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ABSTRACT
Risk predictionmodels fitted usingmaximum likelihood estimation (MLE) are often overfitted resulting in predictions that are too
extreme and a calibration slope (CS) less than 1. Penalized methods, such as Ridge and Lasso, have been suggested as a solution to
this problem as they tend to shrink regression coefficients toward zero, resulting in predictions closer to the average. The amount
of shrinkage is regulated by a tuning parameter, 𝜆, commonly selected via cross-validation (“standard tuning”). Though penalized
methods have been found to improve calibration on average, they often over-shrink and exhibit large variability in the selected 𝜆
and hence the CS. This is a problem, particularly for small sample sizes, but also when using sample sizes recommended to control
overfitting. We consider whether these problems are partly due to selecting 𝜆 using cross-validation with “training” datasets of
reduced size compared to the original development sample, resulting in an over-estimation of 𝜆 and, hence, excessive shrinkage.
We propose amodified cross-validation tuningmethod (“modified tuning”), which estimates 𝜆 froma pseudo-development dataset
obtained via bootstrapping from the original dataset, albeit of larger size, such that the resulting cross-validation training datasets
are of the same size as the original dataset.Modified tuning can be easily implemented in standard software and is closely related to
bootstrap selection of the tuning parameter (“bootstrap tuning”). We evaluatedmodified and bootstrap tuning for Ridge and Lasso
in simulated and real data using recommended sample sizes, and sizes slightly lower and higher. They substantially improved the
selection of 𝜆, resulting in improved CS compared to the standard tuning method. They also improved predictions compared to
MLE.

1 Introduction

Risk prediction models are routinely used in clinical practice
to assist medical decision-making. These are often derived by
fitting a regression model to the available data (“development
data”). For binary outcomes, logistic regression is the usual
choice. The performance of a risk model must be evaluated
in an external dataset (“validation dataset”) before the model
can be used in practice to make predictions for new patients.
This evaluation may include the calculation of measures of

calibration (calibration slope [CS] and calibration in-the-large),
discrimination (C-statistic), overall predictive accuracy (Brier
Score), and net benefit.

When the sample size is small relative to the number of regression
parameters, the resulting logistic regression model fitted using
maximum likelihood estimation (MLE) tends to be overfitted,
that is, tends to provide predictions for new patients that are
too extreme. A CS ≪ 1 on external data is indicative of model
overfitting (Steyerberg et al. 2010). In such cases, penalized
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logistic regression methods such as Ridge and Lasso regression
tend to shrink the regression coefficients toward zero, and this
can be beneficial in reducing model overfitting. The amount
of shrinkage is regulated by a shrinkage parameter, which
is typically estimated using cross-validation to maximize the
out-of-sample performance of the model.

Several studies have investigated the performance of penalized
regression in low-dimensional settings using simulation (Pavlou
et al. 2016; Steyerberg, Eijkemans, and Habbema 2001; Steyerberg
et al. 2000; van Houwelingen 2001). Recently, Van Calster et al.
(2020) and Šinkovec et al. (2021) used simulation to evaluate
the performance of penalized methods for a range of events-
per-variable scenarios (2.5–50) with varying outcome prevalence,
number of (noise and true) predictors, and correlation between
predictors. Riley et al. (2021) performed similar investigations
with higher prevalence (0.5) when the true C-statistic was 0.7.
Penalized methods were found to be effective in reducing model
overfitting on average (Pavlou et al. 2016). In some cases, they
were seen to over-shrink, as indicated by an average CS > 1.
Importantly, they exhibited large variability in the estimation of
the tuning parameters and, consequently, of the CS. When com-
bining bias and variability of the log(CS) in a single-performance
measure such as the “root mean square distance” from the target
value (RMSD), penalized methods often performed worse than
MLE. The uncertainty in the degree of shrinkage and the large
variability of the CS were interpreted to mean that penalized
methods tend to performwell on average but may perform poorly
in individual datasets. We note that for small datasets, separation
may occur, in which case MLE may not have a solution, whereas
penalized methods tend to apply minimal or no shrinkage, hence
not being helpful in dealing either with separation or model
overfitting (Šinkovec et al. 2021). For those occasions, methods
that specifically handle separation (Firth 1993) are recommended.

Recently, Riley et al. (2019) proposed sample size calculations
to control model overfitting and other measures of predictive
performance. Martin et al. (2021) evaluated the performance of
penalized methods when these sample size recommendations
were met or surpassed. Even though in the settings investigated,
the sample sizes were relatively large, they still found that, due to
the large variability in the CS, the RMSD of the CS for penalized
methods was usually higher or equal to that for the MLE. This
was interpreted as a high chance of resulting in a miscalibrated
model in external validation when penalized methods are used.

