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Abstract. The Finnish Inverse Problems Society organized the Helsinki To-

mography Challenge (HTC) in 2022 to reconstruct an image with limited-angle

measurements. We participated in this challenge and developed two methods:
an Edge Inpainting method and a Learned Primal-Dual (LPD) network. The

Edge Inpainting method involves multiple stages, including classical recon-

struction using Perona-Malik, detection of visible edges, inpainting invisible
edges using a U-Net, and final segmentation using a U-Net. The LPD ap-

proach adapts the classical LPD by using large U-Nets in the primal update

and replacing the adjoint with the filtered back projection (FBP). Since the
challenge only provided five samples, we generated synthetic data to train the

networks. The Edge Inpainting Method performed well for viewing ranges

above 70 degrees, while the LPD approach performed well across all viewing
ranges and ranked second overall in the challenge.

1. Introduction. The task in computed tomography reconstruction is to recover
an image x from measurements y given by the Radon transform [14]

y(ϕ, s) = A[x](ϕ, s) =

∫
L(ϕ,s)

x(t) dt. (1)

Each measurement results from an integral over a straight line L parameterized by
a distance s ∈ R and an angle ϕ ∈ [0, π].

When we sample s and ϕ sparsely, this becomes a challenging inverse problem.
The goal of the HTC 2022 was to recover the shapes of 2D phantoms from limited-
angle sinogram data. In limited-angle CT, the goal is to recover x while only having
measurements for angles from some small interval [ϕmin, ϕmax] – we denote these
measurements by A|[ϕmin,ϕmax][x].

The challenge has two phases. In the first phase, the organizers provided a
dataset of five 512 × 512 pixels phantoms with full-angle sinograms, filtered back
projection reconstructions, segmentation masks, and information about the mea-
surement geometry. The target phantoms are homogeneous discs with differently
shaped holes. We used this data set to develop this paper’s algorithms. The second
phase consisted of evaluating the algorithms; thus, no changes to the submitted
methods were allowed at this stage of the challenge. The evaluation was split into
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Figure 1. 2D Fan-beam geometry used for data collection.
Adapted from https://fips.fi/HTC2022.php.

7 levels, starting with a view range of 90◦ in level 1 and decreasing by 10◦ per level
down to 30◦ in level 7. The performance of the models is evaluated based on their
ability to segment the reconstructed phantoms into material and air accurately.

We tackle this challenge with two different deep learning approaches: an adapted
Learned Primal-Dual (LPD) method in Section 3.1 and an Edge Inpainting ap-
proach in Section 3.2. We trained both models using synthetic data with simulated
measurements; see Section 2. The results are discussed in Section 4.

2. Dataset. A significant difficulty of the challenge was the need for more data.
The challenge organizers provided a small dataset of only 5 pairs of full view sino-
grams and phantoms [12]. Hence we built methods to generate many pairs of
synthetic phantoms and simulated measurements similar to the five provided. We
then used this synthetic data to train our two data-driven approaches.

2.1. Modeling of the forward operator. The challenge data was collected us-
ing the University of Helsinki’s in-house cone-beam computed tomography scanner.
The measurement parameters, e.g., the distance of the source to origin DSO, dis-
tance of detector to origin DD0, number of detector pixels, and pixel size, were
provided by the organizers. Using the number of detector pixels and the pixel size,
one can calculate the length of the detector LD. The data given was already back-
ground and flat-field corrected, and the attenuation data has already undergone log
transformation. We used the provided measurement parameters to define a 2D fan
beam ray transform operator in ODL [1] using the ASTRA [17] backend. We used
this approximated forward operator to generate the new measurements from the
phantom created in Section 2.2 and in the LPD model in Section 3.1.

2.2. Data generation. All of our synthetic phantoms share the following features.
They have binary values, which correspond to air and material, respectively. The
material always has the same homogeneous density. The discs have a circular shape
and fixed size. The center of the disc is positioned randomly around the center of
the squared images.

https://fips.fi/HTC2022.php
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We used four different methods to generate four different types of holes inside
these discs (see Figure 2), most of them inspired by the given data.

The first method generates discs with a random number (up to 15) of circular
holes. The sizes and locations of the holes are also random, and the holes are not
allowed to intersect each other or the boundary.

