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Key Points 

 

Question: Which individual symptoms of psychopathology does genetic risk associate with? 

 

Findings: Combining psychological network and polygenic score approaches, this 

observational study (N=5,521) shows polygenic scores for psychopathology-related traits are 

primarily associated with a restricted number of trait-relevant and cross-trait symptoms. 

Results replicate in an independent sample following preregistered analyses (N=4,625). 

 

Meaning: A shift from thinking of psychopathology at the disorder level to thinking about 

individual transdiagnostic symptoms may be beneficial to uncover novel insights in the 

development and comorbidity of psychopathology. Symptom-level analyses may be valuable 

in unravelling the complex (genetic) aetiology of psychiatric conditions and avoiding pitfalls 

resulting from disorder heterogeneity. 
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Abstract 

Importance: Studies on polygenic risk for psychiatric traits commonly employ a disorder-

level approach to phenotyping, implicitly considering disorders as homogenous constructs. 

However, symptom heterogeneity is ubiquitous, with many possible combinations of 

symptoms falling under the same disorder umbrella. Focusing on individual symptoms may 

shed light on the role of polygenic risk in psychopathology. 

Objective: To determine (i) whether polygenic scores associate with all symptoms of 

psychiatric disorders, or with a subset of indicators and (ii) whether polygenic scores 

associate with comorbid phenotypes via specific sets of relevant symptoms. 

Design: Data from two population-based cohort studies were used in the study. Data from 

children in the Avon Longitudinal Study of Parents and Children (ALSPAC) were included in 

the primary analysis, and data from children in the Twins Early Development Study (TEDS) 

were included in confirmatory analyses. Data analysis was conducted from October 2021 to 

January 2024.  

Setting: Pregnant women based in the Southwest of England due to deliver in 1991-1992 

were recruited in ALSPAC. Twins born in 1994-1996 were recruited in TEDS from 

population-based records.  

Participants: Participants with available genetic data and whose mothers completed the 

Short Mood and Feelings Questionnaire and the Strength and Difficulties Questionnaire 

when children were 11 years of age were included. 

Main outcomes and measures: Psychopathology relevant symptoms, such as 

hyperactivity, pro-sociality, depression, anxiety and peer and conduct problems at 11 years 

of age. Psychological networks were constructed including individual symptoms and 

polygenic scores for depression, anxiety, attention deficit-hyperactivity disorder (ADHD), 

Body Mass Index (BMI) and educational attainment (EA) in ALSPAC. Following a 

preregistered confirmatory analysis, network models were cross-validated in TEDS. 
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Results: We included 5,521 participants from ALSPAC (50.3% female) and 4,625 

participants from TEDS (53.2% female). Polygenic scores associate preferentially with 

restricted subsets of core symptoms and indirectly associate with other, more distal 

symptoms of psychopathology (network edges range between r=-0.074 and r=0.073). 

Psychiatric polygenic scores associate with specific cross-disorder symptoms, and non-

psychiatric polygenic scores associate with a variety of indicators across disorders, 

suggesting a contribution of non-psychiatric traits to comorbidity. For example, the polygenic 

score for ADHD associates with a core ADHD symptom, being easily distracted (r=0.07),  

and the polygenic score for BMI associates with symptoms across disorders, including being 

bullied (r=0.053), and not thinking things out (r=0.041).  

Conclusions and relevance: Genetic associations observed at the disorder level may hide 

symptom-level heterogeneity. A symptom-level approach may enable a better understanding 

of the role of polygenic risk in shaping psychopathology and comorbidity. 
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Genetic studies have consistently shown that many genetic variants, each exerting a small 

effect, are involved in complex human traits, and together contribute to the likelihood of 

developing psychiatric disorders.1 This polygenicity can be leveraged to compute polygenic 

scores (PGS), weighted sums of risk variants carried by an individual.2,3 PGS are a useful 

research tool indexing the genetic propensity to develop a particular psychiatric disorder, 

and have become instrumental in investigating the relationship between polygenic risk and 

psychiatric traits.  

Findings based on PGS partly depend on the operationalisation of heterogeneous 

phenotypes. Notably, psychiatric disorders include a broad variety of symptoms, which, in 

combination, lead to numerous clinical presentations. This heterogeneity in psychiatric 

symptoms may bias genetic findings.4 In fact, evidence shows that symptoms have different 

heritability estimates, with some genetic effects specific to individual symptoms.5–7 Similarly, 

symptoms are differentially impacted by environmental risk factors and treatment, and 

contribute differently to relapse risk.8–10 In addition, some frequently comorbid disorders 

share a number of symptoms. For example, depression and anxiety frequently co-occur, and 

both feature insomnia, concentration problems and fatigue.11 Findings on the shared genetic 

liability between comorbid disorders may therefore partly reflect a shared liability to 

transdiagnostic disorder features, such as endophenotypes or shared symptoms.  

