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ABSTRACT. Electrical impedance tomography (EIT) plays a crucial role in non-
invasive imaging, with both medical and industrial applications. In this paper,
we present three data-driven reconstruction methods for EIT imaging, that
were submitted to the Kuopio tomography challenge 2023 (KTC2023). First,
we introduce a post-processing method, which achieved first place at KTC2023.
Further, we present a fully learned and a conditional diffusion approach. All
three methods are based on a similar neural network backbone and were trained
using a synthetically generated data set, providing a fair comparison of these
different data-driven reconstruction methods.

1. Introduction. Electrical impedance tomography (EIT) is an imaging modality
that uses electrical measurements taken on the boundary of an object that are
used to recover electrical properties of its interior. In this paper we consider the
reconstruction of conductivity, for which a series of currents are applied through
electrodes attached to the object’s boundary. The electrodes measure the resulting
voltages, which are used to produce an image of the conductivity. EIT has numerous
applications for example in medical diagnostics [5] or in non-destructive testing [18].

There are several mathematical models for the physics of the EIT measurement
process. Let € be the domain, 92 its boundary and Uleel C 0N the set of L € N
electrodes attached to the boundary. The electric potential v € H;(Q2) is derived
from Maxwell’s equations and is governed by

-V (6Vu)=0 1inQ, (1la)

where o € L>(Q) is the conductivity distribution. The complete electrode model
(CEM) [26] describes a realistic formulation of boundary conditions when a current
is applied to the electrodes. First, the boundary is decomposed into two compo-
nents: the electrodes e; (identified with the part of the boundary they are attached
to) and the remaining space between the electrodes, 9Q \ U ,e;. Second, the elec-
trical conduction between the electrode and the corresponding part of the boundary
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is accounted for. For a given current injection pattern | = (I1,...,I;)" € R, the
resulting model can be written as

u+zla% =U, one, forl=1,... L,

O'% =0, on 90\ UL e, (1b)

L. U%ds =1, one,forl=1,... L,
l v

where (z1,...,2)" € R are the contact impedances, quantifying the effect of
the resistive layer formed at the contact point of electrodes and the boundary, and
U= (Uy,...,U L)—r € RE is the voltage at the electrodes. CEM includes conservation
of charge and a mean-free current constraint for the potentials, i.e.,

L L
ZII:Oand ZUZ:O, (1c)
=1 =1

respectively. Equations (1a) to (1b) describe a single current injection pattern. In
practice, several injection patterns are applied and corresponding electrode mea-
surements are obtained. We denote the voltages and charges for the k-th injec-
tion pattern by U®) and I®) where k = 1,..., K. By U = (UD, ... UF)) and
I= (W, . 15)) we denote stacked REL vectors of voltages and charges at all
electrodes and for all current patterns. Let further F(o) = (F)(a),... ,FE) ()T
be the corresponding forward operator, applied to conductivity o, for all electrodes
and all current patterns. The resulting non-linear inverse problem can be written
as

F(o)l = U, (2)
where the goal is to reconstruct o given electrode measurements U.

1.1. KTC 2023 challenge. We outline three methods submitted to the Kuopio
Tomography Challenge 2023 (KTC2023) [21]. The goal of KTC2023 was to recon-
struct segmentation maps of resistive and conductive inclusions from partial bound-
ary measurements. The measurements were acquired from a plastic circular tank
with 32 equispaced stainless electrodes attached to the boundary. All 32 electrodes
were used to collect the measurements and 16 electrodes (the odd numbered ones)
were used for current injection patterns. For each current injection pattern voltages
are taken between adjacent electrodes, resulting in 31 measurements per injection
pattern. Five types of injection patterns are considered. An illustration of the
measurement tank, electrodes, and injection patterns can be found in Figure 1.1.
The challenge was divided into 7 difficulty levels. The first level includes data
from all 32 electrodes. Two additional electrodes are removed, proceeding counter-
clockwise, in each subsequent challenge level, thus reducing the number of mea-
surements and the number of applied current injection patterns decrease with each
level. For example, in level 2 electrodes 1,2 are removed and in the final level 7
electrodes 1 to 12 are removed. This means that all measurements from the up-
per left boundary are removed, cf. Figure 1.1, making the reconstruction of the
conductivity map and segmentation map increasingly ill-posed for higher levels.

1.2. Our contribution. We propose three data-driven reconstruction methods to
tackle the reconstruction of segmentation maps from partial EIT measurements:

o FC U-Net: a fully-learned approach that reconstructs directly from measure-
ments, see Section 3.1.1 .
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—— always included
-+ excluded in level 2
-+ excluded in level 4
— - excluded in level 6

FIGURE 1. An illustration of the EIT measurement tank (2), the
electrodes e;, with a sample of the injection patterns. In black we
show the adjacent injections; in green all against ei; in pink all
against eg; in magenta all against ey7; in orange all against ess.
Dashed injections are removed in the 2"¢ challenge level; dotted
ones in the 4'"; dash dotted in the 6.

e Post-Processing: an approach that reconstructs from an initial reconstruction
method, see Section 3.1.2.

e Conditional-Diffusion: a conditional diffusion approach that aims to directly
model the posterior given initial reconstructions, see Section 3.2.1.

