrode). Waypoints are a set of x, y, z coordinates on the print bed
that are converted to the number of steps for each stepper motor to take. This
conversion subsequently determines the precise motor rotations necessary for the
desired movements. The envisioned fibre designs, being substantially finer than
typical 3D printing models, are not easily scalable due to their relative size ratio with
the electrode. Conventional 3D printer slicers are incompatible with such designs.
Moreover, ensuring the production of a continuous fibre was pivotal, given that
interrupting fibre production midway in EHD printing is not feasible due to factors
like viscosity and the electric field's downward pull. Meeting these specific
requirements necessitated the creation of a tailored slicer. This was achieved by
developing a MATLAB program that processes STL files, obtainable from standard

CAD software such as SolidWorks, layering them and subsequently translating them

Design, Fabrication and material | 56

into a continuous set of waypoints. These waypoints guide the EHD printing stage,

dictating the precise rotations required for both X and Y axis motors.

For precise EHD printing stage control, a method was devised to translate both simple
and intricate fibre patterns intended for electrode exploration into waypoints for the
printing bed (electrode). This translation subsequently determines the precise motor
rotations necessary for the desired movements. The envisioned fibre designs, being
substantially finer than typical 3D printing models, are not easily scalable due to their

relative size ratio with the electrode.

ElectroHydrodynamies Slicers

Waypoints

Figure 27: The process of getting the waypoints for the EHD printing. a) STL file can be
obtained from CAD software, b) is the snapshot of the Slicer designed in MATLAB specially
programmed for the EHD printer and c) is the waypoints generated by the program. The code

for the slicer is available in Appendix I.

4.1.4. Electrohydrodynamic Printing Stage

4.1.4.1. Cartesian Axis Stage
To improve upon the fabrication, ElectroHydroDynamics printing (EHD printing)
was explored which has been well studied and shows the potential to fabricate small
devices very accurately. A literature review on this topic illustrates that it is possible
to control the diameter of the fibre by adjusting the movement speed of the collector.
This is especially useful for this project since the only way that we could adjust the
resonance of the channels was by changing the length of the fibre and the fibre
diameter was quite uncontrollable. The stage used for this project has 0.025pm

resolution and a maximum speed of about 25mm/s which is not comparable to the

Design, Fabrication and material | 57

speed used in the literature, but we can compensate for this by reducing the flow rate
accordingly to adjust for this. Moreover, it is expected that the minimum fibre
diameter fabricated by this method is over 6x larger in diameter than fibre fabricated

using electrospinning. [32]

Pump

Controller with custom
made PCB

;: ._};
Needle Holder 4

Needle Holder

Figure 28: The cartesian EHD printer and controller designed for the Stage. The image on the
left illustrates the stage as it sits in the electrospinner’s enclosure and the image on the right
is the custom PCB designed to control the stage. The full design CAD and code available in

Appendix K and J.

Design, Fabrication and material | 58

Figure 29: Show the circuit designed CAD in KiCad which was manufactured for controlling
the EHD printer. The circuit is designed as an Arduino Mega shield to control stepper motors
and read the data from limit switches for initial homing of the stage. The code for the Arduino
was written specifically for the shield to enable controlling the EHD printing stage precisely

Full schematics of the Figure available in Appendix K.
4.1.4.2 Radial Axis Stage

Given that the majority of the devices that will be explored are inspired by human
cochlear and have a circular structure, it would be interesting to explore a stage that
moves radially with the needle moving horizontally. In the literature, the speed
explored is between 1000 to 4000 mm/minute. However, the current setup can reach
the maximum speed of 1500mm/minute which is in the lower end of what the
literature explores. It is expected that radial method will be faster and allow the stage
to reach higher speeds which is comparable to the ones tested successfully in literature
[33]. This is because the motor used to move the needed holder is larger and adjusted
for higher linear speeds with a more powerful full motor controller and the stage can

move radially at the maximum speed which is about 50m rad/s (1500rpm).

Design, Fabrication and material | 59

«__»0
I
b)

Figure 30: Diagram of a potential radial printing stage. In the figure a) shows the needle
used to eject the polymer fibre controlled by a linear actuator horizontally by the amount r
from the centre of the stage and b) shows the stage sitting on top of a motor that controls
the stage radially by the angle ©.

4.1.4.3 Motionless Printing
Finally, there are methods to control the position of the fibre that does not include a
moving stage and the process is controlled by 1) segmenting the collector electrode
and using switches moving the printing location to the desired position [34] or using

2 jet defecting electrode to deflect the fibre to the desired position [35].

Design, Fabrication and material | 60

4.2. Exploring new Material

4.2.1 Background
There are number of limitations with the current material used in the sensors that
need to be addressed. Therefore, this section is dedicated to exploring new materials
with should have better mechanical properties and performance. Current Device,
while having great responsive and voltage output. This was achieved largely because
of the improved polarisation of the highly aligned fibres in addition of BTO
nanoparticles. However, adding the BTO to PVDF undermined the fibre’s mechanical
properties and make the fibres brittle due to poor interface between BTO and PVDF.
This is the direct result of how the BTO nanoparticles are embedded into the fibre or
surface and generate cavities, acting as defects at their interface as they are being

electrospun and dawn by the electric field (Figure 31).

a Polymer matrix Electrode
+++++++++

| - [" —
? Drawing 0 " Poling 50
= - = + +
< Pore | . + +

Barium titanate
nanoparticle

+ + +
b y+F '++“$ |
+ . — % x ¥
o+, Dipole ,x o,k 1 NI, P
+ + * = = ¥ X +
|- ¥ M o & g ® g *F @, = g o W ’+
- = » s - +| =
t e WIS A g
S 8 g2 @ % -7 TN e
=2 - = - - ~ - + 4 " i
. g -~ g U T
o —— o -

Figure 31: A single-fibre sensor with high sensitivity and flexibility [36].

4.2.2 Aims and objectives

To overcome this, we hypothesised that we could fabricate hollow PVDF fibres loaded
with more BTO nanoparticles in the core. To achieve this, PVDF is going to be
coaxially electrospun as the sheath with polyethylene oxide (PEO) and BTO
nanoparticle aqueous solution in the core. Then the water-soluble PEO can be

dissolved in water to obtain the desired core-sheath structure.

Design, Fabrication and material | 61

4.2.3 Methodology

The first step for achieve this goal is to optimise the electrospinning parameters of
PEO and PEO/BTO and find the maximum concentration of the BTO in PEO. Before
adding the BTO to the PEO and coaxially spin the fibres, first the right concentration
of the PEO solution had to be determined for the most consistent fibre draw with
minimal variance in the fibre diameter. For this experiment, PEO with the molecular
mass of 100,000Mv and 400,000Mv was used to make a range of different
concentrations of the aqueous PEO solution. PEO electrospinning is a topic that a
number of researchers have explored before and there is a lot of information on the
optimised condition to electrospun PEO [37] [38]. Several experiments were run to

find the optimal electrospinning process for 400,000Mv PEO shown in Figure 32.

1.00 mL/hr 1.50 mL/hr 2.00 mL/hr 2.50 mL/hr

Figure 32: Optimisation result of the aqueous 400,000Mv PEO electrospinning.

4.2.4 Results and discussion

In this experiment, the optimal condition for electrospinning the PEO was explored.
To find this optimal condition, the only variables that could be changed were the
concentration of the PEO solution and the flow rate of the PEO solution and this is
because the rest of the variables, i.e. the voltage and the distance between the collector
and the needle are fixed at 15kV and 15cm respectively, since these are the variables
used for the electrospinning the PVDF.

The next step was to estimate the fibre diameter under each condition. To do so, a

slightly modified MATLAB code was used (available here) to automate the fibre

https://uk.mathworks.com/matlabcentral/answers/397267-image-processing-determine-fiber-diameter

Design, Fabrication and material | 62

diameter measurement and estimate the average diameter. The results were verified
by measuring the fibre diameter manually using Image] and then the comparison
between various dimeters of PEO under different conditions and PVDF fibre diameter

was plotted in Figure 33.

Original Image Mask Thinned

g |
»

§
ot

Z".@.& ok . Lax

Diameter Image oo His!ogram of Widths. Meanv Widlh'= 0.9 um

Distance Transform Image

Count

;

3

Wi n .
Figure 33: Program for extracting the average diameter of the fibre for PVDF and various
PEO concentration and printing conditions. To automatically measure the diameter of the
fibres, the program first takes in a calibration value and then uses edge detection to create a
mask to get then position of each fibre. As fibres are in different distance from the detector
when taking the image, the code only uses fibres with a certain predetermined intensity and
only measure the diameter of those fibres to ensure a correct estimation for the mean diameter

of the fibres.

The MATLAB algorithm converts the image into a binary format (1s and Os) to
distinguish the background from the fibres. It then computes the Euclidean distance
transform, which calculates the distance from each pixel in the binary image to the
nearest background pixel. Additionally, it generates a skeleton map, capturing the

morphology of the binary image and outlining the fibres. By multiplying these two

Design, Fabrication and material | 63

matrices, a diameter image is produced, from which a histogram of the fibre widths

can be obtained.

Average Diameter of the fiber

Diameter (pum)
(=]

09

08

0.7
05
04
0.3
02
01 I

0

\\~ \\N \\

N X & & > < S & N &
& & S & & & & F & & &S &
"1 ko) ie) o N & N & o N\ & \) A\ bo) 9
o o “ ©)) Q o] © N\) N}) \&
N D D S N " ,\" v DT D N " v v N S
ol o\ ol N ol o\ ol old o\ o|d o\ o\ o\ N A %
O?' e .o,b N O’b S O’b ~° 0?0 090 PR Qi‘ ~° Q‘(N
.} A) A N\ O))
R 2R SR R R R R LR SR R SR R

Sample and Conditions
Figure 34: Average Diameter of the electrospun PVDF and PEO for different concentration

of PEO and various feeding rates.

From the findings of the preliminary electrospinning trials, it was discerned that the
ideal concentration for PEO stands at 6%. Concurrently, the most suitable flow rate
for the PEO was identified to be 0.65mL/hr and 1.5mL/hr. The rationale behind this
determination can be attributed to the fact that a concentration of 6% PEO
consistently resulted in the production of uniform fibres with minimal variation in
the diameter in different batch, demonstrating minimal droplet accumulation on the
electrospun fibre surface. A further point of significance is the observed correlation
between the flow rate and the fibre diameter. Specifically, as the flow rate elevates,
there is a commensurate increase in the fibre diameter. This relationship not only
solidifies our understanding of the process dynamics but also introduces a potential
avenue to exercise precise control over the core diameter during coaxial

electrospinning, enhancing the versatility and precision of the method.

To determine the desired inner diameter for the fibres, i.e. the desired PEO fibres
dimeter, Further testing had to be carried out to test the performance of the fibres and
their durability both after dissolving away the PEO and testing the devices. However,

the results of these tests provided valuable insights into the concentration and flow

Design, Fabrication and material | 64

rate that yield the most consistent PEO fibres. Additionally, the findings
demonstrated that the diameter of the PEO fibres produced is significantly smaller

than that of the PVDF fibres, facilitating effective coaxial electrospinning.

Unfortunately, due to time constraints, the research into fabrication of the devices
using the EHD printer and exploring new material to incorporate better performance
and higher control over frequency selectivity is incomplete. For the duration of this
project there was only enough time to design and manufacture the stage as well
making a slicer than that enables translating simple or complex designs into a set of
waypoints instructions for the stage. It will remain to see whether the device and
control over the accuracy of controlling the layout of the fibres results into the desired

performance improvements in the sensing capability of the devices.

Conclusions and future of the research | 65

Chapter 5

5. Conclusions and future of the research

5.1. Conclusion:

As detailed in Section 2, the findings from this study present a compelling case for the
development of innovative auditory devices in the foreseeable future. The presented
device demonstrates pronounced frequency selectivity. Continued research holds the
promise of refining the structure, drawing it closer in functionality to the human
cochlea. This advancement would potentially enable users to discern a broader
spectrum of sounds, encompassing intricate nuances in tunes and melodies, enriching

their auditory experiences.

The showcased device not only suggests a future where cochlear implants are more
bio-inspired and frequency-selective but also demonstrates vast potential as an
acoustic sensor tailored for detailed diagnostics and failure prevention. For instance,
integrating this device within offshore turbines could be revolutionary. Systems
operating sub-optimally produce distinct sounds. By harnessing acoustic sensors in
conjunction with spatial recognition and a neural network akin to the one used for
speech recognition—but trained specifically on malfunction noises—there's potential
to remotely pinpoint both the origin and nature of a failure. Such advancements could

significantly reduce diagnostic and repair times, leading to substantial cost savings.

The main finding of this research project was proving that a single multichannel
asymmetrical spiral sensor fabricated by UCL division of surgery group can be used
for both localisation and speech recognition as opposed to a human cochlear that
needs two healthy cochlear for sound source localisation. By investing in further
research in this project, an acoustic sensor could be developed that can both identify
and localise sound source which could be used as a non-invasive sensor in range

different industries.

Conclusions and future of the research | 66

5.2. limitations:

The device in its current state is too large and fragile which makes it very difficult to
handle and run test on. Additionally, due to the nature of the fabrication process of
the sensors, each sensor is very different to another and it response could be vastly
different as the fibre lengths and thickness could change in each fabrication attempt.
Finally, the limitation of the data collection, training and testing testbed was that the
maximum sampling rate of the data collection (the Arduino) is relatively low and
makes it difficult to capture all the data and forces the experiment to focus on a very
small portion of the audio range (only up to 1.5kHz as opposed to the 20kHz that

humans can hear)

5.3. Future work:

The multichannel devices show an immense potential in revolutionising and
advancing the cochlear implants. Both the material and the manufacturing can be
optimised through by improving the speed of the manufacturing and adapting the
axial Cartesian printer for a printer method that is better fit for fabricating radial

devices.

Given that the majority of the devices that will be explored are inspired by human
cochlear and have a circular structure, it would be interesting to explore a stage that
can be controlled to move radially with while motion of the needle can be controlled
in the horizontal direction. This method should be faster and allow for the speeds that
are much more comparable to the ones used in the literature. The hypothesis is that
because the motor used to move the needle holder is much more powerful motor with
an adjustable height and the stepper motor can move much faster radially with the
maximum speed which is about 50 = rad/s (1500rpm), will allow for a much faster

movement of the needle relative to the desired position on the stage.

Moreover, the literature demonstrates methods of controlling the desired position and

path of the fibres on the electrode without using a moving stage. There are two

Conclusions and future of the research | 67

interesting fabrication method illustrated: 1) segmenting the collector electrode and
using switches moving the printing location to the desired position [10] 2) Using 2 jet

defecting electrodes to deflect the fibre to the desired position [11].

It is imperative for the success of this project to ensure that the fabrication method
must provide complete control over the position and dimeter of the fibres over the
electrode. Additionally, the electrode must have a constant dimeter throughout the
length of the fibre and controllable. Therefore, in addition to optimising the printing
parameter, the number of devices must be fabricated with each proposed method to
evaluate their consistency and how well and fast each method performed the
fabrication process. Also, either one of the mechanical printing methods can be
combined with the motionless printing to improve the performance. This is because
the combination could allow us to draw and stretch the fibre quickly which could
lead to better control over the final dimeter of the fibre given that the feed rate

through the nozzle is known.

Within the material research segment detailed in Section 4, foundational efforts were
dedicated to the fabrication of hollow PVDF fibres with BTO nanoparticles centrally
located. Moving forward, it becomes imperative to conduct comprehensive
characterizations of these resultant fibres. This will facilitate a comparative analysis
with the fibres highlighted in Section 2, offering a more holistic understanding of

their properties and potential applications.

Refinement of the electrode's design and layout continues to be a focal area of research.
The intricacies of the design play an instrumental role not only in facilitating an
increase in channel capacity but also in substantially reducing the device's footprint.
For this project to achieve its intended impact, meticulous design optimization is
crucial. This would ensure that even within a compact form factor, the sensor can

capture an optimal amount of information.

In subsequent research, a thorough examination of neuron cell toxicity and responses

to the newly developed material needs to be undertaken. Additionally, there are plans

Conclusions and future of the research | 68

to evaluate ganglion neuron cells' reactions to the piezoelectric fibres, as well as the
device's electrodes. This analysis will involve using a patch clamp under a microscope,
with the intent to observe how these cells respond when stimulated by the device in

reaction to various audio signals.

References | 69

6.References

FDA, “What is a Cochlear Implant?,” 04 02 2018. [Online]. Available:
https://www.fda.gov/medical-devices/cochlear-implants/what-cochlear-
implant#:™:text=back%?20t0%20top%5D-,Who%20uses%20cochlear%20implants,to
%20benefit%20from%20cochlear%20implants..

N.L.E.D. M.R. M. R. M. P. H. B. K. Thompson, “Cochlear Implantation for Unilateral
and Asymmetric Hearing Loss: Long-Term Subjective Benefit.,” The Laryngoscope,

2023.

H. Cullington, “BCIG Annual UK Data Collection 01/04/2021 - 31/03/2022,” British
Cochlear Implant Group, Bradford, 2021.

British Cochlear Implant Group, “BCIG,” Yorkshire Auditory Implant Service,
[Online]. Available: https://www.bcig.org.uk/annual-uk-update/. [Accessed 14 02
2023].

US National Institute of Health, N/IDCD Fact Sheet - Hearing and Balance, US National
Institute of Health, 2019.

“Cochlear Implant Market Size, Share & Trends Analysis Report By Type of Fitting
(Unilateral Implants, Bilateral Implants), By End Use (Adult, Pediatric), By Region,
And Segment Forecasts, 2022 - 2030,” Grand view research, United States, 2021.

MIDCD | Hearing and Balance, “Cochlear Implants Fact sheet,” NIH publication, 2021.

(8]

[10]

[13]

References | 70

G. M. Clark, “The multiple-channel cochlear implant: the interface between sound
and the central nervous system for hearing, speech, and language in deaf people—a
personal perspective,” Philosophical transactions of the Royal Society of London, vol.

361, no. Series B, Biological sciences, pp. 791-810, 2006.

H. Li, L. Helpard, J. Ekeroot, S. A. Rohani, N. Zhu, H. Rask-Andersen, H. Ladak and S.
Agrawal, “Three-dimensional tonotopic mapping of the human cochlea based on
synchrotron radiation phase-contrast imaging,” Scientific Reports, vol. 11, no. 1, p.

4437, 2021.

H. C. Stronks, A. L. Tops, P. Hehrmann, J. J. Briaire and J. H. M. Frijns, “Personalizing
Transient Noise Reduction Algorithm Settings for Cochlear Implant Users,” Ear Hear,

vol. 42, no. 6, pp. 1602-1614, 2021.

W. Yost, Fundamentals of Hearing: An Introduction, Bingley: Brill, 2013.

J. C. Middlebrooks and D. M. Green, “Sound localization by human listeners,” Annual

Review of Psychology, vol. 42, no. 1, pp. 135-159, 1991.

B. GROTHE, M. PECKA and D. McALPINE, “Mechanisms of Sound Localization in
Mammals,” Physiological Reviews, vol. 90, no. 3, pp. 983-1012, 2010.

M. Vijaya, Piezoelectric Materials and Devices Applications in Engineering and

Medical Sciences, Boca Raton: CRC Press, 2013.

. P. Hoskins, K. Martin and A. Thrush, Diagnostic Ultrasound, Cambridge: Cambridge
Uiversity Prss, 2010.

K. NlIghtingale, “Acoustic Radiation Force Impulse (ARFI) Imaging: a Review,” N/H,
vol. 7, no. 4, p. 328-339, 2011.

[17]

[21]

References | 71

B. Ilik, A. Koyuncuoglu, O. Sardan-Sukas and H. Kiilah, “Thin film piezoelectric
acoustic transducer for fully implantable cochlear implants,” Sensors and Actuators A:

Physical, vol. 280, pp. 38-46, 2018.

T. Inaoka, H. Shintaku, T. Nakagawa, S. Kawano, H. Ogita, T. Sakamoto, S. Hamanishi,

H. Wada and]. Ito, “Piezoelectric materials mimic the function of the cochlear sensory

epithelium,” PNAS, vol. 108, no. 45, p. 18390-18395, 2011.

S. Park, X. Guan, Y. Kim and et al., “PVDF-Based Piezoelectric Microphone for Sound
Detection Inside the Cochlea: Toward Totally Implantable Cochlear Implants,” Sage

journals Trends in Hearing, vol. 22, pp. 1-11, 2018.

R. Pelrine, R. Kornbluh and G. Kofod, “High-Strain Actuator Materials Based on
Dielectric Elastomers,” Advanced Materials, vol. 12, no. 16, pp. 1223 - 1225, 2000.

A. Arrigoni, L. Brambilla, C. Bertarelli, G. Serra, M. Tommasini and C. Castiglioni,
“P(VDF-TrFE) nanofibers: structure of the ferroelectric and paraelectric phases
through IR and Raman spectroscopies,” RSC Advances, vol. 10, no. 62, p. 37779-37796,
2020.

I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, Boston: MIT Press, 2016.

Y. LeCun, Y. Bengio and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp.
436-44, 2015.

A. Alsobhani, H. M. A. A. Abboodi and H. Mahdi, “Speech Recognition using

Convolution Deep,” in Journal of Physics: Conference Series, 2021.

[25]

[28]

[30]

References | 72

O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn and D. Yu,
“Convolutional Neural Networks for Speech Recognition,” JEEE/ACM Transactions on

Audio, Speech, and Language Processing, vol. 22, no. 10, pp. 1533 - 1545, 2014.

C. Humphries, E. Liebenthal and J. Binder, “Tonotopic organization of human auditory

cortex,” Neurolmage, vol. 50, no. 3, pp. 1202-1211, 2010.

I. Gebeshuber and F. Rattay, “Coding efficiency of inner hair cells at the threshold of
hearing,” in Computational Models of Auditory Function, Amesterdam, IOS Press,

2001, pp. 5-16.

H. Heffner and R. Heffner, “Hearing Ranges of laboratory animals,” PubMed, vol. 46,
no. 1, pp. 20-22, 2007.

G. Varallyay, S. V. Legarth and T. Ramirez, “Music Lovers and Hearing Aids,”
Audiology Online, 26 02 2016. [Online]. Available:
https://www.audiologyonline.com/articles/music-lovers-and-hearing-aids-16478.

[Accessed 30 08 2022].

V. Giuseppe , C. Jinke , M. Thomas and et al., “Bioinspired Multiresonant Acoustic
Devices Based on Electrospun Piezoelectric Polymeric Nanofibers,” American

Chemical Society, vol. 12, no. 31, p. 34643-34657, 2020.

G. S. Nandini, S. Kumar and K. Chidananda , “Dropout technique for image
classification based on extreme learning machine,” Global Transitions Proceedings,

vol. 2, no. 1, pp. 111-116, 2021.

J.-C. Wang, H. Zheng, M.-W. Chang, Z. Ahmad and J.-S. Li, “Preparation of active 3D
film patches via aligned fiber electrohydrodynamic (EHD) printing,” Scientific reports,

vol. 7, no. 1, p. 43924, 2017.

[33]

[37]

[38]

References | 73

C. Chenhao, L. Xinlin, X. Wei and et at, “Electrohydrodynamic printing for demanding
devices: A review of processing and applications,” Nanotechnology Reviews, vol. 11,

no. 1, pp. 3305-3334, 2022.