Therefore, analysing unidimensional phenotypes, such as symptoms, can be more 

informative to uncover relationships between biology and psychopathology12 by better 

capturing the heterogeneity of psychiatric traits.13 Psychological network modelling is a 

recently developed statistical framework used to explore relationships between individual 

symptoms.14 Modelling observed variables as nodes (e.g., individual items on psychological 

scales), and their statistical associations as edges (e.g., partial correlations), networks allow 

for the visualisation of reciprocal dependencies between symptoms, as well as exploratory 

and confirmatory analyses.15 By focusing on a more granular, symptom-based phenotype, 

incorporating PGS in psychopathology networks can show whether PGS broadly associate 
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with all facets of a trait or relate specifically to a restricted set of symptoms, and whether 

PGS are associated with comorbid disorders via individual symptoms.  

Here, we aimed to investigate how polygenic risk for psychopathology-related traits 

associates with individual symptoms of childhood psychopathology. Firstly, we examined  

the network structure of childhood behavioural and emotional symptoms, in combination with 

PGS for depression, anxiety, ADHD, as well as Body Mass Index (BMI) and Educational 

Attainment (EA). Secondly, we tested how well our initial exploratory findings replicated in an 

independent sample with a preregistered confirmatory network analysis.
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Methods 

Sample 

The Avon Longitudinal Study of Parents and Children (ALSPAC) is a large birth 

cohort study based in the Southwest of England which includes data on mothers, fathers, 

and children.16,17 Pregnant women residing in Avon and expected to deliver between 1991 

and 1992 were recruited in the core sample (N=14,541), followed by additional recruitment 

waves adding 906 pregnancies (14,901 children alive at 1 year of age). Ethical approval for 

the study was obtained from the ALSPAC Ethics and Law Committee and the Local 

Research Ethics Committees. Informed consent was obtained following the 

recommendations of the ALSPAC Ethics and Law Committee. The study website contains 

details of data that is available through a fully searchable data dictionary 

(http://www.bristol.ac.uk/alspac/researchers/our-data/). 

For primary analyses, a sample of children with available genome-wide data was 

selected (N=8,365). Genotyping, imputation, and quality control steps for ALSPAC data are 

detailed in eMethods. Questionnaires sent out when children were 11 years old were 

selected (NALSPAC=5,521, 50.3% female, mean age 11.8 years old).  

For replication analyses, a sample was selected from the Twins Early Development 

Study (TEDS), a large UK-based longitudinal study of families of twins born between 1994 

and 1996 (N=13,732).18 Identical selection steps were followed to match ALSPAC 

(NTEDS=4,625, 53.2% female, mean age 11.27 years old). Information on TEDS quality 

control is detailed by Selzam and colleagues.19  

In both cohorts, only genotyped participants whose mothers responded to at least 

75% of questionnaire items were included in the final analytical sample, retaining N=5,521 

ALSPAC children and N=4,625 TEDS children out of the initial cohorts. Among these 

included individuals, we imputed remaining missing items using  multiple imputation by 

predictive mean matching via the R package mice (version 3.14.0)20. Of the maximum 
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possible number of item data points (number of items x number of individuals) we imputed 

0.73% of data points that were missing in ALSPAC and 0.1% in TEDS. 

 

Measures 

Questionnaires  

Mother-rated reports of the Short Mood and Feelings Questionnaire (SMFQ, 13 

items) and the Strength and Difficulties Questionnaire (SDQ, 25 items) were available in 

both ALSPAC and TEDS and were selected.21,22 Both are reliable and valid measures of, 

respectively, depression symptoms and social and emotional wellbeing, rated on a 3-point 

scale, 0 (“Not true”), 1 (“Sometimes”), or 2 (“True”). The SDQ is divided in five subscales: 

‘Emotional problems’, ‘Peer problems’, ‘Hyperactivity’, ‘Conduct problems’ and ‘Pro-sociality’. 

Following scoring guidelines, five SDQ items were reverse coded (Items 7, 11, 14, 21, 25). 

eTable 1 contains mean values and endorsement rates of SDQ and SMFQ (hereafter 

referred to as scale items). Item 1 and 4 of the SMFQ (“Miserable/unhappy” and “Restless”) 

were not present in TEDS and were therefore excluded in ALSPAC to match datasets, 

leaving 11 items of the SMFQ in the analysis. 

 

Statistical analyses 

All analyses were carried out with R version 4.2.0, outlined in Figure 1, and reported 

following STROBE guidelines (eTable15).23-24 Example code is available on GitHub 

(github.com/giuliapiazza18/Unweaving-the-polygenic-web-pipeline).  

 

PGS calculation  

PGS for depression (based on GWAS summary statistics25), anxiety,26 ADHD,27 

BMI,28 and EA 29 were calculated using LDPred2 in both cohorts.30 To ensure no overlap 

between target and base data, we selected summary statistics from large GWAS that did not 

include ALSPAC and/or TEDS in their samples. PGS were generated by using the option 
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‘LDPred2-auto’ with default parameters (using the R package bigsnpr version 1.10.8),31 

limited to HapMap3 variants 32 and using target data as reference Linkage Disequilibrium 

(LD) panels. Recommended quality control steps on GWAS summary statistics were 

performed prior to generating the scores33 (eMethods).  

