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Predicting human and viral protein 
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The COVID‑19 disease is an ongoing global health concern. Although vaccination provides 
some protection, people are still susceptible to re‑infection. Ostensibly, certain populations or 
clinical groups may be more vulnerable. Factors causing these differences are unclear and whilst 
socioeconomic and cultural differences are likely to be important, human genetic factors could 
influence susceptibility. Experimental studies indicate SARS‑CoV‑2 uses innate immune suppression as 
a strategy to speed‑up entry and replication into the host cell. Therefore, it is necessary to understand 
the impact of variants in immunity‑associated human proteins on susceptibility to COVID‑19. In this 
work, we analysed missense coding variants in several SARS‑CoV‑2 proteins and their human protein 
interactors that could enhance binding affinity to SARS‑CoV‑2. We curated a dataset of 19 SARS‑
CoV‑2: human protein 3D‑complexes, from the experimentally determined structures in the Protein 
Data Bank and models built using AlphaFold2‑multimer, and analysed the impact of missense variants 
occurring in the protein–protein interface region. We analysed 468 missense variants from human 
proteins and 212 variants from SARS‑CoV‑2 proteins and computationally predicted their impacts on 
binding affinities for the human viral protein complexes. We predicted a total of 26 affinity‑enhancing 
variants from 13 human proteins implicated in increased binding affinity to SARS‑CoV‑2. These include 
key‑immunity associated genes (TOMM70, ISG15, IFIH1, IFIT2, RPS3, PALS1, NUP98, AXL, ARF6, 
TRIMM, TRIM25) as well as important spike receptors (KREMEN1, AXL and ACE2). We report both 
common (e.g., Y13N in IFIH1) and rare variants in these proteins and discuss their likely structural and 
functional impact, using information on known and predicted functional sites. Potential mechanisms 
associated with immune suppression implicated by these variants are discussed. Occurrence of 
certain predicted affinity‑enhancing variants should be monitored as they could lead to increased 
susceptibility and reduced immune response to SARS‑CoV‑2 infection in individuals/populations 
carrying them. Our analyses aid in understanding the potential impact of genetic variation in 
immunity‑associated proteins on COVID‑19 susceptibility and help guide drug‑repurposing strategies.

Keywords COVID-19, Human genetic variation, SARS-CoV-2: human protein interaction, Protein structure 
complex, Functional family, CATH database, Protein binding affinity prediction, Immunity

The COVID-19 pandemic has caused a major global health and socioeconomic burden since 2020. Many coun-
tries are still experiencing an intermittent rise in the number of infections due to the emergence of new Variants 
of Concern (VOCs) of SARS-CoV-2 and their sub-variants1. Although vaccines are now available, re-infection 
is  common2. Various factors including ethnicity, age and clinical conditions have been proposed to be associated 
with an increased risk of  infection3–10. In addition, increasing reports indicate that human genetic variation is a 
contributing factor for increased susceptibility and disease  severity11–13.

Potential drug targets include human host proteins which interact with SARS-CoV-214,15. In 2020, Krogan 
group identified a total of 332 human proteins that interact with SARS-CoV-2 proteins, using affinity purification 
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followed by mass spectrometry (AP-MS)15. Subsequently, the presence of additional human proteins interactors 
of SARS-CoV-2 was also revealed by other studies based on techniques such as yeast two-hybrid assay, anti-tag 
coimmunoprecipitation, tandem affinity purification, pull down, structure-based studies (X-ray, NMR), etc.14,16–19 
and are made available via dedicated protein-interaction resources such as IntAct (https:// www. ebi. ac. uk/ intact/ 
home)20 and  BIOGRID21. These studies indicate that interactor proteins in humans participate in a wide range of 
biological processes/pathways, including innate and adaptive immune pathways, lipid metabolism, cell adhesion, 
mRNA processing, among  others14,15,19,22.

Innate immune suppression is known as one of the key characteristics of infections by SARS-CoV-2 and its 
VOCs. SARS-CoV-2 VOCs (namely Alpha, Beta, Gamma, Delta, and Omicron) are reported to exhibit increased 
interferon resistance as compared to the wild-type suggesting evasion of innate immunity is a driving force for 
SARS-CoV-2  evolution23,24. Furthermore, inborn variation in immunity-associated genes is reported to trigger 
susceptibility to COVID-1925,26. For example, rare variants in the Toll-like receptor 7 gene have been associated 
with increased severity and susceptibility of the COVID-1912. Likewise, various studies including those by the 
GeNOMICC-ISARIC consortium suggests association of both common and rare variants with increased sever-
ity of COVID-1927–32.

Though spike-ACE2 binding is the key entry mechanism used by SARS-CoV-2 for cell entry and infection, 
recent experimental studies indicate that SARS-CoV-2 also uses innate immune suppression as a strategy to 
speed-up entry and replication in the host  cell33,34. Interactions such as SARS-CoV-2:ORF9b-human:TOMM70 
and SARS-CoV-2:NSP1-human:NUP98 have been associated with innate immune  evasion14,34,35. Further experi-
mental studies have suggested involvement of other human protein interactors of SARS-CoV-2 associated with 
the immunity-associated pathways (e.g., IFIH1, ISG15, IFIT2)33,34,36.

In the case of SARS-CoV-2, spike-ACE2 is the most studied protein complex, where the impact of emerging 
variants in spike as well as natural human population variants in ACE2 have been computationally predicted by 
the Barton group and  others37–40. Some of these predicted variants in ACE2 and spike proteins, have also been 
validated  experimentally37,40. In this study, we focus on the impact of variants in immune-associated proteins 
and novel spike receptors (such as AXL and Kremen1) in humans on their binding to SARS-CoV-2 proteins. 
Such analyses could explain novel mechanisms by which SARS-CoV-2 proteins interfere with natural immune 
pathways and disrupt the system in humans.

Computationally predicted (docking-based) complexes for a subset of interactions identified from the Krogan 
study, are made available via several  resources41,42. The Beltrao group has designed a resource called Mutfunc, 
which has predicted impacts of all possible single-amino acid substitutions in SARS-CoV-2 proteins, using known 
3D structure data (http:// sars. mutfu nc. com/ home43). Similarly, the Ascher group developed the COVID-3D 
resource, to analyse > 11,000 SARS-CoV-2 variants and predicted the impact of missense variants using spike-
ACE2  complex39. More recently, a powerful AlphaFold2-based protein structure prediction method has been 
developed for modelling protein–protein complexes which facilitates modelling of interactions between SARS-
CoV-2 and human proteins which have yet to be experimentally characterized, and with improved accuracy 
compared to other  approaches44–48.

In this study, we analysed the impact of missense coding variants in human and viral proteins occurring 
at protein–protein interfaces, using a curated dataset of 19 immune-associated SARS-CoV-2:human protein 
3D-complexes, obtained from the Protein Data  Bank49 and models built using AlphaFold2-multimer44,46. For 
the human proteins, we obtained population variants from various databases including gnomAD (50 https:// 
gnomad. broad insti tute. org) and GenomeAsia  100K51. For the viral proteins, we obtained mutation data from 
ViralZone (https:// viral zone. expasy. org/), CoV-Glue (https:// cov- glue. cvr. gla. ac. uk/) and COG-UK (https:// 
sars2. cvr. gla. ac. uk/ cog- uk/)52–54. The impact of variants on binding affinity of the complexes was computation-
ally predicted using a state-of-the-art program (mCSM-PPI2)55. The structural and functional impact of the 
predicted affinity-enhancing variants was analysed in the context of proximity to known functional sites such 
as protein–protein interfaces, ligand or substrate -binding sites and predicted sites identified using conserved 
positions in Functional Families in the CATH database (i.e., CATH-FunFams)56–58. CATH-FunFams represent 
functionally coherent groups i.e., members of a CATH-FunFam have high structural and functional  similarity56. 
Finally, the human proteins implicated in enhanced SARS-CoV-2 binding are mapped onto protein networks to 
understand biological pathways/processes associated with the network modules. We then studied whether these 
proteins are associated with CATH-FunFams that are enriched in small molecules or drugs from  ChEMBL59,60.

In summary, we analysed the impact of missense coding variants occurring at protein–protein interfaces in a 
total of nineteen 3D complexes of human proteins and SARS-CoV-2 interactors. A total of 26 affinity-enhancing 
variants from 13 human proteins (namely TOMM70, IFIH1, IFIT2, ISG15, RPS3, PALS1, NUP98, AXL, ARF6, 
KREMEN1, TRIMM, TRIM25 and ACE2) were predicted to enhance binding affinity to their interacting proteins 
in SARS-CoV-2. Our study sheds light on affinity-enhancing variants in immunity-associated proteins; their 
frequencies in gnomAD populations; their impact on protein structure and function and the populations more 
likely to be susceptible to COVID-19 infection. We provide computational evidence that the predicted affinity-
enhancing variants in human proteins could promote binding to SARS-CoV-2 proteins, instead of their natural 
protein partners or substrates in immune pathways, thereby hampering the normal antiviral activity and leading 
to increased susceptibility. Protein Functional families associated with three proteins (IFIH1, AXL and ARF6) 
are associated with small molecule inhibitors and their potential applications in drug-repurposing in discussed.