In this paper, we consider relatively large datasets, with sample
sizes close to the recommended. We propose a modified cross-
validation tuning method (hereafter referred to as “modified
tuning”), which can be easily implemented in standard software.
The modified tuning method is closely related to bootstrap
selection of the tuning parameters (hereafter referred to as
“bootstrap tuning”), which has been rarely used in practice. We
explore whether the modified and bootstrap tuning methods can
be used to reduce the variability in the selected tuning parameter
and consequently improve the performance of penalizedmethods
in terms of calibration.We consider binary outcomes. In Section 2,
we describe standard penalized regression methods, and in Sec-
tion 3, we present the modified and bootstrap tuning approaches
that are suitable for penalized methods that require tuning
(e.g., Ridge and Lasso). In Section 4, we consider sample sizes

close to the recommended, and we use simulation to compare
the predictive performance of models developed by penalized
methods with either modified tuning or bootstrap tuning to the
performance of models developed using penalized methods with
standard tuning, MLE, uniform shrinkage, and Firth’s (1993)
method. In Section 5, we apply the methods to a real cardiac
dataset. We conclude with a discussion regarding the usefulness
of the modified tuning and bootstrap tuning methods in practice
and caveats regarding their use.

2 Risk Prediction, Uniform Shrinkage Methods,
and Penalized Regression

Let 𝑌𝑖 denote the binary outcome and 𝐱𝑖 = (1, 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝)
𝑇

a (p + 1)-dimensional vector of covariate values for the i-th
individual, 𝑖 = 1, …𝑛. The probability of experiencing the event
of interest is typically modeled using a logistic regression model
for 𝑃(𝑌𝑖 = 1):

logit (𝑃 (𝑌𝑖) = 1) = 𝜷𝑇 𝐱𝑖 (1)

where 𝜷 = (𝛽0, 𝛽1, … 𝛽𝑝)
𝑇 is a vector of regression coefficients.

Typically, 𝜷 is estimated using MLE. The dataset used to fit the
model is called development or training dataset. For a given
observation, the estimated probability of having the event of
interest is computed by 𝜋̂𝑖 = logit

−1(𝜷𝑇𝐱𝑖) where 𝜷 is the MLE
estimate of 𝜷.

The estimated regression coefficients can be used to obtain pre-
dictions for new patients, based on their patient characteristics.
However, before a risk model can be used in clinical practice,
its predictive performance needs to be assessed in new data
(validation or test data) that are different from the development
data. Metrics considered for the validation of a risk model
often address calibration, discrimination, and overall predictive
accuracy.

Calibration refers to the agreement between observed and pre-
dicted values in an overall sense (calibration-in-the large) and
for different risk groups (CS) (Van Calster et al. 2016). CS is
the slope term in a logistic regression model, where the linear
predictor is regressed on the binary outcome. For the calibration
in-the-large, a similar model as above is fitted, but the linear
predictor included is an offset term (with slope equal to one).
The intercept term in this model is the calibration in the large.
A value of 0 for the calibration in-the-large suggests that the
average predicted probability is equal to the observed proportion
of events. A value of 1 for the CS suggests a perfectly calibrated
model. The C-statistic is a measure of model discrimination.
Considering two patients, one with and one without the event,
the C-statistic is the probability that the patient with the event
is assigned the higher predicted risk. It takes values between 0.5
and 1, with higher values meaning higher discriminatory ability.
Overall predictive accuracy can be assessed with the Brier Score
(the average of the squared differences between the outcome and
the estimated probabilities). A lower Brier Score suggests a more
accurate model.

When the sample size is small relative to the number of regres-
sion parameters, the model tends to be fitted too well on the
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development data. As a result, the estimated coefficients are typ-
ically too large in magnitude, and consequently, high predictions
are too high and low predictions too low. This is known as model
overfitting.A value for theCS< 1 is suggestive ofmodel overfitting
(Miller, Hui, and Tierney 1991). Applying some shrinkage to
the estimated values of the regression coefficients may help in
reducing model overfitting. In the next sessions, we will briefly
describe two categories of shrinkage methods. Further detail on
these and other methods can be found elsewhere (Martin et al.
2021; Pavlou et al. 2016; Van Calster et al. 2020).

2.1 Uniform Shrinkage Methods

In practice, shrinkage is often used to improve the predictions
from a logistic regression model (van Houwelingen 2001). This
first category of shrinkagemethods applies a (uniform) shrinkage
factor to the coefficient estimates after the model has been fitted
using MLE. This has the effect of shrinking all MLE coeffi-
cient estimates toward zero, which shrinks the corresponding
predictions toward the overall outcome prevalence.

The shrinkage factor is most often estimated using the bootstrap
(Efron and Gong 1983). Briefly, the model is fitted to bootstrap
datasets, with the original dataset used for validation. The average
value of the CS over these bootstrap datasets is an estimate of
the shrinkage factor (Efron and Gong 1983). After shrinkage
has been applied, the intercept term is re-estimated so that
the average of the predicted probabilities equals the outcome
prevalence.

2.2 Penalized Regression Methods

Penalizedmethods impose restrictions on the values of regression
coefficients, which result in the shrinkage of the estimated
coefficients as part of the estimation process. This is achieved by
maximizing a “penalized” log-likelihood function, which takes
the form:

𝑙 (𝜷) − 𝜆𝑠 (𝜷) ,

where 𝑙(𝜷) is the log-likelihood function for model (1), 𝑠(𝜷) is a
penalty term that can take different functional forms resulting
in different shrinkage patterns, and 𝜆 is a tuning parameter that
regulates the amount of shrinkage.