T. H. Hwang, Y. J. Kim, H. Chung and W. Ryu, “Motionless Electrohydrodynamic
(EHD) Printing of Biodegradable Polymer Micro Patterns,” Microelectronic

Engineering, vol. 161, pp. 43-51, 2016.

I. Liashenko, J. Rosell-Llompart and A. Cabot, “Ultrafast 3D printing with
submicrometer features using electrostatic jet deflection,” Nature Communications,

vol. 11, no. 1, p. 753, 2020.

W. Song, “A smart sensor that can be woven into everyday life,” Nature, vol. 603, pp.

585-586, 2022.

P. Filip and P. Peer, “Characterization of Poly(Ethylene Oxide) Nanofibers—Mutual
Relations between Mean Diameter of Electrospun Nanofibers and Solution

Characteristics,” Processes, vol. 7, no. 12, p. 948, 2019.

H. E. Schneider, J. Steuber, W. Du, M. Mortazavi and D. Bullock, “Polyethylene Oxide
Nanofiber Production by Electrospinning,” Journal of the Arkansas Academy of

Science, vol. 70, no. 1, pp. 211-, 2016.

Appendix A

| 74

Appendix A

MATLAB code for initial speech recognition.

A.1 Main code:

%% Cleaning the cache
clc

clear

close all

% Openning and sorting files
filelist = dir("*.csv");
counterBegin = 0;
counterEnd =1;

counter = 0;

fs = 10000;
numberofTrials = 1;
TrainingSetCounter = 1;
TestSetCounter =1;
ValicationSetCounter = 1;
TrainingSet = 0;

for i =[1,2,3,6,8,9,10,12,14,15,16,17,18,19] % size(filelist,

counter = counter +1
name = filelist(i, 1).name;
TF = isstrprop(name, 'alpha');
file = readmatrix(filelist(i, 1).name);
% Finding the Angle from file name
for k = 1:size(TF,2)

numNull = 9;

if TF(k) == ©

Anglestr(k)= name(k);
else
break;

end
end
if length(Anglestr)>3

Angle = str2num(Anglestr(1:3));

clear k;

else

Angle = str2num(Anglestr);

clear k;

end

% Finiding the range and the peaks
F = file(:,2);
t = file(:,1);
[maxPeak,maxLoc]
[minPeak,minLoc] = findpeaks(-F,t, 'MinPeakDistance',3.6);

minPeak = -1 * minPeak;

minCorr = minPeak(minPeak>100);
maxCorr = maxPeak(maxPeak<16090);

if size(minCorr,1) > ©
for countOutMin=1:size(minCorr,1)
outliermin = find(minPeak>100);
minLoc(outliermin) = [];
minPeak(minPeak>100) = [];
end
else
minLoc;
end

1)

findpeaks(F,t, 'MinPeakDistance',1, 'Threshold',le-5);

Appendix A | 75

if size(maxCorr,1) > ©
for countOutMax=1:size(maxCorr,1)
outliermax = find(maxPeak<16090);
maxLoc(outliermax) = [];
maxPeak (maxPeak<1600) = [];
end
else
maxLoc;
end

if minLoc(1) < maxLoc(1)
minLoc(1) = [];
minPeak(1l) = [];

else
minPeak;

end

if size(minLoc,1) < size(maxLoc,1)
maxLoc(end) = [];
maxPeak(end) = [];
else
maxPeak;
end
clear countOutMax countOutMin minCorr maxCorr outliermin outliermax;

data_start = find(t == maxLoc(1));
% Universal Counter fror data
counterBegin = counterEnd;

counterend = counterEnd + size(file(data_start:end,1),1)-1;

% Finding the trial starting point for segmentation
SamplePoint = size(minPeak,1);

Correction
Correction(1)

ones(size(SamplePoint));
0;

% Spliting data into training, test and validation
TrainingSet = TrainingSet + size(minlLoc,1);

% Filtering the Data

Ch_Filtered(:,1) = bandpass(file(data_start:end,3),[95 1505],fs); % Channel
Ch_Filtered(:,2) = bandpass(file(data_start:end,4),[95 1505],fs); % Channel
Ch_Filtered(:,3) bandpass(file(data_start:end,5),[95 1505],fs); % Channel
Ch_Filtered(:,4) bandpass(file(data_start:end,6),[95 1505],fs); % Channel

% Making the training, testing and validating set
for pointcount=1:size(minLoc)
startPoint(pointcount,1) = find(t == maxLoc(pointcount))- data_start+1;
endPoint(pointcount,1) = find(t == minLoc(pointcount))- data_start+l;
end
o =1;
for n = TrainingSetCounter:TrainingSet
DataTraining(1l, :) = Ch_Filtered(startPoint(o):endPoint(0),1);
DataTraining(2, :) Ch_Filtered(startPoint(o):endPoint(0),2); % Channel 2
DataTraining(3, :) Ch_Filtered(startPoint(o):endPoint(0),3); % Channel 3
DataTraining(4, :) = Ch_Filtered(startPoint(o):endPoint(0),4); % Channel 4

AP wWN R

Appendix A | 76

end

%%
for

DataTrainingTarget(1l, n) = Angle;

XtestPiezo(n,1)= {DataTraining};
clear DataTraining;

0 = 0+1;

end

TrainingSetCounter = TrainingSet+1;

clear 1 Anglestr Ch_Filtered Angle n i m TF;

i =7 % size(filelist, 1)
counter = counter +1
name = filelist(i, 1).name;
TF = isstrprop(name, 'alpha');
file = readmatrix(filelist(i, 1).name);
% Finding the Angle from file name
for k = 1:size(TF,2)
numNull = 0;
if TF(k) ==
Anglestr(k)= name(k);
else
break;
end
end
Angle = str2num(Anglestr(1:3));
clear k;

% Finiding the range and the peaks
F = file(:,2);
t = file(:,1);

[maxPeak,maxLoc] = findpeaks(F,t, 'MinPeakDistance',2);
[minPeak,minLoc] = findpeaks(-F,t, 'MinPeakDistance',3.6);
minPeak = -1 * minPeak;

minCorr = minPeak(minPeak>10);

maxCorr = maxPeak(maxPeak<490);

if size(minCorr,1) > @
for countOutMin=1:size(minCorr,1)
outliermin = find(minPeak>110);
minLoc(outliermin) = [];
minPeak (minPeak>110) = [];
end
else
minLoc;
end

if size(maxCorr,1) > ©
for countOutMax=1:size(maxCorr,1)
outliermax = find(maxPeak<490);
maxLoc(outliermax) = [];
maxPeak(maxPeak<490) = [];

Appendix A | 77

end
else

maxLoc;
end

if minLoc(1l) < maxLoc(1)
minLoc(1) = [];
minPeak(1) = [];

else
minPeak;

end

if size(minLoc,1) < size(maxLoc,1)
maxLoc(end) = [];
maxPeak(end) = [];
else
maxPeak;
end
clear countOutMax countOutMin minCorr maxCorr outliermin outliermax;

data_start = find(t == maxLoc(1));
% Universal Counter fror data
counterBegin = counterEnd;

counterEnd = counterEnd + size(file(data_start:end,1),1)-1;

% Finding the trial starting point for segmentation
SamplePoint = size(minPeak,1);

ones(size(SamplePoint));
0;

Correction
Correction(1)

% Spliting data into training, test and validation
TrainingSet = TrainingSet + size(minLoc,1);

% Filtering the Data

Ch_Filtered(:,1) = bandpass(file(data_start:end,3),[95 1505],fs); % Channel
Ch_Filtered(:,2) = bandpass(file(data_start:end,4),[95 1505],fs); % Channel
Ch_Filtered(:,3) = bandpass(file(data_start:end,5),[95 1505],fs); % Channel
Ch_Filtered(:,4) = bandpass(file(data_start:end,6),[95 1505],fs); % Channel

% Making the training, testing and validating set
for pointcount=1:size(minLoc)
startPoint(pointcount,1) = find(t == maxLoc(pointcount))- data_start+1;
endPoint(pointcount,1) = find(t == minLoc(pointcount))- data_start+l;
end
o =1;
for n = TrainingSetCounter:TrainingSet

DataTraining(1l, :) = Ch_Filtered(startPoint(o):endPoint(0),1); % Channel 1
DataTraining(2, :) = Ch_Filtered(startPoint(o):endPoint(0),2); % Channel 2
DataTraining(3, :) = Ch_Filtered(startPoint(o):endPoint(0),3); % Channel 3
DataTraining(4, :) = Ch_Filtered(startPoint(o):endPoint(0),4); % Channel 4

DataTrainingTarget(1l, n) = Angle;

XtestPiezo(n,1)= {DataTraining};
clear DataTraining;
0 = o+l;

A wWN PR

Appendix A

|78

end
TrainingSetCounter = TrainingSet+1;

clear 1 Anglestr Ch_Filtered Angle n i m TF;

end

%% 100 to 1500

for i =[4, 11] % size(filelist, 1)
counter = counter +1
name = filelist(i, 1).name;
TF = isstrprop(name, 'alpha');

file = readmatrix(filelist(i, 1).name);

% Finding the Angle from file name
for k = 1:size(TF,2)
numNull = ©;
if TF(k) ==
Anglestr(k)= name(k);
else
break;
end
end

Angle = str2num(Anglestr(1:3));

clear k;

% Finiding the range and the peaks
F = file(:,2);
t = file(:,1);
[maxPeak,maxLoc]
[minPeak,minLoc]

minPeak = -1 * minPeak;

minCorr = minPeak(minPeak>100);
maxCorr = maxPeak(maxPeak<1500);

if size(minCorr,1) > @
for countOutMin=1:size(minCorr,1)

outliermin = find(minPeak>109);

minLoc(outliermin) = [];
minPeak (minPeak>100) = [];
end
else
minLoc;
end

if size(maxCorr,1) > ©
for countOutMax=1:size(maxCorr,1)

outliermax = find(maxPeak<1500);

maxLoc(outliermax) = [];
maxPeak (maxPeak<1500) = [];
end
else
maxLoc;
end

if maxLoc(1) < minLoc(1)
maxLoc(1l) = [];

findpeaks(F,t, '"MinPeakDistance',1, 'Threshold',le-5);
findpeaks(-F,t, '"MinPeakDistance',3.6);

Appendix A | 79

maxPeak(1) = [];
else

maxPeak;
end

if size(maxLoc,1) < size(minLoc,1)
minLoc(end) = [];
minPeak(end) = [];
else
minPeak;
end
clear countOutMax countOutMin minCorr maxCorr outliermin outliermax;

data_start = find(t == minLoc(1));
% Universal Counter fror data
counterBegin = counterEnd;

counterend = counterkEnd + size(file(data_start:end,1),1)-1;

% Finding the trial starting point for segmentation
SamplePoint = size(minPeak,1);

Correction
Correction(1)

ones(size(SamplePoint));
0;

% Spliting data into training, test and validation
TrainingSet = TrainingSet + size(minLoc,1);

% Filtering the Data

Ch_Filtered(:,1) = bandpass(file(data_start:end,3),[95 1505],fs); % Channel
Ch_Filtered(:,2) = bandpass(file(data_start:end,4),[95 1505],fs); % Channel
Ch_Filtered(:,3) = bandpass(file(data_start:end,5),[95 1505],fs); % Channel
Ch_Filtered(:,4) = bandpass(file(data_start:end,6),[95 1505],fs); % Channel

% Making the training, testing and validating set
for pointcount=1:size(minLoc)
startPoint(pointcount,1) = find(t == minLoc(pointcount))- data_start+1;
endPoint(pointcount,1) = find(t == maxLoc(pointcount))- data_start+l;
end
o =1;
for n = TrainingSetCounter:TrainingSet

DataTraining(1l, :) = Ch_Filtered(startPoint(o):endPoint(0),1); % Channel 1
DataTraining(2, :) = Ch_Filtered(startPoint(o):endPoint(0),2); % Channel 2
DataTraining(3, :) = Ch_Filtered(startPoint(o):endPoint(0),3); % Channel 3
DataTraining(4, :) = Ch_Filtered(startPoint(o):endPoint(0),4); % Channel 4

DataTrainingTarget(1, n) = Angle;

XtestPiezo(n,1)= {DataTraining};
clear DataTraining;

0 = o+1;

end

TrainingSetCounter = TrainingSet+1;

clear 1 Anglestr Ch_Filtered Angle n i m TF;

end

AP wWN R

Appendix A | 80

minLoc(end) = [];
minPeak(end) = [];

else
minPeak;

end

clear countOutMax countOutMin minCorr maxCorr outliermin outliermax;

data_start = find(t == minLoc(1));
% Universal Counter fror data

counterBegin = counterEnd;
counterknd counterknd + size(file(data_start:end,1),1)-1;

% Finding the trial starting point for segmentation
SamplePoint = size(minPeak,1);

ones(size(SamplePoint));
0;

Correction
Correction(1)

% Spliting data into training, test and validation
TrainingSet = TrainingSet + size(minLoc,1);

% Filtering the Data

Ch_Filtered(:,1) = bandpass(file(data_start:end,3),[95 1505],fs);
Ch_Filtered(:,2) bandpass(file(data_start:end,4),[95 1505],fs);
Ch_Filtered(:,3) bandpass(file(data_start:end,5),[95 1505],fs);
Ch_Filtered(:,4) bandpass(file(data_start:end,6),[95 1505],fs);

% Making the training, testing and validating set
for pointcount=1:size(minLoc)
startPoint(pointcount,1) = find(t == minLoc(pointcount))- data_start+1;
endPoint(pointcount,1) = find(t == maxLoc(pointcount))- data_start+l;
end
o=1;
for n = TrainingSetCounter:TrainingSet

DataTraining(1l, :) = Ch_Filtered(startPoint(o):endPoint(o0),1); % Channel 1
DataTraining(2, :) = Ch_Filtered(startPoint(o):endPoint(0),2); % Channel 2
DataTraining(3, :) = Ch_Filtered(startPoint(o):endPoint(0),3); % Channel 3
DataTraining(4, :) = Ch_Filtered(startPoint(o):endPoint(0),4); % Channel 4

DataTrainingTarget(1, n) = Angle;

XtestPiezo(n,1)= {DataTraining};
clear DataTraining;

0 = o+1;

end

TrainingSetCounter = TrainingSet+1;

clear 1 Anglestr Ch_Filtered Angle n i m TF;

end

YtestPiezo = categorical(DataTrainingTarget');
YtestPiezo = removecats(YtestPiezo);
save('TestingDatal', 'XtestPiezo', 'YtestPiezo');

Appendix A | 81

A.2 Creating the images for CNN

function helperGenerateTFDfilesCombined(parentDir,dataDir,wav,truth)

[~,~,~] = mkdir(fullfile(parentDir,dataDir));
modTypes = unique(truth);

for idxM = 1:length(modTypes)

modType = modTypes(idxM);

[~,~,~] = mkdir(fullfile(parentDir,dataDir,char(modType)));
end

for idxW = 1:length(truth)
sigl = wav{idxW}(1,:);
sig2 = wav{idxW}(2,:);
sig3 = wav{idxW}(3,:);
sigd = wav{idxW}(4,:);

nfft = 2”nextpow2(length(sigl(1,:)));
f = (0:(nfft/2-1))/nfft*10000;

Z1 = fft(sigl(1,:),nfft);
22 = fft(sig2(1,:),nfft);
Z3 = fft(sig3(1,:),nfft);
Z4 = fft(siga(1,:),nfft);

ampl = abs(Z1(1:4966))./max(abs(Z1));
amp2 = abs(Z2(1:4966))./max(abs(Z2));
amp3 = abs(Z3(1:4966))./max(abs(Z3));
amp4 = abs(Z4(1:4966))./max(abs(Z4));

% Finding FFT peaks
% Channel 1
[maxPeakl,maxLocl] =

findpeaks(ampl,f(1:4966), 'MinPeakDistance',3, 'Threshold',le-3);
% Channel 2
[maxPeak2,maxLoc2] =

findpeaks(amp2,f(1:4966), 'MinPeakDistance',3, 'Threshold',1le-3);
% Channel 3
[maxPeak3,maxLoc3] =

findpeaks(amp3,f(1:4966), 'MinPeakDistance',3, 'Threshold',le-3);
% Channel 4
[maxPeak4,maxLoc4] =

findpeaks(amp4,f(1:4966), 'MinPeakDistance',3, 'Threshold',1le-3);

% Creating scatter diagram using FFT data
sl = scatter(maxLocl,maxPeakl, 'k', 'filled");
TFD1 = getframe;

s2 = scatter(maxLoc2,maxPeak2, 'k', 'filled");
TFD2 = getframe;

s3 = scatter(maxLoc3,maxPeak3, 'k', " 'filled");
TFD3 = getframe;

s4 = scatter(maxLoc4,maxPeak4d, 'k', 'filled");
TFD4 = getframe;

Appendix A | 82

% Combining the 4 images into 1
multil = cat(2,TFD1.cdata,TFD2.cdata);
multi2 = cat(2,TFD3.cdata,TFD4.cdata);
multi cat(1,multil,multi2);

TFD
TFD
TFD

imresize(multi,[227 227]);
rescale(TFD);
imcomplement (TFD);

modType = truth(idxW);
imwrite(TFD,fullfile(parentDir,dataDir,char(modType),sprintf('%d.png',idxW)))

end
end

A3 creating temp files for Training, Testing and Validation the neural network

clc
clear

%% Create Directory Training sets
load('TestingDatal.mat');

XtestPiezo;
YtestPiezo;

XTrain
YTrain

parentDir = tempdir;
dataDir = 'TFDDatabaseFFT1';

%helperGenerateTFDfilesCombined(parentDir,dataDir,XTrain,YTrain, 10e5)

helperFFTGenerateTFDfilesCombined(parentDir,dataDir,XTrain,YTrain)

%% Create Image Store database

folder = fullfile(parentDir,databDir,{'0','30','60','90", '120', '150',...
'180','210','240','270', '300', '330'});

imds = imageDatastore(folder,...

'"FileExtensions','.png', 'LabelSource', 'foldernames', 'ReadFcn',@readTFDForSqueezeNe
t);

[imdsTrain, imdsTest,imdsValidation] = splitEachlLabel(imds,0.8,0.1);

Appendix B: | 83

Appendix B:

Arduino multichannel data collection code.
GitHub link:

https://github.com/abmoineddini/MPhil sound localisation/tree/main/Hardware co

ntrollers/analog data collection

/* Arduino Mega Data Collection
* by: Amirbahador Moineddini
* date: November 10th, 2021
* V1 Data collection

/* Pin Setup
* A5 Channel 1
* A8 Channel 2
* Al2 Channel 3
* Al4 Channel 4

void setup() {
// put your setup code here, to run once:
Serial.begin(2000000);
pinMode (A5, INPUT); // Channel
pinMode (A8, INPUT); // Channel
pinMode(A12, INPUT); // Channel
pinMode(A14, INPUT); // Channel

A WN PR

void loop() {
// put your main code here, to run repeatedly:
Serial.print(analogRead(A5));
Serial.print(",");
Serial.print(analogRead(A8));
Serial.print(",");
Serial.print(analogRead(A12));

Serial.print(",");
Serial.println(analogRead(A12));

https://github.com/abmoineddini/MPhil_sound_localisation/tree/main/Hardware_controllers/analog_data_collection
https://github.com/abmoineddini/MPhil_sound_localisation/tree/main/Hardware_controllers/analog_data_collection

Appendix C | 84

Appendix C

Python codes for data collection, preprocessing the data, plotting figures and training,
testing and validation of the Speech Recognition.

GitHub link: https://github.com/abmoineddini/MPhil speech recognition

C.1. main.py code:

from DataCollector import *

import matplotlib.pyplot as plt

import os

import pandas as pd

from os import listdir

from DataCollector import playAudioFile
import winsound

import glob

from PreprocessorSpeechrecognition import figure_maker, Classifier,
PreprocessingMeth2

from csv import writer

dataCollection = True
CheckPort = input("Would you like to Start collecting Data : ")

if CheckPort == "y" or CheckPort == "Y" or CheckPort == "Yes" or CheckPort ==
"yes":

COMPort = input("Please Enter COM Port: ")

print(COMPort)

CheckPort = input("Is that Correct?")
Method = input("Continious or Individual Collections? ")

while dataCollection:
if Method == 1:

AudioFiles = [f for f in listdir("AudioFiles/")]

for i in AudioFiles:
Name = i
print(Name)
print("here™)
Period = 30
print("Startting to Collect Data for: ", Period, '(s)')
CheckPeriod = input("Is that Correct?")

if CheckPeriod == "n" or CheckPeriod == "N" or CheckPeriod ==
"no" or CheckPeriod == "No":
Period = input("Please Enter the Desired Time Period: ")
print(Period)

print("Starting to Collect Data for: ", Period, '(s)')
CheckName = input("Is that Correct?")