 

Covariates 

To adjust for the effects of covariates on symptoms, age- and sex-regressed 

standardised residuals for each symptom were obtained from linear regressions and used as 

input data for networks in both cohorts. Scale items were adjusted for child age (around 11 

years old) and sex. PGS were adjusted for the first 10 genetic principal components, child 

age, sex, and genotyping chip and batch.  

 

Exploratory network estimation (N≈5,521) 

Five cross-sectional networks with scale items and an individual PGS were estimated 

in ALSPAC (either depression, anxiety, ADHD, BMI or EA). Additional networks with all PGS 

and scale items and scale items only are available in the online material (eResults, eFigure 

3).  

Unregularised model search was used for network estimation via the R package 

qgraph (version 1.9.2) and its ‘ggmModSelect’ function,34 shown to perform optimally in large 

samples (N > 5,000) compared to other network estimation techniques35 (eMethods).  

The resulting networks were visualised using the Fruchterman-Reingold algorithm.36 

The accuracy of network parameters was investigated with the R package bootnet (version 

1.5).37 One thousand nonparametric bootstraps were calculated for all network edge 

weights. Network weights matrices are reported in eTables 7-13. Additionally, we report 

covariate-adjusted correlations between PGS and scale items (i.e., correlations between 

each PGS and each scale item, only adjusted for covariates but not adjusted for all other 

relationships between nodes, in contrast with network analyses) in eTable 14. 
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Confirmatory Network Estimation (N≈4,625) 

We conducted a preregistered confirmatory analysis (osf.io/7y2g8) using the R 

package psychonetrics (version 0.10) (figure 1).14 First, we tested whether the pattern of 

presence or absence of associations between items (network structure) was replicated in the 

secondary sample (model 1). Second, we tested whether the estimates of these 

associations (network edges) were comparable across samples (model 2). Third, we 

repeated these steps focusing particularly on associations between PGS and symptoms 

(models 3-5). 

Specifically, in model 1, we assessed how well network structures derived in the 

primary sample fit in our secondary sample using standard fit indices (Root Mean Square 

Error of Approximation, RMSEA; Comparative Fit Index, CFI). In model 2, in a combined 

dataset, we evaluated the fit of a model with equality constraints on network edges across 

cohorts, i.e., a model in which all ALSPAC and TEDS edges were set to be equal. For 

example, we extracted the structure of the network with the ADHD PGS derived in ALSPAC 

and, in model 1, we tested the fit of this structure in TEDS. In model 2, we set all edges in 

the ADHD PGS network to have equal weights in ALSPAC and TEDS and evaluated model 

fit. 

In model 3, we tested the overall significance of all edges connecting to the PGS 

node in a combined dataset. First, we estimated a model where all edges connecting the 

PGS were set to zero (model 3). For example, if the ADHD PGS was connected to items 

‘Easily distracted’ and ‘Child cheats’ in primary results, both edges were set to zero. Second, 

we compared this to the original model, where these edges were retained as non-zero. In 

model 4, these steps were repeated on each edge connecting to PGS. For example, we set 

the edge connecting the ADHD PGS to item ‘Easily distracted’ to zero and compared this to 

the original model, which included the non-zero edge. Lastly, in model 5, individual edges 

connecting to PGS were free to vary between cohorts. For example, the edge connecting the 

ADHD PGS to item ‘Easily distracted’ was allowed to freely vary between ALSPAC and 

TEDS. We compared this to a model where this edge was set to be equal.  
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P-values were adjusted for multiple comparisons with False Discovery Rate 

correction (FDR) using the Benjamini-Hochberg method (alpha = 5%) and the R package 

stats (version 4.2.0) in model 4 (34 tests) and model 5 (35 tests).24,38  
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Results 

Exploratory analyses 

PGS preferentially associated with specific items of their corresponding traits. For 

example, the ADHD PGS (figure 2c) was only associated with one hyperactivity item: ‘Easily 

distracted’ (HYP.3) and the depression PGS (figure 2a) was associated with depression 

symptom ‘Not enjoying anything’ (DEP.2).  

Additionally, psychiatric PGS did not associate only with trait-concordant items but 

showed cross-trait associations. For example, in addition to its within-trait associations, the 

ADHD PGS also associated with the item ‘Child cheats’ (COND.4) in the conduct problems 

subscale, and the depression PGS also associated with ‘Being bullied’ (PEER.4) in the peer 

problems subscale. Similarly, the anxiety PGS was associated with depression node 

‘Feeling lonely’ (DEP.10) (figure 2b). Moreover, PGS associated with a broader set of items 

based on covariate-adjusted correlations (i.e. adjusted for covariates, but not adjusted for all 

relationships between nodes as in network analyses) (eTable 14). 

Lastly, non-psychiatric traits were associated with symptoms across disorders. The 

BMI PGS (figure 3a) associated positively with conduct, peer, pro-sociality, and hyperactivity 

problems and negatively with emotional issues, and the EA PGS negatively associated with 

items belonging to most subscales, as well as most hyperactivity (figure 3b). Nonparametric 

bootstraps showed edges were estimated accurately, as sample values were comparable to 

bootstrap mean edge weights (eFigure 2). 