In terms of penalized methods that require tuning, that is,
choosing the tuning parameter 𝜆, we focus on two commonly
used penalty terms for 𝑠(𝜷):

∑𝑝

𝑗=1 𝛽
2
𝑗 , which corresponds to Ridge

regression (L2 penalization) (Cessie and Houwelingen 1992),
and 𝑠(𝜷) =

∑𝑝

𝑗=1 |𝛽𝑗|, which corresponds to Lasso regression (L1
penalization) (Tibshirani 1994). Lasso regression may shrink
some of the coefficients to exactly zero, thus performing variable
selection. We focus on Ridge and Lasso regression since they are
more suited to low-dimensional settings than othermethods (e.g.,
adaptive Lasso) (Pavlou et al. 2016).

The tuning parameter 𝜆 is typically obtained using cross-
validation to maximize the out-of-sample predictive performance
of the model. The choice of 𝜆 is a crucial aspect of fitting a model

using penalized methods. A value of 𝜆 that is too small will result
in insufficient shrinkage (𝜆 = 0 corresponds to MLE), whereas a
value of 𝜆 that is too large will result in excessive shrinkage and
model underfitting, as indicated by a CS > 1 in validation data,
suggesting that the range of predictions is too narrow.

In practice and in most of the previous method evaluations, 5- or
10-fold cross-validation is used for tuning (10-fold is the default
option in many software packages, and this number of folds is
primarily used in this paper).

Firth’s bias reduction method (Firth 1993; Heinze and Schemper
2002) is also a penalized method, and it was originally proposed
to solve separation problems in logistic regression. The penalized
likelihood for Firth’s method is

𝑙 (𝜷) + 0.5log |𝐼 (𝜷)|
where 𝐼(𝜷) is Fisher’s information matrix. Contrary to Ridge and
Lasso, Firth’s method does not involve a tuning parameter. As
the method also shrinks coefficients toward zero, it has been
recently considered, with intercept correction that avoids biasing
the average predicted probability toward 0.5, alongside other
shrinkagemethods to reducemodel overfitting (Martin et al. 2021;
Šinkovec et al. 2021; Van Calster et al. 2020).

3 Improved Tuning for Penalized Methods Used
for Prediction

Typically, the tuning parameter for penalized regressionmethods
is chosen to maximize the out-of-sample performance of the
model.Most commonly, this is done using cross-validation,which
is described below.

3.1 Standard Tuning AlgorithmWith k-Fold
Cross-Validation

Step 1: The (original) development dataset of size𝑛 is randomly
split in 𝑘 parts. Commonly used values are 𝑘 = 5 or 10.

Step 2: (𝑘 − 1)parts forma cross-validation training dataset (cv-
training set) and the left-out part serves as a cross-validation
test dataset (cv-test set). A sequence of values for 𝜆 is chosen,
and for each of those values, the model is fitted on the cv-
training set using the penalized method of choice.

Step 3: Step 2 is repeated k-times, each time leaving out a
different part.

Step 4: A measure of out-of-sample performance (such as
deviance, C-statistic, mean absolute error) is calculated
using the cv-test sets for each value of λ. Here, we consider
the deviance.

Step 5: The selected value of 𝜆, 𝜆min, is the one that minimizes
the cross-validated deviance.

Step 6: The regression coefficients are estimated by fitting the
model using the penalized method of choice in the original
development dataset with 𝜆 = 𝜆min.

Steps 1–6 are performed in standard software, with 𝑘 = 10 usually
being the default value. In this paper, we fit the penalized
methods using the R package “glmnet.”
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With respect to the algorithm above, we note two issues. First,
depending on the random split of the data in Step 1, a slightly
different optimal value of 𝜆 will be chosen. To decrease the
uncertainty in the choice of 𝜆 and to avoid extreme values of 𝜆
due to an unfortunate split, repeated cross-validation can be used
and themedian value of 𝜆 be selected. In previous studies (Pavlou
et al. 2016; Šinkovec et al. 2021), this, however, was seen to have
relatively minor effect in reducing uncertainty in the estimation
of 𝜆 and the CS.

Second, the optimal value of 𝜆 is obtained using cv-training sets
in Steps 2 and 3 that are smaller than the original development
dataset. In particular, the size of each of the cv-training datasets
is 𝑛 × 𝑘−1

𝑘
. For example, when 𝑘 = 10, the size of each cv-training

set is 10% smaller than the original dataset. When dealing with
small development datasets or datasets with very few events, this
reduction in size is non-negligible when it comes to optimizing
the tuning parameter in Step 2. As tuning is performed on a
smaller dataset than the original, the optimal 𝜆 tends to be
overestimated, which may contribute to excessive shrinkage and
uncertainty in the estimation of 𝜆 for some of the penalized
methods. The effect will be more pronounced for a smaller
number of cross-validation folds. On the other hand, for very large
datasets, the impact of reduction in the size of the cv-training sets
should be less pronounced (Steyerberg et al. 2001).

