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Performance Analysis of FAS-aided Backscatter Communications
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Abstract—In this letter, we study the performance of backscat-
ter communications (BC) over the position-flexible fluid antenna
system (FAS) technology. We consider a situation where a single
fixed-antenna source sends information to a FAS reader through
the wireless forward (i.e., source-to-tag) and backscatter (i.e., tag-
to-reader) channels. We first derive the cumulative distribution
function (CDF) of the equivalent channel at the FAS receiver, and
obtain closed-form expressions for the outage probability (OP)
and the delay outage rate (DOR) assuming a correlated Rayleigh
distribution. To gain more insights into the system performance,
we present analytical expressions of the diversity order, OP and
DOR in the high signal-to-noise ratio (SNR) regime. Numerical
results reveal that FAS at the reader can significantly improve
the performance of BC compared with a fixed-antenna reader.

Index Terms—Backscatter communication, correlated fading
channel, fluid antenna system, outage probability.

I. INTRODUCTION

ONE CRUCIAL aspect of the sixth-generation (6G) wire-
less networks is to support low-power communication,

useful particularly for Internet-of-Things (IoT) devices. Given
the applications of evolving technologies such as Radio Fre-
quency Identification (RFID) systems and IoT, emphasis has
been paid to backscatter communication (BC) in recent years
[1]. BC is a cost-effective wireless approach that enables low-
power devices to send data by reflecting or modulating existing
radio frequency (RF) signals in the environment.

Independently, fluid antenna system (FAS) has emerged as
a technology to obtain a new degree of freedom (dof) through
antenna position flexibility recently [2]. The concept of FAS
was first introduced by Wong et al. [3], thanks to the advances
in reconfigurable antennas such as liquid-based antennas and
pixel-based antennas and etc [4]. In brief, FAS represents all
forms of movable and non-movable flexible-position antenna
systems [5]. Early results on FAS have presented promising
results in terms of diversity order and outage probability (OP),
e.g., [6], [7], [8], [9]. Copulas have also been shown to be
useful in the performance analysis for FAS [10]. Additionally,
it was illustrated that reconfigurable intelligent surface (RIS)
could combine with FAS for amazing performance gains [11].
The channel estimation problem for FAS is challenging but
has recently been tackled in [12], [13]. Furthermore, FAS has
found applications in multiple access [14], [15].

BC and FAS are attractive in their own rights, but integrating
BC with the dynamic and reconfigurable properties of FAS is
not well understand and can potentially be synergistic. FAS is
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Fig. 1. The system model of the FAS-aided BC.

able to adaptively modify their radiating structures based on
environmental conditions or network demands; this adaptabil-
ity, when coupled with BC, allows for dynamic adjustments
in the reflection and modulation of RF signals. Motivated by
this, the objective of this letter is to evaluate the performance
of BC when backscatter devices take advantage of FAS.

In particular, we consider a single fixed-antenna source that
intends to transmit data to a FAS-equipped reader through
the forward (i.e., source-to-tag) and backscatter (i.e., tag-to-
reader) channels. Our contributions are summarized as follows:
(i) we derive the cumulative distribution function (CDF) of
the equivalent channel at the FAS-equipped reader with K
preset positions, i.e., the CDF of the maximum of K random
variables (RVs), each of which is a product of the forward
and backscatter channels, using copulas; (ii) we obtain the
OP and delay outage rate (DOR) in closed-form expressions
under correlated Rayleigh fading channels; (iii) we derive the
diversity order and the asymptotic expressions of the OP and
DOR in the high signal-to-noise ratio (SNR) regime; and (iv)
we present numerical results for the FAS-aided BC, showing
that the FAS reader can significantly enhance the system
performance compared to a single fixed-antenna reader.