Materials and methods
Compilation of interactors associated with SARS‑CoV‑2 immunity
The dataset of human proteins interacting with SARS-CoV-2 proteins, was compiled using the COVID-19 Uni-
ProtKB resource (61; https:// covid- 19. unipr ot. org/ unipr otkb? query= *) and IntAct database (20; https:// www. ebi. 
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ac. uk/ intact/ home). IntAct provides a COVID-19 dataset of SARS-CoV-2: human protein interactors which is 
based on interactions reported from experimental studies. For every protein–protein interaction, IntAct assigns 
an MIscore (ranges from 0 to 1) based on (i) the type of the experimental detection method (ii), the number of 
associated publications and (iii) the interaction types (such as direct association, physical association). The IntAct 
recommended MIscore threshold of 0.45 was used to exclude low-confidence  interactions62.

Thus, the dataset of a total of 536 high-confidence (MI-score ≥ 0.45) interactions are considered for subsequent 
analyses. We further filtered immunity-associated human proteins by mapping specific GO terms associated with 
immunity using UniProt (i.e., GO:0002250 GO:0002218, GO:0002376, GO:0045087, GO:0045089, GO:0060337, 
GO:0050776 and GO:0006955)61,63; and by mapping the UniProt IDs to InnateDB database (http:// innat edb. 
sahmri. com/64. We also curated available literature-based evidence specifying a COVID-19-associated immu-
nological role associated with interacting pairs of proteins in dataset.

Functional families in the CATH database and conserved functional sites
The CATH database provides a hierarchical structural classification of protein domains into Class (C), Architec-
ture (A), Topology (T) and Homologous Superfamily (H). In CATH, protein domains are classified into super-
families where there is strong evidence of an evolutionary relationship via structure and sequence  similarity65,66. 
Within each superfamily, sequences are sub-classified using an agglomerative clustering protocol followed by 
an entropy-based segregation of functionally coherent subgroups known as Functional Families (CATH-Fun-
Fams)56. The conserved sites obtained from CATH-FunFams have been shown to be enriched in known protein 
functional  sites56,57.

For the dataset of shortlisted human proteins and their SARS-CoV-2 interactors, we identified CATH-Fun-
Fams, and subsequently conserved sites as follows:

Identification of CATH‑FunFams
We scanned the sequences of human and their interacting SARS-CoV-2 proteins against HMMs of FunFams 
in CATH v4.3 (https:// www. cathdb. info/), using HMMsearch (E-value <  1e−3)67. We then processed the output 
of HMMsearch using cath-resolve-hits, an in-house tool built to obtain the best non-overlapping set of domain 
 matches67,68.

Identification of conserved sites using CATH‑FunFams
Using the matching CATH-FunFams, we identified conserved sites using Scorecons, an entropy-based  method69. 
The multiple sequence alignment (MSA) program, namely MAFFT is used to construct an MSA from seed 
sequences within a  FunFam68. The Scorecons program is then applied to each MSA to determine an overall 
measure of sequence diversity called Diversity of Positions score (DOPs). DOPs captures the amount of diver-
sity in an MSA by considering all the different conservation scores, and their frequencies, and provides a value 
from 0 (i.e., zero diversity) and 100 (i.e., high diversity). Only MSAs with a DOPs score ≥ 70 were considered for 
further analyses. The Scorecons program also provides the degree of conservation of each position in the MSA. 
Thus, for each column in a CATH-FunFam based MSA, the Scorecons program provides a conservation score 
ranging from 0 (i.e., not conserved) to 1 (i.e., completely conserved). The sites belonging to alignment positions 
with Scorecons-based score ≥ 0.90 are used for analyses and are referred to as Scorecons90 in this manuscript.

In addition to Scorecons method by Valdar, we used other conservation scoring methods such as  Shenkin70 
and  Thompson71 (available from  Jalview72 (https:// www. jalvi ew. org/) for detecting conservation scores. We used 
the consensus among the two methods for predicting conserved sites (score ≥ 0.90).

Compilation of missense coding variants in human and SARS‑CoV‑2 proteins
Human protein variants
For the human genes, missense coding variants from canonical transcripts were obtained from the Genome 
Aggregation Database (gnomAD, v2.1.1; the recommended version for coding region analyses) (https:// gnomad. 
broad insti tute. org/)50. We compiled ancestry (i.e., ethnic population) information available from gnomAD, using 
 VarSite73. GnomAD provides ancestry for the following populations: African/African American (afr), American 
Admixed/Latino (amr), Amish (ami), Ashkenazi Jewish (asj), East Asian (eas), South Asian (sas), Finnish (fin) 
and Non-Finnish European (nfe). If individuals did not unambiguously cluster with any of these populations 
in a principal component analysis (PCA), gnomAD classifies them as "other" (oth). GnomAD v2 also provides 
sub-continental information for the East Asian cohort (Japanese, Koreans) and Non-Finnish European (Bulgar-
ian, Estonian, Swedish, North-Western European, Southern European) populations.

SARS‑CoV‑2 protein variants
For each of the associated interactor proteins in SARS-CoV-2, a non-redundant set of mutations in strains of 
SARS-CoV-2 (including VOCs and Variants of Interest) was compiled from resources such as  ViralZone54, COG-
UK (52 https:// sars2. cvr. gla. ac. uk/ cog- uk/), and CoV-Glue (https:// cov- glue- viz. cvr. gla. ac. uk/)53.

Functional site data from CATH‑FunVar (Functional Variation) protocol
All gnomAD missense variants in the interactor human genes were processed using a modified version of the in-
house FunVar protocol to identify variants occurring near known and predicted functional sites. Predicted sites 
comprise CATH-FunFam-based conserved residues, i.e., highly conserved residues identified by the Scorecons 
program (i.e., Scorecons90 sites, as described above).

https://www.ebi.ac.uk/intact/home
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Known functional sites were compiled from existing resources and include: known ligand and nucleic acid 
binding sites from  BioLip74; protein–protein interface (PPI) residues from  PDBSum75; catalytic sites from M-CSA 
and  VarMap76,77 and annotated functional sites in UniProt resource.

Spatial proximity of each gnomAD variant to these sites was found by mapping each variant to a representa-
tive domain from the corresponding FunFam in CATH v4.3. Functional sites were similarly mapped to FunFam 
representative domains, allowing detection of variants occurring on or near (within 5 Å) of any of the functional 
sites.

For each variant, the Grantham score (https:// gist. github. com/ danie lecook/ 501f0 3650b ca6a3 db31ff 3af2 d413d 
2a) was calculated to identify variants having a significant change in physico-chemical properties (such as volume, 
polarity), as compared to that of wild-type residues.

Finally, each variant was assigned a simple functional impact score (from 1 to 5) by counting each of the 
impacts—scoring 1 for each of: high Grantham score; variant is a catalytic site; variant lies on a known func-
tional site; variant near (5 Å) a known site; variant is on a conserved predicted (Scorecons90) site. Additionally, 
CATH-FunVar reports impact scores from  CADD78 and  SIFT79.

Three‑dimensional (3D) structures of complexes
3D structures of complexes are available for 10 interactions as follows—human:TOMM70-SARS-CoV-2:ORF9b 
[PDB ID: 7KDT], human:ISG15-SARS-CoV-2:PLpro [7RBS], human:RPS2-SARS-CoV-2:NSP1 [6ZMT], 
hRPS3-SARS-CoV-2:NSP1 [6ZMT], human:Ubiquitin-SARS-CoV-2:Plpro [7RBR], human:APOA1-SARS-
CoV-2:ORF3a, human:PALS1-SARS-CoV-2:E, human:NUP98-SARS-CoV-2:ORF6 [7VPH] and humanRAE1-
SARS-CoV-2:ORF6 [7VPH] and human:ACE2-SARS-CoV-2:spike [wild-type (6M0J, 7A95); Alpha (7EDJ), Beta 
(7V7Z), Gamma (7V83), Delta (7V89), Omicron (7T9K), BA.1 (7XO6), BA.2 (7XB0, 7XO8), BA.3 (7XB1)].

For the remaining interactions with no available structures of complexes in the PDB, we predicted models 
using AlphaFold2-ptm and AlphaFold2-multimer(v1)44,46, as described below.

Modelling complexes using AlphaFold2‑ptm and AlphaFold2‑multimer
Prior to modelling protein–protein complexes, we excluded some interactions from the modelling procedure 
due to the following reasons—we excluded proteins of very short lengths such as ORF3b (22aa residues long) 
and proteins for which high-quality models are not built by AlphaFold2 (https:// alpha fold. ebi. ac. uk/).