 

Confirmatory analyses  

Overall, networks replicated well across datasets. Model 1 and 2 indicated network 

models were successfully replicated in the secondary sample. All network structures derived 

in ALSPAC showed good model fit in TEDS based on standard fit indices in model 1 (Table 

1). Similarly, when setting equality constraints between ALSPAC and TEDS edges (model 

2), model fit was good across all networks (eTable 3). Although standard fit indices were 

comparatively better when edges were not constrained to be equal across samples, indices 
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accounting for model complexity (e.g., the Bayesian Information Criterion) consistently 

favoured models with constrained edges. 

Edges connecting PGS were statistically significant in all networks, as models 

including these edges (models 3 and 4) fit better than models that excluded them (eTables 

4-5). In addition, results from model 5 show that PGS had similar associations with items 

across cohorts. Models constraining PGS edges to be equal in ALSPAC and TEDS were 

preferred to models which lifted these equality constraints, except the edge between the EA 

PGS and item ‘Child cheats’ (COND.4). This difference, however, did not survive corrections 

for multiple comparisons.  
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Discussion 

We examined the associations between childhood psychopathology symptoms and PGS for 

psychiatric disorders and relevant traits using a network approach. We found that (i) 

psychiatric PGS are associated with a core subset of indicators of their corresponding traits 

and (ii) PGS are not only associated with symptoms of their respective trait but show direct 

cross-trait associations. These findings were replicated in an independent sample and, as 

discussed below, suggest that the relationship between (non-)psychiatric polygenic risk and 

psychopathology traits may be mediated by specific factors or other symptoms. 

 

Trait-relevant associations between PGS and symptoms 

PGS associated with a selection of items measuring their corresponding trait. For 

example, the ADHD PGS was only positively associated with one item in the hyperactivity 

subscale, ‘Easily distracted’ (HYP.3). This result suggests the association between ADHD 

and the polygenic risk for ADHD might be preferentially explained by the association with 

cognitive-attentional elements of the disorder. Similarly, the depression PGS was associated 

positively with anhedonia (‘Not enjoying anything’, DEP.2), suggesting the polygenic risk for 

depression might primarily influence prominent features of the disorder, associated with the 

greatest impairment.39 When associations between items and PGS were not adjusted for all 

relationships between network nodes (i.e., in covariate-adjusted correlations, eTable14), 

PGS associated with a broader set of items than those identified by network analysis.  

Taken together, these results suggest that associations between PGS and 

psychiatric traits might be preferentially explained by the association with core symptoms, 

rather than reflect uniform associations with all symptoms as commonly implied by disorder-

level analyses. These core symptoms may be key mediators in the relationships between 

PGS and other, more distal symptoms of psychopathology. 

 

Cross-trait associations between PGS and symptoms 
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PGS for psychiatric disorders were also found to be associated with items that did 

not directly measure PGS-concordant phenotypes. Notably, the anxiety PGS was associated 

with depression symptom ‘Feeling lonely’ (DEP.10). This may indicate that a shared genetic 

influence on individual symptoms of depression and anxiety contributes to their frequent co-

occurrence.  

Similarly, the EA PGS was negatively associated with individual hyperactivity items. 

Previous evidence suggests higher EA PGS predict lower ADHD symptoms and better 

inhibitory control.40 Indeed, our networks showed the EA PGS was negatively associated 

with cheating (COND.4), having poor attention (HYP.5) and being easily distracted (HYP.3) 

and impulsive (HYP.5), and also positively associated with internalising and peer problems, 

such as being solitary (PEER.1), having many worries (EMO.2), not being liked (PEER.3), 

and not volunteering to help others (PRO.5). This may suggest that childhood EA is a 

reflection of social and cognitive processes that also play a part in most internalising and 

externalising disorders. 

Furthermore, the BMI and depression PGS associated with peer problems, 

specifically with being bullied (PEER.4). In turn, being bullied was positively associated with 

being lonely (DEP.10) and often unhappy (EMO.3), suggesting being bullied may mediate 

the relationship between these PGS and depression symptoms. This is also consistent with 

recent evidence showing the genetic predisposition to higher BMI, depression and ADHD is 

associated with bullying victimisation in children.41 Pre-existing vulnerability to mental illness 

might lead to exposure to bullying in childhood, which in turn exacerbates emotional 

difficulties in adolescence,42 hyperactivity and impulsivity, inattention, and conduct 

problems.43 This represents a pattern of evocative gene-environment correlation: children 

who are predisposed to developing a high BMI might, in some contexts, evoke particular 

reactions in their environment, such as bullying.44 Unfavourable environments, in turn, affect 

mental and physical health. This can have cascading effects, as stress in early life mediates 

the association between the genetic predisposition to high BMI and later depression.45  
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In sum, adopting a network approach to phenotyping can suggest potential pathways 

to developing psychiatric traits by highlighting indirect paths from polygenic risk to later 

psychopathology via intermediate phenotypes. Taking a dimensional view of 

psychopathology, we investigated the extent to which common genetic variation in the 

population (indexed by PGS) associates with individual differences in symptoms. Findings 

should be replicated in high-risk or clinical cohorts.  