FC U-Net and Post-Processing are learned reconstruction approaches, whereas
Conditional-Diffusion is an approach based on conditional generative modelling. The
three proposed methods achieved the three highest scores at KTC2023, with Post-
Processing performing the best overall. Additionally, the three approaches use a
similar U-Net architecture with a comparable number of parameters and are trained
using the same dataset of generated phantoms and simulated measurements.

1.3. Related work. Deep learning post-processing and fully learned reconstruc-
tion are two well-known data-driven approaches for medical image reconstruction [2].
Both of these frameworks have been applied to EIT image reconstruction. Our FC
U-Net follows the model proposed by Chen et al. [6]. However, in Section 3.1.1
we propose a novel two-step training method for this fully learned model. Post-
processing methods have been applied to EIT, e.g., by Martin et al. [19]. We extend
this post-processing framework to deal with the different levels, corresponding to
partial EIT measurements with increasing severity, of KTC2023. To the best of our
knowledge, our method is the first application of a conditional diffusion model to
real-world EIT data. Recently, Wang et al. [31] propose an unconditional diffusion
model for EIT and make use of the sampling framework proposed by Chung et
al. [8] to enable conditional sampling. However, they only evaluatd their approach
on simulated data with two or four circular inclusions, whereas we evaluate our
approach on real measurements of complex objects.

2. Linearised reconstruction. EIT reconstruction deals with the recovery of the
conductivity o from a set of electrode measurements U. A common technique is
to linearise the non-linear forward operator F around a homogeneous background
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conductivity o,ef and reconstruct a perturbation do to this background [7, 10, 17].
The linearised forward operator is given as

F(0ret + 005 0v0f)1 := F(0per) I + I, 00 (3)

Oref ’

where J, . := VF(0yf) is the Jacobian evaluated at the background conductivity.
We further assume access to measurements U,qs of the empty water tank, such that
F(Uref)I = Upes.

We then define the measurement perturbation as U := U — U,.. The corre-
sponding linearised problem is then to determine do from

3, b0 =5U. (4)

The perturbation do € RM is discretised by M coefficients of a piecewise constant
finite element expansion. The finite element approximations of the Jacobian, and
forward operator, are discussed in Sections 2.1 and 2.2.

To solve Eqn. (4) we use the framework of variational regularisation as

— 1
do := argmin §||Jgref60 —8U[|%-1 + aJ (60), (5)
o

where we assume a Gaussian noise model U ~ N (0, %), and J : RM — Ry is a
regulariser. We consider Tikhonov-type regularisers of the form J(dc) = ;| Ldc||3.
For this choice of a regulariser we can recover the solution to Eqn. (5) as

5o = (I 273, +LTL)"1J] »5U. (6)
The matrix (J;'—me_lJUrcf +LTL)~! can be computed offline, leading to a compu-
tationally cheap reconstruction method necessary for training the post-processing
and conditional diffusion networks. In the following sections, we will discuss the
implementation of the forward operator, the computation of the Jacobian J, _, and

the choice of regulariser 7.

2.1. Forward operator. The EIT forward operator F defining CEM is non-linear.
Evaluating F for a given a conductivity o requires solving the differential equations
in (1b). We approximate the solution by applying the finite element method to
the weak formulation of the CEM, see e.g. [16]. To incorporate the conservation
of charge we introduce a Lagrange multiplier A € R. The weak formulation of the
CEM then reads: find (u,U,\) € H}(Q) x RL x R such that

L

L L
1
/QUVu-Vvdx—klE_lZl/el(u—Uz)(v—W)ds+ E AV, +vU)) = E Lvi, (7)

=1 =1

for all (v,V,v) € H'(Q) x RE xR, with V = (V4,..., V)T and U = (Uy,...,UL)".

To numerically approximate the forward model we use the Galerkin approxima-
tion to the CEM, see e.g. [17]. We give a short summary below. We represent
the electric potential u using piecewise linear basis functions {¢;}Y, spanning a
finite dimensional subspace Vy of H!(Q). The conductivity o is represented using
piecewise constant basis elements {x;}*,, where each y; is the indicator function
of exactly one simplex in the mesh. To simplify the notation we identify u and o

~

with the coefficients in their respective basis expansions. That is, u ~ > ;" | u;¢; =
T

~

(u1,...,un)" and analogously for o ~ Z]I\/il oixj = (o1,...,0Mm)
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Applying the above Galerkin approximation to (7) results in the linear system

A(c)+B C 0 u 0
cT D 1]||u]=]1], (8)
o' 1m0/ \\ 0

with block matrices

A”:/Uv¢lv¢jd1’7 fori,jzl,...,N
Q

L
1 .
BijZZl/’d)igﬁde, fOI‘Z,]Zl,...,N
=1 €l

1
1

C,‘jzf ¢id3, forizl,...,Nandj:L...,L
Zj e;
1 )

D =— 1ds, fori=1,...,L,
Z e

where U = (Uy, ..., UL)—r € RY, and we omit injection pattern indices for brevity.