These observations are in line with the results of previous
simulation studies. For instance, when five-fold cross-validation
was used previously (Riley et al. 2021) and the sample size was
very small, the effect of over-shrinkage, and increased variability
was particularly pronounced. As part of sensitivity analysis in the
simulation study of Section 4, we study the effect of the number
of cross-validation folds.

We hypothesize that obtaining the optimal value of 𝜆 on cv-
training sets of the same size as the original dataset will improve
the estimation of 𝜆. To obtain such cv-training sets, we propose
starting with a larger pseudo-dataset by sampling with replace-
ment from the original dataset, such that in Step 2 the cv-training
sets are of the same size as the original development dataset. We
propose the following modified tuning algorithm.

3.2 Modified TuningWith k-Fold
Cross-Validation (“Modified Tuning”)

Step 0: Create a sample from the original development by
samplingwith replacement to create a pseudo-dataset of size
𝑛pseudo = 𝑛 × 𝑘

𝑘−1
, that is, larger than the original dataset.

Steps 1–4 are the same as for the standard tuning algorithm,
but starting with the pseudo-development dataset of Step
0. Importantly, the resulting cv-training sets in k-fold cross-
validation are now of the same size as the original dataset.

Step 5: Repeat Steps 0–4B times and choose the value of 𝜆, 𝜆mod,
that minimizes the averaged cross-validated deviance over
the B iterations (alternatively, first obtain 𝜆min in each of the
B datasets and then choose the median value as 𝜆mod, which
gives effectively identical results).

Step 6: Fit the model to the original dataset using the chosen
penalized method with the chosen value of the tuning
parameter, 𝜆mod.

Note that Steps 1–4 are computed using standard software, and
so the modified tuning algorithm only requires accommodating
Steps 0, 5, and 6. Step 0 serves the purpose of avoiding excessive
shrinkage, whereas Step 5 further increases stability in the
selection of 𝜆. We suggest B = 100, but even with B as low as
50, results were almost identical to B = 100 or higher (results not
shown). We also note that the method can be applied in the same
way for time-to-event data.

3.3 Bootstrap Tuning

An alternative, closely related approach for tuning is the standard
bootstrap method, where for each value (in a sequence of values)
of 𝜆, the model is fitted on a bootstrap sample and the out-of-
sample performance is assessed on the original sample. We call
this approach “Bootstrap tuning.” The chosen value of 𝜆 is the
one that optimizes the average of an out-of-sample performance
measure (e.g., deviance) over repeated bootstrap samples.

The modified and bootstrap tuning methods are closely related.
Effectively, themodified cross-validation approach uses bootstrap
samples (of size 𝑛) to fit themodels and bootstrap samples (of size
𝑛∕10) to validate them. Hence, the two approaches are expected
to perform similarly, although modified tuning is arguably more
straightforward to apply in practice, because usually software
for penalized regression uses cross-validation by default. On
the other hand, the bootstrap approach requires the user to
manually calculate the out-of-sample performance measure to
be maximized on the original validation dataset after fitting the
model on the bootstrap samples for all values of 𝜆. Here we focus
on the standard bootstrap for tuning; variations such as the 0.632
and 0.632+ bootstrap may also be used (Efron and Tibshirani
1997), although in the related context of internal validation of
prediction models, they were not found to be superior to the
standard bootstrap (Steyerberg et al. 2001). The modified and
bootstrap tuning methods are compared later in the simulation
study.

4 Simulation Study

4.1 Simulation Setup

4.1.1 Aims

We aim to investigate the predictive performance of models
developed using penalized methods with modified and bootstrap
tuning in comparison to using penalized methods with standard
tuning and MLE. We use performance measures that combine
the bias and variability of the CS. We investigate the performance
of the methods close to the sample sizes recommended to limit
model overfitting (target expected shrinkage of 0.9).

4.1.2 Methods

The estimation methods we use are maximum likelihood
(“MLE”), Firth’s logistic regression with intercept correction
(“Firth”), bootstrap linear shrinkage factor (“Boot-Unif”) and
Ridge and Lasso regression with standard, modified, and
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bootstrap tuning (“Ridge,” “Lasso,” “Mod-Ridge,” “Mod-Lasso,”
“Boot-Ridge,” and “Boot-Lasso”). Modified tuning and bootstrap
tuning are applied with B = 100 samples and 10-fold cross-
validation. In line with previous studies that investigated the
performance of penalizedmethods, standard tuning is performed
using 10-fold cross-validation. For a subset of scenarios, the effect
of the number of cross-validation folds on the standard tuning
method is determined by considering 5, 10, and 20-fold and
leave-one-out (n-fold) cross-validation.