 

 

Limitations 

A few limitations of this study merit comment. First, the partial correlations evidenced 

in our study cannot be assumed to reflect causal mechanisms.  

Second, results derived from our discovery cohort (ALSPAC) may be affected by 

overfitting, which, consequently, could affect results in the combined sample of both cohorts 

(models 3 and 4). As such, edges between PGS and scale items derived in the confirmatory 

sample are the most conservative estimates (Table 2). Models investigating differences in 

edges between cohorts (model 5) were implemented to minimise this issue. In fact, we did 

not observe any systematic deflation of estimates in the second cohort, reducing the 

likelihood of inflated estimated in the discovery cohort.  

Third, polygenic scoring is a proxy for individual genetic liability, and it does not 

capture the full heritability of a trait (SNP-heritability) due to measurement error, meaning 

there are likely associations between genetic liabilities and symptoms that our analysis was 

not able to detect. The PGS calculated in this study vary in predictive power, in accordance 

with the GWAS they were derived from. This may explain some findings, such as the EA 

PGS associating with more symptoms of ADHD than the ADHD PGS itself.  

Lastly, ALSPAC and TEDS are affected by attrition16–18. Therefore, replications of 

these findings in representative cohorts with high retention rates are warranted. Similarly, 

this analysis was limited to participants of European descent. As more diverse samples are 

being made available for genetic research, it will be important to verify whether our findings 
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hold true in those samples. Replication studies would also benefit from using more normally 

distributed item data and more granular genetic data (e.g. symptom-level GWAS, see online 

Supplement). 

 

 

Conclusion  

Modelling polygenic risk in networks of psychological variables showed previously 

unreported patterns of associations that replicated across samples. Relationships between 

psychopathology-related PGS and childhood psychological difficulties suggest PGS are 

preferentially associated with specific trait-relevant and cross-trait symptoms. Introducing 

genetic data into psychological networks can provide new insights into the aetiology of 

comorbidity as well as identify potential pathways to the development of psychiatric traits.  



 

 
 

18 

 

Funding 

The UK Medical Research Council and Wellcome (Grant ref: 217065/Z/19/Z) and the 

University of Bristol provide core support for ALSPAC. This publication is the work of the 

authors, and they will serve as guarantors for the contents of this paper. Genome-wide 

association study data was generated by Sample Logistics and Genotyping Facilities at 

Wellcome Sanger Institute and LabCorp (Laboratory Corporation of America) using support 

from 23andMe. A comprehensive list of grants funding is available on the ALSPAC website 

(http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf). 

TEDS is supported by a program grant from the UK Medical Research Council 

[MR/V012878/1; and previously 1MR/M021475/1], with additional support from the US 

National Institutes of Health [AG046903].  

This work was supported by the European Research Council under the European 

Commission’s Horizon 2020 research and innovation grant (I-RISK — ERC-2019-COG, 

grant agreement: 863981), awarded to Prof Jean-Baptiste Pingault. Giulia Piazza is the 

recipient of a Wellcome Trust PhD studentship.  

Funders had no further role in the design and conduct of the study; collection, 

management, analysis, and interpretation of the data; preparation, review, or approval of the 

manuscript; and decision to submit the manuscript for publication.  

 

Acknowledgments  

 We are extremely grateful to all the families who took part in this study, the 

midwives for their help in recruiting them, and the whole ALSPAC team, which includes 

interviewers, computer and laboratory technicians, clerical workers, research scientists, 

volunteers, managers, receptionists and nurses. We gratefully acknowledge the ongoing 

contribution of the participants in TEDS and their families. Giulia G. Piazza and Jean-

Baptiste Pingault had full access to all the data in the study and take responsibility for the 

integrity of the data and the accuracy of the data analysis. 



 

 
 

19 

Data sharing statement 

The ALSPAC resource is owned and provided by the University of Bristol. Data can be made 

available and accessed upon request, as detailed at 

https://www.bristol.ac.uk/alspac/researchers/access/.      

The TEDS resource is held by King’s College London. Data can be made available, subject 

to a data sharing agreement, as detailed at https://www.teds.ac.uk/researchers/teds-data-

access-policy.

https://www.bristol.ac.uk/alspac/researchers/access/
https://www.teds.ac.uk/researchers/teds-data-access-policy
https://www.teds.ac.uk/researchers/teds-data-access-policy


 

 
 

20 

 
 

References 

1. Plomin R, Haworth CMA, Davis OSP. Common disorders are quantitative traits. Nat Rev Genet. 
2009;10(12):872-878. doi:10.1038/nrg2670 

2. Allegrini AG, Baldwin JR, Barkhuizen W, Pingault J. Research Review: A guide to computing and 
implementing polygenic scores in developmental research. Child Psychology Psychiatry. 
2022;63(10):1111-1124. doi:10.1111/jcpp.13611 