AudioFileName = "AudioFiles/" + Name

winsound.PlaySound(AudioFileName, winsound.SND_ASYNC |
winsound.SND_ALIAS)

CSVName = Name.replace('.wav', '")

NameTest = True

TrainingDataDirectory = [f for f in listdir("TrainingData")]

https://github.com/abmoineddini/MPhil_speech_recognition

Appendix C | 85

testNum = 1
while NameTest:
CSVNameCheck = CSVName + '-Test'+ str(testNum) + '.csv'
if CSVNameCheck in TrainingDataDirectory:
print("File Already exist, Trying another name.")
testNum = testNum+l
else:
CSVName = CSVName + '-Test'+ str(testNum)
NameTest = False
print(CSVName)
[Channell, Time] = collectData(COMPort, Period, CSVName)
plt.plot(Time, Channell)
plt.show()
winsound.PlaySound(None, winsound.SND_PURGE)
DataCheck = input("Are you happy with the Data? ")

while DataCheck == "n" or DataCheck == "N" or DataCheck ==
"no" or DataCheck == "No":
Nametoremove = "TrainingData/" + CSVName + ".csv"

os.remove(Nametoremove)

winsound.PlaySound(AudioFileName, winsound.SND_ASYNC |
winsound.SND_ALIAS)

[Channell, Time] = collectData(COMPort, Period, CSVName)

plt.plot(Time, Channell)

plt.show()

winsound.PlaySound(None, winsound.SND_PURGE)

DataCheck = input("Are you happy with the Data? ")

else:
AudioFiles = [f for f in listdir("AudioOriginal™)]
for i in AudioFiles:
Name = i
print(Name)
print("here")

AudioFileName = "AudioOriginal/" + Name

CSVName = Name.replace('.wav', "")

NameTest = True

TrainingDataDirectory = [f for f in listdir("TrainingData")]
testNum = 1

while NameTest:
CSVNameCheck = CSVName + '-Test'+ str(testNum) + '.csv'
if CSVNameCheck in TrainingDataDirectory:
print("File Already exist, Trying another name.")
testNum = testNum+l
else:
CSVName = CSVName + '-Test'+ str(testNum)

Appendix C | 86

NameTest = False

print (CSVName)

[Channell, Time] = collectDataMet2(COMPort, CSVName,
AudioFileName)

plt.plot(Time, Channell)

plt.show()

winsound.PlaySound(None, winsound.SND_PURGE)

DataCheck = 'y'

while DataCheck == "n" or DataCheck == "N" or DataCheck ==
"no" or DataCheck == "No":

Nametoremove = "TrainingData/" + CSVName + ".csv"

os.remove(Nametoremove)

winsound.PlaySound(AudioFileName, winsound.SND_ASYNC |
winsound.SND_ALIAS)
[Channell, Time] = collectDataMet2(COMPort, CSVName,

AudioFileName)
plt.plot(Time, Channell)
plt.show()
winsound.PlaySound(None, winsound.SND_ PURGE)
DataCheck = input("Are you happy with the Data? ")
ToContinue = 'y'
if ToContinue == "n" or ToContinue == "N" or ToContinue == "No" or
ToContinue == "no":

dataCollection = False

StartPreprocessing = input("Should I Start the Preprocessing? ")

if StartPreprocessing == "y" or StartPreprocessing == "Y" or
StartPreprocessing == "Yes" or StartPreprocessing == "yes":

if os.path.isdir("Figure/Training"):
print("Adding to Figure Directory™)
else:
os.mkdir("Figure/Training")
os.mkdir("Figure/Testing")

csv_files = glob.glob(os.path.join("TrainingData/", "*.csv"))

for x in csv_files[0:]:
dataFileName = x

print(x)

NAMEunprocessed = x.replace(".csv", "")
NAMEunprocessed = NAMEunprocessed.split("\\")
NAMEunprocessed = NAMEunprocessed[1]

NAMEunprocessed = NAMEunprocessed.split("-")
x = NAMEunprocessed[0]
x = x[2:1en(x)]

Appendix C | 87

check = 0
if os.path.isfile("ProcessedData.csv"):
print("Processed data collector Already exists™)

PDCL = pd.read_csv("ProcessedData.csv")
print(PDCL)

ProcessedDataChecklist = PDCL.to_numpy()
ProcessedDataChecklist = ProcessedDataChecklist[:]

if dataFileName in ProcessedDataChecklist:
check = 1
continue

if check == 0:
[FolderSTFTTraining, FolderSTFTTesting] = Classifier(x)

df = pd.read _csv(dataFileName)
data = df.to_numpy()
print(dataFileName)

if len(data)>40000:
figure _maker(data, FolderSTFTTraining, FolderSTFTTesting,
dataFileName)
else:
PreprocessingMeth2(data, FolderSTFTTraining,
FolderSTFTTesting, dataFileName)

if os.path.isfile("ProcessedData.csv"):
with open("ProcessedData.csv", 'a+' ,newline="'"') as f_object:
writer_object = writer(f_object)
writer_object.writerow([dataFileName])
f _object.close()
else:
dict = {"File Name": [dataFileName]}
df = pd.DataFrame(dict)
df.to_csv("ProcessedData.csv")

print("Finished Creating Relevant Files")

StartTraining = input("Should I Start the Training? ")
while StartTraining == "n" or StartTraining == "N" or StartTraining == "no" or
StartTraining == "No":

StartTraining = input("Should I Start the Training? ")

trainingSTFT = "Figure/Training"
testingSTFT = "Figure/Testing"

Appendix C | 88

from MachinelLearning import *

img_size = 64

STFT Training

[STFTModel, acc, val _acc, loss, val loss]= CNN_Training(trainingSTFT,
testingSTFT, 150, LearningRate=0.0001, dataType="STFT", img_size=img_size)

STFTModel.save("VoiceRecCNN")

for i in range(len(acc)):
FileAdd = [acc[i], val_acc[i], loss[i], val _loss[i]]
with open("AccuracyHistory.csv", 'a+', newline='") as f_object:
writer_object = writer(f_object)
writer_object.writerow(FileAdd)
f object.close()

FileAdd = []

Testinig Peformance
print("STFT CNN Test result")
[y_val, predictions] = TestingNetwrok(STFTModel, testingSTFT, img_size)

for i in range(len(y_val)):
FileAdd = [y _val[i], predictions[i]]
with open("TestingValidationCNN.csv",
writer_object = writer(f_object)
writer_object.writerow(FileAdd)
f _object.close()
FileAdd = []

a+', newline='') as f_object:

STFTmodelName = 'STFTModel.yaml'

Save_CNN(STFTModel, Name=STFTmodelName)

Appendix C

| 89

C.2. DataCollector.py
import serial
import winsound
import pandas as pd

def playAudioFile(Name):

winsound.PlaySound(Name, winsound.SND_ASYNC | winsound.SND_ALIAS)

def collectData(COMPort, Period, Name):
arduino = serial.Serial(COMPort , 2000000, timeout=1)
Channell = []

Time = []
#def animate(xVval, yval):
period = int(Period)
period = int(period*4000/3.5)
for i in range(period):

line = arduino.readline()

if line != (""):

print(line)
try:
string = line.decode()
except:
print("ignored")
else:

numS = string.replace("\r\n", ')
if numS.split(" ")[0].isdigit():

Channell.append(int(numS.split(" ")[0]))

Time.append(i/4000/3.5)
print(i)
arduino.close()
import pandas as pd

dict = {'Time (s)' : Time, 'Channel 1 (V)': Channell}#,

df = pd.DataFrame(dict)
dataBaseName = "TrainingData/" + Name +
df.to csv(dataBaseName)

.CSVv

return [Channell, Time]

import time

def collectDataMet2(COMPort, Name, AudioFileName):
Voltage = []
Time = []
dataCollection = False
dataAvailability = True

Appendix C |90

sR = 4000/3.5
i=20
j=20
arduino = serial.Serial(COMPort , 2000000, timeout=1)
line = arduino.readline()
time.sleep(1)
winsound.PlaySound(AudioFileName, winsound.SND_ASYNC | winsound.SND_ALIAS)
while dataAvailability:
line = arduino.readline()
if line != ('"):
print("start collecting")
print(line)
try:
string = line.decode()
except:
print("ignored")
else:
nums

string.replace("\r\n", '")
numS = numS.split(™ ")
numS = numS[0]
if numS.isdigit():
print(int(numS))
if int(numS) < 300:
dataCollection = False
else:
print("Trigger")
dataCollection = True
Voltage.append(int(numS))
Time.append(i / sR)
i=1+1
j = 5000/2
while dataCollection:
line = arduino.readline()
print(line)
print("collecting Data")
print(line)
if line != ('"):
try:
string = line.decode()
except:
print("ignored")
else:
numS = string.replace("\r\n", '")
numS= numS.split(" ")
numS = numS[0Q]
print(numsS)
if numS.isdigit():
if int(numS) < 300:

Appendix C |91

j=3-1
else:

pass
Voltage.append(int(numS))
print(numS)
Time.append(i / sR)
i=1i+1

if j < 1:
dataCollection = False
dataAvailability = False

arduino.close()
dict = {'Time (s)': Time, 'Channel 1 (V)': Voltage}

df = pd.DataFrame(dict)

dataBaseName = "TrainingData/" + Name + ".csv"
df.to _csv(dataBaseName)

print(dataBaseName)

return Voltage, Time

Appendix C | 92

C.3. preprocessingSpeechrecognition.py

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import scipy.signal as sig
from SectionCutting import *
import os

from os import listdir

from os.path import isdir

from PIL import Image

def figure_maker(data, FolderSTFTTraining, FolderSTFTTesting, FileName):
time = data[75:1len(data)-1, 1]
voltage = data[75:1len(data)-1, 2]
Fs = 4000
detenV = sig.detrend(voltage)
filter = sig.butter(2, [95, 1500], 'bandpass', fs=4000, output='sos')
corrVoltage = sig.sosfilt(filter, detenV)
corrVoltage = (corrVoltage*5)/1023
TrainingDirectory = [f for f in listdir(FolderSTFTTraining)]
TestDirectory = [f for f in listdir(FolderSTFTTesting)]

countTrain = int(len(TrainingDirectory))

countTest = int(len(TestDirectory))

maxV = max(corrVoltage)

normV = corrVoltage/maxV

seperationPoints = SectionCutting(normV, time, FileName)

N = len(seperationPoints)
Arr = np.arange(N)
np.random.shuffle(Arr)
Training = Arr[:round(N*0.8)]

for i in range(1,N-1):
Vshow = normV[seperationPoints[i]:seperationPoints[i+1]]

figd = plt.figure()

ax0 = plt.Axes(fige, [0., 0., 1., 1.])

plt.style.use('dark_background')

plt.scatter(time[seperationPoints[i]:seperationPoints[i+1]], Vshow,
c=abs(Vshow*Vshow), s=abs(Vshow))

plt.gray()

plt.axis('off")

ax0@.set _axis off()

plt.tight_layout()

plt.show()

Appendix C |93

fig0.savefig('ScattTestingFigure.png', bbox_inches="tight’,
pad_inches=0)

f1, t1, Zxx1l = sig.stft(Vshow, Fs, nperseg=1000)

figl = plt.figure(frameon=False)

axl = plt.Axes(figl, [0., ©., 1., 1.])

plt.pcolormesh(tl, f1, np.abs(Zxx1), shading='gouraud', cmap='gray')

plt.axis('off")

plt.ylim([90, 500])

axl.set_axis_off()

plt.tight_layout()

plt.show()

figl.savefig('STFTTestingFigure.png', bbox_inches="tight',
pad_inches=0)

def ProcessIm(Iml, Im2, fileName):

imagel = Image.open(Iml)
imagel = imagel.rotate(99)
image2 = Image.open(Im2)

imagel_size = imagel.size

new_image = Image.new('RGB', (2 * imagel_size[0], imagel_size[1]),
(250, 250, 250))

new_image.paste(imagel, (9, 9))

new_image.paste(image2, (imagel size[@], 0))

new_image.save(fileName)

if i in Training:
nameTrain = str(countTrain)
countTrain += 1
FileName = FolderSTFTTraining + "/" + nameTrain + '.png'
print(FileName)
ProcessIm('STFTTestingFigure.png', 'ScattTestingFigure.png',

FileName)
else:

nameTest = str(countTest)

countTest += 1

FileName = FolderSTFTTesting + "/" + nameTest + '.png’

print(FileName)

ProcessIm('STFTTestingFigure.png', 'ScattTestingFigure.png',
FileName)

os.remove("STFTTestingFigure.png")
os.remove("ScattTestingFigure.png")

def Classifier(x):
classification = x

Appendix C | 94

FolderSTFTTraining = "Figure/Training/"+ classification
FolderSTFTTesting = "Figure/Testing/"+ classification

if isdir(FolderSTFTTraining):
print("Folders Already Excits!")
else:
os.mkdir(FolderSTFTTraining)
os.mkdir(FolderSTFTTesting)
print("Folder for", classification, "made!")
return [FolderSTFTTraining, FolderSTFTTesting]

def PreprocessingMeth2(data, FolderSTFTTraining, FolderSTFTTesting,
dataFileName):

time = data[@:len(data)-4000, 1]

voltage = data[@:len(data)-4000, 2]

Fs = 4000

TrainingDirectory = [f for f in listdir(FolderSTFTTraining)]
TestDirectory = [f for f in listdir(FolderSTFTTesting)]
detenV = sig.detrend(voltage)

filter = sig.butter(2, [95, 1500], 'bandpass', fs=4000, output='sos')
corrVoltage = sig.sosfilt(filter, detenV)
corrVoltage = (corrVoltage*5)/1023

maxV = max(corrVoltage)
normV = corrVoltage/maxV

countTrain = int(len(TrainingDirectory))
countTest = int(len(TestDirectory))

figd = plt.figure()

ax0 = plt.Axes(figo, [0., 0., 1., 1.])

plt.style.use('dark_background")

plt.scatter(time, normV, c=abs(normV * normV), s=abs(normV))

plt.gray()

plt.axis('off")

ax0@.set axis off()

plt.tight_layout()

plt.show()

fig@.savefig('ScattTestingFigure.png', bbox_inches="tight', pad_inches=0)

f1, t1, Zxx1 = sig.stft(normV, Fs, nperseg=1000)

figl = plt.figure(frameon=False)

axl = plt.Axes(figl, [0., ©., 1., 1.])

plt.pcolormesh(tl, f1, np.abs(Zxx1l), shading='gouraud', cmap='gray')
plt.axis('off")

plt.ylim([90, 500])

Appendix C | 95

axl.set _axis off()

plt.tight_layout()

plt.show()

figl.savefig('STFTTestingFigure.png', bbox_inches="'tight', pad_inches=0)

Training = [1, 3, 4]
def ProcessIm(Iml, Im2, fileName):

imagel = Image.open(Iml)
imagel = imagel.rotate(90)

image2 = Image.open(Im2)

imagel_size = imagel.size

new_image = Image.new('RGB', (2 * imagel_size[©0], imagel_size[1]),
(250, 250, 250))

new_image.paste(imagel, (9, 0))

new_image.paste(image2, (imagel_size[©@], ©))

new_image.save(fileName)

i = randint(1, 4)
if i in Training:
nameTrain = str(countTrain)
countTrain += 1
FileName = FolderSTFTTraining + "/" + nameTrain + '.png'
print(FileName)
ProcessIm('STFTTestingFigure.png', 'ScattTestingFigure.png', FileName)

else:
nameTest = str(countTest)
countTest += 1
FileName = FolderSTFTTesting + "/" + nameTest + '.png'
print(FileName)
ProcessIm('STFTTestingFigure.png', 'ScattTestingFigure.png', FileName)

os.remove("STFTTestingFigure.png")
os.remove("ScattTestingFigure.png")

Appendix C | 96

C.4. SectionCutting.py

import matplotlib.pyplot as plt
import pandas as pd

import numpy as np

import scipy.signal as sig
from random import randint

def SectionCutting(V, t, FileName):
seperation = []
seperation.append(9)
time = t
voltage = V

uplowBoundNull = @.1
perofMaxVal = 0.7
binSize = 100
perNullDen = 0.6
perMaxDen = 0.7

t = time[0: 70000]
fderenV = V[0: 70000]

maxVal = max(fderenV)

Nullpeaks, _ = sig.find_peaks(fderenV, height=(-uplowBoundNull,
uplowBoundNull))

smallPeaks, = sig.find _peaks(fderenV, distance= 4000, height=(0.01,
0.05))

peaks, _ = sig.find_peaks(fderenV, height=perofMaxVal*maxVval)

f, (a0, al, a2) = plt.subplots(3, 1, gridspec_kw={"height_ratios':
[10,3,3]})

#plt.subplot(3, 1, 1)

a0.plot(t, fderenV, linewidth=0.1, label="Signal")

a0.scatter(t[Nullpeaks], fderenV[Nullpeaks], color='red', label="Low
amplitude peaks")

a0.scatter(t[peaks], fderenV[peaks], color='green', label="Large amplitude
peak")

a0.set_ylabel('Voltage (V)', fontsize=20)

a0.set_xlabel('Time (s)', fontsize=20)

a0.xaxis.tick_top()

a0.xaxis.set_label position('top')

a0.legend(loc="upper right")

a0.set xlim([@, 17.5])

Appendix C |97

NullpeakDensity, NullpeakRange, _ = al.hist(Nullpeaks, bins=binSize,
facecolor="r', alpha=1, edgecolor='k', linewidth=1)

al.set title('low amplitude Peak Distribution Density', fontsize=20)

al.set_xticks([])

al.set xlim([0@, 70000])

peakDensity, peakRange, _ = a2.hist(peaks, bins=binSize, facecolor='g’,
alpha=1, edgecolor="k', linewidth=1)

a2.set_title('Signal Peak Distribution Density', fontsize=20)

f.text(-0.025, 0.3, 'Density', va='center', rotation='vertical',
fontsize=20)

a2.set_xticks([])

a2.set xlim([0, 70000])

plt.rc('font', family='Helvetica')

plt.subplots_adjust(left=0.1,

bottom=0.1,

right=0.9,

top=0.9,

wspace=0,

hspace=0.6)
f.savefig('Figures/DataDistribtion.png', bbox_ inches="tight",

pad_inches=0.25)

plt.show()

NullmaxDensity = max(NullpeakDensity)
maxDensity = max(peakDensity)

interestingNullPeakDis = []
interestingPeakDis = []
for i in range(len(peakDensity)):
if NullpeakDensity[i]>= perNullDen* NullmaxDensity:
interestingNullPeakDis.append(i)

for i in range(len(peakDensity)):
if peakDensity[i]>= perMaxDen*maxDensity:
interestingPeakDis.append(i)

for i in range(len(interestingNullPeakDis)):
if interestingNullPeakDis[i] in interestingPeakDis:
interestingNullPeakDis[i] = "'
chekcer = True
while chekcer:
if '' in interestingNullPeakDis:
interestingNullPeakDis.remove('")
else:
chekcer = False

Appendix C | 98

NullpeakRange = np.insert(NullpeakRange, 9, 9)

for i in range(len(interestingNullPeakDis)):
place = interestingNullPeakDis[i]+2
seperation.append(int((NullpeakRange[place])))

for i in range(5):
for i in range(@,len(seperation)-1):
if seperation[i]+3000 >= seperation[i+l]:
NewSep = (seperation[i] + seperation[i+1])/2 - randint(50,
500)
seperation[i] = "'
seperation[i+1] = int(NewSep)

chekcer = True
while chekcer:
if "' in seperation:
seperation.remove('")
else:
chekcer = False

from mutagen.wave import WAVE

fileName = FileName.replace("TrainingData\\", '")
AudioFileName = fileName.split('-")

AudioFileName = "AudioOriginal/"+AudioFileName[©@]+'.wav'

audio = WAVE(AudioFileName)
audio_info = audio.info
length = int(audio_info.length)

for i in range(©@,len(seperation)-1):
if seperation[i] + length*4000*0.7 >= seperation[i + 1]:
seperation[i+l] = @

chekcer = True
while chekcer:
if @ in seperation:
seperation.remove(9)
else:
chekcer = False
figl = plt.figure()
plt.plot(t, fderenV, linewidth=0.1, label="Signal")
plt.scatter(t[seperation], fderenV[seperation], color='red', label =
"Seperation Points")
plt.rc('font', family="Helvetica')
plt.xlabel('Time (s)', fontsize=20)
plt.ylabel('Voltage (V)', fontsize=20)
plt.x1lim([0,17.5])

Appendix C |99

figl.savefig('Figures/SectionedPoints.png', bbox_inches="tight"’,
pad_inches=0.25)
plt.show()

displacemetData = 750
whileChecker = True
while whileChecker:
if seperation[len(seperation)-1]+70000<=1len(voltage):
#print("old Seperation : ",seperation[len(seperation) - 1])
t = time[seperation[len(seperation)-1]-displacemetData:
seperation[len(seperation)-1]+80000]
fderenV = voltage[seperation[len(seperation)-1]-displacemetData:
seperation[len(seperation)-1]+80000]

maxVal = max(fderenV)

NewSection = []

Nullpeaks, _ = sig.find_peaks(fderenV, height=(-uplowBoundNull,
uplowBoundNull))
peaks, _ = sig.find_peaks(fderenV, height=perofMaxVval * maxVal)

plt.plot(t, fderenV, linewidth=0.05)
plt.scatter(t[Nullpeaks], fderenV[Nullpeaks], color='red')
plt.scatter(t[peaks], fderenV[peaks], color='green')

NullpeakDensity, NullpeakRange, = plt.hist(Nullpeaks,
bins=binSize, facecolor='r', alpha=1, edgecolor='k', linewidth=1)

peakDensity, peakRange, _ = plt.hist(peaks, bins=binSize,
facecolor="g"', alpha=1, edgecolor='k', linewidth=1)
plt.close()

NullmaxDensity = max(NullpeakDensity)
maxDensity = max(peakDensity)

interestingNullPeakDis = []
interestingPeakDis = []
for i in range(len(peakDensity)):
if NullpeakDensity[i] >= perNullDen * NullmaxDensity:
interestingNullPeakDis.append(i)

for i in range(len(peakDensity)):
if peakDensity[i] >= perMaxDen * maxDensity:
interestingPeakDis.append(i)

for i in range(len(interestingNullPeakDis)):
if interestingNullPeakDis[i] in interestingPeakDis:

Appendix C | 100

interestingNullPeakDis[i] = "'
chekcer = True
while chekcer:
if '' in interestingNullPeakDis:
interestingNullPeakDis.remove('")
else:
chekcer = False

NullpeakRange = np.insert(NullpeakRange, 0, ©0)

for i in range(len(interestingNullPeakDis)):
place = interestingNullPeakDis[i] + 2
NewSection.append(int((NullpeakRange[place])))

for j in range(10):
for i in range(len(NewSection) - 1):
if NewSection[i] + length * 4000*%0.7 >= NewSection[i + 1]
and NewSection[i] + length * 4000*0.7 <= NewSection[i + 1]:
NewSection[i + 1] = ©

chekcer = True
while chekcer:
if @ in NewSection:
NewSection.remove(9)
else:
chekcer = False

for j in range(10):
for i in range(@, len(NewSection) - 1):
if NewSection[i] + 2000 >= NewSection[i + 1]:
NewSep = (NewSection[i] + NewSection[i + 1]) / 2 -
randint (50, 100)
NewSection[i] = "'
NewSection[i + 1] = int(NewSep)

chekcer = True
while chekcer:
if "' in NewSection:
NewSection.remove('")
else:
chekcer = False

for i in range(2):
for i in range(len(NewSection) - 1):
if NewSection[i] + length * 4000*0.7 >= NewSection[i + 1]:
NewSection[i + 1] = @

chekcer = True

Appendix C | 101

while chekcer:
if @ in NewSection:
NewSection.remove(0)
else:
chekcer = False

plt.plot(t, fderenV, linewidth=0.05)
plt.scatter(t[NewSection], fderenV[NewSection], color='red")
plt.show()

previousSep = seperation[len(seperation) - 1]
for i in range(1,len(NewSection)):
seperation.append(NewSection[i]+previousSep-displacemetData)
else:
whileChecker = False
return(seperation)

Appendix C | 102

C.5. MachineLearning.py

import matplotlib.pyplot as plt

import seaborn as sns

import keras

from keras.models import Sequential

from keras.layers import Dense, Conv2D , MaxPool2D , Flatten , Dropout
from keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras.optimizers import Adam

from Labeler_Data import get_data

from sklearn.metrics import classification_report,confusion_matrix
from keras.utils.vis_utils import plot_model

import pydot

import tensorflow as tf

import numpy as np

def CNN_Training(folderTraining, folderTesting, ep, LearningRate, dataType,
img_size):

#img_size
trainData

32
get data(folderTraining, img size)

x_train
y_train

[l
[l

for feature, label in trainData:
x_train.append(feature)
y_train.append(label)

Normalize the data
x_train = np.array(x_train) / 255

x_train.reshape(-1, img_size, img_size, 1)
y_train = np.array(y_train)

testData
x_val =
y val =

= get_data(folderTesting, img_size)
]
]

for feature, label in testData:
x_val.append(feature)
y_val.append(label)

x_val = np.array(x_val) / 255
x_val.reshape(-1, img_size, img_size, 1)
y_val = np.array(y_val)