II. SYSTEM MODEL

Consider a wireless FAS-aided BC as illustrated in Fig. 1,
where a single fixed-antenna source aims to send information
x to a reader that is equipped with a FAS through the forward
and backscatter channels. Hence, the instantaneous received
signal power at the tag is given by Pt = PsLsGf , in which
Ps denotes the transmit power by the source, Ls includes the
gains of the transmit and receive antennas and frequency-
dependent propagation losses, and Gf = |hf |2 is the fading
channel gain between the source and the tag, where hf denotes
the corresponding forward fading channel coefficient. On the
reader side, the FAS can freely switch to one of the K preset
positions (i.e., ports) evenly distributed on a linear space of
length Wλ where λ is the wavelength. In this letter, the
switching delay is assumed to be negligible, thanks to the
pixel-based FAS [4]. Also, it is assumed that the FAS consists
of only one RF chain, and only one port can be activated for
communication.1 Under such assumptions, the received signal
at the k-th port of the reader is given by

yk = hfhb,kx+ zk, (1)

1To enhance network connectivity and data rate, this model can be extended
to the compact ultra massive antenna array (CUMA), where, instead of
activating only one port at the reader, an ultra massive number of ports are
activated at the reader for reception [15].
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where hb,k is the backscatter channel coefficient between the
tag and the k-th port of the FAS reader with the respective
fading channel gain Gb,k = |hb,k|2 and zk is the independent
identically distributed (i.i.d.) additive white Gaussian noise
(AWGN) with zero mean and variance σ2 at each port. Without
loss of generality, we assume that E [Gf ] = E [Gb,k] = 1,
where E [·] denotes the expectation operator.

We further assume that the FAS always switches to the best
port with the strongest signal for communication, i.e.,

GFAS = max {Gp,1 . . . , Gp,K} , (2)
where Gp,k = GfGb,k denotes the product channel gain of the
forward and backscatter links. It is worth noting that Gp,k for
k ∈ {1, . . . ,K} are spatially correlated,2 and the correlation
matrix R can be characterized by Jake’s model as [16]

R = [µk,l] = ωJ0

(
2π (k − l)

K − 1
W

)
, (3)

where µk,l denotes the correlation parameter that can control
the dependency between two arbitrary fluid antenna ports k
and l, ω is the large-scale fading effect, and J0 (·) represents
the zero-order Bessel function of the first kind. The received
SNR at the reader is defined as

γ =
PtGFAS

σ2
= γ̄GFAS, (4)

in which γ̄ = Pt

σ2 is the average SNR.

III. PERFORMANCE ANALYSIS

Here, we derive the CDF of the equivalent channel gain at
the FAS reader, and then obtain closed-form expressions for
the OP and DOR. Also, we derive the diversity order and the
asymptotic expressions of the OP and DOR in the high SNR
regime. Furthermore, we provide some insights into the OP
and DOR behavior when W and/or K are sufficiently large.
A. Statistical Characterization

From (2), we can see that the CDF of the equivalent fading
channel gain at the FAS reader is defined as the CDF of the
maximum of K correlated RVs that each includes the product
of two independent RVs. Assuming that all the fading channels
undergo Rayleigh distribution, the CDF of GFAS is derived as
the following proposition.

Proposition 1: The CDF of GFAS = max {Gp,1 . . . , Gp,K}
for the considered FAS-aided BC is given by

FGFAS
(r) =

[
K
(
1− 2

√
rK1

(
2
√
r
))−θ −K + 1

]−1
θ

, (5)

in which K1 (·) denotes the first-order modified Bessel func-
tion of the second kind and θ ∈ (0,∞) is the dependence
parameter so that θ → 0 represents the independent case.

Proof: By using the CDF definition, FGFAS
(r) can be

mathematically expressed as
FGFAS

(r) = Pr (max {Gp,1 . . . , Gp,K} ≤ r)

= FGp,1...,Gp,K
(r, . . . , r)

(a)
= C

(
FGp,1 (r) , . . . , FGp,K

(r)
)
, (6)

2The equivalent correlated channel is modeled by using eigenvalue decom-
position to obtain the correlation matrix R =

[
µk,l

]
= VΛVH , where V

is a K × K matrix whose k-th column, denoted by vk , is the eigenvector
of R and Λ = diag (λ1, . . . , λK) denotes a K ×K diagonal matrix whose
k-th diagonal entry is the corresponding eigenvalue of vk [8].