We modelled the remaining complexes using the AlphaFold2-ptm and alphafold-multimer(v1) protocols, 
which were made available in March, 2022 (44,46,80; https:// github. com/ sokry pton/ Colab Fold). We built models 
using both the AlphaFold2_ptm and AlphaFold2-multimer(v1) methods and then selected a model from one 
of these methods, whichever had the best interface quality (see “Results”, Table 1).

High-confidence models were chosen where models have overall pLDDT (predicted local difference distance 
test) ≥ 70 as well as pTM-Score (predicted TM-score) ≥  7044,46. We further filtered complexes on the basis of 
the interface quality i.e., interface-pLDDT (i.e., those with < 70 were excluded) and interface-PAE (predicted 
alignment error > 10 were excluded) and by manually inspecting the domain interface regions (i.e., we excluded 
models where we observed erroneous overlapping/entangled interface). We performed additional quality checks 
such as verifying the interface stability score using the PIZSA method (which calculates protein interaction 
Z-Score; ≥ 1.5 indicates stable interface)81 and predicted binding affinity of the complexes by the PRODIGY 
(PROtein binDIng enerGY prediction)  method82. Using the 3D-structure of the protein–protein complex as an 
input, the PRODIGY server (https:// wenmr. scien ce. uu. nl/ prodi gy/) predicts the binding affinity of the complex 
and provides the predicted value of the binding free energy (ΔG) in kcal/mol. PRODIGY is benchmarked using 
an experimental dataset comprising 144 non-redundant protein–protein complexes with known 3D structures 
(of both bound and unbound). The resultant high-confidence models predicted in this study along with their 
quality metrics are given in “Results” section, Table 1.

Extraction of interface residues using complexes
After the selection of the complexes, we extracted interface residues as follows:

Directly‑contacting (DC) residues
For the PDB complexes, we extracted directly-contacting (DC) interface residues made available by  PDBSum75. 
PDBSum calculates the protein–protein interfaces using the NACCESS program (http:// www. bioinf. manch ester. 
ac. uk/ nacce ss/). For the modelled complexes, we extracted interface residues by selecting residues from interact-
ing chains with heavy atom distances ≤ 4 Å)83,84. Human protein missense variants in gnomAD that occur in DC 
interface residues are referred to as ‘DC-variant’ residues.

Secondary shell residues
Residues that occur within 5 Å from the DC interface are considered to be residues in the secondary shell and 
variants at these residue positions are likely to influence  binding38,85 and are referred to as ‘DCSS-variants’.

Predicting the impact of variants in human and viral proteins on the binding affinity of the 
complexes
For the filtered dataset of complexes (experimental and predicted), we applied the mCSM-PPI2  program55 to 
identify human and viral missense variants which could significantly impact binding-affinity of interacting 
proteins. We analysed the impact of missense variants reported in gnomAD that occur at directly contacting 
interface (DC-variant) and secondary shell (DCSS-variant) residues.

https://gist.github.com/danielecook/501f03650bca6a3db31ff3af2d413d2a
https://gist.github.com/danielecook/501f03650bca6a3db31ff3af2d413d2a
https://alphafold.ebi.ac.uk/
https://github.com/sokrypton/ColabFold
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http://www.bioinf.manchester.ac.uk/naccess/
http://www.bioinf.manchester.ac.uk/naccess/
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The mCSM-PPI2 program, developed by the Ascher lab, was shown to be the top-performing method when 
compared to 26 other methods in CAPRI (round 26) blind  tests55. mCSM-PPI2 is based on a graph-based 
structural signature framework with evolutionary information, inter-residue non-covalent interaction networks 
analysis plus computed energetic terms, providing an optimised overall prediction performance. It was used to 
predict change in binding affinity (i.e., mCSM-PPI2 ΔΔGAffinity in kcal/mol) for each mutation.

A positive mCSM-PPI2 ΔΔGAffinity score (> 0 kcal/mol) indicates that the mutation is stabilising the interaction 
whereas a negative ΔΔGAffinity score (< 0 kcal/mol) indicates a destabilising  effect55. Where available, we compiled 
evidence from experimental studies reporting experimental mutagenesis and binding affinity kinetic  assays14,37 to 
choose our ΔΔG thresholds. For example, in the case of spike-ACE2 complex, the mutations K26R in ACE2 and 
S477N in the spike protein are reported to increase the binding affinity of the spike-ACE2 complex using kinetic 
 assays37,38, and these are predicted to have mCSM-PPI2 ΔΔGAffinity of 0.12 kcal/mol and 0.5 kcal/mol respectively. 
Likewise, experimental alanine scanning mutagenesis studies in the ORF9b-TOMM70 complex indicates that 
a E477A mutation in TOMM70 and a S53A mutation in ORF9b significantly reduced the binding affinity of the 
 interaction14, and these are predicted to have a mCSM-PPI2 ΔΔGAffinity of < − 0.5 kcal/mol. Therefore, we used 
the confidence cut-offs of ΔΔGAffinity ≤ − 0.5 kcal/mol (for destabilising; affinity-reducing) and ≥ 0.5 kcal/mol (for 
stabilising; affinity-enhancing), to analyse the structural impact of gnomAD variants in this study, while we also 
provide a catalogue of other mutations predicted to have scores ranging from 0 to 0.490 kcal/mol (see “Results” 
section). Through in silico saturation mutagenesis, we further confirmed that the mCSM-PPI2 method does 
not show bias towards predicting positive ΔΔGAffinity scores and corresponds well to observed changes in amino 
acid properties for mutated residues.

To evaluate the reliability (reproducibility) of the binding affinity values predicted by mCSM-PPI2, we com-
puted 95% confidence interval for affinity-enhancing variants (ΔΔGAffinity ≥ 0.5 kcal/mol). We generated 10 dif-
ferent versions for each of the SARS-CoV-2:Human protein complex structure, using GalaxyrefineComplex 
 software86, which is specifically designed for structure refinement of protein–protein complexes. Its refinement 
protocol involves both an initial local energy minimization and a 1.2-ps molecular dynamic (MD) relaxation with 
a 4-fs time step. Thus, incorporation of MD relaxation step allows some physical space for atomic fluctuations, 
facilitating further conformational sampling. Particularly, relaxation of the input complex structure is driven by 
side-chain repacking of interfacial residues, which ensures overall conformational changes. Side-chain repacking 
and MD relaxation is repeated 22 times (please refer to Heo et al.86, for details).

Table 1.  Summary of human: SARS-CoV-2 protein complexes used for the study. The table lists 3D complexes 
used in this study. We outline the source, quality metrics such as Interface pLDDT (≥ 70), Interface PAE 
(≤ 10), PIZSA Interface stability Z-score (≥ 1.5 indicates stable interface) and PRODIGY binding energy 
(ΔG ≤ − 4.3 kcal/Mol, cutoff chosen based on experimental binding energy values reported in the  PRODIGY82. 
The literature supporting biochemical evidence of protein interaction is also cited in Supplementary file 2. For 
modelled complexes, we first built models using the AlphaFold2 (ptm method) and AlphaFold2-multimer(v1) 
methods and then selected the model from one of these methods which had the best interface quality.

SARS-CoV-2 protein
Human protein 
interactor Source of Complex Interface pLDDT score Interface PAE score

PIZSA Interface 
stability Z-score 
(≥ 1.5 = stable)

PRODIGY ΔG (kcal/
mol)

ORF9b TOMM70 PDB [ID:7KDT] n/a n/a 2.507 − 17.4

NSP1 RPS2 PDB [ID: 6ZMT] n/a n/a 2.283 − 4.6

NSP1 RPS3 PDB [ID: 6ZMT] n/a n/a 2.805 − 4.5

Spike-RBD ACE2 PDB [ID:6M0J] n/a n/a 2.582 − 11.9

ORF6 NUP98 PDB [ID: 7VPH] n/a n/a 2.780 − 6.1

ORF6 RAE1 PDB [ID: 7VPH] n/a n/a 2.161 − 8.8

ORF3a APOA1 PDB [ID: 7KJR] n/a n/a 2.569 − 15.6

E PASL1 PDB[ID:7M4R] n/a n/a 1.685 − 6.6

PLPro ISG15 PDB[ID:7RBS] n/a n/a 2.046 − 13.4

PLPro UBB PDB[ID:7RBR] n/a n/a 2.424 − 10.4

PLPro IFIT2 AlphaFold2-ptm 72.82 9.86 2.460 − 11.3

PLPro IFIH1 AlphaFold2-
multimer(v1) 83.00 10.00 2.375 − 10.1

N TRIM25 AlphaFold2-ptm 93.15 2.87 2.24 − 9.1

NSP7 SCRB1 AlphaFold2-
multimer(v1) 83.87 4.27 2.144 − 8.0

Spike-RBD KREMEN1 AlphaFold2-ptm 81.02 4.74 2.148 − 10.2

NSP15 ARF6 AlphaFold2-ptm 82.61 7.20 2.063 − 7.5

NSP14 TRIMM AlphaFold2-ptm 81.24 7.58 1.974 − 8.8

Spike-NTD AXL AlphaFold2-ptm 75.31 8.55 2.321 − 10.6

ORF7b UN93B AlphaFold2-ptm 72.77 9.45 2.488 − 5.1
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Analysis of predicted affinity‑enhancing variants
As the affinity-enhancing variants could be associated with increased risk of susceptibility/infection, we closely 
examined their 3D structural impact on molecular interactions and characterised these variants in the context of 
known and predicted functional sites (see FunVar section above) and using UniProt site annotations. Variants are 
mapped on 3D-complexes and visualized using UCSF  Chimera83. We further analysed their associated population 
allele frequencies in gnomAD as well as other databases such as  Indigenomes87,  SweGen88, GenomeAsia  100K51, 
 jMORP89 and the NIH-funded research hub called All of Us (90 https:// datab rowser. resea rchal lofus. org/).