3. Janssens ACJW, Aulchenko YS, Elefante S, Borsboom GJJM, Steyerberg EW, van Duijn CM. 
Predictive testing for complex diseases using multiple genes: Fact or fiction? Genetics in 
Medicine. 2006;8(7):395-400. doi:10.1097/01.gim.0000229689.18263.f4 

4. Cai N, Revez JA, Adams MJ, et al. Minimal phenotyping yields GWAS hits of reduced specificity for 
major depression. Published online November 4, 2019:440735. doi:10.1101/440735 

5. Thorp JG, Marees AT, Ong JS, An J, MacGregor S, Derks EM. Genetic heterogeneity in self-
reported depressive symptoms identified through genetic analyses of the PHQ-9. Psychological 
Medicine. 2020;50(14):2385-2396. doi:10.1017/S0033291719002526 

6. Thorp JG, Campos AI, Grotzinger AD, et al. Symptom-level modelling unravels the shared genetic 
architecture of anxiety and depression. Nat Hum Behav. 2021;5(10):1432-1442. 
doi:10.1038/s41562-021-01094-9 

7. Hannigan LJ, Askeland RB, Ask H, et al. Genetic Liability for Schizophrenia and Childhood 
Psychopathology in the General Population. Schizophr Bull. 2021;47(4):1179-1189. 
doi:10.1093/schbul/sbaa193 

8. Jang KL, Livesley WJ, Taylor S, Stein MB, Moon EC. Heritability of individual depressive symptoms. 
Journal of Affective Disorders. 2004;80(2):125-133. doi:10.1016/S0165-0327(03)00108-3 

9. Fried EI, Nesse RM, Zivin K, Guille C, Sen S. Depression is more than the sum score of its parts: 
individual DSM symptoms have different risk factors. Psychological Medicine. 2014;44(10):2067-
2076. doi:10.1017/S0033291713002900 

10. Rouquette A, Pingault JB, Fried EI, et al. Emotional and Behavioral Symptom Network Structure 
in Elementary School Girls and Association With Anxiety Disorders and Depression in 
Adolescence and Early Adulthood: A Network Analysis. JAMA Psychiatry. 2018;75(11):1173. 
doi:10.1001/jamapsychiatry.2018.2119 

11. Borsboom D. The Structure of the DSM. Archives of General Psychiatry. 2002;59(6):569-570. 

12. Tiego J, Martin EA, DeYoung CG, et al. Precision behavioral phenotyping as a strategy for 
uncovering the biological correlates of psychopathology. Nat Mental Health. 2023;1(5):304-315. 
doi:10.1038/s44220-023-00057-5 

13. Sluis S van der, Kan KJ, Dolan CV. Consequences of a network view for genetic association 
studies. Behavioral and Brain Sciences. 2010;33(2-3):173-174. doi:10.1017/S0140525X10000701 



 

 
 

21 

14. Epskamp S. Psychometric network models from time-series and panel data. Psychometrika. 
2020;85(1):206-231. doi:10.1007/s11336-020-09697-3 

15. Borsboom D, Deserno MK, Rhemtulla M, et al. Network analysis of multivariate data in 
psychological science. Nat Rev Methods Primers. 2021;1(1):58. doi:10.1038/s43586-021-00055-
w 

16. Boyd A, Golding J, Macleod J, et al. Cohort Profile: The ‘Children of the 90s’—the index offspring 
of the Avon Longitudinal Study of Parents and Children. International Journal of Epidemiology. 
2013;42(1):111-127. doi:10.1093/ije/dys064 

17. Fraser A, Macdonald-Wallis C, Tilling K, et al. Cohort Profile: The Avon Longitudinal Study of 
Parents and Children: ALSPAC mothers cohort. International Journal of Epidemiology. 
2013;42(1):97-110. doi:10.1093/ije/dys066 

18. Rimfeld K, Malanchini M, Spargo T, et al. Twins Early Development Study: A Genetically Sensitive 
Investigation into Behavioral and Cognitive Development from Infancy to Emerging Adulthood. 
Twin Res Hum Genet. 2019;22(6):508-513. doi:10.1017/thg.2019.56 

19. Selzam S, Coleman JRI, Caspi A, Moffitt TE, Plomin R. A polygenic p factor for major psychiatric 
disorders. Transl Psychiatry. 2018;8(1):205. doi:10.1038/s41398-018-0217-4 

20. Buuren S van, Groothuis-Oudshoorn K. mice: Multivariate Imputation by Chained Equations in R. 
Journal of Statistical Software. 2011;45:1-67. doi:10.18637/jss.v045.i03 

21. Goodman R. Psychometric Properties of the Strengths and Difficulties Questionnaire. Journal of 
the American Academy of Child & Adolescent Psychiatry. 2001;40(11):1337-1345. 
doi:10.1097/00004583-200111000-00015 

22. Muris P, Meesters C, van den Berg F. The Strengths and Difficulties Questionnaire (SDQ). 
European Child & Adolescent Psychiatry. 2003;12(1):1-8. doi:10.1007/s00787-003-0298-2 

23. von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of Observational Studies 
in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet. 
2007;370(9596):1453-1457. doi:10.1016/S0140-6736(07)61602-X 

24. R Core Team. R: A language and environment for statistical computing. https://www.R-
project.org/ 

25. Howard DM. Genome-wide meta-analysis of depression identifies 102 independent variants and 
highlights the importance of the prefrontal brain regions. Nature Neuroscience. 2019;22:16. 

