

DEVELOPMENT AND EVALUATION OF MULTICHANNEL NANO-FIBRE

PIEZOELECTRIC ACOUSTIC TRANSDUCERS: LEVERAGING NEURAL NETWORKS

AND EXPLORING NOVEL STRUCTURAL FABRICATIONS

Amirbahador Moineddini

Supervised by:

Professor Wenhui Song

Dr Hamid Rassoulian

Thesis submitted in partial fulfilment

of the requirements for the degree of

Masters in philosophy

of

University College London

Division of Surgery & Interventional Science

University College London

September 2023

LONDON’S GLOBAL UNIVERSITY

i

Acknowledgement:

I would like to thank my supervisors Professor Song and Dr. Hamid Rassoulian as well

as my peers in the team. Special thanks to Dr. Jinke Chang for his support in

completing the project. I would like also to thank the supporting staff at UCL division

of Surgery and Interventional sciences at Royal Free Hospital for the training and

their support throughout this project.

I would like to extend my gratitude to my friends and colleagues at Division of Surgery

at the Royal Free Hospital for their support and time throughout this project and

making the past few years very memorable. Special thanks to Patricia Santos, Kelly

Bokea, Alex Gray, Christina Christodoulou, Dr Lei Wu and Dr Naheem Yaqub.

ii

Abstract:

This MPhil research project focuses on developing a test platform for the

characterization of a novel class of acoustic sensors developed by the Division of

Surgery and Interventional Sciences at UCL. Additionally, the project explores

fabrication methods and materials to enhance the performance of these sensors. To

achieve this objective, an automated test instrument (testbed) was designed and

manufactured in the lab for precise and automated data collection. Furthermore, a

data analysis algorithm was developed to standardize data collection and automate the

testing and analysis of data collected from the devices. The hardware and software for

this project were tightly integrated with bioinspired piezoelectric nanocomposite

nanofiber-based acoustic sensors, showing promising results for the next generation

of self-powered cochlear implants.

The testbed developed in this project serves as a normalized test platform that enables

testing various sensors, recording data, and analysing the performance of different

iterations of these sensors using a new neural network algorithm for speech and spatial

recognition (sound source localisation). The device can automatically collect and

process data from multiple sensor channels and train neural networks for testing these

devices. These acoustic sensors have been systematically characterized and

demonstrated high-frequency selectivity and multifunctional capabilities in speech

recognition and localization. This is attributed to the specific geometry of the sensors

electrodes and the piezoelectric properties of highly aligned radially polymer

nanofibers made of poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE)

doped with Barium Titanate (BaTiO3) nanoparticles.

Moreover, using the testbed, it was demonstrated that a single multichannel

asymmetrical device could localize sound sources, in contrast to human hearing,

which requires both ears for localization. This attribute results from the asymmetrical

 | iii

nature of the sensor combined with the design of the neural network used for the

sensors.

Additionally, this report proposes a new method of fabricating the sensors using

Electrohydrodynamic direct printing instead of the electrospinning process currently

used. This method offers more control over the diameter, orientation, and placement

of the fibres on the electrode, making the fabrication process slower but more

repeatable. Finally, the report discusses how the fibre structure could be modified

using coaxial printing to improve the endurance and performance of the sensors.

Contents

Contents .. 1

List of Figures ... 4

List of Tables ... 9

Abbreviations: .. 10

1. Introduction ... 11

1.1. Background ... 11

1.2. Bilateral Hearing in humans ... 15

1.3. What are piezoelectric material .. 17

1.4. What are Convolutional Neural Networks (CNNs) and their use

cases in for pattern recognition in acoustic sensing: 20

1.5. Aim, Hypothesis and Objectives ... 22

2. Design of the bio-inspired Implants ... 24

2.1. Background: .. 24

2.2. Design of the device: .. 26

2.3. Fabrication of the devices: ... 28

3. Design, instrumentation, integration and data collection of a multi-channel

cantilever acoustic device .. 31

Contents | 2

3.1. Background .. 31

3.2. Aims and Objectives .. 31

3.3. Preliminary spatial recognition testing using CNN with spiral

Asymmetrical multichannel device to check the feasibility. 33

3.3.1 Methodology .. 34

3.3.2 Results and Discussion .. 37

3.4. Speech Recognition ... 39

3.4.1. Methodology .. 39

3.4.2. Results and Discussion of speech recognition 43

3.5. Spatial localization Recognition ... 45

3.5.1 Instrumentation and integration for spatial recognition 45

3.5.2. Methodology ... 46

3.5.3. Result and discussion of spatial recognition .. 48

3.6. Conclusions .. 53

4. Design, Fabrication and material improvements: .. 54

4.1. Manufacturing multichannel single micro/nano fibre device... 54

4.1.1. Background .. 54

4.1.2. Aims and Objective .. 55

4.1.3. Specialised Slicer: From design to waypoints 55

4.1.4. Electrohydrodynamic Printing Stage .. 56

4.1.4.1. Cartesian Axis Stage ... 56

4.1.4.2 Radial Axis Stage .. 58

4.1.4.3 Motionless Printing ... 59

4.2. Exploring new Material ... 60

4.2.1 Background .. 60

4.2.2 Aims and objectives .. 60

4.2.3 Methodology .. 61

4.2.4 Results and discussion ... 61

Contents | 3

5. Conclusions and future of the research .. 65

5.1. Conclusion: .. 65

5.2. limitations: .. 66

5.3. Future work: ... 66

6. References .. 69

Appendix A ... 74

Appendix B: .. 83

Appendix C ... 84

Appendix D... 106

Appendix E ... 111

Appendix F ... 115

Appendix G ... 159

Appendix H .. 162

Appendix I .. 171

Appendix J .. 172

Appendix K ... 183

List of Figures | 4

List of Figures

Figure 1: Illustrates the number of people who have received a surgery to get cochlear

implant over 10 years. The database split the data by the age group “(Some centres may

class under 19 as ‘children’; others may use under 18)” and whether they received

unilateral operation, simultaneous bilateral and sequential bilateral operation. The data

shows that there is an overall increasing in cochlear implant operations despite of the

delays and cancelation caused by the pandemic. [4] .. 12

Figure 2: current cochlear implant design illustration. The microphone, speech processor

and transmitter comprise of the external detachable parts which is connected to the

internal implanted receiver and electrode array with a magnet.[7] 14

Figure 3: 3D Tonotopic mapping of the human cochlear using Synchrotron radiation

phase-contrast imaging (SR-PCI) [9]. The Cochlear can cover the frequencies from 20Hz

to 20.1kHz. Using the scale provided, the size of the cochlear is about 6.02 in 9.2mm. . 25

Figure 4: Average human audiogram and audible range for different frequencies and the

region used for listening to music and a normal conversation [27] [28] [29]. The figure

illustrates that while the range of audible frequency is between 20 to 20kHz, the intensity

(sound pressure level) is variable and cochlear covers a wider range of sound pressure

between the frequencies of 75 to 10kHz and is most sensitive to the frequencies between

100 to 3kHz which is the encapsulates the speech and music frequency range............... 26

Figure 5: The design and the STFT graph of the frequency response of the devices to

different sound frequency generated by the mouth simulator. a) shows the frequency

response of the 7 channels on the symmetrical circular device and b) shows the frequency

response of the 4 channels asymmetrical spiral device. ... 27

Figure 6: shows the measurement of the fibre displacement of each channel measured by

the laser vibrometer and the voltage output of each channel of the asymmetrical spiral

device in response to the frequency sweep by the mouth simulator. Provided by Dr Chang.

 ... 28

List of Figures | 5

Figure 7: The fabrication stages piezoelectric sensor devices using electrospinning. The

electrode is grounded and rotating around while simultaneously the high voltage needle

moves side to side extruding the PVDF nanofibers. .. 29

Figure 8: The final assembly of the device. The device was clamped between two acrylic

cut-outs of the sensor. ... 29

Figure 9: a) Symmetrical circular sensor b) Asymmetrical spiral sensor. 31

Figure 10: Initial data collection set up for directional recognition testing. The speaker is

stationary and a set of holes on the sensor holder are used to place the sensor at different

angles and the data are collected. ... 33

Figure 11: demonstrates raw data collected at 45⁰ and split into individual sweep response

reading by the sensors. .. 34

Figure 12: illustrates the STFT of plot of an individual at reading at 45⁰ obtained from the

voltage output of the device in response to a sweep from 1.5kHz to 80Hz over a second at

1dB. This plot is used for creating a bandwidth filter to reduce the noise and highlight the

difference in output of different devices. ... 35

Figure 13: demonstrates filtered and detrended data at 45⁰ using the Butterworth filter

which was used in feature extraction. .. 36

Figure 14: Initial Neural Network to architecture for classification of the angles designed

and implemented in MATLAB. The CNN uses a single layer Convolution layer connected

to fully connected layer for classification and a SoftMax layer at the end is used to filter

the highest probability class and outputs it. .. 37

Figure 15: The resulting confusion matrix illustrating the predicted classification vs the

true class for the testing data. The graph shows 100% accuracy for all both the 45⁰

increment (5 classes) and 30⁰ increment (12 classes)... 38

Figure 16: Preprocessing which include a) filtering and detrending the raw data and b)

breaking down the data collection into individual samples. This stage helped us to save

time in data collection. .. 40

List of Figures | 6

Figure 17: An example plot that was used in the CNN for training and testing. The image

consists of a waveform plot of the voltage time graph and the STFT voltage output rotated

90 degrees and concatenated together into a single image. This is to preserve important

information in each figure when squeezed into a square. For STFT plot, the impactful

information lies in the position of the peaks regarding time and in the waveform data, the

import information is in the shape of the waveform while removing the temporal

information that could be used to distinguish between long and short phrases. 41

Figure 18: Initial Neural Network to architecture for speech recognition was designed

and implemented in Python. The CNN uses double convolutional layers followed by

Maxpooling layers to reduce the dimension connected to fully connected layers for

classification. Dropout layers were introduced within the network to prevent from over

fitting the data. ... 42

Figure 19: a) Testing Confusion Matrix illustrating high accuracy and precision for the

speech recognition CNN using the 10% original data set.b) Illustrates the real time speech

recognition testing show high level accuracy. ... 43

Figure 20: Illustrates the result of the classification test confusion matrix of the single

channel spiral device for speech recognition. The figure shows that the device can

perform speech recognition very well with 100% accuracy with 188 supports for the test.

 ... 44

Figure 21: The architecture of the spatial data collection and testing setup. An Arduino

Mega was used for data collection and Arduino Uno was used for controlling the motor.

All the collection and control were coordinate through a central computer using Python.

The code for this section is available in appendix B (data collection), E (stage controller),

F (main python code), Appendix G (Real-time spatial recognition testing) and Appendix

H (the testbed CAD Design). ... 45

Figure 22: Solid works design and final assemble instrument to test directionality

recognition. The stage moves the speaker around the sensor automatically and collects its

output directly. ... 46

List of Figures | 7

Figure 23: Typical data preprocessing and feature extraction for the directional

recognition CNN. The collected data was 1) filtered and detrended and 2) the resulting

data was separated using the STFT plot to determine where one sample point ended and

where the next sample started. 3) the individual samples were used to make a lower

resolution STFT plot and 4) the plots were combined into a single image. 47

Figure 24: Initial neural network to architecture for spatial recognition classification was

designed and implemented in Python. The architecture used for spatial recognition is the

same as the one used for speech recognition. .. 48

Figure 25: The spatial recognition confusion matrix results. θ indicates the 360˚

directional recognition testing in plane with the sensor. φ indicates the 360˚ directional

recognition testing in the orthogonal direction to the sensor and x indicates the distance

recognition from the sensor. ... 49

Figure 26: Different configuration of 4 channel device tested to find the correlation

between the number of channels and resolution. In the figure, a) is the different

configurations explored for spatial localisation, b) is the result of the experiment for the

software adjusted signal to match the configuration and c) is the where the electrode

connections were manually altered to match the configuration. 52

Figure 27: The process of getting the waypoints for the EHD printing. a) STL file can be

obtained from CAD software, b) is the snapshot of the Slicer designed in MATLAB

specially programmed for the EHD printer and c) is the waypoints generated by the

program. The code for the slicer is available in Appendix I. .. 56

Figure 28: The cartesian EHD printer and controller designed for the Stage. The image

on the left illustrates the stage as it sits in the electrospinner’s enclosure and the image on

the right is the custom PCB designed to control the stage. The full design CAD and code

available in Appendix K and J. .. 57

Figure 29: Show the circuit designed CAD in KiCad which was manufactured for

controlling the EHD printer. The circuit is designed as an Arduino Mega shield to control

stepper motors and read the data from limit switches for initial homing of the stage. The

List of Figures | 8

code for the Arduino was written specifically for the shield to enable controlling the EHD

printing stage precisely Full schematics of the Figure available in Appendix K. 58

Figure 30: Diagram of a potential radial printing stage. In the figure a) shows the needle

used to eject the polymer fibre controlled by a linear actuator horizontally by the amount

r from the centre of the stage and b) shows the stage sitting on top of a motor that controls

the stage radially by the angle θ. ... 59

Figure 31: A single-fibre sensor with high sensitivity and flexibility [36]. 60

Figure 32: Optimisation result of the aqueous 400,000Mv PEO electrospinning. 61

Figure 33: Program for extracting the average diameter of the fibre for PVDF and various

PEO concentration and printing conditions. To automatically measure the diameter of

the fibres, the program first takes in a calibration value and then uses edge detection to

create a mask to get then position of each fibre. As fibres are in different distance from

the detector when taking the image, the code only uses fibres with a certain

predetermined intensity and only measure the diameter of those fibres to ensure a correct

estimation for the mean diameter of the fibres. ... 62

Figure 34: Average Diameter of the electrospun PVDF and PEO for different

concentration of PEO and various feeding rates. ... 63

List of Tables | 9

List of Tables

Table 1: Compares different piezo materials structure, density, piezoelectric

coefficient Dielectric constant and offer some of the applications in the industry and

research for each material. .. 18

Table 2: Phrases used to test the speech recognition as well as the their ID used for

identification in the confusion matrix. ... 39

Abbreviations: | 10

Abbreviations:

ITD Interaural Time Difference

ILD Interaural Level Difference

MSO Medical Superior Olive

HRTF Head-Related Transfer Function

PZT Lead Zirconate Titanate

PVDF poly(vinylidene fluoride)

GaN Gallium Nitride

PVDF-TrFE poly(vinylidene fluoride-co-trifluoroethylene)

CI Cochlear Implant

BTO Barium Titanate-BaTiO3

CNN Convolutional Neural Network

EHDP Electrohydrodynamic Printing

Introduction | 11

Chapter 1

1. Introduction

1.1. Background

This research focuses on designing an instrument to test the performance and

capability of a new bioinspired cochlear implant. The new device uses composite

piezo nano-fibres to fabricate a new class of self-powered cochlear implant, which

rethinks the architecture of the implant. The device offers a higher frequency

selectivity than the current generation of implants available to patients suffering from

extreme hearing loss either due to birth defects or serious injuries to the inner ear.

This research will also take a brief look a more suitable fabrication method for

depositing the fibres on the electrode and for controlling the composite structure of

the fibre.

It is crucial for scientists to continue researching and developing new cochlear

implants around the world because while these implants improve the lives of

countless people around the world and they are still far from perfect. These devices

are implanted in adults and children with severe hearing loss who will not see any

benefit from using hearing aid [1]. Moreover, the damage to the inner ear and hearing

loss which lead to the need for cochlear implant could cause severe tinnitus and the

cochlear implants could significantly reduce the severity of the tinnitus and improve

quality of life for users. [2]

British Cochlear Implant Group (BCIG) has been publishing a yearly report for the

past 12 years (excluding 2012-2013) where they collect all the cochlear implant

operations in Britain between the 1st of April of each year to the 31st of March of the

next year. In the report of the implants between April of 2021 to March of 2022 claims

that 868 new adults and 440 new children received cochlear implants across Britain

[3]. The chart in Figure 1 summarises all the operations carried across 10 years sorting

Introduction | 12

them by the type of operation. As shown in the graph, there has been an increase in

the number of operations each year until post 2020 where the number of operations

were drastically reduced due to the COVID 19 pandemic.

Figure 1: Illustrates the number of people who have received a surgery to get cochlear implant

over 10 years. The database split the data by the age group “(Some centres may class under 19

as ‘children’; others may use under 18)” and whether they received unilateral operation,

simultaneous bilateral and sequential bilateral operation. The data shows that there is an

overall increasing in cochlear implant operations despite of the delays and cancelation caused

by the pandemic. [4]

US National Institute of Deafness and Other Communication Disorders (NIDCD)

estimates that there are approximately 737,000 registered devices worldwide by the

Introduction | 13

end of 2019 and the worldwide cochlear implant market was valued at USD 1.5 billion

in 2021 and expected to expand at a compounding annual growth rate of 8.71% from

2022 to 2030 [5] [6]. The enormous number of patients in need of this life changing

implant, the market value and its potential growth has incentivised researchers

around the world to work on making strides in development of these implants over

past decades since the first single channel implant in 1972.

The current implants consist of the following main surgically implanted internal

components and removable external components that need to be recharged: 1) An

external microphone to pick up the sound, 2) An external speech processor to process

the sound 3) An external Transmitter which is magnetically attached to an internal

Receiver to transfer data from external component to the electrodes, 4) An electrode

array that sits inside the cochlear to stimulate different regions of the auditory nerves

directly (Figure 2). Moreover, it is important to note that the current cochlear

implants do not cure deafness or hearing impairment and current implants can only

give a representation of the sounds in the environment to the user; Majority of users,

especially the unilateral implant users, lose directionality recognition of the sound.

Additionally, all users have to spend months getting used to hearing the implant and

interpreting the information and they will suffer from a condition known as the

cafeteria or restaurant effect where they cannot focus on a single source of audio and

targeted audio will drown in the background. [1] [7]

Introduction | 14

Figure 2: current cochlear implant design illustration. The microphone, speech processor and

transmitter comprise of the external detachable parts which is connected to the internal

implanted receiver and electrode array with a magnet.[7]

This is mostly because the cochlear implant electrode array bypasses the damaged hair

cells and directly stimulates the Spiral Ganglion Neurons (SGNs). While the array has

over a hundred of frequency channels, it can only be optimised and tuned for a few

dozen channels and frequencies in the cochlear due to poor localisation and control

over targeting in the cochlear during surgery, which leads to less intelligible signal

and only the presentation of the sound. Consequently, cochlear implant users are

unable to enjoy tunes and music [5] [8] [9]. Nevertheless, There have been major

developments in all the components of cochlear implants such as increasing both the

frequency channels between the implant and the SGN and the number of channels in

the array by reducing the size of the electrodes in it, advances in signal processing

algorithms and taking advantage of deep neural networks to reduce transient noise,

which can be personalised depending on the user preferences, better transmitter and

receiver interface to reduce the transmission noise. [10].

Finally, all cochlear implants are battery-powered and either use rechargeable

batteries which last between 19 to 40 hours depending on the size of the battery or

use disposable ones which last up to about 48 hours. Given all the limitations of the

Introduction | 15

current cochlear implants mentioned, the motivation behind this project is to take

advantage of the piezo fibres to create a new generation of powerless cochlear

implants inspired by cochlear itself to address all the issues.

1.2. Bilateral Hearing in humans

Bilateral hearing refers to the ability of humans (and many other species) to hear with

both ears. This binaural (two-eared) hearing provides several significant advantages

that enhance auditory perception [11]:

1. Localization: [12] [13]One of the most prominent benefits of bilateral hearing

is sound localization. This refers to the ability to determine the direction from

which a sound originates. Differences in time and intensity with which a

sound reaches each ear are used to locate the sound source.

a. Interaural Time Differences (ITD):

• Sound waves from a source located to one side of the head will reach

the nearest ear slightly before they reach the farthest ear.

• The brain can detect these tiny differences in arrival times, using them

primarily for horizontal sound localization.

• The superior olivary complex in the brainstem plays a pivotal role in

processing ITDs.

b. Interaural Level Differences (ILD):

• Apart from the time difference, sounds coming from one side will be

slightly louder in the nearer ear than the farther ear due to the

"shadowing" effect of the head.

• ILDs are mainly used for sounds at higher frequencies, where the head

is more effective at blocking or attenuating the sound.

• ILD processing also takes place in the superior olivary complex.

c. Coincidence Detection:

• In the auditory system, particularly in the medial superior olive (MSO)

of the brainstem, there are neurons that act as coincidence detectors.

Introduction | 16

• These neurons fire when they receive simultaneous input from both

ears, playing a key role in detecting ITDs.

d. Spectral Cues:

• The shape and size of the outer ear (pinna) introduce frequency-

dependent alterations to incoming sounds, which the brain uses to help

determine the elevation of a sound source.

• This is especially useful for vertical sound localization.

e. Head-Related Transfer Function (HRTF):

• Each individual has a unique HRTF, which is the way sounds are

filtered by the body, head, and outer ear.

• The brain learns to recognize these unique filters and uses them to aid

in sound localization.

2. Central Auditory Processing:

a. Better Hearing in Noise: Once the auditory nerve has relayed information

to the brainstem, a series of complex processes, particularly in the superior

olivary complex and later in the auditory cortex, further refines sound

location and perception. These processes help in distinguishing sounds,

understanding speech in noisy environments, and more.

b. Improved Sound Quality: Sounds are perceived as richer and fuller when

heard through both ears due to the combined auditory input.

c. Increased Loudness: A phenomenon called "binaural summation" means

that sounds are perceived as louder when heard by both ears as opposed to

just one.

3. Redundancy and Fusion:

• Binaural redundancy means that each ear sends a version of the same

acoustic signal to the brain. This redundancy can enhance the signal-to-

noise ratio and improve detection in noisy environments.

• Binaural fusion refers to the brain's ability to integrate information from

both ears into a single perceptual image. With two ears, if one misses some

Introduction | 17

elements of a sound due to transient noise or other interference, the other

might still pick it up, ensuring a more consistent auditory experience.

4. Plasticity:

• The auditory system can adapt to changes over time, especially with

experiences or hearing loss. This plasticity ensures that the brain continues

to effectively process sounds even under varying conditions.

1.3. What are piezoelectric material

Piezoelectric materials are a class of materials that have the capacity to either produce

an electric charge in response to mechanical stress (the direct piezoelectric effect) or

change shape in response to an applied electric field (the inverse piezoelectric effect).

Due to this exceptional quality, they are useful in a variety of applications,

including sensors, actuators, energy harvesting, and more. Some common

piezoelectric materials include: [14]

1. Quartz - This is one of the most well-known and widely used piezoelectric

materials. It is a crystalline form of silica and is often used in various electronic

components.

2. Lead Zirconate Titanate (PZT) - PZT is a ceramic material that exhibits strong

piezoelectric properties. It is commonly used in sensors, actuators, and

transducers.

3. Polyvinylidene fluoride (PVDF) - This is a polymer with piezoelectric

properties. It is flexible and can be used in a variety of applications, including

flexible sensors.

4. Gallium Nitride (GaN) - GaN is a semiconductor material that also exhibits

piezoelectric properties. It is often used in high-frequency electronic devices.

Introduction | 18

Table 1: Compares different piezo materials structure, density, piezoelectric coefficient

Dielectric constant and offer some of the applications in the industry and research for each

material.

Property PVDF

(α-phase)

PVDF

(β-phase)

PZT Quartz Gallium

Chemical

Formula

(C2H2F2)n (C2H2F2)n Pb(Zr,Ti)O3 SiO2 GaN

Crystal

Structure

Semi-

crystalline

polymer

Alternating

trans-gauche

conformation

(TGTG)

Semi-

crystalline

polymer

All Trans

conformation

(TTTT)

Perovskite

Trigonal Wurtzite

Density

(g/cm³)

1.78 1.78 7.8-8.0 2.65 6.1

Piezoelectric

Coefficient

(d33) (pC/N)

8-10 20-30 200-600 2.3-2.5 3.1-3.3

Dielectric

Constant

8-10 12 1200-1700 4.5-5.5 8.9

Applications Low-

performance

sensors,

packaging

materials

High-

performance

sensors,

actuators,

energy

harvesting

Medical

devices,

actuators,

sensors

Oscillators,

frequency

standards

High-

frequency

electronics,

LEDs

Piezoelectric materials have found various applications in the field of medicine

because of these effects and used across many industries. Piezoelectric transducers are

at the heart of ultrasound imaging systems. When an electric voltage is applied to

these transducers, they generate ultrasonic waves. These waves travel through tissues

and bounce back, creating echoes that are detected by the same transducer. These

Introduction | 19

echoes are then used to create an image of the internal structures of the body.

Common piezoelectric materials used in ultrasound transducers include lead zirconate

titanate (PZT) and polyvinylidene fluoride (PVDF) [15] [16]. One of the most

common applications is in energy harvesting. Piezoelectric materials can convert

mechanical vibrations or deformations into electrical energy. This is particularly

useful in environments where there is ambient mechanical energy available.

The evolution of material research in the realm of biomedical applications has been

marked by continuous advancements, and the quest to improve cochlear implant (CI)

technology is a testament to this journey. There is an emergence of groundbreaking

research in CI takes advantage of the piezo materials and their properties that

challenges traditional CI operational principles. For example, a novel fully

implantable thin film piezoelectric transducer uses a cantilever-based design PLD-

PZT transducer. The choice of PLD-PZT as a material demonstrates a remarkable

intersection of material science and biomedical engineering, achieving an

unprecedented voltage output of 114 mV under conditions mirroring the eardrum's

natural behaviour. Beyond setting new benchmarks in thin film piezoelectric

transducers, this feat illuminates the immense potential of fine-tuning material

properties to foster next-generation biomedical tools. The meticulously designed

multi-frequency acoustic sensor, encompassing eight distinct cantilever beams,

underscores the power of material optimization. Each beam, tailored to resonate at

specific frequencies within the human acoustic range, exemplifies the synergy of

material science and design. The prototype's compactness and sensitivity, made

possible by material advancements, present a pioneering solution to challenges in

fully implantable cochlear implant (FICI) applications. This research not only

underscores the transformative role of materials in reshaping cochlear implantation

but also charts a blueprint for leveraging material innovations in devising advanced,

fully implantable biomedical devices. [17] [18] [19]

Polyvinylidene fluoride (PVDF) is a piezoelectric polymer that has gained attention

for its use in various applications, including piezoelectric fibres. PVDF piezoelectric

Introduction | 20

fibres are known for their flexibility, lightweight nature, and ease of integration into

a wide range of devices and structures.

PVDF, specifically the β-phase PVDF, is a popular choice for piezoelectric fibres due

to its unique properties:

1. Flexibility: PVDF piezo fibres are highly flexible, making them suitable for

applications where conformability to complex shapes or structures is required.

2. Lightweight: PVDF is a lightweight material, which is advantageous in

applications where weight is a critical factor, such as wearable devices.

3. Biocompatibility: PVDF is biocompatible, meaning it can be used in medical

applications without causing adverse reactions in the body.

4. Low Density: PVDF has a low density, which makes it an excellent choice for

applications where weight reduction is important.

One of the key applications of PVDF piezo fibres is in the development of flexible and

conformable sensors for various purposes, including biomedical, structural health

monitoring, and wearable technology. [20] [21]

In the continuous endeavour to improve cochlear implant (CI) technology, a

groundbreaking approach has emerged that challenges traditional CIs, using the

mentioned properties of the piezoelectric nanofibres to create a bio-inspired, highly

frequency selective and self-powered implants.

1.4. What are Convolutional Neural Networks (CNNs) and their use cases in for

pattern recognition in acoustic sensing:

To test the devices for localization, traditional methods of data collection and analysis

are insufficient because the variations from different angles are minuscule and

undetectable with conventional mathematical models. Therefore, a more powerful

tool is required to examine each data point and identify differences in data from

various directions. In recent years, researchers globally have been exploring a myriad

of machine learning methodologies with the objective of expediting data processing

Introduction | 21

and bolstering pattern detection within datasets. This endeavour aims to elucidate the

intricate relationships among an expanding set of variables in sophisticated systems

and experiments. Notably, deep learning has emerged as one of the most efficacious

and flexible instruments within the machine learning domain. Neural networks are

computational models inspired by the brain's neural structures, designed to recognize

patterns by processing data through interconnected layers of artificial neurons,

enabling tasks such as classification, regression, and clustering in diverse domains.

A Convolutional Neural Network (CNN) is a type of deep neural network designed

for processing structured grid data, such as images. It is specifically engineered to

recognize spatial hierarchies in data, which traditional multilayer perceptrons (MLPs)

might struggle with due to their fully connected nature. CNNs operate by using

convolutional layers to extract the spatial hierarchies of features automatically and

adaptively from input data. These features, increasing in complexity across layers, are

then processed through pooling and fully connected layers to make final predictions,

facilitating tasks like image classification and object detection with remarkable

efficiency and accuracy. [22]

The adaptability of CNNs stems from its uniquely crafted layers tailored for data

extraction from given inputs. A brief overview of these layers follows: [23]

• Convolutional Layer: The cornerstone of CNNs. It employs a

mathematical operation called convolution to slide a filter (or kernel)

over input data (like an image) to produce a feature map, capturing spatial

hierarchies and patterns in the input data.

• Pooling Layer: Used to reduce spatial dimensions while retaining

significant information. The most common pooling operation is max

pooling, where the maximum value from a group of values is chosen.

• Fully Connected Layer: In the end, after multiple convolutional and

pooling layers, CNNs often use one or more fully connected layers to

classify the extracted features into various categories or make other

determinations.

Introduction | 22

• Activation Function: activation function introduces non-linearity to the

model, enabling it to learn and represent more complex relationships in

the data. It determines the output of an artificial neuron given a set of

inputs, effectively deciding whether a particular neuron should be

"activated" or not. ReLU is one of the most popular activation functions

which replaces any negative values with zeros, allowing only positive

values to pass through.

• Dropout: A regularization technique used in CNNs to prevent overfitting.

It randomly sets a fraction of input units to zero at each update during

training time.

Using Convolutional Neural Networks (CNNs) for classifying data from acoustic

signals is an evolving area of research. Acoustic signals, whether they are speech,

music, or environmental sounds, are typically waveforms that change over time.

When represented appropriately, these waveforms can be viewed as 1D (time domain)

or 2D (time-frequency domain) data, making them amenable to CNN-based

approaches. CNNs already have many applications in classification and pattern

recognition in acoustics. Here are some of the notable application areas where CNNs

are being used: [24] [25]

1. Speech Recognition: Distinguishing spoken words or phrases.

2. Speech Emotion Recognition: Identifying emotional content in speech.

3. Environmental Sound Classification: Recognizing sounds like rain, traffic,

or birds chirping.

4. Music Genre Classification: Categorizing music tracks by genre.

5. Bioacoustics Signal Classification: Analysing animal calls or underwater

marine sounds.

1.5. Aim, Hypothesis and Objectives

The aim of this research is to create a new class of cochlear implants that is inspired

by the human cochlear to capture and deliver more audio information to the user than

Introduction | 23

the current commercially available implants. The implant should take advantage of

the piezoelectric polymeric nanofibers to be self-powered and remove the need for

battery and recharging.

From the response of the devices, it is hypothesised that the asymmetrical spiral

device could be used for sound localisation on it own and either one of the

symmetrical circular and asymmetrical spiral devices capture all the information

needed for speech recognition. To prove this hypothesis, a rotary testbed was designed

to that enables to normalize and collect data from different devices at all directions to

train a convolution neural network to localise and recognise simple phrases.

It is hypothesised that, by improving the current design and adding more electrodes,

more audio information can be captured, so as to improve on the spatial recognition

of the current generation of the device. Another hypothesis is that direct laying the

fibres with higher control of the length and placement of the individual fibre on the

electrode will improve the higher accuracy and the resolution of the response of the

sensor.

Over the subsequent five chapters, a detailed exploration of strategies to address the

specified challenges will be presented. This exploration begins with the design,

instrumentation, and integration of a test platform intended to assess each device

iteration for spatial and speech recognition. Subsequent sections delve into novel

fabrication techniques and materials. The project culminates with an examination of

the device design's influence on frequency selectivity, cellular toxicity evaluations,

and in vitro studies assessing neuronal responses to the device.

