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Abstract. 
 

Background: No evidence exists as to whether type 2 diabetes (T2DM) impairs clinical 
outcome from Immune Checkpoint Inhibitors (ICI) in patients with solid tumors. 
Methods:  In a large cohort of ICI recipients treated at 21 institutions from June 2014 to June 
2020, we studied whether patients on glucose lowering medications (GLM) for T2DM had 
shorter OS and PFS. We used targeted transcriptomics in a subset of patients to explore 
differences in the tumor microenvironment of patients with/without diabetes. 
Results: A total of 1395 patients were included. Primary tumors included NSCLC (54.7%), 
melanoma (24.7%), renal cell (15.0%) and other carcinomas (5.6%). Following multivariable 
analysis, patients on GLM (n=226, 16.2%) displayed an increased risk of death (HR 1.29, 
95%CI:1.07-1.56) and disease progression/death (HR 1.21, 95%CI:1.03-1.43) independent 
of number of GLM received. We matched 92 metformin exposed with 363 controls and 78 
patients on other oral GLM or insulin with 299 control patients. Exposure to metformin, but 
not other GLM was associated with an increased risk of death (HR 1.53, 95%CI:1.16-2.03) 
and disease progression/death (HR 1.34, 95%CI:1.04-1.72). T2DM patients with higher pre-
treatment glycaemia had higher neutrophil-to-lymphocyte ratio (p=0.04), while exploratory 
tumoral transcriptomic profiling in a subset of patients (n=22) revealed differential regulation 
of innate and adaptive immune pathways in T2DM patients. 
Conclusions: In this study patients on GLM experienced worse outcomes from 
immunotherapy, independent of baseline features. Prospective studies are warranted to 
clarify the relative impact of metformin over a pre-existing diagnosis of T2DM in influencing 
poorer outcomes in this population.  
 
Keywords: diabetes, metabolic syndrome, immune checkpoint inhibitors, cancer, 
immunotherapy, immune suppression, inflammation, tumor micro-environment. 
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Statement of translational relevance:  
In this study we highlight how patients with advanced solid tumors and concomitant type 2 

diabetes (T2DM) experience worse outcome from Immune Checkpoint Inhibitors (ICI) 

independent of baseline clinicopathologic characteristics. In view of the increasing global 

burden of type 2 diabetes and the constantly expanding clinical indications of ICI-based 

therapies, the identification of metabolic host factors as determinants of immune response in 

patients with cancer has relevant implications for clinical practice. Prospective studies should 

investigate whether receipt of certain glucose-lowering medications such as metformin as 

opposed to quality of diabetes control might be modifiable factors to improve outcomes from 

immunotherapy. 

 

 

Introduction. 
Immune checkpoint inhibitors (ICI) have led to a significant increase in the survival of 

patients affected by a widening variety of malignancies1. Whilst re-invigoration of an 

immune-exhausted effector T-cell response is at the basis of the mechanism of action of ICI, 

several host characteristics have been increasingly recognised for their capacity to enhance 

or blunt ICI efficacy2-4. Concomitant medications, patients’ body mass index and the 

presence of a sub-clinical pro-inflammatory response are amongst the accumulating traits to 

have emerged in the recent past as key modulators of immunotherapy efficacy2,5.  

The complex relationship existing between metabolic syndrome, type 2 diabetes mellitus 

(T2DM) and cancer has been known for a long time6. T2DM is a highly prevalent 

comorbidity affecting up to 15% of patients at the time of cancer diagnosis7. In an 

increasingly ageing and more co-morbid population, cancer and T2DM share common risk 

factors8 and mechanistic evidence has highlighted an increased risk of cancer among patients 

with a pre-existing diagnosis of diabetes9.  

