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Abstract

Introduction
Careful development and evaluation of data linkage methods is limited by researcher access to
personal identifiers. One solution is to generate synthetic identifiers, which do not pose equivalent
privacy concerns, but can form a ‘gold-standard’ linkage algorithm training dataset. Such data could
help inform choices about appropriate linkage strategies in different settings.

Objectives
We aimed to develop and demonstrate a framework for generating synthetic identifier datasets
to support development and evaluation of data linkage methods. We evaluated whether replicating
associations between attributes and identifiers improved the utility of the synthetic data for assessing
linkage error.

Methods
We determined the steps required to generate synthetic identifiers that replicate the properties of
real-world data collection. We then generated synthetic versions of a large UK cohort study (the Avon
Longitudinal Study of Parents and Children; ALSPAC), according to the quality and completeness
of identifiers recorded over several waves of the cohort. We evaluated the utility of the synthetic
identifier data in terms of assessing linkage quality (false matches and missed matches).

Results
Comparing data from two collection points in ALSPAC, we found within-person disagreement in
identifiers (differences in recording due to both natural change and non-valid entries) in 18% of
surnames and 12% of forenames. Rates of disagreement varied by maternal age and ethnic group.
Synthetic data provided accurate estimates of linkage quality metrics compared with the original data
(within 0.13-0.55% for missed matches and 0.00-0.04% for false matches). Incorporating associations
between identifier errors and maternal age/ethnicity improved synthetic data utility.

Conclusions
We show that replicating dependencies between attribute values (e.g. ethnicity), values of identifiers
(e.g. name), identifier disagreements (e.g. missing values, errors or changes over time), and their
patterns and distribution structure enables generation of realistic synthetic data that can be used
for robust evaluation of linkage methods.
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Introduction

Data linkage facilitates the combination of detailed
information on individuals captured in disparate data sources,
without the need for new data collection. Linkage is
increasingly used as an efficient approach, particularly with
existing administrative datasets, and has great potential for
social good. Access to identifiable information is crucial when
linking multiple datasets, as linkage depends on either the
availability of unique identifiers (e.g. a social security number)
or a set of individually non-unique variables such as name,
sex and date of birth, which in combination, can identify an
individual. This is the case for both linkage using identifiers
in their natural form or for privacy preserving techniques
which mask the identifiers in some form. The level of
completeness, uniqueness and accuracy of identifiers recorded
in administrative data pose a challenge for linkage, particularly
when linking across multiple sectors in countries where unique
citizen identifiers are unavailable [1]. Careful development and
evaluation of linkage methods is therefore required in order to
achieve high quality linkage and robust results [2, 3]. However,
methodological development has been constrained by
confidentiality concerns and legislative restrictions governing
access to personal information for research.

In practice, access to identifiers is usually limited to
either the data owners or trusted third parties, who may
be unwilling or unable to make use of these identifiers for
methodological purposes. Conversely, analysts will typically
only have access to the de-identified linked data, with limited
information about any uncertainty in linkage, or information
with which to assess the quality of linkage [4]. This separation
limits opportunities for the development of advanced linkage
methods and the assessment of computational performance
and/or linkage quality, as the researchers cannot access the
identifiable data needed for these evaluations [5]. Even when it
is possible to access identifiers, lack of a “ground truth” makes
it difficult to evaluate different linkage strategies, as there is
no gold standard against which results can be compared.

One solution to this problem is to generate synthetic
datasets of identifiers that mimic the characteristics of real
identifiers (and so can be used for methodological work)
but that do not pose any confidentiality issues [6, 7]. Such
synthetic datasets of identifiers would include a “ground
truth” to enable evaluation of different linkage methods.
Synthetic data generators have been developed in the context
of providing realistic research datasets, where the aim is to
mimic the underlying statistical properties of the original data
whilst minimising disclosure risk [8, 9]. A summary of existing
synthetic data generation methods is described by Kokosi [9].
Synthetic data that retain the relationships between variables
in the original data can provide an accurate representation
of the original data and be used for a range of purposes,
including evaluation of different methodological approaches
[10]. However, these approaches have mainly been developed
in the context of ‘attribute’ data, i.e. variables typically used
within an analysis (e.g. social or health status, occupation). In
the context of developing linkage methods, we are concerned
with ‘identifier’ data, i.e. variables used for linkage but not
necessarily for analysis (e.g. postcode, name). In some cases,
there is overlap between the two: date/year of birth and sex
can be both attribute variables and personal identifiers.

In most applications of synthetic data, retaining the
relationships between different variables helps to replicate
the underlying structure of the data and enables users to
test and evaluate different methodological approaches. When
generating synthetic identifier data, there is also a need to
ensure that the data retain dependencies between variables
(for example, name might be associated with date of birth).
However, there are a number of reasons why an alternative
approach to generating synthetic data is required to address
the idiosyncrasy of identifiers. Firstly, identifier variables do
not always follow standard statistical distributions. Secondly,
identifiers are affected by specific types of recording errors
and changes that occur within and between datasets, and
over time. We refer to these disagreements as ‘errors’, whilst
recognising that in some cases these will be genuine changes
(e.g. address change due to migration or surname change
following marriage) rather than errors in recording. Such
errors are often related to attribute variables (e.g. names
may be more often misspelt for particular ethnic groups;
address changes are associated with age and changes in
socio-economic and potentially health status). There may
also be interdependencies between identifier errors, e.g. if
name and address change at the same time due to divorce.
Accurate replication of identifier errors and their dependencies
on attribute variables is important, since these dependencies
are directly related to the impact that linkage errors have on
analysis [11]. Therefore, these errors and dependencies should
be replicated within any synthetic identifier datasets that are
used to test linkage methods, so that an assessment of bias
resulting from linkage can be conducted [12]. Existing datasets
generated to facilitate the development and testing of data
linkage algorithms have typically not focussed on preserving
these dependencies, and have not been evaluated in terms of
their utility for testing linkage algorithms. There is therefore
a scientific requirement to develop more robust and realistic
synthetic identifier datasets [13].

This paper presents a framework for generating synthetic
identifier data that could be used by data owners to enable
researchers to develop and test linkage methods in different
settings. Use of these data could help overcome the limited
capacity for linkage methodology development by providing
wider access to realistic identifier data, without disclosure risk,
and with a ground truth against which linkage quality can
be assessed. In Section 1, we describe a motivating scenario
and outline how the steps needed to generate synthetic data
can be implemented. Importantly, we consider the need to
preserve the dependencies between identifier values, identifier
errors, and attribute values. In Section 2, we evaluate the
use of synthetic data for assessing linkage quality, based on
an exemplar of longitudinal linkage within a large UK cohort
study (the Avon Longitudinal Study of Parents and Children;
ALSPAC)

Section 1: A framework for generating
synthetic identifier data

Motivating scenario

Our motivating scenario is one in which we aim to
conduct performance comparisons between different linkage
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approaches, in a secure manner with low ethico-legal barriers
and no intrusion into personal privacy. The aim of such
performance comparisons is to optimise linkage algorithms
that would then be applied to specific, real-world linkage
projects. We assume that those commissioning the linkage
(e.g. a researcher) will not have access to identifiers and
that the linkage will be conducted by a trusted third party
or data owner. We will examine the utility of synthetic
datasets to conduct linkage performance comparisons that
would be sufficiently similar to the real data whilst not
intrusive of personal privacy. Such datasets could be useful
for the development of linkage methods in two settings:
1) by data owners who have access to identifiers but
where there are restrictions around using these identifiers
for methodological development rather than business-as-usual
linkage; 2) by researchers or research infrastructure providers
(such as Trusted Research Environments) who cannot access
identifiers but for whom synthetic data would be useful for
understanding the implications of different linkage methods
on their outputs.

Types of variables

First, we distinguish between two types of variables: identifiers
and attributes.

i Identifier variables (e.g. name, NHS number, postcode,
sex, date of birth) that are used within linkage but not
necessarily the analysis (though some, e.g. sex, are also
attribute variables). Some of these variables may be
related to the values of other identifiers and/or attribute
variables (e.g. values of name might be associated with
sex and ethnicity). Presence of errors in one identifier
might be related to errors in other identifiers (e.g. if
name is mistyped, it might be more likely that date of
birth is also recorded with error).

ii Attribute variables (e.g. ethnicity) that are used within
analysis but not necessarily the linkage. Some of these
variables may be associated with patterns in identifier
values and/or identifier errors (e.g. ethnicity might be
associated with values and also errors in name).

We make this distinction because under our motivating
scenario, we are mostly interested in generating identifier
variables. However, to ensure that the synthetic data are
realistic, we need to consider i) the dependencies between
identifier values and attributes, and ii) how errors in identifiers
are distributed in relation to attribute variables. We often
find that errors in linkage (and by implication, in identifiers)
are related to differences in the underlying data quality for
particular subgroups or to particular events and circumstances.
For example, family name may have a higher probability of
being typed incorrectly for individuals from minority ethnic
groups compared to a majority ethnic group given that the
family name may be unfamiliar to the operative recording the
data, or that there are cultural differences in the length or
structural complexity of names; linkage may be less likely to
be successful for individuals following family separation given
the tendency for this to result in changes in both address and
names. This can therefore lead to dependencies between errors
in identifiers – i.e. a change in name may be more likely for

individuals who have also changed address. Evidence from the
literature suggests that age, ethnic group, sex, deprivation and
measures of health and social status may all be related to the
risk of linkage error [14, 15]. In order to generate a dataset that
is realistic for testing linkage methods, it is therefore crucial
to consider whether identifier errors are likely to be related
to attribute values. An example of the possible dependencies
between identifier values, attribute values, and identifier errors
is presented in Figure 1.