Finally, for affinity-enhancing variants we analysed pathogenicity scores by mutpred2 (score ≥ 0.50), CADD 
(score ≥ 20) and SIFT (deleteriousness score ranges from 0 to 0.05). MutPred2 is a machine learning-based 
method, which uses structural and functional features (e.g. secondary structure, allostery, binding site data, etc.) 
to provide pathogenicity score. SIFT relies on sequence conservation information and considers position and 
the type of amino acid change. CADD combines multiple sources of information (genomic features, biochemical 
activity, and scores from other predictors and applies a machine learning based scoring system. These methods 
were chosen as the study by Pejaver group showed that Mutpred2 performs better than other predictors while 
CADD and SIFT were the second and third best performing  tools91. We used  Dynamut292, to analyse impact 
of affinity-enhancing variants on protein stability in human proteins (https:// biosig. lab. uq. edu. au/ dynam ut2/).

Network mapping and enrichment analysis
Identification of network modules
The human proteins containing affinity-enhancing variants with putative impact on SARS-CoV-2 binding, 
were mapped to ConsensusPathDB (CPDB) and STRING database (STRINGdb) protein–protein interaction 
 networks93,94. Interactions from STRINGdb were filtered to include only those with confidence values ≥ 0.2 
to optimize signal-to-noise ratio. A module detection algorithm (M1) was applied to the network using the 
MOdularising NEtwork Toolbox that adopts a multiresolution approach to combine optimization algorithms 
to improve  modularity95.

Enrichment analyses
Pathway enrichment analysis was performed using g:profiler (https:// biit. cs. ut. ee/ gprofi ler/ gost96), a public web-
server using Ensembl and Ensembl Genomes to identify significantly enriched terms in Gene Ontology (GO) 
biological processes, KEGG and Reactome  databases97–99. Pathways were ranked by significance (p < 0.01) and 
the most significant term per database for the protein or each module was taken as the representative pathway. 
Where necessary, Ensembl identifiers with the most GO annotations were selected according to the default 
g:profiler function. Values and pathways for STRINGdb and CPDB modules were retained.

Identification of druggable functional families in CATH database
The human proteins with affinity-enhancing variants, were mapped to the CATH functional families (CATH-
FunFams) that are linked with small molecule information from  ChEMBL59,60. For the associated human proteins, 
the druggability score of the protein–protein interface region was analysed using the CavityPlus and CASTp 
 programs100,101. Where the protein–protein complex is significantly predicted to contain druggable cavity, we 
performed docking using  AutoDockTools102.The ligand molecule was extracted from the PubChem  database103. 
The predicted druggable cavity site by CavityPlus was used to dock the drug molecule.

The methodology used in the study is summarised in Fig. 1.

Results
Dataset of SARS‑CoV‑2: human protein interactors, 3D‑complexes and missense variants
As described in Methods, out of the 536 high-confidence (MIscore ≥ 0.45) protein–protein interactions, we 
curated 94 human proteins involved in SARS-CoV-2 infection and immunity by identifying those with immu-
nity-associated GO terms. For the curated dataset of 94 human proteins, we compiled information from multiples 
sources: the interactor protein in SARS-CoV-2, IntAct  MIscore20, UniProt accession  IDs61, immune-associated 
GO terms, literature evidence linked to the interaction in IntAct, literature-based evidence for COVID-19 
immune association, CRISPR-association (obtained from BIOGRID-ORCS; https:// orcs. thebi ogrid. org/21) and 
gene-expression (obtained from SARS-COVIDB; https:// sarsc ovidb. org/104). This information is provided in 
the Supplementary files 1 and 2.

In total, the 94 human proteins were associated with 110 SARS-CoV-2:human interactions (Supplementary 
file 2). Experimental 3D structures for 10 interactions were available in the PDB, with a further 9 high-quality 
models predicted using AlphaFold2-multimer/ptm method, as summarised in Table 1. Thus, a total of 19 protein 
3D structural complexes were used for subsequent analyses.

For the human proteins from this curated dataset of 19 complexes (Table 1), we analysed a total of 468 mis-
sense variants from gnomAD; that occur at directly contacting (DC) residues in the interface of the complexes 
(DC-variants, 131 in total) as well as those that occur within 5 Å from the DC residues i.e., secondary shell 
(DCSS-variants, 337 in total).

A total of 26 variants from 13 human proteins, are predicted to significantly enhance binding affinity to their 
SARS-CoV-2 protein partners by the mCSM-PPI2 program (ΔΔGAffinity ≥ 0.5 kcal/mol), as given in Table 2.

To further validate the reproducibility of the binding affinity scores by the mCSM-PPI2, we calculated 95% 
confidence interval (CI) values for all 26 variants. For all of the 26 variants we noted that either both or the 
upper CI value is above ≥ 0.5 kcal/mol, thus confirming the reproducibility of the results (please see details in 
Supplementary Table 1).

https://databrowser.researchallofus.org/
https://biosig.lab.uq.edu.au/dynamut2/
https://biit.cs.ut.ee/gprofiler/gost
https://orcs.thebiogrid.org/
https://sarscovidb.org/


7

Vol.:(0123456789)

Scientific Reports |        (2024) 14:14208  | https://doi.org/10.1038/s41598-024-61541-1

www.nature.com/scientificreports/

For the affinity-enhancing variants (ΔΔGAffinity scores ≥ 0.5 kcal/mol) from the 13 human proteins (Table 2), 
we analysed their impact on protein structure and function and their allele frequency distribution related to 
distinct populations in the gnomAD database and other databases including GenomeAsia 100K (see methods). 
The structural impact of 26 affinity-enhancing human variants on the local stability of human protein structure 
was also analysed using Dynamut2 program. The majority of the variants are observed to cause a mild desta-
bilizing impact on the stability on the protein, while only two variants were predicted cause stronger impacts 
on stability (with < − 2 kcal/mol) (see Supplementary Table 2). However, neither of these are associated with 
diseases in ClinVar.

Figure 1.  Flow-chart of the methodology used in this study. The dataset of SARS-CoV-2: human protein 
interactors is analysed using variants from gnomAD (in case of human proteins). The in-house CATH-FunVar 
(Functional Variation) pipeline was used to extract all annotations on known and predicted functional sites. 
For the missense coding variants from gnomAD, the impact of binding affinity of the complex was analysed 
using mCSM-PPI2 program. Affinity-enhancing variants were analysed using functional sites, and population 
data from gnomAD. The human proteins predicted to contain affinity-enhancing variants are used for pathway 
enrichment and identification of CATH functional families (CATH-FunFams) linked with small molecules/
drugs from ChEMBL.
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According to gnomAD most of the predicted affinity-enhancing variants are rare in human populations, 
while a few affinity-enhancing variants in IFIH1 and ISG15 are observed to be common (see figure in Supple-
mentary file 3).

For the 13 human proteins, affinity-enhancing variants were analysed in the context of proximity to known 
and predicted functional sites (Supplementary file 4). The potential mechanisms associated with suppression of 
the immune system implicated by these variants are discussed in the following section, using some complexes 
to illustrate our approach.

Structure–function analyses of predicted affinity‑enhancing variants
Impact of human TOMM70 variants on SARS‑CoV‑2: ORF9b binding
TOMM70 protein is one of the major human import receptors in the translocase of the outer membrane (TOM) 
complex. It recognizes and mediates the translocation of mitochondrial preproteins from the cytosol into the 
mitochondria in a chaperone(HSP90)-dependent  manner105. It is involved in activation of the innate immune 
system [GO:0002218] and interacts with ORF9b, which is a key viral innate immune antagonist in SARS-
CoV-214,105,106. A study by the Krogan group revealed that TOMM70 is a high-confidence interactor of SARS-
CoV-2 ORF9b indicating that binding of ORF9b to the C-terminal domain of TOMM70 is associated with sup-
pression of the innate immune  response33. We analysed the impact of missense variants using the experimental 
structure of this complex (PDB ID:  7KDT14).

Affinity‑enhancing variants: structural‑function impact and population distribution
Three DC (directly contacting)-variants in TOMM70 (V556L, K576R, A591T) and two DCSS-variants (V514I, 
A483T) were predicted to significantly increase affinity (ΔΔGAffinity ≥ 0.5 kcal/mol) (Table 3 and Fig. 2).