On the other hand, the complex metabolic changes that characterise the progression of 

diabetes may exert multiple immune-suppressive effects potentially impairing anti-cancer 

immunity10. Studies on peripheral blood mononuclear cells (PMBC) have shown how 

hyperglycaemia leads to loss of Interleukin-10 (IL-10) secretion by myeloid cells and to 

reduced production of Interferon gamma (IFN-γ) and Tumor Necrosis Factor alpha (TNF-α) 

by T-cells11, along with lower production of IL-12 and IFN-γ in PBMC cultures after 
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exposure to pathogens12. Hyperglycaemia can also cause neutrophil dysfunction, including 

defects in reactive oxygen species (ROS) production, immunoglobulin-mediated 

opsonization and degranulation13-15. The role of diabetes in promoting immune dysfunction 

is further supported by the finding that hyperglycaemia can induce macrophage polarisation 

towards a pro-tumorigenic M2 phenotype16,17 alongside functional defects in NK cells 

degranulation capacity18. 

In a therapeutic landscape characterised by a continuously expanding list of indications where 

ICI have been proven effective19 it is of the utmost importance to establish whether a 

concomitant diagnosis of T2DM carries a negative impact on ICI efficacy, in order to identify 

patients at risk of worse outcome and inform clinical practice. 

In this study, we analysed a large multicentre cohort of patients with advanced cancers treated 

with chemotherapy-free ICI-based regimens to evaluate whether use of glucose lowering 

medications as a surrogate for a prior history of T2DM might be associated with clinical 

outcome from ICIs in patients with solid tumors. 

 

Materials and Methods 
Study objectives and design. 

The aim of this analysis was to describe the potential impact of pre-existing T2DM on clinical 

outcomes from ICI-based treatments in a large multicenter cohort of patients with advanced 

solid tumors treated outside clinical trials20-27. 

Overall, 21 Institutions from Italy and the United Kingdom participated to the data collection 

(Supplementary Table 1) and retrospectively included patients with stage IV malignancy 

treated with ICIs as 1st or subsequent line from June 2014 to June 2020, with a data cut-off 

period of 31st of December 2020. Patients on ICI-based combinations, such as chemo-

immunotherapy and targeted-therapy-ICIs, were excluded.  

Programmed Death-1/Programmed Death-Ligand 1 (PD-1/PD-L1) and Cytotoxic T-

Lymphocyte Antigen 4 (CTLA-4) inhibitors were administered at doses and schedules 

indicated in the respective summary of product characteristics.  

Clinical outcomes of interest included progression free survival (PFS), defined as the time 

from treatment initiation to disease progression or death (whichever occurred first) and 

overall survival (OS), defined as the time from treatment initiation to patients’ death or loss 

to follow-up. Periodic tumor re-assessment was performed at the discretion of treating 

clinicians with frequency ranging from 12 to 16 weeks. Investigators were asked to provide 



7 

 

disease progression information according to RECIST (V. 1.1) criteria28. For PFS as well as 

for OS, patients without events were considered as censored at the time of the last follow-up. 

To reproducibly assess the effect of T2DM on ICI outcomes, we used the receipt of any 

glucose lowering medications (GLM) at the moment of ICIs initiation as a surrogate of a 

diagnosis of T2DM and define the population of interest. GLMs started at any time prior to 

and taken until immunotherapy initiation were grouped in accordance to international 

guidelines and recommendations29 as metformin, other oral diabetes medications (including 

sulfonylureas, meglitinides, thiazolidinediones, α-glucosidase inhibitors, DPP-4 inhibitors, 

SGLT2 inhibitors, and cycloset) and insulin therapy. 

We first assessed the impact of diabetes on OS and PFS with univariable and multivariable 

analyses. In addition, considering the differential distribution of baseline patients’ 

characteristics between patients with and without diabetes, we also performed a propensity 

score matching (PSM) between the two groups and explored OS and PFS across the matched 

populations.  

Subsequently, we conducted two additional PSM sub-analyses among patients with NSCLC 

and melanoma, to explore the association between the receipt of baseline GLMs and OS/PFS 

in the two matched cohorts. 

Baseline exposure to each class of antidiabetic medication was also verified for their 

association with OS and PFS following ICI therapy. We then stratified diabetic patients 

according to the receipt of one class versus multiple classes of GLM at the time of ICI 

commencement, a methodology that allowed us to infer potential association between 

oncological outcomes and surrogates of diabetes severity and duration. 