Appendix C

1103

CAT = ['Or_To_Take Arms', 'That_Is The Question', 'To _be or _not to be’,

'To_die', 'To _Sleep', 'Whether']
num_labels = len(CAT)
datagen = ImageDataGenerator(

featurewise center=False, # set input mean to © over the dataset

samplewise_center=False, # set each sample mean to ©

featurewise_std_normalization=False, # divide inputs by std of

the dataset

samplewise std normalization=False, # divide each input by its

std
zca_whitening=False, # apply ZCA whitening

rotation _range = 0, # randomly rotate images in the range

(degrees, © to 189)
zoom_range = 0.3, # Randomly zoom image

width_shift_range=0.2, # randomly shift images horizontally

(fraction of total width)

height_shift_range=False, # randomly shift images vertically

(fraction of total height)
horizontal flip = False, # randomly flip images
vertical_flip=False) # randomly flip images

datagen.fit(x_train)

model = Sequential()

model.add(Conv2D(32, 3,padding="same", activation="relu",
input_shape=x_train.shape[1:]))

model.add (MaxPool2D())

model.add(Conv2D(64, 3, padding="same", activation="relu"))
model.add(MaxPool2D())

model.add(Conv2D(64, 3, padding="same", activation="relu"))
model.add (MaxPool2D())
model.add(Dropout(0.25))

model.add(Flatten())
model.add(Dense(128,activation="relu"))
#model.add()

model.add(Dropout(0.5))
model.add(Dense(num_labels))

model.summary()

opt = Adam(1lr=LearningRate)

Appendix C | 104

model.compile(optimizer = opt , loss =
tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) , metrics =
["accuracy'])

history = model.fit(x_train,y train,epochs = ep , validation data =
(x_val, y val))

acc = history.history['accuracy']

val_acc = history.history['val_accuracy']
loss = history.history['loss’]

val_loss = history.history['val loss']

epochs_range = range(ep)

fig = plt.figure(figsize=(15, 15))

plt.subplot(2, 2, 1)

plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs range, val acc, label='Validation Accuracy')
plt.legend(loc="lower right")

plt.title(dataType + ' Training and Validation Accuracy')

plt.subplot(2, 2, 2)

plt.plot(epochs_range, loss, label='Training Loss")
plt.plot(epochs_range, val loss, label='Validation Loss')
plt.legend(loc="upper right")

plt.title(dataType + ' Training and Validation Loss')
plt.show()

Name = dataType+"AccurracyandErrorPlot.png"
fig.savefig(Name, transparent=True, bbox_inches="tight")

model.summary ()

#plot_model(model, to_file='model plot.png', show_shapes=True,
show_layer_names=True)

return model, acc, val acc, loss, val loss

def TestingNetwrok(model, folderTesting, img size):
img_size = 32
testData = get_data(folderTesting, img_size)
x_val = []
y val = []
for feature, label in testData:
x_val.append(feature)
y_val.append(label)

x_val = np.array(x_val) / 255

Appendix C | 105

x_val.reshape(-1, img_size, img_size, 1)
y_val = np.array(y_val)

CAT= [IAI, IBIJ ICI, IDI) IEI’ |F|]

predictions = model.predict(x_val)
predictions = np.argmax(predictions,axis=1)
print(classification_report(y_val, predictions, target_names = CAT))

confusion mtx = tf.math.confusion_matrix(y_val, predictions)

figl = plt.figure()

sns.heatmap(confusion_mtx, xticklabels=CAT, yticklabels=CAT,
annot=True, fmt="g")

plt.rc('font', family='Helvetica')

plt.xlabel('Prediction',fontsize=20)

plt.ylabel('Label’,fontsize=20)

plt.show()

return y_val, predictions

def Save CNN(model, Name):
json_model = model.to_json()

with open(Name, 'w') as json_file:
json_file.write(json_model)

C.6. Laber_Data.py

import cv2
import os
import numpy as np
labels = ['Or_To _Take Arms', 'That_Is The Question', 'To_be_or_not_to_be’',
'To_die', 'To_Sleep', 'Whether']
#img size = 32
def get_data(data_dir, img_size):
data = []
for label in labels:
path = os.path.join(data_dir, label)
class_num = labels.index(label)
for img in os.listdir(path):
try:
#convert BGR to RGB format
img_arr = cv2.imread(os.path.join(path, img))[...,::-1]
Reshaping images to preferred size
resized_arr = cv2.resize(img_arr, (img_size, img_size))
data.append([resized _arr, class_num])
except Exception as e:
print(e)
return np.array(data)

Appendix D | 106

Appendix D

Python code for real-time testing of the asymmetrical multichannel sensor with the
speech Recognition.

GitHub link: https://github.com/abmoineddini/MPhil speech recognition

main.py

import serial
import numpy as np
import time

from PreprocessorSpeechrecognition import *
import cv2

import tensorflow as tf

from tkinter import *

ws = Tk()

ws.title('Voice Recognition')
ws.geometry('800x600")
ws.config(bg="#000000")

mylabel = Label(ws,
text="...",
bg="'#000000",
fg="#fFffff",
font="Times 32',
width=50,
height=10)

mylabel.pack()
ws.update()

#COMPort = input("Please enter the COM port: ")
COMPort 'COM6 '

arduino = serial.Serial(COMPort, 2000000, timeout=1)
model = tf.keras.models.load _model("VoiceRecCNN")

Voltage = []

Time = []

dataCollection = False
dataAvailability = False

i=20

j=290

arrl = []
arr2 = []
arr3 = []
arrd = []
counterl = 0
counter2 = 0
counter3 = 0
counter4 = 0

FirstCounter = True

https://github.com/abmoineddini/MPhil_speech_recognition

Appendix D | 107

while True:
line = arduino.readline()
if line != ('"):

#print(line)
try:
string = line.decode()
except:
print("ignored")
else:

numS = string.replace("\r\n", '")

if numS.isdigit():
print(int(numsS))
if int(numS) < 210:
dataCollection=False
if counteril<250:
counterl +=1
arrl.append(int(numS))
elif counterl>=250 and counterl<500:
counterl +=1
counter2 +=1
arrl.append(int(numsS))
arr2.append(int(numsS))
elif counterl>»=500 and counterl<750:
counterl +=1
counter2 +=1
counter3 +=1
arrl.append(int(numS))
arr2.append(int(numsS))
arr3.append(int(numsS))
else:
counterl +=1
counter2 +=1
counter3 +=1
counterd +=1
arrl.append(int(numS))
arr4.append(int(numS))
arr2.append(int(numS))
arr3.append(int(numS))

if counter4 == 250 and counterl > 250:
counterl = 0
arrl = []

elif counterl==250 and counter2 > 250:
counter2 = 0
arr2 = []

Appendix D

| 108

elif counter2==250 and counter3 > 250:

counter3 = 0
arr3 = []

elif counter3==250 and counter4 > 250:

counterd4 = 0
arrd = []

else:
dataCollection = True
Voltage.append(int(numS))
Time.append(i / 4000)
i=1+1
j = 8000
print("StartingDataCollection")

while dataCollection:
line = arduino.readline()

print(line)
if line != ('"):
try:
string = line.decode()
except:
print("ignored")
else:

numS = string.replace("\r\n", '')
if numS.isdigit():
if int(numS)<210:
j=13-1
else:
j = 8000

Voltage.append(int(numsS))

Time.append(i / 4000)

i=i+1

if j<i:
dataCollection=False

dataAvailability = True

if dataAvailability:

SIZESLIST = [len(arrl), len(arr2), len(arr3), len(arr4)]

maxval = max(SIZESLIST)
maxlen = SIZESLIST.index(maxval)
V=]
t=1]
if FirstCounter:
predictvVal = 6

Appendix D | 109

FirstCounter = False
dataAvailability = False

else:
if maxlen == 0:
V = np.vstack([arrl, Voltage])
tAdj = np.linspace(9, (len(arrl)-1)*0.00025, len(arrl))
tAdjm = tAdj[len(tAdj)-1]1+0.00025
for i in range(len(Time)):
Time[i] = Time[i]+tAdjm
t = np.vstack([tAdj, Time])

elif maxlen ==
V = np.vstack([arr2, Voltage])
tAdj = np.linspace(9, (len(arr2)-1)*0.00025, len(arr2))
tAdjm = tAdj[len(tAdj)-1]+0.00025
for i in range(len(Time)):
Time[i] = Time[i]+tAdjm
t = np.vstack([tAdj, Time])
elif maxlen == 2:
V = np.vstack([arr3, Voltage])
tAdj = np.linspace(@, (len(arr3) - 1) * 0.00025, len(arr3))
tAdjm = tAdj[len(tAdj) - 1] + ©.00025
for i in range(len(Time)):
Time[i] = Time[i] + tAdjm
t = np.vstack([tAdj, Time])
else:
V = np.vstack([arrd4, Voltage])
tAdj = np.linspace(9, (len(arr4)-1)*0.00025, len(arr4d))
tAdjm = tAdj[len(tAdj)-1]+0.00025
for i in range(len(Time)):
Time[i] = Time[i]+tAdjm
t = np.vstack([tAdj, Time])

plt.plot(t, V)
plt.show()

TestingPreprocessing(V, t)
img_size = 300

V=]

t =]
Voltage = []
Time = []
i=20

j=0

dataAvailability = False
def Preprocess(path):
img_arr = cv2.imread(path)[..., ::-1]

Appendix D | 110

resized_arr = cv2.resize(img_arr, (img_size, img_size))
norm_arr = np.array(resized_arr) / 255
return norm_arr.reshape(-1, img_size, img_size, 3)

predict = model.predict([Preprocess("TestingFigure.png")])
print(predict)

predictVal = np.argmax(predict)

if predictvVal ==

text = 'or To take Arms\nagainst a sea of\ntroubles and\n by

opposing end them'

elif predictval == 1:

text = 'that is the question’
elif predictVval == 2:

text = 'to be or not to be'
elif predictval == 3:

text = 'to die'
elif predictVval == 4:

text = 'to sleep no more'
elif predictVal == 5:

text = 'whether this nobler\n in the mind to suffer\n the slings

and arrows of\n outrageous fortune'

else:

text = '...'
mylabel.config(text=text)
mylabel.pack()
ws.update()
time.sleep(5)
mylabel.config(text="...")
mylabel.pack()
ws.update()

*

The Preprocessing Speech recognition is the same as the one in in Appendix C

Section C.3.

Appendix E | 111

Appendix E
Arduino code to control the turntable.

GitHub link: https://github.com/abmoineddini/MPhil sound localisation/tree/main/Hardware controllers

/* Arduino Mega rotary stage position controller
* by: Amirbahador Moineddini
* date: November 10th, 2021
* V3 rotary stage position controller

/* Pin Setup

* Motor Controller

* enable pin: 11
* step pin: 10
* direction pin: 9
*

sensor singnal pin: 3
*/

const int en = 11;
const int stp = 10;
const int dir =
const int pos =
const int enLED = 13;
int Homming = ©;

int angleTest = 0;

int posval;

int ptn;

int steps;

int angleToRotate;
volatile int delayTime;

3

w O

[

void setup() {
// Starting pins and start serial communication
Serial.begin(115200);
pinMode(en, OUTPUT);
pinMode(stp, OUTPUT);
pinMode(dir, OUTPUT);
pinMode(pos, INPUT);
pinMode(enLED, OUTPUT);
digitalWrite(en, LOW);
digitalWrite(enLED, HIGH);
Serial.println("Setup Complete!");

void loop() {
// Homming the stage to zero degrees
if (Homming == 0) {
Serial.println("Homming sequence starting ...");
posVal = digitalRead(pos);
Serial.println(posval);

https://github.com/abmoineddini/MPhil_sound_localisation/tree/main/Hardware_controllers

Appendix E

1112

if (posVal == 1) {
Serial.println("Homming 2 ...");
digitalWrite(dir, HIGH);
for (int i = 0; i <= 1000; i++) {
digitalWrite(stp, HIGH);
delay(1);
digitalWrite(stp, LOW);
delay(1);
}
¥
if (posVal == 0 && Homming == 0) {
Serial.println("Homming 1 ...");
digitalWrite(dir, LOW);
while (posvVal == @) {
digitalWrite(stp, HIGH);
delayMicroseconds(1000);
digitalWrite(stp, LOW);
delayMicroseconds(1000);
posVal = digitalRead(pos);
¥
digitalWrite(dir, LOW);
for (int i = 0; i <= 180; i++) {
digitalWrite(stp, HIGH);
delayMicroseconds(1200);
digitalWrite(stp, LOW);
delayMicroseconds(1200);
¥
Homming = 1;
Serial.println("Homming Done™);
Serial.println("Loop 2");
ptn = 0;
delay(5000);
¥
} else {
Serial.println("ready");
String Conn = Serial.readString();
if (Conn == "rdy") {
Serial.println("Starting");
while (true) {
String val = Serial.readString();
Serial.println(val);
int valInt = int(val.toInt());

if (valInt > 0 && vallnt <= 360) {
if (valInt != ptn) {
angleToRotate = (valInt - ptn);
pth = vallnt;
¥

Appendix E | 113

else {
angleToRotate = 0;
}
if (angleToRotate > 180) {
angleToRotate = angleToRotate - 360;
}
if (angleToRotate < -180) {
angleToRotate = 360 + angleToRotate;
}
steps = angleToRotate * 50;
if (angleToRotate > 0) {
digitalWrite(dir, LOW);
for (int i = 9; i <= steps; i++) {
digitalWrite(stp, HIGH);
delayMicroseconds(900);
digitalWrite(stp, LOW);
delayMicroseconds(900);
}

¥
if (angleToRotate < @) {

digitalWrite(dir, HIGH);

for (int i = 0; i <= abs(steps); i++) {
digitalWrite(stp, HIGH);
delayMicroseconds (900);
digitalWrite(stp, LOW);
delayMicroseconds(900);

¥
}
delayTime = abs(angleToRotate) * 10;
delay(delayTime);

Serial.println("done");
if (ptn == 360) {
ptn = 0;
}
Serial.println(ptn);
}
if (valInt < 0 && valInt >= -360) {
valInt = 360 + vallnt;
if (valInt != ptn) {
angleToRotate = 360 - (valInt - ptn);
ptn = vallnt;
} else {
angleToRotate = 0;
}
if (angleToRotate > 360) {
angleToRotate = -720 + angleToRotate;

}

Appendix E | 114

if (angleToRotate > 180) {
angleToRotate = angleToRotate - 360;
}
if (angleToRotate < -180) {
angleToRotate = 360 + angleToRotate;
}
steps = angleToRotate * 50;
if (angleToRotate > 0) {
digitalWrite(dir, HIGH);
for (int i = 9; i <= abs(steps); i++) {
digitalWrite(stp, HIGH);
delayMicroseconds(900);
digitalWrite(stp, LOW);
delayMicroseconds(900);
}

}
if (angleToRotate < 9) {

digitalWrite(dir, LOW);

for (int i = 9; i <= abs(steps); i++) {
digitalWrite(stp, HIGH);
delayMicroseconds(900);
digitalWrite(stp, LOW);
delayMicroseconds(900);

}
}
delayTime = abs(angleToRotate) * 10;
delay(delayTime);

Serial.println("done");

// if (ptn==360){
// ptn=0;
// }
Serial.println(ptn);
¥
¥
¥
¥

Appendix F | 115

Appendix F

Python codes for data collection, preprocessing the data, plotting figures and training,
testing and validation of the Spatial Recognition.

GitHub link: https://github.com/abmoineddini/MPhil sound localisation

F.1. Main code:

from DataCollector import *
import matplotlib.pyplot as plt
import os

import pandas as pd

from os import listdir

import winsound

from DataSender import *

from datetime import date

from Preprocessor import *

from csv import writer

dataCollection = True
CheckPort = input("Would you like to Start collecting Data? ")
if CheckPort == "y" or CheckPort == "Y" or CheckPort == "Yes" or CheckPort ==
"yes":
Initialising the Stage and Data Collector
COMPortMotor = input("Please Enter COM Port for the Stage : ")
COMPortMotor = "COM"+COMPortMotor
print(COMPortMotor)
currAng, MotorController = Inititialise(COMPortMotor)
time.sleep(1)
print("Initialisation of Stage Completed")
COMPortCollector = input("Please Enter COM Port for Data Collector : ")
COMPort = "COM"+COMPortCollector
print(COMPort)
Increment = input("Please enter the desired Increment in degrees: ")
RotationAngle = input("Please enter the angle you would like to cover: ")
DirectionOfRot = input ("Please enter the Direction of Roation (0 =
Antliclockwise, 1 = Clockwise: ")
Method = input("Continuous or Individual Collections? (i for individual &
c for Continious)")
AutomaticTesting = input("Would you like continous automatic test ? (yN)")
today = date.today()
print("Today's date:", today)
TrainingDirectoryName = "TrainingData/" + str(today)
if os.path.isdir(TrainingDirectoryName):
print("Adding to Figure Directory")
else:
os.mkdir(TrainingDirectoryName)
while dataCollection:
Increment = int(Increment)
div = 2*int(int(RotationAngle)/Increment)+1
for inc in range(@, div):

https://github.com/abmoineddini/MPhil_sound_localisation

Appendix F | 116

if DirectionOfRot ==
if inc <= (div-1)/2:
angle = Increment*inc
else:
angle = int(RotationAngle)-Increment * inc
else:
if inc <= (div-1)/2:
angle = Increment*inc
else:
angle = (Increment * inc-int(RotationAngle))
if Method == 'c':
print("Continuous Data Collection™)
print("Sending Angles")
currAng = AngleSet(angle, MotorController, currAng)
AudioFiles = [f for f in listdir("AudioFiles/")]
Name = str(currAng)
print(Name)
time.sleep(1)
Period = 10
print("Startting to Collect Data for: ", Period, '(s)')
NameTest = True
TrainingDataDirectory = [f for f in
listdir(TrainingDirectoryName)]
testNum = 1
while NameTest:
CSVNameCheck = "c_" +Name + '-Test'+ str(testNum) + '.csv'
if CSVNameCheck in TrainingDataDirectory:
print("File Already exist, Trying another name.")
testNum = testNum+1
else:
CSVName = Name + '-Test'+ str(testNum)
NameTest = False
print(CSVName)
[Channell,Channel2, Channel3,Channel4, Time] =
collectData(COMPort, Period, CSVName, TrainingDirectoryName)

Plotting figures for checking the figures
plt.plot(Time, Channell)

plt.plot(Time, Channel2)

plt.plot(Time, Channel3)

plt.plot(Time, Channel4)

plt.show()

DataCheck = 'y' # input("Are you happy with the Data? ")

while DataCheck == "n" or DataCheck == "N" or DataCheck ==
"no" or DataCheck == "No":
Nametoremove = "TrainingData/" + CSVName + ".csv"

os.remove(Nametoremove)

Appendix F | 117

.CSV

[Channell,Channel2, Channel3,Channel4, Time] =
collectData(COMPort, Period, CSVName, TrainingDirectoryName)

plt.plot(Time, Channell)

plt.plot(Time, Channel2)

plt.plot(Time, Channel3)

plt.plot(Time, Channel4)

plt.show()

DataCheck = 'y' #input("Are you happy with the Data? ")

elif Method=="1i":
print("Individual Data Collection")
print("Sending Angles")
currAng = AngleSet(angle, MotorController, currAng)
AudioFiles = [f for f in listdir("AudioFiles/")]
Name = str(currAng)
print(Name)
time.sleep(1)
Period = 3
print("Startting to Collect Data for: ", Period, '(s)')
NameTest = True
TrainingDataDirectory = [f for f in
listdir(TrainingDirectoryName)]
testNum = 1
while NameTest:
CSVNameCheck = "i " + Name + '-Test' + str(testNum) +

if CSVNameCheck in TrainingDataDirectory:
print("File Already exist, Trying another name.")
testNum = testNum + 1
else:
CSVName = Name + '-Test' + str(testNum)
NameTest = False

print(CSVName)
[Channell, Channel2, Channel3, Channel4, Time] =
collectDataIndividual (COMPort, Period, CSVName,TrainingDirectoryName)

Plotting figures for checking the figures

plt.plot(Time, Channell)

plt.plot(Time, Channel2)

plt.plot(Time, Channel3)

plt.plot(Time, Channel4)

winsound.PlaySound(None, winsound.SND_ PURGE)

DataCheck = 'y' # input("Are you happy with the Data? ")

while DataCheck == "n" or DataCheck == "N" or DataCheck ==
"no" or DataCheck == "No":

Nametoremove = "TrainingData/" + CSVName + ".csv"

Appendix F | 118

os.remove(Nametoremove)

[Channell, Channel2, Channel3, Channel4, Time] =
collectDataIndividual (COMPort, Period, CSVName, TrainingDirectoryName)

Plotting figures for checking the figures
plt.plot(Time, Channell)
plt.plot(Time, Channel2)
plt.plot(Time, Channel3)
plt.plot(Time, Channel4)
plt.show()
DataCheck = 'y' # input("Are you happy with the Data? ")
else:
print("Invalid Answer!")
Method = input("Continuous or Individual Collections? (i for
individual & c for Continious)")

else:
print("Invalid Answer!")
Method = input("Continuous or Individual Collections? (i for
individual & c for Continious)")
if AutomaticTesting == "y":
ToContinue = 'y'
else:
input("would you like to Continue with collecting data? ")

if ToContinue == "n" or ToContinue == "N" or ToContinue == "No" or

ToContinue == "no":
dataCollection = False

StartPreprocessing = input("Should I Start the Preprocessing? ")

if StartPreprocessing == "y" or StartPreprocessing == "Y" or
StartPreprocessing == "Yes" or StartPreprocessing == "yes":

import glob

if os.path.isdir("Figure/Training"”):
print("Adding to Figure Directory")

else:
os.mkdir("Figure/Training")
os.mkdir("Figure/Testing")
os.mkdir("Figure/Validation")

for i in os.listdir("TrainingData"):
DirectoryMasterTraining = "TrainingData/"+i+"/"
csv_files = glob.glob(os.path.join(DirectoryMasterTraining, "*.csv"))
for x in csv_files[0:]:
dataFileName = x

Appendix F | 119

print(x)

NAMEunprocessed = x.replace(".csv", "")
NAMEunprocessed = NAMEunprocessed.split("\\")
print (NAMEunprocessed)

print (NAMEunprocessed[1][@0])

NAMEunprocessed = NAMEunprocessed[1].split("_")
print (NAMEunprocessed)

if NAMEunprocessed[@] == "c":
method = ©
print("True")
else:
method = 1
NAMEunprocessed = NAMEunprocessed[1]

NAMEunprocessed = NAMEunprocessed.split("-")
x = NAMEunprocessed[©0]

print(x)

check = 0

if os.path.isfile("Tracking/ProcessedData.csv"):
print("Processed data collector Already exists")

PDCL = pd.read csv("Tracking/ProcessedData.csv")
print(PDCL)

ProcessedDataChecklist = PDCL.to_numpy()
ProcessedDataChecklist = ProcessedDataChecklist[:]

if dataFileName.split("/")[1] in ProcessedDataChecklist:
check =1
continue

if check == 0:

[FolderTraining, FolderTesting, FolderValidation] =
Classifier(x)

print("it reaches here")

df = pd.read _csv(dataFileName)

data = df.to_numpy()

print(dataFileName)

if method==0:
figure_maker(data, FolderTraining, FolderTesting,
FolderValidation, dataFileName)
print("Making figure for continuous Data")
else:
figure_makerMeth2AutoSize(data, FolderTraining,
FolderTesting, FolderValidation, dataFileName)

if os.path.isfile("Tracking/ProcessedData.csv"):

Appendix F | 120

with open("Tracking/ProcessedData.csv", 'a+' ,newline='")
as f_object:
writer_object = writer(f_object)
writer_object.writerow([dataFileName.split("/")[1]1])
f object.close()
else:

dict = {"File Name": [dataFileName.split("/")[1]]}

df = pd.DataFrame(dict)

df.to_csv("Tracking/ProcessedData.csv")

print("Finished Creating Relevant Files")

labels = os.listdir("Figure/Training")

labelsInt = []

for i in labels:
labelsInt.append(int(i))

labelsInt.sort()

labels = []

for i in labelsInt:
labels.append(str(i))