There are two properties of the linear system (8) that can be used to reduce
the computational effort. First, for a fixed conductivity o, the CEM is linear with
respect to the injection patterns. This enables reusing intermediate steps of the
procedure for solving Eqn. (8), e.g., the LU factorisation of the system matrix
which is used to compute the numerical solution (u,U) for each current pattern
under consideration. Second, only the block matrix A(c) depends on o, and needs
to be recomputed. All other block matrices can be computed offline.

The resulting discrete forward operator is implemented with the finite element
software FEniCSx [3], and is available online'.

2.2. Jacobian. We compute the Jacobian J,, , using the discrete function spaces
for electric potential and conductivity. Alternative computational strategies using
pixel grids or with the adjoint differentiation are demonstrated in [10, 17].

Given K injection patterns and L electrodes, the Jacobian J,,  is an LK x M
matrix. However, it is perhaps more intuitive to view the Jacobian as an L x K x M
tensor. Using [13, Appendix], the Jacobian can be expressed as

(Jorer)- kg =Wgj, fork=1,..., Kand j=1,..., M, (9)

where (wy, j, Wy ;) € Viy x R is the solution to

L
/Urerwk)j.Vq’)i dx—i—zz%/(w;w—(W;w)l)(d)Z—V})ds:—/xjvukV(bz CLCL‘7 (10)
Q 1 €y Q

1=

with Zle(Ww)l = 0, where u* is the potential corresponding to current pat-
tern 1*. Similarly to Eqn. (7), we introduce a Lagrange multiplier to deal with the
constraints, leading to to the same system matrix as in Eqn. (8) but with a different
right hand side,

A(Uref) +B C 0 WE, 5 fk,j
ol D 1] (Wi;|l=10], (11)
o' 1m0/ \ M\ 0

Ihttps://github.com/alexdenker/eit_fenicsx
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with
(fr,j)i :—/ XjVuk'V@dm, fori=1,...,N. (12)
Q

Using the identity in Eqn. (9), K - M problems need to be solved to construct
the Jacobian J,,,. However, since the dimensionality of the right hand side in
Eqn. (11), i.e., the range of the forward operator, is at most N it suffices to compute
the solutions (w,, W,, \,) € Viy x RF x R of

Alowt) +B C 0 w, 8,
cT D 1w, |=1[0o (13)
0" 17 0 Ar 0

where &, = (§;)Y, € RY is the r-th unit vector. Thus, we only need to solve N
linear systems?, instead of K- M. As fi ; can be represented as a linear combination
of {6, }_,, we can recover the Jacobian as

N
Forer) g = Wieg = D (frg)r Woe (14)
r=1
Observe that the piecewise constant elements x; are non-zero on exactly one element
of the mesh. Thus, only a few summands on the right hand side in Eqn. (14) remain,
further reducing the computational complexity.

In higher challenge levels boundary electrodes are removed. This results both
in fewer electrode measurements L < L and fewer injection patterns K < K. As
a result, the reduced Jacobian is of shape LK x M and it can be computed by
removing the corresponding rows of the full Jacobian J, ;.

2.3. Regularisation. We consider Tikhonov-type regularisers 7 (60) = 1||Ldo||3.
Note that for the reconstruction in Eqn. (6) we need access to LTL. Thus, we can
define P := LT L instead of L. We use three different regularisers:

e First-order smoothness prior (FSM): We define the mesh Laplacian
Prsum € RM*M with

deg(z) ifi=j
(Prsm)ij =< —1 if i # 7 and i is adjacent to j (15)
0 else,

where deg(i) is the number of neighbours of mesh element i. Matrix Prys
can also be defined as Prgy = L;«'—MSLFMS, for Lrpys constructed as in [5].

e Smoothness prior (SM): A smoothness distance matrix is constructed via
Psyv = Zgy with (Bsm)i; = aexp(—|lz; — z;|3/(20%)) where z; and x;
are the coordinates of mesh elements 7 and j. We choose a = 0.025 and
b = 0.4-0.115. This prior was used in the implementation provided by the
organisers of KTC2023 [21].