Design of the bio-inspired Implants | 24

Chapter 2

2. Design of the bio-inspired Implants

2.1. Background:

“Neurons at various levels in the auditory pathway are topographically arranged by

their response to different frequencies. This organization, referred to as tonotopy or

cochleotopy, mirrors the distribution of receptors in the cochlea, with a gradient

extending between neurons that preferentially respond to high frequencies and those

that respond best to low frequencies” [26].

As shown in Figure 3 Human cochlear has an auditory range between 20Hz to

20.5kHz. The current device that we are working on is most sensitive to frequencies

between 80 to 500Hz due to the low stiffness of the piezoelectric fibres, which is the

range of frequency that current clinical cochlear implants fail to respond. However,

not all frequencies are the same and humans are more sensitive to some frequencies

than others. Figure 3 illustrates a typical adult human audible range and the frequency

and intensity range that a typical conversation or music uses. This means that the

current device will not be able to capture the desirable audio information in a wider

range of higher frequency, which results in low intelligibility. This was clear when

the data collected for the speech recognition were converted back to audio. Despite

that the signal still contained rich information, it was difficult to interpret the original

phrase used in the speech recognition from the audio file. Therefore, to expand the

range of frequency, the current design requires further improvement or re-design so

Design of the bio-inspired Implants | 25

that the device can cover higher frequencies as well as by development hybrid and

stiffer piezoelectric composite nanofibres.

Figure 3: 3D Tonotopic mapping of the human cochlear using Synchrotron radiation phase-

contrast imaging (SR-PCI) [9]. The Cochlear can cover the frequencies from 20Hz to 20.1kHz.

Using the scale provided, the size of the cochlear is about 6.02 in 9.2mm.

To overcome this issue, a new nanocomposite fibre must be designed and a device that

resonate with a wider range of frequencies so that the maximum amplitude of the

output signal corresponds to the larger range of the audible frequency range that we

use in our day-to-day life. By controlling the length, diameter and elasticity of the

fibres, we could control the resonant frequency of the fibres in a wider range.

Design of the bio-inspired Implants | 26

Figure 4: Average human audiogram and audible range for different frequencies and

the region used for listening to music and a normal conversation [27] [28] [29]. The

figure illustrates that while the range of audible frequency is between 20 to 20kHz,

the intensity (sound pressure level) is variable and cochlear covers a wider range of

sound pressure between the frequencies of 75 to 10kHz and is most sensitive to the

frequencies between 100 to 3kHz which is the encapsulates the speech and music

frequency range.

2.2. Design of the device:

This work is the improvement over the previous research carried out by Professor

Song group in PVDF piezoelectric nano fibres [30] with collaboration with Dr. Jinke

Chang to design the device. The hypothesis of research carried out by the group was

that a device with different size channels and consequently different length of fibres

between these channels will different natural frequencies. Therefore, a device with

multiple channels with different dimeter (similar to the spiral structure of the

Design of the bio-inspired Implants | 27

cochlear illustrated in Figure 3) will have multiple natural frequencies with that can

be studied and design to match the human cochlear. To test hypotheses, two device

was tested with using the vibrometer setup to measure the voltage output of each

channel of an asymmetrical spiral multichannel and a symmetrical circular

multichannel device in response to a sweep of frequency between 2500 to 100Hz at

1dB played by a mouth simulator perpendicular to the device from the distance of

5cm with sampling frequency of 20kHz.

Figure 5: The design and the STFT graph of the frequency response of the devices to different

sound frequency generated by the mouth simulator. a) shows the frequency response of the 7

channels on the symmetrical circular device and b) shows the frequency response of the 4

channels asymmetrical spiral device.

As shown in Figure 5, while the voltage output of the symmetrical circular device

measured at 7 different positions along the sensor has very similar output, the voltage

output of each channel of the asymmetrical device to the same stimuli under the same

condition is different. Figure 6 shows the displace of each channel over time and

voltage output of each channel over times under the above conditions.

Design of the bio-inspired Implants | 28

Figure 6: shows the measurement of the fibre displacement of each channel measured by the

laser vibrometer and the voltage output of each channel of the asymmetrical spiral device in

response to the frequency sweep by the mouth simulator. Provided by Dr Chang.

2.3. Fabrication of the devices:

The devices were fabricated by Dr. Jinke Chang using electrospinning.

Electrospinning employs high voltage to electrify liquid droplets, generating a jet

between the high-voltage needle extruding the liquid and the grounded electrode.

The liquid droplets are provided to the system by gradually feeding the polymer

solution through a syringe needle using a syringe infusion pump, which allows control

over the speed of injecting the solution into the system. In this case, the PVDF-TrFE

polymer, along with the BTO nanoparticles, was dissolved in a mixture of DMF and

acetone[30]. To create PVDF-TrFE nanofibers, DMF is the primary solvent used to

dissolve the PVDF, while acetone is added to accelerate the evaporation of the solvent,

ensuring that the liquid droplets form fibres. If there is insufficient acetone in the

solvent, the liquid droplets will not form a jet, causing polymer droplets to fall instead.

Conversely, if there is an excessive amount of acetone in the solution, the polymer

will be overly diluted, and insufficiently aligned fibres will be formed.

To get the fibres highly aligned radially on the electrode, all the terminals on the

electrodes were grounded to a rotary stage in the electrospinner while the needle was

attached to a high voltage source on a linear moving stage as shown in Figure 7. Both

Design of the bio-inspired Implants | 29

the needle and electrodes were moving together simultaneously to make sure that the

fibres are radially aligned.

Figure 7: The fabrication stages piezoelectric sensor devices using electrospinning. The

electrode is grounded and rotating around while simultaneously the high voltage needle

moves side to side extruding the PVDF nanofibers.

Finally, the sensor fabricated by assembling the electrospun electrode with a mirror

design electrode on top with a PET film in the middle to prevent any short circuit

between the two electrodes. In the experiments, the voltage produced between the 2

electrodes is measures which is produced by the vibration of the PVDF piezoelectric

fibres.

Figure 8: The final assembly of the device. The device was clamped between two acrylic cut-

outs of the sensor.

Design of the bio-inspired Implants | 30

As illustrated in Figure 8, the device is assembled between to acrylic parts

permanently to make sure the clamping force holding the assembly together remains

constant between trials. This was done as the initial testing showed that depending

on clamping force holding the whole assembly together in the test bench of the

vibrometer, the response of the device and voltage output changes. More details about

the structure of the device and assembling is currently protected for a patent

application.

Design, instrumentation, integration

and data collection of a multi-channel

cantilever acoustic device

 | 31

Chapter 3

3. Design, instrumentation, integration and data collection

of a multi-channel cantilever acoustic device

3.1. Background

In the lab, a number of bio-inspired piezoelectric acoustic sensors were designed and

manufactured by electrospinning 6wt% Barium Titanate Poly(vinylidene fluoride-

trifluoroethylene) (BTO/PVDF-TrFE) nanocomposite fibres on single-channel

symmetrical circular (SSC) and multi-channel asymmetrical spiral radial electrodes

(MAS) (Figure 9) through an EPSRC funded project. Both devices could be used in a

single and multi-channel configuration, for the speech and spatial recognition testing,

however, analysis of a large quantity of output data including voltage output of each

device under various acoustic signals was challenging, in particular, the complexity

and amount of data for multi-channel MAS devices were substantially increased.

.

Figure 9: a) Symmetrical circular sensor b) Asymmetrical spiral sensor.

3.2. Aims and Objectives

The aim of this chapter is to develop a robotic rig for data collection and deep learning

method to analyse the complex voltage signals of the devices in response to various

acoustic stimulation.

Design, instrumentation, integration

and data collection of a multi-channel

cantilever acoustic device

 | 32

To achieve the objectives set for this project, it was broken down into 5 sections

starting with design and manufacturing an instrument to test the spatial recognition

(localisation) using the MAS and speech recognition using both MAS and SSC by

taking advantage of a deep convolutional neural network trained and tested on the

voltage output from the devices that has already been fabricated in the lab for an

initial benchmark and testing any future devices as mean of standardising them and

evaluating their performance against each other. The initial testing for spatial

recognition was carried out using the laser vibrometer setup and the mouth simulator

with a modified sensor holder that allowed for tracking of the angle change for data

collection.

The hypothesis for these devices is that the well aligned piezoelectric nanofibres

between electrodes can produce large enough voltage consistently when stimulated

by acoustic signals. Thus, the devices can be used for speech recognition. The most

intriguing novelty of the multi-channel spiral device lies that, due to its asymmetrical

design, the complex signals captured from such a device indicated the relative position

of the stimuli source for spatial recognition. To quantify and prove the concept and

performance of the device, for the first part of the project, the focus was on developing

a platform that enable to collect voltage output produced by the sensors for the

duration of experiments by various stimuli, such as mouth simulators and commercial

speakers, while simultaneously controlling the exact position of the acoustic stimuli

source relative to the sensor. Furthermore, a number of CNNs with different

architectures were designed and created for analysis of the voltage data in order to

determine the accuracy and precision of the spatial recognition of the MAS device

and the speech recognition of the MAS and SSC device.

Design, instrumentation, integration

and data collection of a multi-channel

cantilever acoustic device

 | 33

Figure 10: Initial data collection set up for directional recognition testing. The speaker is

stationary and a set of holes on the sensor holder are used to place the sensor at different

angles and the data are collected.

3.3. Preliminary spatial recognition testing using CNN with spiral Asymmetrical

multichannel device to check the feasibility.

During initial tests, both device configurations exhibited potential for speech

recognition when visually comparing the waveform of the signals produced with

those from a conventional off-the-shelf microphone. Demonstrating these devices'

capability to pinpoint a sound source necessitated a comprehensive experiment, given

the challenge of discerning sound waveforms originating from various directions by

visual inspection alone and show the merit of the experiment. Thus, prior to allocating

resources to manufacture a testbed for spatial recognition, preliminary tests were

conducted to validate the hypothesis that the MAS device can be used for spatial

recognition to its asymmetry. This involved integrating an angle placement extension

into the current sensor test stage (Figure 10) and manually gathering data from varied

sensor configurations in multiple directions (at every 30°). Data collected from the

spiral asymmetrical multichannel device enabled the training of a CNN that

efficiently extracted features and patterns, achieving precise sound source localization.

Conversely, several CNN algorithms applied to the symmetrical device data for spatial

recognition proved unsuccessful because none of the CNNs trained on the

asymmetrical device was unable to classify any of the test dataset correctly.

Design, instrumentation, integration

and data collection of a multi-channel

cantilever acoustic device

 | 34

Given the positive outcomes of the experiment, the construction of a robotic rig was

pursued to autonomously evaluate sensors under varied configurations, with an eye

towards future device optimization. Section 2.3.1 is dedicated to the initial manual

evaluations conducted on the spiral asymmetrical multichannel device for spatial

recognition, along with a discussion of the findings. The code used for this section is

listed in Appendix A.

3.3.1 Methodology

1) data collection and preprocessing

Initially, data were collected from each of the four channels 100 times concurrently

at intervals of both 45° and 30°. Utilizing the frequency data recorded by the laser

vibrometer along with the raw data, the data from each channel was segmented into

100 distinct datasets for evaluation.

Figure 11: demonstrates raw data collected at 45⁰ and split into individual sweep response

reading by the sensors.

Raw voltage-time series recording of the four channels response to the sweep of

1500Hz to 80Hz spitted into 100 distinct data points.

Design, instrumentation, integration

and data collection of a multi-channel

cantilever acoustic device

 | 35

Acknowledging the parameters and constraints of the experiment and using the Short

Time Fourier Transformation (STFT) of the raw data, a bandwidth Butterworth digital

filter was constructed and subsequently applied to the signal, which was then

detrended during the preprocessing phase of the experiment.

Figure 12: illustrates the STFT of plot of an individual at reading at 45⁰ obtained from the

voltage output of the device in response to a sweep from 1.5kHz to 80Hz over a second at 1dB.

This plot is used for creating a bandwidth filter to reduce the noise and highlight the

difference in output of different devices.

STFT plot of individual channels of a single reading recorded at 45⁰

Design, instrumentation, integration

and data collection of a multi-channel

cantilever acoustic device

 | 36

Figure 13: demonstrates filtered and detrended data at 45⁰ using the Butterworth filter

which was used in feature extraction.

2) Feature extraction

To extract the features from each data and creating a database for training and testing

the CNN, each data point was first split into its individual channels, then the voltage-

time signal of the channel was used to find its Wigner-Ville Distribution plot which

is the representation of the time-frequency intensity of the signal. Then the plots for

each channel was combined into a single black and white image and stored in the

database indicating the position of where the data was recorded. In this plot, as shown

in Figure 14, the darker the area, the lower the intensity of the frequency captured.

Preprocessed voltage-time series recording of the four channels response to the

sweep of 1500Hz to 80Hz spitted into 100 distinct data points.

Design, instrumentation, integration

and data collection of a multi-channel

cantilever acoustic device

 | 37

This will highlight the intensity of the response of the natural frequencies each

channel relative to each channel.

3) Training, testing and validation:

Finally, the resulting data was split into the Training, Testing and Validation by 80%,

10% and 10% randomly to create a database for training and testing of the proposed

CNN. This split of data is recommended by both MATLAB and TensorFlow as best

practices and it draws its justification from the Pareto principle.

Figure 14 illustrates the architecture of the deep CNN used in MATLAB to classify the

angles of the acoustic source. The produced figures were first downsized to 227x227

pixels and then passed through a Convolutional Layer with an 8x20pixels filter and a

Rectified Linear Units (ReLU) activation function to add non-Linearity to the

resulting feature map image. The image is then passed through a maxpooling layer to

reduce the dimensions of the feature before feeding the features to the fully connected

layer for classification. Finally, a fully connected layer (Dense layer) outputs 12

probability for each class and the label with the highest probability is outputted using

a SoftMax Layer.

Figure 14: Initial Neural Network to architecture for classification of the angles designed and

implemented in MATLAB. The CNN uses a single layer Convolution layer connected to fully

connected layer for classification and a SoftMax layer at the end is used to filter the highest

probability class and outputs it.

3.3.2 Results and Discussion

The results were very promising with the neural network being able to correctly

classify 100% of the results (Figure 15). The limitation of this setup was that the angle

placement was inaccurate and more importantly the sensor was moved manually by

Design, instrumentation, integration

and data collection of a multi-channel

cantilever acoustic device

 | 38

hand relative to the speaker (Figure 10). The current iteration of the sensor is still

sensitive to environmental change and fragile which means that the smallest

alteration could give widely different results. This was apparent in the collected data

and we tried to mitigate this issue by placing the sensor in an acrylic holder to protect

the device and minimise alteration to the result caused by the environment and the

movement of the sensor.

Figure 15: The resulting confusion matrix illustrating the predicted classification vs the true

class for the testing data. The graph shows 100% accuracy for all both the 45⁰ increment (5

classes) and 30⁰ increment (12 classes).

Additionally, there was concerns that the 100% accuracy in classification might be

resulting from overfitting of data as all the data for this test was collected at once over

a short period of time. However, the current setup was not best suited for collected

large dataset over a long period of time in different conditions because the accuracy

of rotating the device was extremely limited. To address all these issues and eliminate

this in future tests and automate the testing process to allow for rapid testing of new

devices under different circumstances, a new instrument (Figure 22) was designed,

manufactured and assembled that allows to run multiple tests with higher accuracy

and close integration with the sensors to allow us to test future iterations of sensors

and comparing their performance with minimal bias.

a)

4 channel 12 classifier training test result using

Winger-Ville distribution.

 (30⁰ increment localisation)

4 channel 5 classifier training test result using

winger-Ville distribution.

(45⁰ increment localisation) b)

Design, instrumentation, integration

and data collection of a multi-channel

cantilever acoustic device

 | 39

3.4. Speech Recognition

To evaluate the devices for speech recognition, both the SSC and MAS devices were

used with a 2 layered CNN trained for speech recognition using some predetermined

phrases, which was written in python and utilised Keras and Tensor Flow for the

training. The CNN is trained on the voltage output from the devices at sampling

frequency of 4 kHz. The data from the sensor is collected using an Arduino Mega, sent

over to the main PC over serial communication and fed into the algorithm for

processing. For this test, a portion of Shakespeare’s Hamlet we chosen and broken into

the 6 phrases which was played for the devices over days while their voltage output

was recorded. The code used for this section is available in Appendix B (data collection

Arduino), Appendix C (the main python code) and Appendix D (real-time testing).

Table 2: Phrases used to test the speech recognition as well as the their ID used for

identification in the confusion matrix.

ID Phrase

A To be or not to be

B That is the question

C Whether this nobler in the mind to suffer the slings and arrows of outrageous

fortune

D Or To take Arms against a sea of troubles and by opposing end them

E To sleep no more

F To die

3.4.1. Methodology

1) Data processing and Preprocessing:

To expedite data gathering, audio files containing 100 repetitions per phrase,

interspersed with 2-second intervals, were created. Each audio files were played 3

times over 3 days to at the device and the corresponding voltage output was used to

create the dataset for training and testing. As with the prior test, data preprocessing

involved filtering, detrending, segmenting into individual phrase samples, and

databasing. In this particular experiment, a low-pass Butterworth filter, tailored from

the experimental parameters, was utilized. With the data collector's sampling rate in

mind and applying the Nyquist frequency theorem, the highest usable frequency of

Design, instrumentation, integration

and data collection of a multi-channel

cantilever acoustic device

 | 40

the obtained data was determined, serving as the filter's cut-off frequency to eliminate

high-frequency disturbances. Subsequently, the signal underwent detrending. Yet,

segmenting the data into distinct intervals and filtering them presented more

challenges than in the subsequent spatial recognition test where a sweep of a known

frequency was employed.

The next stage of the preprocessing was to segment the collected signal into individual

phrases, suitable for training, validation and initial testing of the neural network. To

find the suitable points in the signal to separate the intervals, comparison was

performed between the large amplitude of the signal to the much smaller amplitude

from the 2-second delay and the two intervals along with the expected length of the

phrase to segment the signal in the correct intervals. Finally, Using the time period

for the phrase, an algorithm was developed that removed any corrupted compromised

or incomplete data to ensure that the data used in training and validation was a good

representation for each class and did not affect the classification negatively (Figure

16).

Figure 16: Preprocessing which include a) filtering and detrending the raw data and b)

breaking down the data collection into individual samples. This stage helped us to save time

in data collection.

Design, instrumentation, integration

and data collection of a multi-channel

cantilever acoustic device

 | 41

2) Feature extraction

Two figures were plotted from the resulting preprocessed data for each of the phrase

voltage output and were concatenated together and saved into a single PNG image

that was used for training the neural network classifier. The former plot is the scatter

plot of the waveform of the signal where the points with higher voltage output

magnitudes are more pronounced by using larger and whiter points relative to the

black background to highlight the shape of the of the waveform (Figure 17). The latter

plot is the STFT of the signal to highlight the relative frequency intensity of the phrase.

To ensure that the signals between different phrases are distinguishable, the

amplitude of the waveform plot and the frequency for the STFT plot range (the y-axis

range) of the plot were kept the same across all the plots for all the phrases (Figure

17).

Figure 17: An example plot that was used in the CNN for training and testing. The image

consists of a waveform plot of the voltage time graph and the STFT voltage output rotated 90

degrees and concatenated together into a single image. This is to preserve important

information in each figure when squeezed into a square. For STFT plot, the impactful

information lies in the position of the peaks regarding time and in the waveform data, the

import information is in the shape of the waveform while removing the temporal information

that could be used to distinguish between long and short phrases.

3) CNN architecture and classification

Figure 18 illustrates the architecture of the CNN used for the classification of the

phrases. The input image of the CNN is a resized horizontal rectangular image

Design, instrumentation, integration

and data collection of a multi-channel

cantilever acoustic device

 | 42

composed of an image of the waveform concatenated with an image of the STFT plot

of the data resized into a 64x64 pixels square image as shown in the Figure 17.

Therefore, given that one side of the plot was going to be squeezed, the plots was

oriented in a way to ensure that the features from each plot were preserved. For the

STFT data, it was crucial to preserve the timing information because the frequency

range on the y-axis was constant for all the phrases where the period for each phrase

and where the time of frequency intensity was different; Therefore, we rotate the

STFT figures by 90 degrees to ensure any timing information was kept and the

frequency data was scaled down uniformly across all the plots. In the waveform plot,

the outline of all the peaks and how they are all correlated to each other were analysed.

Therefore, to preserve continuity, the waveform plot was kept the same.

To speed up the processing time, two larger convolutional filters were used and each

of the convolutional layers was followed by a Maxpooling step to reduce the size of

the node. The 2-stage convolutional layer filter works very well in creating a feature

map for extracting and comparing features to classification while light enough to train

and run on any computer. However, this leads to CNN overfitting the data during

training. To combat this, two dropout layers were added, one after the second

convolution and the other one in the dense layer, to remove some nodes at random

to discourage complexity and overfitting [31]. The final CNN architecture was

achieved by a small manual adjustment through trial and error on the filter and the

fully connected layers sizes to avoid over fitting while maximising the accuracy and

minimising loss.

Figure 18: Initial Neural Network to architecture for speech recognition was designed and

implemented in Python. The CNN uses double convolutional layers followed by Maxpooling

Design, instrumentation, integration

and data collection of a multi-channel

cantilever acoustic device

 | 43

layers to reduce the dimension connected to fully connected layers for classification. Dropout

layers were introduced within the network to prevent from over fitting the data.

3.4.2. Results and Discussion of speech recognition

For the single channel circular symmetric device, from the original dataset 300 sample

points per class collected to create a total of 1800 sample dataset for training,

validation and testing. To evaluate the neural network and device, 10% of the data

was used. After optimising the algorithm and ensuring that the input image had

enough information, we proceeded to run a blind real-time test where the algorithm

chose a random phrase and look at the response of the device and algorithm. Figure

19 shows the confusion matrix for the testing data and the real-time test. The

confusion matrix for the testing data illustrates that the device collects enough

information to be used for speech recognition. While the real-time test was also

accurate, there are slight variations and overall lower accuracy. This is because the

training, validation and testing data collection and real-time testing happened on

different days and the sensor tends to produce slightly different outputs depending on

the environmental condition (Especially the humidity and temperature). This slight

variation can be overcome by either making an environmental protection case for the

sensor to reduce the environmental effects or running the test on multiple days and

using a much larger dataset to train the neural network to account for this change.

Figure 19: a) Testing Confusion Matrix illustrating high accuracy and precision for the speech

recognition CNN using the 10% original data set.b) Illustrates the real time speech recognition

testing show high level accuracy.

Design, instrumentation, integration

and data collection of a multi-channel

cantilever acoustic device

 | 44

The data showed that such a piezoelectric sensor with its current simple design, can

collect large amount of information from the acoustic stimuli that can be used for

speech recognition. This is apparent from the confusion matrix illustrated in Figure

19 where the device was able to classify the test data collected and only miss classify

2 test samples in addition to being able to perform extremely well classifying never

seen before inputs in the blind test in real-time.

Due to time limits, a smaller dataset of 1200 sample was collected from the single-

channel asymmetric spiral device as opposed to the 1800 collected from the

symmetrical circular device. Similar to the symmetric device, the data was randomly

split into 80%, 10% and 10% for training, validation and evaluating the neural

network. This was much smaller dataset compared to the one used to train the

symmetrical device; however, it yielded a much more accurate model which was able

to predict all the test figures correctly and efficiently. The Figure 20 below shows the

result of the experiment in a confusion matrix.

Figure 20: Illustrates the result of the classification test confusion matrix of the single channel

spiral device for speech recognition. The figure shows that the device can perform speech

recognition very well with 100% accuracy with 188 supports for the test.

Design, instrumentation, integration

and data collection of a multi-channel

cantilever acoustic device

 | 45

3.5. Spatial localization Recognition

3.5.1 Instrumentation and integration for spatial recognition

Figure 21: The architecture of the spatial data collection and testing setup. An Arduino Mega

was used for data collection and Arduino Uno was used for controlling the motor. All the

collection and control were coordinate through a central computer using Python. The code

for this section is available in appendix B (data collection), E (stage controller), F (main python

code), Appendix G (Real-time spatial recognition testing) and Appendix H (the testbed CAD

Design).

The testbed is shown in show in the fire which consist of an aluminium arm to hold the sound

source (mouth simulator) attached to a hollow rotary stage with sensor sitting in the middle

of the stage. There is a hall effect sensor on board on the rotary stage which is used to set the

home position (zero degrees) for data collection. Since the process of data collection is

automated, the stage will zero itself to ensure that it is in the correct position and has not lost

its bearing due to obstructions such as entangled wires. When in calibration mode, zeroing

its position, it will calculate the angle it turns to reach zero position and compares it to the

angle that it assumed it was. If the assumed position and actual position does not match, it

will send an error and remove all the data collected since last calibration sequence.

To assess a directionality of the sensor, an automatically controlled rotatory stage was

designed, manufactured and integrated with the multi-channel data collection system.

To collect data, an Arduino Mega with a custom shield that takes advantage of the

Arduino’s analogue pins were used for data collection from the sensor. The system

allows to rotate the sound source around the sensor accurately and collect data for a

different range of tests so as to measure the position and corresponding voltage output

of the sensor with high accuracy, realising its full potentials for precise positioning in

three dimensions and overcoming the limitations of previous Platform L. The

Design, instrumentation, integration

and data collection of a multi-channel

cantilever acoustic device

 | 46

aluminium parts were waterjet cut by UCL Institute of Making. The general overview

of the architecture of how different components are connected and communicate

with each other is shown in Figure 21 and the CAD design for the stage and the final

stage is shown in Figure 22.

Figure 22: Solid works design and final assemble instrument to test directionality recognition.

The stage moves the speaker around the sensor automatically and collects its output directly.

The device was placed at the centre of the stage and connected to an Arduino MEGA

for data collection. The device had to be at the same height as the speaker and we had

to ensure that none of the wires were tangled and interfered with each other as the

stage was programmed to be able to move 360˚ around the sensor. To ensure that the

wires do not tangle and the speaker is free to rotate about the device, the Arduino is

placed on top of the sensor.

3.5.2. Methodology

1) Data processing and Preprocessing:

Analogous to the previous experiments and setups, the collected data was first

processed as shown in Figure 23. As shown in step 1, initially the raw data was filtered

by passing the collected data through a digital bandwidth Butterworth filter deriving

from the STFT plot and removing the noise, and then detrended. As this was a known

sweep frequency input signal, the breakdown of the signal into individual sweeps was

a straightforward task to the speech recognition data segmentation. By plotting the

STFT of the data, it is clear to see where one sweep has ended and where the next has

Design, instrumentation, integration

and data collection of a multi-channel

cantilever acoustic device

 | 47

started, which can be used to separate them into individual intervals. By using this

method in step 2, the input signal collected was segmented into individual complete

intervals of sweeps. Any incomplete sweep was removed from the data set.

2) Feature extraction

Finally, in steps 3 and 4, the signal was verified by evaluating the frequency sweep

range to ensure that the sweep is complete and correct data is being used for testing

and then the grayscale STFT of each channel was created and concatenated together

to form the final image for the CNN training, validation and testing. Similarly, to the

other 2 experiments, the data was split into 80%, 10% and 10% for training, testing

and validation respectively.

Figure 23: Typical data preprocessing and feature extraction for the directional recognition

CNN. The collected data was 1) filtered and detrended and 2) the resulting data was separated

using the STFT plot to determine where one sample point ended and where the next sample

started. 3) the individual samples were used to make a lower resolution STFT plot and 4) the

plots were combined into a single image.

Design, instrumentation, integration

and data collection of a multi-channel

cantilever acoustic device

 | 48

3) CNN architecture and classification

Similar to the CNN used in Section 2.4.1, the neural network takes an image of the

combination of 4 STFTs of the 4 channels and then downsized to 150x 150 pixels from

1220x900. This would increase the speed of training and testing. The neural network

takes these images and feeds them through a network with similar architecture as the

one used for speech recognition with the major difference being in the 12 output

classes (the 12 angle positions) as opposed to the 6 classes for speech recognition

(Figure 24).

Figure 24: Initial neural network to architecture for spatial recognition classification was

designed and implemented in Python. The architecture used for spatial recognition is the

same as the one used for speech recognition.

3.5.3. Result and discussion of spatial recognition

1) Spatial recognition of asymmetric spiral devices:

As shown in the Figure 25, three set of experiments were conducted in 1) planar

Azimuth (θ) and 2) orthogonal (φ) directionality recognition and 3) distance (x)

recognition on the device for 3D sound source localisation. All three experiments

showed a high level of accuracy. Despite the lengthy period of time for the data

collection and the changes to the environmental conditions, the performance and

accuracy of their cognition was reproducible. Moreover, because the data for each

angle was collected over few days multiple times, the range of data was large and

various in environmental changes to ensure that they were not over fitted or trained.

This shows that the frequency selectivity and asymmetry of the device can be utilised

for spatial recognition. The device showed 100% accuracy in distance recognition,

94% accuracy in the orthogonal (φ) direction and 97% accuracy in the planar (θ)

direction. Because the data for all these experiments were collected over days with

Design, instrumentation, integration

and data collection of a multi-channel

cantilever acoustic device

 | 49

plenty of variations in the data, it shows that the neural network is generalised and

able to localise the sound source very well as evident by the confusion matrixes in the

Figure 25.

Figure 25: The spatial recognition confusion matrix results. θ indicates the 360˚ directional

recognition testing in plane with the sensor. φ indicates the 360˚ directional recognition

testing in the orthogonal direction to the sensor and x indicates the distance recognition from

the sensor.

As illustrated in Figure 25a, the experiment conducted with azimuth angles to the

device shows lower accuracy between 30 degrees and 180 degrees. All misclassified

points are mistaken for their adjacent classes, indicating that the predictions are not

random but are off by only ±30 degrees. This accuracy can be improved by collecting

more data to train the model, using more sophisticated models such as YOLOv8 to

YOLOv10, or employing higher resolution and RGB input images.

Design, instrumentation, integration

and data collection of a multi-channel

cantilever acoustic device

 | 50

Figure 25c illustrates that the model is least accurate when the sound source is

positioned towards the centre of the device, specifically between 330 degrees and 30

degrees on either side. One of the largest misclassifications occurs at 0 degrees, where

the sound source is incorrectly identified as being at 180 degrees, directly opposite

side of the device. Other misclassifications occur in adjacent classes, with the lowest

accuracy observed at 330 degrees, where the sound source is misclassified as being at

0 degrees.

These findings indicate that the misclassifications are not random; rather, the device

captures significant localization information. To improve accuracy, particularly at 330

degrees, a larger number of samples from this angle should be included in the training

set. Additionally, similar to the azimuth experiment, increasing the dataset, using

more sophisticated models such as YOLOv8 to YOLOv10, and employing higher

resolution and RGB input images could significantly enhance the device's

performance.

Finally, the directionality test in Figure 25d shows that the device is 100% accurate

in identifying the distance of sound source. This shows that the device is extremely

sensitive to the sound intensity and can identify sound source from different distances

very accurately. Because the data was collected over days in different environments,

it mitigated the chance of overfitting the model.

2) Electrode configuration and resolution of direction recognition

After verifying the hypothesis for spatial recognition, i.e. that the MAS device could

be used for sound source localisation, the correlation between the electrode

configuration and spatial recognition resolution and accuracy of the device, i.e. what

is the smallest angle deviation that the device can recognise was characterised.

Different data sets were collected from the different electrode channel numbers using

the same device as shown in Figure 26, and the sensor performance in response to the

different input configurations of feeding the collected data to the neural network was

also evaluated. Figure 26a illustrates the explored configurations and the results. In

Design, instrumentation, integration

and data collection of a multi-channel

cantilever acoustic device

 | 51

the software-processed results as depicted in Figure 26b, voltage data were gathered

from each channel individually across all electrode configurations. These data were

then merged during the preprocessing stage. The subsequent voltage-time series was

utilized for feature extraction prior to input into the neural network. Conversely,

Figure 26c displays outcomes where channel data were manually integrated, and the

cumulative signal was then acquired.