Steps in the process of generating synthetic
identifier data

This section outlines five steps that are required to generate a
realistic set of synthetic identifiers. In summary, the objective
of these steps is to generate a ‘gold-standard’ dataset, i.e.
the correct identifiers recorded in the absence of errors or
changes over time (Steps 1–3). We then need to customise
types and patterns of errors to be introduced to the gold-
standard dataset (Step 4). Finally, we create multiple versions
of the corrupted data (Step 5). A workflow for this process is
presented in Figure 2.

Step 1: Elicit Information

Data linkers or data owners should elicit information on the
set of identifiers in each file that are available for linkage, the
rates of missingness (percentage of records with missing values
for each identifier) and the characteristics of these identifiers
(e.g. the range of dates of birth, the percentage of records
that have a unique name).

They also need to elicit information about likely rates of
errors, types of errors and their patterns of co-occurrence in
identifiers, and how these errors are associated with attribute
variables. In practice, information on errors may be difficult
to obtain, and may need to be based on knowledge about
identifier errors (or linkage errors) from other similar data
sources or the literature [16]. For the purposes of this paper, we
use information on the rates, types and distribution of identifier
errors based on analysis of data collected over different waves
of the Avon Longitudinal Study of Parents and Children
(ALSPAC) birth cohort study (see Section 2 for details on
ALSPAC) [17, 18].

Information should be obtained on the number of records
in each dataset and the joint distribution of key attribute
variables (e.g. age and ethnicity), and whether individuals are
likely to be recorded multiple times within a dataset (e.g., as
they would in hospital admission records).

Step 2: Generate attribute variables

With access to the gold-standard identifiers and attribute
data, we can use then use the Synthpop package in R to
synthesise attribute variables (such as age or ethnicity) [19].
Synthpop uses a series of conditional models based on the
original data to sequentially predict and impute values of each
variable in the synthetic data. This process preserves variable
inter-dependency by utilising classification and regression tree
models. The output of this step is a ‘gold-standard’ synthetic
dataset of attribute variables replicating those found in the
original data.
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Figure 1: Dependencies between identifier values, attribute values, and identifier errors

The examples given are not exhaustive but suggestive of the dependencies that might exist between values and errors in different
variables.

Step 3: Generate identifiers

Two types of identifiers can be generated: those that
are dependent on attribute variables, and those that are
independent. Independent identifiers, e.g. NHS number (or
social security number, etc.) can be generated according to
predefined rules. Identifiers that are dependent on attribute
variables will be generated according to the attribute values
generated in Step 2. For example, date of birth can be
generated according to the distribution of age. Table 1
describes how different types of identifiers might be generated,
according to whether or not they are dependent on attribute
variables.

Identifiers that are dependent on attribute variables and
have high cardinality, such as names, are more challenging to
synthesise. There is no existing library that readily generates
names and maintains dependencies with other variables.
Generation of names should consider the following factors:

1) Privacy and Disclosure Risk: ensuring none of the
unique forename-surname combination in the original
data appear in the synthesised data

2) Uniqueness

3) Frequency: common names should be synthesised for
common names in the original data. For example:
“John” (White, Male, common) in ALSPAC surnames or
forename could be replaced with “Peter” (White, Male,
common) from the name dictionary/look up table.

4) Sharing of surnames between siblings, parents and
children and partners.

It is helpful to consider the frequency or uniqueness of
different identifier values, as well as their distribution with
respect to attribute variables. For example, a male has a higher
probability than a female of having a forename of ‘Patrick’, and
the distribution or uniqueness of names may vary according
to ethnic group, levels of deprivation and by age (reflecting
changing fashions for names).

Step 4: Data corruption

Table 2 provides a summary of different types of errors that
may be found in real data and can be introduced during the
synthetic data generation.

Data corruption is split into the following steps:
Firstly, error rates, types and co-occurrence patterns are

defined and pre-specified.
Secondly, for each row of synthetic data, a corrupted

version is generated. There are several approaches available
for this data corruption. One approach is to generate multiple
rows of corrupted data capturing all combinations of expected
errors and patterns. This method retains all pre-specified error
type combinations but could be computationally expensive
for large datasets. Alternatively, the Splink synthetic data
corruptor adapts a likelihood approach to introducing errors,
generating multiple rows of corrupted data probabilistically
[20]. In Splink’s synthetic data corruptor, a baseline probability
is assigned for each type of error, and a multiplier is applied
based on attribute variables. For example, by following the
Zipf distribution, up to 20 rows with varying error types
and combinations can be generated for each row of data
[21]. This method is less computationally expensive and
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Table 1: Generating identifier values

Identifier Generation process Example

Identifiers that are
independent of
attribute variables

Date of birth
and sex

Given aggregate information on the
distribution of these identifiers, or elements of
these identifiers (i.e. year of birth) within the
original data, values can be sampled directly
from the relevant distributions.
In some cases, we might want to reflect
dependency between records, for example,
there will be a minimum distance between the
date of birth of a baby and their mother.
In other cases, we might want to allow date of
birth to depend on attribute variables, such as
place of residence.

Date of birth can be generated from the
distribution of year of birth, by assuming
a uniform distribution over all possible (or
eligible) dates within each year. We could also
allow for variations according to day of the
week or month of the year (e.g. those born
on 31st of December of any year may have a
higher probability of being recorded as being
born on 1st January of the next year, rather
than another random date).

Unique
identifiers

Values of unique identifiers such as a social
security number or NHS number can be
randomly generated following defined rules.
The assumption that unique identifiers are
independent does not hold where another
identifier is included within in the unique
identifiers (e.g. the Community Health Index
number in Scotland, which is derived from
date of birth and sex).

NHS number is assigned at birth in England and
is unrelated to any other personal information
[22]. It comprises ten digits, of which the
majority are random numbers and the tenth is a
check digit to confirm validity: it can therefore
be generated using a simple algorithm. If
there are multiple unique identifiers (e.g. NHS
number and hospital number), these can be
generated independently.

Other
identifiers

Personal identifiers such as email addresses,
telephone numbers, and social media handles
can be generated according to rules. In some
cases, we might also want to allow these
identifiers to depend on attribute variables:
e.g. generating random telephone numbers
based on the country and area of residence, or
generating random email addresses based on
names, date and country of birth.

Fake Mail Generator (https://fakedetail.com/
fake-mail-generator) allows the generation of
random email addresses given real domains.
We can also allow these identifiers to depend
on other identifiers or attributes: for example,
Fake Number (https://fakenumber.org/united-
kingdom) can generate random telephone
numbers based on the country and area of
residence.

Identifiers that are
dependent on
attribute variables

Names First names may be related to age, ethnicity,
sex and geography; surnames may also be
related to ethnicity. Frequency look-up tables
provide a useful tool for sampling names and
mapping them to predictor attribute variables.
Names can be directly sampled from such
frequency tables, and can be allowed to
depend on attribute variables such as sex and
ethnicity, where these are available.

The Office for National Statistics (ONS)
publishes the rank and count of the baby
birth names in England and Wales every year,
which can be used as the forename frequency
table for the England and Wales population
[23]. National Records of Scotland also publish
popular baby forenames depending on year of
birth and gender [24]. Another example is data
on forename, gender and ethnicity extracted
from the US census and implemented in the R
package ‘randomNames’ [25]. Similar frequency
tables, including for surnames, are published in
many countries [26].

Addresses Addresses may be related to personal social
status, income and ethnic background [27].
For example, in 2018, 41% of residents in the
London borough of Tower Hamlets were of
Asian ethnic background, compared with 5%
in the borough of Bromley.

To represent these dependencies in synthetic
data, we can start by sampling postcodes
from a relevant list. Levels of deprivation
can then be assigned to each postcode using
the English indices of deprivation (Index of
Multiple Deprivation; IMD), and ethnic group
distributions can be assigned using ethnic
group statistics by geography [28, 29]. Given
information on the distribution of ethnic group
in the original data, addresses can then be
sampled from a frequency table.

Indirect
identifiers

Other non-traditional identifiers used for
linkage might include ‘indirect’ identifiers such
as clinical variables or dates [30]. Given
sufficient aggregate data on the distributions
of these variables, and assumptions about
their dependence on attribute variables, these
could be generated in a similar way to date of
birth and sex (i.e. according to specified
distributions).
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Table 2: Types of identifier errors that can be introduced to synthetic data

Type of error/identifier Description Manifestations

Typographic error (string
variables)

• Occurs during manual typing, e.g. a
receptionist types a patient’s information for a
general practitioner appointment booking.

• Depending on the keyboard layout, characters
may be substituted with neighbouring
keyboard characters e.g. ‘s’ instead of ‘d’.

• New characters or space may be accidentally
inserted into a field, random characters may
be omitted from a field, or character positions
may be transposed.

• Errors may result from hitting a key twice,
letting eyes move faster than the hand, or
misreading [31].

• Typographical errors are more likely to happen
in the middle or towards the end of the word,
and in longer words [32, 33].

• Over 80% of typographical errors are single
instances of substitution, insertion, deletion or
transposition [31].

• The likelihood of substituting neighbouring
characters differs according to layout as well
as personal typing habit, e.g. it is more likely
that ‘d’ is replaced with ‘s’ than with ‘x’ [34].