¢ Levenberg—Marquardt regulariser (LM) [12]: The LM regulariser is used
in the NOSER framework [7] and is defined as Pry = diag(J, _X7'J, ).
Note that 3 is the covariance matrix of the Gaussian noise model in Eqn.(5).

2Moreover, we have N < M, i.e., the dimension of piecewise linear elements is lower than the
dimension of piecewise constant elements.
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Ground Truth FSM SM SM+LM  1:FSM+SM+LM 2:FSM+SM+LM
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FIGURE 2. Example initial reconstructions on challenge levels 1
and 6. Level 6 was chosen as it best highlights differences in lin-
earised reconstructions. We evaluate an independent FSM prior,
independent SM prior, joint SM+LM prior and two joint priors
FSM+SM+LM with different regularisation strengths. The chosen
image is a sample of the validation data.

In summary, the regularised solution to Eqn. (5) is obtained by combining the three
regularisers as

Fi(6U)= (JUTrefE_lJaref +arsmPrsm+asmPsum +0¢LMPLM)_1J;rrefE_15U, (16)

where apsm, asm, and apy are the regularisation strengths, and F' is the lin-
earised reconstruction operator. The regularisation strengths are selected using a
validation set of the four measurements provided by the organisers. The chosen
regularisers promote different structures within the reconstructed images. More-
over, different regularisation choices produce clearly distinct reconstructions with
corresponding artefacts, which is especially evident for higher challenge levels. For
Post-Processing and Conditional-Diffusion approaches we use 5 different regularisa-
tion choices, illustrated in Figure 2. The guiding idea is that combining the infor-
mation from the various reconstructions will improve the performance of the trained
convolutional neural network.

The linearised reconstruction computed from Eqn. (16) resides on the piecewise
constant mesh representation, whilst convolutional neural networks require inputs
represented as a 256 x 256 pixel grid. Bilinear interpolation, denoted as Z : RM —
]R2562, was used to interpolate from mesh to image. We denote the resulting set of
five interpolated linearised reconstructions as

do = {Z(FI(6U))}>_, (17)
where the subscript denotes the j-th choice of regularisation strengths. The strength
of regularisation varies between challenge level for all five linearised reconstructions.
Namely, a weaker regularisation strength is required for the full view setting at level
1, meaning that a total of 35 variations of regularisation strengths are defined. For
clarity and brevity we omit an index for the challenge level.

3. Deep learning approaches. We submitted three deep learning approaches
to KTC2023. Two learned reconstructors, FC U-Net and Post-Processing, and a
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generative approach, Conditional-Diffusion. Our approaches share the same U-Net
backbone® [22, 9]. This network includes a conditioning mechanism allowing the
level (timestep) to more effectively influence the model’s output.

All models were trained on a simulated data set, which is described in Section 4.1.
Let o € R? with d = 2562 denote the representation, discussed in Section 2.3, of
the reconstruction on the square pixel grid, where the pixels outside of the circular
water tank are always treated as the background class.

3.1. Learned reconstructors. The goal in learned reconstruction is to identify
parameters 6 of a parametrised reconstruction operator Rg : RXL — R?, such that

R;(6U) ~ do. (18)

Given a paired data set {(§U®, §o)}2_| of samples, we compute
R 1 ) )
6 = argmin — LD Ry(sUM)), 19
amin 3~ 260", Ra(5U) (19

using a suitable loss function £ : R4 x R% — R>. The mean-squared error loss func-
tion is commonly employed for reconstruction tasks [20]. However, the goal in the
challenge was not to reconstruct the conductivity distribution, but rather to provide
a segmentation into water (background), resistive and conductive inclusions. There-
fore, we use categorical cross entropy (CCE) as a loss function. CCE is commonly
used for image segmentation but has also been used for computed tomography seg-
mentation [1]. Let R, denote the learned reconstructor. The model outputs logits,
which are transformed to class probabilities by using a softmax function

exp(Ré (5U)1,C)
Y1 exp(Ry(0U);e)’

for all pixels i = 1,...,d and all classes ¢ = 1,...,C. Let further p € {0,1}%%¢ be
the one-hot encoding of the ground truth class. The CCE loss is defined as
c

Pi,c = Softmax(R,(6U);,.) := (20)

d
Lecr(p,p) = —é > piclog(pie)- (21)
i=1 c=1

After training, the final segmentation is obtained by choosing the class with the
highest probability as (argmax,p;c)i=1,....a- The network is directly trained for
segmentation, thus avoiding the need for an additional segmentation step. For
both learned reconstruction methods, FC U-Net and Post-Processing, we provide the
challenge level as an additional input to the model and train a single model for all
levels. They differ in the parametrisation of the reconstruction operator Ry. Where
the FC U-Net implements a neural network directly acting on the measurements,
the Post-Processing defines a two-step approach [20, 24].