26. Purves KL, Coleman JRI, Meier SM, et al. A major role for common genetic variation in anxiety 
disorders. Mol Psychiatry. 2020;25(12):3292-3303. doi:10.1038/s41380-019-0559-1 

27. Demontis D, Walters RK, Martin J, et al. Discovery of the first genome-wide significant risk loci 
for attention deficit/hyperactivity disorder. Nat Genet. 2019;51(1):63-75. doi:10.1038/s41588-
018-0269-7 

28. Yengo L, Sidorenko J, Kemper KE, et al. Meta-analysis of genome-wide association studies for 
height and body mass index in ∼700000 individuals of European ancestry. Hum Mol Genet. 
2018;27(20):3641-3649. doi:10.1093/hmg/ddy271 



 

 
 

22 

29. Lee JJ, Wedow R, Okbay A, et al. Gene discovery and polygenic prediction from a genome-wide 
association study of educational attainment in 1.1 million individuals. Nat Genet. 
2018;50(8):1112-1121. doi:10.1038/s41588-018-0147-3 

30. Privé F, Arbel J, Vilhjálmsson BJ. LDpred2: better, faster, stronger. Bioinformatics. 2020;36(22-
23):5424-5431. doi:10.1093/bioinformatics/btaa1029 

31. Privé F, Aschard H, Ziyatdinov A, Blum MGB. Efficient analysis of large-scale genome-wide data 
with two R packages: bigstatsr and bigsnpr. Bioinformatics. 2018;34(16):2781-2787. 
doi:10.1093/bioinformatics/bty185 

32. HapMap 3 - Wellcome Sanger Institute. Accessed July 5, 2023. 
https://www.sanger.ac.uk/resources/downloads/human/hapmap3.html 

33. Choi SW, Mak TSH, O’Reilly PF. Tutorial: a guide to performing polygenic risk score analyses. Nat 
Protoc. 2020;15(9):2759-2772. doi:10.1038/s41596-020-0353-1 

34. Epskamp S, Cramer AOJ, Waldorp LJ, Schmittmann VD, Borsboom D. qgraph : Network 
Visualizations of Relationships in Psychometric Data. J Stat Soft. 2012;48(4). 
doi:10.18637/jss.v048.i04 

35. Isvoranu AM, Epskamp S. Which estimation method to choose in network psychometrics? 
Deriving guidelines for applied researchers. Psychological Methods. 2021;28(4):925-946. 
doi:10.1037/met0000439 

36. Fruchterman TMJ, Reingold EM. Graph drawing by force-directed placement. Software: Practice 
and Experience. 1991;21(11):1129-1164. doi:10.1002/spe.4380211102 

37. Epskamp S, Fried EI. bootnet: Bootstrap Methods for Various Network Estimation Routines. 
Published online October 25, 2021. Accessed October 10, 2022. https://CRAN.R-
project.org/package=bootnet 

38. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful 
Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological). 
1995;57(1):289-300. doi:10.1111/j.2517-6161.1995.tb02031.x 

39. Fried EI, Nesse RM. The impact of individual depressive symptoms on impairment of 
psychosocial functioning. PLoS One. 2014;9(2):e90311. doi:10.1371/journal.pone.0090311 

40. Rea-Sandin G, Oro V, Strouse E, et al. Educational attainment polygenic score predicts inhibitory 
control and academic skills in early and middle childhood. Genes, Brain and Behavior. 
2021;20(7):e12762. doi:10.1111/gbb.12762 

41. Schoeler T, Choi SW, Dudbridge F, et al. Multi–Polygenic Score Approach to Identifying Individual 
Vulnerabilities Associated With the Risk of Exposure to Bullying. JAMA Psychiatry. 
2019;76(7):730-738. doi:10.1001/jamapsychiatry.2019.0310 

42. Riglin L, Hammerton G, Heron J, et al. Developmental Contributions of Schizophrenia Risk Alleles 
and Childhood Peer Victimization to Early-Onset Mental Health Trajectories. AJP. 
2019;176(1):36-43. doi:10.1176/appi.ajp.2018.18010075 



 

 
 

23 

43. Singham T, Viding E, Schoeler T, et al. Concurrent and Longitudinal Contribution of Exposure to 
Bullying in Childhood to Mental Health: The Role of Vulnerability and Resilience. JAMA 
Psychiatry. 2017;74(11):1112-1119. doi:10.1001/jamapsychiatry.2017.2678 

44. Davidson LM, Demaray MK. Social Support as a Moderator Between Victimization and 
Internalizing–Externalizing Distress From Bullying. School Psychology Review. 2007;36(3):383-
405. doi:10.1080/02796015.2007.12087930 

45. Avinun R, Hariri AR. A polygenic score for body mass index is associated with depressive 
symptoms via early life stress: Evidence for gene-environment correlation. Journal of Psychiatric 
Research. 2019;118:9-13. doi:10.1016/j.jpsychires.2019.08.008 



 

 
 

24 

Figure 1: Analysis flow of the study, including network analysis in ALSPAC (a) and 
replication in TEDS (b) 
ALSPAC: Avon Longitudinal Study of Parents and Children; TEDS: Twin Early 
Development Study; PGS: Polygenic Score; BMI: Body Mass Index; DEP: Depression; 
ANX: Anxiety; ADHD: attention deficit-hyperactivity disorder; EA: educational attainment; 
SDQ: Strength and Difficulties Questionnaire; SMFQ: Short Mood and Feelings 
Questionnaire; gLASSO: graphical least absolute shrinkage and selection operator; PC: 
principal component. 