The second method works analogously but uses randomly drawn polygons instead
of circles as holes.

The third method creates holes by drawing a grid of lines inside the disc. At
first, a big circular hole, almost the size of the disc itself, is set into the middle of
the disc. Then, a grid of randomly drawn lines separates the big hole into smaller
holes. The lines of the grid are not perfectly straight, and the orientation of the
grid is random. Thus, the shapes of the resulting holes vary significantly.

The fourth method uses a Gaussian mixture model to generate holes. At first,
several Gaussian functions, which define a mixture model, are initialized randomly
inside the disc. Then, we use a sublevel set defined by the 70% percentile of the
pixel values of these combined functions to define where material is present; the
remaining parts are the holes.

These methods are fast enough to be used during training to generate training
data on-the-fly.

Figure 2. Examples of generated synthetic data samples. The
different methods for data generation from left to right: circular
holes, polygons, grid of lines, and Gaussian mixture.

3. Methods. We develop two deep learning approaches: an adapted version of the
LPD method [3] trained directly for segmentation and a sequentially trained Edge
Inpainting model. In the following exposition, we drop the subscript [ϕmin, ϕmax]
and denote the limited-angle Radon transform by A.

3.1. Learned Primal-Dual. In deep learning, selecting an appropriate architec-
ture is crucial to any successful approach. In particular, traditional iterative algo-
rithms, e.g., proximal gradient descent and primal-dual hybrid gradient [8], inspire
the architecture class for learned iterative methods for inverse problems. One cre-
ates these powerful architectures by replacing parts of the iterative algorithms with
neural networks – typically the proximal mappings. One can then train these ar-
chitectures end-to-end, e.g., in a supervised manner [6]. We want to point out that
while these learned iterative methods are motivated by classical iterative methods,
they do not possess the same theoretical guarantees. A powerful example of a
learned iterative method is the Learned Primal-Dual (LPD) proposed by Adler et
al. [3]. As our first method, we build upon the LPD architecture by incorporating
some common modifications [9].
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The LPD swaps the proximal mappings in the dual and primal update with con-
volutional neural networks Fθk : Y Ndual×Y ×Y → Y Ndual and Gθk : XNprimal×X →
XNprimal . The networks in each unrolling step k have separate weights. We imple-
mented the dual network Fθk as small residual convolutional networks and the pri-
mal networks Gθk as U-Nets. The use of U-Nets was motivated by the effectiveness
of multi-scale architectures when working with images. Further, instead of using
the adjoint A∗ in the primal update, we use the filtered back projection (FBP) A†

using the Hann filter and a frequency cutoff of 0.75. This choice is motivated by
Hauptmann et al. [9], where the authors show that this change can increase perfor-
mance. The application of a filtered gradient is reminiscent of the Newton method,
which has a higher convergence speed than traditional gradient descent. In the chal-
lenge, the performance was judged not by the reconstruction but by a downstream
segmentation task. We address this by placing a U-Net Tθ : XNprimal → X after
the last iteration of the LPD. In addition, we normalized the sinograms such that
the model is invariant to intensity shifts. Similar to [2], we trained the resulting
model directly for the segmentation task by minimizing the binary cross-entropy
between the output and the provided segmentation masks. The pseudocode for the
full model is given in Algorithm 1. We used K = 4 unrolling steps and memory
channels Nprimal = 4 and Ndual = 2. In total, the network has 2.4M parameters.
The full model is denoted by RΘ with Θ = (θ, θ1, . . . , θK) denoting all trainable
parameters. The U-Nets used in the primal update and in the segmentation step
consist of 4 scales with skip connection on all scales. The specific details of the
implementation are given in Table 1.

Applying the forward operator and FBP during each unrolling step produces
significant memory requirements during training, limiting our batch size to 6. To
address this small batch size, we used group normalization [18] instead of batch
normalization.

As with most deep learning models, most of the computational effort is spent in
training the network. Once trained, a forward pass through the network requires
only 4 evaluations of the forward operator and 5 evaluations of the FBP, which has
a similar computational complexity as the adjoint. Thus, the evaluation of the LPD
is cheaper than classical iterative methods which may require hundreds of iterations
to create a suitable solution.