3.1.1. FC U-Net. The design of the FC U-Net closely follows the work of Chen et
al. [6]. The model consists of two components: an initial learned transformation that
maps the measurements to a pixel grid and a subsequent segmentation, implemented
as a convolutional neural network.

Instead of using the linear reconstruction method from Section 2.3, we will learn
a linear mapping (represented as a single fully connected linear layer) that is applied
to the measurements. However, learning a linear mapping from the measurements,

3 Accessible at https://github.com/openai/guided-diffusion
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with dimension KL = 2356, to the pixel grid, would require more than 150M pa-
rameters and is computationally intractable. To reduce the number of parameters,
we only learn a mapping to a 64 x 64 pixel grid and use a bilinear interpolation
to the 256 x 256 pixel grid. The output of this initial transformation is used as an
input to the second stage. Let W € R64’*KL denote the initial linear layer and
S : R — R256” be the bilinear upsampling operator. The FC U-Net is given by

Ro(0U, k) := Ro(S(WOU), k), for k=1,...,7, (22)

with £ denoting the challenge level and Ry is implemented as the attention U-Net
[9]. An overview of this approach is given in Figure 3. The missing measurements
in dU for the higher challenge level are filled with zeros.

To learn the linear map W, for the initial reconstruction, and the weights 6 for
the segmentation, we propose a novel two phase training process. In the first phase
only the initial linear layer is trained using a mean-squared-error loss

7T ng
: (k,i)y _ (k,2) (12
m&n;; [S(WoUkDY — §orki)||2, (23)
The aim of this phase is to provide a good initialisation of W. Afterwards, the full
model is trained to provide a segmentation using the CCE loss

7T ng
min L pkii) p(kii)y 24
A ;; cce(p ™) (24)
where %% = Softmax(Rg(S(W3U® D) k)). In this joint optimisation of # and
W, we use a smaller learning rate for the linear layer W than for 6.

The dataset used for training the FC U-Net consisted only of random phantoms
and simulated measurements. When evaluated on four challenge phantoms provided
by the organisers, we noticed a deterioration in the final segmentation. To alleviate
this generalisation problem, we introduce a finetuning phase, where the FC U-Net
is trained for 1000 optimisation steps on these 4 challenge phantoms using a small
learning rate of 1 x 1076, for both W and 6.

3.1.2. Post-Processing. Learned post-processing was one of the first applications of
deep learning to inverse problems [2, 20]. In this approach an initial reconstruction
(computed from a classical reconstruction method) is used as an input to a convolu-
tional neural network. More precisely, the reconstruction operator is parametrised
as Ry(0U) = Re(FT(0U)) where F(§U) denotes the initial reconstruction. We
adapt this approach in three ways. First, a bilinear interpolation step is used to
map the mesh values to an image for the convolutional neural networks. Second,
five linearised reconstructions are used as initial reconstructions, cf. Section 2.3.
Last, the network is conditioned on the challenge level, as for the FC U-Net, cf.
Section 3.1.1. These adaptions result in the formulation

Ro(5U, k) = Ro(da, k), for k=1,...,7, (25)

where 8o are the five interpolated linearised reconstructions and k is the challenge
level. An overview of the Post-Processing network is given in Figure 4. The result-
ing network is trained for segmentation using the CCE loss function (24) over all
challenge levels and training samples, with the predicted class probability given by

. L (ki
pkd) = Softmax(Rg(éa'( ), k)), for k=1,...,7Tandi=1,...,ng. (26)
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UfUref —> . - . e d ¢ T . '
—> ‘

64 x 64 256 x 256

Level conditional U-Net

FiGURE 3. FC U-Net network. We first use a linear layer to map
the measurements to a 64 x 64 pixel grid, this is then bilinearly
interpolated to the 256 x 256 grid. The network is trained to output
class probabilities using categorical cross-entropy loss. The class
probabilities are converted to segmentation maps by assigning the
class with highest probability.

Linearised

Reconstructions el e

On-mesh Interpolated +

p— \
Segmentation
LR Tl N N

U-Up —> o - v 0 [ v
e v e
D

Level conditional U-Net

FIGURE 4. Post-Processing network. The five linearised reconstruc-
tions are interpolated to the pixel grid as described in Section 2.3.
The network is trained to output class probabilities using cate-
gorical cross-entropy loss. The class probabilities are converted to
segmentation maps by assigning the class with highest probability.

3.2. Conditional density estimation. From a statistical perspective of inverse
problems, we are interested in recovering the posterior distribution pP°st(o|U),
i.e., the conditional distribution of conductivity o given the boundary measure-
ments U [28]. The goal in conditional density estimation is to approximate the true
posterior p(o|U) with a conditional probabilistic model py(o|U) given a data set
{(e®,U®)}, fori = 1,...,n with (6@, U®) ~ p(e,U). In this work ps(e|U)
is modelled using denoising diffusion probabilistic models (DDPM) [15, 25], which
have shown promising results on many image generation tasks [9].
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3.2.1. Conditional diffusion models. Conditional variants of diffusion models were
proposed for various inverse problems, including super-resolution [23], time series
imputation [29] and image inpainting [4]. Specifically, we build on ideas from [4].