The aim of this experiment was to evaluate the effects of electrode configurations and

data process method on the resolution and accuracy of spatial recognition of the spiral

devices. The results will render guidance on further optimisation of electrode design

and data process. In other words, what is the cost-effective design of the number of

the electrodes with desired resolution and accuracy at reasonable costs of

manufacturing and data process and whether it is necessary to make as many as

possible ultra fine electrodes along the spiral device so as to achieve higher resolution

and accuracy through collecting voltage output generated from the piezo-nanofibres

with nearly continuous variable length along spiral channel arrays.

The result shows that the information is preserved in the signal and can be used to

spatial recognise with various resolutions and accuracy depending on the electrode

configuration. As expected, the higher the number of channels used to collect the data,

the higher accuracy of the neural network to pinpoint the source of the sound. From

the Figure 26b and 26c, it is apparent that all configurations are very accurate with

over 90% accuracy from 10 degrees and above. However, the computation and data

processing could be reduced by combining channels either through software or

hardware which leads to a faster response from the system for localisation.

This experiment demonstrated that the accuracy across all configurations dropped

rapidly below 5 degrees increments and while the four channels configuration shows

the best outcome, majority of the information is collected within a single channel,

regardless of being collected manually in a single channel or post-processed by the

software, which concluded that the increasing the number of electrodes will improve

the accuracy and precision of the device. Therefore, the spiral device with

Design, instrumentation, integration

and data collection of a multi-channel

cantilever acoustic device

 | 52

multichannel electrodes is capable of recognising the sound direction at high

resolution and accuracy. Using only one channel could provide reasonable accuracy

of spatial recognition with minimised data collection and process. Moreover, the

electrodes and the fibres do not have to be a discrete constant radius and can be a

continuous spiral to collect more information. This is because this experiment showed

that a single channel can collect all the information with very gradual losses. Figure

26b and 26c shows that similar to 2 and 4 channel configurations, while the accuracy

is lower, it is still over 90% for a single channel device.

Figure 26: Different configuration of 4 channel device tested to find the correlation between

the number of channels and resolution. In the figure, a) is the different configurations

explored for spatial localisation, b) is the result of the experiment for the software adjusted

signal to match the configuration and c) is the where the electrode connections were

manually altered to match the configuration.

In summary, the sensor demonstrates significant potential, exhibiting remarkable

accuracy in both speech and spatial recognition tasks. For efficiency in this research

endeavour, the dataset for each classification was confined to 210 data points, with

the objective of amassing all these points within a single day to mitigate

environmental influences on the experimental outcomes. Future enhancements could

encompass expanding the data points per class over an extended duration and

rigorously controlling environmental variables. Such refinements would likely

Design, instrumentation, integration

and data collection of a multi-channel

cantilever acoustic device

 | 53

augment the neural network's performance, leading to enhanced results in both real-

time and recorded assessments.

3.6. Conclusions

As hypothesized, a single MAS device can handle both sound source localization in

all directions and distances away from the device and sound pattern recognition

(speech recognition), whereas the SSC device is limited to speech recognition. The

sound localization capability of these devices stems from the electrode design, which

incorporates frequency selectivity similar to that of a healthy human cochlea. To

enhance these devices, further research is needed into the materials and fabrication

methods. This research should aim to improve the consistency of device responses

across different batches and allow for better control over the placement of fibres on

the electrodes. Such improvements would enhance frequency selectivity and reduce

the size of the devices.

To improve on the performance of the classification, there are number of techniques

that can be used. Mainly a better more complicated model can be employed and

retrained on the gathered to improve on the performance of the classification. Newer

models such as YOLOv8, v9 and v10 have incredible practical applications for

classification in real time in industry using only consumer GPUs. Additionally, as they

use the RGB image input, they can use more information in classification than the

model used for these experiments.

Design, Fabrication and material

improvements:

 | 54

Chapter 4

4. Design, Fabrication and material improvements:

4.1. Manufacturing multichannel single micro/nano fibre device

4.1.1. Background

The acoustic sensors that we have fabricated and tested to this point, illustrated a

number of desirable properties. The radially aligned piezoelectric nanofibres within

the four channels were obtained by the additional local static electrical field between

four pairs of electrodes and provide predictable frequency selectivity. Despite the

additional local electrical field, the fabrication process gives little control over where

the fibres will be positioned between the electrodes. As a result, the uniformity and

thickness of nanofibres coverage across all four channels become poorly controlled,

which leads to a membrane-like structure with crosstalk between channels and

uneven thickness.

For enhanced precision in the fibre positioning process, Electrohydrodynamic (EHD)

printing is employed. This method leverages a targeted fibre deposition via near-field

electrospinning combined with electrode movement, ensuring finer control during

fabrication via additive manufacturing techniques. This research delves into three

distinct EHD printing techniques to craft multichannel single fibre sensors, varying

in both diameter and radial properties, tailored for high-frequency selectivity. A pre-

existing slicer has been developed, which offers adaptability across all three

techniques.

One other limitation of the electrospinning fibres is the size limitation of the sensors.

The average cochlear in an adult is about 9.20 x 6.30 x 8.00mm, whereas the sensor

we have fabricated is much larger with the smallest channel coming at 30mm in two

dimensions. EHD printing will potentially allow us to reduce the size of the sensors

through controlling the length and the diameter of the fibre in three dimensions.

Design, Fabrication and material

improvements:

 | 55

4.1.2. Aims and Objective

The primary objective of this research chapter is to design and implement a

fabrication stage that facilitates the precise deposition of piezo nanofibers onto

designated locations on an electrode. The stage should not only ensure control over

the exact positioning of the electrode but also offer meticulous speed control during

its movement. The significance of such precision arises from the relationship between

the stage's movement speed and the material feed-through rate from the needle. If the

movement outpaces the feed-through rate, the fibre risks elongation and thinning,

potentially culminating in breakage under extreme velocities. Consequently, the

uniformity and integrity of fibres across the device are contingent on this stringent

speed regulation. Furthermore, by achieving granular control over fibre thickness, the

research intends to elucidate the interplay between fibre diameter, its resonant

frequency, and the resultant piezoelectric output, providing insights into optimizing

the design and function of such devices.

4.1.3. Specialised Slicer: From design to waypoints

For precise EHD printing stage control, a method was devised to translate both simple

and intricate fibre patterns intended for electrode exploration into waypoints for the

printing bed (electrode). Waypoints are a set of x, y, z coordinates on the print bed

that are converted to the number of steps for each stepper motor to take. This

conversion subsequently determines the precise motor rotations necessary for the

desired movements. The envisioned fibre designs, being substantially finer than

typical 3D printing models, are not easily scalable due to their relative size ratio with

the electrode. Conventional 3D printer slicers are incompatible with such designs.

Moreover, ensuring the production of a continuous fibre was pivotal, given that

interrupting fibre production midway in EHD printing is not feasible due to factors

like viscosity and the electric field's downward pull. Meeting these specific

requirements necessitated the creation of a tailored slicer. This was achieved by

developing a MATLAB program that processes STL files, obtainable from standard

CAD software such as SolidWorks, layering them and subsequently translating them

Design, Fabrication and material

improvements:

 | 56

into a continuous set of waypoints. These waypoints guide the EHD printing stage,

dictating the precise rotations required for both X and Y axis motors.

For precise EHD printing stage control, a method was devised to translate both simple

and intricate fibre patterns intended for electrode exploration into waypoints for the

printing bed (electrode). This translation subsequently determines the precise motor

rotations necessary for the desired movements. The envisioned fibre designs, being

substantially finer than typical 3D printing models, are not easily scalable due to their

relative size ratio with the electrode.

Figure 27: The process of getting the waypoints for the EHD printing. a) STL file can be

obtained from CAD software, b) is the snapshot of the Slicer designed in MATLAB specially

programmed for the EHD printer and c) is the waypoints generated by the program. The code

for the slicer is available in Appendix I.

4.1.4. Electrohydrodynamic Printing Stage

4.1.4.1. Cartesian Axis Stage

To improve upon the fabrication, ElectroHydroDynamics printing (EHD printing)

was explored which has been well studied and shows the potential to fabricate small

devices very accurately. A literature review on this topic illustrates that it is possible

to control the diameter of the fibre by adjusting the movement speed of the collector.

This is especially useful for this project since the only way that we could adjust the

resonance of the channels was by changing the length of the fibre and the fibre

diameter was quite uncontrollable. The stage used for this project has 0.025µm

resolution and a maximum speed of about 25mm/s which is not comparable to the

Design, Fabrication and material

improvements:

 | 57

speed used in the literature, but we can compensate for this by reducing the flow rate

accordingly to adjust for this. Moreover, it is expected that the minimum fibre

diameter fabricated by this method is over 6x larger in diameter than fibre fabricated

using electrospinning. [32]

Figure 28: The cartesian EHD printer and controller designed for the Stage. The image on the

left illustrates the stage as it sits in the electrospinner’s enclosure and the image on the right

is the custom PCB designed to control the stage. The full design CAD and code available in

Appendix K and J.

Design, Fabrication and material

improvements:

 | 58

Figure 29: Show the circuit designed CAD in KiCad which was manufactured for controlling

the EHD printer. The circuit is designed as an Arduino Mega shield to control stepper motors

and read the data from limit switches for initial homing of the stage. The code for the Arduino

was written specifically for the shield to enable controlling the EHD printing stage precisely

Full schematics of the Figure available in Appendix K.

4.1.4.2 Radial Axis Stage

Given that the majority of the devices that will be explored are inspired by human

cochlear and have a circular structure, it would be interesting to explore a stage that

moves radially with the needle moving horizontally. In the literature, the speed

explored is between 1000 to 4000 mm/minute. However, the current setup can reach

the maximum speed of 1500mm/minute which is in the lower end of what the

literature explores. It is expected that radial method will be faster and allow the stage

to reach higher speeds which is comparable to the ones tested successfully in literature

[33]. This is because the motor used to move the needed holder is larger and adjusted

for higher linear speeds with a more powerful full motor controller and the stage can

move radially at the maximum speed which is about 50π rad/s (1500rpm).

Design, Fabrication and material

improvements:

 | 59

Figure 30: Diagram of a potential radial printing stage. In the figure a) shows the needle

used to eject the polymer fibre controlled by a linear actuator horizontally by the amount r

from the centre of the stage and b) shows the stage sitting on top of a motor that controls

the stage radially by the angle θ.

4.1.4.3 Motionless Printing

Finally, there are methods to control the position of the fibre that does not include a

moving stage and the process is controlled by 1) segmenting the collector electrode

and using switches moving the printing location to the desired position [34] or using

2 jet defecting electrode to deflect the fibre to the desired position [35].

Design, Fabrication and material

improvements:

 | 60

4.2. Exploring new Material

4.2.1 Background

There are number of limitations with the current material used in the sensors that

need to be addressed. Therefore, this section is dedicated to exploring new materials

with should have better mechanical properties and performance. Current Device,

while having great responsive and voltage output. This was achieved largely because

of the improved polarisation of the highly aligned fibres in addition of BTO

nanoparticles. However, adding the BTO to PVDF undermined the fibre’s mechanical

properties and make the fibres brittle due to poor interface between BTO and PVDF.

This is the direct result of how the BTO nanoparticles are embedded into the fibre or

surface and generate cavities, acting as defects at their interface as they are being

electrospun and dawn by the electric field (Figure 31).

Figure 31: A single-fibre sensor with high sensitivity and flexibility [36].

4.2.2 Aims and objectives

To overcome this, we hypothesised that we could fabricate hollow PVDF fibres loaded

with more BTO nanoparticles in the core. To achieve this, PVDF is going to be

coaxially electrospun as the sheath with polyethylene oxide (PEO) and BTO

nanoparticle aqueous solution in the core. Then the water-soluble PEO can be

dissolved in water to obtain the desired core-sheath structure.

Design, Fabrication and material

improvements:

 | 61

4.2.3 Methodology

The first step for achieve this goal is to optimise the electrospinning parameters of

PEO and PEO/BTO and find the maximum concentration of the BTO in PEO. Before

adding the BTO to the PEO and coaxially spin the fibres, first the right concentration

of the PEO solution had to be determined for the most consistent fibre draw with

minimal variance in the fibre diameter. For this experiment, PEO with the molecular

mass of 100,000Mv and 400,000Mv was used to make a range of different

concentrations of the aqueous PEO solution. PEO electrospinning is a topic that a

number of researchers have explored before and there is a lot of information on the

optimised condition to electrospun PEO [37] [38]. Several experiments were run to

find the optimal electrospinning process for 400,000Mv PEO shown in Figure 32.

Figure 32: Optimisation result of the aqueous 400,000Mv PEO electrospinning.

4.2.4 Results and discussion

In this experiment, the optimal condition for electrospinning the PEO was explored.

To find this optimal condition, the only variables that could be changed were the

concentration of the PEO solution and the flow rate of the PEO solution and this is

because the rest of the variables, i.e. the voltage and the distance between the collector

and the needle are fixed at 15kV and 15cm respectively, since these are the variables

used for the electrospinning the PVDF.

The next step was to estimate the fibre diameter under each condition. To do so, a

slightly modified MATLAB code was used (available here) to automate the fibre

https://uk.mathworks.com/matlabcentral/answers/397267-image-processing-determine-fiber-diameter

Design, Fabrication and material

improvements:

 | 62

diameter measurement and estimate the average diameter. The results were verified

by measuring the fibre diameter manually using ImageJ and then the comparison

between various dimeters of PEO under different conditions and PVDF fibre diameter

was plotted in Figure 33.

Figure 33: Program for extracting the average diameter of the fibre for PVDF and various

PEO concentration and printing conditions. To automatically measure the diameter of the

fibres, the program first takes in a calibration value and then uses edge detection to create a

mask to get then position of each fibre. As fibres are in different distance from the detector

when taking the image, the code only uses fibres with a certain predetermined intensity and

only measure the diameter of those fibres to ensure a correct estimation for the mean diameter

of the fibres.

The MATLAB algorithm converts the image into a binary format (1s and 0s) to

distinguish the background from the fibres. It then computes the Euclidean distance

transform, which calculates the distance from each pixel in the binary image to the

nearest background pixel. Additionally, it generates a skeleton map, capturing the

morphology of the binary image and outlining the fibres. By multiplying these two

Design, Fabrication and material

improvements:

 | 63

matrices, a diameter image is produced, from which a histogram of the fibre widths

can be obtained.

Figure 34: Average Diameter of the electrospun PVDF and PEO for different concentration

of PEO and various feeding rates.

From the findings of the preliminary electrospinning trials, it was discerned that the

ideal concentration for PEO stands at 6%. Concurrently, the most suitable flow rate

for the PEO was identified to be 0.65mL/hr and 1.5mL/hr. The rationale behind this

determination can be attributed to the fact that a concentration of 6% PEO

consistently resulted in the production of uniform fibres with minimal variation in

the diameter in different batch, demonstrating minimal droplet accumulation on the

electrospun fibre surface. A further point of significance is the observed correlation

between the flow rate and the fibre diameter. Specifically, as the flow rate elevates,

there is a commensurate increase in the fibre diameter. This relationship not only

solidifies our understanding of the process dynamics but also introduces a potential

avenue to exercise precise control over the core diameter during coaxial

electrospinning, enhancing the versatility and precision of the method.

To determine the desired inner diameter for the fibres, i.e. the desired PEO fibres

dimeter, Further testing had to be carried out to test the performance of the fibres and

their durability both after dissolving away the PEO and testing the devices. However,

the results of these tests provided valuable insights into the concentration and flow

Design, Fabrication and material

improvements:

 | 64

rate that yield the most consistent PEO fibres. Additionally, the findings

demonstrated that the diameter of the PEO fibres produced is significantly smaller

than that of the PVDF fibres, facilitating effective coaxial electrospinning.

Unfortunately, due to time constraints, the research into fabrication of the devices

using the EHD printer and exploring new material to incorporate better performance

and higher control over frequency selectivity is incomplete. For the duration of this

project there was only enough time to design and manufacture the stage as well

making a slicer than that enables translating simple or complex designs into a set of

waypoints instructions for the stage. It will remain to see whether the device and

control over the accuracy of controlling the layout of the fibres results into the desired

performance improvements in the sensing capability of the devices.

Conclusions and future of the research | 65

Chapter 5

5. Conclusions and future of the research

5.1. Conclusion:

As detailed in Section 2, the findings from this study present a compelling case for the

development of innovative auditory devices in the foreseeable future. The presented

device demonstrates pronounced frequency selectivity. Continued research holds the

promise of refining the structure, drawing it closer in functionality to the human

cochlea. This advancement would potentially enable users to discern a broader

spectrum of sounds, encompassing intricate nuances in tunes and melodies, enriching

their auditory experiences.

The showcased device not only suggests a future where cochlear implants are more

bio-inspired and frequency-selective but also demonstrates vast potential as an

acoustic sensor tailored for detailed diagnostics and failure prevention. For instance,

integrating this device within offshore turbines could be revolutionary. Systems

operating sub-optimally produce distinct sounds. By harnessing acoustic sensors in

conjunction with spatial recognition and a neural network akin to the one used for

speech recognition—but trained specifically on malfunction noises—there's potential

to remotely pinpoint both the origin and nature of a failure. Such advancements could

significantly reduce diagnostic and repair times, leading to substantial cost savings.

The main finding of this research project was proving that a single multichannel

asymmetrical spiral sensor fabricated by UCL division of surgery group can be used

for both localisation and speech recognition as opposed to a human cochlear that

needs two healthy cochlear for sound source localisation. By investing in further

research in this project, an acoustic sensor could be developed that can both identify

and localise sound source which could be used as a non-invasive sensor in range

different industries.

Conclusions and future of the research | 66

5.2. limitations:

The device in its current state is too large and fragile which makes it very difficult to

handle and run test on. Additionally, due to the nature of the fabrication process of

the sensors, each sensor is very different to another and it response could be vastly

different as the fibre lengths and thickness could change in each fabrication attempt.

Finally, the limitation of the data collection, training and testing testbed was that the

maximum sampling rate of the data collection (the Arduino) is relatively low and

makes it difficult to capture all the data and forces the experiment to focus on a very

small portion of the audio range (only up to 1.5kHz as opposed to the 20kHz that

humans can hear)

5.3. Future work:

The multichannel devices show an immense potential in revolutionising and

advancing the cochlear implants. Both the material and the manufacturing can be

optimised through by improving the speed of the manufacturing and adapting the

axial Cartesian printer for a printer method that is better fit for fabricating radial

devices.

Given that the majority of the devices that will be explored are inspired by human

cochlear and have a circular structure, it would be interesting to explore a stage that

can be controlled to move radially with while motion of the needle can be controlled

in the horizontal direction. This method should be faster and allow for the speeds that

are much more comparable to the ones used in the literature. The hypothesis is that

because the motor used to move the needle holder is much more powerful motor with

an adjustable height and the stepper motor can move much faster radially with the

maximum speed which is about 50π rad/s (1500rpm), will allow for a much faster

movement of the needle relative to the desired position on the stage.

Moreover, the literature demonstrates methods of controlling the desired position and

path of the fibres on the electrode without using a moving stage. There are two

Conclusions and future of the research | 67

interesting fabrication method illustrated: 1) segmenting the collector electrode and

using switches moving the printing location to the desired position [10] 2) Using 2 jet

defecting electrodes to deflect the fibre to the desired position [11].

It is imperative for the success of this project to ensure that the fabrication method

must provide complete control over the position and dimeter of the fibres over the

electrode. Additionally, the electrode must have a constant dimeter throughout the

length of the fibre and controllable. Therefore, in addition to optimising the printing

parameter, the number of devices must be fabricated with each proposed method to

evaluate their consistency and how well and fast each method performed the

fabrication process. Also, either one of the mechanical printing methods can be

combined with the motionless printing to improve the performance. This is because

the combination could allow us to draw and stretch the fibre quickly which could

lead to better control over the final dimeter of the fibre given that the feed rate

through the nozzle is known.

Within the material research segment detailed in Section 4, foundational efforts were

dedicated to the fabrication of hollow PVDF fibres with BTO nanoparticles centrally

located. Moving forward, it becomes imperative to conduct comprehensive

characterizations of these resultant fibres. This will facilitate a comparative analysis

with the fibres highlighted in Section 2, offering a more holistic understanding of

their properties and potential applications.

Refinement of the electrode's design and layout continues to be a focal area of research.

The intricacies of the design play an instrumental role not only in facilitating an

increase in channel capacity but also in substantially reducing the device's footprint.

For this project to achieve its intended impact, meticulous design optimization is

crucial. This would ensure that even within a compact form factor, the sensor can

capture an optimal amount of information.

In subsequent research, a thorough examination of neuron cell toxicity and responses

to the newly developed material needs to be undertaken. Additionally, there are plans

Conclusions and future of the research | 68

to evaluate ganglion neuron cells' reactions to the piezoelectric fibres, as well as the

device's electrodes. This analysis will involve using a patch clamp under a microscope,

with the intent to observe how these cells respond when stimulated by the device in

reaction to various audio signals.

References | 69

6. References

[1] FDA, “What is a Cochlear Implant?,” 04 02 2018. [Online]. Available:

https://www.fda.gov/medical-devices/cochlear-implants/what-cochlear-

implant#:~:text=back%20to%20top%5D-,Who%20uses%20cochlear%20implants,to

%20benefit%20from%20cochlear%20implants..

[2] N. L. E. D. M. R. M. R. M. P. H. B. K. Thompson, “Cochlear Implantation for Unilateral

and Asymmetric Hearing Loss: Long‐Term Subjective Benefit.,” The Laryngoscope,

2023.

[3] H. Cullington, “BCIG Annual UK Data Collection 01/04/2021 - 31/03/2022,” British

Cochlear Implant Group, Bradford, 2021.

[4] British Cochlear Implant Group, “BCIG,” Yorkshire Auditory Implant Service,

[Online]. Available: https://www.bcig.org.uk/annual-uk-update/. [Accessed 14 02

2023].

[5] US National Institute of Health, NIDCD Fact Sheet - Hearing and Balance, US National

Institute of Health, 2019.

[6] “Cochlear Implant Market Size, Share & Trends Analysis Report By Type of Fitting

(Unilateral Implants, Bilateral Implants), By End Use (Adult, Pediatric), By Region,

And Segment Forecasts, 2022 - 2030,” Grand view research, United States, 2021.

[7] MIDCD | Hearing and Balance, “Cochlear Implants Fact sheet,” NIH publication, 2021.

References | 70

[8] G. M. Clark, “The multiple-channel cochlear implant: the interface between sound

and the central nervous system for hearing, speech, and language in deaf people—a

personal perspective,” Philosophical transactions of the Royal Society of London, vol.

361, no. Series B, Biological sciences, pp. 791-810, 2006.

[9] H. Li, L. Helpard, J. Ekeroot, S. A. Rohani, N. Zhu, H. Rask-Andersen, H. Ladak and S.

Agrawal, “Three-dimensional tonotopic mapping of the human cochlea based on

synchrotron radiation phase-contrast imaging,” Scientific Reports, vol. 11, no. 1, p.

4437, 2021.

[10] H. C. Stronks, A. L. Tops, P. Hehrmann, J. J. Briaire and J. H. M. Frijns, “Personalizing

Transient Noise Reduction Algorithm Settings for Cochlear Implant Users,” Ear Hear,

vol. 42, no. 6, pp. 1602-1614, 2021.

[11] W. Yost, Fundamentals of Hearing: An Introduction, Bingley: Brill, 2013.

[12] J. C. Middlebrooks and D. M. Green, “Sound localization by human listeners,” Annual

Review of Psychology, vol. 42, no. 1, pp. 135-159, 1991.

[13] B. GROTHE, M. PECKA and D. McALPINE, “Mechanisms of Sound Localization in

Mammals,” Physiological Reviews, vol. 90, no. 3, pp. 983-1012, 2010.

[14] M. Vijaya, Piezoelectric Materials and Devices Applications in Engineering and

Medical Sciences, Boca Raton: CRC Press, 2013.

[15] . P. Hoskins, K. Martin and A. Thrush, Diagnostic Ultrasound, Cambridge: Cambridge

Uiversity Prss , 2010.

[16] K. NIghtingale, “Acoustic Radiation Force Impulse (ARFI) Imaging: a Review,” NIH,

vol. 7, no. 4, p. 328–339, 2011.

References | 71

[17] B. İlik, A. Koyuncuoglu, Ö. Sardan-Sukas and H. Külah, “Thin film piezoelectric

acoustic transducer for fully implantable cochlear implants,” Sensors and Actuators A:

Physical, vol. 280, pp. 38-46, 2018.

[18] T. Inaoka, H. Shintaku, T. Nakagawa, S. Kawano, H. Ogita, T. Sakamoto, S. Hamanishi,

H. Wada and J. Ito, “Piezoelectric materials mimic the function of the cochlear sensory

epithelium,” PNAS, vol. 108, no. 45, p. 18390–18395, 2011.

[19] S. Park, X. Guan, Y. Kim and et al., “PVDF-Based Piezoelectric Microphone for Sound

Detection Inside the Cochlea: Toward Totally Implantable Cochlear Implants,” Sage

journals Trends in Hearing, vol. 22, pp. 1-11, 2018.

[20] R. Pelrine, R. Kornbluh and G. Kofod, “High-Strain Actuator Materials Based on

Dielectric Elastomers,” Advanced Materials, vol. 12, no. 16, pp. 1223 - 1225, 2000.

[21] A. Arrigoni, L. Brambilla, C. Bertarelli, G. Serra, M. Tommasini and C. Castiglioni,

“P(VDF-TrFE) nanofibers: structure of the ferroelectric and paraelectric phases

through IR and Raman spectroscopies,” RSC Advances, vol. 10, no. 62, p. 37779–37796,

2020.

[22] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, Boston: MIT Press, 2016.

[23] Y. LeCun, Y. Bengio and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp.

436-44, 2015.

[24] A. Alsobhani, H. M. A. A. Abboodi and H. Mahdi, “Speech Recognition using

Convolution Deep,” in Journal of Physics: Conference Series, 2021.

References | 72

[25] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn and D. Yu,

“Convolutional Neural Networks for Speech Recognition,” IEEE/ACM Transactions on

Audio, Speech, and Language Processing, vol. 22, no. 10, pp. 1533 - 1545, 2014.

[26] C. Humphries, E. Liebenthal and J. Binder, “Tonotopic organization of human auditory

cortex,” NeuroImage, vol. 50, no. 3, pp. 1202-1211, 2010.

[27] I. Gebeshuber and F. Rattay, “Coding efficiency of inner hair cells at the threshold of

hearing,” in Computational Models of Auditory Function, Amesterdam, IOS Press,

2001, pp. 5-16.

[28] H. Heffner and R. Heffner, “Hearing Ranges of laboratory animals,” PubMed, vol. 46,

no. 1, pp. 20-22, 2007.

[29] G. Varallyay, S. V. Legarth and T. Ramirez, “Music Lovers and Hearing Aids,”

Audiology Online, 26 02 2016. [Online]. Available:

https://www.audiologyonline.com/articles/music-lovers-and-hearing-aids-16478.

[Accessed 30 08 2022].

[30] V. Giuseppe , C. Jinke , M. Thomas and et al., “Bioinspired Multiresonant Acoustic

Devices Based on Electrospun Piezoelectric Polymeric Nanofibers,” American

Chemical Society, vol. 12, no. 31, p. 34643–34657, 2020.

[31] G. S. Nandini, S. Kumar and K. Chidananda , “Dropout technique for image

classification based on extreme learning machine,” Global Transitions Proceedings,

vol. 2, no. 1, pp. 111-116, 2021.

[32] J.-C. Wang, H. Zheng, M.-W. Chang, Z. Ahmad and J.-S. Li, “Preparation of active 3D

film patches via aligned fiber electrohydrodynamic (EHD) printing,” Scientific reports,

vol. 7, no. 1, p. 43924, 2017.

References | 73

[33] C. Chenhao, L. Xinlin, X. Wei and et at, “Electrohydrodynamic printing for demanding

devices: A review of processing and applications,” Nanotechnology Reviews, vol. 11,

no. 1, pp. 3305-3334, 2022.

[34] T. H. Hwang, Y. J. Kim, H. Chung and W. Ryu, “Motionless Electrohydrodynamic

(EHD) Printing of Biodegradable Polymer Micro Patterns,” Microelectronic

Engineering, vol. 161, pp. 43-51, 2016.

[35] I. Liashenko, J. Rosell-Llompart and A. Cabot, “Ultrafast 3D printing with

submicrometer features using electrostatic jet deflection,” Nature Communications,

vol. 11, no. 1, p. 753, 2020.

[36] W. Song, “A smart sensor that can be woven into everyday life,” Nature, vol. 603, pp.

585-586, 2022.

[37] P. Filip and P. Peer, “Characterization of Poly(Ethylene Oxide) Nanofibers—Mutual

Relations between Mean Diameter of Electrospun Nanofibers and Solution

Characteristics,” Processes, vol. 7, no. 12, p. 948, 2019.

[38] H. E. Schneider, J. Steuber, W. Du, M. Mortazavi and D. Bullock, “Polyethylene Oxide

Nanofiber Production by Electrospinning,” Journal of the Arkansas Academy of

Science, vol. 70, no. 1, pp. 211-, 2016.

Appendix A | 74

Appendix A

MATLAB code for initial speech recognition.