The evaluation phase of the HTC 2022 was split into 7 levels with decreasing
angular ranges. Using the same training configuration, we trained one LPD model
instance for each level. The specific angular subset [ϕa, ϕb] was not fixed and only
became known during testing. To robustify the model, we shift the sinograms by
−ϕa to the angular range [0◦, ϕb − ϕa], input this shifted sinogram to the LPD
network, and rotate the output by ϕa to get the initial orientation back. Using this
pre- and postprocessing, we can restrict the training of the LPD model to sinograms
with a 0◦ starting angle.

We submitted three variants of this modified LPD model: trained only on the
synthetic data1, additional finetuning on the 5 challenge phantoms2 and an addi-
tional equivariance constraint in the evaluation process3.

For the first variant, we trained the network instances for 41 666 steps with a
batch size of 6 on the synthetic phantoms with simulated measurements having

1https://github.com/alexdenker/htc2022_LPD2
2https://github.com/alexdenker/htc2022_LPD
3https://github.com/alexdenker/htc2022_LPD3

https://github.com/alexdenker/htc2022_LPD2
https://github.com/alexdenker/htc2022_LPD
https://github.com/alexdenker/htc2022_LPD3
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Algorithm 1 Modified Learned Primal-Dual

x0 ∈ XNprimal , h0 ∈ Y Ndual

for k = 1, . . . ,K do

hk = Fθk(hk−1, Ax
(1)
k−1, y

δ)

xk = Gθk(xk−1, A
†h

(0)
k )

end for
x̂ = Tθ(xK)

Table 1. The implementation details of the primal, dual, and
segmentation network in the LPD model.

Primal U-Net Gθk Segmentation U-Net Tθ
scales 4 4
channels 16, 32, 64, 64 16, 32, 64, 128
skip channels 16, 32, 32 8,8,8
activation function Leaky ReLU Leaky ReLU
downsampling max pooling max pooling
upsampling nearest neighbor nearest neighbor
kernel size 3 3

Dual CNN Fθk
number of layers 4
channels 64
activation function LeakyReLU
kernel size 3

1% relative additive Gaussian noise. In total 250 000 synthetic data samples were
generated. We used the Adam optimizer [11] with a batch size of 6 and an initial
learning rate of 1× 10−4. We used a step learning rate scheduler which decayed the
learning rate by 25% every 4166 gradient updates.

In the second variant, we additionally fine-tuned for 2000 steps on random an-
gular subsets of the 5 challenge phantoms. Again, we used the Adam optimizer
with a fixed learning rate of 5× 10−6 and a batch size of 5. In the last variant,
we experimented with an equivariance constraint during evaluation. This variant
used the same weights as the fine-tuned LPD. We first compute the reconstruc-
tion given the limited-angle sinogram, i.e., x̂ = RΘ(y). We fix a number of angles
0 ≤ α1, . . . , αT ≤ π, rotate the output of the network and simulate new measure-
ments yαi = ATαi x̂ with Tαi denoting a rotation matrix by the angle αi. We then
compute reconstructions from these rotated measurements x̂αi

= T−αi
RΘ(yαi

). We
then compute the final reconstruction as the mean over the rotations:

x =
1

T

T∑
i=1

x̂αi
. (2)

In our implementation, we choose T = 50. We observed a slight performance
increase on our synthetic data and the 5 challenge phantoms.

3.2. Edge inpainting. We base our second approach on the work by Bubba et. al.
[7], which also deals with limited angle computed tomography. Their reconstruction
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method aims to be consistent with the measurement data and reliable in that they
use neural networks only for subtasks that model-based methods fail to solve. They
use Quinto’s fundamental visibility analysis of limited angle CT [15] to realize these
objectives. The visibility analysis shows that the reliable recovery of a generalized
function f ’s edges is only possible if the edges are tangent to a line contained in
the measured data. An edge not tangent to any measured line is impossible to
reconstruct.

Following [7], we call – according to the visibility analysis – recoverable edges
‘visible’ and all others ‘invisible.’ Note that we know the measurement geometry
prior to reconstruction, and it fully determines edges’ (in-)visibility.