Phonetic error (string variables
– particularly name)

• Occurs during dictation, where letters may be
substituted with letters that are phonetically
the same but orthographically incorrect for
the intended word, e.g. when a receptionist
records information given by a patient, (s)he
may mishear information due to the accent of
the patient or the pronunciation of similar
words or characters, such as ‘F’ instead of
‘Ph’ [34].

• Information on phonetic errors can be derived
from phonetic algorithms, which apply a range
of rules and exceptions to encode words
by their pronunciation, instead of spellings.
These algorithms have been widely used in
applications such as spell checkers and search
engines and algorithms have been transformed
into look-up tables and rules to group similar-
sounding words together [35].

• Soundex is one of the most widely known
phonetic algorithms for Anglo-Saxon surname
encoding [36]. Extensions to Soundex
overcome limitations in recognising different
languages and dialects that may have different
pronunciations for the same names [37].

Optical Character Recognition
error (OCR, any identifiers)

• The OCR system is used to process scanned
handwritten documents into electronic
versions.

• OCR errors occur when the system fails to
distinguish two characters that have similar
shapes, such as ‘l’ and ‘1’ or ‘m’ and ‘rn’.

• Error rates in OCR systems can be high if
the scanned documents are poorly handwritten,
in bad physical condition or have a complex
layout [38].

• Error rates in OCR systems are impacted
by configuration settings (such as where the
threshold is set for manual review).

• Look up tables are available that provide
around 80 pairs of OCR errors where letters,
digits, symbols and combinations of these
appear to be similar.

Naming convention
inconsistencies

• Some people have two first names (with or
without a hyphen), or middle names that are
used as first names or vice versa.

• Double-barrel surnames may be recorded
differently in different datasets (e.g. with or
without hyphens) and may include
abbreviations (e.g. Saint John as St. John).

• First names and surnames may be swapped.
• Migrant groups might ‘adopt’ localised

versions of names
• Nicknames and diminutives might be provided

• Look up tables of common name variants are
available. The software ‘Febrl’ provides around
350 rules and name variants (e.g. ‘Edward’ for
‘Ted’, ‘Edwin’ and Edwards’) [13]. Database
of common English diminutives of formal given
names are available on Wiktionary.

• Table of common surnames with different
Romanised representation of the same
character are available on Wiktionary
(Mandarin Chinese, Cantonese, Hakkan,
Korean, Vietnamese, Japanese)

Continued
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Table 2: Types of identifier errors that can be introduced to synthetic data

Type of error/identifier Description Manifestations

Date errors (date of birth or
other date identifiers)

• Format differences, i.e. between countries or
people. In the UK, people usually record their
date of births in Day-Month-Year format,
while in the US it is more often written in the
format of Month-Day-Year and in China is
Year-Month-Day.

• Default/generic values. Some systems have a
default value for the date of birth, resulting in
those people with missing date of birth
automatically being given a default date.

• Accidental input of ‘today’s date’

Changes over time (e.g. name,
sex, postcode)

• Postcode changes occur as people move and
if addresses are not updated on a system (e.g.
postcodes in healthcare data might only be
updated when a patient registers with a new
general practitioner, which might be some
time after an address change).

• Children may have multiple genuine postcodes
if they have more than one residence, e.g.
mother’s or father’s address.

• Surnames may change following marriage or
divorce; recorded sex may change over time.

• Postcodes change over time for the same
property to reflect changes in the postal
system.

• In the UK, evidence suggests that 40% of
children move home in the first 5 years of life;
5% move 3 or more times within this time
period [39].

Unique identifier errors • Checksums or other validation methods may
be used to prevent invalid identifiers from
being recorded.

• Intentional use of another person’s identifier
may lead to errors.

• Changes to unique identifiers may occur over
time, and some identifiers might be reused,
resulting in multiple individuals with the same
identifier [40].

• Individuals may be issued many unique IDs
(e.g. a pupil moving from one school to
another)

• Accurate recording of unique identifiers that
depend on interactions with services may be
related to how different individuals access those
services. For example, completeness of NHS
number is often lower for young males [41].

has the capability to introduce some error-attribute variable
dependency. However, this method does not necessarily
capture all pre-specified error type combinations and co-
occurrence patterns.

The final stage is to draw samples from the corrupted
data that satisfy the pre-specified error types, co-occurrence
patterns, and error-attribute characteristics.

Step 5: Generate linkage files

Since the errors selection in Step 4 is probabilistic, we can
generate multiple sets of corrupted data files by repeating the
step. This gives us several (e.g. 5) different corrupted versions
of the same gold standard file, which represent multiple
versions of a ‘linkage’ file. Generating multiple versions of the
linkage file is appropriate as it reflects the uncertainty in the

process of replicating the original data, in line with the logic
of using multiple imputation to model uncertainty.

Section 2: Evaluating synthetic data

Motivating scenario

The following section describes an evaluation of the utility
of the data we have generated under our framework. We
use an exemplar of data linkage within the ALSPAC birth
cohort. In ALSPAC, identifiers for each participant were
recorded at multiple time points or data collection waves.
For the purposes of evaluating the synthetic data, we used
data from a gold-standard list of identifiers held within
the ALSPAC administrative database (called ARCADIA, see
Appendix Table 1) which contains the ‘live’ best understanding
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Figure 2: Workflow for generating synthetic identifier datasets

of participants current details, and raw records from one data
collection wave (the Child Health Database; CHDB), collected
when participants were aged 6 years. A unique ALSPAC ID
identifies the same individual within ARCADIA and CHDB,
but the identifiers collected in each dataset differ. This gives
us a gold-standard database that can be used to assess how
well synthetic data performs at evaluating different linkage
approaches.

We first generate synthetic versions of the identifier data
held within ALSPAC, creating a number of ‘linkage files’ to
represent ARCADIA and CHDB. Next, we link the synthetic
versions of ARCADIA with synthetic versions of CHDB, and
derive metrics of linkage quality. Finally, we compare the
linkage quality metrics derived from the synthetic data to the
metrics derived from the gold-standard ALSPAC data.

Source data

The Avon Longitudinal Study of Parents and Children
(ALSPAC) is a prospective population-based study [17, 18].
Initial recruitment of pregnant women took place in 1990-1992
and the health and development of the children from these
pregnancies and their family members have been followed ever
since. For this study, we focus on the original parents/carers
(Generation 0, G0) and the index children (Generation 1, G1).
ALSPAC recruited 14,541 pregnancies by women (G0) who
were resident in and around the City of Bristol (South West
UK) with expected dates of delivery 1st April 1991 to 31st
December 1992. Of these initial pregnancies, there were a
total of 14,676 foetuses, resulting in 14,062 live births and
13,988 children who were alive at 1 year of age. The eligible
sampling frame was constructed retrospectively using linked
recruitment and health service records. Additional offspring
that were eligible to enrol in the study have been welcomed
through major recruitment drives at the ages of 7 and 18 years;
and through opportunistic contacts since the age of 7. A total

of 913 additional G1 participants have been enrolled in the
study since the age of 7 years with 195 of these joining since
the age of 18. This additional enrolment provides a baseline
sample of 14,901 G1 participants who were alive at 1 year of
age.

Linkage methods

Our aim was to determine whether we could use synthetic
data to evaluate the quality of different linkage algorithms.
Therefore, we used three different linkage strategies to link
data for 13,281 individuals in ARCADIA who also had
a record in CHDB. We conducted the linkage based on
child’s forename, surname, date of birth and gender, plus
mother’s surname, using the following methods, with further
details in Appendix 4. Linkage strategies were compared and
probabilistic linkage thresholds were chosen to align with
the deterministic linkage model, to enable a fair comparison.
We estimated false match and missed match rates for each
method.

1. Deterministic linkage. We classified records as belonging
to the same individual if at least 4 of the 5 identifiers
matched exactly.

2. Probabilistic linkage with similarity scores. We calculated
probabilistic match weights for agreement/disagreement
using the Fellegi-Sunter approach [42]. To allow
for typographical errors in names, we calculated
probabilistic match weights using the Jaro-Winkler
similarity score [33]. Similarity scores were categorised as
little agreement (a score of 0–0.8), moderate agreement
(0.8–<1), or full agreement (a score of 1). Linkages were
accepted at or above the weight threshold of 3.

3. Probabilistic linkage with similarity scores and term
frequency adjustments for forenames and surnames. On
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top of method 2, we accounted for name frequencies
by proportionally adjusting u-probabilities for agreement
or disagreement on less common names. Linkages were
accepted at or above the weight threshold of 2.

Generating synthetic ALSPAC data

In order to generate realistic synthetic data, we first needed
to understand the levels of errors observed in identifiers within
ALSPAC. Since we had access to the gold-standard ALSPAC
data, we could directly estimate the error rates for each
identifier (see Appendix 1, Appendix Tables 2–4).

We generated synthetic data to replicate the two ALSPAC
datasets described above (ARCADIA and CHDB). Using
“Synthpop” in R, we generated a ‘gold-standard’ dataset of
identifier and attribute variables (apart from forenames and
surnames) to replicate ARCADIA [19]. The dataset contained
13,281 records and was generated using sequential regression
modelling based on the original ALSPAC data, using date
of birth, gender, maternal age category, ethnic group, and
quintile of the Index of Multiple Deprivation (Appendix 3,
Appendix Tables 5, 6). Given the small number of people
with non-white ethnicity, not all combinations of maternal age
and ethnicity exist in the original data. We used a rejection
sampling mechanism to ensure synthesised dataset did not
generate combinations of attribute variables that did not
appear in the original study [43]. Detailed methodology used
to synthesise attributes, identifiers and names are described in
Appendix 2 and 3.