We make use of the discrete time formulation of diffusion models [15]. DDPMs
define a forward diffusion process, given by a Markov chain, which gradually adds
noise to the data over T"= 1000 timesteps as

Oy = \/1*ﬂt0-t—1+\/E67 ENN(O,I), (27)

with variances 8y < .-+ < fBr. The variances are chosen so that the terminal
distribution approaches a standard Gaussian, or ~ N(0,I). Given the noiseless
sample o, the noisy sample at time ¢ can be directly obtained as

o =aog+ V1 —ae, €~ N(0,1) (28)

with @ = [['_,(1 — ;). The goal of DDPMs is to reverse this diffusion pro-
cess by learning parametrised transition densities pp(o:—1|o). Training a DDPM
amounts to minimising the so-called e-matching loss [15]. This framework can be
extended to conditional density estimation by including the measurements in the
parametrised transition densities, i.e., pg(oi—1]|ot,dU), using a conditional neural
network €y(o,0U;t) and minimise a conditional e-matching loss

min Eitr((1.... 7)) E(o0.60) ~p(o0 00) Bernro 1) [ €0 (01, 6Us 1) — €3], (29)

with o as given in Eqn. (28) and the expectation over (o, dU) is estimated using
the simulated dataset and denoted by E. An overview of the network is given
in Figure 5, where the input to the network is a concatenation of the linearised
reconstructions, interpolated to the pixel grid, and the noisy image o, together
with the time step t.

In [15], the authors make use of ancestral sampling to sample from the learned dis-
tribution. However, this requires simulating the reverse process for all T' timesteps,
resulting in a computationally expensive sampling method. To increase the sam-
pling speed, we make use of the accelerated sampling scheme proposed in the DDIM
framework [27]. Let 7 be a subsequence of {1,...,T} of length S with 4 = 1 and
7s = T. The DDIM sampling, starting with ., ~ A (0,I), is given by

Or,_, =\/0r,_,00(0+,,0U) + /1 —a; =2 €o(0+,,0U,7s) + 7r €, (30)

with € ~ M (0,I) and where (0 ,,,dU) is the Tweedie estimate [11], defined by
. 1 =
Elog|o, 6U| = 6o(oy,0U) = e (o — V1= aueg(oy,0U; 1)) . (31)
¢

The stochasticity parameter v in Eqn. (30) is chosen as

e, = (1=, )/ = @)1 - an fan, (32)

with a tunable hyperparameter 7, see [27].

In our implementation, we do not directly feed §U into the epsilon model €y,
but rather make use of the initigl\ reconstructi/gns introduced in Section 2.3. Thus,
our model is of the form €y(o;, do,t) where do denotes the set of five interpolated
linearised reconstructions in Eqn. (16). In doing so we do not approximate the true

posterior pP°t(|dU), but rather a conditional distribution p(a‘|ga').
As the goal was to produce a segmentation and not a reconstruction, we do not
represent o using conductivity values, but rather as an image with values in [0, 2].
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FiGure 5. Conditional-Diffusion network. The five linearised re-
constructions are interpolated to the pixel grid as described in Sec-
tion 2.3. The noisy image and linearised reconstructions are input
into the network. Using the e-matching loss function, the network
is trained to estimate the noise. Through sampling the network a
segmentation map is obtained.

The segmentation is then obtained by rounding the reconstruction o to the nearest
{0,1,2} integer, where 0 represents the background class, 1 the resistive and 2 the
conductive inclusion class. For the final segmentation, we draw .J samples o) using
DDIM Eqn. (30) and perform a pixel-wise majority voting

i :argmax#{al(j)bgj) =cj=1,...,J}, (33)

¢=0,1,2

for all pixels i = 1,...,d, with # denoting the set cardinality.

4. Practical considerations. In this Section we report the practical considera-
tions of our submission. First, we cover the generation of the training data, second,
we give details about the computation of the linearised reconstruction and third,
we discuss aspects of the neural network architecture.