4.1.3 Data-Generating Mechanism

For each scenario, we generate binary outcomes from a logistic
regression model. We consider 𝑝 predictor variables from a
multivariate normal distribution with mean zero and correlation
matrix Σ. We let 𝐱 denote the vector of covariate values for a given
observation. Some of these predictors are “true” predictors with
their corresponding regression coefficients being non-zero, and
some are “noise” predictors with their corresponding coefficients
being zero. The linear predictor is 𝜂𝑖 = 𝜷𝑇𝐱𝑖, 𝑖 = 1, …𝑛 (𝑛 is
the sample size). The binary outcome is generated from a
logistic regression model, that is, 𝑦𝑖 ∼ Bernoulli (𝜋𝑖), where
𝜋𝑖 = logit

−1
(𝜂𝑖) are the true predicted probabilities. The

regression coefficients 𝛽1, … , 𝛽𝑝 are chosen to reflect the strength
of the model (as reflected by the C-statistic), and the intercept
term, 𝛽0 is chosen to set the outcome prevalence.

We generate large validation datasets of size 𝑛val = 50,000 from
the data-generatingmechanism above. The development datasets
are generated using the same data-generating mechanism. For
each scenario, we generate 𝑛sim = 1000 development and vali-
dation datasets. We then fit models to each of the development
datasets using each of the fitting methods and calculate mea-
sures of predictive performance (see below) using the validation
datasets.

4.1.4 Performance Measures

We evaluate the performance of the methods on average in
terms of calibration (CS), discrimination (C-statistic), and overall
predictive accuracy (root mean square prediction error (RMSPE),
which is the square root of the average of the squared differences
between the true and the estimated probabilities). For the average
performance of the methods, we calculate the median of the
estimatedmeasure of predictive performance over the𝑛sim values.
For CS, the optimal value is 1.

We then focus on the CS and compare the methods in terms of
measures that combine bias and variance of the CS. Following
Van Calster et al. (2020), we calculate the root mean square
distance (RMSD) from the target value of the log of the CS:

RMSD(log − CS) =
√

1

𝑛sim

∑𝑛sim

𝑖=1
(log(CS𝑖) − log(target))

2

where CŜ𝑖 is the CS in the i-th dataset, and the target value of the
CS is 1, corresponding to a perfectly calibratedmodel. Themethod
that leads to the lowest RMSD(log − CS) is taken to be the best
performing method for a given scenario.

We also compare the methods in terms of the probability of
providing a “well-calibrated” model. We define a well-calibrated
model as one with CS between 0.9 and 1.1 in external data. This
probability is approximated by the proportion of times over the
𝑛sim simulations that the CS is between 0.9 and 1.1:

𝑝well_cal =
1

𝑛sim

𝑛sim∑
𝑖=1

𝐼 (CS𝑖 ≥ 0.9 & CS𝑖 ≤ 1.1)

4.1.5 Simulation Scenarios and Parameter Values

For our main simulation, we generate data with 𝑝 = 12 pre-
dictors, 5 of which are true and 7 are noise. We write the
vector of regression coefficients as 𝜷 = (𝛽0, 𝜷

𝑇
1 )

𝑇 with 𝜷1 = 𝑘 ×
(0.5, 0.3, 0.3, 0.25, 0.25, 0, 0, 0, 0, 0, 0, 0)

𝑇 , where 𝛽0 and 𝑘 are cho-
sen to match the target outcome prevalence and C-statistic,
respectively. We consider two values for the (true) outcome
prevalence, 𝜙 = 0.1 or 0.5, and two values for the (true) C-
statistic, 𝐶 = 0.7 or 0.8. As the penalized methods were seen
to demonstrate less variability in the CS than MLE when the
predictors were highly correlated (Van Calster et al. 2020), we
here focus on the less favorable scenario for penalized methods
where correlations between predictors are weak. True predictors
are weakly correlated with correlation 0.1, and noise predictors
are weakly correlated with correlation 0.05, as in previous
investigations (Riley et al. 2021).

For each scenario, that is, for each combination of outcome
prevalence and C-statistic values, we consider four possible
sample sizes for the development datasets. The recommended
sample size,𝑁,was taken to be the sample size required according
to the criterion of limiting overfitting, with a target expected
shrinkage of 0.9 when MLE is used. We note that the sample
size equation based on limitingmodel overfitting underestimated
the sample size for the highest C-statistic scenario, and so
the sample size corresponding to an expected shrinkage of 0.9
was calculated using simulation. We also note that this sample
size was larger than the size based on the other criteria for
most of the scenarios we considered (Riley et al. 2019). We
considered the recommended sample size and sample sizes close
to it, that is: 𝑁

2
,
3

4
𝑁,𝑁 and 5

4
𝑁. The R code for the main

simulations is provided in Supplementary Material 2 and in
the GitHub repository https://github.com/mpavlou/Improved-
tuning-for-penalised-regression-methods.

4.2 Simulation Results

Herewe present results for the scenariowith trueC-statistic= 0.7,
true prevalence = 0.5, and 5 true and 7 noise predictors. We
used 𝛽0 = 0 and 𝑘 = 0.93 to obtain the vector of regression coeffi-
cients, and the recommended sample size was 𝑁 = 900. Detailed
results for the other scenarios are presented in Supplementary
Material 1.