Data corruption

Four different data corruption approaches were used to
examine how results were affected by differences in the
types, co-occurrences and dependencies of errors that were
introduced to the synthetic data:

1) Error types: We varied whether or not the synthetic data
had the same types of errors as original data.

2) Error Field co-occurrence pattern: We varied whether
or not the synthetic data had the same pattern of co-
occurrence at the field level (e.g. 5% of errors co-occur
in G1 forename and surname).

3) Error type co-occurrence pattern: We varied whether
synthetic data had the same pattern of co-occurrence of
errors at field and type level. For example, 5% of errors
co-occurred in G1 forename and G1 surname; 30% of
the error co-occurrence is a random name replacement,
and 70% of the co-occurrence is a forename variant error
with random surname replacement).

4) Error-attribute variable dependency: We varied whether
or not the error rates were dependent on attribute
variables (in our case, maternal age and ethnic group).

Generating linkage files

Under each of the four scenarios below, we created five
synthetic datasets to examine differential impact of error
distribution and characteristics on linkage.

1. Scenario 1: Error rates were based on known values
derived directly from the original data source. We
specified the error rate for each identifier. We allowed
identifier error rates to vary according to maternal age
and ethnic group. Identifier errors were of the same types
as in the original (e.g. 95% surname errors were random
replacements). We used the same error co-occurrence
patterns as the original data.

2. Scenario 2: Error rates were assumed to be unknown
but were assumed to be dependent on maternal age and
ethnic group. Identifier errors were restricted to random
replacements. We did not allow errors to co-occur in this
scenario.

3. Scenario 3: Error rates were assumed to be unknown
and were assumed to be independent of attribute
characteristics (i.e. constant across maternal age and
ethnicity). Identifier errors were of the same types as in
the original data but the error co-occurrence pattern was
assumed to be unknown.

4. Scenario 4: Error rates were assumed to be unknown
but were assumed to be independent of attribute
characteristics. In this scenario, we assumed that
identifier error rates were constant across maternal
age and ethnicity. Identifier error types were randomly
assigned. We did not allow errors to co-occur in this
scenario.

Deriving linkage quality metrics

Using the three linkage methods described, we linked the
five synthetic gold-standard datasets to each of the corrupted
synthetic datasets in the four scenarios. Since we had
generated these data ourselves, we knew the true match
status of each record pair. We were therefore able to evaluate
the quality of each linkage method by deriving the rates of
missed matches (true links that were matched) and false
matches (records that were linked to the wrong individual)
for each linkage method. Estimates were averaged over the
five synthetic datasets. We then compared these results with
linkage error rates derived from the original source data.

Results

Linkage results

There were 13,281 records that linked between the ARCADIA
and CHDB datasets based on the gold-standard ALSPAC
data. Using deterministic linkage, 12,673 individuals were
linked. The number of linked records ranged from 12,920
with probabilistic linkage using similarity scores for comparing
names, to 12,962 with probabilistic linkage using term
frequency adjustments for comparing names (Table 4). Rates
of errors (both missed matches and false matches) were lower
using probabilistic compared with deterministic linkage, and
lowest with the addition of term frequency adjustment. All
results presented for the synthetic linkages were averaged over
5 synthetic datasets.
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Table 3: Identifier error rates introduced to synthetic linking files. No errors were introduced to sex or date of birth, and no missing
values were introduced

G1 Surname∧ G1 Forename∗ G0 Surname∧

Scenario 1: Known
error rates

Error Co-occurring
Patterns (% of all
records)

Maternal Age % error % error % error

G0 surname & G1 surname
& G1 forename (0.30%)

<20 11.1 6.6 36.7

G1 surname & G1 forename
(0.43%)

20-29 6.0 11.5 19.7

G1 surname & G0 surname
(1.90%)

30-39 4.2 14.5 12.0

G1 forename & G0 surname
(1.90%)

40+ 5.8 15.6 13.6

Missing 7.5 11.5 16.5
Ethnic group

White 5.6 13.0 17.5
Black 8.8 13.6 22.4
Asian 1.9 13.3 8.6
Other 12.2 14.9 18.9

Missing 5.7 9.2 17.7

Scenario 2: Estimated
error rates#

No co-occurring errors Maternal Age
<20 7.2 13.1 4.7
20-29 4.6 9.4 5.7
30-39 4.0 8.4 6.2
40+ 6.1 5.7 6.6

Missing 6.1 7.7 5.4
Ethnic group

White 4.4 9.2 5.9
Black 7.2 14.3 9.2
Asian 4.1 6.8 7.4
Other 16.4 10.5 7.3

Missing 5.0 8.5 5.2

Scenario 3:
Independent error
rates

G0 surname & G1 surname
(2.30%)

5.0 10.0 15.0

G1 forename & G1 surname
(1.00%)

.

G1 forename & G0 surname
(0.75%)

Scenario 4:
Independent error
rates

No co-occurring errors 5.0 10.0 15.0

∗73% of errors were name variants (e.g. Sam for Samuel, Becky for Rebecca); 14% were typographical errors (e.g.
insertions/deletions); 7% were due to one dataset recording multiple first names (e.g. Lisa Marie versus Lisa), 6% were completely
different names.
∧3% of the errors were due to the gold-standard dataset having two surnames (e.g. Harron Kent) and the linking file only having
the first name (Harron); 2% were where the gold-standard had two surnames but the linking file only has the second name (Kent).
# Error rates presented are based on the relative risk of identifier errors according to attribute variables in Appendix 1, Appendix
Table 4, with estimated baseline likelihood of error of 0.1 (G1 Surname), 0.15 (G1 Forename), 0.2 (G0 Surname).

Linkage quality metrics

All of the synthetic datasets broadly replicated the same
pattern seen in the original data linkage, i.e. that rates

of missed matches were lower than rates of false matches,
and that probabilistic linkage with similarity scores and term
frequency adjustment had the best performance (Table 4).
Scenarios 1 and 3 result in comparable linkage error
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Table 4: Comparison of linkage quality metrics based on the original ALSPAC data, and synthetic data generated under three
scenarios

Deterministic Probabilistic Probabilistic linkage

linkage linkage with with similarity scores and
similarity scores term frequency adjustment

Original data n linked records 12,673 12,920 12,962
Missed match rate∗ 4.59% 2.61% 2.40%
False match rate∗∗ 0.23% 0.12% 0.05%

Synthetic data – known error
rates, dependent on attributes,
original error co-occurence1

n linked records 12,656 12,718 12,712
Missed match rate 4.72% 4.26% 4.29%
False match rate 0.29% 0.32% 0.16%

Synthetic data – guessed error
rates, dependent on attributes,
no error co-occurence2

n linked records 13,274 13,276 13,279
Missed match rate 0.05% 0.04% 0.02%
False match rate 0.09% 0.12% 0.07%

Synthetic data – guessed error
rates, independent of
attributes, assumed pattern of
error co-occurence3

n linked records 12,746 12,817 12,809
Missed match rate 4.04% 3.50% 3.56%
False match rate 0.25% 0.24% 0.13%

Synthetic data – guessed error
rates, independent of
attributes, no error
co-occurence4

n linked records 13,266 13,277 13,279
Missed match rate 0.12% 0.03% 0.02%
False match rate 0.10% 0.10% 0.04%

1Scenario 1: Error rates were specified correctly, based on the original data source (Table 3).
2Scenario 2: Error rates were guessed, and were allowed to vary according to maternal age and ethnicity (Table 3).
3Scenario 3: Error rates were guessed and were assumed to be unrelated to attribute characteristics, with estimated error co-
occurrence patterns: 15% G0 surname-G1 surname, 10% G1 forename-G1 surname, 5% G1 surname-G1 forename. Types of error
when errors co-occur: G0 surname and G1 surname errors= random replacement, G1 forename and G1 surname errors = random
replacement (surname)+ 30% typo, 70% forename variant (Table 3).
4Scenario 4: Error rates were guessed and were assumed to be unrelated to attribute characteristics, and no restriction on error
co-occurring patterns (Table 3).
∗missed match rate=% of true matches that were not identified, i.e. 1-sensitivity.
∗∗false match rate=% of linked records that were not true matches, i.e. 1-positive predictive value.

rates compared to the original linkage, and successfully
demonstrated that probabilistic linkage was able to reduce
both false-matches and missed-matches compared with
deterministic linkage.

Across the deterministic linkages, scenarios 1 and 3
had more comparable linkage error rates, with an absolute
difference of 0.13–0.55% for missed matches, and 0.00-0.04%
for false matches. Linkages for scenarios 2 and 4 had larger
variations of linkage errors compared to the original, with a
difference of 4.05–4.12% for missed matches, and 0.15–0.16%
for false matches.

In scenario 1, linkage error rates were slightly over-
estimated in the synthetic data, by 0.55–2.02% for missed
matches and 0.04–0.11% for false matches (Table 4). The
difference in estimation was similar in scenario 3, at 0.13–
1.26% for missed matches and 0.00-0.12% for false matches.

In scenario 2, linkage error rates were under-estimated in
the synthetic data, by 2.20–4.12% for missed matches and
0.00–0.16% for false matches (Table 4). Under-estimation was
found to a similar extent in scenario 4, by 2.21–4.05% for
missed matches and 0.01–0.15% for false matches.