In order to calculate the visible and invisible edges of a generalized function
f , one can use the wavefront set of f , which is the set of positions of the singular
support of f and their unsmooth directions. We refer the reader to [10] for a detailed
discussion. Bubba et. al. [7] use the shearlet transform to determine the wavefront
set and, in particular, the (in-)visible singularities of a function. To be more precise,
they apply a variational approach with an `1-penalty in the shearlet domain to solve
a sparse regularization problem and determine the visible singularities of the target
function. They then use the visible coefficients of the shearlet transform as input
to a neural network, which they train to estimate the invisible shearlet coefficients.
In the final step, they combine the visible and invisible coefficients predicted by the
classical method and the neural network, respectively, to obtain a reconstruction of
the target via the inverse shearlet transform.

The setting in [7] is rather general as the algorithm can reconstruct any objective
function f . In contrast, the objective functions in the challenge have a specific
structure, and the goal was not to reconstruct the objective function but to create
a segmentation of it. Therefore, we adapted the approach of [7] to the setting in
the challenge. The main difference is that we do not use the shearlet transform but
estimate the wavefront set using gradients. Similarly, we start with a variational
approach using Perona-Malik and a W-shaped functional for regularization. We
then use the resulting reconstruction to estimate the visible edges by calculating
the gradient field and discarding all gradients corresponding to invisible edges. The
visible edges are used as input to a neural network with the task of inpainting the
invisible edges. In the final step of our pipeline, we use a second neural network to
create a segmentation mask from this inpainted output.

Once the full pipeline is trained, both the inpainting and segmentation network
can be evaluated quite fast. The main computational complexity lies in obtaining
the visible edges via a variational regularization as this is done with an iterative
algorithm with many evaluations of the forward operator and its adjoint. Thus, the
complexity of our method is comparable to classical reconstruction methods.

In the following paragraphs, we discuss the pipeline’s individual steps; see also
Figure 3. The complete reconstruction scheme and all the weights of the networks
are available on GitHub4.

Classical reconstruction. First, we normalize the input sinogram data to make the
reconstruction method invariant to changes in the intensity of the phantoms. We
then define our variational approach via

min
x∈X

1

2
‖Ax− y‖2 +R(x), (3)

4https://github.com/arndt-c/htc2022_edge_inpainting

https://github.com/arndt-c/htc2022_edge_inpainting
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1 2 3

Figure 3. Visualization of the steps of the Edge Inpainting
method: (1) variational reconstruction and extraction of visible
edges, (2) inpainting of invisible edges, (3) segmentation.

where the penalty term R is a combination of the Perona-Malik function [5]

G(s) =
T 2

2

(
1− exp

(
− s

2

T 2

))
for s = ‖∇xi,j‖2 (4)

and a W-shaped functional

W (s) =
(s− a)2(s− b)2

(b− a)3
for s = xi,j . (5)

Here, a and b are the air and material intensity levels, respectively, estimated ac-
cording to the 5 given challenge phantoms.

We use Perona-Malik to support the subsequent edge extraction, as it sharpens
the edges and smooth areas between them. The binary nature of the phantoms moti-
vates the W-shaped functional. The choiceR(x) =

∑
i,j 2000G(‖∇xi,j‖2) +W (xi,j)

is a suitable weighting of the penalty terms.
We solve the minimization problem (3) via alternating gradient steps w.r.t. the

data discrepancy (the gradient is A∗(Ax− y)) and the regularization terms imple-
mented using automatic differentiation in PyTorch. We also include optimization
steps w.r.t. the values a and b to make the penalty term adaptive. Due to the high
computational cost of the Radon transformation and its adjoint, we restrict the
number of iteration steps to 40.

Alternatively, one could use the filtered back projection (FBP) instead of the
variational method for the reconstruction. Despite its computational complexity,
we chose the variational approach over the FBP as it demonstrates significantly
higher robustness to noise (see Figure 4). Similar observations were also made in
[7].

Estimation of visible edges. Since the overall goal is a segmented image, we only
need information about the edges of the reconstruction. To obtain these, we com-
pute the gradient field of the reconstruction from the previous step using a convo-
lution with the Laplace filter. We then use a threshold to reject gradients with a
small magnitude; all remaining gradients correspond to edges in the image. That
is why Perona-Malik regularization, which prefers sharp edges and smooth areas in
between, is beneficial.