StartTraining = input("Should I Start the Training? ")

if StartTraining == "y" or StartTraining == "Y" or StartTraining == "yes" or

StartTraining == "Yes":

trainingSTFT = "Figure/Training"
validationSTFT = "Figure/Validation"
testingSTFT = "Figure/Testing"

from MachineLearning import *

img_size = 150

print(labels)

[STFTModel, acc, val_acc, loss, val loss]= CNN_Training(trainingSTFT,
validationSTFT, 150, LearningRate=0.00005, dataType="STFT", img_size=img size,
label = labels)

STFTModel.save("DirectionRecCNN")

from csv import writer

for i in range(len(acc)):

FileAdd = [acc[i], val acc[i], loss[i], val loss[i]]
with open("Tracking/AccuracyHistory.csv", 'a+', newline='") as
f object:
writer_object = writer(f_object)
writer_object.writerow(FileAdd)
f _object.close()
FileAdd = []

STFTModel = tf.keras.models.load_model("DirectionRecCNN")

Appendix F | 121

Testinig Peformance

print("STFT CNN Test result")

[y_val, predictions] = TestingNetwrok(STFTModel, testingSTFT, img size,
labels)

for i in range(len(y_val)):
FileAdd = [y_val[i], predictions[i]]
with open("Tracking/TestingValidationCNN.csv", 'a+', newline='') as
f object:
writer_object = writer(f_object)
writer_object.writerow(FileAdd)
f_object.close()
FileAdd = []
STFTmodelName = 'STFTModel.yaml'
Save_CNN(STFTModel, Name=STFTmodelName)

df = pd.read_csv("Tracking/TestingValidationCNN.csv")
CAT = labels
DegNum = int(labels[1])
DegNum = str(DegNum)
data = df.to_numpy()
y val = data[:,0]
predictions = data[:,1]
fig = plt.figure()
confusion_mtx = tf.math.confusion_matrix(y_val, predictions)
print(confusion_mtx)
con_matrix = np.zeros((len(labels),len(labels)))
for i in range(len(confusion_mtx[1])):
row = confusion_mtx[i].numpy()
rowSum = row.sum()
print(rowSum)
for j in range(len(row)):
print(len(row))
print(row[j])
con_matrix[i, j] = row[j] / rowSum

sns.heatmap(con_matrix, xticklabels=CAT, yticklabels=CAT,
annot=True, fmt='.2f', cmap = "OrRd")
plt.rc('font', family='Helvetica')
plt.title('Confusion Matix', fontsize=22)
plt.xlabel('Prediction', fontsize=20)
plt.ylabel('Label', fontsize=20)
ConfunstionMatrixName = "Figures/" + DegNum + "ConfusionMatrixValidation.png"
fig.savefig(ConfunstionMatrixName, transparent=True,
bbox_inches="tight',pad_inches=0.25)
plt.show()

Appendix F | 122

F.2.

import serial

import winsound

def collectData(COMPort, Period, Name, DirectoryName):
arduino = serial.Serial(COMPort , 2000000, timeout=1)

Channell = []
Channel2 = []
Channel3 = []
Channeld = []
Time = []

period = int(Period)
sR = int(4000/3.5)
period = period*sR
for i in range(period):
line = arduino.readline()

if line != ('"):
print(line)
try:
string = line.decode()
except:
print("ignored")
else:
nums string.replace("\r\n", '")
vals = numS.split(" ")
if len(vals)>3:
if vals[9].isdigit():
if vals[1].isdigit():
if vals[2].isdigit():
if vals[3].isdigit():
Channell.append(int(vals[@]))
Channel2.append(int(vals[1]))
Channel3.append(int(vals[2]))
Channel4.append(int(vals[3]))
Time.append(i/sR)

arduino.close()

import pandas as pd

dict = {'Time (s)' : Time, 'Channel 1 (V)': Channell, 'Channel 2 (V)"':
Channel2, 'Channel 3 (V)': Channel3, 'Channel4 (V)': Channel4d}

df = pd.DataFrame(dict)
dataBaseName = DirectoryName+"/"+"c_"
df.to _csv(dataBaseName)

+ Name + ".csv

return [Channell,Channel2, Channel3,Channel4, Time]

Appendix F | 123

T Tndividual Collection Method##tf
def collectDataIndividual(COMPort, Period, Name, DirectoryName):
arduino = serial.Serial(COMPort , 2000000, timeout=1)

Channell = []
Channel2 = []
Channel3 = []
Channel4d = []
Time = []

period = int(Period)
SR = int(4000/3.5)
period = period*sR
for i in range(period):
line = arduino.readline()

if line != (""):

print(line)
try:
string = line.decode()
except:
print("ignored")
else:

numS = string.replace("\r\n", '")
vals = numS.split(" ")
if len(vals)>3:
if vals[@].isdigit():
if vals[1].isdigit():
if vals[2].isdigit():
if vals[3].isdigit():
Channell.append(int(vals[@]))
Channel2.append(int(vals[1]))
Channel3.append(int(vals[2]))
Channel4.append(int(vals[3]))
Time.append(i/sR)

arduino.close()

import pandas as pd

dict = {'Time (s)' : Time, 'Channel 1 (V)': Channell, 'Channel 2 (V)':
Channel2, 'Channel 3 (V)': Channel3, 'Channel4 (V)': Channel4d}

df = pd.DataFrame(dict)
dataBaseName = DirectoryName + "/"+"i_
df.to csv(dataBaseName)

+ Name + ".csv

return [Channell,Channel2, Channel3,Channel4, Time]

Appendix F | 124

HHHH Y Testing Collection ######HHHHHHHHHHHHHHHHHHHHH

def collectDataTest(COMPort, Period): #, AudioFileName):
arduino = serial.Serial(COMPort, 2000000, timeout=1)

Channell = []
Channel2 = []
Channel3 = []
Channeld = []
Time = []

period = int(Period)
SR = int(4000 / 3.5)
period = period * sR
for i in range(period):
line = arduino.readline()

if line != ('"):

print(line)
try:
string = line.decode()
except:
print("ignored")
else:

numS = string.replace("\r\n", '")

vals = numS.split(" ")

if len(vals) > 3:

if vals[9].isdigit():
if vals[1].isdigit():
if vals[2].isdigit():
if vals[3].isdigit():

Channell.append(int(vals[@]))
Channel2.append(int(vals[1]))
Channel3.append(int(vals[2]))
Channel4.append(int(vals[3]))
Time.append(i / sR)

arduino.close()

arduino.close()

import pandas as pd

dict = {'Time (s)': Time, 'Channel 1 (V)': Channell, 'Channel 2 (V)':
Channel2, 'Channel 3 (V)': Channel3, 'Channel4 (V)': Channel4d}

df = pd.DataFrame(dict)

dataBaseName = "Temp/Test.csv"

df.to _csv(dataBaseName)

print(dataBaseName)

return [Channell,Channel2, Channel3,Channel4, Time]

Appendix F | 125

F.3. Preprocessing.py

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import scipy.signal as sig

from SectionCutting import *
from os import listdir

from PIL import Image

import os

from os.path import isdir

from scipy.fft import fft, fftfreq
import random

def ProcessIm(Iml, Im2, fileName):
imagel = Image.open(Iml)
imagel = imagel.rotate(90)

image2 = Image.open(Im2)

imagel _size = imagel.size

new_image = Image.new('RGB', (2 * imagel_size[0], imagel_size[1]), (250,
250, 250))

new_image.paste(imagel, (9, 9))

new_image.paste(image2, (imagel size[©@], ©))

new_image.save(fileName)

def ProcessConcat(Iml, Im2, Im3, Im4, fileName):
imagel = Image.open(Iml)

image2 = Image.open(Im2)
image3 = Image.open(Im3)
image4 = Image.open(Im4)

imagel _size = imagel.size

new_image = Image.new('RGB', (2 * imagel_size[0], 2*imagel_size[1l]), (2590,
250, 250))

new_image.paste(imagel, (9, 9))

new_image.paste(image2, (imagel_size[©@], ©0))

new_image.paste(image3, (0, imagel_size[1]))

new_image.paste(imaged, (imagel_size[©0], imagel_size[1]))

new_image.save(fileName)

def ProcessConcatAuto(Im, fileName):
imagel = Image.open("Temp/"+Im[@])
ChannelCount = 1
if len(Im) > 1:
image2 = Image.open("Temp/"+Im[1])
ChannelCount = 2
if len(Im) > 2:
image3 = Image.open("Temp/"+Im[2])

Appendix F | 126

ChannelCount = 3
if len(Im) > 3:
image4 = Image.open("Temp/"+Im[3])
ChannelCount = 4
if len(Im) > 4:
image5 = Image.open("Temp/"+Im[4])
ChannelCount = 5
if len(Im) > 5:
image6 = Image.open("Temp/"+Im[5])
ChannelCount = 6
if len(Im) > 6:
image7 = Image.open("Temp/"+Im[6])
ChannelCount = 7
if len(Im) > 7:
image8 = Image.open("Temp/"+Im[7])
ChannelCount = 8
if len(Im) > 8:
image9 = Image.open("Temp/" + Im[8])
ChannelCount = 9

imagel_size = imagel.size
BlackImage = np.zeros([imagel_size[1], imagel_size[©@], 3] ,dtype=np.uint8)
BlackImage = Image.fromarray(BlackImage)

if ChannelCount == 1:
new_image = Image.new('RGB', (imagel_size[©@], imagel_size[1]), (250,
250, 250))
new_image.paste(imagel, (9, 9))
new_image.save(fileName)

if ChannelCount ==

new_image = Image.new('RGB', (2 * imagel_size[©], 2*imagel_size[1]),

(250, 250, 250))
new_image.paste(imagel, (9, 9))
new_image.paste(BlackImage, (imagel size[©@], 9))
new_image.paste(image2, (imagel size[0], imagel size[1]))
new_image.paste(BlackImage, (©, imagel_size[1]))
new_image.save(fileName)

if ChannelCount ==
new_image = Image.new('RGB', (2 * imagel_size[@], 2*imagel_size[1]),
(250, 250, 250))
new_image.paste(imagel, (9, 9))
new_image.paste(image2, (imagel_size[©0], ©))
new_image.paste(image3, (9, imagel size[1]))
new_image.save(fileName)

if ChannelCount ==

Appendix F

| 127

new_image

(250, 250, 250))

new_image.
new_image.
new_image.

new_image

new_image.

if ChannelCou

new_image

(250, 250, 250))

new_image.
new_image.
new_image.
new_image.
new_image.
new_image.

if ChannelCou

new_image

(250, 250, 250))
new_image.

new_image

new_image.
new_image.
new_image.

new_image

new_image.

if ChannelCount

new_image

(250, 250, 250))
new_image.

new_image
new_image

new_image.
new_image.
new_image.
new_image.

new_image

new_image

(250, 250, 250))

new_image
new_image
new_image
new_image

Image.new('RGB', (2 * imagel_size[©@], 2*imagel_size[1]),
paste(imagel, (0, 9))

paste(image2, (imagel_size[@], ©))

paste(image3, (@, imagel_size[1]))

.paste(image4, (imagel_size[©], imagel_size[1]))
save(fileName)

nt

Image.new('RGB', (3 * imagel_size[©@], 2*imagel_size[1]),

paste(imagel,
paste(image2,

(0, 0))

(imagel_size[@], 9))
paste(image3, (@, imagel_size[1]))
paste(image4, (imagel_size[0], imagel_size[1]))
paste(image5, (2*imagel_size[0], 0))
save(fileName)

nt ==
Image.new('RGB", (3 * imagel_size[©@], 2*imagel_size[1]),

paste(imagel,
.paste(image2,
paste(image3,
paste(image4,
paste(image5,
.paste(image6,
save(fileName)

(0, 9))

(imagel_size[0], 0))

(0, imagel size[1]))
(imagel_size[0], imagel_size[1]))
(2*imagel_size[0], 9))
(2*imagel_size[0], imagel_size[1]))

Image.new('RGB', (4 * imagel_size[©0], 3*imagel_size[1]),
paste(imagel,
.paste(image2,
.paste(image3,
paste(image4,
paste(image5,
paste(image6,
paste(image7,
.save(fileName)

(0, 0))

(imagel_size[@0], 0))

(0, imagel size[1]))
(imagel_size[0], imagel_size[1]))
(2*imagel_size[0], 9))
(2*imagel_size[©@], imagel_size[1]))
(0, 2*imagel size[@]))

if ChannelCount == 9:

Image.new('RGB', (3 * imagel_size[0@], 3 * imagel_size[1]),
.paste(imagel,
.paste(image2,
.paste(image3,
.paste(image4,

(0, 0))

(imagel_size[©0], 9))

(0, imagel_size[1]))
(imagel_size[©], imagel_size[1]))

Appendix F | 128

new_image.paste(image5, (2*imagel size[©@], 0))
new_image.paste(image6, (2*imagel_size[©], imagel_size[1]))
new_image.paste(image7, (@, 2*imagel_size[0]))
new_image.paste(image8, (imagel size[©], 2*imagel_size[1]))
new_image.paste(image9, (2 * imagel_size[@], 2 * imagel_size[1]))
new_image.save(fileName)

if ChannelCount == 9:
new_image = Image.new('RGB', (3 * imagel_size[©], 3*imagel_size[1]),

(250, 250, 250))

new_image.paste(imagel, (9, 9))

new_image.paste(image2, (imagel size[©@], 0))
new_image.paste(image3, (@, imagel_size[1]))
new_image.paste(imaged4, (imagel_size[0], imagel_size[1]))
new_image.paste(image5, (2*imagel_size[0], 9))
new_image.paste(image6, (2*imagel_size[©], imagel_size[1]))
new_image.paste(image7, (@, 2*imagel size[1]))
new_image.paste(image8, (imagel size[0], 2*imagel size[1]))
new_image.paste(image9, (2 * imagel_size[@], 2 * imagel_size[1]))
new_image.save(fileName)

def figure_maker(data, FolderSTFTTraining, FolderSTFTTesting,
FolderValTesting, FileName):

time = data[150:1len(data)-1, 1]

Chl = data[150:1len(data)-1, 2]

Ch2 = data[150:1en(data) - 1, 3]
Ch3 = data[150:1en(data) - 1, 4]
Ch4 = data[150:1len(data) - 1, 5]

Fs = 4000/3.5

detenChl = sig.detrend(Chl)
detenCh2 = sig.detrend(Ch2)
detenCh3 = sig.detrend(Ch3)
detenCh4 = sig.detrend(Ch4)

filter = sig.butter(2, [70,550], 'bandpass', fs=Fs, output='sos')
corrChl = sig.sosfilt(filter, detenChl)

corrChl = (corrChl*5)/1023

corrCh2 = sig.sosfilt(filter, detenCh2)

corrCh2 = (corrCh2*5)/1023

corrCh3 = sig.sosfilt(filter, detenCh3)

corrCh3 = (corrCh3*5)/1023

corrCh4 = sig.sosfilt(filter, detenCh4)

corrCh4 = (corrCh4*5)/1023

TrainingDirectory = [f for f in listdir(FolderSTFTTraining)]
TestDirectory = [f for f in listdir(FolderSTFTTesting)]

Appendix F | 129

ValidationDirectory = [f for f in listdir(FolderValTesting)]
countTrain = int(len(TrainingDirectory))

countTest = int(len(TestDirectory))

countVal = int(len(ValidationDirectory))

maxVl = max(corrChl)

normVl = corrChl / maxV1

maxV2 = max(corrCh2)

normV2 = corrCh2 / maxV2

maxV3 = max(corrCh3)

normV3 = corrCh3 / maxV3

maxV4 = max(corrCh4)

normV4 = corrCh4 / maxV4

seperationPoints = SepWithSTFT(normvVl, normV2, normV3, normV4, time, Fs)
#tseperationPoints = [0, len(normVl)-1]

N = len(seperationPoints)

Arr = np.arange(N)

np.random.shuffle(Arr)

Training = Arr[:round(N*0.8)]

Validation = Arr[round(N*0.8):round(N*0.9)]
Testing = Arr[round(N*0.9):round(N*1)]

for i in range(@,N-1):

Chlpp = normV1[int(seperationPoints[i]):int(seperationPoints[i+1])]
Ch2pp = normV2[int(seperationPoints[i]):int(seperationPoints[i+1])]
Ch3pp = normV3[int(seperationPoints[i]):int(seperationPoints[i+1])]
Ch4pp = normV4[int(seperationPoints[i]):int(seperationPoints[i+1])]

Channel 1

f1, t1, Zxx1l = sig.stft(Chlpp, Fs, nperseg=100)

figl = plt.figure(frameon=False)

axl = plt.Axes(figl, [0., 0., 1., 1.])

plt.pcolormesh(tl, f1, np.abs(Zxx1), shading='gouraud', cmap='gray')

plt.axis('off")

plt.ylim([90, 500])

axl.set_axis_off()

plt.tight layout()

plt.show()

figl.savefig('Temp/STFTTestingFigureChl.png', bbox_inches="tight",
pad_inches=0)

Channel 2

2, t2, Zxx2 = sig.stft(Ch2pp, Fs, nperseg=100)

figl = plt.figure(frameon=False)

axl = plt.Axes(figl, [0., ©., 1., 1.])

plt.pcolormesh(t2, f2, np.abs(Zxx2), shading='gouraud', cmap='gray')
plt.axis('off")

Appendix F | 130

plt.ylim([90, 500])

axl.set axis off()

plt.tight_layout()

plt.show()

figl.savefig('Temp/STFTTestingFigureCh2.png', bbox_inches="tight",
pad_inches=0)

##Channel 3

3, t3, Zxx3 = sig.stft(Ch3pp, Fs, nperseg=100)

figl = plt.figure(frameon=False)

axl = plt.Axes(figl, [©0., 0., 1., 1.])

plt.pcolormesh(t3, f3, np.abs(Zxx3), shading='gouraud', cmap='gray")

plt.axis('off")

plt.ylim([90, 500])

axl.set_axis_off()

plt.tight_layout()

plt.show()

figl.savefig('Temp/STFTTestingFigureCh3.png', bbox_inches="tight",
pad_inches=0)

Channel 4

f4, t4, Zxx4 = sig.stft(Chdpp, Fs, nperseg=100)

figl = plt.figure(frameon=False)

axl = plt.Axes(figl, [©0., 0., 1., 1.])

plt.pcolormesh(t4, f4, np.abs(Zxx4), shading='gouraud', cmap='gray")

plt.axis('off")

plt.x1lim([90, 500])

axl.set_axis_off()

plt.tight layout()

plt.show()

figl.savefig('Temp/STFTTestingFigureCh4.png', bbox_inches="tight',
pad_inches=0)

yl = fft(Chlpp)
y2 = fft(Ch2pp)
y3 = fft(Ch3pp)
y4 = £t (Chdpp)

yla = y1[80: 550]

max_valuel = max(abs(yla))

Norm_yl = abs(yla) / 15 # max_valuel
Norm_yla = abs(yla)

y2a = y2[80: 550]

max_value2 = max(abs(y2a))

Norm_y2 = abs(y2a) / 15 # max_value2
Norm_y2a = abs(y2a)

Appendix F

1131

y3a = y3[80: 550]

max_value3 = max(abs(y3a))
Norm_y3 =
Norm_y3a = abs(y3a)

yda = y4[80: 550]

max_value4 = max(abs(y4a))

abs(y3a) / 15 # max_value3

Norm_y4 = abs(yda) / 15 # max_valued

Norm_yda = abs(y4da)
N = len(y4a)
xf = fftfreq(N, 1/Fs)

figl = plt.figure()

axl = plt.Axes(figl, [0.,
plt.scatter(xf, Norm_yla,
plt.ylim([0, 16])
plt.gray()
plt.axis('off")
axl.set axis off()
plt.tight_layout()

figl.savefig('Temp/Chlfft.

fig2 = plt.figure()

ax2 = plt.Axes(fig2, [@.,
plt.scatter(xf, Norm_y2a,
plt.ylim([@, 16])
plt.gray()
plt.axis('off")
ax2.set_axis_off()
plt.tight_layout()

fig2.savefig('Temp/Ch2fft.

fig3 =
ax3 =

plt.
plt.
plt.

plt.figure()
plt.Axes(fig3, [9.,
scatter(xf, Norm_y3a,
ylim([o, 16])

gray()
plt.axis('off")
ax3.set axis off()
plt.tight_layout()

fig3.savefig('Temp/Ch3fft.

figd = plt.figure()

ax4 = plt.Axes(fig4, [e.,
plt.scatter(xf, Norm_y4a,
plt.ylim([@, 16])
plt.gray()

0., 1., 1.])
c=4**abs(Norm_y1), s=abs(Norm_yl**4)*500)

png', bbox_inches="tight', pad_inches=0)

0., 1., 1.])
c=4**abs(Norm_y2), s=abs(Norm_y2**4)*500)

png', bbox_ inches="tight', pad_inches=0)

0., 1., 1.])
c=4**abs(Norm_y3), s=abs(Norm_y3**4)*500)

png', bbox_inches="tight', pad_inches=0)

0., 1., 1.1)
c=4**abs(Norm_y4), s=abs(Norm_y4**4)*500)

Appendix F | 132

plt.axis('off")

ax4.set _axis off()

plt.tight layout()

figd.savefig('Temp/Ch4fft.png', bbox_inches="'tight', pad_inches=0)

if i in Training:
nameTrain = str(countTrain)
countTrain += 1
FileName = FolderSTFTTraining + "/" + nameTrain + '.png
print(FileName)
ProcessConcat('Temp/Chlfft.png',
"Temp/Ch2fft.png', 'Temp/Ch3fft.png', 'Temp/Ch4fft.png', FileName)

if i in Validation:
nameVal = str(countval)
countVal += 1
FileName = FolderValTesting + "/" + nameVal + '.png'
print(FileName)
ProcessConcat('Temp/Chlfft.png', 'Temp/Ch2fft.png’,
'Temp/Ch3fft.png', 'Temp/Ch4fft.png', FileName)

if i in Testing:
nameTest = str(countTest)
countTest += 1
FileName = FolderSTFTTesting + "/" + nameTest + '.png'
print(FileName)
ProcessConcat('Temp/Chlfft.png', 'Temp/Ch2fft.png’,
'Temp/Ch3fft.png', 'Temp/Ch4fft.png', FileName)

os.remove("Temp/STFTTestingFigureChl.png")
os.remove("Temp/STFTTestingFigureCh2.png")
os.remove("Temp/STFTTestingFigureCh3.png")
os.remove("Temp/STFTTestingFigureCh4.png")
os.remove('Temp/Chlfft.png")
os.remove('Temp/Ch2fft.png")
os.remove('Temp/Ch3fft.png"')
os.remove('Temp/Ch4fft.png")

def Classifier(x):
classification = x

FolderSTFTTraining = "Figure/Training/"+ classification
FolderSTFTTesting = "Figure/Testing/"+ classification
FolderValidation = "Figure/Validation/" + classification

if isdir(FolderSTFTTraining):
print("Folders Already Excits!")
else:

Appendix F

1133

prin

return [FolderSTFTTraining, FolderSTFTTesting, FolderValidation]

def Test
time
Chl
Ch2
Ch3
Ch4
Fs =

dete
dete
dete
dete

os.mkdir(FolderSTFTTraining)
os.mkdir(FolderSTFTTesting)
os.mkdir(FolderValidation)

t("Folder for", classification, "made!™")

ingPreprocessing(data):