Missed match and false match characteristics

In the original linkage, of the 346 true matches missed
by probabilistic linkages with similarity scores, 65.0% were
those where there was agreement on forename, date
of birth and gender, but disagreement on surname and
mother’s surname. These missed matches affected people
of different ethnicities and genders similarly and affected
younger mothers more than older mothers. Use of term
frequency adjustment further reduced missed matches to
319. These missed matches appeared to correspond to cases
in which both the mother and the child changed their
surname between data collection waves (rather than being due
to typographical errors). The second most common missed
match pattern occurred for records with disagreement on
forename and mother’s surname, with 13.6% in probabilistic
linkage with similarity scores, and 13.8% with term frequency
adjustments. These missed matches appeared to correspond
to mothers changing their surnames, and children providing
alternative names or derivatives at different data collection
waves.
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Missed match rates were comparable to the original linkage
in scenarios 1 and 3. The disagreement pattern of missed
matches were also similar to the original linkage (Appendix
Table 8).

Compared to the original linkage, missed matches in
scenario 3 had similar distributions of disagreement patterns.
With probabilistic linkage with similarity scores, 61% of missed
matches disagreed on surname and mother’s surname; with
term frequency adjustment, 58% missed matches disagreed on
surname and mother’s surname. In both probabilistic linkage
with similarity scores and term frequency adjustment, 19.3%
missed matches disagreed on forename and mother’s surname.

Comparing to the original linkage, missed matches in
scenario 1 had a lower proportion of disagreements on surname
and mother’s surname with 42.3% for probabilistic linkage and
40.2% for term frequency adjustments. Higher proportions of
missed matches disagreed on forename and mother’s surname,
with 37.9% for probabilistic linkage, and 37.8% for term
frequency adjustments.

False-match rates were low in the original linkage and
synthetic linkages. The higher rate of false-matches with
deterministic linkage was predominantly explained by the 54%
of record pairs that agreed on surname (both mother and
child), sex and date of birth, but disagreed on forename.
This was followed by 39% of false-matches in pairs that
disagreed on date of birth only (Appendix Table 9). In the
deterministic linkages using synthetic datasets, similar patterns
and proportions of false-matches records were replicated,
where 60.0% of false-matches disagreed only on forename,
and 34.9% disagreed on date of birth only. As date of birth
was recorded with high accuracy in the ALSPAC data, these
pairs were (correctly) not accepted as links by the probabilistic
strategies (since disagreement on date of birth conferred a
large penalty to the match weight).

In terms of missed match rates, false match rates, and
characteristics of missed matches, we were able to best
produce linkages most similar to original linkage in scenario
3. This demonstrates that replicating error types and co-
occurrence patterns (even if the co-occurrence patterns are
estimated) without incorporating dependencies between error
and attribute is sufficient to produce realistic synthetic
data. Further incorporating information about dependencies
between errors and attribute (with true error rates), and
error co-occurrence patterns (scenario 1) did not produce
substantially more realistic linkages.

Conversely, retaining error and attribute dependency
without incorporating error types and co-occurrence (scenario
2) performed similarly to when identifier error rates were
assumed to be independent (scenario 4).

Discussion

We provide a generalisable and open-source framework for
generating synthetic identifier data that can be used to
facilitate development and evaluation of improved linkage
methodologies. We show how this framework can be
implemented and provide a means of producing corrupted
datasets that can be used for linkage development and
a complete ‘gold standard’ file that can be used for
linkage validation. We generated synthetic ALSPAC identifier

datasets, which are freely available for legitimate users on
request to the authors: the intention is that these data, with
known characteristics, can be used for the development and
comparative benchmarking of different linkage approaches.

Our framework builds on previous methodological work
aiming to generate synthetic identifier data for use in data
linkage [3, 13]. We extended previous work by overcoming
the assumption of independence of identifier errors through
explicitly incorporating the associations between identifier
errors and attribute variables. If accurate information on
the joint distribution of identifiers and identifier errors were
available, there would be no need to include information
on their dependencies with attributes. However, evaluating
linkage quality according to attributes such as age, sex
and ethnicity is convenient and intuitive, and knowledge of
how linkage errors are typically distributed amongst these
subgroups can be easily incorporated into synthetic data
generators [44]. Our findings comparing linkage quality metrics
for synthetic data generated under different scenarios highlight
that preserving error types and co-occurrence patterns is vital
for generating a dataset that accurately represents real-world
data and that can be meaningfully used to evaluate linkage
algorithms, and is useful when incorporating the dependencies
between identifier errors and attributes is not easily achievable
[16]. This framework can be used to test linkages between
more than 2 datasets.

The strengths of our study include the use of gold-
standard data from a large cohort study that was used to
assess the performance of synthetic data for deriving linkage
quality metrics. We compared a range of linkage methods
and different scenarios under which the synthetic data were
generated. It is likely that the errors observed in these data
are representative of those occurring in other administrative
and research datasets. We acknowledge that the exemplar
ALSPAC dataset is predominately of a White UK population,
and recommend that other cultural, geographic and time-
point specific alternatives are generated in order to avoid
any unintended bias in linkage algorithm development (i.e. to
factor in error patterns that exist yet were not observed in the
ALSPAC data). However, synthetic data generators such as
this one should give users the ability to alter the identifier
error rates, types and co-occurrence patterns according to
their particular data context. This allows for any uncertainty
to be explored, by using a range of error rates and patterns
to investigate how results may vary. This could be used to
help inform choice of linkage strategy: for example, it could
tell us that a simple deterministic approach might generate
results of sufficiently high quality if identifier error rates
are low, whilst a more sophisticated and resource intensive
probabilistic approach might be more suitable in settings where
identifier error rates are high. It could also point to possible
improvements in algorithms: in our example, all three linkage
algorithms failed to identify true matches where there was
a disagreement on surname and mother’s surname: better
handling of name specific characteristics, such as double-barrel
surnames, could go some way to mitigating this problem. Using
synthetic data could also be used to provide a plausible range
of linkage error rates that are likely to arise, given different
assumptions about the levels of identifier errors. Under these
assumptions, researchers can explore the sensitivity of their
linkage approach by assessing the impact of including or
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excluding certain error-prone identifiers on linkage rates. This
is particularly relevant for longitudinal population data, where
richer insight in the variation of identifier errors is more
observable, researchers could demonstrate with which data
sets the original data could be best linked. Researchers can
then use different methods to account for linkage error rates
within analysis, e.g. quantitative bias analysis to explore
the extent to which results of analyses might be affected
by linkage error rates [45]. Synthetic identifier data would
be particularly useful for evaluating the quality of privacy
preserving linkage techniques, where access to identifiers in the
clear is not permitted. Currently, access to real data is needed
generate synthetic identifier data. Alternative approaches,
such as estimating parameters from existing publications,
could provide information sufficient to assess linkage quality to
a certain extent (such as Scenario 3, where error rates for each
variable were educated guesses). However, this approach might
be blind to error characteristics, error co-occurring patterns,
and error inter-dependencies that may underlie specific data
sources. As these synthetic data would be used to evaluate
the validity and utility of the linkages, using mis-specified
models, or multiple proposed synthetic models would confer
to challenges in data governance. Our proposed framework,
while seemingly relying on higher involvement of the data
owners, has the advantage of giving more control to data
owners, and presents as a more pragmatic approach to drive
change.

Limitations of our study are that we only had one gold-
standard dataset with which to evaluate the performance of
the synthetic data and therefore our testing of dependencies
is based on information about a specific population group;
further evaluations should be conducted on other datasets
with varying proportions of missingness in identifiers. Our
name generation mechanism takes advantage of the small
sample size and low cardinality of name distributions
in ALSPAC (4,000–7,000 distinct forename and surname
terms). Replication using the same method would require
a more diverse name dictionary. The key advantage of
generating realistic names with name dictionaries, (versus
string or number sequences), is the potential to better reflect
dimensions of name characteristics that are non-metricized
and may associate with error distributions by attributes. The
current name generation mechanism did not fully preserve
name clusters and name-specific characteristics, such as word
length, hyphens or number of terms per name [46]. Our
framework could be extended in several ways, including by
adding in additional variable types, error types and error co-
occurrence patterns, by allowing the generation of data at the
household level, or for multiple generations to capture between
record dependencies. More sophisticated synthetic identifier
data might include more nuanced errors (i.e. specifying the
most likely letter transpositions based on keyboard strokes,
or introducing date-specific errors such as recording today’s
date). However, these nuances would only be required if
the linkage algorithm that was being evaluated was tailored
towards resolving these specific sorts of errors. A further
problem is on assessing how accurate the error type and
co-occurrence pattern has to be for the generated synthetic
data to be considered similar enough to reliably test the
proposed linkage methods. Our study offers an approach to
start investigating this idea more structurally, by contrasting

multiple data corruption scenarios. Further investigations on
this direction would allow us to be more confident in our
comparisons.

Our framework provides a novel and generalisable
mechanism for developing and benchmarking record linkage
algorithms, which is protective of public privacy and avoids
assumptions that errors in personal identifiers are independent
of the other identifiers and attribute data. Our findings show
that replicating dependencies between attribute values (e.g.
ethnicity), values of identifiers (e.g. name), and errors in
identifiers (e.g. missing values, typographical errors or changes
over time) and its patterns enables generation of realistic
synthetic data that can be used to evaluate different linkage
methods.
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Appendix 1: Estimating identifier
error rates in ALSPAC

Methods

To estimate rates of identifier errors and their relationships
with attribute variables, we used the ALSPAC administrative
database (ARCADIA) as a ‘gold standard’, given that it is the
product of 30 years of intensive management and cleaning.
ARCADIA contains up to date information for each participant
(including multiple recording of names, e.g. middle name and
‘known as’, and postcodes as these were changed over time)
and also contains the participant ID numbers used by ALSPAC
to internally link different data collection waves together. For
this study, we compared the identifiers recorded in ARCADIA
with those recorded at two data collection waves (‘CHDB’ and
‘PEARL’, see Appendix Table 1).