In an attempt to verify the independence between the diagnosis of diabetes and type of anti-

diabetic treatment received, we performed two separate PSM procedures between metformin-

exposed patients (after the exclusion of patients on any non-metformin anti-diabetic drug), 

patients on other oral antidiabetic drugs/insulin therapy only (after the exclusion of patients 

on metformin) and those without diabetes. 

To investigate whether chronic hyperglycemia is associated with systemic inflammation in 

patients with cancer we computed the median baseline glycaemia (MBG) from up to 3 

random blood sugar test samples performed within 3 months prior to ICI initiation. We 

described the association between MBG and the pre-treatment neutrophil-to-lymphocyte 

ratio computed from routine full blood counts test taken within 30 days prior to ICI therapy 

initiation.  
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In an ancillary translational analysis and to complement our clinical findings, we intended to 

establish whether the tumor micro-environment (TME) of patients with pre-existing diabetes 

was associated with significantly different features in the intra-tumoral immune infiltrate. 

Following total RNA extraction of macrodissected unstained sections containing >20% of 

tumor tissue, targeted transcriptome profiling was performed on a subset of primary tumor 

samples of diabetic patients and non-diabetic controls extracted from the Imperial College 

London cohort, using the NanoString PanCancer Immune Profiling panel on an nCounter® 

Analysis System (NanoString Technologies, Seattle). Methodology of targeted 

transcriptomic analysis follow established protocols30 with details reported as 

Supplementary Methods.  

The procedures followed were in accordance with the precepts of Good Clinical Practice and 

the declaration of Helsinki. Written informed consent was obtained from alive patients at the 

moment of data collection, while it was waived by competent authorities due to anonymized 

nature of patient data and retrospective design of the study for deceased patients. The study 

was approved by the respective local ethical committees on human experimentation of each 

institution, after previous approval by the coordinating center (University of L’Aquila, 

Internal Review Board protocol number 32865, approved on July 24th, 2018).   

 

Statistical analysis 

Baseline patients’ characteristics were reported with descriptive statistics as appropriate. The 

χ2 and test was used to compare categorical variables. PFS/OS were evaluated and compared 

using the Kaplan-Meier method and the log-rank test. Duration of follow-up was calculated 

according to the reverse Kaplan-Meier method. Cox proportional hazards regression was 

used for the univariable and multivariable analysis of the risk of disease progression/death 

and death, and to compute the hazard ratios (HR) with 95% confidence intervals (CIs).  

Fixed multivariable models were used including all the variables already known to 

significantly impact clinical outcomes in the cohort including primary tumor types (non-

small cell lung cancer - NSCLC, melanoma, renal cell carcinoma and others), age 

(continuous),  biological sex (male vs female), Eastern Cooperative Oncology Group-

Performance Status (ECOG-PS) (0-1 vs ≥ 2), burden of disease (number of metastatic sites ≤ 

2 vs > 2), treatment line (first vs second vs further lines), body mass index (BMI – 

continuous), corticosteroids at immunotherapy initiation (dose ≥10 mg prednisone daily or 
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equivalent -  yes vs no), and systemic antibiotics at immunotherapy initiation (yes vs no) 

(both taken within 30 days prior to ICIs initiation)20-26,31.  

Acknowledging that data-source consisted of 21 different institutions, which could represent 

a source of bias, a centre-specific conditional interpretation by using frailty models was 

applied to correct all the 95%CIs from multivariable Cox regressions.  

To respectively compare the outcome of patients on metformin only and those on other oral 

antidiabetic drugs/insulin therapy only with those without diabetes, separated propensity 

score matching (PSM) procedures with nearest method, 1:4 ratio and a caliper of 0.2 were 

performed, including all the above mentioned clinical characteristics32. The balancing ability 

of the PSM were estimated through the standardized mean differences (SMD) of the matched 

characteristics. Considering differences in sample size and prevalence of patients with 

diabetes between different primary tumor groups, a 1:1 ratio, 0.1 caliper and 1:3 ratio, 0.1 

caliper were used for the PSM in the NSCLC and melanoma cohorts, respectively33.  