= data[75:1len(data)-1, 1]
data[75:1en(data)-1, 2]
data[75:1en(data) - 1, 3]
data[75:1en(data) - 1, 4]
data[75:1en(data) - 1, 5]
1000

nChl
nCh2
nCh3
nCh4

sig.detrend(Chl)
sig.detrend(Ch2)
sig.detrend(Ch3)
sig.detrend(Ch4)

maxV1l = max(detenChl)

norm

V1l = detenChl / maxV1

maxV2 = max(detenCh2)

norm

V2 = detenCh2 / maxV2

maxV3 = max(detenCh3)

norm

V3 = detenCh3 / maxV3

maxV4 = max(detenCh4)

norm

Chlp
Ch2p
Ch3p
Ch4p

C
figo
axo
plt.
plt.
plt.
plt.
axo.
plt.
plt.

figo.savefig('ScattTestingFigureChl.png', bbox_inches="tight",

pad_inch

f1,
figl

V4 = detenCh4 / maxV4

normV1l
normV2
normV3
normvV4

p
p
p
p

hannel 1
= plt.figure()
= plt.Axes(figo, [0., 0., 1., 1.])
style.use('dark_background")
scatter(time, Chlpp, c=abs(Chlpp * Chlpp), s=abs(Chlpp))
gray()
axis('off")
set_axis_off()
tight_layout()
show()

es=0)

t1l, Zxx1 = sig.stft(Chlpp, Fs, nperseg=1000)
= plt.figure(frameon=False)

Appendix F | 134

axl = plt.Axes(figl, [0., 0., 1., 1.])

plt.pcolormesh(tl, f1, np.abs(Zxx1l), shading='gouraud', cmap='gray')

plt.axis('off")

plt.ylim([90, 500])

axl.set axis off()

plt.tight_layout()

plt.show()

figl.savefig('STFTTestingFigureChl.png', bbox_inches="tight',
pad_inches=0)

Channel 2

figo = plt.figure()

ax@ = plt.Axes(fige, [0., 0., 1., 1.])

plt.style.use('dark_background")

plt.scatter(time, Ch2pp, c=abs(Ch2pp * Ch2pp), s=abs(Ch2pp))

plt.gray()

plt.axis('off")

ax0.set _axis off()

plt.tight_layout()

plt.show()

fig@.savefig('ScattTestingFigureCh2.png', bbox_inches="tight"',
pad_inches=0)

2, t2, Zxx2 = sig.stft(Ch2pp, Fs, nperseg=1000)

figl = plt.figure(frameon=False)

axl = plt.Axes(figl, [©0., ©., 1., 1.])

plt.pcolormesh(t2, f2, np.abs(Zxx2), shading='gouraud', cmap='gray')

plt.axis('off")

plt.ylim([90, 500])

axl.set_axis_off()

plt.tight_layout()

plt.show()

figl.savefig('STFTTestingFigureCh2.png', bbox_inches='tight"',
pad_inches=0)

##Channel 3

figo = plt.figure()

ax0 = plt.Axes(fige, [0., 0., 1., 1.])

plt.style.use("dark_background')

plt.scatter(time, Ch3pp, c=abs(Ch3pp * Ch3pp), s=abs(Ch3pp))

plt.gray()

plt.axis('off")

ax0@.set axis off()

plt.tight_layout()

plt.show()

fig0.savefig('ScattTestingFigureCh3.png', bbox_inches="tight"',
pad_inches=0)

Appendix F | 135

3, t3, Zxx3 = sig.stft(Ch3pp, Fs, nperseg=1000)

figl = plt.figure(frameon=False)

axl = plt.Axes(figl, [©., 0., 1., 1.])

plt.pcolormesh(t3, f3, np.abs(Zxx3), shading='gouraud', cmap='gray')

plt.axis('off")

plt.ylim([90, 500])

axl.set axis off()

plt.tight_layout()

plt.show()

figl.savefig('STFTTestingFigureCh3.png', bbox_inches="tight',
pad_inches=0)

Channel 4

figd = plt.figure()

ax@ = plt.Axes(fige, [0., 0., 1., 1.])

plt.style.use('dark_background")

plt.scatter(time, Chdpp, c=abs(Ch4pp * Chdpp), s=abs(Chdpp))

plt.gray()

plt.axis('off")

ax09.set axis off()

plt.tight_layout()

plt.show()

fig0.savefig('ScattTestingFigureCh4.png', bbox_inches="tight",
pad_inches=0)

f4, t4, Zxx4 = sig.stft(Chdpp, Fs, nperseg=1000)

figl = plt.figure(frameon=False)

axl = plt.Axes(figl, [©., 0., 1., 1.])

plt.pcolormesh(t4, f4, np.abs(Zxx4), shading='gouraud', cmap='gray')

plt.axis('off")

plt.ylim([90, 500])

axl.set _axis off()

plt.tight_layout()

plt.show()

figl.savefig('STFTTestingFigureCh4.png', bbox_inches="'tight',
pad_inches=0)

def figure makerMeth2(data, FolderSTFTTraining, FolderSTFTTesting,
FolderValTesting, FileName):

ChannelNum = len(data[@]) - 1

time = data[150:len(data)-1, 1]

Chl = data[150:1len(data)-1, 2]

Ch2 = data[150:1en(data) - 1, 3]
Ch3 = data[150:1len(data) - 1, 4]
Ch4 = data[150:1len(data) - 1, 5]

Fs = 4000/3.5

detenChl = sig.detrend(Chl)

Appendix F | 136

detenCh2 = sig.detrend(Ch2)
detenCh3 = sig.detrend(Ch3)
detenCh4 = sig.detrend(Ch4)

filter = sig.butter(2, [70,550], 'bandpass', fs=Fs, output='sos')
corrChl = sig.sosfilt(filter, detenChl)

corrChl = (corrChl*5)/1023

corrCh2 = sig.sosfilt(filter, detenCh2)

corrCh2 = (corrCh2*5)/1023

corrCh3 = sig.sosfilt(filter, detenCh3)

corrCh3 = (corrCh3*5)/1023

corrCh4 = sig.sosfilt(filter, detenCh4)

corrCh4 = (corrCh4*5)/1023

TrainingDirectory = [f for f in listdir(FolderSTFTTraining)]
TestDirectory = [f for f in listdir(FolderSTFTTesting)]
ValidationDirectory = [f for f in listdir(FolderValTesting)]

countTrain = int(len(TrainingDirectory))
countTest = int(len(TestDirectory))
countVal = int(len(ValidationDirectory))

maxVl = max(corrChl)
normVl = corrChl / maxV1
maxV2 = max(corrCh2)
normV2 = corrCh2 / maxV2
maxV3 = max(corrCh3)
normV3 = corrCh3 / maxV3
maxV4 = max(corrCh4)
normvV4 = corrCh4 / maxV4

Num = random.randint(@, 10)
seperationPoints = SepWithSTFT(normV1l, normV2, normV3, normV4, time, Fs)
if len(seperationPoints)>0:
if len(seperationPoints) <= 2:
Chlpp =
normV1l[int(seperationPoints[0@]):int(seperationPoints[0]+Fs+10)]
Ch2pp =
normV2[int(seperationPoints[0]):int(seperationPoints[0]+Fs+10)]
Ch3pp =
normV3[int(seperationPoints[0]):int(seperationPoints[0]+Fs+10)]
Chdpp =
normV4[int(seperationPoints[@]):int(seperationPoints[0]+Fs+10)]
if len(seperationPoints) > 2:
Chlpp =
normVi[int(seperationPoints[1]):int(seperationPoints[1]+Fs+10)]

Appendix F | 137

Ch2pp =
normV2[int(seperationPoints[1]):int(seperationPoints[1]+Fs+10)]
Ch3pp =
normV3[int(seperationPoints[1]):int(seperationPoints[1]+Fs+10)]
Chdpp =
normV4[int(seperationPoints[1]):int(seperationPoints[1]+Fs+10)]
Channel 1
f1, t1, Zxx1 = sig.stft(Chlpp, Fs, nperseg=75)
figl = plt.figure(frameon=False)
axl = plt.Axes(figl, [0., 0., 1., 1.])
plt.pcolormesh(tl, f1, np.abs(Zxx1), shading='gouraud', cmap='gray')
plt.axis('off")
plt.ylim([70, 500])
axl.set axis off()
plt.tight_layout()
plt.show()
figl.savefig('Temp/STFTTestingFigureChl.png', bbox_inches='tight",
pad_inches=0)

Channel 2

2, t2, Zxx2 = sig.stft(Ch2pp, Fs, nperseg=75)

figl = plt.figure(frameon=False)

axl = plt.Axes(figl, [0., 0., 1., 1.])

plt.pcolormesh(t2, f2, np.abs(Zxx2), shading='gouraud', cmap='gray')

plt.axis('off")

plt.ylim([70, 500])

axl.set axis off()

plt.tight_layout()

plt.show()

figl.savefig('Temp/STFTTestingFigureCh2.png', bbox_inches='tight",
pad_inches=0)

##Channel 3

3, t3, Zxx3 = sig.stft(Ch3pp, Fs, nperseg=75)

figl = plt.figure(frameon=False)

axl = plt.Axes(figl, [0., 0., 1., 1.])

plt.pcolormesh(t3, f3, np.abs(Zxx3), shading='gouraud', cmap='gray')

plt.axis('off")

plt.ylim([70, 500])

axl.set axis off()

plt.tight_layout()

plt.show()

figl.savefig('Temp/STFTTestingFigureCh3.png', bbox_inches='tight',
pad_inches=0)

Channel 4
f4, t4, Zxx4 = sig.stft(Chdpp, Fs, nperseg=75)
figl = plt.figure(frameon=False)

Appendix F | 138

axl = plt.Axes(figl, [0., ©., 1., 1.])

plt.pcolormesh(t4, f4, np.abs(Zxx4), shading='gouraud', cmap='gray')

plt.axis('off")

plt.ylim([90, 500])

axl.set _axis_off()

plt.tight_layout()

plt.show()

figl.savefig('Temp/STFTTestingFigureCh4.png', bbox_inches='tight"',
pad_inches=0)

if Num in range(9, 7):

nameTrain = str(countTrain)

countTrain += 1

FileName = FolderSTFTTraining + "/" + nameTrain + '.png'

print(FileName)

ProcessConcat('Temp/STFTTestingFigureChl.png",
'Temp/STFTTestingFigureCh2.png', 'Temp/STFTTestingFigureCh3.png',
"Temp/STFTTestingFigureCh4.png', FileName)

if Num in range(7, 9):

nameVal = str(countval)

countVal += 1

FileName = FolderValTesting + "/" + nameVal + '.png'

print(FileName)

ProcessConcat('Temp/STFTTestingFigureChl.png",
'Temp/STFTTestingFigureCh2.png', 'Temp/STFTTestingFigureCh3.png',
"Temp/STFTTestingFigureCh4.png', FileName)

if Num in range(9, 11):

nameTest = str(countTest)

countTest += 1

FileName = FolderSTFTTesting + "/" + nameTest + '.png'

print(FileName)

ProcessConcat('Temp/STFTTestingFigureChl.png',
'Temp/STFTTestingFigureCh2.png', 'Temp/STFTTestingFigureCh3.png',
"Temp/STFTTestingFigureCh4.png', FileName)

os.remove("Temp/STFTTestingFigureChl.png")
os.remove("Temp/STFTTestingFigureCh2.png")
os.remove("Temp/STFTTestingFigureCh3.png")
os.remove("Temp/STFTTestingFigureCh4.png")

def figure_makerTesting(data):
time = data[150:1len(data)-1, 1]

Chl = data[150:1len(data)-1, 2]

Ch2 = data[150:1len(data) - 1, 3]
Ch3 = data[150:1len(data) - 1, 4]
Ch4 = data[150:1len(data) - 1, 5]

Appendix F | 139

Fs = 4000/3.5

detenChl = sig.detrend(Chl)
detenCh2 = sig.detrend(Ch2)
detenCh3 = sig.detrend(Ch3)
detenCh4 = sig.detrend(Ch4)

filter = sig.butter(2, [70,550], 'bandpass', fs=Fs, output='sos')
corrChl = sig.sosfilt(filter, detenChl)

corrChl = (corrChil*5)/1023
corrCh2 = sig.sosfilt(filter, detenCh2)
corrCh2 = (corrCh2*5)/1023
corrCh3 = sig.sosfilt(filter, detenCh3)
corrCh3 = (corrCh3*5)/1023
corrCh4 = sig.sosfilt(filter, detenCh4)
corrCh4 = (corrCh4*5)/1023

maxV1l = max(corrChl)
normVl = corrChl / maxVl
maxV2 = max(corrCh2)
normV2 = corrCh2 / maxV2
maxV3 = max(corrCh3)
normV3 = corrCh3 / maxV3
maxV4 = max(corrCh4)
normV4d = corrCh4 / maxV4

seperationPoints = SepWithSTFT(normvl, normV2, normV3, normV4, time, Fs)
if len(seperationPoints) > 1:
if len(seperationPoints) <= 2:

Chlpp =
normV1l[int(seperationPoints[@]):int(seperationPoints[@]+Fs+10)]

Ch2pp =
normV2[int(seperationPoints[0]):int(seperationPoints[@]+Fs+10)]

Ch3pp =
normV3[int(seperationPoints[0]):int(seperationPoints[0]+Fs+10)]

Chdpp =
normV4[int(seperationPoints[0]):int(seperationPoints[@]+Fs+10)]

if len(seperationPoints) > 2:

Chlpp =
normV1l[int(seperationPoints[1]):int(seperationPoints[1]+Fs+10)]

Ch2pp =
normV2[int(seperationPoints[1]):int(seperationPoints[1]+Fs+10)]

Ch3pp =
normV3[int(seperationPoints[1]):int(seperationPoints[1]+Fs+10)]

Chdpp =
normV4[int(seperationPoints[1]):int(seperationPoints[1]+Fs+10)]

Appendix F | 140

Channel 1

f1, tl1, Zxx1 = sig.stft(Chlpp, Fs, nperseg=150)

figl = plt.figure(frameon=False)

axl = plt.Axes(figl, [©0., 0., 1., 1.])

plt.pcolormesh(tl, f1, np.abs(Zxx1l), shading='gouraud', cmap='gray")

plt.axis('off")

plt.ylim([70, 500])

axl.set_axis_off()

plt.tight layout()

plt.show()

figl.savefig('Temp/STFTTestingFigureChl.png', bbox_inches="tight',
pad_inches=0)

Channel 2

2, t2, Zxx2 = sig.stft(Ch2pp, Fs, nperseg=150)

figl = plt.figure(frameon=False)

axl = plt.Axes(figl, [©0., 0., 1., 1.])

plt.pcolormesh(t2, f2, np.abs(Zxx2), shading='gouraud', cmap='gray")

plt.axis('off")

plt.ylim([70, 500])

ax1l.set_axis_off()

plt.tight_layout()

plt.show()

figl.savefig('Temp/STFTTestingFigureCh2.png', bbox_inches="tight',
pad_inches=0)

##Channel 3

3, t3, Zxx3 = sig.stft(Ch3pp, Fs, nperseg=150)

figl = plt.figure(frameon=False)

axl = plt.Axes(figl, [©0., 0., 1., 1.])

plt.pcolormesh(t3, f3, np.abs(Zxx3), shading='gouraud', cmap='gray')

plt.axis('off")

plt.ylim([70, 500])

axl.set_axis_off()

plt.tight_layout()

plt.show()

figl.savefig('Temp/STFTTestingFigureCh3.png', bbox_inches="tight',
pad_inches=0)

Channel 4

f4, t4, Zxx4 = sig.stft(Chdpp, Fs, nperseg=150)

figl = plt.figure(frameon=False)

axl = plt.Axes(figl, [0., 0., 1., 1.])

plt.pcolormesh(t4, f4, np.abs(Zxx4), shading='gouraud', cmap='gray')
plt.axis('off")

plt.ylim([90, 500])

axl.set axis off()

plt.tight_layout()

Appendix F | 141

figl.savefig('Temp/STFTTestingFigureCh4.png', bbox_inches="tight’,
pad_inches=0)

FileName = "Temp/Test.png"
print(FileName)
ProcessConcat('Temp/STFTTestingFigureChl.png',
'Temp/STFTTestingFigureCh2.png', 'Temp/STFTTestingFigureCh3.png',
'Temp/STFTTestingFigureCh4.png', FileName)
os.remove("Temp/STFTTestingFigureChl.png")
os.remove("Temp/STFTTestingFigureCh2.png")
os.remove("Temp/STFTTestingFigureCh3.png")
os.remove("Temp/STFTTestingFigureCh4.png")

def figure_makerMeth2AutoSize(data, FolderSTFTTraining, FolderSTFTTesting,
FolderValTesting, FileName):

TrainingDirectory = [f for f in listdir(FolderSTFTTraining)]
TestDirectory = [f for f in listdir(FolderSTFTTesting)]
ValidationDirectory = [f for f in listdir(FolderValTesting)]

countTrain = int(len(TrainingDirectory))

countTest = int(len(TestDirectory))

countVal = int(len(ValidationDirectory))

data = np.delete(data, 0, 1)

ChannelNum = len(data[@]) - 1

print(ChannelNum)

Fs = 4000 / 3.5

time = data[200:1len(data) - 1, 9]

row = len(time)

print(row)

col = len(data[@]) - 1

print(col)

normData = np.empty(shape=(row, col))

for ch in range(ChannelNum):
Detrend = sig.detrend(data[200:1len(data) - 1, ch + 1])
filter = sig.butter(2, [70, 550], 'bandpass', fs=Fs, output="sos')
corrdet = sig.sosfilt(filter, Detrend)
corrdet = (corrdet * 5) / 1023

maxVal = max(corrdet)
normData[:, ch] = corrdet #/ maxVal

Num = random.randint(e, 10)
seperationPoints = SepWithSTFTAuto(normData, time, Fs)

if len(seperationPoints)>1 and len(seperationPoints)<=5:
for ch in range(ChannelNum):

Appendix F | 142

if len(seperationPoints) <= 2:
Chlpp =
normData[int(seperationPoints[0]):int(seperationPoints[@]+Fs+10), ch]

if len(seperationPoints) > 2:
Chlpp =

normData[int(seperationPoints[1]):int(seperationPoints[1]+Fs+10), ch]

f1, t1, Zxx1 = sig.stft(Chlpp, Fs, nperseg=75)

figl = plt.figure(frameon=False)

axl = plt.Axes(figl, [0., 0., 1., 1.])

plt.pcolormesh(tl, f1, np.abs(Zxx1l), shading='gouraud',
cmap="gray")

plt.axis('off")

plt.ylim([70, 500])

axl.set_axis_off()

plt.tight layout()

plt.show()

Figname = 'Temp/STFTTestingFigure'+ str(ch) + '.png'

figl.savefig(Figname, bbox_inches="tight', pad_inches=0)

if Num in range(9, 7):
nameTrain = str(countTrain)
countTrain += 1
FileName = FolderSTFTTraining + "/" + nameTrain + '.png'
Figures = os.listdir("Temp/")
print(FileName)
print(Figures)
ProcessConcatAuto(Figures, FileName)
if Num in range(7, 9):
nameVal = str(countVval)
countVal += 1
FileName = FolderValTesting + "/" + nameVal + '.png'
Figures = os.listdir("Temp/")
print(FileName)
print(Figures)
ProcessConcatAuto(Figures, FileName)
if Num in range(9, 11):
nameTest = str(countTest)
countTest += 1
FileName = FolderSTFTTesting + "/" + nameTest + '.png'
Figures = os.listdir("Temp/")
print(FileName)
print(Figures)
ProcessConcatAuto(Figures, FileName)
for 1 in Figures:
FigureName = "Temp/"+1i
os.remove(FigureName)

Appendix F | 143

F.4. SectionCutting.py

import matplotlib.pyplot as plt
import pandas as pd

import numpy as np

import scipy.signal as sig

from random import randint

def SectionCutting(V, t, FileName):
seperation = []
seperation.append(9)
time = t
voltage = V

uplowBoundNull = 0.1
perofMaxVal = 0.7
binSize = 100
perNullDen = 0.6
perMaxDen = 0.7

t = time[0: 70000]
fderenV = V[0: 70000]

maxVal = max(fderenV)

Nullpeaks, _ = sig.find_peaks(fderenV, height=(-uplowBoundNull,
uplowBoundNull))
peaks, _ = sig.find_peaks(fderenV, height=perofMaxVal*maxVal)

plt.plot(t, fderenV, linewidth=0.05)
plt.scatter(t[peaks], fderenV[peaks], color="red')
plt.show()

f, (a0, al, a2) = plt.subplots(3, 1, gridspec_kw={"height_ratios':
[10,3,31})

a0.plot(t, fderenV, linewidth=0.1, label="Signal")

a0.scatter(t[Nullpeaks], fderenV[Nullpeaks], color="red', label="Low
amplitude peaks")

a0.scatter(t[peaks], fderenV[peaks], color='green', label="Large amplitude
peak")

NullpeakDensity, NullpeakRange, _ = al.hist(Nullpeaks, bins=binSize,
facecolor="r', alpha=1, edgecolor='k', linewidth=1)

peakDensity, peakRange, _ = a2.hist(peaks, bins=binSize, facecolor='g’,
alpha=1, edgecolor="k', linewidth=1)

plt.show()

NullmaxDensity = max(NullpeakDensity)
maxDensity = max(peakDensity)
interestingNullPeakDis = []

Appendix F | 144

interestingPeakDis = []
for i in range(len(peakDensity)):
if NullpeakDensity[i]>= perNullDen* NullmaxDensity:
interestingNullPeakDis.append(i)

for i in range(len(peakDensity)):
if peakDensity[i]>= perMaxDen*maxDensity:
interestingPeakDis.append(i)

for i in range(len(interestingNullPeakDis)):
if interestingNullPeakDis[i] in interestingPeakDis:
interestingNullPeakDis[i] = "'
chekcer = True
while chekcer:
if '' in interestingNullPeakDis:
interestingNullPeakDis.remove('")
else:
chekcer = False

NullpeakRange = np.insert(NullpeakRange, 0, 0)

for i in range(len(interestingNullPeakDis)):
place = interestingNullPeakDis[i]+2
seperation.append(int((NullpeakRange[place])))

for i in range(5):
for i in range(@,len(seperation)-1):
if seperation[i]+3000 >= seperation[i+l]:
NewSep = (seperation[i] + seperation[i+1])/2 - randint(50,
500)
seperation[i] = "'
seperation[i+1] = int(NewSep)

chekcer = True
while chekcer:
if "' in seperation:
seperation.remove('")
else:
chekcer = False

from mutagen.wave import WAVE

fileName = FileName.replace("TrainingData\\", '")
AudioFileName = fileName.split('-")

AudioFileName = "AudioOriginal/"+AudioFileName[@]+".wav'

audio = WAVE(AudioFileName)
audio_info = audio.info
length = int(audio_info.length)