The gradients also contain information about the corresponding edges’ orien-
tation (an angle between zero and 360◦). If the angular range of the CT mea-
surements is [ϕmin, ϕmax], all gradients whose orientation is in one of the intervals
[ϕmin − 90, ϕmax − 90] or [ϕmin + 90, ϕmax + 90] correspond to visible edges in a
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Figure 4. Here we compare the extracted visible edges via the
variational method (middle) and the FBP (right). Both methods
use the noisy sinogram on the left with 3% relative additive Gauss-
ian noise.

parallel beam geometry. For the given fan beam geometry, we shrink the intervals
of visible angles symmetrically by 10◦ to avoid unwanted invisible edges.

Inpainting of invisible edges with a U-Net. After extracting visible edges, we use
a neural network to predict the invisible edges. The network’s inputs consist of
binary images, where we encode the visible edges via ‘1’s. The output is also a
binary image with visible and invisible edges encoded by ‘1’s. The network consists
of a U-Net [16] of depth 6 with skip connections on all scales. For an overview
of the training and architecture parameters, see Table 2. As discussed above, we
apply group normalization after each convolution due to the small batch size. The
activation function is set to LeakyReLU with a negative slope of 0.2 at all layers
except the last one, where we use sigmoid to enforce the output to be in the interval
[0, 1]. In the decoder part of the U-Net, we use nearest neighbor interpolation to
upsample the input of the respective blocks as it produces non-smooth images,
which is beneficial given that the output should be binary.

We train the network for 16 000 steps using the Adam optimizer [11] with a
learning rate of 2× 10−5 and a batch size of 4 due to memory constraints. In total
we used 64 000 samples for training. As in the LPD case, we train separate instances
for each angular range, resulting in 7 different sets of network weights. We chose the
weighted binary cross entropy (BCE) as our loss function with a weight on edges,
i.e., areas with value ‘1’, cf. [19].

The training data consists of on-the-fly generated synthetic phantoms, see Section
2.2, where we calculate visible and invisible edges (input and target, respectively)
using the approach described in the preceding step. We want to stress that we
do not use the variational approach to calculate the visible edges as it would slow
down the training tremendously. We expect the overall results to be slightly better
when training with visible edges extracted from reconstructions of the variational
approach. However, this would require a fixed dataset, which we do not consider
beneficial in this setting.

Further, we want to point out that the network can alter the extracted visible
edges; hence our method, unlike the one presented in [7], does not provide any
real guarantees. We opted for this approach as it simplifies the pipeline, and we
observed that the inpainting network did not change the input edges significantly.

Segmentation with a U-Net. The last step of our pipeline consists of segmenting the
output of the edge inpainting network. For this, we use the same U-Net architecture
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Table 2. Details of the training setup and U-Net’s architecture
for the inpainting and segmentation task.

Kernel size: 9×9 Channels: 16, 32, 64, 128, 256, 256
Scales: 6 Skip channels: 16, 32, 64, 128, 256
Parameters: ≈ 34M Downsampling: max pooling
Optimizer: Adam Upsampling: nearest neighbor
Batch size: 4 Activation: LeakyReLU
Loss function: weighted BCE Overall gradient steps: 16000

as for the inpainting network and train the network using the synthetic data of Sec-
tion 2.2 with the same training parameters except for the learning rate of 1× 10−5

(see Table 2). The segmentation task does not depend on the angular range of the
sinogram. However, we train the network for each angular range separately as we
use the output of the previous edge inpainting network as input, which depends on
the angular range.

4. Results. To evaluate our models, we show results on the test data of the chal-
lenge and out-of-distribution data. We detail in which cases the models show a
good performance and the characteristics of the reconstruction errors – occurring,
especially in more difficult levels. An overview of all results (scores and reconstruc-
tions from all methods of all participating teams) can be found on the challenge
website5.

4.1. Challenge data. The test set of the challenge consists of three different phan-
toms per angular range. The complexity of the phantoms increases as the viewing
angle decreases, i.e., the phantoms contain more holes of different shapes (see Fig-
ures 7 - 10). For evaluating the different methods, the challenge organizers use the
Matthews correlation coefficient (MCC) between ground truth segmentation masks
It and segmentation calculated from the reconstruction Ir. One defines the MCC
as

S =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

where TP denote the number of true positives, TN the number of true negatives,
FP the number of false positives and FN the number of false negatives. The score
S is a number between −1 and 1 where 1 indicates a perfect match and −1 indicates
a total mismatch between Ir and It. For comparing the performance of the different
methods on each level, the organizers use the overall score defined as the sum of
the scores of the reconstructions on three different phantoms A,B,C for each level,
i.e.,

SN = SAN + SBN + SCN with N ∈ {1, . . . , 7}.
For more details on the challenge’s scoring system, we refer the reader to the chal-
lenge website6.