A.1 Main code:

%% Cleaning the cache
clc
clear
close all

% Openning and sorting files
filelist = dir("*.csv");
counterBegin = 0;
counterEnd = 1;
counter = 0;
fs = 10000;
numberofTrials = 1;
TrainingSetCounter = 1;
TestSetCounter =1;
ValicationSetCounter = 1;
TrainingSet = 0;

for i =[1,2,3,6,8,9,10,12,14,15,16,17,18,19] % size(filelist, 1)
 counter = counter +1
 name = filelist(i, 1).name;
 TF = isstrprop(name,'alpha');
 file = readmatrix(filelist(i, 1).name);
 % Finding the Angle from file name
 for k = 1:size(TF,2)
 numNull = 0;
 if TF(k) == 0
 Anglestr(k)= name(k);
 else
 break;
 end
 end
 if length(Anglestr)>3
 Angle = str2num(Anglestr(1:3));
 clear k;
 else
 Angle = str2num(Anglestr);
 clear k;
 end

 % Finiding the range and the peaks
 F = file(:,2);
 t = file(:,1);
 [maxPeak,maxLoc] = findpeaks(F,t,'MinPeakDistance',1,'Threshold',1e-5);
 [minPeak,minLoc] = findpeaks(-F,t,'MinPeakDistance',3.6);

 minPeak = -1 * minPeak;

 minCorr = minPeak(minPeak>100);
 maxCorr = maxPeak(maxPeak<1600);

 if size(minCorr,1) > 0
 for countOutMin=1:size(minCorr,1)
 outliermin = find(minPeak>100);
 minLoc(outliermin) = [];
 minPeak(minPeak>100) = [];
 end
 else
 minLoc;
 end

Appendix A | 75

 if size(maxCorr,1) > 0
 for countOutMax=1:size(maxCorr,1)
 outliermax = find(maxPeak<1600);
 maxLoc(outliermax) = [];
 maxPeak(maxPeak<1600) = [];
 end
 else
 maxLoc;
 end

 if minLoc(1) < maxLoc(1)
 minLoc(1) = [];
 minPeak(1) = [];
 else
 minPeak;
 end

 if size(minLoc,1) < size(maxLoc,1)
 maxLoc(end) = [];
 maxPeak(end) = [];
 else
 maxPeak;
 end
 clear countOutMax countOutMin minCorr maxCorr outliermin outliermax;

 data_start = find(t == maxLoc(1));

 % Universal Counter fror data
 counterBegin = counterEnd;
 counterEnd = counterEnd + size(file(data_start:end,1),1)-1;

 % Finding the trial starting point for segmentation
 SamplePoint = size(minPeak,1);

 Correction = ones(size(SamplePoint));
 Correction(1) = 0;

 % Spliting data into training, test and validation
 TrainingSet = TrainingSet + size(minLoc,1);

 % Filtering the Data
 Ch_Filtered(:,1) = bandpass(file(data_start:end,3),[95 1505],fs); % Channel 1
 Ch_Filtered(:,2) = bandpass(file(data_start:end,4),[95 1505],fs); % Channel 2
 Ch_Filtered(:,3) = bandpass(file(data_start:end,5),[95 1505],fs); % Channel 3
 Ch_Filtered(:,4) = bandpass(file(data_start:end,6),[95 1505],fs); % Channel 4

 % Making the training, testing and validating set
 for pointcount=1:size(minLoc)
 startPoint(pointcount,1) = find(t == maxLoc(pointcount))- data_start+1;
 endPoint(pointcount,1) = find(t == minLoc(pointcount))- data_start+1;
 end
 o = 1;
 for n = TrainingSetCounter:TrainingSet
 DataTraining(1, :) = Ch_Filtered(startPoint(o):endPoint(o),1);
 DataTraining(2, :) = Ch_Filtered(startPoint(o):endPoint(o),2); % Channel 2
 DataTraining(3, :) = Ch_Filtered(startPoint(o):endPoint(o),3); % Channel 3
 DataTraining(4, :) = Ch_Filtered(startPoint(o):endPoint(o),4); % Channel 4

Appendix A | 76

 DataTrainingTarget(1, n) = Angle;

 XtestPiezo(n,1)= {DataTraining};
 clear DataTraining;
 o = o+1;
 end
 TrainingSetCounter = TrainingSet+1;

 clear l Anglestr Ch_Filtered Angle n i m TF;

end

%%
for i =7 % size(filelist, 1)
 counter = counter +1
 name = filelist(i, 1).name;
 TF = isstrprop(name,'alpha');
 file = readmatrix(filelist(i, 1).name);
 % Finding the Angle from file name
 for k = 1:size(TF,2)
 numNull = 0;
 if TF(k) == 0
 Anglestr(k)= name(k);
 else
 break;
 end
 end
 Angle = str2num(Anglestr(1:3));
 clear k;

 % Finiding the range and the peaks
 F = file(:,2);
 t = file(:,1);
 [maxPeak,maxLoc] = findpeaks(F,t,'MinPeakDistance',2);
 [minPeak,minLoc] = findpeaks(-F,t,'MinPeakDistance',3.6);

 minPeak = -1 * minPeak;

 minCorr = minPeak(minPeak>10);
 maxCorr = maxPeak(maxPeak<490);

 if size(minCorr,1) > 0
 for countOutMin=1:size(minCorr,1)
 outliermin = find(minPeak>110);
 minLoc(outliermin) = [];
 minPeak(minPeak>110) = [];
 end
 else
 minLoc;
 end

 if size(maxCorr,1) > 0
 for countOutMax=1:size(maxCorr,1)
 outliermax = find(maxPeak<490);
 maxLoc(outliermax) = [];
 maxPeak(maxPeak<490) = [];

Appendix A | 77

 end
 else
 maxLoc;
 end

 if minLoc(1) < maxLoc(1)
 minLoc(1) = [];
 minPeak(1) = [];
 else
 minPeak;
 end

 if size(minLoc,1) < size(maxLoc,1)
 maxLoc(end) = [];
 maxPeak(end) = [];
 else
 maxPeak;
 end
 clear countOutMax countOutMin minCorr maxCorr outliermin outliermax;

 data_start = find(t == maxLoc(1));

 % Universal Counter fror data
 counterBegin = counterEnd;
 counterEnd = counterEnd + size(file(data_start:end,1),1)-1;

 % Finding the trial starting point for segmentation
 SamplePoint = size(minPeak,1);

 Correction = ones(size(SamplePoint));
 Correction(1) = 0;

 % Spliting data into training, test and validation
 TrainingSet = TrainingSet + size(minLoc,1);

 % Filtering the Data
 Ch_Filtered(:,1) = bandpass(file(data_start:end,3),[95 1505],fs); % Channel 1
 Ch_Filtered(:,2) = bandpass(file(data_start:end,4),[95 1505],fs); % Channel 2
 Ch_Filtered(:,3) = bandpass(file(data_start:end,5),[95 1505],fs); % Channel 3
 Ch_Filtered(:,4) = bandpass(file(data_start:end,6),[95 1505],fs); % Channel 4

 % Making the training, testing and validating set
 for pointcount=1:size(minLoc)
 startPoint(pointcount,1) = find(t == maxLoc(pointcount))- data_start+1;
 endPoint(pointcount,1) = find(t == minLoc(pointcount))- data_start+1;
 end
 o = 1;
 for n = TrainingSetCounter:TrainingSet

 DataTraining(1, :) = Ch_Filtered(startPoint(o):endPoint(o),1); % Channel 1
 DataTraining(2, :) = Ch_Filtered(startPoint(o):endPoint(o),2); % Channel 2
 DataTraining(3, :) = Ch_Filtered(startPoint(o):endPoint(o),3); % Channel 3
 DataTraining(4, :) = Ch_Filtered(startPoint(o):endPoint(o),4); % Channel 4

 DataTrainingTarget(1, n) = Angle;

 XtestPiezo(n,1)= {DataTraining};
 clear DataTraining;
 o = o+1;

Appendix A | 78

 end
 TrainingSetCounter = TrainingSet+1;

 clear l Anglestr Ch_Filtered Angle n i m TF;

end
%% 100 to 1500
for i =[4, 11] % size(filelist, 1)
 counter = counter +1
 name = filelist(i, 1).name;
 TF = isstrprop(name,'alpha');
 file = readmatrix(filelist(i, 1).name);
 % Finding the Angle from file name
 for k = 1:size(TF,2)
 numNull = 0;
 if TF(k) == 0
 Anglestr(k)= name(k);
 else
 break;
 end
 end
 Angle = str2num(Anglestr(1:3));
 clear k;

 % Finiding the range and the peaks
 F = file(:,2);
 t = file(:,1);
 [maxPeak,maxLoc] = findpeaks(F,t,'MinPeakDistance',1,'Threshold',1e-5);
 [minPeak,minLoc] = findpeaks(-F,t,'MinPeakDistance',3.6);

 minPeak = -1 * minPeak;

 minCorr = minPeak(minPeak>100);
 maxCorr = maxPeak(maxPeak<1500);

 if size(minCorr,1) > 0
 for countOutMin=1:size(minCorr,1)
 outliermin = find(minPeak>100);
 minLoc(outliermin) = [];
 minPeak(minPeak>100) = [];
 end
 else
 minLoc;
 end

 if size(maxCorr,1) > 0
 for countOutMax=1:size(maxCorr,1)
 outliermax = find(maxPeak<1500);
 maxLoc(outliermax) = [];
 maxPeak(maxPeak<1500) = [];
 end
 else
 maxLoc;
 end

 if maxLoc(1) < minLoc(1)
 maxLoc(1) = [];

Appendix A | 79

 maxPeak(1) = [];
 else
 maxPeak;
 end

 if size(maxLoc,1) < size(minLoc,1)
 minLoc(end) = [];
 minPeak(end) = [];
 else
 minPeak;
 end
 clear countOutMax countOutMin minCorr maxCorr outliermin outliermax;

 data_start = find(t == minLoc(1));

 % Universal Counter fror data
 counterBegin = counterEnd;
 counterEnd = counterEnd + size(file(data_start:end,1),1)-1;

 % Finding the trial starting point for segmentation
 SamplePoint = size(minPeak,1);

 Correction = ones(size(SamplePoint));
 Correction(1) = 0;

 % Spliting data into training, test and validation
 TrainingSet = TrainingSet + size(minLoc,1);

 % Filtering the Data
 Ch_Filtered(:,1) = bandpass(file(data_start:end,3),[95 1505],fs); % Channel 1
 Ch_Filtered(:,2) = bandpass(file(data_start:end,4),[95 1505],fs); % Channel 2
 Ch_Filtered(:,3) = bandpass(file(data_start:end,5),[95 1505],fs); % Channel 3
 Ch_Filtered(:,4) = bandpass(file(data_start:end,6),[95 1505],fs); % Channel 4

 % Making the training, testing and validating set
 for pointcount=1:size(minLoc)
 startPoint(pointcount,1) = find(t == minLoc(pointcount))- data_start+1;
 endPoint(pointcount,1) = find(t == maxLoc(pointcount))- data_start+1;
 end
 o = 1;
 for n = TrainingSetCounter:TrainingSet

 DataTraining(1, :) = Ch_Filtered(startPoint(o):endPoint(o),1); % Channel 1
 DataTraining(2, :) = Ch_Filtered(startPoint(o):endPoint(o),2); % Channel 2
 DataTraining(3, :) = Ch_Filtered(startPoint(o):endPoint(o),3); % Channel 3
 DataTraining(4, :) = Ch_Filtered(startPoint(o):endPoint(o),4); % Channel 4

 DataTrainingTarget(1, n) = Angle;

 XtestPiezo(n,1)= {DataTraining};
 clear DataTraining;
 o = o+1;
 end
 TrainingSetCounter = TrainingSet+1;

 clear l Anglestr Ch_Filtered Angle n i m TF;

end

Appendix A | 80

 minLoc(end) = [];
 minPeak(end) = [];
 else
 minPeak;
 end
 clear countOutMax countOutMin minCorr maxCorr outliermin outliermax;

 data_start = find(t == minLoc(1));

 % Universal Counter fror data
 counterBegin = counterEnd;
 counterEnd = counterEnd + size(file(data_start:end,1),1)-1;

 % Finding the trial starting point for segmentation
 SamplePoint = size(minPeak,1);

 Correction = ones(size(SamplePoint));
 Correction(1) = 0;

 % Spliting data into training, test and validation
 TrainingSet = TrainingSet + size(minLoc,1);

 % Filtering the Data
 Ch_Filtered(:,1) = bandpass(file(data_start:end,3),[95 1505],fs);
 Ch_Filtered(:,2) = bandpass(file(data_start:end,4),[95 1505],fs);
 Ch_Filtered(:,3) = bandpass(file(data_start:end,5),[95 1505],fs);
 Ch_Filtered(:,4) = bandpass(file(data_start:end,6),[95 1505],fs);

 % Making the training, testing and validating set
 for pointcount=1:size(minLoc)
 startPoint(pointcount,1) = find(t == minLoc(pointcount))- data_start+1;
 endPoint(pointcount,1) = find(t == maxLoc(pointcount))- data_start+1;
 end
 o = 1;
 for n = TrainingSetCounter:TrainingSet
 DataTraining(1, :) = Ch_Filtered(startPoint(o):endPoint(o),1); % Channel 1
 DataTraining(2, :) = Ch_Filtered(startPoint(o):endPoint(o),2); % Channel 2
 DataTraining(3, :) = Ch_Filtered(startPoint(o):endPoint(o),3); % Channel 3
 DataTraining(4, :) = Ch_Filtered(startPoint(o):endPoint(o),4); % Channel 4

 DataTrainingTarget(1, n) = Angle;

 XtestPiezo(n,1)= {DataTraining};
 clear DataTraining;
 o = o+1;
 end
 TrainingSetCounter = TrainingSet+1;

 clear l Anglestr Ch_Filtered Angle n i m TF;

end
YtestPiezo = categorical(DataTrainingTarget');
YtestPiezo = removecats(YtestPiezo);
save('TestingData1', 'XtestPiezo', 'YtestPiezo');

Appendix A | 81

A.2 Creating the images for CNN

function helperGenerateTFDfilesCombined(parentDir,dataDir,wav,truth)

[~,~,~] = mkdir(fullfile(parentDir,dataDir));
modTypes = unique(truth);

for idxM = 1:length(modTypes)
 modType = modTypes(idxM);
 [~,~,~] = mkdir(fullfile(parentDir,dataDir,char(modType)));
end

for idxW = 1:length(truth)
 sig1 = wav{idxW}(1,:);
 sig2 = wav{idxW}(2,:);
 sig3 = wav{idxW}(3,:);
 sig4 = wav{idxW}(4,:);

 nfft = 2^nextpow2(length(sig1(1,:)));
 f = (0:(nfft/2-1))/nfft*10000;

 Z1 = fft(sig1(1,:),nfft);
 Z2 = fft(sig2(1,:),nfft);
 Z3 = fft(sig3(1,:),nfft);
 Z4 = fft(sig4(1,:),nfft);

 amp1 = abs(Z1(1:4966))./max(abs(Z1));
 amp2 = abs(Z2(1:4966))./max(abs(Z2));
 amp3 = abs(Z3(1:4966))./max(abs(Z3));
 amp4 = abs(Z4(1:4966))./max(abs(Z4));

 % Finding FFT peaks
 % Channel 1
 [maxPeak1,maxLoc1] =

findpeaks(amp1,f(1:4966),'MinPeakDistance',3,'Threshold',1e-3);
 % Channel 2
 [maxPeak2,maxLoc2] =

findpeaks(amp2,f(1:4966),'MinPeakDistance',3,'Threshold',1e-3);
 % Channel 3
 [maxPeak3,maxLoc3] =

findpeaks(amp3,f(1:4966),'MinPeakDistance',3,'Threshold',1e-3);
 % Channel 4
 [maxPeak4,maxLoc4] =

findpeaks(amp4,f(1:4966),'MinPeakDistance',3,'Threshold',1e-3);

 % Creating scatter diagram using FFT data
 s1 = scatter(maxLoc1,maxPeak1,'k','filled');
 TFD1 = getframe;

 s2 = scatter(maxLoc2,maxPeak2,'k','filled');
 TFD2 = getframe;

 s3 = scatter(maxLoc3,maxPeak3,'k','filled');
 TFD3 = getframe;

 s4 = scatter(maxLoc4,maxPeak4,'k','filled');
 TFD4 = getframe;

Appendix A | 82

 % Combining the 4 images into 1
 multi1 = cat(2,TFD1.cdata,TFD2.cdata);
 multi2 = cat(2,TFD3.cdata,TFD4.cdata);
 multi = cat(1,multi1,multi2);

 TFD = imresize(multi,[227 227]);
 TFD = rescale(TFD);
 TFD = imcomplement(TFD);

 modType = truth(idxW);

 imwrite(TFD,fullfile(parentDir,dataDir,char(modType),sprintf('%d.png',idxW)))

end
end

A.3 creating temp files for Training, Testing and Validation the neural network

clc
clear

%% Create Directory Training sets
load('TestingData1.mat');

XTrain = XtestPiezo;
YTrain = YtestPiezo;

parentDir = tempdir;
dataDir = 'TFDDatabaseFFT1';

%helperGenerateTFDfilesCombined(parentDir,dataDir,XTrain,YTrain,10e5)

helperFFTGenerateTFDfilesCombined(parentDir,dataDir,XTrain,YTrain)

%% Create Image Store database

folder = fullfile(parentDir,dataDir,{'0','30','60','90', '120', '150',...
 '180','210','240','270', '300', '330'});
imds = imageDatastore(folder,...

'FileExtensions','.png','LabelSource','foldernames','ReadFcn',@readTFDForSqueezeNe
t);

[imdsTrain,imdsTest,imdsValidation] = splitEachLabel(imds,0.8,0.1);

Appendix B: | 83

Appendix B:

Arduino multichannel data collection code.

GitHub link:

https://github.com/abmoineddini/MPhil_sound_localisation/tree/main/Hardware_co

ntrollers/analog_data_collection

/* Arduino Mega Data Collection

 * by: Amirbahador Moineddini

 * date: November 10th, 2021

 * V1 Data collection

/* Pin Setup

 * A5 Channel 1

 * A8 Channel 2

 * A12 Channel 3

 * A14 Channel 4

*/

void setup() {

 // put your setup code here, to run once:

 Serial.begin(2000000);

 pinMode(A5, INPUT); // Channel 1

 pinMode(A8, INPUT); // Channel 2

 pinMode(A12, INPUT); // Channel 3

 pinMode(A14, INPUT); // Channel 4

}

void loop() {

 // put your main code here, to run repeatedly:

 Serial.print(analogRead(A5));

 Serial.print(",");

 Serial.print(analogRead(A8));

 Serial.print(",");

 Serial.print(analogRead(A12));

 Serial.print(",");

 Serial.println(analogRead(A12));

}

https://github.com/abmoineddini/MPhil_sound_localisation/tree/main/Hardware_controllers/analog_data_collection
https://github.com/abmoineddini/MPhil_sound_localisation/tree/main/Hardware_controllers/analog_data_collection

Appendix C | 84

Appendix C

Python codes for data collection, preprocessing the data, plotting figures and training,

testing and validation of the Speech Recognition.

GitHub link: https://github.com/abmoineddini/MPhil_speech_recognition

C.1. main.py code:

from DataCollector import *

import matplotlib.pyplot as plt

import os

import pandas as pd

from os import listdir

from DataCollector import playAudioFile

import winsound

import glob

from PreprocessorSpeechrecognition import figure_maker, Classifier,

PreprocessingMeth2

from csv import writer

dataCollection = True

CheckPort = input("Would you like to Start collecting Data : ")

if CheckPort == "y" or CheckPort == "Y" or CheckPort == "Yes" or CheckPort ==

"yes":

 COMPort = input("Please Enter COM Port: ")

 print(COMPort)

 CheckPort = input("Is that Correct?")

 Method = input("Continious or Individual Collections? ")

 while dataCollection:

 if Method == 1:

 AudioFiles = [f for f in listdir("AudioFiles/")]

 for i in AudioFiles:

 Name = i

 print(Name)

 print("here")

 Period = 30

 print("Startting to Collect Data for: ", Period, '(s)')

 CheckPeriod = input("Is that Correct?")

 if CheckPeriod == "n" or CheckPeriod == "N" or CheckPeriod ==

"no" or CheckPeriod == "No":

 Period = input("Please Enter the Desired Time Period: ")

 print(Period)

 print("Starting to Collect Data for: ", Period, '(s)')

 CheckName = input("Is that Correct?")

 AudioFileName = "AudioFiles/" + Name

 winsound.PlaySound(AudioFileName, winsound.SND_ASYNC |

winsound.SND_ALIAS)

 CSVName = Name.replace('.wav', '')

 NameTest = True

 TrainingDataDirectory = [f for f in listdir("TrainingData")]

https://github.com/abmoineddini/MPhil_speech_recognition

Appendix C | 85

 testNum = 1

 while NameTest:

 CSVNameCheck = CSVName + '-Test'+ str(testNum) + '.csv'

 if CSVNameCheck in TrainingDataDirectory:

 print("File Already exist, Trying another name.")

 testNum = testNum+1

 else:

 CSVName = CSVName + '-Test'+ str(testNum)

 NameTest = False

 print(CSVName)

 [Channel1, Time] = collectData(COMPort, Period, CSVName)

 plt.plot(Time, Channel1)

 plt.show()

 winsound.PlaySound(None, winsound.SND_PURGE)

 DataCheck = input("Are you happy with the Data? ")

 while DataCheck == "n" or DataCheck == "N" or DataCheck ==

"no" or DataCheck == "No":

 Nametoremove = "TrainingData/" + CSVName + ".csv"

 os.remove(Nametoremove)

 winsound.PlaySound(AudioFileName, winsound.SND_ASYNC |

winsound.SND_ALIAS)

 [Channel1, Time] = collectData(COMPort, Period, CSVName)

 plt.plot(Time, Channel1)

 plt.show()

 winsound.PlaySound(None, winsound.SND_PURGE)

 DataCheck = input("Are you happy with the Data? ")

 else:

 AudioFiles = [f for f in listdir("AudioOriginal")]

 for i in AudioFiles:

 Name = i

 print(Name)

 print("here")

 AudioFileName = "AudioOriginal/" + Name

 CSVName = Name.replace('.wav', '')

 NameTest = True

 TrainingDataDirectory = [f for f in listdir("TrainingData")]

 testNum = 1

 while NameTest:

 CSVNameCheck = CSVName + '-Test'+ str(testNum) + '.csv'

 if CSVNameCheck in TrainingDataDirectory:

 print("File Already exist, Trying another name.")

 testNum = testNum+1

 else:

 CSVName = CSVName + '-Test'+ str(testNum)

Appendix C | 86

 NameTest = False

 print(CSVName)

 [Channel1, Time] = collectDataMet2(COMPort, CSVName,

AudioFileName)

 plt.plot(Time, Channel1)

 plt.show()

 winsound.PlaySound(None, winsound.SND_PURGE)

 DataCheck = 'y'

 while DataCheck == "n" or DataCheck == "N" or DataCheck ==

"no" or DataCheck == "No":

 Nametoremove = "TrainingData/" + CSVName + ".csv"

 os.remove(Nametoremove)

 winsound.PlaySound(AudioFileName, winsound.SND_ASYNC |

winsound.SND_ALIAS)

 [Channel1, Time] = collectDataMet2(COMPort, CSVName,

AudioFileName)

 plt.plot(Time, Channel1)

 plt.show()

 winsound.PlaySound(None, winsound.SND_PURGE)

 DataCheck = input("Are you happy with the Data? ")

 ToContinue = 'y'

 if ToContinue == "n" or ToContinue == "N" or ToContinue == "No" or

ToContinue == "no":

 dataCollection = False

StartPreprocessing = input("Should I Start the Preprocessing? ")

if StartPreprocessing == "y" or StartPreprocessing == "Y" or

StartPreprocessing == "Yes" or StartPreprocessing == "yes":

 if os.path.isdir("Figure/Training"):

 print("Adding to Figure Directory")

 else:

 os.mkdir("Figure/Training")

 os.mkdir("Figure/Testing")

 csv_files = glob.glob(os.path.join("TrainingData/", "*.csv"))

 for x in csv_files[0:]:

 dataFileName = x

 print(x)

 NAMEunprocessed = x.replace(".csv", "")

 NAMEunprocessed = NAMEunprocessed.split("\\")

 NAMEunprocessed = NAMEunprocessed[1]

 NAMEunprocessed = NAMEunprocessed.split("-")

 x = NAMEunprocessed[0]

 x = x[2:len(x)]

Appendix C | 87

 check = 0

 if os.path.isfile("ProcessedData.csv"):

 print("Processed data collector Already exists")

 PDCL = pd.read_csv("ProcessedData.csv")

 print(PDCL)

 ProcessedDataChecklist = PDCL.to_numpy()

 ProcessedDataChecklist = ProcessedDataChecklist[:]

 if dataFileName in ProcessedDataChecklist:

 check = 1

 continue

 if check == 0:

 [FolderSTFTTraining, FolderSTFTTesting] = Classifier(x)

 df = pd.read_csv(dataFileName)

 data = df.to_numpy()

 print(dataFileName)

 if len(data)>40000:

 figure_maker(data, FolderSTFTTraining, FolderSTFTTesting,

dataFileName)

 else:

 PreprocessingMeth2(data, FolderSTFTTraining,

FolderSTFTTesting, dataFileName)

 if os.path.isfile("ProcessedData.csv"):

 with open("ProcessedData.csv", 'a+' ,newline='') as f_object:

 writer_object = writer(f_object)

 writer_object.writerow([dataFileName])

 f_object.close()

 else:

 dict = {"File Name": [dataFileName]}

 df = pd.DataFrame(dict)

 df.to_csv("ProcessedData.csv")

print("Finished Creating Relevant Files")

StartTraining = input("Should I Start the Training? ")

while StartTraining == "n" or StartTraining == "N" or StartTraining == "no" or

StartTraining == "No":

 StartTraining = input("Should I Start the Training? ")

trainingSTFT = "Figure/Training"

testingSTFT = "Figure/Testing"

Appendix C | 88

from MachineLearning import *

img_size = 64

STFT Training

[STFTModel, acc, val_acc, loss, val_loss]= CNN_Training(trainingSTFT,

testingSTFT, 150, LearningRate=0.0001, dataType="STFT", img_size=img_size)

STFTModel.save("VoiceRecCNN")

for i in range(len(acc)):

 FileAdd = [acc[i], val_acc[i], loss[i], val_loss[i]]

 with open("AccuracyHistory.csv", 'a+', newline='') as f_object:

 writer_object = writer(f_object)

 writer_object.writerow(FileAdd)

 f_object.close()

 FileAdd = []

Testinig Peformance

print("STFT CNN Test result")

[y_val, predictions] = TestingNetwrok(STFTModel, testingSTFT, img_size)

for i in range(len(y_val)):

 FileAdd = [y_val[i], predictions[i]]

 with open("TestingValidationCNN.csv", 'a+', newline='') as f_object:

 writer_object = writer(f_object)

 writer_object.writerow(FileAdd)

 f_object.close()

 FileAdd = []

STFTmodelName = 'STFTModel.yaml'

Save_CNN(STFTModel, Name=STFTmodelName)

Appendix C | 89

C.2. DataCollector.py

import serial

import winsound

import pandas as pd

def playAudioFile(Name):

 winsound.PlaySound(Name, winsound.SND_ASYNC | winsound.SND_ALIAS)

def collectData(COMPort, Period, Name):

 arduino = serial.Serial(COMPort , 2000000, timeout=1)

 Channel1 = []

 Time = []

 #def animate(xVal, yVal):

 period = int(Period)

 period = int(period*4000/3.5)

 for i in range(period):

 line = arduino.readline()

 if line != (''):

 print(line)

 try:

 string = line.decode()

 except:

 print("ignored")

 else:

 numS = string.replace("\r\n", '')

 if numS.split(" ")[0].isdigit():

 Channel1.append(int(numS.split(" ")[0]))

 Time.append(i/4000/3.5)

 # print(i)

 arduino.close()

 import pandas as pd

 dict = {'Time (s)' : Time, 'Channel 1 (V)': Channel1}#,

 df = pd.DataFrame(dict)

 dataBaseName = "TrainingData/" + Name + ".csv"

 df.to_csv(dataBaseName)

 return [Channel1, Time]

import time

def collectDataMet2(COMPort, Name, AudioFileName):

 Voltage = []

 Time = []

 dataCollection = False

 dataAvailability = True

Appendix C | 90

 sR = 4000/3.5

 i = 0

 j = 0

 arduino = serial.Serial(COMPort , 2000000, timeout=1)

 line = arduino.readline()

 time.sleep(1)

 winsound.PlaySound(AudioFileName, winsound.SND_ASYNC | winsound.SND_ALIAS)

 while dataAvailability:

 line = arduino.readline()

 if line != (''):

 print("start collecting")

 print(line)

 try:

 string = line.decode()

 except:

 print("ignored")

 else:

 numS = string.replace("\r\n", '')

 numS = numS.split(" ")

 numS = numS[0]

 if numS.isdigit():

 print(int(numS))

 if int(numS) < 300:

 dataCollection = False

 else:

 print("Trigger")

 dataCollection = True

 Voltage.append(int(numS))

 Time.append(i / sR)

 i = i + 1

 j = 5000/2

 while dataCollection:

 line = arduino.readline()

 print(line)

 print("collecting Data")

 print(line)

 if line != (''):

 try:

 string = line.decode()

 except:

 print("ignored")

 else:

 numS = string.replace("\r\n", '')

 numS= numS.split(" ")

 numS = numS[0]

 print(numS)

 if numS.isdigit():

 if int(numS) < 300:

Appendix C | 91

 j = j - 1

 else:

 pass

 Voltage.append(int(numS))

 print(numS)

 Time.append(i / sR)

 i = i + 1

 if j < 1:

 dataCollection = False

 dataAvailability = False

 arduino.close()

 dict = {'Time (s)': Time, 'Channel 1 (V)': Voltage}

 df = pd.DataFrame(dict)

 dataBaseName = "TrainingData/" + Name + ".csv"

 df.to_csv(dataBaseName)

 print(dataBaseName)

 return Voltage, Time

Appendix C | 92

C.3. preprocessingSpeechrecognition.py

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import scipy.signal as sig

from SectionCutting import *

import os

from os import listdir

from os.path import isdir

from PIL import Image

def figure_maker(data, FolderSTFTTraining, FolderSTFTTesting, FileName):

 time = data[75:len(data)-1, 1]

 voltage = data[75:len(data)-1, 2]

 Fs = 4000

 detenV = sig.detrend(voltage)

 filter = sig.butter(2, [95, 1500], 'bandpass', fs=4000, output='sos')

 corrVoltage = sig.sosfilt(filter, detenV)

 corrVoltage = (corrVoltage*5)/1023

 TrainingDirectory = [f for f in listdir(FolderSTFTTraining)]

 TestDirectory = [f for f in listdir(FolderSTFTTesting)]

 countTrain = int(len(TrainingDirectory))

 countTest = int(len(TestDirectory))

 maxV = max(corrVoltage)

 normV = corrVoltage/maxV

 seperationPoints = SectionCutting(normV, time, FileName)

 N = len(seperationPoints)

 Arr = np.arange(N)

 np.random.shuffle(Arr)

 Training = Arr[:round(N*0.8)]

 for i in range(1,N-1):

 Vshow = normV[seperationPoints[i]:seperationPoints[i+1]]

 fig0 = plt.figure()

 ax0 = plt.Axes(fig0, [0., 0., 1., 1.])

 plt.style.use('dark_background')

 plt.scatter(time[seperationPoints[i]:seperationPoints[i+1]], Vshow,

c=abs(Vshow*Vshow), s=abs(Vshow))

 plt.gray()

 plt.axis('off')

 ax0.set_axis_off()

 plt.tight_layout()

 plt.show()

Appendix C | 93

 fig0.savefig('ScattTestingFigure.png', bbox_inches='tight',

pad_inches=0)

 f1, t1, Zxx1 = sig.stft(Vshow, Fs, nperseg=1000)

 fig1 = plt.figure(frameon=False)

 ax1 = plt.Axes(fig1, [0., 0., 1., 1.])

 plt.pcolormesh(t1, f1, np.abs(Zxx1), shading='gouraud', cmap='gray')

 plt.axis('off')

 plt.ylim([90, 500])

 ax1.set_axis_off()

 plt.tight_layout()

 plt.show()

 fig1.savefig('STFTTestingFigure.png', bbox_inches='tight',

pad_inches=0)

 def ProcessIm(Im1, Im2, fileName):

 image1 = Image.open(Im1)

 image1 = image1.rotate(90)

 image2 = Image.open(Im2)

 image1_size = image1.size

 new_image = Image.new('RGB', (2 * image1_size[0], image1_size[1]),

(250, 250, 250))

 new_image.paste(image1, (0, 0))

 new_image.paste(image2, (image1_size[0], 0))

 new_image.save(fileName)

 if i in Training:

 nameTrain = str(countTrain)

 countTrain += 1

 FileName = FolderSTFTTraining + "/" + nameTrain + '.png'

 print(FileName)

 ProcessIm('STFTTestingFigure.png', 'ScattTestingFigure.png',

FileName)

 else:

 nameTest = str(countTest)

 countTest += 1

 FileName = FolderSTFTTesting + "/" + nameTest + '.png'

 print(FileName)

 ProcessIm('STFTTestingFigure.png', 'ScattTestingFigure.png',

FileName)

 os.remove("STFTTestingFigure.png")

 os.remove("ScattTestingFigure.png")

def Classifier(x):

 classification = x

Appendix C | 94

 FolderSTFTTraining = "Figure/Training/"+ classification

 FolderSTFTTesting = "Figure/Testing/"+ classification

 if isdir(FolderSTFTTraining):

 print("Folders Already Excits!")

 else:

 os.mkdir(FolderSTFTTraining)

 os.mkdir(FolderSTFTTesting)

 print("Folder for", classification, "made!")

 return [FolderSTFTTraining, FolderSTFTTesting]

def PreprocessingMeth2(data, FolderSTFTTraining, FolderSTFTTesting,

dataFileName):

 time = data[0:len(data)-4000, 1]

 voltage = data[0:len(data)-4000, 2]

 Fs = 4000

 TrainingDirectory = [f for f in listdir(FolderSTFTTraining)]

 TestDirectory = [f for f in listdir(FolderSTFTTesting)]

 detenV = sig.detrend(voltage)

 filter = sig.butter(2, [95, 1500], 'bandpass', fs=4000, output='sos')

 corrVoltage = sig.sosfilt(filter, detenV)

 corrVoltage = (corrVoltage*5)/1023

 maxV = max(corrVoltage)

 normV = corrVoltage/maxV

 countTrain = int(len(TrainingDirectory))

 countTest = int(len(TestDirectory))

 fig0 = plt.figure()

 ax0 = plt.Axes(fig0, [0., 0., 1., 1.])