Appendix F | 145

for i in range(@,len(seperation)-1):
if seperation[i] + length*4000*0.7 >= seperation[i + 1]:
seperation[i+l] = ©

chekcer = True
while chekcer:
if @ in seperation:
seperation.remove(0)
else:
chekcer = False
figl = plt.figure()
plt.plot(t, fderenV, linewidth=0.1, label="Signal")
plt.scatter(t[seperation], fderenV[seperation], color='red', label =
"Seperation Points")
plt.show()

displacemetData = 750
whileChecker = True
while whileChecker:
if seperation[len(seperation)-1]+70000<=1len(voltage):
t = time[seperation[len(seperation)-1]-displacemetData:
seperation[len(seperation)-1]+80000]
fderenV = voltage[seperation[len(seperation)-1]-displacemetData:
seperation[len(seperation)-1]+80000]

maxVal = max(fderenV)

NewSection = []

Nullpeaks, _ = sig.find_peaks(fderenV, height=(-uplowBoundNull,
uplowBoundNull))
peaks, = sig.find_peaks(fderenV, height=perofMaxVval * maxVal)

plt.plot(t, fderenV, linewidth=0.05)
plt.scatter(t[Nullpeaks], fderenV[Nullpeaks], color="red')
plt.scatter(t[peaks], fderenV[peaks], color='green')

NullpeakDensity, NullpeakRange, _ = plt.hist(Nullpeaks,
bins=binSize, facecolor='r', alpha=1, edgecolor='k', linewidth=1)

peakDensity, peakRange, _ = plt.hist(peaks, bins=binSize,
facecolor="g', alpha=1, edgecolor='k', linewidth=1)

plt.close()

NullmaxDensity = max(NullpeakDensity)
maxDensity = max(peakDensity)

interestingNullPeakDis = []

Appendix F | 146

interestingPeakDis = []
for i in range(len(peakDensity)):
if NullpeakDensity[i] >= perNullDen * NullmaxDensity:
interestingNullPeakDis.append(i)

for i in range(len(peakDensity)):
if peakDensity[i] >= perMaxDen * maxDensity:
interestingPeakDis.append(i)

for i in range(len(interestingNullPeakDis)):
if interestingNullPeakDis[i] in interestingPeakDis:
interestingNullPeakDis[i] = "'
chekcer = True
while chekcer:
if '' in interestingNullPeakDis:
interestingNullPeakDis.remove('")
else:
chekcer = False

NullpeakRange = np.insert(NullpeakRange, 0, ©0)

for i in range(len(interestingNullPeakDis)):
place = interestingNullPeakDis[i] + 2
NewSection.append(int((NullpeakRange[place])))

for j in range(10):
for i in range(len(NewSection) - 1):
if NewSection[i] + length * 4000*%0.7 >= NewSection[i + 1]
and NewSection[i] + length * 4000*0.7 <= NewSection[i + 1]:
NewSection[i + 1] = ©

chekcer = True
while chekcer:
if @ in NewSection:
NewSection.remove(9)
else:
chekcer = False

for j in range(10):
for i in range(@, len(NewSection) - 1):
if NewSection[i] + 2000 >= NewSection[i + 1]:
NewSep = (NewSection[i] + NewSection[i + 1]) / 2 -
randint (50, 100)
NewSection[i] = "'
NewSection[i + 1] = int(NewSep)

chekcer = True
while chekcer:

Appendix F | 147

if "' in NewSection:
NewSection.remove('")
else:
chekcer = False

for i in range(2):
for i in range(len(NewSection) - 1):
if NewSection[i] + length * 4000*0.7 >= NewSection[i + 1]:
NewSection[i + 1] = @

chekcer = True
while chekcer:
if @ in NewSection:
NewSection.remove(9)
else:
chekcer = False

plt.plot(t, fderenV, linewidth=0.05)
plt.scatter(t[NewSection], fderenV[NewSection], color='red")
plt.show()
previousSep = seperation[len(seperation) - 1]
for i in range(1,len(NewSection)):
seperation.append(NewSection[i]+previousSep-displacemetData)
else:
whileChecker = False
return(seperation)

def SectionCuttingTesting(V, t):
seperation = []

t =t
fderenVv = V

maxVal = max(fderenV)

Nullpeaks, _ = sig.find_peaks(fderenV, height=(-0.07, 0.07))
Nullpeaks = np.transpose(Nullpeaks)
peaks, _ = sig.find_peaks(fderenV, height=0.5*maxVal)

f, (a0, al, a2) = plt.subplots(3, 1, gridspec_kw={"height_ratios': [7, 2,

21})
a0.plot(t, fderenV, linewidth=0.05)

NullpeakDensity, NullpeakRange, _ = al.hist(Nullpeaks, bins=60,
facecolor="r', alpha=1, edgecolor='k', linewidth=1)

Appendix F | 148

peakDensity, peakRange, _ = a2.hist(peaks, bins=60, facecolor='g',
alpha=1, edgecolor="k', linewidth=1)
f.tight layout()

NullmaxDensity = max(NullpeakDensity)
maxDensity = max(peakDensity)
interestingNullPeakDis = []
interestingPeakDis = []
for i in range(len(peakDensity)):
if NullpeakDensity[i]>= ©.8* NullmaxDensity:
interestingNullPeakDis.append(i)

for i in range(len(peakDensity)):
if peakDensity[i]>= ©.5* maxDensity:
interestingPeakDis.append(i)

for i in range(len(interestingNullPeakDis)):
if interestingNullPeakDis[i] in interestingPeakDis:
interestingNullPeakDis[i] = "'
chekcer = True
while chekcer:
if '' in interestingNullPeakDis:
interestingNullPeakDis.remove("")
else:
chekcer = False

NullpeakRange = np.insert(NullpeakRange, 0, 9)

for i in range(len(interestingNullPeakDis)):
place = interestingNullPeakDis[i]+2
seperation.append(int((NullpeakRange[place])))

for i in range(5):
for i in range(@,len(seperation)-1):
if seperation[i]+3000 >= seperation[i+1]:
NewSep = (seperation[i] + seperation[i+1])/2 - randint(50,
500)
seperation[i] = "'
seperation[i+l] = int(NewSep)

chekcer = True
while chekcer:
if "' in seperation:
seperation.remove('")
else:
chekcer = False
diffLow = []
return(seperation)

Appendix F | 149

def SepWithSTFT(normV1l, normV2, normV3, normV4, t, Fs):
inst = 100
f1, t1, Zxx1 = sig.stft(normvVl, Fs, nperseg=inst)
figl = plt.figure(frameon=False)
axl = plt.Axes(figl, [0., 0., 1., 1.])
plt.pcolormesh(tl, f1, np.abs(Zxx1), shading="gouraud")
axl.set_axis_off()
plt.tight_layout()

2, t2, Zxx2 = sig.stft(normv2, Fs, nperseg=inst)

figl = plt.figure(frameon=False)

axl = plt.Axes(figl, [0., 0., 1., 1.])
plt.pcolormesh(t2, f2, np.abs(Zxx2), shading="'gouraud")
axl.set _axis_off()

plt.tight_layout()

plt.show()

3, t3, Zxx3 = sig.stft(normv3, Fs, nperseg=inst)

figl = plt.figure(frameon=False)

axl = plt.Axes(figl, [©., 0., 1., 1.])
plt.pcolormesh(t3, f3, np.abs(Zxx3), shading='gouraud")
axl.set _axis off()

plt.tight_layout()

plt.show()

f4, t4, Zxx4 = sig.stft(normvV4, Fs, nperseg=inst)

figl = plt.figure(frameon=False)

axl = plt.Axes(figl, [©., ©., 1., 1.])
plt.pcolormesh(t4, f4, np.abs(Zxx4), shading='gouraud")
axl.set axis off()

plt.tight layout()

plt.show()
z1 = abs(Zxx1)
z2 = abs(Zxx2)
z3 = abs(Zxx3)
z4 = abs(Zxx4)
count = ©

for i in f1:
if round(i) == 80:

#print(count)
minFreq = count
continue

count = count + 1

maxzl = max(zl[minFreq])
maxz2 = max(z2[minFreq])

Appendix F | 150

maxz3 = max(z3[minFreq])

maxz4 = max(z4[minFreq])

z = [z1[minFreq], z2[minFreq], z3[minFreq], z4[minFreq]]
Zs = [maxzl, maxz2, maxz3, maxz4d]

maxZ = max(Zs)

indexZ = Zs.index(maxZ)

z = z[indexZ]

upperLim = max(z) * 0.55

Nullpeaks, _ = sig.find_peaks(z, height=upperLim)
plt.plot(tl, z)

plt.scatter(tl[Nullpeaks], z[Nullpeaks])

def truncate(n, decimals=0):
multiplier = 10 ** decimals
return int(n * multiplier) / multiplier

plt.plot(t, normvl, label="Channel 1", linewidth=0.5, alpha=0.3)
plt.scatter(t1[Nullpeaks], z[Nullpeaks], color="k")
plt.show()

adjPe = inst / 2

Sectioning = Nullpeaks*adjPe
plt.close()

return Sectioning

def SepWithSTFTAuto(data, time, Fs):
inst = 100
normvVl = data[@:len(time), 9]
f, t, Zxx = sig.stft(normVl, Fs, nperseg=inst)
fig = plt.figure(frameon=False)
axl = plt.Axes(fig, [0., 0., 1., 1.])
plt.pcolormesh(t, f, np.abs(Zxx), shading='gouraud')
axl.set axis off()
plt.tight_layout()
plt.show()

z1 = abs(Zxx)

count = ©
for i in f:
if round(i) == 80:
minFreq = count
continue
count = count + 1

z = z1[minFreq]

upperLim = max(z) * ©.50

Appendix F | 151

Nullpeaks, _ = sig.find_peaks(z, height=upperLim)
plt.plot(t, z)

plt.scatter(t[Nullpeaks], z[Nullpeaks])
plt.show()

def truncate(n, decimals=0):
multiplier = 10 ** decimals
return int(n * multiplier) / multiplier

plt.plot(time, normvl, label="Channel 1", linewidth=0.5, alpha=0.3)
plt.scatter(t[Nullpeaks], z[Nullpeaks], color='k")

plt.show()

print(Nullpeaks)

if len(Nullpeaks) »>1:
adjPe = int(inst / 2)

Sectioning = Nullpeaks*adjPe
f, t, Zxx = sig.stft(normV1[Nullpeaks[@] * adjPe: Nullpeaks[1] *
adjPe], Fs, nperseg=inst)
figl = plt.figure(frameon=False)
axl = plt.Axes(figl, [0., 0., 1., 1.])
plt.pcolormesh(t, f, np.abs(Zxx), shading='gouraud')
axl.set_axis_off()
plt.tight layout()
plt.show()
else:
Sectioning = [0]
return Sectioning

Appendix F | 152

F.5. MachineLearning.py

import matplotlib.pyplot as plt

import seaborn as sns

import os

os.environ["CUDA_VISIBLE_DEVICES"]="-1"

import tensorflow.keras

from tensorflow.keras import Sequential

from tensorflow.keras.layers import Dense, Conv2D, MaxPool2D, Flatten,
Dropout, Softmax

from keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras.optimizers import Adam

from Labeler_Data import get_data

from sklearn.metrics import classification_report,confusion_matrix
from keras.utils.vis_utils import plot_model

import pydot

from datetime import datetime

from packaging import version

from tensorflow.keras import regularizers

import tensorflow as tf
import numpy as np

def CNN_Training(folderTraining, folderTesting, ep, LearningRate, dataType,
img_size, label):

#img_size = 32

CAT = label

trainData = get_data(folderTraining, img_size, labels=CAT)

[]
[l

x_train
y_train

for feature, label in trainData:
x_train.append(feature)
y_train.append(label)

Normalize the data
x_train = np.array(x_train) / 255

x_train.reshape(-1, img_size, img_size, 1)
y_train = np.array(y_train)

testData
x_val =
y_val =

= get data(folderTesting, img size, labels= CAT)
1
]

Appendix F | 153

for feature, label in testData:
x_val.append(feature)
y_val.append(label)

x_val = np.array(x_val) / 255

x_val.reshape(-1, img_size, img_size, 1)
y_val = np.array(y_val)

num_labels = len(CAT)
datagen = ImageDataGenerator(
featurewise center=False, # set input mean to © over the dataset
samplewise_center=False, # set each sample mean to ©
featurewise_std_normalization=False, # divide inputs by std of
the dataset
samplewise_std_normalization=False, # divide each input by its
std
zca_whitening=False, # apply ZCA whitening
rotation_range = False, # randomly rotate images in the range
(degrees, © to 189)
zoom_range = False,#0.3, # Randomly zoom image
width_shift_range=False,#0.2, # randomly shift images
horizontally (fraction of total width)
height_shift_range=False, # randomly shift images vertically
(fraction of total height)
horizontal flip = False, # randomly flip images
vertical_flip=False) # randomly flip images

datagen.fit(x_train)

logdir = "logs/fit/" + datetime.now().strftime("%Y%m%d-%H%M%S")

tensorboard callback =
tensorflow.keras.callbacks.TensorBoard(log_dir=logdir)

model = Sequential()

model.add(Conv2D(35, 5, padding="same", activation="relu",
input_shape=x_train.shape[1:]))

model.add(MaxPool2D(pool size=(2, 2), strides=3))

model.add(Dropout(0.25))

model.add(Conv2D(65, 5, padding="same", activation="relu"))
model.add (MaxPool2D())
model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(128, activation="sigmoid",
kernel_regularizer= regularizers.L1L2(1l1l=1e-5, 12=le-4),
bias_regularizer= regularizers.L2(le-4),
activity regularizer= regularizers.L2(1le-5)))

Appendix F | 154

model.add(Dense(128, activation="relu",
kernel_regularizer= regularizers.L1L2(l1l=1e-5, 12=le-4),
bias_regularizer= regularizers.L2(1le-4),
activity regularizer= regularizers.L2(le-5)))

model.add(Dropout(0.25))
model.add(Dense(num_labels))

model.summary()

opt = Adam(lr=LearningRate)

model.compile(optimizer = opt , loss =
tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) , metrics =
['accuracy'])

history = model.fit(x_train,y_train,epochs = ep , validation_data =
(x_val, y _val), callbacks=[tensorboard callback])

acc = history.history['accuracy']

val_acc = history.history['val_accuracy']
loss = history.history['loss"']

val_loss = history.history['val_loss']

epochs_range = range(ep)

fig = plt.figure(figsize=(15, 15))

plt.subplot(2, 2, 1)

plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc="'lower right')

plt.title('Training and Validation Accuracy')

plt.subplot(2, 2, 2)

plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val loss, label='Validation Loss')
plt.legend(loc="upper right")

plt.title('Training and Validation Loss"')

plt.show()

Name = "Figures/" + dataType+"AccurracyandErrorPlot.png"
fig.savefig(Name, transparent=True, bbox_inches="tight")

model.summary()
return model, acc, val acc, loss, val loss

def TestingNetwrok(model, folderTesting, img size, labels):
testData = get_data(folderTesting, img_size, labels)
x_val =

[]
y_val = []

Appendix F | 155

for feature, label in testData:
x_val.append(feature)
y_val.append(label)

x_val

np.array(x_val) / 255

x_val.reshape(-1, img_size, img_size, 1)
y_val = np.array(y_val)

#CAT = ['A', 'B', 'C', 'D', 'E', 'F']

CAT = labels

DegNum = int(labels[1])

DegNum = str(DegNum)

predictions = model.predict(x_val)

predictions = np.argmax(predictions,axis=1)

print(classification report(y_val, predictions, target _names = CAT))

fig = plt.figure()

confusion_mtx = tf.math.confusion_matrix(y_val, predictions)

sns.heatmap(confusion_mtx, xticklabels=CAT, yticklabels=CAT,
annot=True, fmt="g")

plt.rc('font', family='Helvetica')

plt.xlabel('Prediction’',fontsize=20)

plt.xticks(rotation=90)

plt.ylabel('Label',fontsize=20)

plt.yticks(rotation=90)

plt.show()

Name = "Figures/" + DegNum + " Confusion Matrix.png"

fig.savefig(Name, transparent=True, bbox_inches="tight")

return y_val, predictions

def Save CNN(model, Name):
json_model = model.to_json()

with open(Name, 'w') as json_file:
json_file.write(json_model)

def CNN_TrainingImprove(folderTraining, folderTesting, ep, LearningRate,
dataType, img_size, label):

#img size = 32

CAT = label

trainData = get_data(folderTraining, img_size, labels=CAT)

x_train
y_train

[]
[]

for feature, label in trainData:
x_train.append(feature)
y_train.append(label)

Appendix F | 156

Normalize the data
x_train = np.array(x_train) / 255

x_train.reshape(-1, img_size, img_size, 1)
y_train = np.array(y_train)

testData
x_val =
y_val =

= get _data(folderTesting, img_size, labels= CAT)
]
]

for feature, label in testData:
x_val.append(feature)
y_val.append(label)

x_val = np.array(x_val) / 255

x_val.reshape(-1, img_size, img_size, 1)
y_val = np.array(y_val)

num_labels = len(CAT)
datagen = ImageDataGenerator(
featurewise center=False, # set input mean to © over the dataset
samplewise_center=False, # set each sample mean to ©
featurewise_std_normalization=False, # divide inputs by std of
the dataset
samplewise std normalization=False, # divide each input by its
std
zca_whitening=False, # apply ZCA whitening
rotation_range = False, # randomly rotate images in the range
(degrees, © to 1890)
zoom_range = False,#0.3, # Randomly zoom image
width_shift_range=False,#0.2, # randomly shift images
horizontally (fraction of total width)
height_shift_range=False, # randomly shift images vertically
(fraction of total height)
horizontal_flip = False, # randomly flip images
vertical flip=False) # randomly flip images

datagen.fit(x_train)

logdir = "logs/fit/" + datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback =
tensorflow.keras.callbacks.TensorBoard(log_dir=logdir)

model = Sequential()

model.add(Conv2D(8, 20,padding="same", activation="relu",
input_shape=x_train.shape[1:]))

model.add(MaxPool2D())

Appendix F | 157

model.add(Flatten())
model.add(Dense(128,activation="relu"))
model.add(Dropout(0.25))

model.add(Dense(num_labels))

model = tf.keras.models.load_model("DirectionRecCNN")
model.summary ()

opt = Adam(1lr=LearningRate, betal=0.9, beta2=0.999, epsilon=1e-08,)

model.compile(optimizer = opt , loss =
tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) , metrics =
['accuracy'])

history = model.fit(x_train, y_train, epochs = ep , validation_data =
(x_val, y val), callbacks=[tensorboard_callback])

acc = history.history['accuracy']

val acc = history.history['val_accuracy']
loss = history.history['loss']

val loss = history.history['val loss']

epochs_range = range(ep)

fig = plt.figure(figsize=(15, 15))

plt.subplot(2, 2, 1)

plt.plot(epochs _range, acc, label='Training Accuracy')
plt.plot(epochs_range, val acc, label='Validation Accuracy"')
plt.legend(loc="lower right")

plt.title('Training and Validation Accuracy")

plt.subplot(2, 2, 2)

plt.plot(epochs_range, loss, label='Training Loss"')
plt.plot(epochs_range, val_loss, label='Validation Loss")
plt.legend(loc="upper right')

plt.title('Training and Validation Loss')

plt.show()

Name = dataType+"AccurracyandErrorPlot.png"
fig.savefig(Name, transparent=True, bbox_inches="tight")

model.summary()
return model, acc, val_acc, loss, val loss

Appendix F | 158

F.6. Labeler_Data.py

import cv2
import os
import numpy as np

def get data(data_dir, img_size, labels):
data = []
for label in labels:
path = os.path.join(data_dir, label)
class_num = labels.index(label)
for img in os.listdir(path):
try:
img_arr = cv2.imread(os.path.join(path, img))[...,::-1]
resized_arr = cv2.resize(img_arr, (img_size, img_size)) #
data.append([resized_arr, class_num])
except Exception as e:
print(e)
return np.array(data)

Appendix G | 159

Appendix G

Python code for real-time testing of the asymmetrical multichannel sensor with the

GitHub link: https://github.com/abmoineddini/MPhil sound localisation

Spatial Recognition.

import serial

import numpy as np

import time

from csv import writer
from Preprocessor import *
import cv2

import tensorflow as tf
from DataCollector import *
from tkinter import *

from DataSender import *
import random as rnd
import winsound

ws = Tk()

ws.title('Directional Recognition')
ws.geometry('1000x0750")
ws.config(bg="4#000000")

mylabel = Label(ws,
text="...",
bg="#000000",
fg="#ffffff',
font="Times 100",
width=50,
height=10)

mylabel.pack()
ws.update()

countDown = 100
test = True

model = tf.keras.models.load_model("DirectionRecCNN")

FileAdd = []

COMPortMotor = "COM5"

currAng, MotorController = Inititialise(COMPortMotor)

time.sleep(1)

ws.update()

labels = os.listdir("Figure/Training")

labelsInt = []

for i in labels:
labelsInt.append(int(i))

labelsInt.sort()

labelsOrd = []

https://github.com/abmoineddini/MPhil_sound_localisation

Appendix G | 160

for i in labelsInt:
labelsOrd.append(str(i))
Increment = labelsInt[1]-labelsInt[9]
COMPort = 'COM6'
while test:
div = rnd.randint(0, 12)
angle = div * Increment

currAng = AngleSet(angle, MotorController, currAng)
Name = str(currAng)
time.sleep(3)
Period = 3
[Channell, Channel2, Channel3, Channel4, Time] = collectDataTest(COMPort,
Period)
plt.show()
plt.plot(Time, Channell)
plt.plot(Time, Channel2)
plt.plot(Time, Channel3)
plt.plot(Time, Channel4)
plt.show()
df = pd.read_csv("Temp/Test.csv")
data = df.to_numpy()
figure_makerTesting(data)
PnGFile = "Temp/Test.png"
while not os.path.isfile(PnGFile):
[Channell, Channel2, Channel3, Channel4, Time] =
collectDataTest(COMPort, Period)
plt.plot(Time, Channell)
plt.plot(Time, Channel2)
plt.plot(Time, Channel3)
plt.plot(Time, Channel4d)
plt.show()
df = pd.read_csv("Temp/Test.csv")
data = df.to_numpy()
figure_makerTesting(data)
img_size = 64

def Preprocess(path):
img_arr = cv2.imread(path)[..., ::-1]
resized_arr = cv2.resize(img_arr, (img_size, img_size))
norm_arr = np.array(resized_arr) / 255
return norm_arr.reshape(-1, img_size, img_size, 3)

predict = model.predict([Preprocess("Temp/Test.png")])
print(predict)

predictVal = np.argmax(predict)
os.remove("Temp/Test.png")

os.remove("Temp/Test.csv")

Appendix G | 161

text = labelsOrd[predictVal]
preVal = labelsOrd[predictVal]
Soundplay = True

if countDown ==
Test = False

mylabel.config(text=text)

FileAdd = [currAng, preVal]

with open("Tracking/BlindTest.csv", 'a+', newline='') as f_object:
writer_object = writer(f_object)
writer_object.writerow(FileAdd)
f object.close()
FileAdd =[]

mylabel.pack()

ws.update()

if currAng <180:

angle = 360
elif currAng ==180:
angle = 170
currAng = AngleSet(angle, MotorController, currAng)
angle = 360
else:
angle = -360

currAng = AngleSet(angle, MotorController, currAng)
time.sleep(5)

mylabel.config(text="...")

mylabel.pack()

ws.update()

* The Preprocessing Speech recognition is the same as the one in in Appendix C

Section F.3.

Appendix H

| 162

Appendix H

The device spatial testing rig design.