The Kruskal-Wallis test was used to compare MBG between diabetic and non-diabetic 

patients. Linear regression and logistic regression with odds ratio (OR) and 95%CIs were 

used to the associations between the MBG and the NLR. 

All P-values were 2-sided and confidence intervals set at the 95% level, with significance 

pre-defined to be at <0.05. Analyses were performed using the R-studio software, R Core 

Team (2021). R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria, and the MedCalc® Statistical Software version 20 

(MedCalc Software Ltd, Ostend, Belgium; https://www.medcalc.org; 2021). 

 

Data availability statements 

The datasets used during the present study are available from the corresponding author upon 

formal reasonable request and after approval of the study steering committee. 

 

Results. 
Patients’ characteristics. 

Overall, 1395 consecutive patients with advanced solid tumors treated with nivolumab (766, 

54.9%), pembrolizumab (499, 35.8%), atezolizumab (71, 5.1%), ipilimumab (35, 2.5%) and 

other ICIs (24, 1.7%) were included in the analysis. As reported in Table 1, median age was 

68 years (range: 21–91), male/female ratio was 888/507 and primary tumors were: NSCLC 

(54.7%), melanoma (24.7%), renal cell carcinoma (15.0%) and others (5.6%). In total, 226 
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patients (16.2%) were on GLM, of which 147 (65.0%) on metformin, 125 (55.3%) on other 

oral diabetes medication and 76 (33.6%) patients on insulin therapy. Details of diabetes 

medications are summarized in Supplementary Table 2. Of note, 41 patients had pre-

existing autoimmune disorders (8 cases of thyroid dysfunction, 10 skin disorders, 4 

inflammatory bowel disease, 2 vasculitis, 2 neurological disorders, 15 others). There were no 

cases of pre-existing type 1 diabetes.  

Patients with diabetes were older (median age 71 vs 68 years, p <0.0001), more likely males 

(73.9% vs 61.7%, p=0.0005), with higher BMI (median 25.6 vs 24.9, p=0.0075). Patients 

with diabetes more frequently presented with a low-burden disease (≤2 metastatic sites 41.2% 

vs 49.3%, p=0.0253). 

At the median follow-up of 32.5 months (95%CI: 31.1-34.0) the median OS and PFS for the 

overall population were 17.7 months (95%CI: 15.5-19.5; 832 events) and 8.2 months 

(95%CI: 7.3-9.2; 1057 events). 

 

Pre-existing type 2 diabetes is associated with worse outcome from ICIs. 

In the overall population, patients receiving GLM displayed an increased risk of death (HR 

1.23, 95%CI: 1.03-1.47 – Figure 1A) but not of disease progression/death (HR 1.14, 95%CI: 

0.97-1.33 – Figure 1B) in comparison to the control group. Considering the differential 

distribution of baseline features between the two groups, multivariable analyses were 

performed for both the clinical endpoints. After adjustment for all the available confounders 

(Table 2), receipt of GLM resulted to be independently associated with an increased risk of 

death (HR 1.29, 95%CI: 1.07-1.56) and disease progression/death (HR 1.21, 95%CI: 1.03-

1.43). 

After the PSM procedure, 225 patients on GLM were matched with 808 patients from the 

control group, with an optimal balancing ability (Supplementary Table 3). Within the 

matched cohorts, the receipt of GLM was associated with an increased risk of death (HR 

1.25, 95%CI: 1.04-1.50 – Figure 1C) and a tendence towards and increased risk of disease 

progression/death (HR 1.17, 95%CI: 0.99-1.38 – Figure 1D).  

Among 763 patients with NSCLC, 138 (18.1%) were on baseline GLM. After PSM, 135 of 

them were matched with 135 patients from the control group with a good balancing ability 

(Supplementary Table 4). Within the matched NSCLC cohorts, the receipt of baseline GLM 

was associated with an increased risk of death (HR 1.49, 95%CI: 1.11-2.01 – Supplementary 
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Figure 1A), alongside a non-significant effect on the risk of disease progression/death (HR 

1.17, 95%CI: 0.89-1.33 - Supplementary Figure 1B).  