Our best performing method on the test data was the fine-tuning LPD method
without equivariance postprocessing. We depict the overall scores of the best LPD
variant, the Edge Inpainting method, and the method of the challenge’s winning
team (provided by the challenge organizers) in Figure 5. LPD results in the best

5https://www.fips.fi/HTCresults.php
6https://www.fips.fi/HTC2022.php

https://www.fips.fi/HTCresults.php
https://www.fips.fi/HTC2022.php
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scores up to level 5 and is merely slightly worse on the last two levels than the
winning team’s method. The Edge Inpainting method scores well on the first three
levels, but the performance drops significantly from level 4 onwards.

90 80 70 60 50 40 30
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winning team
LPD
Edge Inpainting

Figure 5. The official overall scores of our main methods in
the challenge on the different levels in comparison with the
method of the winning team. Accessed at https://www.fips.

fi/HTCresults.php.

Figure 6 shows the overall scores of the different variants of the LPD method.
One can observe that LPD’s fine-tuning on the provided training data significantly
boosted performance. Focusing on the fine-tuned model with equivariance post-
processing, one can see that the post-processing step decreases the model’s perfor-
mance. With the equivariance modification, we aimed to increase the robustness of
the model. However, as this modification only affects the inference of the model, it
was not clear at the beginning whether this post-processing step is beneficial.

90 80 70 60 50 40 30
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or

e

fine-tuned on challenge data
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Figure 6. The official scores of the different variants of the LPD
in the challenge.

We depict the reconstructions of the Edge Inpainting method and the fine-tuned
LPD method for the three different phantoms of level 1, 3, 5, and 7 in Figures 7,
8, 9 and 10. Focusing on the reconstructions of the Edge Inpainting method, one
can observe that in levels 1 and 3, the method can approximate most of the holes
correctly. Nevertheless, some reconstruction errors are visible; still, they have a
relatively small impact on the score. In levels 5 and 7, the inpainting method
cannot correctly reconstruct the holes and shapes, which is consistent with the

https://www.fips.fi/HTCresults.php
https://www.fips.fi/HTCresults.php
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Edge Inpainting LPD Ground Truth

Figure 7. Reconstructions of the Edge Inpainting method and of
LPD (fine-tuned variant) in level 1 (90◦).

Edge Inpainting LPD Ground Truth

Figure 8. Reconstructions of the Edge Inpainting method and of
LPD (fine-tuned variant) in level 3 (70◦).
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Edge Inpainting LPD Ground Truth

Figure 9. Reconstructions of the Edge Inpainting method and of
LPD (fine-tuned variant) in level 5 (50◦).

Edge Inpainting LPD Ground Truth

Figure 10. Reconstructions of the Edge Inpainting method and
of LPD (fine-tuned variant) in level 7 (30◦).
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Edge Inpainting LPD

L
e
v
e
l
1
(9

0◦
)

score: 0.95713 score: 0.99441

L
e
v
e
l
3
(7

0◦
)

score: 0.92540 score: 0.99065

L
e
v
e
l
5
(5

0◦
)

score: 0.63181 score: 0.97344

L
e
v
e
l
7
(3

0◦
)

score: 0.61696 score: 0.83181

Figure 11. Visualization of the reconstruction errors for the Edge
Inpainting method and LPD (fine-tuned variant) in level 1 (90◦),
3 (70◦), 5 (50◦), 7 (30◦): white = true positive (material), black
= true negative (air), red = false positive, blue = false negative.



100 ARNDT, DENKER, DITTMER, LEUSCHNER, NICKEL AND SCHMIDT

results of Figure 5. Moreover, we can see that at all levels, the reconstructed outer
discs are often not perfectly circular. With a suitable fine-tuning of the method,
this error should, in principle, be avoidable since the data contains only circular
disks. However, as the challenge’s organizers did not officially specify the disk, we
opted for a less restrictive method.