in which (a) is obtained by using Sklar’s theorem [17, Thm.
2.10.9] and C (·) : [0, 1]d → [0, 1] denotes the copula function
that is a joint CDF of d random vectors on the unit cube [0, 1]d

with uniform marginal distributions, i.e.,
C (u1, . . . , ud; θ) = Pr (U1 ≤ u1, . . . , Ud ≤ ud) , (7)

where ui = Fsi (si) and si denotes any arbitrary RV for i ∈
{1, . . . , d} and θ represents the dependence parameter which
can measure the linear/non-linear correlation between arbitrary
correlated RVs. From (6), we now need to find the CDF of
the product channel, i.e., FGp,k

(r). Assuming Rayleigh fading
channels, we can derive the CDF of Gp,k = GfGb,k as

FGp,k
(r) = Pr (GfGb,k ≤ r)

=

∫ ∞

0

fGf
(gf)FGb,k

(
r

gf

)
dgf (8)

(b)
= 1− 2

√
rK1

(
2
√
r
)
, (9)

in which (b) is obtained by solving the integral in (8) with the
help of [18, 3.471.9]. By inserting (9) into (6), the CDF of
GFAS is obtained for any arbitrary choice of copulas. However,
in order to analyze the performance of the considered system
model, it is required to select a copula that can describe the
spatial correlation between FAS ports. For this purpose, we
exploit the Clayton copula because it can accurately describe
the tail dependence between correlated RVs. It should be
noted that an outage mainly occurs in deep fading conditions,
where knowing the behavior of the tail dependence of fading
coefficients is necessary; therefore, this choice is justified. As
a result, by substituting the Clayton copula definition from [10,
Def. 3] into (6) and considering the similar marginal CDF, (5)
is obtained, and the proof is completed.

It is worth pointing out that since, in the copula definition,
the non-linear transformations are applied to the considered
RVs, the linear correlation cannot be maintained anymore. In
other words, the dependence parameter θ does not necessarily
represent the linear correlation between the correlated RVs.
Therefore, rank correlation coefficients should be considered
for the copula-based analysis since they are preserved under
any monotonic transformation. Consequently, they are able to
describe the structure of dependency beyond linear correlation.
To tackle this issue, we use Spearman’s ρ correlation coeffi-
cient that is identical to Pearson’s product moment correlation
coefficient for a pair of continuous RVs, i.e., R = [µk,l] =
[ρk,l] [17, Sec. 5.1.2]. Therefore, ρ between two arbitrary
correlated RVs is mathematically defined as

ρ = 12

∫∫
[0,1]2

u1u2dC (u1, u2)− 3. (10)

By plugging the Clayton copula into (10) and computing the
integral, the Spearman’s ρ for the Clayton copula can be
approximated as ρ ≈ 3θ

2(θ+2) [19]. Then, considering that the
linear correlation coefficient is identical to Spearman’s ρ, θ
can be expressed in terms of the defined correlation matrix as

θ ≈ 4R

3− 2R
, (11)

where we have abused the notation of R to mean its element.
As a result, by substituting (11) into (5), the CDF of GFAS in
Proposition 1 can be defined in terms of Jake’s model.
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B. OP Analysis

OP refers to the probability of the instantaneous SNR γ be-
low the required SNR threshold γth, i.e., Po = Pr (γ ≤ γth).
Therefore, the OP is derived as the following proposition.

Proposition 2: The OP for the considered FAS-assisted BC
under correlated Rayleigh fading channels is given by

Po =

[
K

(
1− 2

√
γth
γ̄

K1

(
2

√
γth
γ̄

)) 4R
2R−3

−K + 1

] 2R−3
4R

,

(12)
in which γth is the SNR threshold and R is defined in (3).

Proof: By inserting the SNR of the considered FAS-aided
BC from (4) into the OP definition, we have

Po = Pr

(
GFAS ≤ γth

γ̄

)
= FGFAS

(
γth
γ̄

)
. (13)

Now, by applying the CDF of GFAS from Proposition 1 into
(13), the proof is accomplished.

C. DOR Analysis

DOR is a momentous metric in wireless networks to evalu-
ate the performance of ultra-reliable and low-latency commu-
nications (URLLC) which is defined as the probability that the
transmission delay for a certain amount of data R in a wireless
channel with a bandwidth B exceeds a certain predefined
threshold Tth, i.e., Pr (Tdt > Tth), in which Tdt =

R
B log2(1+γ)

defines the delivery time [20]. Thus, the DOR for our system
model can be obtained using the following proposition.