Among 345 patients with melanoma, 49 (16.5%) were on baseline GLM. These were 

propensity score matched with 128 patients from the control group with a good balancing 

ability (Supplementary Table 5).  

The median OS of patients receiving GLM was 22.9 months (95%CI:12.0-NR, 25 events) 

while the OS of the control group was not reached (52 events) with a tendence towards an 

increased risk of death (HR 1.39, 95%CI: 0.86-2.23 – Supplementary Figure 1C). 

Similarly, the median PFS of patients exposed to GLM was 11.4 months (95%CI: 4.9-23.4, 

37 events) while that of the control group was 13.8 months (95%CI: 8.7-26.0, 77 events; HR 

1.35, 95%CI: 0.91-2.01 – Supplementary Figure 1D).    

 

Increasing GLM burden does not impact clinical outcome from immunotherapy. 

Among 226 patients on treatment for diabetes, 102 (45.1%) were receiving GLM 

monotherapy, whilst 124 (54.9%) were receiving a combination treatment. We sought to 

determine whether diabetes medication burden was associated with a progressive detrimental 

impact on clinical outcomes. However, we found that only patients on monotherapy 

experienced an increased risk of death in comparison to the control group (HR 1.29, 95%CI: 

1.01-1.65), while no significant effect was associated with being on multiple diabetes 

medications (Supplementary Figure 2A). Similarly, neither monotherapy, nor combination 

therapy were associated with worse PFS (Supplementary Figure 2B). 

 

Differential effect of metformin and other anti-diabetes medications on clinical 

outcomes.  

Overall, 147 patients were on metformin and 134 were on other oral antidiabetic drugs/insulin 

therapy. On univariable analysis, receipt of metformin therapy was associated with an 

increased risk of death (HR 1.35, 95%CI: 1.09-1.66, Supplementary Figure 3A) and disease 

progression/death (HR 1.23, 95%CI: 1.02-1.49, Supplementary Figure 3B). On the 

contrary, being on other oral antidiabetic drugs/insulin therapy was not associated with both 

the OS and PFS (Supplementary Figure 4). 

Stratifying patients into those who were on baseline metformin either alone or in combination 

and those who were on other than metformin diabetes medications only, we reported similar 

trends for OS (log-rank p-value = 0.018) and PFS (log-rank p-value = 0.086) but without 
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significant differences between exposure to metformin and other diabetes medications only 

(Supplementary Figure 5).  

After the exclusion of 54 patients (23.9%) on metformin, other oral hypoglycemic and insulin 

therapy combinations, and 1 patient (0.4%) on metformin and insulin therapy combination, 

92 patients (40.7%) on metformin monotherapy and 79 (34.9%) on other antidiabetic 

medications (of which 21 -26.6%- on other oral hypoglycemic medications, 11 -13.9%- on 

insulin monotherapy, and 47 -59.5%- on combinations of both) were included in the 

respective PSM analysis. 

Compared to patients who were not taking diabetes medications, those on metformin only 

were older (median age 71 vs 68 years, p=0.0035) and more frequently males (66.3% vs 

61.7%, p=0.0384, Supplementary Table 6). After the PSM procedure, 92 patients on 

metformin only were matched with 363 patients from the control group, with an optimal 

balancing ability (Supplementary Table 7). Within the matched cohorts, being on 

metformin only was associated with an increased risk of death (HR 1.53, 95%CI: 1.16-2.03 

– Figure 2A) and disease progression/death (HR 1.34, 95%CI: 1.04-1.72 - Figure 2B).  

Compared to the control group, patients on other oral antidiabetic drugs/insulin therapy only 

were older (median age 72 vs 68 years, p<0.0001), with a higher BMI (median 25.9 vs 24.9, 

p=0.0108) and a higher burden of metastatic sites (63.3% vs 50.7%, p=0.0306); they also 

were more likely males (78.5% vs 61.7%, p=0.0028) and with a higher proportion of NSCLC 

(72.2% vs 53.5%, p=0.0143) (Supplementary Table 8). 