The variant V556L has the highest predicted change in the binding affinity (ΔΔGAffinity score of 0.905 kcal/
mol). V556 is a directly contacting (DC) residue at the ORF9b:TOMM70 interface. The wild type V556 in 
TOMM70 forms hydrophobic bonds with A68 and F69 in ORF9b, and a polar interaction with T72. The mutant 
V556L gains additional hydrophobic bonds with A68 and F69, resulting in increased predicted affinity for 
SARS-CoV-2: ORF9b.

The DCSS-variant at residue position 483 lies close to (i.e., within 5 Å) the phosphorylation site in 
SARS-CoV-2: ORF9b i.e., S53, which is important for binding of ORF9b to TOMM70. The formation of 
TOMM70:ORF9b complex is regulated via phosphorylation at  S53107. A483 also interacts with other DC residues 
in TOMM70. The A483T mutation strengthens this interaction, and this mutation is predicted to be strongly 
pathogenic by mutpred2 (score = 0.90). Figure 2 summarizes impact of all affinity-enhancing variants and their 
structural impact on atomic interactions at the interface.

Table 2.  13 human proteins with variants predicted to have significant impact on binding affinity to SARS-
CoV-2 interactor proteins (by mCSM-PPI2  program55). The first column lists the name of complexes in the 
following format—human protein (SARS-CoV-2 interactor protein). For every complex, the variants in human 
proteins that are predicted to enhance binding affinity with ΔΔGAffinity score ≥ 0.5 kcal/mol are indicated 
in bold. The variants that are predicted to increase binding affinity but with lower scores ranging from 
0 < ΔΔG < 0.49 kcal/mol are provided in the last column. *Indicates that the ACE2 variants reported in our 
study are also noted to enhance binding affinity in previous  studies38,40.

Name of the complex: human (SARS-
CoV-2 protein)

Affinity-enhancing variants in human 
proteins (ΔΔGAffinity ≥ 0.5 kcal/mol) 
(stabilizing mutations)

Affinity-reducing variants in human 
proteins (ΔΔGAffinity ≤ − 0.5 kcal/mol) 
(de-stabilizing mutations)

Other affinity-enhancing variants in 
human proteins (0 < ΔΔGAffinity < 0.49 kcal/
mol)

hTOMM70 (ORF9B) V556L, K576R, A591T, V514I, A483T I412T, Q477G, H515Q, L584M, I 554T, 
D589N, L111P, F155L, G530S, D397N A582V

hISG15 (PLPro) L121Q
L60V, G128V, L28M, F122L, P130T, E127G, 
M23V, N151D, L85P, M23T, R155W,N151K, 
R155Q

S21N, Q55R, Q118R,V148L,A30V,D56Y, 
Q31H

hIFIH1 (PLpro) Y13N, S16L – L120F, F107S, L121F, M95

hIFIT2 (PLpro) L373F, K221E, A319S, A319T, L373F, 
Y383F

N300K, R376Q, R406S, L375V, R376P, 
Q384K, L323P, G398V, F380L Q381H, R292K, P190Q, A391V

hRPS3 (NSP1) V164I, I99F R106C, L86H, Y34H, V153A E81Q, A52T, I223V, A114P,

hNUP98-hRAE1(ORF6) NUP98: T190S – NUP98: K185R, I162V
RAE1: A275V, S311L

hARF6 (NSP15) L166F I29V, L33V, Y78C N56H, D68H, I96F

hTRIM25 (N) A466T V470M, F615L C475Y, P490L, I457V, A471S, K458E, 
C506S

hTRIMM (NSP14) I105F – Q160R, H223Y, K146R, A144E, I13F

hAXL (spike-NTD) V38M L54Il, Q57K A79E

hKremen1 (spike-RBD) Y66H, V189I
Y98C, C200Y, C86Y, E187K, V93M, E187K, 
V93M, H196L, Y167C, Y107H, G166D, 
W108R

–

hACE2 (spike-RBD) G326E* G352V, D355N, L585P A501T*, K26R*, S19P*, K26E*

hPALS1(E) L321F – –
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Table 3.  Details of variants in human:TOMM70 that impact binding to SARS-CoV-2:ORF9b. For each 
variant, SNP ID (i.e. rsID), amino acid mutation, mCSM-PPI2 prediction (ΔΔGAffinity), functional site 
annotations and population in gnomAD (in which these variants are present) are indicated. Functional sites 
are abbreviated as follows- DC_PPI: directly contacting interface site, DCSS_PPI, secondary shell residue from 
the DC interface site, Ligsite: indicates occurrence in a known ligand binding site and near_ligsite indicates 
sites that are proximal to a known ligand (HSP90) binding site.

Variant ID rsID Missense variant in gnomAD mCSM-PPI2-prediction (kcal/mol) Functional site annotation
GnomAD populations [and allele 
frequency]

3-100086895-C-T rs1306989616 p.Val556Leu 0.905 DC_PPI African/AA [0.00007]

3-100084508-T-C rs1370508158 p.Lys576Arg 0.618 DC_ PPI South Asian [0.00003]

3-100084464-C-T rs756063544 p.Ala591Thr 0.599 DC_PPI
Latino/AA [0.00008]
AFR [0.00004]
Other [0.0001]

3-100087892-C-T rs957967770 p.Val514Ile 0.562 DCSS_ PPI Latino/AA [0.0001]
European (non-Finnish [0.00003]

3-100091455-C-T rs770985289 p.Ala483Thr 0.499 DCSS_ PPI European (non-Finnish) [0.00002]
Latino/AA [0.00002]

3-100092482-A-G rs1266227924 p.Ile412Thr − 1.054 DC_ PPI African/AA [0.00008]

3-100091472-T-C rs750026792 p.Glu477Gly − 1.014 DC_ PPI South Asian [0.000032]

3-100105815-A-G rs765666545 p.Leu111Pro − 1.056 near_ligsite European (non-Finnish) [0.000008]

3-100084470-C-T rs753612125 p.Asp589Asn − 0.534 DCSS_PPI African/AA[0.0000615]; South Asian 
[0.00003]

3-100086973-C-T rs775872768 p.Gly530Ser − 0.545 – South Asian [0.00003]

3-100093900-C-T rs762230068 p.Asp397Asn − 0.536 – African/AA [0.0001]
European (non-Finnish) [0.000008]

Figure 2.  The structure of human TOMM70 in complex with SARS-CoV-2 ORF9b [PDB ID: 7KDT]. (A) 
ORF9b-TOMM70 complex: SARS-CoV-2 ORF9b (blue) interacts with the C-terminal domain of human 
TOMM70 (tan). ORF9b binds at the substrate-binding pocket in TOMM70. The structural locations of variants 
(with ΔΔGAffinity ≥ 0.5 kcal/mol) are shown in red. These include three DC-variants (V556L, K576R, A591T) 
and two DCSS-variants (V514I, A483T). (B) The structural impact of DC-variants on atomic interactions at the 
interface, are shown. HP: Hydrophobic (green), H-bond: hydrogen bond (red), VDW: Van-der-Waals (blue), 
Polar (orange). (C) Effects of affinity-enhancing variants in TOMM70 are shown in detail (figures in 2C source: 
mCSM-PPI255).
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Most affinity-increasing variants in TOMM70 are observed in the African American and American popula-
tion, but with rare allele frequency i.e., less than 1% (Table 3). Most of the affinity-enhancing variants have an 
impact on atomic interactions of residues in the interface and are also predicted to have significant impact by 
various programs including CADD (score > 20), SIFT (predicted as deleterious) and predicted to be pathogenic 
by mutpred2 (score > 0.5), as shown in Fig. 2B.

In must be noted that African American and Asian populations are also observed to carry affinity-reducing 
variants in TOM70 that are predicted to decrease binding affinity to SARS-CoV-2:ORF9b (by mCSM-PPI2), 
thus likely confer resistance to the COVID-19 infection (Table 3). Amongst these, two interface variants (I412T 
and E477G) are predicted to have strong destabilising impact on binding (< − 1 kcal/mol). Interestingly, the 
residue E477 is known to be the key residue for ORF9b binding (via binding to Serine 53 in ORF9b [ref.14]), thus 
substantiating the potential effect of E477G variant in abolishing the binding.

Impact of human IFIH1 variants on SARS‑CoV‑2: PLPro binding
PLpro (papain-like cysteine protease) in SARS-CoV-2 is involved in a wide range of important functions, such 
as viral polyprotein chain processing, dysregulation of host inflammatory responses, and impairing the type I 
interferon (IFN-1) antiviral immune  responses108. SARS-CoV-2:PLpro plays a key role in innate immune sup-
pression in humans by interacting with various host substrates such as ISG15, IFIH1 and IFIT2, and  others109,110. 
Therefore, the SARS-CoV-2:PLpro is a hot spot for designing protein–protein interactor  inhibitors110.