 plt.style.use('dark_background')

 plt.scatter(time, normV, c=abs(normV * normV), s=abs(normV))

 plt.gray()

 plt.axis('off')

 ax0.set_axis_off()

 plt.tight_layout()

 plt.show()

 fig0.savefig('ScattTestingFigure.png', bbox_inches='tight', pad_inches=0)

 f1, t1, Zxx1 = sig.stft(normV, Fs, nperseg=1000)

 fig1 = plt.figure(frameon=False)

 ax1 = plt.Axes(fig1, [0., 0., 1., 1.])

 plt.pcolormesh(t1, f1, np.abs(Zxx1), shading='gouraud', cmap='gray')

 plt.axis('off')

 plt.ylim([90, 500])

Appendix C | 95

 ax1.set_axis_off()

 plt.tight_layout()

 plt.show()

 fig1.savefig('STFTTestingFigure.png', bbox_inches='tight', pad_inches=0)

 Training = [1, 3, 4]

 def ProcessIm(Im1, Im2, fileName):

 image1 = Image.open(Im1)

 image1 = image1.rotate(90)

 image2 = Image.open(Im2)

 image1_size = image1.size

 new_image = Image.new('RGB', (2 * image1_size[0], image1_size[1]),

(250, 250, 250))

 new_image.paste(image1, (0, 0))

 new_image.paste(image2, (image1_size[0], 0))

 new_image.save(fileName)

 i = randint(1, 4)

 if i in Training:

 nameTrain = str(countTrain)

 countTrain += 1

 FileName = FolderSTFTTraining + "/" + nameTrain + '.png'

 print(FileName)

 ProcessIm('STFTTestingFigure.png', 'ScattTestingFigure.png', FileName)

 else:

 nameTest = str(countTest)

 countTest += 1

 FileName = FolderSTFTTesting + "/" + nameTest + '.png'

 print(FileName)

 ProcessIm('STFTTestingFigure.png', 'ScattTestingFigure.png', FileName)

 os.remove("STFTTestingFigure.png")

 os.remove("ScattTestingFigure.png")

Appendix C | 96

C.4. SectionCutting.py

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

import scipy.signal as sig

from random import randint

def SectionCutting(V, t, FileName):

 seperation = []

 seperation.append(0)

 time = t

 voltage = V

 uplowBoundNull = 0.1

 perofMaxVal = 0.7

 binSize = 100

 perNullDen = 0.6

 perMaxDen = 0.7

 t = time[0: 70000]

 fderenV = V[0: 70000]

 maxVal = max(fderenV)

 Nullpeaks, _ = sig.find_peaks(fderenV, height=(-uplowBoundNull,

uplowBoundNull))

 # smallPeaks, _ = sig.find_peaks(fderenV, distance= 4000, height=(0.01,

0.05))

 peaks, _ = sig.find_peaks(fderenV, height=perofMaxVal*maxVal)

 f, (a0, a1, a2) = plt.subplots(3, 1, gridspec_kw={'height_ratios':

[10,3,3]})

 #plt.subplot(3, 1, 1)

 a0.plot(t, fderenV, linewidth=0.1, label="Signal")

 a0.scatter(t[Nullpeaks], fderenV[Nullpeaks], color='red', label="Low

amplitude peaks")

 a0.scatter(t[peaks], fderenV[peaks], color='green', label="Large amplitude

peak")

 a0.set_ylabel('Voltage (V)', fontsize=20)

 a0.set_xlabel('Time (s)', fontsize=20)

 a0.xaxis.tick_top()

 a0.xaxis.set_label_position('top')

 a0.legend(loc='upper right')

 a0.set_xlim([0, 17.5])

Appendix C | 97

 NullpeakDensity, NullpeakRange, _ = a1.hist(Nullpeaks, bins=binSize,

facecolor='r', alpha=1, edgecolor='k', linewidth=1)

 a1.set_title('low amplitude Peak Distribution Density', fontsize=20)

 a1.set_xticks([])

 a1.set_xlim([0, 70000])

 peakDensity, peakRange, _ = a2.hist(peaks, bins=binSize, facecolor='g',

alpha=1, edgecolor='k', linewidth=1)

 a2.set_title('Signal Peak Distribution Density', fontsize=20)

 f.text(-0.025, 0.3, 'Density', va='center', rotation='vertical',

fontsize=20)

 a2.set_xticks([])

 a2.set_xlim([0, 70000])

 plt.rc('font', family='Helvetica')

 plt.subplots_adjust(left=0.1,

 bottom=0.1,

 right=0.9,

 top=0.9,

 wspace=0,

 hspace=0.6)

 f.savefig('Figures/DataDistribtion.png', bbox_inches='tight',

pad_inches=0.25)

 plt.show()

 NullmaxDensity = max(NullpeakDensity)

 maxDensity = max(peakDensity)

 interestingNullPeakDis = []

 interestingPeakDis = []

 for i in range(len(peakDensity)):

 if NullpeakDensity[i]>= perNullDen* NullmaxDensity:

 interestingNullPeakDis.append(i)

 for i in range(len(peakDensity)):

 if peakDensity[i]>= perMaxDen*maxDensity:

 interestingPeakDis.append(i)

 for i in range(len(interestingNullPeakDis)):

 if interestingNullPeakDis[i] in interestingPeakDis:

 interestingNullPeakDis[i] = ''

 chekcer = True

 while chekcer:

 if '' in interestingNullPeakDis:

 interestingNullPeakDis.remove('')

 else:

 chekcer = False

Appendix C | 98

 NullpeakRange = np.insert(NullpeakRange, 0, 0)

 for i in range(len(interestingNullPeakDis)):

 place = interestingNullPeakDis[i]+2

 seperation.append(int((NullpeakRange[place])))

 for i in range(5):

 for i in range(0,len(seperation)-1):

 if seperation[i]+3000 >= seperation[i+1]:

 NewSep = (seperation[i] + seperation[i+1])/2 - randint(50,

500)

 seperation[i] = ''

 seperation[i+1] = int(NewSep)

 chekcer = True

 while chekcer:

 if '' in seperation:

 seperation.remove('')

 else:

 chekcer = False

 from mutagen.wave import WAVE

 fileName = FileName.replace("TrainingData\\", '')

 AudioFileName = fileName.split('-')

 AudioFileName = "AudioOriginal/"+AudioFileName[0]+'.wav'

 audio = WAVE(AudioFileName)

 audio_info = audio.info

 length = int(audio_info.length)

 for i in range(0,len(seperation)-1):

 if seperation[i] + length*4000*0.7 >= seperation[i + 1]:

 seperation[i+1] = 0

 chekcer = True

 while chekcer:

 if 0 in seperation:

 seperation.remove(0)

 else:

 chekcer = False

 fig1 = plt.figure()

 plt.plot(t, fderenV, linewidth=0.1, label="Signal")

 plt.scatter(t[seperation], fderenV[seperation], color='red', label =

"Seperation Points")

 plt.rc('font', family='Helvetica')

 plt.xlabel('Time (s)', fontsize=20)

 plt.ylabel('Voltage (V)', fontsize=20)

 plt.xlim([0,17.5])

Appendix C | 99

 fig1.savefig('Figures/SectionedPoints.png', bbox_inches='tight',

pad_inches=0.25)

 plt.show()

 displacemetData = 750

 whileChecker = True

 while whileChecker:

 if seperation[len(seperation)-1]+70000<=len(voltage):

 #print("old Seperation : ",seperation[len(seperation) - 1])

 t = time[seperation[len(seperation)-1]-displacemetData:

seperation[len(seperation)-1]+80000]

 fderenV = voltage[seperation[len(seperation)-1]-displacemetData:

seperation[len(seperation)-1]+80000]

 maxVal = max(fderenV)

 NewSection = []

 Nullpeaks, _ = sig.find_peaks(fderenV, height=(-uplowBoundNull,

uplowBoundNull))

 peaks, _ = sig.find_peaks(fderenV, height=perofMaxVal * maxVal)

 plt.plot(t, fderenV, linewidth=0.05)

 plt.scatter(t[Nullpeaks], fderenV[Nullpeaks], color='red')

 plt.scatter(t[peaks], fderenV[peaks], color='green')

 NullpeakDensity, NullpeakRange, _ = plt.hist(Nullpeaks,

bins=binSize, facecolor='r', alpha=1, edgecolor='k', linewidth=1)

 peakDensity, peakRange, _ = plt.hist(peaks, bins=binSize,

facecolor='g', alpha=1, edgecolor='k', linewidth=1)

 plt.close()

 NullmaxDensity = max(NullpeakDensity)

 maxDensity = max(peakDensity)

 interestingNullPeakDis = []

 interestingPeakDis = []

 for i in range(len(peakDensity)):

 if NullpeakDensity[i] >= perNullDen * NullmaxDensity:

 interestingNullPeakDis.append(i)

 for i in range(len(peakDensity)):

 if peakDensity[i] >= perMaxDen * maxDensity:

 interestingPeakDis.append(i)

 for i in range(len(interestingNullPeakDis)):

 if interestingNullPeakDis[i] in interestingPeakDis:

Appendix C | 100

 interestingNullPeakDis[i] = ''

 chekcer = True

 while chekcer:

 if '' in interestingNullPeakDis:

 interestingNullPeakDis.remove('')

 else:

 chekcer = False

 NullpeakRange = np.insert(NullpeakRange, 0, 0)

 for i in range(len(interestingNullPeakDis)):

 place = interestingNullPeakDis[i] + 2

 NewSection.append(int((NullpeakRange[place])))

 for j in range(10):

 for i in range(len(NewSection) - 1):

 if NewSection[i] + length * 4000*0.7 >= NewSection[i + 1]

and NewSection[i] + length * 4000*0.7 <= NewSection[i + 1]:

 NewSection[i + 1] = 0

 chekcer = True

 while chekcer:

 if 0 in NewSection:

 NewSection.remove(0)

 else:

 chekcer = False

 for j in range(10):

 for i in range(0, len(NewSection) - 1):

 if NewSection[i] + 2000 >= NewSection[i + 1]:

 NewSep = (NewSection[i] + NewSection[i + 1]) / 2 -

randint(50, 100)

 NewSection[i] = ''

 NewSection[i + 1] = int(NewSep)

 chekcer = True

 while chekcer:

 if '' in NewSection:

 NewSection.remove('')

 else:

 chekcer = False

 for i in range(2):

 for i in range(len(NewSection) - 1):

 if NewSection[i] + length * 4000*0.7 >= NewSection[i + 1]:

 NewSection[i + 1] = 0

 chekcer = True

Appendix C | 101

 while chekcer:

 if 0 in NewSection:

 NewSection.remove(0)

 else:

 chekcer = False

 plt.plot(t, fderenV, linewidth=0.05)

 plt.scatter(t[NewSection], fderenV[NewSection], color='red')

 plt.show()

 previousSep = seperation[len(seperation) - 1]

 for i in range(1,len(NewSection)):

 seperation.append(NewSection[i]+previousSep-displacemetData)

 else:

 whileChecker = False

 return(seperation)

Appendix C | 102

C.5. MachineLearning.py

import matplotlib.pyplot as plt

import seaborn as sns

import keras

from keras.models import Sequential

from keras.layers import Dense, Conv2D , MaxPool2D , Flatten , Dropout

from keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras.optimizers import Adam

from Labeler_Data import get_data

from sklearn.metrics import classification_report,confusion_matrix

from keras.utils.vis_utils import plot_model

import pydot

import tensorflow as tf

import numpy as np

def CNN_Training(folderTraining, folderTesting, ep, LearningRate, dataType,

img_size):

 #img_size = 32

 trainData = get_data(folderTraining, img_size)

 x_train = []

 y_train = []

 for feature, label in trainData:

 x_train.append(feature)

 y_train.append(label)

 # Normalize the data

 x_train = np.array(x_train) / 255

 x_train.reshape(-1, img_size, img_size, 1)

 y_train = np.array(y_train)

 testData = get_data(folderTesting, img_size)

 x_val = []

 y_val = []

 for feature, label in testData:

 x_val.append(feature)

 y_val.append(label)

 x_val = np.array(x_val) / 255

 x_val.reshape(-1, img_size, img_size, 1)

 y_val = np.array(y_val)

Appendix C | 103

 CAT = ['Or_To_Take_Arms', 'That_Is_The_Question', 'To_be_or_not_to_be',

'To_die', 'To_Sleep', 'Whether']

 num_labels = len(CAT)

 datagen = ImageDataGenerator(

 featurewise_center=False, # set input mean to 0 over the dataset

 samplewise_center=False, # set each sample mean to 0

 featurewise_std_normalization=False, # divide inputs by std of

the dataset

 samplewise_std_normalization=False, # divide each input by its

std

 zca_whitening=False, # apply ZCA whitening

 rotation_range = 0, # randomly rotate images in the range

(degrees, 0 to 180)

 zoom_range = 0.3, # Randomly zoom image

 width_shift_range=0.2, # randomly shift images horizontally

(fraction of total width)

 height_shift_range=False, # randomly shift images vertically

(fraction of total height)

 horizontal_flip = False, # randomly flip images

 vertical_flip=False) # randomly flip images

 datagen.fit(x_train)

 model = Sequential()

 model.add(Conv2D(32, 3,padding="same", activation="relu",

input_shape=x_train.shape[1:]))

 model.add(MaxPool2D())

 # model.add(Conv2D(64, 3, padding="same", activation="relu"))

 # model.add(MaxPool2D())

 model.add(Conv2D(64, 3, padding="same", activation="relu"))

 model.add(MaxPool2D())

 model.add(Dropout(0.25))

 model.add(Flatten())

 model.add(Dense(128,activation="relu"))

 #model.add()

 model.add(Dropout(0.5))

 model.add(Dense(num_labels))

 model.summary()

 opt = Adam(lr=LearningRate)

Appendix C | 104

 model.compile(optimizer = opt , loss =

tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) , metrics =

['accuracy'])

 history = model.fit(x_train,y_train,epochs = ep , validation_data =

(x_val, y_val))

 acc = history.history['accuracy']

 val_acc = history.history['val_accuracy']

 loss = history.history['loss']

 val_loss = history.history['val_loss']

 epochs_range = range(ep)

 fig = plt.figure(figsize=(15, 15))

 plt.subplot(2, 2, 1)

 plt.plot(epochs_range, acc, label='Training Accuracy')

 plt.plot(epochs_range, val_acc, label='Validation Accuracy')

 plt.legend(loc='lower right')

 plt.title(dataType + ' Training and Validation Accuracy')

 plt.subplot(2, 2, 2)

 plt.plot(epochs_range, loss, label='Training Loss')

 plt.plot(epochs_range, val_loss, label='Validation Loss')

 plt.legend(loc='upper right')

 plt.title(dataType + ' Training and Validation Loss')

 plt.show()

 Name = dataType+"AccurracyandErrorPlot.png"

 fig.savefig(Name, transparent=True, bbox_inches='tight')

 model.summary()

 #plot_model(model, to_file='model_plot.png', show_shapes=True,

show_layer_names=True)

 return model, acc, val_acc, loss, val_loss

def TestingNetwrok(model, folderTesting, img_size):

 # img_size = 32

 testData = get_data(folderTesting, img_size)

 x_val = []

 y_val = []

 for feature, label in testData:

 x_val.append(feature)

 y_val.append(label)

 x_val = np.array(x_val) / 255

Appendix C | 105

 x_val.reshape(-1, img_size, img_size, 1)

 y_val = np.array(y_val)

 CAT = ['A', 'B', 'C', 'D', 'E', 'F']

 predictions = model.predict(x_val)

 predictions = np.argmax(predictions,axis=1)

 print(classification_report(y_val, predictions, target_names = CAT))

 confusion_mtx = tf.math.confusion_matrix(y_val, predictions)

 fig1 = plt.figure()

 sns.heatmap(confusion_mtx, xticklabels=CAT, yticklabels=CAT,

 annot=True, fmt='g')

 plt.rc('font', family='Helvetica')

 plt.xlabel('Prediction',fontsize=20)

 plt.ylabel('Label',fontsize=20)

 plt.show()

 return y_val, predictions

def Save_CNN(model, Name):

 json_model = model.to_json()

 with open(Name, 'w') as json_file:

 json_file.write(json_model)

C.6. Laber_Data.py

import cv2

import os

import numpy as np

labels = ['Or_To_Take_Arms', 'That_Is_The_Question', 'To_be_or_not_to_be',

'To_die', 'To_Sleep', 'Whether']

#img_size = 32

def get_data(data_dir, img_size):

 data = []

 for label in labels:

 path = os.path.join(data_dir, label)

 class_num = labels.index(label)

 for img in os.listdir(path):

 try:

 #convert BGR to RGB format

 img_arr = cv2.imread(os.path.join(path, img))[...,::-1]

 # Reshaping images to preferred size

 resized_arr = cv2.resize(img_arr, (img_size, img_size))

 data.append([resized_arr, class_num])

 except Exception as e:

 print(e)

 return np.array(data)

Appendix D | 106

Appendix D

Python code for real-time testing of the asymmetrical multichannel sensor with the

speech Recognition.

GitHub link: https://github.com/abmoineddini/MPhil_speech_recognition

main.py

import serial

import numpy as np

import time

from PreprocessorSpeechrecognition import *

import cv2

import tensorflow as tf

from tkinter import *

ws = Tk()

ws.title('Voice Recognition')

ws.geometry('800x600')

ws.config(bg='#000000')

mylabel = Label(ws,

 text="...",

 bg='#000000',

 fg='#ffffff',

 font='Times 32',

 width=50,

 height=10)

mylabel.pack()

ws.update()

#COMPort = input("Please enter the COM port: ")

COMPort = 'COM6'

arduino = serial.Serial(COMPort, 2000000, timeout=1)

model = tf.keras.models.load_model("VoiceRecCNN")

Voltage = []

Time = []

dataCollection = False

dataAvailability = False

i = 0

j = 0

arr1 = []

arr2 = []

arr3 = []

arr4 = []

counter1 = 0

counter2 = 0

counter3 = 0

counter4 = 0

FirstCounter = True

https://github.com/abmoineddini/MPhil_speech_recognition

Appendix D | 107

while True:

 line = arduino.readline()

 if line != (''):

 #print(line)

 try:

 string = line.decode()

 except:

 print("ignored")

 else:

 numS = string.replace("\r\n", '')

 if numS.isdigit():

 print(int(numS))

 if int(numS) < 210:

 dataCollection=False

 if counter1<250:

 counter1 +=1

 arr1.append(int(numS))

 elif counter1>=250 and counter1<500:

 counter1 +=1

 counter2 +=1

 arr1.append(int(numS))

 arr2.append(int(numS))

 elif counter1>=500 and counter1<750:

 counter1 +=1

 counter2 +=1

 counter3 +=1

 arr1.append(int(numS))

 arr2.append(int(numS))

 arr3.append(int(numS))

 else:

 counter1 +=1

 counter2 +=1

 counter3 +=1

 counter4 +=1

 arr1.append(int(numS))

 arr4.append(int(numS))

 arr2.append(int(numS))

 arr3.append(int(numS))

 if counter4 == 250 and counter1 > 250:

 counter1 = 0

 arr1 = []

 elif counter1==250 and counter2 > 250:

 counter2 = 0

 arr2 = []

Appendix D | 108

 elif counter2==250 and counter3 > 250:

 counter3 = 0

 arr3 = []

 elif counter3==250 and counter4 > 250:

 counter4 = 0

 arr4 = []

 else:

 dataCollection = True

 Voltage.append(int(numS))

 Time.append(i / 4000)

 i = i + 1

 j = 8000

 print("StartingDataCollection")

 while dataCollection:

 line = arduino.readline()

 print(line)

 if line != (''):

 try:

 string = line.decode()

 except:

 print("ignored")

 else:

 numS = string.replace("\r\n", '')

 if numS.isdigit():

 if int(numS)<210:

 j = j-1

 else:

 j = 8000

 Voltage.append(int(numS))

 Time.append(i / 4000)

 i = i+1

 if j<1:

 dataCollection=False

 dataAvailability = True

 if dataAvailability:

 SIZESLIST = [len(arr1), len(arr2), len(arr3), len(arr4)]

 maxval = max(SIZESLIST)

 maxlen = SIZESLIST.index(maxval)

 V = []

 t = []

 if FirstCounter:

 predictVal = 6

Appendix D | 109

 FirstCounter = False

 dataAvailability = False

 else:

 if maxlen == 0:

 V = np.vstack([arr1, Voltage])

 tAdj = np.linspace(0, (len(arr1)-1)*0.00025, len(arr1))

 tAdjm = tAdj[len(tAdj)-1]+0.00025

 for i in range(len(Time)):

 Time[i] = Time[i]+tAdjm

 t = np.vstack([tAdj, Time])

 elif maxlen == 1:

 V = np.vstack([arr2, Voltage])

 tAdj = np.linspace(0, (len(arr2)-1)*0.00025, len(arr2))

 tAdjm = tAdj[len(tAdj)-1]+0.00025

 for i in range(len(Time)):

 Time[i] = Time[i]+tAdjm

 t = np.vstack([tAdj, Time])

 elif maxlen == 2:

 V = np.vstack([arr3, Voltage])

 tAdj = np.linspace(0, (len(arr3) - 1) * 0.00025, len(arr3))

 tAdjm = tAdj[len(tAdj) - 1] + 0.00025

 for i in range(len(Time)):

 Time[i] = Time[i] + tAdjm

 t = np.vstack([tAdj, Time])

 else:

 V = np.vstack([arr4, Voltage])

 tAdj = np.linspace(0, (len(arr4)-1)*0.00025, len(arr4))

 tAdjm = tAdj[len(tAdj)-1]+0.00025

 for i in range(len(Time)):

 Time[i] = Time[i]+tAdjm

 t = np.vstack([tAdj, Time])

 plt.plot(t, V)

 plt.show()

 TestingPreprocessing(V, t)

 img_size = 300

 V = []

 t = []

 Voltage = []

 Time = []

 i = 0

 j = 0

 dataAvailability = False

 def Preprocess(path):

 img_arr = cv2.imread(path)[..., ::-1]

Appendix D | 110

 resized_arr = cv2.resize(img_arr, (img_size, img_size))

 norm_arr = np.array(resized_arr) / 255

 return norm_arr.reshape(-1, img_size, img_size, 3)

 predict = model.predict([Preprocess("TestingFigure.png")])

 print(predict)

 predictVal = np.argmax(predict)

 if predictVal == 0:

 text = 'or To take Arms\nagainst a sea of\ntroubles and\n by

opposing end them'

 elif predictVal == 1:

 text = 'that is the question'

 elif predictVal == 2:

 text = 'to be or not to be'

 elif predictVal == 3:

 text = 'to die'

 elif predictVal == 4:

 text = 'to sleep no more'

 elif predictVal == 5:

 text = 'whether this nobler\n in the mind to suffer\n the slings

and arrows of\n outrageous fortune'

 else:

 text = '...'

 mylabel.config(text=text)

 mylabel.pack()

 ws.update()

 time.sleep(5)

 mylabel.config(text='...')

 mylabel.pack()

 ws.update()

* The Preprocessing Speech recognition is the same as the one in in Appendix C

Section C.3.

Appendix E | 111

Appendix E

Arduino code to control the turntable.

GitHub link: https://github.com/abmoineddini/MPhil_sound_localisation/tree/main/Hardware_controllers

/* Arduino Mega rotary stage position controller

 * by: Amirbahador Moineddini

 * date: November 10th, 2021

 * V3 rotary stage position controller

/* Pin Setup

 * Motor Controller

 * enable pin: 11

 * step pin: 10

 * direction pin: 9

 * sensor singnal pin: 3

*/

const int en = 11;

const int stp = 10;

const int dir = 9;

const int pos = 3;

const int enLED = 13;

int Homming = 0;

int angleTest = 0;

int posVal;

int ptn;

int steps;

int angleToRotate;

volatile int delayTime;

void setup() {

 // Starting pins and start serial communication

 Serial.begin(115200);

 pinMode(en, OUTPUT);

 pinMode(stp, OUTPUT);

 pinMode(dir, OUTPUT);

 pinMode(pos, INPUT);

 pinMode(enLED, OUTPUT);

 digitalWrite(en, LOW);

 digitalWrite(enLED, HIGH);

 Serial.println("Setup Complete!");

}

void loop() {

 // Homming the stage to zero degrees

 if (Homming == 0) {

 Serial.println("Homming sequence starting ...");

 posVal = digitalRead(pos);

 Serial.println(posVal);

https://github.com/abmoineddini/MPhil_sound_localisation/tree/main/Hardware_controllers

Appendix E | 112

 if (posVal == 1) {

 Serial.println("Homming 2 ...");

 digitalWrite(dir, HIGH);

 for (int i = 0; i <= 1000; i++) {

 digitalWrite(stp, HIGH);

 delay(1);

 digitalWrite(stp, LOW);

 delay(1);

 }

 }

 if (posVal == 0 && Homming == 0) {

 Serial.println("Homming 1 ...");

 digitalWrite(dir, LOW);

 while (posVal == 0) {

 digitalWrite(stp, HIGH);

 delayMicroseconds(1000);

 digitalWrite(stp, LOW);

 delayMicroseconds(1000);

 posVal = digitalRead(pos);

 }

 digitalWrite(dir, LOW);

 for (int i = 0; i <= 180; i++) {

 digitalWrite(stp, HIGH);

 delayMicroseconds(1200);

 digitalWrite(stp, LOW);

 delayMicroseconds(1200);

 }

 Homming = 1;

 Serial.println("Homming Done");

 Serial.println("Loop 2");

 ptn = 0;

 delay(5000);

 }

 } else {

 Serial.println("ready");

 String Conn = Serial.readString();

 if (Conn == "rdy") {

 Serial.println("Starting");

 while (true) {

 String val = Serial.readString();

 Serial.println(val);

 int valInt = int(val.toInt());

 if (valInt > 0 && valInt <= 360) {

 if (valInt != ptn) {

 angleToRotate = (valInt - ptn);

 ptn = valInt;

 }

Appendix E | 113

else {

 angleToRotate = 0;

 }

 if (angleToRotate > 180) {

 angleToRotate = angleToRotate - 360;

 }

 if (angleToRotate < -180) {

 angleToRotate = 360 + angleToRotate;

 }

 steps = angleToRotate * 50;

 if (angleToRotate > 0) {

 digitalWrite(dir, LOW);

 for (int i = 0; i <= steps; i++) {

 digitalWrite(stp, HIGH);

 delayMicroseconds(900);

 digitalWrite(stp, LOW);

 delayMicroseconds(900);

 }

 }

 if (angleToRotate < 0) {

 digitalWrite(dir, HIGH);

 for (int i = 0; i <= abs(steps); i++) {

 digitalWrite(stp, HIGH);

 delayMicroseconds(900);

 digitalWrite(stp, LOW);

 delayMicroseconds(900);

 }

 }

 delayTime = abs(angleToRotate) * 10;

 delay(delayTime);

 Serial.println("done");

 if (ptn == 360) {

 ptn = 0;

 }

 Serial.println(ptn);

 }

 if (valInt < 0 && valInt >= -360) {

 valInt = 360 + valInt;

 if (valInt != ptn) {

 angleToRotate = 360 - (valInt - ptn);

 ptn = valInt;

 } else {

 angleToRotate = 0;

 }

 if (angleToRotate > 360) {

 angleToRotate = -720 + angleToRotate;

 }

Appendix E | 114

 if (angleToRotate > 180) {

 angleToRotate = angleToRotate - 360;

 }

 if (angleToRotate < -180) {

 angleToRotate = 360 + angleToRotate;

 }

 steps = angleToRotate * 50;

 if (angleToRotate > 0) {

 digitalWrite(dir, HIGH);

 for (int i = 0; i <= abs(steps); i++) {

 digitalWrite(stp, HIGH);

 delayMicroseconds(900);

 digitalWrite(stp, LOW);

 delayMicroseconds(900);

 }

 }

 if (angleToRotate < 0) {

 digitalWrite(dir, LOW);

 for (int i = 0; i <= abs(steps); i++) {

 digitalWrite(stp, HIGH);

 delayMicroseconds(900);

 digitalWrite(stp, LOW);

 delayMicroseconds(900);

 }

 }

 delayTime = abs(angleToRotate) * 10;

 delay(delayTime);

 Serial.println("done");

 // if (ptn==360){

 // ptn=0;

 // }

 Serial.println(ptn);

 }

 }

 }

 }

}

Appendix F | 115

Appendix F

Python codes for data collection, preprocessing the data, plotting figures and training,

testing and validation of the Spatial Recognition.

GitHub link: https://github.com/abmoineddini/MPhil_sound_localisation

F.1. Main code:

from DataCollector import *

import matplotlib.pyplot as plt

import os

import pandas as pd

from os import listdir

import winsound

from DataSender import *

from datetime import date

from Preprocessor import *

from csv import writer

dataCollection = True

CheckPort = input("Would you like to Start collecting Data? ")

if CheckPort == "y" or CheckPort == "Y" or CheckPort == "Yes" or CheckPort ==

"yes":

 # Initialising the Stage and Data Collector

 COMPortMotor = input("Please Enter COM Port for the Stage : ")

 COMPortMotor = "COM"+COMPortMotor

 print(COMPortMotor)

 currAng, MotorController = Inititialise(COMPortMotor)

 time.sleep(1)

 print("Initialisation of Stage Completed")

 COMPortCollector = input("Please Enter COM Port for Data Collector : ")

 COMPort = "COM"+COMPortCollector

 print(COMPort)

 Increment = input("Please enter the desired Increment in degrees: ")

 RotationAngle = input("Please enter the angle you would like to cover: ")

 DirectionOfRot = input ("Please enter the Direction of Roation (0 =

Antliclockwise, 1 = Clockwise: ")

 Method = input("Continuous or Individual Collections? (i for individual &

c for Continious)")

 AutomaticTesting = input("Would you like continous automatic test ? (yN)")

 today = date.today()

 print("Today's date:", today)

 TrainingDirectoryName = "TrainingData/" + str(today)

 if os.path.isdir(TrainingDirectoryName):

 print("Adding to Figure Directory")

 else:

 os.mkdir(TrainingDirectoryName)

 while dataCollection:

 Increment = int(Increment)

 div = 2*int(int(RotationAngle)/Increment)+1

 for inc in range(0, div):

https://github.com/abmoineddini/MPhil_sound_localisation

Appendix F | 116

 if DirectionOfRot == 1:

 if inc <= (div-1)/2:

 angle = Increment*inc

 else:

 angle = int(RotationAngle)-Increment * inc

 else:

 if inc <= (div-1)/2:

 angle = Increment*inc

 else:

 angle = (Increment * inc-int(RotationAngle))

 if Method == 'c':

 print("Continuous Data Collection")

 print("Sending Angles")

 currAng = AngleSet(angle, MotorController, currAng)

 # AudioFiles = [f for f in listdir("AudioFiles/")]

 Name = str(currAng)

 print(Name)

 time.sleep(1)

 Period = 10

 print("Startting to Collect Data for: ", Period, '(s)')

 NameTest = True

 TrainingDataDirectory = [f for f in

listdir(TrainingDirectoryName)]

 testNum = 1

 while NameTest:

 CSVNameCheck = "c_" +Name + '-Test'+ str(testNum) + '.csv'

 if CSVNameCheck in TrainingDataDirectory:

 print("File Already exist, Trying another name.")

 testNum = testNum+1

 else:

 CSVName = Name + '-Test'+ str(testNum)

 NameTest = False

 print(CSVName)

 [Channel1,Channel2, Channel3,Channel4, Time] =

collectData(COMPort, Period, CSVName, TrainingDirectoryName)

 # Plotting figures for checking the figures

 plt.plot(Time, Channel1)

 plt.plot(Time, Channel2)

 plt.plot(Time, Channel3)

 plt.plot(Time, Channel4)

 plt.show()

 DataCheck = 'y' # input("Are you happy with the Data? ")

 while DataCheck == "n" or DataCheck == "N" or DataCheck ==

"no" or DataCheck == "No":

 Nametoremove = "TrainingData/" + CSVName + ".csv"

 os.remove(Nametoremove)

Appendix F | 117

 [Channel1,Channel2, Channel3,Channel4, Time] =

collectData(COMPort, Period, CSVName, TrainingDirectoryName)

 plt.plot(Time, Channel1)

 plt.plot(Time, Channel2)

 plt.plot(Time, Channel3)

 plt.plot(Time, Channel4)

 plt.show()

 DataCheck = 'y' #input("Are you happy with the Data? ")

 elif Method=='i':

 print("Individual Data Collection")

 print("Sending Angles")

 currAng = AngleSet(angle, MotorController, currAng)

 # AudioFiles = [f for f in listdir("AudioFiles/")]

 Name = str(currAng)

 print(Name)

 time.sleep(1)

 Period = 3

 print("Startting to Collect Data for: ", Period, '(s)')

 NameTest = True

 TrainingDataDirectory = [f for f in

listdir(TrainingDirectoryName)]

 testNum = 1

 while NameTest:

 CSVNameCheck = "i_" + Name + '-Test' + str(testNum) +

'.csv'

 if CSVNameCheck in TrainingDataDirectory:

 print("File Already exist, Trying another name.")

 testNum = testNum + 1

 else:

 CSVName = Name + '-Test' + str(testNum)

 NameTest = False

 print(CSVName)

 [Channel1, Channel2, Channel3, Channel4, Time] =

collectDataIndividual(COMPort, Period, CSVName,TrainingDirectoryName)

 # Plotting figures for checking the figures

 plt.plot(Time, Channel1)

 plt.plot(Time, Channel2)

 plt.plot(Time, Channel3)

 plt.plot(Time, Channel4)

 winsound.PlaySound(None, winsound.SND_PURGE)

 DataCheck = 'y' # input("Are you happy with the Data? ")

 while DataCheck == "n" or DataCheck == "N" or DataCheck ==

"no" or DataCheck == "No":

 Nametoremove = "TrainingData/" + CSVName + ".csv"

Appendix F | 118

 os.remove(Nametoremove)

 [Channel1, Channel2, Channel3, Channel4, Time] =

collectDataIndividual(COMPort, Period, CSVName, TrainingDirectoryName)

 # Plotting figures for checking the figures

 plt.plot(Time, Channel1)

 plt.plot(Time, Channel2)

 plt.plot(Time, Channel3)

 plt.plot(Time, Channel4)

 plt.show()

 DataCheck = 'y' # input("Are you happy with the Data? ")

 else:

 print("Invalid Answer!")