After the PSM procedure, 78 patients on other oral antidiabetic drugs/insulin therapy only 

were matched with 299 patients from the control group, with an optimal balancing ability 

(Supplementary Table 9). Within the matched cohorts, being on other oral antidiabetic 

drugs/insulin therapy only was not associated with either the risk of death (HR 1.03, 95%CI: 

0.75-1.41 – Figure 2C), nor that of disease progression/death (HR 0.99, 95%CI: 0.75-1.31 - 

Figure 2D).  

 

Diabetes and poor glycemic control are associated with unopposed systemic 

inflammation and distinctive immune-suppressive features within the TME. 

Overall, MBG data were available for 133 patients (Supplementary Table 10).  

The median MBG value for the overall cohort was 5.7 mmol/L (range 4.1-19.9) and 

significantly different among diabetic (n=19, median 8.0 mmol/L, range: 5.6-19.9) and non-

diabetic patients (n=114, median 5.6 mmol/L, range: 5.6: 4.1-8.7, p<0.0001). Median NLR 
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for the 133 patients evaluable for MBG was 3.8 (range 0.1-36.5). Increasing levels of MBG 

were significantly associated with increasing NLR values [F(1,131)= 4.09, p = 0.04] with an 

R2 of 0.030 (Supplementary Figure 6). To discriminate the effect of concomitant 

corticosteroid therapy in influencing the relationship between MBG and NLR, we performed 

a multivariable logistic regression using the median NLR value as cut off. This model 

confirmed that baseline corticosteroid therapy was not associated with pre-treatment NLR 

(OR 1.87, 95%CI: 0.51-6.87), whereas increasing MBG was confirmed to be significantly 

associated with a high NLR (OR 1.58, 1.17-2.14). 

In view of the negative association between T2DM and outcome from immunotherapy we 

performed an exploratory targeted transcriptomic profiling experiment in a small subset of 

22 primary tumor samples selected from the Imperial College London cohort, including 11 

controls and 11 diabetic patients. Clinical features of included patients are summarized in 

Supplementary Table 11. Using a bulk transcriptomic approach of macro-dissected tumor 

tissue we found that samples from patients with diabetes were characterized by distinctive 

characteristics suggestive of more profound immune suppression compared to non-diabetic 

controls (Supplementary Figure 7). In particular, directed gene set enrichment analysis 

suggested significant downregulation of a number of gene signatures involved in adaptive 

and innate immune responses in diabetic samples (Figure 3). Analysis of candidate genes 

highlighted the decreased expression of single transcripts belonging to the inflammatory 

response (CXCL9, CXCL11, BIRC5) and to the modulation of T-cell function (LAG3). 

(Supplementary Figure 8A and 8B) in diabetic samples34,35. 

  

Discussion. 
The wide therapeutic index of ICI has broadened the reach of systemic therapy in solid 

tumors, making it possible to safely treat elderly and multiply comorbid patients who may 

not qualify for cytotoxic or targeted therapies36,37. Polypharmacy and co-morbidities can 

however affect efficacy of ICI25. Despite being a highly prevalent co-morbidity in patients 

with cancer38-40, and some preliminary descriptive findings in patients with lung cancer41, 

there is no convincing evidence to suggest whether a coexisting diagnosis of diabetes leads 

to worse outcomes from immunotherapy.  

In our large observational study of ~1400 ICI recipients, we were able to demonstrate that a 

concomitant diagnosis of T2DM at ICIs initiation was independently associated with inferior 
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outcomes from immunotherapy, a finding that relies on the use of multivariable models and 

PSM analyses. 

Whilst hyperglycemia and T2DM are hallmarks of the metabolic syndrome, together with 

dyslipidemia, increased waist circumference and arterial hypertension42, our study is the first 

to clearly suggest an opposite effect of T2DM compared to obesity in shaping ICI-mediated 

immune reconstitution. Obesity has been paradoxically associated with improved outcomes 

from ICIs43, with pre-clinical and clinical evidence suggesting the presence of an obesity-

related T-cell dysfunction that can be rapidly reversed upon checkpoint blockade20,44.  