IFIH1 (also known as MDA5) is a cytoplasmic innate immune receptor. IFIH1 is a pattern-recognition recep-
tor which binds to viral RNAs and suppresses translation  initiation111. IFIH1-binding to viral RNA is known to 
induce type I interferon response by triggering activation of antiviral immunological genes including IFN-alpha, 
IFN-beta and pro-inflammatory  cytokines111–113. SARS-COV-2 employs PLpro to bind and block the activation of 
an IFIH1-dependent cascade of antiviral  responses112. PLpro is suggested to bind CARD domains of  IFIH1109,112 
and hence we modelled a complex of PLpro and IFIH1 using AlphaFold2-multimer (Fig. 3).

Affinity‑enhancing variants: structural impact and population distribution
Two affinity-enhancing variants in IFIH1 are predicted—both Y13N and S16L, are DC residues (Fig. 3). Accord-
ing to gnomAD, Y13N is a common variant [allele frequency (AF) > 1%] in East Asians. This is in accordance with 
GenomeAsia 100K, which indicates Y13N is a common variant in Northeast Asian i.e., in Japanese (AF = 0.01) 

Figure 3.  IFIH1-PLpro complex built using AlphaFold2-multimer. (A) Human IFIH1 is shown in 
tan and SARS-CoV-2:PLpro is shown in blue. The structural locations of affinity-enhancing variants 
(ΔΔGAffinity ≥ 0.5 kcal/mol) are shown in red. These include two DC-variants (S16L, Y13N) (B,C) Effects of 
affinity-enhancing variants in TOMM70 are shown in detail (figures in 3B and 3C source: mCSM-PPI2 [55]). 
HP: Hydrophobic (green), H-bond: hydrogen bond (red), VDW: Van-der-Waals (blue), Polar (orange). (D) The 
structural impact of DC-variants on atomic interactions at the interface, are shown.
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and Korean populations (AF = 0.003). Upon mutation Y13N, hydrophobic interactions between aromatic rings 
of Y13 in wild-type IFIH1 and of P245, P246 and Y262 in viral PLpro are replaced by a stronger hydrogen bond 
between the N13 of the mutant IFIH1 and the P246 of PLpro (Fig. 3).

The other variant significantly impacting SARS-CoV-2:PLpro binding affinity is S16L, observed to occur at 
a rare frequency in Europeans (non-Finnish). The side chain oxygen atom on residue S16 of IFIH1 forms two 
weak polar interactions with Y266 of PLpro whereas the leucine side chain in the S16L IFIH1 mutant interacts 
more strongly with Y266 (Fig. 3). Leucine side chain forms enhanced hydrophobic contacts and polar interaction 
with neighbouring residues Y262 in PLpro and Y13 in IFIH1 (Fig. 3).

Impact of human ISG15 variants on SARS‑CoV‑2: PLPro binding
ISG15 (Interferon stimulated gene 15) plays a key role in the innate immune response to viral infection via a 
process known as ISGylation upon activation by type I interferons or by viral/bacterial infections. ISGylation 
(ISG15 modification) is a process whereby ISG15 protein covalently binds to other protein  substrates108,114. The 
ISGylation process acts as an antiviral defence mechanism against SARS-CoV-2 and several other RNA viruses. 
SARS-CoV-2 PLpro binds to ISG15 and blocks the  ISGylation112,114,115. ISG15 binds to PLpro via the LRGG 
motif (154–157 residues).

Affinity‑enhancing variants: structural impact and population distribution
Two ISG15 coding variants at DC positions (S21N, L121N) are predicted to enhance the binding affinity of the 
ISG15-PLpro complex (Table 4, Fig. 4).

L121Q, one of the direct contact residues in the interface, is predicted to enhance the ISG15: SCoV2 PLpro 
binding affinity (mCSM-PPI2 ΔΔGAffinity = 0.57 kcal/mol). This variant occurs within 5 Å from the key LRGG 
motif (the PLpro recognition site) and forms direct interactions with R153, which is adjacent to this motif, which 
is therefore likely to have an impact on PLpro-binding. Analyses of proximity to conserved sites detected using 
Scorecons indicates that the variant lies in the structural neighbourhood (5 Å) of five conserved residues (at 
positions 117, 120, 122, 123 and 152; with Scorecons90) of which one (W123) is also predicted to be an allosteric 
site (score: 0.896, predicted using  Ohm116). This substitution is only observed in the Swedish population at rare 
frequency.

The second DC-variant S21N is annotated in ClinVar (ID: 475283, benign) and is associated with Mendelian 
susceptibility to mycobacterial diseases (also known as Immunodeficiency 38 disease)117. The variant is associated 
with severe clinical disease upon infection with weakly virulent mycobacteria (including Mycobacterium bovis 
and Bacille Calmette-Guerin vaccines)118,119. The S21N variant is predicted to moderately increase affinity (with 
the borderline mCSM-PPI2 ΔΔGAffinity score of 0.401 kcal/mol) and is a common variant (allele frequency > 1%) 
found in the African population, as supported by multiple population databases including gnomAD [allele 
frequency (AF): 0.01648], GenomeAsia 100K (allele frequency 0.043269) and All of Us (allele frequency 0.014).

In the case of affinity-reducing (protective) variants (mCSM-PPI2 ΔΔGAffinity ≤ − 0.5 kcal/mol), four 
variants (R155Q, R155Q, N151D, L85P, M23T) were predicted with significantly reduced binding affinity 
(ΔΔGAffinity < − 1.0 kcal/mol). Most of these occur only in Non-Finnish Europeans and one predominantly in 
the American population (R155W). Two variants (R155Q, R155W) occur within the known PLpro-recognition 
motif in ISG15 (LRGG motif formed by 154–157 residues)114. Thus, individuals carrying these mutations may 
be at lower risk of compromised immunity mediated by ISG15: PLpro binding.

Table 4.  Details of variants in human:ISG15 that impact binding to SARS-CoV-2:PLpro. For each variant, 
SNP ID, amino acid mutation, mCSM-PPI2 prediction (ΔΔGAffinity), functional site annotations and 
enrichment in specific population in gnomAD are indicated. Functional sites are abbreviated as follows- DC_
PPI: directly contacting interface site, DCSS_PPI, secondary shell residue, ligsite: known ligand binding site, 
Near_ Scorecons90: proximity to conserved sites predicted using Scorecons (score ≥ 0.90).

rsIDs Mutation Mcsm-PPI2 (kcal/mol) Functional site annotations
Populations in gnomAD and [allele 
frequency]

rs748715915 p.Leu121Gln 0.57
DC_PPI
Near_Scorecons90
Near_LRGG motif

NFE-SWEDISH [0.00003834]

rs143888043 p.Ser21Asn 0.401 DC_PPI
AFR [0.01648] *also supported by GenomeA-
sia 100K
AMR[0.0008475], NFE [0.00007794], 
SAS[0.00009810], other[0.0008333]

rs1477663018 Leu85Pro − 1.002 DCSS_PPI, Scorecons90 NFE-North-Western [0.00002404]

rs1160940574 p.Met23Thr − 1.017 DC_PPI NFE-North-Western [0.00002387]

rs761507082 p.Arg155Trp − 1.166 DC_PPI
LRGG motif site

AMR[0.0004058]
ASJ[0.0001011], SAS[0.00003275],

rs774241776 p.Asn151Lys − 1.286 DC_PPI
Near_ Scorecons90 Other [0.0001647]

rs750338976 p.Arg155Gln − 2.061 DC_PPI
LRGG motif site NFE[0.00001808]
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Impact of human IFIT2 variants on SARS‑CoV‑2: PLPro binding
IFIT2 (Interferon-induced protein with tetratricopeptide repeats 2) is an RNA-binding protein, and binding of 
RNA is known to be important for antiviral activity of IFIT2 [127]. Biochemical studies indicate that human 
IFIT2 binds to SARS-CoV-2:PLpro109, however an experimental structure of the complex is not available. The 
modelled complex in our study, indicates SARS-CoV-2: PLpro binds at a channel-like region at the C-terminus of 
IFIT2, which is a known RNA-binding region (formed by K37, R184, K255, R259, R291, and K410) [128]. Three 
PLpro-interacting residues in IFIT2 (i.e., R259, K410 and R291) are involved in RNA-binding (depicted in Fig. 5).

Affinity‑enhancing variants: structural impact and population distribution
Four IFIT2 DCSS-variants (L373F, K221E, A319S and A319T) significantly affect the binding affinity (mCSM-
PPI2 ΔΔGAffinity ≥ 0.5 kcal/mol) (see Table 5). Three of these- A319S, A319T and L373F are also predicted to be 
pathogenic by CADD (score ≥ 20) and SIFT. Two DCSS-variants in IFIT2 namely, K221E and A319(S/T) are 
predominant in South Asian and African/AA populations, respectively. The residues (K221E, A319S and A319T 
and Y383F) directly interact with residues (R259 and R291) known to be involved in the RNA-binding in IFIT2 
(Fig. 5B). Thus, mutations in IFIT2 protein which increase binding to SARS-CoV-2:PLpro are likely to hinder 
the binding of IFIT2 to RNA, and thus the normal antiviral mechanism of IFIT2.