We categorised identifier errors as occurring when there
was disagreement between data sources. We refer to these
disagreements as errors, whilst recognising that in some cases
these will be genuine changes (e.g. for addresses or surnames)
rather than errors in recording.

First, we performed some minimal data cleaning on the
identifiers, so that obvious differences in formatting between
data collection waves were not considered as errors:

– Name: Change to upper case and remove instances of
“.”, “-“, “” ’ and unnecessary spaces.

– Postcode: Change to upper case and remove internal
spaces.

– Sex: Code as a binary variable (only two values for sex
were observed in the data)

– Date of birth: Format all dates as dd/mm/yyyy.

We then separately analysed error rates for surname,
first name, date of birth, postcode, sex, and mother’s
surname, comparing data from each data collection wave with
ARCADIA.

We estimated error rates stratifying by additional attribute
variables: ethnicity, maternal age, sex and deprivation. We
derived the level of deprivation from quintiles of Indices of
Multiple Deprivation (IMD) which are routinely generated for
the UK using census and local authority data. IMD is assigned
to participants at postcode level based on participant address,
where 1 represents the most deprived area and 5 is most
affluent (only evaluated for postcodes within the Avon area).

To evaluate the associations between these predictors and
identifier errors, we created a logistic regression model, with
identifier error as the outcome, adjusting simultaneously for
ethnicity, maternal age, sex and deprivation. This model was
based on data only from the CHDB.

Overall, there were very few errors in date of birth and sex
(Appendix Table 2).

Postcodes

For the one data collection wave where postcode was available
(PEARL), errors occurred in 36% of records. These data were
collected when participants were aged between 18 and 24
years, and errors were likely due to genuine address changes

rather than data recording: for the majority of discrepancies
(70%, see Appendix Table 3), the correct postcode was
recorded at a later date in ARCADIA. Of these probable
moves, around a quarter retained the same postcode district
(first 3 or 4 characters of the full postcode). Of the remaining
30% for whom the correct postcode was not recorded at a later
date, the majority (55%) of disagreements were due to single
character substitutions, insertions, transpositions or omissions
(e.g. recording “L” instead of “1”, or “6” instead of “8”). Around
5% were due to incorrectly formatted postcodes (including
those from foreign addresses).

Errors in postcodes were clearly related to maternal age
(postcodes for younger mothers were more likely to change),
were more common for females versus males, and more likely to
occur in Black or Asian ethnic groups than Whites (Appendix
Table 4, 5). Those living in the most deprived areas were more
likely to have errors in postcode (Appendix Table 4).

Names

Overall, recording of G0 surname was more likely to be affected
by errors than G1 surname (13% versus 10%, Appendix Table
2). We also observed that errors in G0 surname were much
more common in G0 women aged <20 years compared with
older G0 women (Appendix Table 4), which may be related
to changes in name following marriage. Errors or changes in
the G1 surname were also related to G0 maternal age, which
could indicate that both G1 and G0 surnames were changed
following marriages. This was supported by further exploration
of one dataset (CHDB), which revealed that G1 surname was
more likely to change if G0 surname had also changed (13.6%
errors in G1 surname if there was an error in G0 surname,
compared with 3.7% if there was no error in G0 surname). G1
surname errors were much more likely to occur in G1 females
(10.1%) than in G1 males (4.4%, Appendix Table 4).

G1 forename contained more errors than G1 surname (10%
versus 7%, Appendix Table 2). Of the 1569 forename errors
comparing ARCADIA with CHDB, the majority (73%) were
due to nicknames or shortened name variants (e.g. Sam for
Samuel, Becky for Rebecca; Appendix Table 3). The remainder
were typographical errors (14%, e.g. William versus Willlam),
errors due to recording of single versus multiple first names
(8%, e.g. Lisa versus Lisa Marie), swapping of first and middle
names (3%), or completely different names (3%).

Those living in the most deprived areas were more likely to
have errors in G0 and G1 surname. However, for G1 forename,
the pattern was reversed: those in more affluent areas were
more likely to have errors.

Errors in identifiers were not independent: the probability
of a postcode error increased from 36% to 45% if there had
also been an error in surname.

Error co-occurring patterns in names

We found 0.32% of records with errors in all G1 forename, G0
and G1 surname, 0.43% of records with errors in G1 forename
and G1 surname, 1.94% of records with errors in G0 and G1
surname, and 1.93% of records with errors in G1 forename and
G0 surname. Given the small number of co-occurring errors,
we did not explore the type of these errors.
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Appendix Table 1: Data collection waves in the ALSPAC extract

Dataset Method of recording Age at data collection

ARCADIA (gold-standard) The master study administrative database containing continually
updated records (i.e. the ‘gold-standard’ of participants’
identifiers).

Ongoing

The local Child Health
database (CHDB)

ALSPAC received an extract of patient identifiers from the Child
Health Database (CHDB) when participants were aged 5–7
years old. The CHDB was an electronic database maintained
by the regional NHS for the administration of Child Health
services (e.g. school-based health checks and immunisations).
The CHDB record was established from birth records and then
maintained by the NHS. The records were linked to ALSPAC
using the internal CHDB patient ID number (‘SYSNUM’) which
had been linked to the ALSPAC administrative database at the
time of birth by trained operators using daily birth notification
records [1]. The identifiers from this CHDB extract have been
filtered to exclude information on ALSPAC participants who
have subsequently objected to the study’s use of their linked
NHS records.

Extract captured at index
child age between 5 and 7

Pearl: Identifiers from the
‘PEARL’ record linkage
consent forms

The Project to Enhance ALSPAC through Record Linkage
(PEARL) is a Wellcome Trust funded study that aims to develop
generalizable methods for cohort studies to incorporate routine
records into study databanks using data linkage techniques. The
identifiers from the PEARL record linkage onsent forms were
scanned and input into electronic records using OCR (using
the OpenText Teleform system) ith manual review of all values
exceeding an uncertainty threshold determined by the system.

Extract captured at index
child age between 18 and 24

Appendix Table 2: Identifier error rates, comparing gold-standard ARCADIA data with identifiers captured in CHDB and PEARL

G1: Child G1: Mother
Surname Forename Postcode Sex Date of birth Mother’s surname

Data collection wave % (n errors/total) % (n errors/total) % (n errors/total) % (n errors/total) % (n errors/total) % (n errors/total)

CHDB (total= 17,086) 5.1 (878/17,086) 9.3 (1569/16,905) – <0.1 (9/17,086) 0.1 (9/17,086) 14.7 (2507/13,086)

PEARL (total= 5680) 8.1 (459/5675) 16.1 (914/5680) 36.3 (1733/4769) – – –

The denominator is the number of records with at least one completed value for each identifier.

Appendix 2: Generating synthetic
names

Synthesising names that retain dependency with other
variables is not straightforward. We outlined the considerations
in the main article, some of which are unique to the current
dataset.

For this study, we decided to use a 1:1 direct replacement of
names from an existing dictionary that preserves name-sex and
name-ethnicity relationship, and ordering of name frequency.
The process of the name synthesis is divided into the following
steps.

Step 1: Assigning ethnicity to names

We used ONS released baby forename and surname lists
ordered by frequency from 1996 to 2021, and established a

name dictionary. The forename list was separated by sex, but
neither list provided ethnicity information. We could not find
publicly available lists of names according to ethnic group in
the UK.

To retain dependency between names and ethnicity, we
used the NamePrism API to prescribe ethnicity based on
forenames and surnames separately [2]. NamePrism is a name-
based classifier that is trained on 74 million labelled name sets,
developed in the United States [2]. NamePrism provides the
likelihood of a certain name being correctly classified as White,
Black, Asian and Pacific Islander (API), American Indian and
Alaska Native (AIAN) or Hispanic. To match the ethnicity
terminology used in ALSPAC, I grouped AIAN and Hispanic
to “Other”, and renamed API as “Asian”. The ethnic group
with the highest likelihood for each name was taken.