Figure 2 a-c: Networks of psychiatric polygenic scores and psychopathology 
symptoms 
Plots of networks with depression PGS (a), anxiety PGS (b), ADHD PGS (c). Partial 
correlations between scale items are drawn in the plot when |r| > 0.1  for clarity (i.e., the 
threshold for qgraph visualisation of edges connecting scale items is 0.1). All partial 
correlations between PGS nodes and scale items are drawn (i.e., qgraph visualisation 
threshold is 0 for edges connecting PGS). All edges connecting PGS are blue when 
positive and red when negative. All edges connecting scale items are solid grey when 
positive and dotted grey when negative. Bold items in the legend indicate nodes 
connected to a PGS. PGS are in the centre of each graph and all other nodes are 
positioned according to an average layout obtained with the Fruchterman-Reingold 
algorithm. eFigure 1 includes all networks without thresholds and common layout. 

Figure 3 a-b: Networks of non-psychiatric polygenic scores and psychopathology 
symptoms 
Plots of networks with BMI PGS (a) and EA PGS (b). As in Figure 2, partial correlations 
between scale items are drawn in the plot when |r| > 0.1  for clarity, and all partial 
correlations between PGS nodes and scale items are drawn. All edges connecting PGS 
are blue when positive and red when negative. All edges connecting scale items are solid 
grey when positive and dotted grey when negative. Bold items in the legend indicate 
nodes connected to a PGS. PGS are in the centre of each graph and all other nodes are 
positioned according to an average layout obtained with the Fruchterman-Reingold 
algorithm. 
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Fit index 

ADHD 
PGS 

network 
Depression 

PGS network 

Anxiety 
PGS 

network 
EA PGS 
network 

BMI PGS 
network 

CFI 0.977 0.979 0.978 0.978 0.977 

RMSEA 0.021 0.020 0.021 0.021 0.021 

Table 1: Model fit indices from model 1, testing the model fit of ALSPAC networks 
in TEDS.  
CFI above 0.95 and RMSEA below 0.05 were considered indicators of good model fit and 
of successful replication of ALSPAC networks in TEDS. CFI: Comparative Fit Index; 
RMSEA: Root Mean Square Error of Approximation. 
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Network and items Edge ALSPAC 
weight 

TEDS 
weight 

Constrained 
model 
weight 

EA PGS network     

Cheats† COND.4--EA† -0.049 -0.098 -0.072 

Complained of 
sickness 

EMO.1--EA 
-0.044 -0.014 -0.031 

Many worries EMO.2--EA 0.040 0.053 0.046 

Easily distracted HYP.3--EA -0.062 -0.044 -0.054 

Does not think things 
out 

HYP.4--EA 
-0.052 -0.028 -0.040 

Bad attention HYP.5--EA -0.048 -0.069 -0.058 

Solitary PEER.1--EA 0.037 0.010 0.025 

Not generally liked PEER.3--EA 0.036 0.027 0.033 

Volunteers to help PRO.5--EA -0.078 -0.069 -0.074 

BMI PGS network     

Steals COND.5--BMI 0.048 0.039 0.044 

Many fears EMO.5--BMI -0.039 -0.011 -0.026 

Does not think things 
out 

HYP.4--BMI 
0.043 0.038 0.041 

Bullied PEER.4--BMI 0.051 0.054 0.053 

Volunteers to help PRO.5--BMI 0.074 0.073 0.073 

ADHD PGS network     

Cheats COND.4--
ADHD 0.048 0.040 0.044 

Easily distracted HYP.3--ADHD 0.070 0.069 0.070 

Depression PGS 
network 

    

Not enjoying 
anything 

DEP.2--DEP 
0.037 0.037 0.038 

Bullied PEER.4--DEP 0.055 0.036 0.047 

Anxiety PGS 
network 

    

Felt lonely DEP.10--ANX 0.040 0.014 0.028 

 
Table 2. Weights (partial correlations) of the edges of interest in PGS networks. 
These were derived from primary analyses (ALSPAC weights), confirmatory model 1 
(TEDS weights) and confirmatory model 2 (constrained model weights). †:significantly 
different weight estimates in TEDS and ALSPAC based on uncorrected p-values in model 
5. When correcting for multiple comparisons, the difference is non-significant. All other 
estimates are not significantly different in TEDS and ALSPAC based on both uncorrected 
and corrected p-values. 