In contrast to the Edge Inpainting method, the fine-tuned LPD method results
in nearly perfect reconstructions up to level 5 with very few visible reconstruc-
tion errors. In level 7, LPD can roughly estimate the holes’ location but can no
longer correctly reconstruct the shapes and the borders between them. Moreover,
comparing the reconstructions of the different shapes, one can observe that LPD
tends to fail to reconstruct non-convex holes. This is probably due to the under-
representation of similar holes in the synthetic data.

We further illustrate the results and observations of the previous sections in Fig-
ures 11 and 12. The figure exemplifies our methods’ true positives, true negatives,
false positives, and false negatives at levels 1, 3, 5, and 7, respectively.

(A) score: 0.89855 (B) score: 0.84846 (C) score: 0.88876

Figure 12. Visualization of the reconstruction errors for the LPD
variants (A) fine-tuned, (B) pre-trained, (C) fine-tuned and equiv-
ariance) in level 6 (40◦): white = true positive (material), black =
true negative (air), red = false positive, blue = false negative.

4.2. Out-of-distribution data. To test the generalization ability of the networks,
we created three different out-of-distribution phantoms depicted in Figure 13.

We visualize the reconstructions, and the results of the intermediate steps of
the Edge Inpainting method on level 1 (90◦) in Figure 14. One can observe that

Figure 13. Example phantoms, which look significantly differ-
ent from the challenge phantoms for testing the models on out-of-
distribution data.
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Figure 14. Reconstructions and intermediate steps of the Edge
Inpainting method on out-of-distribution data with angular range
of 90◦.

the visible edges are at least visually correctly estimated, and the Edge Inpainting
method does not significantly alter them. However, the Edge Inpainting method
fails to connect the different shapes correctly and draws a circle in every image. This
makes image segmentation exceptionally difficult, which is visible in the segmented
reconstructions. These results show that the networks unsurprisingly completely
adapted to the training data. Moreover, the combination of two networks might
not be beneficial in this setting as the errors made by the edge inpainting network
seem to get amplified in the segmentation network resulting in a loss of visible
edges. Therefore, joint training of the full segmentation pipeline might lead to
better results.

The LPD methods result in nearly perfect reconstructions at level 1 (90◦) but
deteriorate at level 2 (80◦), which is why we only show the reconstructions at
level 2 in Figure 15. The LPD methods can approximate the phantom’s outer
shape but attempt to form circles in regions with invisible edges. In addition, the
network trained on synthetic data only (not fine-tuned) leads to the best-looking
reconstructions except for the stars in the third phantom. Thus, there seems to be
a trade-off between a high fitting on the challenge data and a good generalization
ability.

5. Discussion. The results and observations from Section 4 motivate some ideas
for further improvements of the methods.

Two phenomenons can explain many reconstruction errors of the Edge Inpainting
method. First, the inpainting network connects the wrong visible edges or fails to



102 ARNDT, DENKER, DITTMER, LEUSCHNER, NICKEL AND SCHMIDT

LPD pre-trained on syn-
thetic data

LPD with additional fine-
tuning on challenge data

LPD with additional equi-
variant postprocessing

Figure 15. Reconstructions of the LPD variants on out-of-
distribution data with angular range of 80◦.

connect them. Second, the segmentation network labels the wrong areas as holes.
One possibility to avoid this is to provide the networks with information about the
orientation of the edges [4].

Besides, the sequential training of the two U-Nets in the Edge Inpainting method
might not be beneficial. Instead, one could test an end-to-end approach or joint
training of both networks; see, e.g., [2]. One could also test the approach of [7]
(explained at the beginning of Section 3.2) on the challenge data and compare it
with our simplified method.

For the LPD approach, the results show that this method performs very well.
Nevertheless, it does not provide any reconstruction guarantees, which can be in
real-world scenarios. One could combine the LPD method and the concept of visible
edges to overcome this shortcoming. One could estimate the uncertainty as a first
step by comparing the edges in the LPD reconstruction with the visible edges in a
classical reconstruction.

If the visible edges between the classical reconstruction and the LPD approach do
not align, one could correct the LPD reconstruction using the correct visible edges
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of the classical reconstruction. For further insights into reconstruction guarantees
in Deep Learning, we refer the reader to [13].