Thus, our analyses of 3D complexes, affinity-enhancing variants, and functional sites identifies some affinity 
enhancing variants that could promote the binding of host immune proteins to SARS-CoV-2 proteins, thereby 
reducing the binding to their natural protein partners. This could mediate reduced immune responses in certain 
individuals.

Impact of variants in SARS‑CoV‑2 proteins
In addition to human protein variants, we also analysed the impact of viral protein variants, in Spike-RBD, 
Spike-NTD, PLPro, ORF9b, ORF7b, ORF6, ORF3a, NSP7, NSP15, NSP14, NSP1, N and E (using experimental/
predicted complexes listed in Table 1). The impact of a total of 212 viral variants occurring at protein–protein 
interface region was analysed using mCSM-PPI2. The majority of the variants are observed to have ‘moderate’ 
impact on binding to their human interactors, i.e. predicted binding affinity (ΔΔGAffinity) values range from 0 to 
0.49 kcal/mol for affinity-enhancing variants (see supplementary Table 3).

However, a few variants in SARS-CoV-2 proteins such as NSP14 (L6074F and N6054I), PLpro (L1774F) and 
Spike (S477N) are significantly predicted to be affinity-enhancing (mCSM-PPI2 ΔΔGAffinity ≥ 0.5 kcal/mol). The 
impact of the variant spike-RBD S477N on enhanced ACE2-binding affinity is recently confirmed by experi-
mental  assays37. Among the five VOC’s Omicron has evolved to contain highest number of mutations in the 
spike protein. The phylogenetic tree of all VOC’s and VOI’s was built from the Spike protein sequences, to better 
understand the pattern of emergence of Omicron and Omicron subvariants (Please see phylogenetic tree in 
Supplementary Fig. 1). Interestingly, a comprehensive study by Martin et al. suggest that S477N is common in 

Figure 4.  SARS-CoV-2: PLpro-human ISG15 complex (7RBS). (A) Human ISG15 (blue) in complex with 
SARS-CoV-2: PLpro (tan). The affinity-enhancing variants L121N and S21N are indicated in red. (B) The table 
summarizes the impact of affinity-enhancing mutations (wild type vs mutant) on atomic interactions at the 
interface. Atomic interactions associated with L121Q and S21N are shown in (C). HP: Hydrophobic (green), 
H-bond: hydrogen bond (red), VDW: Van-der-Waals (blue), Polar (orange); Figures in 4(C) are generated 
using mCSM-PPI255.
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all Omicron sub-variants and is under positive selection  pressure120. The impact on binding affinity to the ACE2 
receptor, thus may provide a selective advantage to increase transmissibility in the host.

Pathway enrichment analyses
We examined the biological processes and signalling pathways associated with the 13 human proteins containing 
affinity-enhancing variants (Table 2) using three well-established pathway enrichment databases: Gene Ontology 
(GO), KEGG and Reactome (Table 6). The most significantly enriched terms were related to immune functions, 
including viral life cycle (GO biological process) and Influenza A (KEGG). The top enriched Reactome pathway 
was SARS-CoV-2 Infection, confirming the association with this panel of proteins identified in earlier analyses.

Since many biological processes are governed by functional modules which are highly interconnected sub-
networks of protein–protein interactions, identifying functional modules containing the 13 human proteins 

Figure 5.  The model of SARS-CoV-2:PLpro in complex with human:IFIT2, and mapping of affinity-enhancing 
variants (A) Mapping of the affinity-enhancing variants (red) K221E, A319S/T, L373F, Y383F onto the IFIT2 
(cornflower blue)-SARS-CoV-2:PLpro (tan) complex. (B) PLpro interacts with IFIT2 at a site which partially 
overlaps with a known RNA-binding region (yellow).

Table 5.  Details of affinity-enhancing variants in human IFIT2 (SARS:CoV:2-PLpro interacting protein). 
For each variant, SNP ID, amino acid mutation, mCSM-PPI2 prediction, functional site annotations and 
enrichment in specific population in gnomAD are indicated. Functional sites are abbreviated as follows- 
DC_PPI: means directly contacting interface site, DCSS_PPI, secondary shell residue, ligsite: indicates known 
ligand binding site (i.e. RNA binding site in IFIT2) and near_ligsite indicates sites that are proximal to a known 
ligand binding site. near_Scorecons90: proximity to conserved sites predicted using Scorecons (score > 0.90).

Variant ID rsID Mutation mCSM-PPI2 (kcal/mol) Functional site annotations
Populations in gnomAD [ 
Allele frequency]

10-91066830-C-T rs761596604 p.Leu373Phe 0.911 DCSS_PPI South Asian [0.00003268]
Asian: 0.00004 (All of Us)

10-91066374-A-G rs1305223950 p.Lys221Glu 0.616
DCSS_PPI
Near_ligsite
Near_Scorecons90

South Asian [0.00003268]
Asian: 0.00002 (All of Us)

10-91066668-G-T rs775027680 p.Ala319Ser 0.532
DCSS_PPI
Near_ligsite
Near_Scorecons90

African/African American 
[0.00006460]

10-91066668-G-T rs775027680 p.Ala319Thr 0.516
DCSS_PPI
Near_ligsite
Near_ Scorecons90

African/African American 
[0.00006460]
East Asian: 0.00007130
Latino/Admixed Ameri-
can [0.00007008]
Swedish [0.00003832]

10-91066861-A-T rs751422356 p.Tyr383Phe 0.449 Near_ligsite European NFE 
[0.00001556]
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provides a method for gaining further insights into their biological functions. This approach can also offer 
insights into specific mechanisms contributing to SARS-CoV-2 pathology.

To this end, we used two state-of-the-art modularity detection algorithms and applied them to two well 
regarded network datasets: STRING, and ConsensusPathDB. We then identified which modules contain any 
of the 13 proteins and performed pathway enrichment analysis on each of the modules using GO (biological 
processes), KEGG and Reactome. The enrichment analysis was used to assign to each of the 13 proteins the 
appropriate biological processes/pathways. For a full list of proteins in each module, see Supplementary files 5 
and 6. We constructed a protein–protein interaction network for all these human proteins and their associated 
partner viral proteins (please see Supplementary file 7).

Unsurprisingly, many of the 13 proteins were associated with immune response to viral infection, including 
interferon-inducible genes IFIT2 and IFIH1, and ISG15 involved in modulating viral replication. Induction by 
type I interferons (α/β), which activate other immune cells, was also associated with the transmembrane protein 
TRIM25.

Several symptoms, particularly in severe or long COVID-19 cases, are associated with mitochondrial dys-
function, including cytokine  storms121, which is a key pathway associated with TOMM70 associated with mito-
chondrion organisation. It has also been found to be involved in interferon  regulation122. SARS-CoV-2 viral 
proteins replicate in the cytoplasm via translation on ribosomes, hence supporting our identification of several 
pathways involved in cytoplasmic or ribosomal transport, specifically NUP98, RAE1, ribosomal protein RPS3, 
TOMM70 and TRIM25. Other genes are involved in cell processes that are hijacked by the virus during infec-
tion. For example, ARF6 was identified as involved in exocytosis, but is used by the virus to infiltrate and infect 
the  cell123. Overall, the findings of our functional analysis highlight some key mechanisms involved in the viral 
response to COVID-19.

Functional families associated with small molecule inhibitors
For the 13 human proteins containing predicted affinity-enhancing variants, we analysed their associated func-
tional families in CATH (CATH-FunFams) to inspect whether any of the homologous proteins in the FunFam 
were linked to known small molecule inhibitors. These small molecules, which may include drug-like molecules 
or approved drugs, were identified using the ChEMBL database (see Table 7).

Next, we used CavityPlus to detect druggability of the protein–protein interface formed by these three 
proteins. CavityPlus provided strong confidence for prediction for druggability of IFIH1: PLpro interface and 
ARF6:NSP15-interface, and medium confidence for AXL:NTD interface (see supplementary file 8). These 
observations are also supported by the CASTp prediction (see Supplementary file 9). These results are indica-
tive of potential applications of their associated inhibitors for designing drugs targeting these protein–protein 
interactions.

For example, IFIH1 is associated with Selgantolimod in ChEMBL (ID: CHEMBL4594258), which is in phase 
2 clinical trial. Selgantolimod is known to be a Toll Like Receptor 8 Agonist, which increases immune responses 
in chronic Hepatitis B  patients124. Analyses using CavityPlus provided a strong prediction score for the presence 
of two cavities that occur at the IFIH1-PLpro interface (the topmost cavity with score of 4177.0, Supplementary 
File 8). These cavities do not interfere with CARD oligomerization or its protein partner MAVS, which is required 
for IFIH1- induced interferon response, thus substantiating the potential use of this molecule in designing 

Table 6.  Top significant GO,  KEGG98 and Reactome pathways associated with 13 SARS-CoV-2-interacting 
human proteins (containing predicted affinity-enhancing variants).