4.1. Dataset. An important aspect of our submission is the creation of a sim-
ulated dataset suitable for training the different deep learning approaches. We
start by generating random segmentation maps consisting of non-overlapping poly-
gons, circles, rectangles and handdrawn objects on the 256 x 256 pixel grid. Ex-
ample phantoms are presented in Figure 6, where we only visualise the circu-
lar water tank. KEach object was assigned to be either resistive or conductive.
The areas outside of an object, and outside the water tank, were assigned the
background class. Given this segmentation map, we simulate conductivity val-
ues for the objects. The conductivity of resistive objects was randomly chosen in
[0.025 (Ohm - m)~",0.125 (Ohm - m) '] and the conductivity of conductive objects
n [5.0 (Ohm-m) ",6.0 (Ohm-m) ']. The background was assigned a constant
conductivity value of 0.745 (Ohm - m)fl, which was computed using the reference
measurements of the empty water tank via least squares fitting [30]. In the next
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FicURE 6. Top: Hand-drawn training phantoms. Bottom: Ran-
domly generated training phantoms. For the visualisation, we only
show the circular water tank. However, note that all models are
trained using the square 256 x 256 pixel images.

step, the resulting phantoms were interpolated from the pixel grid to the piecewise
constant finite element representation. The measurements were simulated using the
forward operator specified in Section 2.1. Gaussian noise was added with zero mean
and covariance ¥ = diag(0.05 Uy,es+0.01 max(U,ef)) according to the reference mea-
surements of the empty water tank. For the simulation of the measurements a fixed
contact impedance z = 1 x 10750hm was chosen for all 32 electrodes*. The number
of training samples used per level is provided in Table 1. In total, we simulated
more than 100K data pairs. The lower number of training samples for level 6 was
due to technical problems in the simulation.

TABLE 1. Number of training samples used per level.

Level | 1 2 3 4 5 6 7
Training samples ‘ 16527 16619 16591 16587 16604 12102 16298

4.2. Initial reconstruction. Both the Post-Processing approach in Section 3.1.2
and the Conditional-Diffusion in Section 3.2.1 require an initial reconstruction as the
input. We experimented with different classical reconstruction methods. Iterative
reconstruction methods, e.g., Ll-regularisation [13] or Gau-Newton methods [5],
resulted in higher quality reconstructions compared to the linearised approach in
Section 2.3. However, as this initial reconstruction has to be computed for every
example in the training set, i.e., for more than 100K examples in the dataset we
used, the computational expense was a constraint. Thus, we decided against the
computationally more expensive iterative methods and used the faster linearised
reconstruction. However, even for the linearised reconstruction, simulation of the
measurements and computation of the initial reconstruction took about a week.
The organisers provided a finite element implementation of the CEM. We decided
to use our own implementation to more easily change the discrete function spaces
and use a different mesh. A comparison of our mesh and the provided mesh is shown

4We also experimented with identifying the contact impedance using least squares fitting, but
did not obtain good results.
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in Figure 7. The provided mesh shows some small irregularities at the centre and
top of the domain, which led to some differences in the forward solution and initial
reconstructions. Instead, we use a uniform mesh with a mesh size of 0.005, which
was created with the software Gmsh [14]. Further, we set the boundary elements
to cover the electrodes.

FIGURE 7. Left: The mesh provided by the organizers. Right: Our
custom mesh for the forward operator.

4.3. Neural network architecture. We use a minimally adapted guided diffusion
model proposed by [9]. The architecture consists of a U-Net [22] with attention
blocks and time embedding. The time (scalar)DaTo embedding is adapted for Post-
Processing and FC U-Net to allow the network to incorporate level information,
meaning the training data across all levels can be used during training. The time
or level information is introduced to the network by adaptive group normalisation
layers [9]. Each group normalisation layer [33] in the U-Net is replaced with

AdaGroupNorm(h, z) = z;GroupNorm(h) + z, (34)

where h is the intermediate feature and z = (z4,2;) is the output of a neural
network taking the time or level information as an input. With our choice of
hyperparameters, e.g., number of layers, channels, etc., the total number of trainable
parameters is 31M.

The number of input and output channels of the U-Net vary between the ap-
proaches. Post-Processing and Conditional-Diffusion have five input channels cor-
responding to the five interpolated linearised reconstructions 55-7 whereas FC U-
Net has a single channel input for the interpolated learned reconstruction S(W4oU).
For the learned reconstructors a CCE loss is used that required the three class
probabilities, thus three output channels are used. For Conditional-Diffusion the
e-matching loss is used, requiring a single channel output. Due to differences in
input and output channels the backbone U-Nets do not have an equal number of
parameters, albeit the differences are negligible. For FC U-Net the linear layer W
required 10M parameters; this is a significant increase in learnable parameters as
compared to the other approaches.

5. Results and discussion. In this section we present the final challenge results
for our three approaches. Quantitative scores are computed using structural sim-
ilarity index measure (SSIM) [32] individually on binary maps of conductive and
resistive inclusions. This was averaged to give a per-sample score. This per-sample
score was summed across all samples of a level to give a level score, and then summed
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over all levels to give the overall score of the methods®. For each challenge level,
three different phantoms (A,B,C) were evaluated. Visual results are presented in
Figure 8, Figure 9 and Figure 10. In most reconstructions, the number of objects,
positions and rough shape are correctly identified. Exceptions are cases where a
small conductive object was placed in the middle of the water tank and surrounded
by other objects, see for example level 7 in Figure 8 or level 7 in Figure 9. Further,
the reconstruction of objects on the upper left side of the water tank is often worse
as the measurements of this part of the boundary are removed for higher challenge
levels. See for example level 7 in Figure 9, where the shape of the rectangle at the
top of the water tank can not be recovered.