6. Conclusion. We show that it is possible to apply data-driven methods in a
small data setting using a suitable chosen simulated dataset. However, the choice
of simulated data is crucial, and this is only possible if a reliable approximation of
the data distribution is possible in advance. Further, the generalization to new data
is still an open question, as could be observed in the OOD experiment in Section 4.2.
Combining model-based reconstruction with data-driven components is a promising
research direction, as it ensures consistency with measured data while still providing
great flexibility.
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[13] S. Mukherjee, A. Hauptmann, O. Öktem, M. Pereyra and C.-B. Schönlieb, Learned recon-
struction methods with convergence guarantees: A survey of concepts and applications, IEEE

Signal Processing Magazine, 40 (2023), 164-182.

[14] F. Natterer, The Mathematics of Computerized Tomography, SIAM, 2001.
[15] E. T. Quinto, Singularities of the X-ray transform and limited data tomography in R2 and

R3, SIAM J. Math. Anal., 24, (1993), 1215-1225.
[16] O. Ronneberger, P. Fischer and T. Brox, U-net: Convolutional networks for biomedical image

segmentation, Medical Image Computing and Computer-Assisted Intervention – MICCAI

2015 , Springer, 9351 (2015), 234-241.

http://dx.doi.org/10.5281/zenodo.249479
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4434593&return=pdf
http://dx.doi.org/10.1088/1361-6420/ac28ec
http://dx.doi.org/10.1088/1361-6420/ac28ec
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4412183&return=pdf
http://dx.doi.org/10.1016/j.acha.2021.12.007
http://dx.doi.org/10.1016/j.acha.2021.12.007
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3233022&return=pdf
http://dx.doi.org/10.1088/0266-5611/30/7/075009
http://dx.doi.org/10.1088/0266-5611/30/7/075009
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3963505&return=pdf
http://dx.doi.org/10.1017/S0962492919000059
http://dx.doi.org/10.1017/S0962492919000059
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3975365&return=pdf
http://dx.doi.org/10.1088/1361-6420/ab10ca
http://dx.doi.org/10.1088/1361-6420/ab10ca
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3509209&return=pdf
http://dx.doi.org/10.1017/S096249291600009X
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1996773&return=pdf
http://dx.doi.org/10.1007/978-3-642-61497-2
http://dx.doi.org/10.1007/978-3-642-61497-2
http://arxiv.org/pdf/1412.6980
http://dx.doi.org/10.5281/zenodo.6984868
http://dx.doi.org/10.5281/zenodo.6984868
http://dx.doi.org/10.1109/MSP.2022.3207451
http://dx.doi.org/10.1109/MSP.2022.3207451
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1847845&return=pdf
http://dx.doi.org/10.1137/1.9780898719284
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1234012&return=pdf
http://dx.doi.org/10.1137/0524069
http://dx.doi.org/10.1137/0524069
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-24574-4_28


104 ARNDT, DENKER, DITTMER, LEUSCHNER, NICKEL AND SCHMIDT

[17] W. van Aarle, W. J. Palenstijn, J. De Beenhouwer, T. Altantzis, S. Bals, K. Joost Batenburg
and J. Sijbers, The ASTRA toolbox: A platform for advanced algorithm development in

electron tomography, Ultramicroscopy, 157 (2015), 35-47. .

[18] Y. Wu and K. He, Group normalization, Proceedings of the European Conference on Computer
Vision (ECCV), (2018), 3-19.

[19] S. Xie and Z. Tu, Holistically-nested edge detection, IEEE International Conference on Com-
puter Vision (ICCV), Santiago, Chile, (2015), 1395-1403.

Received June 2023; revised October 2023; early access October 2023.

http://dx.doi.org/10.1016/j.ultramic.2015.05.002
http://dx.doi.org/10.1016/j.ultramic.2015.05.002
http://dx.doi.org/10.1007/978-3-030-01261-8_1

	1. Introduction
	2. Dataset
	2.1. Modeling of the forward operator
	2.2. Data generation

	3. Methods
	3.1. Learned Primal-Dual
	3.2. Edge inpainting

	4. Results
	4.1. Challenge data
	4.2. Out-of-distribution data

	5. Discussion
	6. Conclusion
	Acknowledgments
	REFERENCES