Term Pathway Adj. p-value

REAC:R-HSA-9694516 SARS-CoV-2 infection 2.59 ×  10–8

GO:1903900 Regulation of viral life cycle 3.19 ×  10–5

KEGG:05164 Influenza A 0.0019

Table 7.  Human proteins with CATH-FunFams containing small molecule inhibitors. Three human proteins 
(IFIH1, AXL and ARF6) are observed to be linked with small molecule inhibitors from ChEMBL. The 
associated entries in ChEMBL are indicated. The representative 3D structure for each functional families in 
CATH is indicated. If the representative is not available in CATH, the representative from PDB is shown.

Protein
CATH superfamily and functional family (CATH-
FunFam) ID Associated entry in ChEMBL Representative 3D-structure

IFIH1 1.10.533.10
CATH-FunFam ID 77 CHEMBL4739862 [CHEMBL4594258, phase 2] 7DNI [PDB]

AXL 2.60.40.10
CATH-FunFam ID 810

CHEMBL4895 [CHEMBL3301622, approved]
CHEMBL4879451 5VXZ [PDB]

ARF6 3.40.50.300
CATH-FunFam ID 286

CHEMBL5987
CHEMBL1075274 3LVR [PDB]
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therapeutics against SARS-CoV-2 infection. Docking of this ligand with IFIH1-PLpro, provides support for 
binding at this cavity (125; see Supplementary File 10).

Likewise, cavities in the interfaces of NTD-AXL and ARF6-NSP15 could likely be interesting targets for drug 
design and further experimental assays are required to substantiate their application for drug repurposing or as 
starting points for structure-based design of novel compounds.

Discussion
We analysed ~ 20% of SARS-CoV-2 immunity associated interactions using structural data of the protein–protein 
complexes. Structural analyses helped in detecting affinity-enhancing variants in human immunity-associated 
proteins and in evaluating their possible impact on SARS-CoV-2:human protein complexes and COVID-19 
susceptibility. Information on the proximity of these variants to functional sites in the 3D structure can give 
insights into potential mechanisms associated with the suppression of normal functioning of these immune 
proteins, thereby affecting COVID-19 susceptibility.

We applied a structural bioinformatics approach to analyse the impact of missense variants from human and 
viral proteins, using 19 SARS-CoV-2: human protein structural complexes (obtained from PDB or built using 
AlphaFold2-multimer/ptm). We analysed 468 coding variants in human proteins occurring at protein–protein 
interfaces. A total of 26 affinity-enhancing variants from 13 human proteins were predicted to significantly 
enhance SARS-CoV-2 binding.

A majority of these human proteins were involved in key immune pathways and associated with antiviral 
activity against SARS-CoV-2, including Interferon stimulating genes (ISG15, IFIT2); important receptors (such 
as IFIH1, TOMM70); proteins involved in nucleocytoplasmic shuttling of viral mRNA (NUP98 and RAE1), 
proteins involved in cellular translation machinery (RPS2 and RPS3) and cell entry receptors via spike-binding 
(ACE2, KREMEN1 and AXL). Among these 13 proteins, experimental assays have been performed on spike-
ACE2, substantiating the role of the predicted spike affinity-enhancing variants in COVID-19 susceptibility and 
 transmission37,38, while variants in the remaining proteins are reported for the first time in this study.

The modelling of complexes using AlphaFold2-multimer/ptm increased the structural coverage of the com-
plexes and helped to provide structural insights into the mechanisms of SARS-CoV-2 proteins binding to human 
host proteins. We propose that affinity-enhancing variants in key-immunity associated human proteins could 
promote their binding to SARS-CoV-2 proteins, competing with human protein partners or substrates in immune 
pathways, and this in turn, may have an impact on COVID-19 susceptibility. This finding is in line with previ-
ous experimental studies on SARS-CoV-2: human interactions that affect natural immune  pathways126,127. For 
example, Li et al.127 suggest that binding of SARS-CoV-2: ORF6 to human: NUP98-RAE1 complex competitively 
inhibits mRNA binding (to NUP98-RAE1), which is essential for its immune function. Likewise, overexpression 
of SARS-CoV-2: Nucleoprotein protein is observed to be associated with the attenuation of RIG-I-mediated 
interferon production via binding to TRIM25 and thus interrupting the interaction between TRIM25 and RIG-I 
(which is its natural protein partner)126.

The SARS-CoV-2:human protein interactions associated with these 13 human proteins could be attractive 
targets for drug design that target the protein–protein interfaces. In particular, SARS-CoV-2: PLpro is known 
to be a promising target for designing protein–protein interaction  inhibitors128. In our analyses, we modelled 
SARS-CoV-2:PLpro interactions with ISG15, IFIH1 and IFIT2. Interestingly, PLpro interactor protein IFIH1 is 
associated with drug-associated functional family in CATH. Likewise, we observed druggable CATH-FunFam 
for AXL and ARF6 proteins (interacting with Spike-NTD and NSP15 in SARS-CoV-2, respectively). The domain 
relatives within CATH-FunFams exhibit highly conserved drug binding sites and have the potential to be the 
druggable entities within drug targets, as shown  in60. Thus, further studies targeting such immune proteins and 
PLpro-mediated interactions would be helpful.

We suggest monitoring both common and rare variants in human proteins, that are predicted to cause 
significant impact and thus likely to be associated with disease pathogenicity or susceptibility. Two affinity-
enhancing variants – one from IFIH1 (Y13N) and one from ISG15 (S21N), are observed to occur at > 1% allele 
frequency i.e. common in East Asian and African populations, respectively. These affinity-enhancing variants 
exhibit distinct allele frequency distributions across gnomAD populations and thus it is likely that they exhibit 
distinct COVID-19 susceptibility. For example, the variant Y13N in IFIH1 is common mutation found only in 
East Asians. The S21N in ISG15 is common in African population and less common in other populations such 
as Middle Eastern, Admixed American, European (non-Finnish) populations and not present in any other 
populations in gnomAD. Thus, affinity-enhancing variants involved in increased affinity to SARS-CoV-2 bind-
ing, could manifest population-scale differences in causing susceptibility to the disease via alteration to natural 
immune pathways in humans.

Most of the variants identified in our study have allele frequencies (< 1%). A growing number of studies 
support the key role of rare variants in causing susceptibility/severity to COVID-1912,26–32. Thus, apart from 
common variants in East Asian and African population, rare variants predicted from various other populations 
are predicted to be affinity-enhancing, which could affect COVID-19 susceptibility and cause increased risk of 
infection in individuals carrying them.

We also provide a catalogue of affinity-reducing variants from 12 proteins (Table 2), particularly in ISG15 
and TOMM70. These variants are observed to significantly reduce binding affinities of the human proteins to 
their SARS-CoV-2 partners and some of which are observed to occur at key functional sites/motif region that 
are important for binding to SARS-CoV-2 proteins, thus their likely role in resistance to COVID-19. Earlier 
data showed a good correlation between predicted affinity-reducing variants and experimental  observations38. 
Thus, affinity-reducing variants reported in this study could provide an explanation for why some individuals 
in specific populations are less likely to experience SARS-CoV-2 associated immune evasion.
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Whilst we observed only two common variants in certain specific ethnic groups, occurrence of certain rare 
affinity-enhancing variants could also lead to increased susceptibility in individuals carrying them. Though the 
data suggest some role of genetic variation in COVID-19 susceptibility, the role of social and environmental fac-
tors should also be studied. In addition, our study is based on computational prediction of changes in the binding 
affinity. Experimental data is available for variants in only a limited number of complexes such as spike-ACE2 
and ORF9b-TOMM70. Future experimental studies would be helpful for validating the impacts of proposed 
affinity-enhancing mutations in other immune proteins.

Conclusions
We used structural bioinformatics approaches to predict human and viral protein variants affecting COVID-19 
susceptibility and to suggest repurposing of therapeutics based on CATH functional family data associated with 
small molecules/drugs. A total of 26 affinity-enhancing variants are reported in our study and we discuss their 
structural impact in the context of functional sites using 3D structures of SARS-CoV-2: human complexes. The 
protocol designed in this study could be extended to analyse other protein interactions as more structures are 
experimentally determined and more powerful tools for protein structure prediction emerge. Our approach could 
be helpful in future studies not only for COVID-19 but also other emerging infectious diseases.

Data availability
The data supporting the conclusions of the study is made available in the Supplementary files 1 to 8. The dataset 
of SARS-CoV-2:Human 3D-complexes used and generated in this study is provided in Supplementary file 9. 
The datasets generated and/or analysed during the current study (.pdb files for 3D-complexes and associated 
accessions) are available in the Zenodo repository, web link https:// zenodo. org/ recor ds/ 10090 696.
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