 Method = input("Continuous or Individual Collections? (i for

individual & c for Continious)")

 else:

 print("Invalid Answer!")

 Method = input("Continuous or Individual Collections? (i for

individual & c for Continious)")

 if AutomaticTesting == "y":

 ToContinue = 'y'

 else:

 input("would you like to Continue with collecting data? ")

 if ToContinue == "n" or ToContinue == "N" or ToContinue == "No" or

ToContinue == "no":

 dataCollection = False

StartPreprocessing = input("Should I Start the Preprocessing? ")

if StartPreprocessing == "y" or StartPreprocessing == "Y" or

StartPreprocessing == "Yes" or StartPreprocessing == "yes":

 import glob

 if os.path.isdir("Figure/Training"):

 print("Adding to Figure Directory")

 else:

 os.mkdir("Figure/Training")

 os.mkdir("Figure/Testing")

 os.mkdir("Figure/Validation")

 for i in os.listdir("TrainingData"):

 DirectoryMasterTraining = "TrainingData/"+i+"/"

 csv_files = glob.glob(os.path.join(DirectoryMasterTraining, "*.csv"))

 for x in csv_files[0:]:

 dataFileName = x

Appendix F | 119

 print(x)

 NAMEunprocessed = x.replace(".csv", "")

 NAMEunprocessed = NAMEunprocessed.split("\\")

 print(NAMEunprocessed)

 print(NAMEunprocessed[1][0])

 NAMEunprocessed = NAMEunprocessed[1].split("_")

 print(NAMEunprocessed)

 if NAMEunprocessed[0] == "c":

 method = 0

 print("True")

 else:

 method = 1

 NAMEunprocessed = NAMEunprocessed[1]

 NAMEunprocessed = NAMEunprocessed.split("-")

 x = NAMEunprocessed[0]

 print(x)

 check = 0

 if os.path.isfile("Tracking/ProcessedData.csv"):

 print("Processed data collector Already exists")

 PDCL = pd.read_csv("Tracking/ProcessedData.csv")

 print(PDCL)

 ProcessedDataChecklist = PDCL.to_numpy()

 ProcessedDataChecklist = ProcessedDataChecklist[:]

 if dataFileName.split("/")[1] in ProcessedDataChecklist:

 check = 1

 continue

 if check == 0:

 [FolderTraining, FolderTesting, FolderValidation] =

Classifier(x)

 print("it reaches here")

 df = pd.read_csv(dataFileName)

 data = df.to_numpy()

 print(dataFileName)

 if method==0:

 figure_maker(data, FolderTraining, FolderTesting,

FolderValidation, dataFileName)

 print("Making figure for continuous Data")

 else:

 figure_makerMeth2AutoSize(data, FolderTraining,

FolderTesting, FolderValidation, dataFileName)

 if os.path.isfile("Tracking/ProcessedData.csv"):

Appendix F | 120

 with open("Tracking/ProcessedData.csv", 'a+' ,newline='')

as f_object:

 writer_object = writer(f_object)

 writer_object.writerow([dataFileName.split("/")[1]])

 f_object.close()

 else:

 dict = {"File Name": [dataFileName.split("/")[1]]}

 df = pd.DataFrame(dict)

 df.to_csv("Tracking/ProcessedData.csv")

print("Finished Creating Relevant Files")

labels = os.listdir("Figure/Training")

labelsInt = []

for i in labels:

 labelsInt.append(int(i))

labelsInt.sort()

labels = []

for i in labelsInt:

 labels.append(str(i))

StartTraining = input("Should I Start the Training? ")

if StartTraining == "y" or StartTraining == "Y" or StartTraining == "yes" or

StartTraining == "Yes":

 trainingSTFT = "Figure/Training"

 validationSTFT = "Figure/Validation"

 testingSTFT = "Figure/Testing"

 from MachineLearning import *

 img_size = 150

 print(labels)

 [STFTModel, acc, val_acc, loss, val_loss]= CNN_Training(trainingSTFT,

validationSTFT, 150, LearningRate=0.00005, dataType="STFT", img_size=img_size,

label = labels)

 STFTModel.save("DirectionRecCNN")

 from csv import writer

 for i in range(len(acc)):

 FileAdd = [acc[i], val_acc[i], loss[i], val_loss[i]]

 with open("Tracking/AccuracyHistory.csv", 'a+', newline='') as

 f_object:

 writer_object = writer(f_object)

 writer_object.writerow(FileAdd)

 f_object.close()

 FileAdd = []

 STFTModel = tf.keras.models.load_model("DirectionRecCNN")

Appendix F | 121

 # Testinig Peformance

 print("STFT CNN Test result")

 [y_val, predictions] = TestingNetwrok(STFTModel, testingSTFT, img_size,

labels)

 for i in range(len(y_val)):

 FileAdd = [y_val[i], predictions[i]]

 with open("Tracking/TestingValidationCNN.csv", 'a+', newline='') as

f_object:

 writer_object = writer(f_object)

 writer_object.writerow(FileAdd)

 f_object.close()

 FileAdd = []

 STFTmodelName = 'STFTModel.yaml'

 Save_CNN(STFTModel, Name=STFTmodelName)

df = pd.read_csv("Tracking/TestingValidationCNN.csv")

CAT = labels

DegNum = int(labels[1])

DegNum = str(DegNum)

data = df.to_numpy()

y_val = data[:,0]

predictions = data[:,1]

fig = plt.figure()

confusion_mtx = tf.math.confusion_matrix(y_val, predictions)

print(confusion_mtx)

con_matrix = np.zeros((len(labels),len(labels)))

for i in range(len(confusion_mtx[1])):

 row = confusion_mtx[i].numpy()

 rowSum = row.sum()

 print(rowSum)

 for j in range(len(row)):

 print(len(row))

 print(row[j])

 con_matrix[i, j] = row[j] / rowSum

sns.heatmap(con_matrix, xticklabels=CAT, yticklabels=CAT,

 annot=True, fmt='.2f', cmap = "OrRd")

plt.rc('font', family='Helvetica')

plt.title('Confusion Matix', fontsize=22)

plt.xlabel('Prediction', fontsize=20)

plt.ylabel('Label', fontsize=20)

ConfunstionMatrixName = "Figures/" + DegNum + "ConfusionMatrixValidation.png"

fig.savefig(ConfunstionMatrixName, transparent=True,

bbox_inches='tight',pad_inches=0.25)

plt.show()

Appendix F | 122

F.2.

import serial

import winsound

def collectData(COMPort, Period, Name, DirectoryName):

 arduino = serial.Serial(COMPort , 2000000, timeout=1)

 Channel1 = []

 Channel2 = []

 Channel3 = []

 Channel4 = []

 Time = []

 period = int(Period)

 sR = int(4000/3.5)

 period = period*sR

 for i in range(period):

 line = arduino.readline()

 if line != (''):

 print(line)

 try:

 string = line.decode()

 except:

 print("ignored")

 else:

 numS = string.replace("\r\n", '')

 vals = numS.split(" ")

 if len(vals)>3:

 if vals[0].isdigit():

 if vals[1].isdigit():

 if vals[2].isdigit():

 if vals[3].isdigit():

 Channel1.append(int(vals[0]))

 Channel2.append(int(vals[1]))

 Channel3.append(int(vals[2]))

 Channel4.append(int(vals[3]))

 Time.append(i/sR)

 arduino.close()

 import pandas as pd

 dict = {'Time (s)' : Time, 'Channel 1 (V)': Channel1,'Channel 2 (V)':

Channel2, 'Channel 3 (V)': Channel3, 'Channel4 (V)': Channel4}

 df = pd.DataFrame(dict)

 dataBaseName = DirectoryName+"/"+"c_" + Name + ".csv"

 df.to_csv(dataBaseName)

 return [Channel1,Channel2, Channel3,Channel4, Time]

Appendix F | 123

#######################Individual Collection Method###########################

def collectDataIndividual(COMPort, Period, Name, DirectoryName):

 arduino = serial.Serial(COMPort , 2000000, timeout=1)

 Channel1 = []

 Channel2 = []

 Channel3 = []

 Channel4 = []

 Time = []

 period = int(Period)

 sR = int(4000/3.5)

 period = period*sR

 for i in range(period):

 line = arduino.readline()

 if line != (''):

 print(line)

 try:

 string = line.decode()

 except:

 print("ignored")

 else:

 numS = string.replace("\r\n", '')

 vals = numS.split(" ")

 if len(vals)>3:

 if vals[0].isdigit():

 if vals[1].isdigit():

 if vals[2].isdigit():

 if vals[3].isdigit():

 Channel1.append(int(vals[0]))

 Channel2.append(int(vals[1]))

 Channel3.append(int(vals[2]))

 Channel4.append(int(vals[3]))

 Time.append(i/sR)

 arduino.close()

 import pandas as pd

 dict = {'Time (s)' : Time, 'Channel 1 (V)': Channel1,'Channel 2 (V)':

Channel2, 'Channel 3 (V)': Channel3, 'Channel4 (V)': Channel4}

 df = pd.DataFrame(dict)

 dataBaseName = DirectoryName + "/"+"i_" + Name + ".csv"

 df.to_csv(dataBaseName)

 return [Channel1,Channel2, Channel3,Channel4, Time]

Appendix F | 124

####################### Testing Collection ###########################

def collectDataTest(COMPort, Period): #, AudioFileName):

 arduino = serial.Serial(COMPort, 2000000, timeout=1)

 Channel1 = []

 Channel2 = []

 Channel3 = []

 Channel4 = []

 Time = []

 period = int(Period)

 sR = int(4000 / 3.5)

 period = period * sR

 for i in range(period):

 line = arduino.readline()

 if line != (''):

 print(line)

 try:

 string = line.decode()

 except:

 print("ignored")

 else:

 numS = string.replace("\r\n", '')

 vals = numS.split(" ")

 if len(vals) > 3:

 if vals[0].isdigit():

 if vals[1].isdigit():

 if vals[2].isdigit():

 if vals[3].isdigit():

 Channel1.append(int(vals[0]))

 Channel2.append(int(vals[1]))

 Channel3.append(int(vals[2]))

 Channel4.append(int(vals[3]))

 Time.append(i / sR)

 arduino.close()

 arduino.close()

 import pandas as pd

 dict = {'Time (s)': Time, 'Channel 1 (V)': Channel1,'Channel 2 (V)':

Channel2, 'Channel 3 (V)': Channel3, 'Channel4 (V)': Channel4}

 df = pd.DataFrame(dict)

 dataBaseName = "Temp/Test.csv"

 df.to_csv(dataBaseName)

 print(dataBaseName)

 return [Channel1,Channel2, Channel3,Channel4, Time]

Appendix F | 125

F.3. Preprocessing.py

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import scipy.signal as sig

from SectionCutting import *

from os import listdir

from PIL import Image

import os

from os.path import isdir

from scipy.fft import fft, fftfreq

import random

def ProcessIm(Im1, Im2, fileName):

 image1 = Image.open(Im1)

 image1 = image1.rotate(90)

 image2 = Image.open(Im2)

 image1_size = image1.size

 new_image = Image.new('RGB', (2 * image1_size[0], image1_size[1]), (250,

250, 250))

 new_image.paste(image1, (0, 0))

 new_image.paste(image2, (image1_size[0], 0))

 new_image.save(fileName)

def ProcessConcat(Im1, Im2, Im3, Im4, fileName):

 image1 = Image.open(Im1)

 image2 = Image.open(Im2)

 image3 = Image.open(Im3)

 image4 = Image.open(Im4)

 image1_size = image1.size

 new_image = Image.new('RGB', (2 * image1_size[0], 2*image1_size[1]), (250,

250, 250))

 new_image.paste(image1, (0, 0))

 new_image.paste(image2, (image1_size[0], 0))

 new_image.paste(image3, (0, image1_size[1]))

 new_image.paste(image4, (image1_size[0], image1_size[1]))

 new_image.save(fileName)

def ProcessConcatAuto(Im, fileName):

 image1 = Image.open("Temp/"+Im[0])

 ChannelCount = 1

 if len(Im) > 1:

 image2 = Image.open("Temp/"+Im[1])

 ChannelCount = 2

 if len(Im) > 2:

 image3 = Image.open("Temp/"+Im[2])

Appendix F | 126

 ChannelCount = 3

 if len(Im) > 3:

 image4 = Image.open("Temp/"+Im[3])

 ChannelCount = 4

 if len(Im) > 4:

 image5 = Image.open("Temp/"+Im[4])

 ChannelCount = 5

 if len(Im) > 5:

 image6 = Image.open("Temp/"+Im[5])

 ChannelCount = 6

 if len(Im) > 6:

 image7 = Image.open("Temp/"+Im[6])

 ChannelCount = 7

 if len(Im) > 7:

 image8 = Image.open("Temp/"+Im[7])

 ChannelCount = 8

 if len(Im) > 8:

 image9 = Image.open("Temp/" + Im[8])

 ChannelCount = 9

 image1_size = image1.size

 BlackImage = np.zeros([image1_size[1], image1_size[0], 3] ,dtype=np.uint8)

 BlackImage = Image.fromarray(BlackImage)

 if ChannelCount == 1:

 new_image = Image.new('RGB', (image1_size[0], image1_size[1]), (250,

250, 250))

 new_image.paste(image1, (0, 0))

 new_image.save(fileName)

 if ChannelCount == 2:

 new_image = Image.new('RGB', (2 * image1_size[0], 2*image1_size[1]),

(250, 250, 250))

 new_image.paste(image1, (0, 0))

 new_image.paste(BlackImage, (image1_size[0], 0))

 new_image.paste(image2, (image1_size[0], image1_size[1]))

 new_image.paste(BlackImage, (0, image1_size[1]))

 new_image.save(fileName)

 if ChannelCount == 3:

 new_image = Image.new('RGB', (2 * image1_size[0], 2*image1_size[1]),

(250, 250, 250))

 new_image.paste(image1, (0, 0))

 new_image.paste(image2, (image1_size[0], 0))

 new_image.paste(image3, (0, image1_size[1]))

 new_image.save(fileName)

 if ChannelCount == 4:

Appendix F | 127

 new_image = Image.new('RGB', (2 * image1_size[0], 2*image1_size[1]),

(250, 250, 250))

 new_image.paste(image1, (0, 0))

 new_image.paste(image2, (image1_size[0], 0))

 new_image.paste(image3, (0, image1_size[1]))

 new_image.paste(image4, (image1_size[0], image1_size[1]))

 new_image.save(fileName)

 if ChannelCount == 5:

 new_image = Image.new('RGB', (3 * image1_size[0], 2*image1_size[1]),

(250, 250, 250))

 new_image.paste(image1, (0, 0))

 new_image.paste(image2, (image1_size[0], 0))

 new_image.paste(image3, (0, image1_size[1]))

 new_image.paste(image4, (image1_size[0], image1_size[1]))

 new_image.paste(image5, (2*image1_size[0], 0))

 new_image.save(fileName)

 if ChannelCount == 6:

 new_image = Image.new('RGB', (3 * image1_size[0], 2*image1_size[1]),

(250, 250, 250))

 new_image.paste(image1, (0, 0))

 new_image.paste(image2, (image1_size[0], 0))

 new_image.paste(image3, (0, image1_size[1]))

 new_image.paste(image4, (image1_size[0], image1_size[1]))

 new_image.paste(image5, (2*image1_size[0], 0))

 new_image.paste(image6, (2*image1_size[0], image1_size[1]))

 new_image.save(fileName)

 if ChannelCount == 7:

 new_image = Image.new('RGB', (4 * image1_size[0], 3*image1_size[1]),

(250, 250, 250))

 new_image.paste(image1, (0, 0))

 new_image.paste(image2, (image1_size[0], 0))

 new_image.paste(image3, (0, image1_size[1]))

 new_image.paste(image4, (image1_size[0], image1_size[1]))

 new_image.paste(image5, (2*image1_size[0], 0))

 new_image.paste(image6, (2*image1_size[0], image1_size[1]))

 new_image.paste(image7, (0, 2*image1_size[0]))

 new_image.save(fileName)

 if ChannelCount == 9:

 new_image = Image.new('RGB', (3 * image1_size[0], 3 * image1_size[1]),

(250, 250, 250))

 new_image.paste(image1, (0, 0))

 new_image.paste(image2, (image1_size[0], 0))

 new_image.paste(image3, (0, image1_size[1]))

 new_image.paste(image4, (image1_size[0], image1_size[1]))

Appendix F | 128

 new_image.paste(image5, (2*image1_size[0], 0))

 new_image.paste(image6, (2*image1_size[0], image1_size[1]))

 new_image.paste(image7, (0, 2*image1_size[0]))

 new_image.paste(image8, (image1_size[0], 2*image1_size[1]))

 new_image.paste(image9, (2 * image1_size[0], 2 * image1_size[1]))

 new_image.save(fileName)

 if ChannelCount == 9:

 new_image = Image.new('RGB', (3 * image1_size[0], 3*image1_size[1]),

(250, 250, 250))

 new_image.paste(image1, (0, 0))

 new_image.paste(image2, (image1_size[0], 0))

 new_image.paste(image3, (0, image1_size[1]))

 new_image.paste(image4, (image1_size[0], image1_size[1]))

 new_image.paste(image5, (2*image1_size[0], 0))

 new_image.paste(image6, (2*image1_size[0], image1_size[1]))

 new_image.paste(image7, (0, 2*image1_size[1]))

 new_image.paste(image8, (image1_size[0], 2*image1_size[1]))

 new_image.paste(image9, (2 * image1_size[0], 2 * image1_size[1]))

 new_image.save(fileName)

def figure_maker(data, FolderSTFTTraining, FolderSTFTTesting,

FolderValTesting, FileName):

 time = data[150:len(data)-1, 1]

 Ch1 = data[150:len(data)-1, 2]

 Ch2 = data[150:len(data) - 1, 3]

 Ch3 = data[150:len(data) - 1, 4]

 Ch4 = data[150:len(data) - 1, 5]

 Fs = 4000/3.5

 detenCh1 = sig.detrend(Ch1)

 detenCh2 = sig.detrend(Ch2)

 detenCh3 = sig.detrend(Ch3)

 detenCh4 = sig.detrend(Ch4)

 filter = sig.butter(2, [70,550], 'bandpass', fs=Fs, output='sos')

 corrCh1 = sig.sosfilt(filter, detenCh1)

 corrCh1 = (corrCh1*5)/1023

 corrCh2 = sig.sosfilt(filter, detenCh2)

 corrCh2 = (corrCh2*5)/1023

 corrCh3 = sig.sosfilt(filter, detenCh3)

 corrCh3 = (corrCh3*5)/1023

 corrCh4 = sig.sosfilt(filter, detenCh4)

 corrCh4 = (corrCh4*5)/1023

 TrainingDirectory = [f for f in listdir(FolderSTFTTraining)]

 TestDirectory = [f for f in listdir(FolderSTFTTesting)]

Appendix F | 129

 ValidationDirectory = [f for f in listdir(FolderValTesting)]

 countTrain = int(len(TrainingDirectory))

 countTest = int(len(TestDirectory))

 countVal = int(len(ValidationDirectory))

 maxV1 = max(corrCh1)

 normV1 = corrCh1 / maxV1

 maxV2 = max(corrCh2)

 normV2 = corrCh2 / maxV2

 maxV3 = max(corrCh3)

 normV3 = corrCh3 / maxV3

 maxV4 = max(corrCh4)

 normV4 = corrCh4 / maxV4

 seperationPoints = SepWithSTFT(normV1, normV2, normV3, normV4, time, Fs)

 #seperationPoints = [0, len(normV1)-1]

 N = len(seperationPoints)

 Arr = np.arange(N)

 np.random.shuffle(Arr)

 Training = Arr[:round(N*0.8)]

 Validation = Arr[round(N*0.8):round(N*0.9)]

 Testing = Arr[round(N*0.9):round(N*1)]

 for i in range(0,N-1):

 Ch1pp = normV1[int(seperationPoints[i]):int(seperationPoints[i+1])]

 Ch2pp = normV2[int(seperationPoints[i]):int(seperationPoints[i+1])]

 Ch3pp = normV3[int(seperationPoints[i]):int(seperationPoints[i+1])]

 Ch4pp = normV4[int(seperationPoints[i]):int(seperationPoints[i+1])]

 ## Channel 1

 f1, t1, Zxx1 = sig.stft(Ch1pp, Fs, nperseg=100)

 fig1 = plt.figure(frameon=False)

 ax1 = plt.Axes(fig1, [0., 0., 1., 1.])

 plt.pcolormesh(t1, f1, np.abs(Zxx1), shading='gouraud', cmap='gray')

 plt.axis('off')

 plt.ylim([90, 500])

 ax1.set_axis_off()

 plt.tight_layout()

 plt.show()

 fig1.savefig('Temp/STFTTestingFigureCh1.png', bbox_inches='tight',

pad_inches=0)

 ## Channel 2

 f2, t2, Zxx2 = sig.stft(Ch2pp, Fs, nperseg=100)

 fig1 = plt.figure(frameon=False)

 ax1 = plt.Axes(fig1, [0., 0., 1., 1.])

 plt.pcolormesh(t2, f2, np.abs(Zxx2), shading='gouraud', cmap='gray')

 plt.axis('off')

Appendix F | 130

 plt.ylim([90, 500])

 ax1.set_axis_off()

 plt.tight_layout()

 plt.show()

 fig1.savefig('Temp/STFTTestingFigureCh2.png', bbox_inches='tight',

pad_inches=0)

 ##Channel 3

 f3, t3, Zxx3 = sig.stft(Ch3pp, Fs, nperseg=100)

 fig1 = plt.figure(frameon=False)

 ax1 = plt.Axes(fig1, [0., 0., 1., 1.])

 plt.pcolormesh(t3, f3, np.abs(Zxx3), shading='gouraud', cmap='gray')

 plt.axis('off')

 plt.ylim([90, 500])

 ax1.set_axis_off()

 plt.tight_layout()

 plt.show()

 fig1.savefig('Temp/STFTTestingFigureCh3.png', bbox_inches='tight',

pad_inches=0)

 ## Channel 4

 f4, t4, Zxx4 = sig.stft(Ch4pp, Fs, nperseg=100)

 fig1 = plt.figure(frameon=False)

 ax1 = plt.Axes(fig1, [0., 0., 1., 1.])

 plt.pcolormesh(t4, f4, np.abs(Zxx4), shading='gouraud', cmap='gray')

 plt.axis('off')

 plt.xlim([90, 500])

 ax1.set_axis_off()

 plt.tight_layout()

 plt.show()

 fig1.savefig('Temp/STFTTestingFigureCh4.png', bbox_inches='tight',

pad_inches=0)

 y1 = fft(Ch1pp)

 y2 = fft(Ch2pp)

 y3 = fft(Ch3pp)

 y4 = fft(Ch4pp)

 y1a = y1[80: 550]

 max_value1 = max(abs(y1a))

 Norm_y1 = abs(y1a) / 15 # max_value1

 Norm_y1a = abs(y1a)

 y2a = y2[80: 550]

 max_value2 = max(abs(y2a))

 Norm_y2 = abs(y2a) / 15 # max_value2

 Norm_y2a = abs(y2a)

Appendix F | 131

 y3a = y3[80: 550]

 max_value3 = max(abs(y3a))

 Norm_y3 = abs(y3a) / 15 # max_value3

 Norm_y3a = abs(y3a)

 y4a = y4[80: 550]

 max_value4 = max(abs(y4a))

 Norm_y4 = abs(y4a) / 15 # max_value4

 Norm_y4a = abs(y4a)

 N = len(y4a)

 xf = fftfreq(N, 1/Fs)

 fig1 = plt.figure()

 ax1 = plt.Axes(fig1, [0., 0., 1., 1.])

 plt.scatter(xf, Norm_y1a, c=4**abs(Norm_y1), s=abs(Norm_y1**4)*500)

 plt.ylim([0, 16])

 plt.gray()

 plt.axis('off')

 ax1.set_axis_off()

 plt.tight_layout()

 fig1.savefig('Temp/Ch1fft.png', bbox_inches='tight', pad_inches=0)

 fig2 = plt.figure()

 ax2 = plt.Axes(fig2, [0., 0., 1., 1.])

 plt.scatter(xf, Norm_y2a, c=4**abs(Norm_y2), s=abs(Norm_y2**4)*500)

 plt.ylim([0, 16])

 plt.gray()

 plt.axis('off')

 ax2.set_axis_off()

 plt.tight_layout()

 fig2.savefig('Temp/Ch2fft.png', bbox_inches='tight', pad_inches=0)

 fig3 = plt.figure()

 ax3 = plt.Axes(fig3, [0., 0., 1., 1.])

 plt.scatter(xf, Norm_y3a, c=4**abs(Norm_y3), s=abs(Norm_y3**4)*500)

 plt.ylim([0, 16])

 plt.gray()

 plt.axis('off')

 ax3.set_axis_off()

 plt.tight_layout()

 fig3.savefig('Temp/Ch3fft.png', bbox_inches='tight', pad_inches=0)

 fig4 = plt.figure()

 ax4 = plt.Axes(fig4, [0., 0., 1., 1.])

 plt.scatter(xf, Norm_y4a, c=4**abs(Norm_y4), s=abs(Norm_y4**4)*500)

 plt.ylim([0, 16])

 plt.gray()

Appendix F | 132

 plt.axis('off')

 ax4.set_axis_off()

 plt.tight_layout()

 fig4.savefig('Temp/Ch4fft.png', bbox_inches='tight', pad_inches=0)

 if i in Training:

 nameTrain = str(countTrain)

 countTrain += 1

 FileName = FolderSTFTTraining + "/" + nameTrain + '.png'

 print(FileName)

 ProcessConcat('Temp/Ch1fft.png',

'Temp/Ch2fft.png','Temp/Ch3fft.png', 'Temp/Ch4fft.png', FileName)

 if i in Validation:

 nameVal = str(countVal)

 countVal += 1

 FileName = FolderValTesting + "/" + nameVal + '.png'

 print(FileName)

 ProcessConcat('Temp/Ch1fft.png', 'Temp/Ch2fft.png',

'Temp/Ch3fft.png', 'Temp/Ch4fft.png', FileName)

 if i in Testing:

 nameTest = str(countTest)

 countTest += 1

 FileName = FolderSTFTTesting + "/" + nameTest + '.png'

 print(FileName)

 ProcessConcat('Temp/Ch1fft.png', 'Temp/Ch2fft.png',

'Temp/Ch3fft.png', 'Temp/Ch4fft.png', FileName)

 os.remove("Temp/STFTTestingFigureCh1.png")

 os.remove("Temp/STFTTestingFigureCh2.png")

 os.remove("Temp/STFTTestingFigureCh3.png")

 os.remove("Temp/STFTTestingFigureCh4.png")

 os.remove('Temp/Ch1fft.png')

 os.remove('Temp/Ch2fft.png')

 os.remove('Temp/Ch3fft.png')

 os.remove('Temp/Ch4fft.png')

def Classifier(x):

 classification = x

 FolderSTFTTraining = "Figure/Training/"+ classification

 FolderSTFTTesting = "Figure/Testing/"+ classification

 FolderValidation = "Figure/Validation/" + classification

 if isdir(FolderSTFTTraining):

 print("Folders Already Excits!")

 else:

Appendix F | 133

 os.mkdir(FolderSTFTTraining)

 os.mkdir(FolderSTFTTesting)

 os.mkdir(FolderValidation)

 print("Folder for", classification, "made!")

 return [FolderSTFTTraining, FolderSTFTTesting, FolderValidation]

def TestingPreprocessing(data):

 time = data[75:len(data)-1, 1]

 Ch1 = data[75:len(data)-1, 2]

 Ch2 = data[75:len(data) - 1, 3]

 Ch3 = data[75:len(data) - 1, 4]

 Ch4 = data[75:len(data) - 1, 5]

 Fs = 1000

 detenCh1 = sig.detrend(Ch1)

 detenCh2 = sig.detrend(Ch2)

 detenCh3 = sig.detrend(Ch3)

 detenCh4 = sig.detrend(Ch4)

 maxV1 = max(detenCh1)

 normV1 = detenCh1 / maxV1

 maxV2 = max(detenCh2)

 normV2 = detenCh2 / maxV2

 maxV3 = max(detenCh3)

 normV3 = detenCh3 / maxV3

 maxV4 = max(detenCh4)

 normV4 = detenCh4 / maxV4

 Ch1pp = normV1

 Ch2pp = normV2

 Ch3pp = normV3

 Ch4pp = normV4

 ## Channel 1

 fig0 = plt.figure()

 ax0 = plt.Axes(fig0, [0., 0., 1., 1.])

 plt.style.use('dark_background')

 plt.scatter(time, Ch1pp, c=abs(Ch1pp * Ch1pp), s=abs(Ch1pp))

 plt.gray()

 plt.axis('off')

 ax0.set_axis_off()

 plt.tight_layout()

 plt.show()

 fig0.savefig('ScattTestingFigureCh1.png', bbox_inches='tight',

pad_inches=0)

 f1, t1, Zxx1 = sig.stft(Ch1pp, Fs, nperseg=1000)

 fig1 = plt.figure(frameon=False)

Appendix F | 134

 ax1 = plt.Axes(fig1, [0., 0., 1., 1.])

 plt.pcolormesh(t1, f1, np.abs(Zxx1), shading='gouraud', cmap='gray')

 plt.axis('off')

 plt.ylim([90, 500])

 ax1.set_axis_off()

 plt.tight_layout()

 plt.show()

 fig1.savefig('STFTTestingFigureCh1.png', bbox_inches='tight',

pad_inches=0)

 ## Channel 2

 fig0 = plt.figure()

 ax0 = plt.Axes(fig0, [0., 0., 1., 1.])

 plt.style.use('dark_background')

 plt.scatter(time, Ch2pp, c=abs(Ch2pp * Ch2pp), s=abs(Ch2pp))

 plt.gray()

 plt.axis('off')

 ax0.set_axis_off()

 plt.tight_layout()

 plt.show()

 fig0.savefig('ScattTestingFigureCh2.png', bbox_inches='tight',

pad_inches=0)

 f2, t2, Zxx2 = sig.stft(Ch2pp, Fs, nperseg=1000)

 fig1 = plt.figure(frameon=False)

 ax1 = plt.Axes(fig1, [0., 0., 1., 1.])