4.2.1 Tuning and Calibration Slope for Different
Numbers of Cross-Validation Folds

Figure 1 shows that the median values of the tuning parameter
selected using the modified or bootstrap tuning methods (Mod-
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FIGURE 1 Estimated tuning parameters for the standard tuning (with different numbers of cross-validation folds: Ridge 5-fold (5F), 10F, 20F,
n-F, and similarly for Lasso) and modified or bootstrap tuning (Mod-Ridge/Boot-Ridge and Mod-Lasso/Boot-Lasso) over 1000 simulations. True C-
statistic = 0.7, true prevalence = 0.5.

Ridge/Boot-Ridge and Mod-Lasso/Boot-Lasso) are smaller than
those from the corresponding standard tuning methods (Ridge
and Lasso). In addition, there is less variability in the values of the
selected tuning parameters for modified and bootstrap tuning.

Increasing the number of cross-validation folds for standard
tuning resulted in a reduction in the magnitude and variability
of the selected tuning parameters. However, this reduction was
small compared to using themodified or bootstrap tuning, and its
effect in terms of improving calibration was also small (Figures 1
and 2). This was also the case for n-fold cross-validation (where
n is the size of the development sample), which, although on
average selected a smaller 𝜆 than 5-, 10-, and 20-fold cross-
validation, still led to a higher 𝜆 and worse calibration than the
modified and bootstrap tuning, especially for Lasso. This could be
probably attributed to the fact that although each of the training
CV samples in n-fold cross-validation are of size n-1, the test
CV samples consist of only one data point, which may result in
increased variability in the estimation of the loss-function being
minimized compared to having a larger cross-validation sample.
Overall, the modified and bootstrap tuning methods had almost
identical performance.

4.2.2 Predictive Performance on Average

Figure 3 summarizes the predictive performance of the methods
in terms of calibration (CS), discrimination (C-statistic), and
overall predictive accuracy (RMSPE). As expected, the predictive
performance of all methods improved with increasing sample
size.

In terms of the CS, MLE produced overfitted models in the
lowest sample size scenario, and the degree of overfitting reduced
with increasing sample size. Firth’s method had relatively low
variability, but the shrinkage applied was on average very small,
offering only a small improvement overMLE. Uniform shrinkage
improved calibration on average compared to MLE, and its
variability was slightly higher. Penalized methods, either with
standard or modified tuning, improved calibration on average
compared to MLE. However, as in previous studies, standard
Ridge and Lasso tended to over-shrink, particularly in the lowest
sample size scenario, and to result in increased variability in the
CS compared to MLE. Ridge and Lasso with modified and boot-
strap tuning had CS closer to 1, on average, and the variability in
CS was smaller than the standard Ridge and Lasso. These obser-
vations suggest that the modified and bootstrap tuning worked
as expected. In terms of discrimination and predictive accuracy,
Ridge and Lasso with either standard or modified/bootstrap
tuning resulted in slightly better performance (also with slightly
smaller variability) than MLE, Firth’s method, and uniform
shrinkage.

4.2.3 Variability in Predictive Performance

These results suggest that modified and bootstrap tuning worked
well, although the variability in the CS for Mod/Boot-Ridge
and Mod/Boot-Lasso is still higher than that for MLE. To
establish how Mod/Boot-Ridge and Mod/Boot-Lasso compare
with MLE in terms of calibration for individual datasets, we
consider performancemeasures that combine bias and variability
in the CS.

6 of 11 Biometrical Journal, 2024
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FIGURE 2 Calibration slope for the standard tuning (with different numbers of cross-validation folds: Ridge 5-fold (5F), 10F, 20F, n-F, and similarly
for Lasso) and modified or bootstrap tuning (Mod-Ridge/Boot-Ridge and Mod-Lasso/Boot-Lasso) over 1000 simulations. True C-statistic = 0.7, true
prevalence = 0.5. MLE, maximum likelihood estimation.

FIGURE 3 Calibration slope, C-statistic, and root mean square prediction error (RPMSE) over 1000 simulations. True C-statistic = 0.7, true
prevalence = 0.5. MLE, maximum likelihood estimation.

As the results for modified and bootstrap tuning were very
similar, for the clarity of presentation in the main paper, we
present results just for the first (results for bootstrap tuning
are in Figure S1). Figure 4 shows the RMSD(log-CS) and the
probability of obtaining a well-calibrated model. It is clear that
modified tuning resulted in substantially lower RMSD(log-CS)
and a higher probability of providing awell-calibratedmodel than
MLE for a given sample size. For instance, at the recommended
sample size (𝑁 = 900), the RMSD(log-CS) for MLE was just
under 0.15. The same RMSD(log-CS) was achieved at 𝑁 ≈ 600

when either Mod-Ridge, Mod-Lasso, or Boot-Unif were used.
Moreover, the probability of obtaining a well-calibrated model at
the recommended sample size, 𝑁 = 900, was 46% for MLE and

around 65% forMod-Ridge, Mod-Lasso, and Boot-Unif. When the
sample size was 680, 25% smaller than the recommended, Mod-
Ridge, Mod-Lasso, and Boot-Unif still led to a well-calibrated
model a considerable 53% of the time, whereas MLE only 35%.
These results suggest that Mod-Ridge, Mod-Lasso, and Boot-
Unif have the potential to increase the chance of obtaining a
well-calibrated model compared to MLE.