From step 1, we assigned an ethnicity to each name in the
name list.
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Appendix Table 3: Rates of identifier errors and relationship with attribute variables comparing ARCADIA and CHDB (names) ’
and Pearl (postcode)

G1: Child G0: Mother
Errors in Surname Errors in Forename Errors in Postcode Errors in Mother’s Surname

% (n/total) % (n/total) % (n/total) % (n/total)

Maternal Age
<20 11.1 (62/561) 6.6 (37/561) 74.7 (59/79) 36.7 (206/561)
20–29 6.0 (431/7241) 11.5 (833/7241) 37.5 (812/2168) 19.7 (1424/7241)
30–39 4.2 (194/4604) 14.5 (668/4604) 29.6 (582/1969) 12.0 (552/4604)
40+ 5.8 (9/154) 15.6 (24/154) 26.1 (26/72) 13.6 (21/154)
Missing 7.5 (54/721) 11.5 (83/721) 50.6 (222/439) 16.5 (119/721)

Ethnic group1

White 5.6 (601/10756) 13.0 (1398/10756) 33.6 (1367/4067) 17.5 (1878/10756)
Black 8.8 (11/125) 13.6 (17/125) 60.9 (14/23) 22.4 (28/125)
Asian <5% (<5/105) 13.3 (14/105) 45.8 (11/24) 8.6 (9/105)
Other 12.2 (9/74) 14.9 (11/74) 31.6 (6/19) 18.9 (14/74)
Missing/Withdrawn 5.7 (127/2221) 9.2 (205/2221) 51.0 (303/594) 17.7 (393/2221)

Sex
Female 10.4 (535/6498) 10.0 (652/6498) 39.4 (1106/2811) 18.0 (1169/6498)
Male 3.2 (215/6783) 14.6 (993/6783) 31.0 (595/1916) 17.0 (1153/6783)

Index of Multiple Deprivation quintile2

Most deprived 6.7 (128/1904) 8.0 (153/1904) 43.7 (153/350) 21.3 (405/1904)
2 5.3 (92/1740) 9.8 (171/1740) 40.7 (190/467) 20.7 (360/1740)
3 5.7 (101/1785) 11.2 (199/1785) 38.2 (225/589) 19.2 (342/1785)
4 4.9 (125/2544) 12.3 (313/2544) 32.1 (328/1021) 15.6 (398/2544)
Most affluent 5.0 (156/3093) 13.6 (419/3093) 29.2 (413/1414) 13.9 (431/3093)
Outside Avon/Missing 6.7 (148/2215) 17.6 (390/2215) 44.2 (392/886) 17.4 (386/2215)

1Asian: Bangladeshi, Chinese, Indian, Pakistani; Black: Black African, Black Caribbean, Other Black; 2IMD only evaluated for
postcodes within the Avon area.
Records with no attribute data were excluded. Denominator N is the number of records with a completed value for each identifier.

Step 2. Creating name dictionaries

Name lists from ONS were deduplicated by gender and
ethnicity, and across forenames and surnames. To avoid names
in original data appearing in the synthesised dataset, all terms
appearing in the original data were removed from the forename
and surname lists. For co-occurring forenames across male
and female, duplicated names were removed from the female
forename list since there were more female names than male
names in the ONS forename lists (Female = 21,958, Male
= 16,777), leaving 19,634 unique female forenames. For co-
occurring terms across forenames and surnames (for example,
Woods is used both as a surname and a forename), duplicates
terms were removed from the surname list, leaving 8,395
unique surnames. From the above processes, we created a
unique male forename list, female forename list, and surname
list. For names that had a missing ethnicity, replacement
names were drawn from “White” ethnic group that is the least
common (occurred once) in the ONS lists.

For names that co-occurred across gender or ethnicity,
the combination with the highest frequency was retained.
Forenames were then ranked by gender and ethnicity, and
surnames ranked by ethnicity. In the original data, individuals
may have provided multiple surnames and forenames. For
example, mother’s surname (g0_surname) often contains
multiple terms, with one of them duplicating the child’s

surname (g1_surname). This is likely due to the mothers
including the fathers’ surname in the data. We split all
names by spaces, such that all terms would be taken
into consideration for term frequency. This meant that in
cultures where surnames are changed after marriage, their
surnames (father’s surname) would be double-counted in
g0_surname and g1_surname, hence strengthening certain
ethnicity-name associations and over-representing ethnically
ambiguous names as “White”.

Step 3. Combing synthesised names with
synthetic data

Synthetic data were created using the R package Synthpop
[3]. Synthetic data created in Synthpop does not follow a 1:1
structure to the original data. The distribution of people of
different gender and ethnicity varies across the synthesised
datasets. The gender-ethnicity matched names created in the
data dictionary cannot fully match all datasets. However, to
retain the cardinality and uniqueness of the name variables,
we decided not to further sample new names that would
fit the gender-ethnicity association for each sample. We
used the same set of synthesised names for all synthesised
datasets, matching with gender and ethnicity where possible,
and inspected the average mismatch by gender and ethnicity.
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Appendix Table 4: Relative risk of identifier errors according to attribute variables (N= 14,142 records)

G1: Child G0: Mother
ESurname Forename Postcode Mother’s Surname

Relative risk (95% CI) Relative risk (95% CI) Relative risk (95% CI) Relative risk (95% CI)

Maternal Age
<20 2.60 (1.96, 3.44) 0.57 (0.42, 0.79) 2.43 (2.11, 2.81) 2.89 (2.51, 3.32)
20–29 1.43 (1.21, 1.69) 0.85 (0.77, 0.94) 1.26 (1.16, 1.38) 1.61 (1.47, 1.77)
30–39 Reference Reference Reference Reference
40+ 1.44 (0.76, 2.74) 1.09 (0.75, 1.58) 1.24 (0.91, 1.69) 1.14 (0.76, 1.71)
Missing 2.13 (1.48, 3.08) 1.24 (0.94, 1.62) 1.68 (1.50, 1.89) 1.50 (1.21, 1.84)

Ethnic group1

White Reference Reference Reference Reference
Black 1.43 (0.81, 2.51) 1.19 (0.76, 1.85) 1.76 (1.27, 2.43) 1.05 (0.76, 1.45)
Asian 0.34 (0.09, 1.33) 0.99 (0.61, 1.61) 1.39 (0.90, 2.14) 0.46 (0.25, 0.86)
Other 2.05 (1.12,3.74) 1.13 (0.66, 1.95) 0.91 (0.47, 1.77) 1.08 (0.68, 1.71)
Missing/Withdrawn 0.77 (0.61, 0.98) 0.72 (0.60, 0.86) 1.49 (1.36, 1.63) 0.89 (0.79, 1.00)

Sex
Female 2.55 (2.19, 2.98) 0.68 (0.62, 0.75) 1.27 (1.17, 1.37) 1.05 (0.98, 1.13)
Male Reference Reference Reference Reference

Index of Multiple Deprivation quintile2

Most deprived 1.13 (0.90, 1.43) 0.66 (0.55, 0.79) 1.46 (1.27, 1.69) 1.27 (1.12, 1.45)
2 0.96 (0.75, 1.24) 0.77 (0.65, 0.91) 1.38 (1.20, 1.58) 1.32 (1.17, 1.51)
3 1.03 (0.81, 1.32) 0.86 (0.73, 1.01) 1.29 (1.13, 1.47) 1.28 (1.12, 1.45)
4 0.94 (0.75, 1.18) 0.93 (0.81, 1.06) 1.10 (0.98, 1.24) 1.08 (0.96, 1.23)
Most affluent Reference Reference Reference Reference
Outside Avon/Missing 1.29 (1.04, 1.61) 1.30 (1.15, 1.48) 1.50 (1.35, 1.68) 1.22 (1.07, 1.38)

1 Asian: Bangladeshi, Chinese, Indian, Pakistani; Black: Black African, Black Caribbean, Other Black; 2IMD only evaluated for
postcodes within the Avon area.
Estimates for name are adjusted for all variables in the table; estimates for postcode are adjusted only for sex (due to small numbers
of records with postcode available).

Gender and ethnicity average mismatch rates are less than
1% across all datasets. Gold-standard synthetic ALSPAC data
with identifier and attribute variables were produced. No
forename-lastname combinations in the original data is present
in the synthetic data.

Limitations of using NamePrism

The NamePrism ethnicity classifier is trained using mainly
United States data and race categories. Race and ethnicity
terms are country and context specific and should not be used
interchangeably. Naming practices also vary across countries
and regions. Names more frequently associated with certain
populations in the United States may not hold the same
association in the UK. Our current approach has the risk
of inducing and reducing name-ethnicity associations in the
ALSPAC cohort.

However, we estimate that the extent of the impact would
be rather limited. ALSPAC has a predominantly White cohort,
with predominantly anglicised European names. There is a
shared cultural naming heritage between White British and
White north Americans. Future studies could be improved by
using a name dictionary that is properly labelled with ethnicity.
We sent a data request to the ONS Census team for an
ethnicity labelled name dictionary, with frequency, but our
request was not approved due to confidentiality concerns.

R and Python codes used to synthesise names,
identifiers and attributes are available here on GitHub:
https://github.com/UCL-CHIG/ALSPAC_synthetic_identifiers.

Appendix 3: Generating synthetic
identifiers and attributes
Synthpop utilises sequential imputation models for data
synthesis. The order of included variables depends on the
level of completeness of the variable. We included identifier
variables (gender, date of birth), along with attribute variables
(ethnicity, index of multiple deprivation, maternal age), in the
following sequence:

Gender, date of birth, maternal age, ethnicity, index of
multiple deprivation.

We implemented a rejection sampling mechanism to ensure
synthesised dataset did not generate combinations of attribute
variables that did not appear in the original study. Synthesised
attribute and identifiers were appended with synthesised
names.
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Appendix Table 5: Distribution of attribute characteristics used to generate the synthetic data, based on aggregate data from
ALSPAC

Attribute variable % of records

Sex
Female 51.1
Male 48.9

Index of Multiple Deprivation quintile
Most deprived 14.3
2 13.1
3 13.4
4 19.2
Most affluent 23.3
Outside Avon/Missing 16.7

Appendix Table 6: Joint distribution of maternal age and ethnic group used to generate the synthetic data, based on aggregate
data from ALSPAC

Ethnic group
White Black Asian Other Missing

Maternal Age
<20 69.0 2.0 0.5 0.5 28.0
20–29 84.0 1.0 1.0 0.5 14.0
30–39 90.0 1.0 1.0 0.5 7.5
40+ 86.5 0.0 0.5 0.5 12.5
Missing 0.0 0.0 0.0 0.0 100.0

Figures are rounded to prevent statistical disclosure of small numbers.