Although we reported an association between GLM exposure and increasing BMI, our 

understanding of the relationship between obesity and response to ICIs has significantly 

evolved, calling into question a number of concurrent host factors20. Distribution of adiposity 

and body composition are more complex factors in dictating outcomes form immunotherapy, 

all imperfectly recapitulated by simple BMI computation. Obesity, dyslipidemia43,45, chronic 

hyperglycemia and the development of peripheral insulin resistance could be interpreted as 

a progressive, time-dependent derangement of the host metabolic response, where high body 

weight and accumulation of subcutaneous fat precedes an increase in visceral adiposity, 

accumulation of intramuscular adipose tissue and secretion of adipocytokines, ultimately 

leading to progressive weight loss46 in the context of active malignancy. Higher subcutaneous 

fat distribution is in fact associated with better outcomes from immunotherapy, whereas the 

opposite is true for inter-muscular fat and sarcopenic-obesity, traits that are increasingly 

associated with unopposed systemic inflammation and worse outcomes from ICIs47-51. 

In our study, patients with diabetes experienced worse outcome independent of common 

clinicopathologic features of their oncological disease, including tumor site of origin and 

disease burden, giving credence to the hypothesis that diabetes may exert a pre-conditioning 

effect against ICI efficacy10. Despite the limited sample size and different prevalence of 

diabetes across different primary tumors, results of the survival analysis performed among 

the NSCLC and melanoma matched cohorts seem to support this, confirming a detrimental 

effect of pre-existing T2DM on OS for patients with NSCLC and a similar trend for patients 

with melanoma. 

T2DM leads to an exquisitely immune-suppressive state. Patients with diabetes are less 

reactive to pathogens12, with chronic hyperglycaemia leading to dysfunctional innate immune 

responses13-15 and functional repercussions on all major immune cell subsets, including 

macrophages, dendritic cells, T-cells and NK cells52. Hyperglycaemia has also been 
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associated with the increase of circulating CD8+ PD-1+ T-cells in patients with T2DM, 

which show reduced glycolysis and impaired cytokine secretion53.  

Lack of detailed peripheral immune cell characterisation limits our ability to establish 

mechanistic links between T2DM and outcome. However, our study highlights a linear 

relationship between MBG and the patients’ NLR, a solid and reproducible measure of 

systemic inflammation54, postulating a link between T2DM and impaired ICI efficacy 

through defective modulation of innate immune pathways55,56.  

To provide further insight as to the mechanisms linked to inferior outcome from 

immunotherapy in ICI recipients, we performed an exploratory analysis of a small cohort of 

patients with and without diabetes with available pre-treatment archival tissue. Whilst limited 

by small sample size and exploratory intent, targeted transcriptomic analyses highlight 

downregulation of gene expression programmes involved in the innate and adaptive immune 

response in the TME of diabetic patients57, in line with previous evidence showing worse T-

cell exhaustion in diabetic patients with melanoma treated with ipilimumab58.  

The transcriptomic data presented in this study are hypothesis generating and cannot be 

viewed as exhaustive of all plausible explanations justifying inferior survival of patients with 

T2DM. Compositional changes in the gut microbiota can additionally be mentioned among 

potential underlying mechanisms to our findings, given that complex interplay existing 

between T2DM, metabolic dysfunction and perturbation of gut homeostasis59. A significant 

increase in the Bacteroidetes/Firmicutes ratio60 and reduction in the presence of commensal 

bacterial species specifically associated with improved ICI efficacy, such as Akkermansia 

muciniphila61-63, have been reported among patients with diabetes. 

The increasingly appreciated role of concomitant medications as an alternative or perhaps 

complimentary cause of altered responsiveness to ICI raises the question of whether 

individual GLM classes may be important in influencing prognosis.   

Whilst number of GLM was not associated with prognosis, stratification of outcome by GLM 

class suggested that the detrimental effect on clinical outcomes we observed was restricted 

to metformin recipients.  