Finally, when the sample size was 680, Boot-Unif, Mod-Ridge,
and Mod-Lasso improved calibration compared to MLE (i.e.,
led to a value of CS closer to 1 in individual datasets) 73%,
69%, and 71% of the time, respectively (Figure S2). Moreover,
Mod-Ridge and Mod-Lasso were almost guaranteed to improve
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FIGURE 4 Rootmean squared distance for the log-calibration slope and probability of obtaining awell-calibratedmodel (calibration slope between
0.9 and 1.1) over 1000 simulations. The dashed horizontal lines correspond to the performance of MLE at the recommended sample size. The results for
Boot-Ridge (not shown) were effectively identical to Mod-Ridge. True C-statistic = 0.7, true prevalence = 0.5. MLE, maximum likelihood estimation.

discrimination (99% and 94% of the time, respectively) and had a
high probability of improving predictive accuracy (80% and 91%,
respectively) compared to MLE in individual datasets (Figures S3
and S4).

The results were very similar for scenarios based on other
prevalence and C-statistic values (Figures S5–S7). It is worth
noting that the sample size forwhich penalizedmethodsmay lead
to a reasonably good model depends on the true model strength
(C-statistic) and outcome prevalence and is closely linked to
the recommended sample size (Riley et al. 2019). For example,
when 𝐶 = 0.7 and 𝜙 = 0.5, the recommended sample size was
900. Considering both bias and variability in the estimated CS,
Boot-Ridge and Boot-Lasso provided results comparable to MLE
in terms of model calibration for sample size down to around
600 (Figure 4). For 𝐶 = 0.8 and 𝜙 = 0.1 (recommended sample
size = 1120), they provided results comparable to MLE with
sample size down to 700 (Figure S7).

4.2.4 Summary and Practical Implications

Several studies used simulation to explore the performance of
standard Ridge and Lasso for risk prediction. They suggested that
these methods should not be used at the recommended sample
sizes or lower, because even though they improved calibration
performance on average, they performed worse than MLE when
variability was taken into account. We have considered simula-
tion scenarios very similar to those studies, and we have found
that Ridge and Lasso, with modified or bootstrap tuning, resulted
in improved calibration compared toMLE at sample sizes close to

those recommended. Specifically, there was a higher probability
of providing a well-calibrated model with a smaller RMSD(log-
CS) compared to Ridge and Lasso with standard tuning andMLE.
They also offered small gains with respect to the C-statistic and
RPMSE compared to MLE. Hence, there seems to be a benefit of
usingRidge andLassowithmodified or bootstrap tuningmethods
in practice, at least in settings similar to those considered in our
evaluation.

In practice, the sample size for a prediction study should always
be chosen to be at least as large as those recommended by recent
guidelines (Riley et al. 2019). The recommended sample size is
typically calculated before data collection and model fitting. Its
calculation is informed by the number of candidate predictor
variables and the anticipated values of theC-statistic and outcome
prevalence. When the sample size of the development data
matches the recommended sample size or is slightly larger, Ridge
and Lasso with modified or bootstrap tuning can perform better
than MLE and Ridge and Lasso with standard tuning. In the
unfortunate situation where the development sample size is too
small, for example, because the anticipated values for the C-
statistic and/or outcome prevalence were set too high, Ridge
and Lasso with either modified or bootstrap tuning may help in
alleviating model overfitting and providing more stable models
than MLE.

5 Real Data Illustration

In this section, we consider real cardiac data from patients
undergoing heart valve surgery (Ambler et al. 2005) to assess the
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FIGURE 5 Data from heart valve surgery: illustration of the application of ridge regression with the modified tuning method when developing a
risk model (A: tuning parameter; B: calibration slope; C: RMSD(log-CS); D: probability of well-calibratedmodel). The dashed horizontal lines in (C) and
(D) correspond to the performance of MLE at the recommended sample size. MLE, maximum likelihood estimation; RMSD, root mean square distance.

performance of the modified and bootstrap tuning methods. In
this illustration, we use data on 16,679 patients in Great Britain
and Ireland who had heart valve surgery between 1995 and 2003.
The outcome of interest is in-hospital death (binary outcome)
following heart valve surgery (prevalence 7%). The aim is to
develop a risk model to predict the risk of in-hospital death. We
considered amixture of 11 binary and continuous variables, which
are described in Table S1.

To evaluate the performance of themethods, we sampled patients
without replacement from the original dataset to form a training
dataset with the desired sample size; the remaining data form a
validation dataset.We fit logistic regressionmodels in the training
dataset using MLE, standard Ridge, and Ridge with the modified
and bootstrap tuning methods. We then validated each estimated
model on the validation dataset. This process was repeated 200
times for each sample size. We then focused on assessing the bias
and variance in the CS using the metrics used in the simulation
study. We considered 3 sample sizes, the middle of which (2200
patients) corresponds to the CS being 0.9 on average forMLE (this
would be the recommended size).