Appendix 4: Data Linkage settings

U-probabilities were estimated using random sampling. M-
probabilities for name variables were estimated from labelled
data. The M-probability for date of birth and gender were
set at 0.999. Prior match weights were calculated from
the probability that 2 records drawn at random were a
match, in the 13,281 records pairs, which is equivalent to
a starting matching weight of -13.697. JW refers to Jaro-
Winkler similarity scores. When using Jaro-Winkler similarity
scores to compare names, we categorised outcomes into three
categories, and m- and u-probabilities were derived for each

of these score categories: 0–<0.8, 0.8–<1, and exact match
(Appendix Table 7).

For example, a Jaro-Winkler score of <0.8 when comparing
surname would have a m-probability of 0.051 and a u-
probability of 0.995; a score of 0.8–<1 would have a m-
probability of 0.01 and a u-probability of 0.004, and a score
of 1 (exact agreement) would have a m-probability of 0.9435
and a u-probability of 0.001.

Figure A8 is an illustrative depiction of the model
parameters and match weights for each variable at each
comparison level.

Appendix Table 7: Weights used in probabilistic linkage

m-probability u-probability Identifier match weight
Agreement Disagreement Agreement Disagreement Agreement Disagreement

Surname (exact) 0.905 0.095 0.001 0.999 9.91 -
Surname (JW ≥ 0.8) 0.025 0.975 0.004 0.996 2.69 -
Surname (else) 0.070 0.930 0.995 0.005 -3.83 -
Forename(exact) 0.905 0.095 0.005 0.995 7.55 -
Forename (JW ≥ 0.8) 0.027 0.973 0.006 0.994 2.10 -
Forename (else) 0.024 0.976 0.988 0.012 -5.39 -
Sex 0.999 0.001 0.5000 0.5000 1.0 -8.97
Date of Birth 0.999 0.001 0.0015 0.9985 9.17 -9.96
Mother’s surname (exact) 0.857 0.143 0.0008 0.9992 10.0 -
Mother’s surname (JW ≥ 0.8) 0.383 0.617 0.0036 0.9964 3.42 -
Mother’s surname (else) 0.105 0.895 0.996 0.004 -3.24 -
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Figure A8: Model Parameters and match weights
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Appendix Table 8: False matches, missed matches in original linkage, scenario 1 and 3

Scenario Data Type Number false Number missed Pattern Count per Proportionmatches matches pattern

– Original probabilistic 15 346 10011 225 0.65
00111 47 0.14
00011 33 0.10
01011 23 0.07
01110 8 0.02
01101 4 0.02
10110 3 0.01
11010 1 0.00
11011 1 0.00
01001 1 0.00

– Original term frequency
adjustment

6 319 10011 198 0.62
00111 44 0.14
00011 32 0.10
01011 21 0.07
01110 8 0.03
11110 6 0.02
01101 4 0.01
10110 3 0.01
11010 1 0.00
11011 1 0.00
01001 1 0.00

1 1 probabilistic 37 467 10011 283 0.61
00111 93 0.20
01011 79 0.17
01110 8 0.02
01101 2 0.00
00011 1 0.00
11110 1 0.00

1 1 term frequency
adjustment

24 474 10011 272 0.57
00111 95 0.20
01011 80 0.17
01110 15 0.03
11110 10 0.02
01101 1 0.00
00011 1 0.00

1 2 probabilistic 34 463 10011 280 0.60
00111 90 0.19
01011 79 0.17
01110 8 0.02
01101 3 0.01
11110 3 0.01

1 2 term frequency
adjustment

15 473 10011 274 0.58
00111 92 0.19
01011 79 0.17
11110 13 0.03
01110 11 0.02
01101 4 0.01

Continued
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Appendix Table 8: Continued

Scenario Data Type Number false Number missed Pattern Count per Proportionmatches matches pattern

1 3 probabilistic 31 464 10011 285 0.61
00111 87 0.19
01011 79 0.17
01110 7 0.02
01101 3 0.01
11110 3 0.01

1 3 term frequency
adjustment

16 471 10011 278 0.59
00111 88 0.19
01011 81 0.17
11110 12 0.03
01110 10 0.02
01101 2 0.00

1 4 probabilistic 27 465 10011 285 0.61
00111 92 0.20
01011 76 0.16
01110 7 0.02
11110 3 0.01
01101 2 0.00

1 4 term frequency
adjustment

13 473 10011 276 0.58
00111 94 0.20
01011 78 0.16
11110 13 0.03
01110 10 0.02
01101 2 0.00

1 5 probabilistic 27 460 10011 287 0.62
00111 85 0.18
01011 77 0.17
01110 8 0.02
11110 3 0.01

1 5 term frequency
adjustment

14 467 10011 279 0.60
00111 86 0.18
01011 78 0.17
01110 12 0.03
11110 12 0.03

3 1 probabilistic 48 578 10011 257 0.44
00111 221 0.38
01011 44 0.08
00011 37 0.06
01110 17 0.03
11010 1 0.00
10110 1 0.00

3 1 term frequency
adjustment

26 586 10011 256 0.44
00111 222 0.38
01011 42 0.07
00011 36 0.06
01110 19 0.03
11110 7 0.01
01101 2 0.00
11010 1 0.00
10110 1 0.00

Continued

24



Lam J et al. International Journal of Population Data Science (2024) 9:1:18

Appendix Table 8: Continued

Scenario Data Type Number false Number missed Pattern Count per Proportionmatches matches pattern

3 2 probabilistic 40 579 10011 259 0.45
00111 219 0.38
01011 44 0.08
00011 32 0.06
01110 22 0.04
01101 2 0.00
10110 1 0.00

3 2 term frequency
adjustment

19 594 10011 256 0.43
00111 219 0.37
01011 39 0.07
00011 30 0.05
01110 29 0.05
11110 16 0.03
01101 4 0.01
10110 1 0.00

3 3 probabilistic 28 534 10011 251 0.47
00111 204 0.38
01011 37 0.07
00011 24 0.04
01110 17 0.03
11010 1 0.00

3 3 term frequency
adjustment

8 546 10011 247 0.45
00111 207 0.38
01011 37 0.07
00011 23 0.04
01110 20 0.04
11110 10 0.02
01101 1 0.00
11010 1 0.00

3 4 probabilistic 31 557 10011 255 0.46
00111 214 0.38
01011 41 0.07
00011 26 0.05
01110 17 0.03
01101 3 0.01
00110 1 0.00

3 4 term frequency
adjustment

15 564 10011 248 0.44
00111 214 0.38
01011 41 0.07
01110 26 0.05
00011 22 0.04
11110 7 0.01
01101 4 0.01
10001 1 0.00
00110 1 0.00

Continued

25



Lam J et al. International Journal of Population Data Science (2024) 9:1:18

Appendix Table 8: Continued

Scenario Data Type Number false Number missed Pattern Count per Proportionmatches matches pattern

3 5 probabilistic 56 569 00111 209 0.37
10011 175 0.31
01110 102 0.18
11100 36 0.06
01011 21 0.04
00011 12 0.02
01100 4 0.01
10010 3 0.01
10110 2 0.00
00110 2 0.00
01010 2 0.00
01001 1 0.00

3 5 term frequency
adjustment

35 553 00111 211 0.38
01110 146 0.26
10011 137 0.25
01011 19 0.03
00011 14 0.03
11100 11 0.02
01100 4 0.01
10110 2 0.00
00110 2 0.00
01101 2 0.00
01010 2 0.00
10010 1 0.00
01001 1 0.00
11110 1 0.00

Matching pattern corresponds to:
Forename, mother’s surname, surname, gender, date of birth.
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Appendix Table 9: False matches in deterministic linkages, original and all scenarios

Scenario Data Type Number false Number missed Pattern Count per Proportionmatches matches pattern

– original deterministic 28 01111 15 0.54
11110 11 0.39
11111 1 0.04
10111 1 0.04

1 1 deterministic 45 01111 27 0.60
11110 18 0.40

1 2 deterministic 42 11110 29 0.69
01111 13 0.31

1 3 deterministic 33 01111 18 0.55
11110 15 0.45

1 4 deterministic 30 01111 18 0.60
11110 11 0.37
11111 1 0.03

1 5 deterministic 36 11110 18 0.50
01111 17 0.47
11111 1 0.03

2 1 deterministic 14 01111 14 1.00
2 2 deterministic 16 01111 16 1.00
2 3 deterministic 12 01111 12 1.00
2 4 deterministic 12 01111 11 0.92

11111 1 0.08

2 5 deterministic 9 01111 8 0.89
11111 1 0.11

3 1 deterministic 38 01111 20 0.53
11110 17 0.45
10111 1 0.03

3 2 deterministic 34 01111 20 0.59
11110 14 0.41

3 3 deterministic 31 01111 17 0.55
11110 14 0.45

3 4 deterministic 27 11110 14 0.52
01111 12 0.44
11111 1 0.04

3 5 deterministic 31 01111 17 0.55
11110 14 0.45

4 1 deterministic 14 01111 14 1.00
4 2 deterministic 18 01111 18 1.00
4 3 deterministic 13 01111 13 1.00
4 4 deterministic 10 01111 9 0.90

11111 1 0.10

4 5 deterministic 8 01111 7 0.88
11111 1 0.13

Matching pattern corresponds to:
Forename, mother’s surname, surname, gender, date of birth.
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