Proposition 3: The DOR for the considered FA-aided BC
under correlated Rayleigh fading channels is given by

Pdor=

K
1− 2

√
T̂th

γ̄
K1

2

√
T̂th

γ̄

 4R
2R−3

−K + 1


2R−3
4R

,

(14)

where T̂th = e
R ln 2
BTth .

Proof: By substituting the delivery time into the DOR
definition, we have

Pdor = Pr

(
R

B log2 (1 + γ̄GFAS)
> Tth

)
= Pr

(
GFAS ≤ e

R ln 2
BTth

γ̄

)
= FGFAS

(
T̂th

γ̄

)
. (15)

Now, by inserting T̂th = e
R ln 2
BTth into the CDF of GFAS from

Proposition 1, the proof is completed.
It is noteworthy that the theoretical expressions in (12) and

(14) can provide intuitive insights into the OP and DOR perfor-
mance against the channel parameters thanks to the modified
Bessel function K1(r) and the Clayton copula properties. The
following remark represents some example of such insights.

Remark 1: Under a fixed correlation setup (i.e., constant
R), it is mathematically understandable that the OP and DOR
values decrease as the average SNR γ̄ grows for a fixed
SNR threshold γth and fixed delivery threshold T̂th, which
is in alignment with the wireless communication concept that
channel quality improves as γ̄ increases. Moreover, it can be
found that under a fixed R and γ̄, increasing γth and T̂th

leads to an increase in the OP and DOR values, respectively,
which aligns with the fact that transmission becomes more
challenging at very high rates. Such behaviors are obtained
due to the modified Bessel function K1(r) properties, i.e.,
decreasing (increasing) r leads to an increase (decrease) in the
value of K1(r). Therefore, FGp,k

(r) in terms of r = {γth

γ̄ , T̂th

γ̄ }
decreases (increases) and the overall expressions, i.e., OP in
(12) and DOR in (14), decrease (increase) in terms of the
corresponding parameter. Such intuitive insights are also pro-
vided in Section IV through numerical results, which validate
the accuracy of the theoretical analysis.

D. Asymptotic Analysis

Although the derived OP and DOR in Propositions 2 and 3
are in simple closed-form expressions, we are interested in the
asymptotic behavior of the obtained metrics in the high SNR
regime (i.e., γ → ∞) to gain more insights into the system
performance. To do so, by exploiting the series expansion of
the Bessel function K1 (r) when r → 0, we have

F∞
Gp,k

(r) ≈ r (1− 2ζ − log r) , (16)
where ζ is the Euler-Mascheroni constant [21]. Hence, the
asymptotic expressions of the OP and DOR for the considered
system model can be obtained in the following corollary.

Corollary 1: The asymptotic expressions of the OP and
DOR for the considered FAS-equipped BC in the high SNR
regime, i.e., γ̄ → ∞ are respectively given by

P∞
o ≈

[
K

(
γth
γ̄

[
1− 2ζ − log

(
γth
γ̄

)]) 4R
2R−3

−K + 1

] 2R−3
4R

,

(17)

P∞
dor ≈

K ( T̂th

γ̄

[
1− 2ζ − log

(
T̂th

γ̄

)]) 4R
2R−3

−K + 1


2R−3
4R

.

(18)
Proof: In the high SNR regime (i.e., γ̄ → ∞), we have

η
γ̄ → 0, where η ∈

{
γth, T̂th

}
. Therefore, by substituting (16)

into (12) and (14), the proof is accomplished.
Similar to Remark 1, the asymptotic expressions in (17)

and (18) can provide intuitive insights into the OP and DOR
performance in the high SNR regime. Such mathematical
visions are achieved through the logarithm function log(r)
features, i.e., increasing (decreasing) r leads to an increase
(decrease) in the value of log(r). As such, F∞

Gp,k
(r) in terms

of r = {γth

γ̄ , T̂th

γ̄ } increases (decreases) and the overall expres-
sions increase (decrease) against the corresponding parameter.

Furthermore, the asymptotic behavior of the OP and DOR
for sufficiently large W and K, i.e., W → ∞ and/or K → ∞
can provide deep insights into the derived expressions.