 plt.pcolormesh(t2, f2, np.abs(Zxx2), shading='gouraud', cmap='gray')

 plt.axis('off')

 plt.ylim([90, 500])

 ax1.set_axis_off()

 plt.tight_layout()

 plt.show()

 fig1.savefig('STFTTestingFigureCh2.png', bbox_inches='tight',

pad_inches=0)

 ##Channel 3

 fig0 = plt.figure()

 ax0 = plt.Axes(fig0, [0., 0., 1., 1.])

 plt.style.use('dark_background')

 plt.scatter(time, Ch3pp, c=abs(Ch3pp * Ch3pp), s=abs(Ch3pp))

 plt.gray()

 plt.axis('off')

 ax0.set_axis_off()

 plt.tight_layout()

 plt.show()

 fig0.savefig('ScattTestingFigureCh3.png', bbox_inches='tight',

pad_inches=0)

Appendix F | 135

 f3, t3, Zxx3 = sig.stft(Ch3pp, Fs, nperseg=1000)

 fig1 = plt.figure(frameon=False)

 ax1 = plt.Axes(fig1, [0., 0., 1., 1.])

 plt.pcolormesh(t3, f3, np.abs(Zxx3), shading='gouraud', cmap='gray')

 plt.axis('off')

 plt.ylim([90, 500])

 ax1.set_axis_off()

 plt.tight_layout()

 plt.show()

 fig1.savefig('STFTTestingFigureCh3.png', bbox_inches='tight',

pad_inches=0)

 ## Channel 4

 fig0 = plt.figure()

 ax0 = plt.Axes(fig0, [0., 0., 1., 1.])

 plt.style.use('dark_background')

 plt.scatter(time, Ch4pp, c=abs(Ch4pp * Ch4pp), s=abs(Ch4pp))

 plt.gray()

 plt.axis('off')

 ax0.set_axis_off()

 plt.tight_layout()

 plt.show()

 fig0.savefig('ScattTestingFigureCh4.png', bbox_inches='tight',

pad_inches=0)

 f4, t4, Zxx4 = sig.stft(Ch4pp, Fs, nperseg=1000)

 fig1 = plt.figure(frameon=False)

 ax1 = plt.Axes(fig1, [0., 0., 1., 1.])

 plt.pcolormesh(t4, f4, np.abs(Zxx4), shading='gouraud', cmap='gray')

 plt.axis('off')

 plt.ylim([90, 500])

 ax1.set_axis_off()

 plt.tight_layout()

 plt.show()

 fig1.savefig('STFTTestingFigureCh4.png', bbox_inches='tight',

pad_inches=0)

def figure_makerMeth2(data, FolderSTFTTraining, FolderSTFTTesting,

FolderValTesting, FileName):

 ChannelNum = len(data[0]) - 1

 time = data[150:len(data)-1, 1]

 Ch1 = data[150:len(data)-1, 2]

 Ch2 = data[150:len(data) - 1, 3]

 Ch3 = data[150:len(data) - 1, 4]

 Ch4 = data[150:len(data) - 1, 5]

 Fs = 4000/3.5

 detenCh1 = sig.detrend(Ch1)

Appendix F | 136

 detenCh2 = sig.detrend(Ch2)

 detenCh3 = sig.detrend(Ch3)

 detenCh4 = sig.detrend(Ch4)

 filter = sig.butter(2, [70,550], 'bandpass', fs=Fs, output='sos')

 corrCh1 = sig.sosfilt(filter, detenCh1)

 corrCh1 = (corrCh1*5)/1023

 corrCh2 = sig.sosfilt(filter, detenCh2)

 corrCh2 = (corrCh2*5)/1023

 corrCh3 = sig.sosfilt(filter, detenCh3)

 corrCh3 = (corrCh3*5)/1023

 corrCh4 = sig.sosfilt(filter, detenCh4)

 corrCh4 = (corrCh4*5)/1023

 TrainingDirectory = [f for f in listdir(FolderSTFTTraining)]

 TestDirectory = [f for f in listdir(FolderSTFTTesting)]

 ValidationDirectory = [f for f in listdir(FolderValTesting)]

 countTrain = int(len(TrainingDirectory))

 countTest = int(len(TestDirectory))

 countVal = int(len(ValidationDirectory))

 maxV1 = max(corrCh1)

 normV1 = corrCh1 / maxV1

 maxV2 = max(corrCh2)

 normV2 = corrCh2 / maxV2

 maxV3 = max(corrCh3)

 normV3 = corrCh3 / maxV3

 maxV4 = max(corrCh4)

 normV4 = corrCh4 / maxV4

 Num = random.randint(0, 10)

 seperationPoints = SepWithSTFT(normV1, normV2, normV3, normV4, time, Fs)

 if len(seperationPoints)>0:

 if len(seperationPoints) <= 2:

 Ch1pp =

normV1[int(seperationPoints[0]):int(seperationPoints[0]+Fs+10)]

 Ch2pp =

normV2[int(seperationPoints[0]):int(seperationPoints[0]+Fs+10)]

 Ch3pp =

normV3[int(seperationPoints[0]):int(seperationPoints[0]+Fs+10)]

 Ch4pp =

normV4[int(seperationPoints[0]):int(seperationPoints[0]+Fs+10)]

 if len(seperationPoints) > 2:

 Ch1pp =

normV1[int(seperationPoints[1]):int(seperationPoints[1]+Fs+10)]

Appendix F | 137

 Ch2pp =

normV2[int(seperationPoints[1]):int(seperationPoints[1]+Fs+10)]

 Ch3pp =

normV3[int(seperationPoints[1]):int(seperationPoints[1]+Fs+10)]

 Ch4pp =

normV4[int(seperationPoints[1]):int(seperationPoints[1]+Fs+10)]

 ## Channel 1

 f1, t1, Zxx1 = sig.stft(Ch1pp, Fs, nperseg=75)

 fig1 = plt.figure(frameon=False)

 ax1 = plt.Axes(fig1, [0., 0., 1., 1.])

 plt.pcolormesh(t1, f1, np.abs(Zxx1), shading='gouraud', cmap='gray')

 plt.axis('off')

 plt.ylim([70, 500])

 ax1.set_axis_off()

 plt.tight_layout()

 plt.show()

 fig1.savefig('Temp/STFTTestingFigureCh1.png', bbox_inches='tight',

pad_inches=0)

 ## Channel 2

 f2, t2, Zxx2 = sig.stft(Ch2pp, Fs, nperseg=75)

 fig1 = plt.figure(frameon=False)

 ax1 = plt.Axes(fig1, [0., 0., 1., 1.])

 plt.pcolormesh(t2, f2, np.abs(Zxx2), shading='gouraud', cmap='gray')

 plt.axis('off')

 plt.ylim([70, 500])

 ax1.set_axis_off()

 plt.tight_layout()

 plt.show()

 fig1.savefig('Temp/STFTTestingFigureCh2.png', bbox_inches='tight',

pad_inches=0)

 ##Channel 3

 f3, t3, Zxx3 = sig.stft(Ch3pp, Fs, nperseg=75)

 fig1 = plt.figure(frameon=False)

 ax1 = plt.Axes(fig1, [0., 0., 1., 1.])

 plt.pcolormesh(t3, f3, np.abs(Zxx3), shading='gouraud', cmap='gray')

 plt.axis('off')

 plt.ylim([70, 500])

 ax1.set_axis_off()

 plt.tight_layout()

 plt.show()

 fig1.savefig('Temp/STFTTestingFigureCh3.png', bbox_inches='tight',

pad_inches=0)

 ## Channel 4

 f4, t4, Zxx4 = sig.stft(Ch4pp, Fs, nperseg=75)

 fig1 = plt.figure(frameon=False)

Appendix F | 138

 ax1 = plt.Axes(fig1, [0., 0., 1., 1.])

 plt.pcolormesh(t4, f4, np.abs(Zxx4), shading='gouraud', cmap='gray')

 plt.axis('off')

 plt.ylim([90, 500])

 ax1.set_axis_off()

 plt.tight_layout()

 plt.show()

 fig1.savefig('Temp/STFTTestingFigureCh4.png', bbox_inches='tight',

pad_inches=0)

 if Num in range(0, 7):

 nameTrain = str(countTrain)

 countTrain += 1

 FileName = FolderSTFTTraining + "/" + nameTrain + '.png'

 print(FileName)

 ProcessConcat('Temp/STFTTestingFigureCh1.png',

'Temp/STFTTestingFigureCh2.png', 'Temp/STFTTestingFigureCh3.png',

'Temp/STFTTestingFigureCh4.png', FileName)

 if Num in range(7, 9):

 nameVal = str(countVal)

 countVal += 1

 FileName = FolderValTesting + "/" + nameVal + '.png'

 print(FileName)

 ProcessConcat('Temp/STFTTestingFigureCh1.png',

'Temp/STFTTestingFigureCh2.png', 'Temp/STFTTestingFigureCh3.png',

'Temp/STFTTestingFigureCh4.png', FileName)

 if Num in range(9, 11):

 nameTest = str(countTest)

 countTest += 1

 FileName = FolderSTFTTesting + "/" + nameTest + '.png'

 print(FileName)

 ProcessConcat('Temp/STFTTestingFigureCh1.png',

'Temp/STFTTestingFigureCh2.png', 'Temp/STFTTestingFigureCh3.png',

'Temp/STFTTestingFigureCh4.png', FileName)

 os.remove("Temp/STFTTestingFigureCh1.png")

 os.remove("Temp/STFTTestingFigureCh2.png")

 os.remove("Temp/STFTTestingFigureCh3.png")

 os.remove("Temp/STFTTestingFigureCh4.png")

def figure_makerTesting(data):

 time = data[150:len(data)-1, 1]

 Ch1 = data[150:len(data)-1, 2]

 Ch2 = data[150:len(data) - 1, 3]

 Ch3 = data[150:len(data) - 1, 4]

 Ch4 = data[150:len(data) - 1, 5]

Appendix F | 139

 Fs = 4000/3.5

 detenCh1 = sig.detrend(Ch1)

 detenCh2 = sig.detrend(Ch2)

 detenCh3 = sig.detrend(Ch3)

 detenCh4 = sig.detrend(Ch4)

 filter = sig.butter(2, [70,550], 'bandpass', fs=Fs, output='sos')

 corrCh1 = sig.sosfilt(filter, detenCh1)

 corrCh1 = (corrCh1*5)/1023

 corrCh2 = sig.sosfilt(filter, detenCh2)

 corrCh2 = (corrCh2*5)/1023

 corrCh3 = sig.sosfilt(filter, detenCh3)

 corrCh3 = (corrCh3*5)/1023

 corrCh4 = sig.sosfilt(filter, detenCh4)

 corrCh4 = (corrCh4*5)/1023

 maxV1 = max(corrCh1)

 normV1 = corrCh1 / maxV1

 maxV2 = max(corrCh2)

 normV2 = corrCh2 / maxV2

 maxV3 = max(corrCh3)

 normV3 = corrCh3 / maxV3

 maxV4 = max(corrCh4)

 normV4 = corrCh4 / maxV4

 seperationPoints = SepWithSTFT(normV1, normV2, normV3, normV4, time, Fs)

 if len(seperationPoints) > 1:

 if len(seperationPoints) <= 2:

 Ch1pp =

normV1[int(seperationPoints[0]):int(seperationPoints[0]+Fs+10)]

 Ch2pp =

normV2[int(seperationPoints[0]):int(seperationPoints[0]+Fs+10)]

 Ch3pp =

normV3[int(seperationPoints[0]):int(seperationPoints[0]+Fs+10)]

 Ch4pp =

normV4[int(seperationPoints[0]):int(seperationPoints[0]+Fs+10)]

 if len(seperationPoints) > 2:

 Ch1pp =

normV1[int(seperationPoints[1]):int(seperationPoints[1]+Fs+10)]

 Ch2pp =

normV2[int(seperationPoints[1]):int(seperationPoints[1]+Fs+10)]

 Ch3pp =

normV3[int(seperationPoints[1]):int(seperationPoints[1]+Fs+10)]

 Ch4pp =

normV4[int(seperationPoints[1]):int(seperationPoints[1]+Fs+10)]

Appendix F | 140

 ## Channel 1

 f1, t1, Zxx1 = sig.stft(Ch1pp, Fs, nperseg=150)

 fig1 = plt.figure(frameon=False)

 ax1 = plt.Axes(fig1, [0., 0., 1., 1.])

 plt.pcolormesh(t1, f1, np.abs(Zxx1), shading='gouraud', cmap='gray')

 plt.axis('off')

 plt.ylim([70, 500])

 ax1.set_axis_off()

 plt.tight_layout()

 # plt.show()

 fig1.savefig('Temp/STFTTestingFigureCh1.png', bbox_inches='tight',

pad_inches=0)

 ## Channel 2

 f2, t2, Zxx2 = sig.stft(Ch2pp, Fs, nperseg=150)

 fig1 = plt.figure(frameon=False)

 ax1 = plt.Axes(fig1, [0., 0., 1., 1.])

 plt.pcolormesh(t2, f2, np.abs(Zxx2), shading='gouraud', cmap='gray')

 plt.axis('off')

 plt.ylim([70, 500])

 ax1.set_axis_off()

 plt.tight_layout()

 # plt.show()

 fig1.savefig('Temp/STFTTestingFigureCh2.png', bbox_inches='tight',

pad_inches=0)

 ##Channel 3

 f3, t3, Zxx3 = sig.stft(Ch3pp, Fs, nperseg=150)

 fig1 = plt.figure(frameon=False)

 ax1 = plt.Axes(fig1, [0., 0., 1., 1.])

 plt.pcolormesh(t3, f3, np.abs(Zxx3), shading='gouraud', cmap='gray')

 plt.axis('off')

 plt.ylim([70, 500])

 ax1.set_axis_off()

 plt.tight_layout()

 # plt.show()

 fig1.savefig('Temp/STFTTestingFigureCh3.png', bbox_inches='tight',

pad_inches=0)

 ## Channel 4

 f4, t4, Zxx4 = sig.stft(Ch4pp, Fs, nperseg=150)

 fig1 = plt.figure(frameon=False)

 ax1 = plt.Axes(fig1, [0., 0., 1., 1.])

 plt.pcolormesh(t4, f4, np.abs(Zxx4), shading='gouraud', cmap='gray')

 plt.axis('off')

 plt.ylim([90, 500])

 ax1.set_axis_off()

 plt.tight_layout()

Appendix F | 141

 fig1.savefig('Temp/STFTTestingFigureCh4.png', bbox_inches='tight',

pad_inches=0)

 FileName = "Temp/Test.png"

 print(FileName)

 ProcessConcat('Temp/STFTTestingFigureCh1.png',

'Temp/STFTTestingFigureCh2.png', 'Temp/STFTTestingFigureCh3.png',

'Temp/STFTTestingFigureCh4.png', FileName)

 os.remove("Temp/STFTTestingFigureCh1.png")

 os.remove("Temp/STFTTestingFigureCh2.png")

 os.remove("Temp/STFTTestingFigureCh3.png")

 os.remove("Temp/STFTTestingFigureCh4.png")

def figure_makerMeth2AutoSize(data, FolderSTFTTraining, FolderSTFTTesting,

FolderValTesting, FileName):

 TrainingDirectory = [f for f in listdir(FolderSTFTTraining)]

 TestDirectory = [f for f in listdir(FolderSTFTTesting)]

 ValidationDirectory = [f for f in listdir(FolderValTesting)]

 countTrain = int(len(TrainingDirectory))

 countTest = int(len(TestDirectory))

 countVal = int(len(ValidationDirectory))

 data = np.delete(data, 0, 1)

 ChannelNum = len(data[0]) - 1

 print(ChannelNum)

 Fs = 4000 / 3.5

 time = data[200:len(data) - 1, 0]

 row = len(time)

 print(row)

 col = len(data[0]) - 1

 print(col)

 normData = np.empty(shape=(row, col))

 for ch in range(ChannelNum):

 Detrend = sig.detrend(data[200:len(data) - 1, ch + 1])

 filter = sig.butter(2, [70, 550], 'bandpass', fs=Fs, output='sos')

 corrdet = sig.sosfilt(filter, Detrend)

 corrdet = (corrdet * 5) / 1023

 maxVal = max(corrdet)

 normData[:, ch] = corrdet #/ maxVal

 Num = random.randint(0, 10)

 seperationPoints = SepWithSTFTAuto(normData, time, Fs)

 if len(seperationPoints)>1 and len(seperationPoints)<=5:

 for ch in range(ChannelNum):

Appendix F | 142

 if len(seperationPoints) <= 2:

 Ch1pp =

normData[int(seperationPoints[0]):int(seperationPoints[0]+Fs+10), ch]

 if len(seperationPoints) > 2:

 Ch1pp =

normData[int(seperationPoints[1]):int(seperationPoints[1]+Fs+10), ch]

 f1, t1, Zxx1 = sig.stft(Ch1pp, Fs, nperseg=75)

 fig1 = plt.figure(frameon=False)

 ax1 = plt.Axes(fig1, [0., 0., 1., 1.])

 plt.pcolormesh(t1, f1, np.abs(Zxx1), shading='gouraud',

cmap='gray')

 plt.axis('off')

 plt.ylim([70, 500])

 ax1.set_axis_off()

 plt.tight_layout()

 plt.show()

 Figname = 'Temp/STFTTestingFigure'+ str(ch) + '.png'

 fig1.savefig(Figname, bbox_inches='tight', pad_inches=0)

 if Num in range(0, 7):

 nameTrain = str(countTrain)

 countTrain += 1

 FileName = FolderSTFTTraining + "/" + nameTrain + '.png'

 Figures = os.listdir("Temp/")

 print(FileName)

 print(Figures)

 ProcessConcatAuto(Figures, FileName)

 if Num in range(7, 9):

 nameVal = str(countVal)

 countVal += 1

 FileName = FolderValTesting + "/" + nameVal + '.png'

 Figures = os.listdir("Temp/")

 print(FileName)

 print(Figures)

 ProcessConcatAuto(Figures, FileName)

 if Num in range(9, 11):

 nameTest = str(countTest)

 countTest += 1

 FileName = FolderSTFTTesting + "/" + nameTest + '.png'

 Figures = os.listdir("Temp/")

 print(FileName)

 print(Figures)

 ProcessConcatAuto(Figures, FileName)

 for i in Figures:

 FigureName = "Temp/"+i

 os.remove(FigureName)

Appendix F | 143

F.4. SectionCutting.py

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

import scipy.signal as sig

from random import randint

def SectionCutting(V, t, FileName):

 seperation = []

 seperation.append(0)

 time = t

 voltage = V

 uplowBoundNull = 0.1

 perofMaxVal = 0.7

 binSize = 100

 perNullDen = 0.6

 perMaxDen = 0.7

 t = time[0: 70000]

 fderenV = V[0: 70000]

 maxVal = max(fderenV)

 Nullpeaks, _ = sig.find_peaks(fderenV, height=(-uplowBoundNull,

uplowBoundNull))

 peaks, _ = sig.find_peaks(fderenV, height=perofMaxVal*maxVal)

 plt.plot(t, fderenV, linewidth=0.05)

 plt.scatter(t[peaks], fderenV[peaks], color='red')

 plt.show()

 f, (a0, a1, a2) = plt.subplots(3, 1, gridspec_kw={'height_ratios':

[10,3,3]})

 a0.plot(t, fderenV, linewidth=0.1, label="Signal")

 a0.scatter(t[Nullpeaks], fderenV[Nullpeaks], color='red', label="Low

amplitude peaks")

 a0.scatter(t[peaks], fderenV[peaks], color='green', label="Large amplitude

peak")

 NullpeakDensity, NullpeakRange, _ = a1.hist(Nullpeaks, bins=binSize,

facecolor='r', alpha=1, edgecolor='k', linewidth=1)

 peakDensity, peakRange, _ = a2.hist(peaks, bins=binSize, facecolor='g',

alpha=1, edgecolor='k', linewidth=1)

 plt.show()

 NullmaxDensity = max(NullpeakDensity)

 maxDensity = max(peakDensity)

 interestingNullPeakDis = []

Appendix F | 144

 interestingPeakDis = []

 for i in range(len(peakDensity)):

 if NullpeakDensity[i]>= perNullDen* NullmaxDensity:

 interestingNullPeakDis.append(i)

 for i in range(len(peakDensity)):

 if peakDensity[i]>= perMaxDen*maxDensity:

 interestingPeakDis.append(i)

 for i in range(len(interestingNullPeakDis)):

 if interestingNullPeakDis[i] in interestingPeakDis:

 interestingNullPeakDis[i] = ''

 chekcer = True

 while chekcer:

 if '' in interestingNullPeakDis:

 interestingNullPeakDis.remove('')

 else:

 chekcer = False

 NullpeakRange = np.insert(NullpeakRange, 0, 0)

 for i in range(len(interestingNullPeakDis)):

 place = interestingNullPeakDis[i]+2

 seperation.append(int((NullpeakRange[place])))

 for i in range(5):

 for i in range(0,len(seperation)-1):

 if seperation[i]+3000 >= seperation[i+1]:

 NewSep = (seperation[i] + seperation[i+1])/2 - randint(50,

500)

 seperation[i] = ''

 seperation[i+1] = int(NewSep)

 chekcer = True

 while chekcer:

 if '' in seperation:

 seperation.remove('')

 else:

 chekcer = False

 from mutagen.wave import WAVE

 fileName = FileName.replace("TrainingData\\", '')

 AudioFileName = fileName.split('-')

 AudioFileName = "AudioOriginal/"+AudioFileName[0]+'.wav'

 audio = WAVE(AudioFileName)

 audio_info = audio.info

 length = int(audio_info.length)

Appendix F | 145

 for i in range(0,len(seperation)-1):

 if seperation[i] + length*4000*0.7 >= seperation[i + 1]:

 seperation[i+1] = 0

 chekcer = True

 while chekcer:

 if 0 in seperation:

 seperation.remove(0)

 else:

 chekcer = False

 fig1 = plt.figure()

 plt.plot(t, fderenV, linewidth=0.1, label="Signal")

 plt.scatter(t[seperation], fderenV[seperation], color='red', label =

"Seperation Points")

 plt.show()

 displacemetData = 750

 whileChecker = True

 while whileChecker:

 if seperation[len(seperation)-1]+70000<=len(voltage):

 t = time[seperation[len(seperation)-1]-displacemetData:

seperation[len(seperation)-1]+80000]

 fderenV = voltage[seperation[len(seperation)-1]-displacemetData:

seperation[len(seperation)-1]+80000]

 maxVal = max(fderenV)

 NewSection = []

 Nullpeaks, _ = sig.find_peaks(fderenV, height=(-uplowBoundNull,

uplowBoundNull))

 peaks, _ = sig.find_peaks(fderenV, height=perofMaxVal * maxVal)

 plt.plot(t, fderenV, linewidth=0.05)

 plt.scatter(t[Nullpeaks], fderenV[Nullpeaks], color='red')

 plt.scatter(t[peaks], fderenV[peaks], color='green')

 NullpeakDensity, NullpeakRange, _ = plt.hist(Nullpeaks,

bins=binSize, facecolor='r', alpha=1, edgecolor='k', linewidth=1)

 peakDensity, peakRange, _ = plt.hist(peaks, bins=binSize,

facecolor='g', alpha=1, edgecolor='k', linewidth=1)

 plt.close()

 NullmaxDensity = max(NullpeakDensity)

 maxDensity = max(peakDensity)

 interestingNullPeakDis = []

Appendix F | 146

 interestingPeakDis = []

 for i in range(len(peakDensity)):

 if NullpeakDensity[i] >= perNullDen * NullmaxDensity:

 interestingNullPeakDis.append(i)

 for i in range(len(peakDensity)):

 if peakDensity[i] >= perMaxDen * maxDensity:

 interestingPeakDis.append(i)

 for i in range(len(interestingNullPeakDis)):

 if interestingNullPeakDis[i] in interestingPeakDis:

 interestingNullPeakDis[i] = ''

 chekcer = True

 while chekcer:

 if '' in interestingNullPeakDis:

 interestingNullPeakDis.remove('')

 else:

 chekcer = False

 NullpeakRange = np.insert(NullpeakRange, 0, 0)

 for i in range(len(interestingNullPeakDis)):

 place = interestingNullPeakDis[i] + 2

 NewSection.append(int((NullpeakRange[place])))

 for j in range(10):

 for i in range(len(NewSection) - 1):

 if NewSection[i] + length * 4000*0.7 >= NewSection[i + 1]

and NewSection[i] + length * 4000*0.7 <= NewSection[i + 1]:

 NewSection[i + 1] = 0

 chekcer = True

 while chekcer:

 if 0 in NewSection:

 NewSection.remove(0)

 else:

 chekcer = False

 for j in range(10):

 for i in range(0, len(NewSection) - 1):

 if NewSection[i] + 2000 >= NewSection[i + 1]:

 NewSep = (NewSection[i] + NewSection[i + 1]) / 2 -

randint(50, 100)

 NewSection[i] = ''

 NewSection[i + 1] = int(NewSep)

 chekcer = True

 while chekcer:

Appendix F | 147

 if '' in NewSection:

 NewSection.remove('')

 else:

 chekcer = False

 for i in range(2):

 for i in range(len(NewSection) - 1):

 if NewSection[i] + length * 4000*0.7 >= NewSection[i + 1]:

 NewSection[i + 1] = 0

 chekcer = True

 while chekcer:

 if 0 in NewSection:

 NewSection.remove(0)

 else:

 chekcer = False

 plt.plot(t, fderenV, linewidth=0.05)

 plt.scatter(t[NewSection], fderenV[NewSection], color='red')

 plt.show()

 previousSep = seperation[len(seperation) - 1]

 for i in range(1,len(NewSection)):

 seperation.append(NewSection[i]+previousSep-displacemetData)

 else:

 whileChecker = False

 return(seperation)

def SectionCuttingTesting(V, t):

 seperation = []

 t = t

 fderenV = V

 maxVal = max(fderenV)

 Nullpeaks, _ = sig.find_peaks(fderenV, height=(-0.07, 0.07))

 Nullpeaks = np.transpose(Nullpeaks)

 peaks, _ = sig.find_peaks(fderenV, height=0.5*maxVal)

 f, (a0, a1, a2) = plt.subplots(3, 1, gridspec_kw={'height_ratios': [7, 2,

2]})

 a0.plot(t, fderenV, linewidth=0.05)

 NullpeakDensity, NullpeakRange, _ = a1.hist(Nullpeaks, bins=60,

facecolor='r', alpha=1, edgecolor='k', linewidth=1)

Appendix F | 148

 peakDensity, peakRange, _ = a2.hist(peaks, bins=60, facecolor='g',

alpha=1, edgecolor='k', linewidth=1)

 f.tight_layout()

 NullmaxDensity = max(NullpeakDensity)

 maxDensity = max(peakDensity)

 interestingNullPeakDis = []

 interestingPeakDis = []

 for i in range(len(peakDensity)):

 if NullpeakDensity[i]>= 0.8* NullmaxDensity:

 interestingNullPeakDis.append(i)

 for i in range(len(peakDensity)):

 if peakDensity[i]>= 0.5* maxDensity:

 interestingPeakDis.append(i)

 for i in range(len(interestingNullPeakDis)):

 if interestingNullPeakDis[i] in interestingPeakDis:

 interestingNullPeakDis[i] = ''

 chekcer = True

 while chekcer:

 if '' in interestingNullPeakDis:

 interestingNullPeakDis.remove('')

 else:

 chekcer = False

 NullpeakRange = np.insert(NullpeakRange, 0, 0)

 for i in range(len(interestingNullPeakDis)):

 place = interestingNullPeakDis[i]+2

 seperation.append(int((NullpeakRange[place])))

 for i in range(5):

 for i in range(0,len(seperation)-1):

 if seperation[i]+3000 >= seperation[i+1]:

 NewSep = (seperation[i] + seperation[i+1])/2 - randint(50,

500)

 seperation[i] = ''

 seperation[i+1] = int(NewSep)

 chekcer = True

 while chekcer:

 if '' in seperation:

 seperation.remove('')

 else:

 chekcer = False

 diffLow = []

 return(seperation)

Appendix F | 149

def SepWithSTFT(normV1, normV2, normV3, normV4, t, Fs):

 inst = 100

 f1, t1, Zxx1 = sig.stft(normV1, Fs, nperseg=inst)

 fig1 = plt.figure(frameon=False)

 ax1 = plt.Axes(fig1, [0., 0., 1., 1.])

 plt.pcolormesh(t1, f1, np.abs(Zxx1), shading='gouraud')

 ax1.set_axis_off()

 plt.tight_layout()

 f2, t2, Zxx2 = sig.stft(normV2, Fs, nperseg=inst)

 fig1 = plt.figure(frameon=False)

 ax1 = plt.Axes(fig1, [0., 0., 1., 1.])

 plt.pcolormesh(t2, f2, np.abs(Zxx2), shading='gouraud')

 ax1.set_axis_off()

 plt.tight_layout()

 plt.show()

 f3, t3, Zxx3 = sig.stft(normV3, Fs, nperseg=inst)

 fig1 = plt.figure(frameon=False)

 ax1 = plt.Axes(fig1, [0., 0., 1., 1.])

 plt.pcolormesh(t3, f3, np.abs(Zxx3), shading='gouraud')

 ax1.set_axis_off()

 plt.tight_layout()

 plt.show()

 f4, t4, Zxx4 = sig.stft(normV4, Fs, nperseg=inst)

 fig1 = plt.figure(frameon=False)

 ax1 = plt.Axes(fig1, [0., 0., 1., 1.])

 plt.pcolormesh(t4, f4, np.abs(Zxx4), shading='gouraud')

 ax1.set_axis_off()

 plt.tight_layout()

 plt.show()

 z1 = abs(Zxx1)

 z2 = abs(Zxx2)

 z3 = abs(Zxx3)

 z4 = abs(Zxx4)

 count = 0

 for i in f1:

 if round(i) == 80:

 #print(count)

 minFreq = count

 continue

 count = count + 1

 maxz1 = max(z1[minFreq])

 maxz2 = max(z2[minFreq])

Appendix F | 150

 maxz3 = max(z3[minFreq])

 maxz4 = max(z4[minFreq])

 z = [z1[minFreq], z2[minFreq], z3[minFreq], z4[minFreq]]

 Zs = [maxz1, maxz2, maxz3, maxz4]

 maxZ = max(Zs)

 indexZ = Zs.index(maxZ)

 z = z[indexZ]

 upperLim = max(z) * 0.55

 Nullpeaks, _ = sig.find_peaks(z, height=upperLim)

 plt.plot(t1, z)

 plt.scatter(t1[Nullpeaks], z[Nullpeaks])

 def truncate(n, decimals=0):

 multiplier = 10 ** decimals

 return int(n * multiplier) / multiplier

 plt.plot(t, normV1, label="Channel 1", linewidth=0.5, alpha=0.3)

 plt.scatter(t1[Nullpeaks], z[Nullpeaks], color='k')

 # plt.show()

 adjPe = inst / 2

 Sectioning = Nullpeaks*adjPe

 plt.close()

 return Sectioning

def SepWithSTFTAuto(data, time, Fs):

 inst = 100

 normV1 = data[0:len(time), 0]

 f, t, Zxx = sig.stft(normV1, Fs, nperseg=inst)

 fig = plt.figure(frameon=False)

 ax1 = plt.Axes(fig, [0., 0., 1., 1.])

 plt.pcolormesh(t, f, np.abs(Zxx), shading='gouraud')

 ax1.set_axis_off()

 plt.tight_layout()

 plt.show()

 z1 = abs(Zxx)

 count = 0

 for i in f:

 if round(i) == 80:

 minFreq = count

 continue

 count = count + 1

 z = z1[minFreq]

 upperLim = max(z) * 0.50

Appendix F | 151

 Nullpeaks, _ = sig.find_peaks(z, height=upperLim)

 plt.plot(t, z)

 plt.scatter(t[Nullpeaks], z[Nullpeaks])

 plt.show()

 def truncate(n, decimals=0):

 multiplier = 10 ** decimals

 return int(n * multiplier) / multiplier

 plt.plot(time, normV1, label="Channel 1", linewidth=0.5, alpha=0.3)

 plt.scatter(t[Nullpeaks], z[Nullpeaks], color='k')

 plt.show()

 print(Nullpeaks)

 if len(Nullpeaks) >1:

 adjPe = int(inst / 2)