1)
2)
3)
4)
5)
6)
7)
8)
9)

Top acrylic sensor holder

The sensor

Bottom acrylic sensor holder
Universal connector

Height adjustment Spacers

PLA 3D printed sensor holder
Top aluminium stage mount
Counterbalance mass mount arm
Mouth simulator mount arm

10) Bottom aluminium stage mount
11) Rotary stage

12) Acrylic offset mount

13) Anti vibration platform mount

Appendix H | 163

H.1. Top and bottom acrylic sensor holder:

Top and bottom acrylic sensor holder were used to sandwich the sensor and minimise

the variation in movement of the sensor and clamping force between trials.

I o O \w) m L
- h 40.00 b
5.00
&
)
= EX —Ei}—
- Rl
~I ~J
~0 |00 @
oS — =
3|8 o
(=]
o o
o 3 O
#50.00
o JTA (4]
.v&‘.®
(=)
70.00
80.00
e 4
b i
3 3
3 ;
W E a
s j
1] —
o |
Q‘ |
=
=] |
=
= @ |
3 g a
) & E =)
: 3 3.
| _{:‘ =
N 2 o . = ™
@ © =
uwr =
= w I*
= [=
=1 o=
et o g
[= =
= Wy -5 =+
& g g%
& a
—_— = & —_—
g
Q
=

Appendix H | 164

H.2. Universal connector:

To mount the sensor to the rest of the rig.

b= w (@] O m -
e} e}
_6(
~I * ~
L
o~
w
-9‘
I
b
2 &,
g z X§)
o F
=
o
[=% H
5 H
=
[=]
o
@
B z o
W & 5 Q
2 z =)
{. =
= s o
=3
SHE - (]
g =]
@ =
b @
f=} -~
= 2]
2 D
e o
H § o
5 3
il s 3 #
0 :
(24
o
> =
(")
b o] O W] m -

Appendix H | 165

H.3. PLA 3D printed sensor holder:

To connect the sensor to the rest of the stage in the middle and allow for the speaker

to move freely around the sensor.

96.00

5.00 24.10

~ $ _$_ ~
= 13
T 2 g
o~ 2 o o
o
4-&2
o~ |on
~0 w
el
6500 /S
w T $ w
AL
P 7.0
P 4.10
2.00
#40.00
. 4,00
BN = B
> -
3
g |z
o |
=
o
a
9 I
=
=3
=
1]
z z a 4]
B = o [=]
R BE m S g B
ST . L o
2 C 5
g > |
g w g
8 o
= =7 3
a og_
B =]
il 2 -~ a
|| S w 2 o
@
=
7]
> o
& =

Appendix H | 166

H.4. Top aluminium stage mount:

To spread the load of the weight of the mouth simulator and the counterbalance

weight over the larger and reduce uneven loading on the stage.

IUIPPBUIO} JOpPBUEGI WY

Lt
uopuoT absjjoo Aysiaaiun

junouw
abels wniuiwnpe doj

£V

Appendix H | 167

H.5. Counterbalance mass mount arm:

Aluminium arm to hold the counterbalance weight to the mount simulator.

[n] o
=~ =~
o o
w w
=~ N
pd
2
o
© y
=5 g
=} T
=
g
2
3 5 a =
w g g o] o
2 =R m
E —
-
H % L
il e & " o
pol=| 2. O)
= o g
@ 3
=z =
o 3(]) g
=R o= S
T 2o
< S 9
=1 —~Q ||
= =] m:
!
-1 =0
LI°| S 3‘3" | |
)
w
::, w

Appendix H | 168

H.6. Mouth simulator mount arm:

Arm to hold a mount simulator with a cutout to allow for position adjustment.

~ [~l
o~ o~
)
[
i
w w
= : B
>
=
o oz
o £
=
O " -]
= H 3
=
=
=3
= —
(]
i £ =3
w E =3 w
I I = =
|l ’
polc| 2 = M
< o) 5
[«] y
s g I |
Z = :
8 @,
5 p3
@ ==
=
il 5 33
o o
2| & = =
= =1] =
3 §
Q
[=
> 3
w —

Appendix H | 169

H.7. Bottom Aluminium stage mount:

To spread the load of the weight of the mouth simulator and the counterbalance

weight over the larger and reduce uneven loading on the stage.

IUIPPBUIO} JOPEYBGIWY

uopuo abejoo Aysiaaiun

unow
abels wniuiwne do |

[

Appendix H | 170

H.8.Acrylic offset mount:

This a intermediary offset mount that allow the rotary stage to connect to the

antivibration platform and allow for the wiring to pass underneath the stage.

b =] O w) m -
co o
~ ~
=
=
=]
o o
~
2
o
o
tn tn
110.00
; 300.40
. : 7.00 N
=
3 i
o 13 g —
B § =
D S
] § 8
=
o
3
5 . 2 17
w g o & & (]
» E 5
. S
w
— &
&
o 116.00
(=]
SEE : > N
3 z 2
g < &
e} = 4
o 3} £ =
=3 : i
2 i o
2 = ¢ /:/Es’ e
] — S |5 o
o w S =
AN @ =}
ils @ &
i 2 o
g | 2| s ® -
o g
c
p= |
=
>
w

Appendix I | 171

Appendix I

MATLAB code for Slicing STL file to get the waypoints.

Here is a link to the GitHub repository containing the MATLAB files and script along

with a examples: abmoineddini/Electrohydrodynamics slicer: Custom slicer for the

Electrohydrodynamic printer (github.com)

This was a code is the modified version of the from a STL slicer by Sunil Bhandari.

Here is the link to the original code: slice stl create path(triangles,slice height) - File

Exchange - MATLAB Central (mathworks.com)

https://github.com/abmoineddini/Electrohydrodynamics_slicer
https://github.com/abmoineddini/Electrohydrodynamics_slicer
https://uk.mathworks.com/matlabcentral/fileexchange/62113-slice_stl_create_path-triangles-slice_height
https://uk.mathworks.com/matlabcentral/fileexchange/62113-slice_stl_create_path-triangles-slice_height

Appendix | | 172

Appendix]

Arduino code for controlling the 3axis control EHDP printer.

GitHub repository: https://github.com/abmoineddini/EHD printer/tree/main

https://github.com/abmoineddini/EHD_printer/tree/main

Appendix |

1173

/*

~
*

¥ X K X X X X X X X X X ¥ * ¥

//
!/
//
!/
//
!/
//
!/
//
*/

Arduino Mega ElectroHydrodynamics Machine

by: Amirbahador Moineddini
date: August 08th, 2022

V2 version of the Arduino EHD Printer

Pin Setup
X-Axis stepper motor driver board:

- STEP
- DIR
- MsS1
- MS2
- MS3
- En

Y-Axis
- STEP
- DIR
- MS1
- MS2
- MS3

MS1

P o Fr o

1
Enable
xDir =
yDir =

pin
pin
pin
pin
pin
pin

31
33
29
27
25
23

stepper motor driver board:

- pin 43

- pin 45

- pin 41

- pin 39

- pin 37

- pin 35
MS2 MS3 Res

0 0 1

0 0 1/2

1 0 1/4

1 0 1/8

1 1 1/16

low => motors enabled
HIGH => +X xDir = LOW => -X
HIGH => -Y xDir = LOW => +Y

// Declaring Controller Pins
const int
const int
const int
const int
const int

const int
const int
const int
const int
const int

xStep

xD

ir

XMS3
XMS2
xMS1

yStep

yD

ir

yMS3
yMS2
yMS1

1}
(o))

Appendix]

| 174

const int enPin = 2;

// Declaring microSwitches pins
const int xHome = 23;

const int yHome = 27;

int xval;

int yVal;

// val = 1 => away from switch
// Val = @ => Stage at home

// Counter and Homer
float xPos = 0;
float yPos = 0;
int Homer = 0;
int xStepSize
int yStepSize

9;
9;

int xStepsVal[]= {} // Array of x-direction
Code

int yStepsVal[]= {} // Array of y-direction
Code

int sz = 9;
int noXSteps
int noYSteps
int sumX = 0;
int sumY = 0;
int printStat = 9;

9;
9;

void hommingSequence(int xSpd, int ySpd);

waypoints obtained from the MATLAB

waypoints obtained from the MATLAB

void rotateMotors(int& noXSteps, int& noYSteps, int xSpd, int ySpd);

void StepSetx(int spd);
void StepSety(int spd);

void setup() {
//0Open serial communications
Serial.begin(2000000);
Serial.println("Starting Up....");

//Define stepper pins as digital output pins

pinMode (xStep,OUTPUT);
pinMode(xDir,OUTPUT);
pinMode (xMS1,0UTPUT);
pinMode (xMS2,0UTPUT);
pinMode (xMS3,0UTPUT);

pinMode (yStep,OUTPUT);
pinMode(yDir,OUTPUT);
pinMode (yMS1,0UTPUT);

Appendix |

1175

pinMode (yMS2,0UTPUT);
pinMode (yMS3,0UTPUT);

pinMode(enPin,OUTPUT);
// Setting input microswitches pins

pinMode (xHome, INPUT);
pinMode(yHome, INPUT);

//Set microstepping mode for stepper driver boards.

angle (200 steps/rev) NEMA 17 motors (12V)

//X-Axis motor: no micro stepping (MS1 Low, MS2 Low)

steps/rev)
digitalWrite(xMS1,LO0W);
digitalWrite(xMS2,L0W);
digitalWrite(xMS3,LO0W);

//Y-Axis motor: no micro stepping (MS1 Low, MS2 Low)

steps/rev)
digitalWrite(yMS1,LOW);
digitalWrite(yMS2,LO0W);
digitalWrite(yMS3,LO0W);

delay(5000);
}
void loop() {
//Homing Sequence
if (Homer == 0){
StepSetx(1);
StepSety(1);
hommingSequence (700, 700);
sz = sizeof(xStepsVal);
Serial.print("Total number of steps =
Serial.println(sz);
for(int i =0; i<=sz/16; i++){
sumX = sumX + xStepsvVal[i];
sumY = sumY + yStepsVal[i];
}
Serial.print("Total Travel = ");
Serial.print(sumX);
Serial.print(" y=");
Serial.println(sumY);
if (sumX<@) //Set X-Axis rotation +X
{
digitalWrite(xDir,HIGH);

¥
else{

");

Using 1.8 deg motor

1/16 deg/step (200

1/16 deg/step (200

Appendix]

1176

digitalWrite(xDir,LOW);

}

for (int i=0; i<=sumX; i++){
digitalWrite(xStep,HIGH);
delayMicroseconds(300);
digitalWrite(xStep,LOW);
delayMicroseconds(300);

}

if (sumY<@) //Set X-Axis rotation +X
{
digitalWrite(yDir,LOW);
}
else{
digitalWrite(yDir,HIGH);
}
for (int i=0; i<=sumY; i++){
digitalWrite(yStep,HIGH);
delayMicroseconds(700);
digitalWrite(yStep,LOW);
delayMicroseconds(700);

}
Homer = 1;
Serial.println("Calibration Done!");
}
else{

if (printStat == 09){
Serial.print(Homer);
Serial.print(" ");
Serial.print("x = ");
Serial.print(xVval);
Serial.print(" ");
Serial.print("y = ");
Serial.println(yVval);
Serial.println("Platformed is homed");
digitalWrite(enPin,LOW);

for (int i=0; i<=sz/14; i++){
StepSetx(1);
StepSety(1);
noXSteps = xStepsVal[i];
noYSteps = yStepsVal[i];

rotateMotors(noXSteps, noYSteps, 700, 700);

}
printStat = 1;
}
else {
digitalWrite(enPin, HIGH);
Serial.println("Print Done");

Appendix | | 177

}
}
}
void hommingSequence(int xSpd, int ySpd){
int xHomed = ©;
int yHomed = 9;

//Enable motor controllers
digitalWrite(enPin, LOW);

//Enable motor controllers
digitalWrite(xDir,LOW);
digitalWrite(yDir,LOW);
while (xHomed == 0){

xVal = digitalRead(xHome);

if (xval == 1){

xHomed ++;

digitalWrite(xDir,HIGH);

for (int i=0; i<=5000; i++){
digitalWrite(xStep,HIGH);
delayMicroseconds (xSpd);
digitalWrite(xStep,LOW);
delayMicroseconds(xSpd);

}
XxPos = 0;
Serial.print("x-axis Homed");
}
else {

digitalWrite(xStep,HIGH);
delayMicroseconds(xSpd);
digitalWrite(xStep,LOW);
delayMicroseconds(xSpd);

}
}
delay(1000);
while (yHomed == 0){
yVal = digitalRead(yHome);

if (yval == 1){

yHomed ++;

digitalWrite(yDir,HIGH);

for (int i=0; i<=5000; i++){
digitalWrite(yStep,HIGH);
delayMicroseconds(ySpd);
digitalWrite(yStep,LOW);
delayMicroseconds(ySpd);

Appendix] | 178
yPos = 0;
Serial.print("y-axis Homed");
}
else {

digitalWrite(yStep,HIGH);
delayMicroseconds(ySpd);
digitalWrite(yStep,LOW);
delayMicroseconds(ySpd);

}
}

Homer = 1;

Serial.println("Platformed is Homed");

delay(5000);

void StepSetx(int spd){
switch (spd) {
case 1:
// Full step

//X-Axis motor: no micro stepping (MS1 Low, MS2 Low) = 1/16 deg/step (200

steps/rev)
digitalWrite(xMS1,LOW);
digitalWrite(xMS2,LO0W);
digitalWrite(xMS3,LO0W);
break;
case 2:
// 1/2 step

//X-Axis motor: no micro stepping (MS1 Low, MS2 Low)

steps/rev)
digitalWrite(xMS1,HIGH);
digitalWrite(xMS2,LO0W);
digitalWrite(xMS3,LO0W);
break;
case 3:
// 1/4 step

1/16 deg/step (200

//X-Axis motor: no micro stepping (MS1 Low, MS2 Low) = 1/16 deg/step (200

steps/rev)
digitalWrite(xMS1,LOW);
digitalWrite(xMS2,HIGH);
digitalWrite(xMS3,LO0W);
break;
case 4:
// 1/8 step

//X-Axis motor: no micro stepping (MS1 Low, MS2 Low)

steps/rev)
digitalWrite(xMS1,HIGH);
digitalWrite(xMS2,HIGH);
digitalWrite(xMS3,LO0NW);

1/16 deg/step (200

Appendix | | 179

break;
case 5:

// 1/2 step

//X-Axis motor: no micro stepping (MS1 Low, MS2 Low) = 1/16 deg/step (200
steps/rev)

digitalWrite(xMS1,HIGH);

digitalWrite(xMS2,HIGH);

digitalWrite(xMS3,HIGH);

break;

default:

// 1/2 step

//X-Axis motor: no micro stepping (MS1 Low, MS2 Low) = 1/16 deg/step (200
steps/rev)

digitalWrite(xMS1,HIGH);

digitalWrite(xMS2,HIGH);

digitalWrite(xMS3,HIGH);

break;

void StepSety(int spd){
switch (spd) {
case 1:
// Full step
//Y-Axis motor: no micro stepping (MS1 Low, MS2 Low) = 1/16 deg/step (200
steps/rev)
digitalWrite(yMS1,LO0W);
digitalWrite(yMS2,LO0W);
digitalWrite(yMS3,LO0W);
break;
case 2:
// 1/2 step
//Y-Axis motor: no micro stepping (MS1 Low, MS2 Low) = 1/16 deg/step (200
steps/rev)
digitalWrite(yMS1,HIGH);
digitalWrite(yMS2,LO0W);
digitalWrite(yMS3,LO0W);
break;
case 3:
// 1/4 step
//Y-Axis motor: no micro stepping (MS1 Low, MS2 Low) = 1/16 deg/step (200
steps/rev)
digitalWrite(yMS1,LOW);
digitalWrite(yMS2,HIGH);
digitalWrite(yMS3,LO0W);
break;
case 4:
// 1/8 step

Appendix] | 180

//Y-Axis motor: no micro stepping (MS1 Low, MS2 Low) = 1/16 deg/step (200
steps/rev)

digitalWrite(yMS1,HIGH);

digitalWrite(yMS2,HIGH);

digitalWrite(yMS3,LO0W);

break;

case 5:

// 1/2 step

//Y-Axis motor: no micro stepping (MS1 Low, MS2 Low) = 1/16 deg/step (200
steps/rev)

digitalWrite(yMS1,HIGH);

digitalWrite(yMS2,HIGH);

digitalWrite(yMS3,HIGH);

break;

default:

// 1/2 step

//Y-Axis motor: no micro stepping (MS1 Low, MS2 Low) = 1/16 deg/step (200
steps/rev)

digitalWrite(yMS1,HIGH);

digitalWrite(yMS2,HIGH);

digitalWrite(yMS3,HIGH);

break;
}

}
void rotateMotors(int& noXSteps, int& noYSteps, int xSpd, int ySpd){

//Initialize while loop counter
int totalSteps=0;
int stepDelay=10;
float xIncrement=0;
float yIncrement=0;
switch (xStepSize) {
case 1:
// Full Steps
xIncrement = (0.5/200);
break;
case 2:
// 1/2 Steps
xIncrement = (0.5/200)/2;
break;
case 3:
// 1/4 Steps
xIncrement = (0.5/200)/4;
break;
case 4:
// 1/8 Steps
xIncrement = (0.5/200)/8;
break;
case 5:

Appendix |

1181

// 1/16 Steps
xIncrement = (0.5/200)/16;
break;

default:
// 1/16 Steps
xIncrement = (0.5/200)/16;
break;

¥

switch (yStepSize) {

case 1:
// Full Steps
yIncrement = (0.5/200);
break;

case 2:
// 1/2 Steps
yIncrement = (0.5/200)/2;
break;

case 3:
// 1/4 Steps
yIncrement = (0.5/200)/4;
break;

case 4:
// 1/8 Steps
yIncrement = (0.5/200)/8;
break;

case 5:
// 1/16 Steps
yIncrement = (0.5/200)/16;
break;

default:
// 1/16 Steps
yIncrement = (0.5/200)/16;
break;

}

//Set X-Axis motor rotation direction based on read value
if (noXSteps<®) //Set X-Axis rotation +X
{
digitalWrite(xDir,LOW);
}
else //Set X-Axis rotation -X

{
digitalWrite(xDir,HIGH);
xIncrement = -xIncrement;

//Set Y-Axis motor rotation direction based on read value
if (noYSteps<@) //Set Y-Axis rotation to CCW

Appendix] | 182

{
digitalWrite(yDir,HIGH);
yIncrement = -yIncrement;

}

else
{

digitalWrite(yDir,LOW);
}

//Calculate total number of steps for while loop indexing
totalSteps=(abs(noXSteps)+abs(noYSteps))/16;

//Get absolute value of steps
noXSteps=abs(noXSteps)/16;
noYSteps=abs(noYSteps)/16;

//Move motors appropriate number of steps
while (totalSteps>0){
if (noXSteps>@) //Move X-Axis
{
//Move X-Axis one step
digitalWrite(xStep, LOW); //LOW to HIGH changes creates the "Rising
Edge" so that the EasyDriver knows when to step.
delayMicroseconds(xSpd);
digitalWrite(xStep, HIGH);
delayMicroseconds(xSpd);
noXSteps=noXSteps-1; //Decrement remaining number of X-Axis steps
totalSteps=totalSteps-1; //Decrement remaining number of total steps
XPos += xIncrement;

if (noYSteps>0) //Move Y-Axis
{
//Move Y-Axis one step
digitalWrite(yStep, LOW); //LOW to HIGH changes creates the "Rising
Edge" so that the EasyDriver knows when to step.
delayMicroseconds(ySpd);
digitalWrite(yStep, HIGH);
delayMicroseconds (ySpd);
yPos += yIncrement;

noYSteps=noYSteps-1; //Decrement remaining number of Y-Axis steps
totalSteps=totalSteps-1; //Decrement remaining number of total steps

1183

Appendix K

K

Appen

Mega Shield used to control the EHD

The circuit board diagram for the Arduino

in KiCad.

it was designed

1rcu

. The C

printer

pl 3) I 5
' Shield far Arduina Megs Rev 3 | |
' |
" 1
[Conn_01x02 b Xxx_x o
- 2 L Heles
o Ea scL
- 0 1z SDA
. 1= AREF
+5¢ w %-lmd T
__l. Conn_01x02 = 1s 13¢
1 +5V ol a 3 12+
¥—AxisCantroll - 7 11§**]
Pololu_Braakout A49BE 24 B 10{+)
o o
 —— . [L)
g 2 +5v —1 y=limL 10 a)
_Hm REsET. & 2 L | Conn_dii2 =
~
aND . b
s 1 [764
18l 2 L | «—avismotart B G("¥
e 31| conn_glues = LT
aple 4 = Ts L{+¥
2 Ts 5 ()
q S
- e 7 1T
= = B QERxD
3
| | —
c2 A8 o B B o 14{Tx3)
C AG 2 HEE 15{Rx3)
ALD 2 - B 16(T%2]
+—1H RIL LT1E 5T 17{R2)
AlZ 3 = g E 1B{T«1)
- Y—AxfsContrall 3 s 1| E Ts 19{R¥1)
WS | & PoleluBreskout A4o8E AL 7 8 17 20{50A}
A5 B B 21{5CL)
o &
g g — =
Llerer. > -
1k fnr=)
&
mfa 45V
=
182 1 S ow
AP 21| y-aufsotart N0
a2 3L | cann_owsmy
P &
Al || = =
g _E
[=} =] 1
i 3 EEEREEE
I &
=]
LA E o = |10 1 o0 = (L |0 | P (]
HEE R FEERRR R R RN SN
Aim
N
sho
Amirbahador Melneddinl
Sheet: /
File: ArduinoMegaShield.kicad_sch
Title: Electrohydrodynamlic Printer Shield
Size: A [Date: mar. 3L mars 2015 | Rev: ¥5
KiCad E.D.A. kicad {6.0.1% _ Id: 1/1
2 3 L] | g |

| 184

Appendix K

Circuit layout highlighting Top routs:

sfefefefefsfefefefefefafafafsfafo)e
00000000C0O0O0C0OCO0000

0000000000060000000
000000000000000000)
000000000000000000
00000000 O

00000000000 0000000

0000000000 00000000
o 00000000 O

o
o
o

o

00000000
Q0000000 00000000

Q (2
9 3) ©

O o
) ()

) O
+) (s)

O o
© (o)

o (o
(o) (o)

(o) O
(o) (o)

o ©
o B () e
© (+]

CQ000000
Q0000000
Gooo00o0o0

0000000

Circuit layout highlighting Bottom routs:

000000000000000000 O

00000000 00000000

Appendix K | 185

Top view:

oy d
w

TJ0JOWSIXY—X

00000000

X

8

1

NPV PN OPY PN BV PR BN BN

T103U0DSIXY—X
T1013U0DSIXY—A

Josos!
== L m i | e e e

twnri.,(Iu.lnfi)(00000000 00000000
| E
od

'
d
Ld _ 00000000 0000000000

©
©
©
©
©
©
()
(0]
©
(0]
©
(0]
(0]
(0]
(9]
(0]
(0)
(0]

Bottom View:

Y Y eYyY.

GGGG6G6GG6
®

o000
on

‘Beoe
o ©

BEO00O0C0OOOO B000000O0

00000000 00000000

NN NN NN N N N N X N X N N N
0000000000000 OGOGS

Appendix K | 186

Isometric View of circuit board