Remark 2: Given (3), when W → ∞, for a fixed K, the
Bessel function J0(·) reaches 0, and thus, R is 0. Then, by
considering R = 0 in (12) and (14), the OP and DOR reach
0 when W → ∞. This trend is also confirmed by the copula
dependence parameter θ because, given (11), if R = 0, θ
reaches 0, which corresponds to the independent case based
on the Clayton copula definition. In other words, it shows that
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(a) OP (b) DOR (c) OP (d) DOR
Fig. 2. Performance of OP and DOR versus average SNR γ̄ for (a) and (b) different FAS size W ; and for (c) and (d) different number of FAS ports K.

the spatial separation between the fluid antenna ports is large
enough and the spatial correlation becomes negligible.

Remark 3: Given (3), when K → ∞ for a fixed W , the
Bessel function J0(·) is 1, and thus, R reaches ω. Then, by
inserting R = 1 (e.g., without loss of generality, let ω = 1) in
(12) and (14), the OP and DOR converge to constant values
when K → ∞. This trend is mainly due to the fact that under
such an assumption, the ports become too close to each other
and the spatial correlation effects dominate; hence, diversity
gain reduces after reaching a certain point and the decrease
in OP and DOR slows down so that they eventually saturate.
This is also validated by the copula dependence parameter θ
because, given (11), if R = 1, then θ is equal to 4, which
means a weak dependence structure scenario since, regarding
the Clayton copula definition θ → 0 and θ → ∞ represent
the independent and strong correlation cases, respectively.

Furthermore, another effective metric for analyzing system
performance in the high SNR regime is diversity order, which
is mathematically defined as DFAS = − limγ̄→∞

logPo(γ̄)
log γ̄ .

Proposition 4: The diversity order for the FAS-aided BC
under correlated Rayleigh fading channels is given by

DFAS ≈ min (K,K ′) , (19)
where K ′ denotes the numerical rank of correlation matrix R
when K → ∞ for a fixed W .

Proof: The details of proof are given in Appendix A.

IV. NUMERICAL RESULTS

Here, we present numerical results to assess the considered
system performance in terms of the OP and DOR, which have
been double-checked by the Monte-Carlo simulation method.
In the simulations, we have set the parameters as γth = 0 dB,
R = 5 kbits, B = 2 GHz, Tdt = 3 ms, γ̄ = 20 dB, W =
{0.5, 1, 2, 4, 6}, and N = {2, 4, 6, 8, 10}.

Figs. 2(a) and 2(b) respectively illustrate the behavior of OP
and DOR in terms of the average SNR γ̄ for given values of
FAS size W under correlated Rayleigh fading channels. As
expected, the OP and DOR decrease as γ̄ increases, which is
reasonable since the channel condition improves (see Remark
1). Moreover, it can be observed that by increasing the FAS
size W for a fixed number of ports K, the performance of
OP and DOR improves. The reason for this behavior is that
increasing the spatial separation between the FAS ports by
increasing W for a fixed K can reduce the spatial correlation
between FAS ports (see Remark 2). Additionally, we can

Fig. 3. DOR versus amount of data R for selected of values W and K.

clearly observe that such an improvement is more noticeable
when K is large. The performance of OP and DOR in terms
of γ̄ for given values of K under correlated Rayleigh fading
channels is presented in Figs. 2(c) and 2(d), respectively. We
can see that as the number of FAS ports K grows, lower values
of the OP and DOR can be obtained. The main reason is that
although increasing K for a fixed value of W raises the spatial
correlation between FAS ports, it can potentially improve the
channel capacity, diversity gain, and spatial multiplexing at the
same time. Hence, this can help mitigate fading and improve
the overall link quality (see Remark 3).

Furthermore, as we can see in Fig. 2, considering a FAS
reader instead of a single fixed-antenna reader can significantly
enhance the performance of BC in terms of OP and DOR.
In order to evaluate how the FAS reader affects the DOR
performance in terms of transmitted data R over BC, we
present Fig. 3 for selected values of W and K. First, we can
observe that as W and K increase simultaneously, the spatial
correlation between the FAS ports becomes balanced; hence,
lower values of the OP and DOR are reached. Additionally,
as expected, it can be noticed that as R increases, the DOR
performance becomes worse, such that transmitting a high
amount of data (e.g., R = 3 kbits) with low delay is almost
impractical when a single fixed-antenna reader or a FAS reader
with small W and K are considered. However, thanks to the
FAS reader, a large amount of information with a small delay
can be sent when the W and K are large enough.