 Sectioning = Nullpeaks*adjPe

 f, t, Zxx = sig.stft(normV1[Nullpeaks[0] * adjPe: Nullpeaks[1] *

adjPe], Fs, nperseg=inst)

 fig1 = plt.figure(frameon=False)

 ax1 = plt.Axes(fig1, [0., 0., 1., 1.])

 plt.pcolormesh(t, f, np.abs(Zxx), shading='gouraud')

 ax1.set_axis_off()

 plt.tight_layout()

 plt.show()

 else:

 Sectioning = [0]

 return Sectioning

Appendix F | 152

F.5. MachineLearning.py

import matplotlib.pyplot as plt

import seaborn as sns

import os

os.environ["CUDA_VISIBLE_DEVICES"]="-1"

import tensorflow.keras

from tensorflow.keras import Sequential

from tensorflow.keras.layers import Dense, Conv2D, MaxPool2D, Flatten,

Dropout, Softmax

from keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras.optimizers import Adam

from Labeler_Data import get_data

from sklearn.metrics import classification_report,confusion_matrix

from keras.utils.vis_utils import plot_model

import pydot

from datetime import datetime

from packaging import version

from tensorflow.keras import regularizers

import tensorflow as tf

import numpy as np

def CNN_Training(folderTraining, folderTesting, ep, LearningRate, dataType,

img_size, label):

 #img_size = 32

 CAT = label

 trainData = get_data(folderTraining, img_size, labels=CAT)

 x_train = []

 y_train = []

 for feature, label in trainData:

 x_train.append(feature)

 y_train.append(label)

 # Normalize the data

 x_train = np.array(x_train) / 255

 x_train.reshape(-1, img_size, img_size, 1)

 y_train = np.array(y_train)

 testData = get_data(folderTesting, img_size, labels= CAT)

 x_val = []

 y_val = []

Appendix F | 153

 for feature, label in testData:

 x_val.append(feature)

 y_val.append(label)

 x_val = np.array(x_val) / 255

 x_val.reshape(-1, img_size, img_size, 1)

 y_val = np.array(y_val)

 num_labels = len(CAT)

 datagen = ImageDataGenerator(

 featurewise_center=False, # set input mean to 0 over the dataset

 samplewise_center=False, # set each sample mean to 0

 featurewise_std_normalization=False, # divide inputs by std of

the dataset

 samplewise_std_normalization=False, # divide each input by its

std

 zca_whitening=False, # apply ZCA whitening

 rotation_range = False, # randomly rotate images in the range

(degrees, 0 to 180)

 zoom_range = False,#0.3, # Randomly zoom image

 width_shift_range=False,#0.2, # randomly shift images

horizontally (fraction of total width)

 height_shift_range=False, # randomly shift images vertically

(fraction of total height)

 horizontal_flip = False, # randomly flip images

 vertical_flip=False) # randomly flip images

 datagen.fit(x_train)

 logdir = "logs/fit/" + datetime.now().strftime("%Y%m%d-%H%M%S")

 tensorboard_callback =

tensorflow.keras.callbacks.TensorBoard(log_dir=logdir)

 model = Sequential()

 model.add(Conv2D(35, 5, padding="same", activation="relu",

input_shape=x_train.shape[1:]))

 model.add(MaxPool2D(pool_size=(2, 2), strides=3))

 model.add(Dropout(0.25))

 model.add(Conv2D(65, 5, padding="same", activation="relu"))

 model.add(MaxPool2D())

 model.add(Dropout(0.25))

 model.add(Flatten())

 model.add(Dense(128, activation="sigmoid",

 kernel_regularizer= regularizers.L1L2(l1=1e-5, l2=1e-4),

 bias_regularizer= regularizers.L2(1e-4),

 activity_regularizer= regularizers.L2(1e-5)))

Appendix F | 154

 model.add(Dense(128, activation="relu",

 kernel_regularizer= regularizers.L1L2(l1=1e-5, l2=1e-4),

 bias_regularizer= regularizers.L2(1e-4),

 activity_regularizer= regularizers.L2(1e-5)))

 model.add(Dropout(0.25))

 model.add(Dense(num_labels))

 model.summary()

 opt = Adam(lr=LearningRate)

 model.compile(optimizer = opt , loss =

tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) , metrics =

['accuracy'])

 history = model.fit(x_train,y_train,epochs = ep , validation_data =

(x_val, y_val), callbacks=[tensorboard_callback])

 acc = history.history['accuracy']

 val_acc = history.history['val_accuracy']

 loss = history.history['loss']

 val_loss = history.history['val_loss']

 epochs_range = range(ep)

 fig = plt.figure(figsize=(15, 15))

 plt.subplot(2, 2, 1)

 plt.plot(epochs_range, acc, label='Training Accuracy')

 plt.plot(epochs_range, val_acc, label='Validation Accuracy')

 plt.legend(loc='lower right')

 plt.title('Training and Validation Accuracy')

 plt.subplot(2, 2, 2)

 plt.plot(epochs_range, loss, label='Training Loss')

 plt.plot(epochs_range, val_loss, label='Validation Loss')

 plt.legend(loc='upper right')

 plt.title('Training and Validation Loss')

 plt.show()

 Name = "Figures/" + dataType+"AccurracyandErrorPlot.png"

 fig.savefig(Name, transparent=True, bbox_inches='tight')

 model.summary()

 return model, acc, val_acc, loss, val_loss

def TestingNetwrok(model, folderTesting, img_size, labels):

 testData = get_data(folderTesting, img_size, labels)

 x_val = []

 y_val = []

Appendix F | 155

 for feature, label in testData:

 x_val.append(feature)

 y_val.append(label)

 x_val = np.array(x_val) / 255

 x_val.reshape(-1, img_size, img_size, 1)

 y_val = np.array(y_val)

 #CAT = ['A', 'B', 'C', 'D', 'E', 'F']

 CAT = labels

 DegNum = int(labels[1])

 DegNum = str(DegNum)

 predictions = model.predict(x_val)

 predictions = np.argmax(predictions,axis=1)

 print(classification_report(y_val, predictions, target_names = CAT))

 fig = plt.figure()

 confusion_mtx = tf.math.confusion_matrix(y_val, predictions)

 sns.heatmap(confusion_mtx, xticklabels=CAT, yticklabels=CAT,

 annot=True, fmt='g')

 plt.rc('font', family='Helvetica')

 plt.xlabel('Prediction',fontsize=20)

 plt.xticks(rotation=90)

 plt.ylabel('Label',fontsize=20)

 plt.yticks(rotation=90)

 plt.show()

 Name = "Figures/" + DegNum + " Confusion Matrix.png"

 fig.savefig(Name, transparent=True, bbox_inches='tight')

 return y_val, predictions

def Save_CNN(model, Name):

 json_model = model.to_json()

 with open(Name, 'w') as json_file:

 json_file.write(json_model)

def CNN_TrainingImprove(folderTraining, folderTesting, ep, LearningRate,

dataType, img_size, label):

 #img_size = 32

 CAT = label

 trainData = get_data(folderTraining, img_size, labels=CAT)

 x_train = []

 y_train = []

 for feature, label in trainData:

 x_train.append(feature)

 y_train.append(label)

Appendix F | 156

 # Normalize the data

 x_train = np.array(x_train) / 255

 x_train.reshape(-1, img_size, img_size, 1)

 y_train = np.array(y_train)

 testData = get_data(folderTesting, img_size, labels= CAT)

 x_val = []

 y_val = []

 for feature, label in testData:

 x_val.append(feature)

 y_val.append(label)

 x_val = np.array(x_val) / 255

 x_val.reshape(-1, img_size, img_size, 1)

 y_val = np.array(y_val)

 num_labels = len(CAT)

 datagen = ImageDataGenerator(

 featurewise_center=False, # set input mean to 0 over the dataset

 samplewise_center=False, # set each sample mean to 0

 featurewise_std_normalization=False, # divide inputs by std of

the dataset

 samplewise_std_normalization=False, # divide each input by its

std

 zca_whitening=False, # apply ZCA whitening

 rotation_range = False, # randomly rotate images in the range

(degrees, 0 to 180)

 zoom_range = False,#0.3, # Randomly zoom image

 width_shift_range=False,#0.2, # randomly shift images

horizontally (fraction of total width)

 height_shift_range=False, # randomly shift images vertically

(fraction of total height)

 horizontal_flip = False, # randomly flip images

 vertical_flip=False) # randomly flip images

 datagen.fit(x_train)

 logdir = "logs/fit/" + datetime.now().strftime("%Y%m%d-%H%M%S")

 tensorboard_callback =

tensorflow.keras.callbacks.TensorBoard(log_dir=logdir)

 model = Sequential()

 model.add(Conv2D(8, 20,padding="same", activation="relu",

input_shape=x_train.shape[1:]))

 model.add(MaxPool2D())

Appendix F | 157

 model.add(Flatten())

 model.add(Dense(128,activation="relu"))

 model.add(Dropout(0.25))

 model.add(Dense(num_labels))

 model = tf.keras.models.load_model("DirectionRecCNN")

 model.summary()

 opt = Adam(lr=LearningRate, beta1=0.9, beta2=0.999, epsilon=1e-08,)

 model.compile(optimizer = opt , loss =

tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) , metrics =

['accuracy'])

 history = model.fit(x_train, y_train, epochs = ep , validation_data =

(x_val, y_val), callbacks=[tensorboard_callback])

 acc = history.history['accuracy']

 val_acc = history.history['val_accuracy']

 loss = history.history['loss']

 val_loss = history.history['val_loss']

 epochs_range = range(ep)

 fig = plt.figure(figsize=(15, 15))

 plt.subplot(2, 2, 1)

 plt.plot(epochs_range, acc, label='Training Accuracy')

 plt.plot(epochs_range, val_acc, label='Validation Accuracy')

 plt.legend(loc='lower right')

 plt.title('Training and Validation Accuracy')

 plt.subplot(2, 2, 2)

 plt.plot(epochs_range, loss, label='Training Loss')

 plt.plot(epochs_range, val_loss, label='Validation Loss')

 plt.legend(loc='upper right')

 plt.title('Training and Validation Loss')

 plt.show()

 Name = dataType+"AccurracyandErrorPlot.png"

 fig.savefig(Name, transparent=True, bbox_inches='tight')

 model.summary()

 return model, acc, val_acc, loss, val_loss

Appendix F | 158

F.6. Labeler_Data.py

import cv2

import os

import numpy as np

def get_data(data_dir, img_size, labels):

 data = []

 for label in labels:

 path = os.path.join(data_dir, label)

 class_num = labels.index(label)

 for img in os.listdir(path):

 try:

 img_arr = cv2.imread(os.path.join(path, img))[...,::-1]

 resized_arr = cv2.resize(img_arr, (img_size, img_size)) #

 data.append([resized_arr, class_num])

 except Exception as e:

 print(e)

 return np.array(data)

Appendix G | 159

Appendix G

Python code for real-time testing of the asymmetrical multichannel sensor with the

GitHub link: https://github.com/abmoineddini/MPhil_sound_localisation

Spatial Recognition.

import serial

import numpy as np

import time

from csv import writer

from Preprocessor import *

import cv2

import tensorflow as tf

from DataCollector import *

from tkinter import *

from DataSender import *

import random as rnd

import winsound

ws = Tk()

ws.title('Directional Recognition')

ws.geometry('1000x0750')

ws.config(bg='#000000')

mylabel = Label(ws,

 text="...",

 bg='#000000',

 fg='#ffffff',

 font='Times 100',

 width=50,

 height=10)

mylabel.pack()

ws.update()

countDown = 100

test = True

model = tf.keras.models.load_model("DirectionRecCNN")

FileAdd = []

COMPortMotor = "COM5"

currAng, MotorController = Inititialise(COMPortMotor)

time.sleep(1)

ws.update()

labels = os.listdir("Figure/Training")

labelsInt = []

for i in labels:

 labelsInt.append(int(i))

labelsInt.sort()

labelsOrd = []

https://github.com/abmoineddini/MPhil_sound_localisation

Appendix G | 160

for i in labelsInt:

 labelsOrd.append(str(i))

Increment = labelsInt[1]-labelsInt[0]

COMPort = 'COM6'

while test:

 div = rnd.randint(0, 12)

 angle = div * Increment

 currAng = AngleSet(angle, MotorController, currAng)

 Name = str(currAng)

 time.sleep(3)

 Period = 3

 [Channel1, Channel2, Channel3, Channel4, Time] = collectDataTest(COMPort,

Period)

 plt.show()

 plt.plot(Time, Channel1)

 plt.plot(Time, Channel2)

 plt.plot(Time, Channel3)

 plt.plot(Time, Channel4)

 plt.show()

 df = pd.read_csv("Temp/Test.csv")

 data = df.to_numpy()

 figure_makerTesting(data)

 PnGFile = "Temp/Test.png"

 while not os.path.isfile(PnGFile):

 [Channel1, Channel2, Channel3, Channel4, Time] =

collectDataTest(COMPort, Period)

 plt.plot(Time, Channel1)

 plt.plot(Time, Channel2)

 plt.plot(Time, Channel3)

 plt.plot(Time, Channel4)

 plt.show()

 df = pd.read_csv("Temp/Test.csv")

 data = df.to_numpy()

 figure_makerTesting(data)

 img_size = 64

 def Preprocess(path):

 img_arr = cv2.imread(path)[..., ::-1]

 resized_arr = cv2.resize(img_arr, (img_size, img_size))

 norm_arr = np.array(resized_arr) / 255

 return norm_arr.reshape(-1, img_size, img_size, 3)

 predict = model.predict([Preprocess("Temp/Test.png")])

 print(predict)

 predictVal = np.argmax(predict)

 os.remove("Temp/Test.png")

 os.remove("Temp/Test.csv")

Appendix G | 161

 text = labelsOrd[predictVal]

 preVal = labelsOrd[predictVal]

 Soundplay = True

 if countDown == 0:

 Test = False

 mylabel.config(text=text)

 FileAdd = [currAng, preVal]

 with open("Tracking/BlindTest.csv", 'a+', newline='') as f_object:

 writer_object = writer(f_object)

 writer_object.writerow(FileAdd)

 f_object.close()

 FileAdd =[]

 mylabel.pack()

 ws.update()

 if currAng <180:

 angle = 360

 elif currAng ==180:

 angle = 170

 currAng = AngleSet(angle, MotorController, currAng)

 angle = 360

 else:

 angle = -360

 currAng = AngleSet(angle, MotorController, currAng)

 time.sleep(5)

 mylabel.config(text='...')

 mylabel.pack()

 ws.update()

* The Preprocessing Speech recognition is the same as the one in in Appendix C

Section F.3.

Appendix H | 162

Appendix H

The device spatial testing rig design.

Appendix H | 163

H.1. Top and bottom acrylic sensor holder:

Top and bottom acrylic sensor holder were used to sandwich the sensor and minimise

the variation in movement of the sensor and clamping force between trials.

Appendix H | 164

H.2. Universal connector:

To mount the sensor to the rest of the rig.

Appendix H | 165

H.3. PLA 3D printed sensor holder:

To connect the sensor to the rest of the stage in the middle and allow for the speaker

to move freely around the sensor.

Appendix H | 166

H.4. Top aluminium stage mount:

To spread the load of the weight of the mouth simulator and the counterbalance

weight over the larger and reduce uneven loading on the stage.

Appendix H | 167

H.5. Counterbalance mass mount arm:

Aluminium arm to hold the counterbalance weight to the mount simulator.

Appendix H | 168

H.6. Mouth simulator mount arm:

Arm to hold a mount simulator with a cutout to allow for position adjustment.

Appendix H | 169

H.7. Bottom Aluminium stage mount:

To spread the load of the weight of the mouth simulator and the counterbalance

weight over the larger and reduce uneven loading on the stage.

Appendix H | 170

H.8.Acrylic offset mount:

This a intermediary offset mount that allow the rotary stage to connect to the

antivibration platform and allow for the wiring to pass underneath the stage.

Appendix I | 171

Appendix I

MATLAB code for Slicing STL file to get the waypoints.

Here is a link to the GitHub repository containing the MATLAB files and script along

with a examples: abmoineddini/Electrohydrodynamics_slicer: Custom slicer for the

Electrohydrodynamic printer (github.com)

This was a code is the modified version of the from a STL slicer by Sunil Bhandari.

Here is the link to the original code: slice_stl_create_path(triangles,slice_height) - File

Exchange - MATLAB Central (mathworks.com)

https://github.com/abmoineddini/Electrohydrodynamics_slicer
https://github.com/abmoineddini/Electrohydrodynamics_slicer
https://uk.mathworks.com/matlabcentral/fileexchange/62113-slice_stl_create_path-triangles-slice_height
https://uk.mathworks.com/matlabcentral/fileexchange/62113-slice_stl_create_path-triangles-slice_height

Appendix J | 172

Appendix J

Arduino code for controlling the 3axis control EHDP printer.

GitHub repository: https://github.com/abmoineddini/EHD_printer/tree/main

https://github.com/abmoineddini/EHD_printer/tree/main

Appendix J | 173

/* Arduino Mega ElectroHydrodynamics Machine

 * by: Amirbahador Moineddini

 * date: August 08th, 2022

 * V2 version of the Arduino EHD Printer

/* Pin Setup

 * X-Axis stepper motor driver board:

 * - STEP - pin 31

 * - DIR - pin 33

 * - MS1 - pin 29

 * - MS2 - pin 27

 * - MS3 - pin 25

 * - En - pin 23

 *

 * Y-Axis stepper motor driver board:

 * - STEP - pin 43

 * - DIR - pin 45

 * - MS1 - pin 41

 * - MS2 - pin 39

 * - MS3 - pin 37

 * - EN - pin 35

// MS1 MS2 MS3 Res

// 0 0 0 1

// 1 0 0 1/2

// 0 1 0 1/4

// 1 1 0 1/8

// 1 1 1 1/16

// Enable low => motors enabled

// xDir = HIGH => +X xDir = LOW => -X

// yDir = HIGH => -Y xDir = LOW => +Y

*/

// Declaring Controller Pins

const int xStep = 6;

const int xDir = 7;

const int xMS3 = 3;

const int xMS2 = 4;

const int xMS1 = 5;

const int yStep = 11;

const int yDir = 12;

const int yMS3 = 10;

const int yMS2 = 9;

const int yMS1 = 8;

Appendix J | 174

const int enPin = 2;

// Declaring microSwitches pins

const int xHome = 23;

const int yHome = 27;

int xVal;

int yVal;

// val = 1 => away from switch

// Val = 0 => Stage at home

// Counter and Homer

float xPos = 0;

float yPos = 0;

int Homer = 0;

int xStepSize = 0;

int yStepSize = 0;

int xStepsVal[]= {} // Array of x-direction waypoints obtained from the MATLAB

Code

int yStepsVal[]= {} // Array of y-direction waypoints obtained from the MATLAB

Code

int sz = 0;

int noXSteps = 0;

int noYSteps = 0;

int sumX = 0;

int sumY = 0;

int printStat = 0;

void hommingSequence(int xSpd, int ySpd);

void rotateMotors(int& noXSteps, int& noYSteps, int xSpd, int ySpd);

void StepSetx(int spd);

void StepSety(int spd);

void setup() {

 //Open serial communications

 Serial.begin(2000000);

 Serial.println("Starting Up....");

 //Define stepper pins as digital output pins

 pinMode(xStep,OUTPUT);

 pinMode(xDir,OUTPUT);

 pinMode(xMS1,OUTPUT);

 pinMode(xMS2,OUTPUT);

 pinMode(xMS3,OUTPUT);

 pinMode(yStep,OUTPUT);

 pinMode(yDir,OUTPUT);

 pinMode(yMS1,OUTPUT);

Appendix J | 175

 pinMode(yMS2,OUTPUT);

 pinMode(yMS3,OUTPUT);

 pinMode(enPin,OUTPUT);

 // Setting input microswitches pins

 pinMode(xHome, INPUT);

 pinMode(yHome, INPUT);

 //Set microstepping mode for stepper driver boards. Using 1.8 deg motor

angle (200 steps/rev) NEMA 17 motors (12V)

 //X-Axis motor: no micro stepping (MS1 Low, MS2 Low) = 1/16 deg/step (200

steps/rev)

 digitalWrite(xMS1,LOW);

 digitalWrite(xMS2,LOW);

 digitalWrite(xMS3,LOW);

 //Y-Axis motor: no micro stepping (MS1 Low, MS2 Low) = 1/16 deg/step (200

steps/rev)

 digitalWrite(yMS1,LOW);

 digitalWrite(yMS2,LOW);

 digitalWrite(yMS3,LOW);

 delay(5000);

}

void loop() {

 //Homing Sequence

 if (Homer == 0){

 StepSetx(1);

 StepSety(1);

 hommingSequence(700, 700);

 sz = sizeof(xStepsVal);

 Serial.print("Total number of steps = ");

 Serial.println(sz);

 for(int i =0; i<=sz/16; i++){

 sumX = sumX + xStepsVal[i];

 sumY = sumY + yStepsVal[i];

 }

 Serial.print("Total Travel = ");

 Serial.print(sumX);

 Serial.print(" y= ");

 Serial.println(sumY);

 if (sumX<0) //Set X-Axis rotation +X

 {

 digitalWrite(xDir,HIGH);

 }

 else{

Appendix J | 176

 digitalWrite(xDir,LOW);

 }

 for (int i=0; i<=sumX; i++){

 digitalWrite(xStep,HIGH);

 delayMicroseconds(300);

 digitalWrite(xStep,LOW);

 delayMicroseconds(300);

 }

 if (sumY<0) //Set X-Axis rotation +X

 {

 digitalWrite(yDir,LOW);

 }

 else{

 digitalWrite(yDir,HIGH);

 }

 for (int i=0; i<=sumY; i++){

 digitalWrite(yStep,HIGH);

 delayMicroseconds(700);

 digitalWrite(yStep,LOW);

 delayMicroseconds(700);

 }

 Homer = 1;

 Serial.println("Calibration Done!");

 }

 else{

 if (printStat == 0){

 Serial.print(Homer);

 Serial.print(" ");

 Serial.print("x = ");

 Serial.print(xVal);

 Serial.print(" ");

 Serial.print("y = ");

 Serial.println(yVal);

 Serial.println("Platformed is homed");

 digitalWrite(enPin,LOW);

 for (int i=0; i<=sz/14; i++){

 StepSetx(1);

 StepSety(1);

 noXSteps = xStepsVal[i];

 noYSteps = yStepsVal[i];

 rotateMotors(noXSteps, noYSteps, 700, 700);

 }

 printStat = 1;

 }

 else {

 digitalWrite(enPin, HIGH);

 Serial.println("Print Done");

Appendix J | 177

 }

 }

}

void hommingSequence(int xSpd, int ySpd){

 int xHomed = 0;

 int yHomed = 0;

 //Enable motor controllers

 digitalWrite(enPin, LOW);

 //Enable motor controllers

 digitalWrite(xDir,LOW);

 digitalWrite(yDir,LOW);

 while (xHomed == 0){

 xVal = digitalRead(xHome);

 if (xVal == 1){

 xHomed ++;

 digitalWrite(xDir,HIGH);

 for (int i=0; i<=5000; i++){

 digitalWrite(xStep,HIGH);

 delayMicroseconds(xSpd);

 digitalWrite(xStep,LOW);

 delayMicroseconds(xSpd);

 }

 xPos = 0;

 Serial.print("x-axis Homed");

 }

 else {

 digitalWrite(xStep,HIGH);

 delayMicroseconds(xSpd);

 digitalWrite(xStep,LOW);

 delayMicroseconds(xSpd);

 }

 }

 delay(1000);

 while (yHomed == 0){

 yVal = digitalRead(yHome);

 if (yVal == 1){

 yHomed ++;

 digitalWrite(yDir,HIGH);

 for (int i=0; i<=5000; i++){

 digitalWrite(yStep,HIGH);

 delayMicroseconds(ySpd);

 digitalWrite(yStep,LOW);

 delayMicroseconds(ySpd);

 }

Appendix J | 178

 yPos = 0;

 Serial.print("y-axis Homed");

 }

 else {

 digitalWrite(yStep,HIGH);

 delayMicroseconds(ySpd);

 digitalWrite(yStep,LOW);

 delayMicroseconds(ySpd);

 }

 }

 Homer = 1;

 Serial.println("Platformed is Homed");

 delay(5000);

}

void StepSetx(int spd){

 switch (spd) {

 case 1:

 // Full step

 //X-Axis motor: no micro stepping (MS1 Low, MS2 Low) = 1/16 deg/step (200

steps/rev)

 digitalWrite(xMS1,LOW);

 digitalWrite(xMS2,LOW);

 digitalWrite(xMS3,LOW);

 break;

 case 2:

 // 1/2 step

 //X-Axis motor: no micro stepping (MS1 Low, MS2 Low) = 1/16 deg/step (200

steps/rev)

 digitalWrite(xMS1,HIGH);

 digitalWrite(xMS2,LOW);

 digitalWrite(xMS3,LOW);

 break;

 case 3:

 // 1/4 step

 //X-Axis motor: no micro stepping (MS1 Low, MS2 Low) = 1/16 deg/step (200

steps/rev)

 digitalWrite(xMS1,LOW);

 digitalWrite(xMS2,HIGH);

 digitalWrite(xMS3,LOW);

 break;

 case 4:

 // 1/8 step

 //X-Axis motor: no micro stepping (MS1 Low, MS2 Low) = 1/16 deg/step (200

steps/rev)

 digitalWrite(xMS1,HIGH);

 digitalWrite(xMS2,HIGH);

 digitalWrite(xMS3,LOW);

Appendix J | 179

 break;

 case 5:

 // 1/2 step

 //X-Axis motor: no micro stepping (MS1 Low, MS2 Low) = 1/16 deg/step (200

steps/rev)

 digitalWrite(xMS1,HIGH);

 digitalWrite(xMS2,HIGH);

 digitalWrite(xMS3,HIGH);

 break;

 default:

 // 1/2 step

 //X-Axis motor: no micro stepping (MS1 Low, MS2 Low) = 1/16 deg/step (200

steps/rev)

 digitalWrite(xMS1,HIGH);

 digitalWrite(xMS2,HIGH);

 digitalWrite(xMS3,HIGH);

 break;

}

}

void StepSety(int spd){

 switch (spd) {

 case 1:

 // Full step

 //Y-Axis motor: no micro stepping (MS1 Low, MS2 Low) = 1/16 deg/step (200

steps/rev)

 digitalWrite(yMS1,LOW);

 digitalWrite(yMS2,LOW);

 digitalWrite(yMS3,LOW);

 break;

 case 2:

 // 1/2 step

 //Y-Axis motor: no micro stepping (MS1 Low, MS2 Low) = 1/16 deg/step (200

steps/rev)

 digitalWrite(yMS1,HIGH);

 digitalWrite(yMS2,LOW);

 digitalWrite(yMS3,LOW);

 break;

 case 3:

 // 1/4 step

 //Y-Axis motor: no micro stepping (MS1 Low, MS2 Low) = 1/16 deg/step (200

steps/rev)

 digitalWrite(yMS1,LOW);

 digitalWrite(yMS2,HIGH);

 digitalWrite(yMS3,LOW);

 break;

 case 4:

 // 1/8 step

Appendix J | 180

 //Y-Axis motor: no micro stepping (MS1 Low, MS2 Low) = 1/16 deg/step (200

steps/rev)

 digitalWrite(yMS1,HIGH);

 digitalWrite(yMS2,HIGH);

 digitalWrite(yMS3,LOW);

 break;

 case 5:

 // 1/2 step

 //Y-Axis motor: no micro stepping (MS1 Low, MS2 Low) = 1/16 deg/step (200

steps/rev)

 digitalWrite(yMS1,HIGH);

 digitalWrite(yMS2,HIGH);

 digitalWrite(yMS3,HIGH);

 break;

 default:

 // 1/2 step

 //Y-Axis motor: no micro stepping (MS1 Low, MS2 Low) = 1/16 deg/step (200

steps/rev)

 digitalWrite(yMS1,HIGH);

 digitalWrite(yMS2,HIGH);

 digitalWrite(yMS3,HIGH);

 break;

}

}

void rotateMotors(int& noXSteps, int& noYSteps, int xSpd, int ySpd){

 //Initialize while loop counter

 int totalSteps=0;

 int stepDelay=10;

 float xIncrement=0;

 float yIncrement=0;

 switch (xStepSize) {

 case 1:

 // Full Steps

 xIncrement = (0.5/200);

 break;

 case 2:

 // 1/2 Steps

 xIncrement = (0.5/200)/2;

 break;

 case 3:

 // 1/4 Steps

 xIncrement = (0.5/200)/4;

 break;

 case 4:

 // 1/8 Steps

 xIncrement = (0.5/200)/8;

 break;

 case 5:

Appendix J | 181

 // 1/16 Steps

 xIncrement = (0.5/200)/16;

 break;

 default:

 // 1/16 Steps

 xIncrement = (0.5/200)/16;

 break;

 }

 switch (yStepSize) {

 case 1:

 // Full Steps

 yIncrement = (0.5/200);

 break;

 case 2:

 // 1/2 Steps

 yIncrement = (0.5/200)/2;

 break;

 case 3:

 // 1/4 Steps

 yIncrement = (0.5/200)/4;

 break;

 case 4:

 // 1/8 Steps

 yIncrement = (0.5/200)/8;

 break;

 case 5:

 // 1/16 Steps

 yIncrement = (0.5/200)/16;

 break;

 default:

 // 1/16 Steps

 yIncrement = (0.5/200)/16;

 break;

 }

 //Set X-Axis motor rotation direction based on read value

 if (noXSteps<0) //Set X-Axis rotation +X

 {

 digitalWrite(xDir,LOW);

 }

 else //Set X-Axis rotation -X

 {

 digitalWrite(xDir,HIGH);

 xIncrement = -xIncrement;

 }

 //Set Y-Axis motor rotation direction based on read value

 if (noYSteps<0) //Set Y-Axis rotation to CCW

Appendix J | 182

 {

 digitalWrite(yDir,HIGH);

 yIncrement = -yIncrement;

 }

 else

 {

 digitalWrite(yDir,LOW);

 }

 //Calculate total number of steps for while loop indexing

 totalSteps=(abs(noXSteps)+abs(noYSteps))/16;

 //Get absolute value of steps

 noXSteps=abs(noXSteps)/16;

 noYSteps=abs(noYSteps)/16;

 //Move motors appropriate number of steps

 while (totalSteps>0){

 if (noXSteps>0) //Move X-Axis

 {

 //Move X-Axis one step

 digitalWrite(xStep, LOW); //LOW to HIGH changes creates the "Rising

Edge" so that the EasyDriver knows when to step.

 delayMicroseconds(xSpd);

 digitalWrite(xStep, HIGH);

 delayMicroseconds(xSpd);

 noXSteps=noXSteps-1; //Decrement remaining number of X-Axis steps

 totalSteps=totalSteps-1; //Decrement remaining number of total steps

 xPos += xIncrement;

 }

 if (noYSteps>0) //Move Y-Axis

 {

 //Move Y-Axis one step

 digitalWrite(yStep, LOW); //LOW to HIGH changes creates the "Rising

Edge" so that the EasyDriver knows when to step.

 delayMicroseconds(ySpd);

 digitalWrite(yStep, HIGH);

 delayMicroseconds(ySpd);

 yPos += yIncrement;

 noYSteps=noYSteps-1; //Decrement remaining number of Y-Axis steps

 totalSteps=totalSteps-1; //Decrement remaining number of total steps

 }

 }

}

Appendix K | 183

Appendix K

The circuit board diagram for the Arduino Mega Shield used to control the EHD

printer. The Circuit was designed in KiCad.

Appendix K | 184

Circuit layout highlighting Top routs:

Circuit layout highlighting Bottom routs:

Appendix K | 185

Top view:

Bottom View:

Appendix K | 186

Isometric View of circuit board