The results from the real data application support the conclusions
of the simulation study. As it can be seen in Figure 5, themodified

tuning method (results for bootstrap tuning were effectively
identical) substantially reduces the variability and size of the cho-
sen tuning parameter compared to the standard tuning method
(Figure 5A). This is beneficial in terms of the CS, which is closer
to one on average (and with smaller variance) for the modified
than the standard tuning method (Figure 5B). When considering
both the bias and variance of the CS (Figure 5C,D), Mod-Ridge
has a lower RMSD(log-CS) and a higher probability of providing
a well-calibrated model (CS between 0.9 and 1.1) than MLE for
the sample sizes considered. Similar to the simulation study,
both Ridge and Mod-Ridge modestly improved discrimination
and predictive accuracy (Brier Score), with the classical ridge
performing marginally better (Figure S8). In Supplementary
Material 2, we include code for reproducible analysis based on
synthetic data that resemble the real data. The results are shown
in Figures S9 and S10, and the conclusions drawn are similar to
those for the real data and the main simulation study.

6 Discussion

Previous studies investigated whether Ridge and Lasso regression
could reduce model overfitting. Although they improved cali-
bration on average, they were found to over-shrink and lead to
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high variability in the CS (Riley et al. 2021; Šinkovec et al. 2021;
Van Calster et al. 2020). Consequently, they were found to offer
little or no advantage over MLE when considering both bias and
variability. This applied to both datasets of the recommended
sample size to limit model overfitting and smaller.

A possible reason for the high variability in the CS is the
uncertainty in the selection of a suitable shrinkage (tuning)
parameter. The latter is typically selected using cross-validation to
maximize the out-of-sample predictive performance of themodel.
As the datasets involved in cross-validation are typically smaller
than the development dataset, the tuning parameter tends to
be overestimated, resulting in excessive shrinkage, especially for
small datasets.

Wehave proposed a simplemethod to improve the selection of the
tuning parameter, by ensuring that the cross-validation training
datasets are of the same size as the original development dataset.
We achieve this by selecting the tuning parameter on a pseudo-
development dataset that is larger than the original, such that the
resulting cross-validation training datasets are of the same size
as the development dataset. The pseudo-development dataset is
obtained by sampling with replacement from the original dataset.
This approach is closely related to the standard bootstrap tuning
selection of the tuning parameter, which we also considered.

Our simulation studies have shown that the modified and
bootstrap tuning methods can reduce not only the magnitude
of the chosen tuning parameter but also the uncertainty around
the chosen value. As a result, modified and bootstrap tuning
resulted in the CS being closer to the target value of 1 on average,
and with smaller variability than that produced by the standard
tuning method. In comparison to MLE, Ridge and Lasso with
modified and bootstrap tuning also had a lower RMSD(log-CS)
and a higher probability of producing a well-calibrated model at
the recommended sample sizes to limit overfitting and slightly
smaller or higher. In our simulation studies as well as the real
data application we considered, penalized regression with the
modified and bootstrap tuning methods provided comparable
calibration results to MLE with sample sizes at least 25% smaller.
Despite this, we suggest as a conservative approach that penalized
regression with either modified or bootstrap tuning methods
always be used in conjunctionwith the recommended sample size
requirements according to the criterion of limiting overfitting and
other criteria (Riley et al. 2020).

One limitation of Ridge and Lasso, even with the modified and
bootstrap tuning, is that although they have led to a higher
probability of obtaining a well-calibrated model compared to
MLE in the scenarios considered, they did not improve calibration
compared to MLE in every single individual dataset. This is
because although on average the CS for MLE may be close to,
for example, 0.9 for an adequately chosen size, across samples it
will vary around that value. For values of the CS for MLE-fitted
models in individual datasets that are close to the expected CS
or lower, applying some shrinkage via penalized methods with
modified tuning tends to improve calibration compared to MLE
(CS closer to 1). However, for some individual datasets, the CS for
MLE-fittedmodels will be close to 1 ormay even exceed this value
(see, e.g., Figure 3). In those cases, applying shrinkagewill tend to
push the CS further away from 1, though this may not necessarily

lead to a poorly calibrated model. On the other hand, in terms of
discrimination and predictive accuracy, for a given sample size,
Ridge and Lasso with modified or bootstrap tuning were almost
guaranteed to provide amodel with a higherC-statistic and lower
RMSPE than MLE.

A limitation of Ridge and Lasso is that they tend to apply little
or no shrinkage when separation occurs and, hence, fail to solve
overfitting problems on those occasions (Šinkovec et al. 2021). As
our modified tuning method tends to apply less shrinkage than
standard tuning, it should not be the method of choice either
for separated datasets. Instead, when separation is detected in a
dataset, we recommend the use of methods that are specifically
designed to handle separation, such as Firth’s method.

To conclude, the modified tuning method we proposed is easy
to apply and should be conservative (i.e., applies less shrinkage
than the standard tuning methods). It was seen to have almost
identical performance to bootstrap tuning in simulations. Penal-
ized methods with either modified and bootstrap tuning have the
potential to produce better models at the recommended sample
sizes than MLE and penalized methods with standard tuning.
Moreover, theymay produce comparablemodels toMLE in terms
of predictive performance, with smaller sample sizes.
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