V. CONCLUSION

This letter addressed the performance of BC with the aid
of FAS. Specifically, we assumed that a fixed-antenna source
sends information to a FAS-aided reader via wireless forward
and backscatter channels. We first derived the CDF of the
equivalent channel (i.e., the maximum of K correlated RVs
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such that each is a product of the forward and backscatter
channels) for the reader by exploiting the copula technique.
Then we derived closed-form expressions for the OP and DOR
assuming correlated Rayleigh fading channels. Furthermore,
we obtained the diversity order and asymptotic expressions
of the OP and DOR in the high SNR regime. Our analytical
results revealed that the FAS reader can provide a remarkable
performance in terms of the OP and DOR compared with the
conventional single fixed-antenna reader over BC.

APPENDIX A
PROOF OF PROPOSITION 4

Given that directly solving the limit in the diversity order
definition is almost mathematically intractable, we utilize the
method provided in [22] to approximate the PDF of the
equivalent channel at the FAS-equipped reader. Consequently,
the PDF of |hFAS| can be approximated as

f|hFAS|(r) ≈ 2κr2M+1 + o
(
r2M+1

)
. (20)

Thus, based on (20), the CDF at high SNR can be derived as

F|hFAS|(r) ≈
κ

M + 1
r2(M+1) + o

(
1

γ̄M+1

)
. (21)

Due to the correlation of complex channel coefficients hp =
[hp,1, . . . , hp,K ]T , the PDF of hp in terms of its amplitude
|hp,K | and phase βK can be written as [23]

f|hp|,β (|hp,1|, β1 . . . , |hp,K |, βK) =

K∏
k=1

|hp,k|Hp,k

πK det (R)
, (22)

in which Hp,k = e−
Nk,k|hp,k|2+2

∑K
l=k+1 Nk,l|hp,k||hp,l| cos(βl−βk)

det(R) ,
where Nk,l defines the (k, l)-th entry of the correlation
matrix’s co-factor N and det (R) is the determinant of R.
Now, by considering (22) and using Leibniz integral, the
approximated PDF of FAS at high SNR can be derived as

f|hFAS|(r) =
Kr

πK det (R)

∫ 2π

0

· · ·
∫ 2π

0

Hp,K

∫ r

0

|hp,K−1|

×

(
Hp,K−1

(∫ r

0

|hp,2Hp,2|

(
|hp,1|Hp,1d |hp,1|

)
d |hp,2|

)

× d |hp,K−1|

)
dβ1, . . . ,dβK . (23)

Next, the integral I =
∫∞
0

|hp,k|Hp,kd |hp,k| can be solved
by applying Taylor series approximation at around zero [24],
i.e., I = r2

2 +o(r2) for k = {1, . . . ,K − 1}. Additionally, the
Taylor series approximation of Hp,k at zero is Hp,k = 1+o(1).
Now, by inserting the above results into (23), we have

f|hFAS|(r) =
2K

det(R)
r2K−1 + o

(
r2K−1

)
, (24)

F|hFAS|(r) ≈
1

det(R)
r2K + o

(
1

γ̄K

)
. (25)

Therefore, under W → ∞, it is straightforward from (25)
that the diversity order of this system is given by DFAS =
M + 1 = K. However, if W is finite, R might be near to
being singular. In this regard, consider K → ∞ for a finite
W . Thus, the correlation between the k-th port and (k+1)-th
port is R = limK→∞ ωJ0

(
2πW
K−1

)
= ωJ0(0), and we have

hp,k+1 = hp,k. Thus, the joint CDF of hp,k and hp,k+1 is
Fhp,k+1,hp,k

(r1, r2) = Fhp,k
(min {r1, r2}), which implies that

they reduce to singularity. Since there are many such ports, we
can use a finite K ′ ports to approximate the channels of FAS
with K ports, where K ′ is the numerical rank of R such that
R′ is covariance with K → ∞ for a fixed W . As a result, the
diversity gain of FAS is limited by min {K,K ′}.
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