Quantitative results are presented in Table 2. Besides our submission, we also
present the results of the second and third best performing team. With a final score
of 15.24 the Post-Processing approach was the best performing method in KT C2023.
However, the FC U-Net was able to outperform this approach at levels 2,4,5 and
6. The second place with a score of 12.75 was achieved by a team from the federal
University of ABC and the third place was achieved by a team from DTU with a
score of 12.45. On level 4 the second place team achieved a higher score than the
Post-Processing. However, both our FC U-Net approach, with a score of 15.13, and
our Conditional-Diffusion, with a score of 14.60, would have won the challenge.

Post-Processing and the FC U-Net perform similarly, while worse performance
can be observed with Conditional-Diffusion. For the Conditional-Diffusion approach,
a separate neural network was trained for each challenge level. Thus, the net-
work for each level was trained using only a subset of all available phantoms and
measurements that were simulated. On the other hand, Post-Processing and FC
U-Net utilise the training examples across all the levels. The learned reconstruction
approaches utilise CCE loss specific to segmentation tasks, whereas Conditional-
Diffusion uses a e-matching which is required for DDPM. Rather than using a single
sample, for Conditional-Diffusion we draw J conditional samples, and the segmenta-
tion was determined via majority voting. This could be extended to obtain a notion
of uncertainty.

The Post-Processing and Conditional-Diffusion approaches both took a set of five
linearised reconstructions as input. Through using a set of reconstructions with
different regularisation strengths we attempt to obtain a more robust segmentation
as the best regularisation strength is not known. In a similar sense, a set of recon-
structions could be learned with the FC U-Net but would require significant increase
in the number of learnable parameters.

6. Conclusion. The KTC2023 challenge provided an opportunity to evaluate state-
of-the-art methods on the problem of reconstructing segmentation maps from EIT
measurements. Our winning submissions utilised deep learning, with two learned
reconstructor methods (FC U-Net and Post-Processing), as well as a Conditional-
Diffusion generative method. The choice of network architecture and dataset are
vitally important for deep learning approaches; requiring knowledge of the prob-
lem whilst being practical. In this work all submissions utilised the same train-
ing dataset and backbone network architecture; allowing for comparison between
methods. Both FC U-Net and Post-Processing provided similar results, whereas
Conditional-Diffusion performed less well. The learned reconstructors were trained

5Three phantoms were evaluated per level resulting in a maximum score of 21.
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TABLE 2. Quantitative comparison of our three submissions via
structural similarity index measure (SSIM). These are official chal-
lenge results, rounded to the nearest hundredth. The second place
was achieved by Team ABC from the Federal University of ABC,
Brasil. The third place was achieved by Team DTU from Technical
University of Denmark. SSIM is averaged for a given sample be-
tween conductive and resistive inclusions. At each level the SSIM is
summed across the three samples, and the overall sum for a method
is summed across all samples and levels.

Level 1 2 3 4 5 6 7 | Sum
FC U-Net 2.72 264 231 1.80 2.06 2.07 1.53 | 15.13
Post-Processing 2.76 2.56 2.54 1.71 2.06 1.92 1.69 | 15.24
Conditional-Diffusion | 2.67 2.49 247 1.61 194 1.76 1.65 | 14.60
Team ABC 275 237 207 1.74 1.08 1.53 1.22|12.75
Team DTU 228 2.3 1.87 155 1.34 1.44 1.60 | 12.45

across all levels (utilising level-conditioning), whereas the individual Conditional-
Diffusion networks were trained individually for each level, effectively reducing
the training dataset size. The FC U-Net required an additional fine-tuning phase
on the provided real measurements and phantoms. This was not needed for the
Post-Processing network which only used simulated measurements and phantoms.
The Post-Processing and Conditional-Diffusion methods took a set of five Tikhonov-
regularised initial reconstructions as input, while the FC U-Net method used a single
linear layer to map from measurements to images. Out of the three methods sub-
mitted the Post-Processing method gave the best performance. This suggests that a
post-processing approach trained on a high-quality simulated data set can generalise
to real data more easily than a fully learned method. Further work is necessary to
fully evaluate the generalisation capabilities of different data-driven approaches.
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FIGURE 8. Segmentation of the three methods for sample A of
level 1 to 7.
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FIGURE 9. Segmentation of the three methods for sample B of
level 1 to 7.
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FIGURE 10. Segmentation of the three methods for sample C of
level 1 to 7.
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