Whilst we cannot conclude whether the negative prognostic effect for metformin exposure is 

causative rather than associative, it is important to highlight that a consistent body of 

evidence supports metformin as preferred initial therapy for T2DM, along with a substantial 

patient-provider resistance to start diabetes combination treatments at metformin failure and 

poor adherence to insulin in western countries64-68.  When these considerations are taken into 
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account it might be assumed that metformin exposure may capture patients with long-

standing and potentially sub-optimally controlled diabetes. In fact, metformin was mainly 

given as monotherapy in our cohort, whereas other GLMs were mostly co-administered with 

insulin: a finding that makes it impossible to fully disentangle the effect of improved T2DM 

control associated with insulin therapy as opposed to a true mechanistic detrimental effect 

from metformin alone.   

On the other hand tumour modulating role of metformin have been described for a long time 

in patients with cancer 69 70, although evidence in support of an immune-modulating effect 

of metformin in the context of immunotherapy of cancer  is scantly and mostly limited to the 

preclinical setting71 72,73. 

Metformin may have immune-suppressive properties, through targeted inhibitory effect on 

leukocyte function including AMPK-induced mTORC1 inhibition and the reduction of 

mitochondrial ROS production74,75. In addition, multiple studies confirmed that metformin 

can lead to gut dysbiosis and gut microbial perturbation in healthy volunteers76, which in turn 

are associated with gastrointestinal adverse effects following metformin intake77.  A recent 

deep-learning multi-omics phenotyping study of 789 patients with newly diagnosed T2DM78, 

reported an association between metformin and dysregulation of CXCL8 and CD177, which 

are involved in both the innate and adaptive anti-cancer immune response79,80, alongside with 

a distinctive shift in gut metagenomics data.  

Taken together, our data suggest a statistically significant and clinically meaningful 

difference in survival for patients receiving GLM for diabetes prior to ICI, with a greater 

effect observed for those exposed to metformin. Whilst hypothesis generating, these data 

require validation in prospective clinical studies before solid clinical recommendations are 

made, so that the relative contribution of metformin over adequacy and quality of T2DM 

control can be evaluated for their putative mechanistic linkage with outcome from 

immunotherapy. 

In addition, further research efforts should provide a more comprehensive evaluation of 

diabetes severity, including prevalence of micro and macrovascular complications, dietary 

habits, treatment adherence and baseline hemoglobin A1c levels81,82 factors that cannot be 

reconstructed from our data due to the retrospective nature of  our study.  

Primary analyses in the whole study population were adjusted for primary tumor type, 

resulting in an optimal balancing ability. However, we acknowledge that the inclusion of 

different tumors is a significant source of heterogeneity. The separate PSM performed among 
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the NSCLC and melanoma cohorts suggest similar detrimental effects for pre-existing T2DM 

across different malignancies, even though the reduced sample size and a lower proportion 

of patients with diabetes within the melanoma group limited the analysis, which did not reach 

the statistical significance threshold. 

In addition, despite the concordant trend of a reduced PFS for diabetic patients at the matched 

analysis, the lack of a statistically significant increase in the risk of disease progression/death 

(HR 1.17, 95%CI: 0.99-1.38, p=0.056) needs to be mentioned and might be related to the 

relatively small number of events across groups. Small sample size of the cohort included in 

the MBG and targeted transcriptomic analyses should also be considered in interpreting the 

results, which – although provocative – do not allow us to infer conclusive considerations 

about differential role of systemic inflammation and expression of immune-related genes in 

the TME of patients with diabetes. 

Despite these limitations and the preliminary nature of our findings, our study is the first to 

our knowledge to report a clear detrimental effect of diabetes on clinical outcomes from ICIs 

in patients with solid tumors. In view of the constantly expanding clinical indications of ICI-

based therapies across different cancer types19 and the increasing global burden of metabolic 

syndrome, obesity and type 2 diabetes83,84, our findings are of clinical importance and need 

to be carefully considered in the provision of cancer immunotherapy.  

Further prospective research efforts are needed to fully elucidate the underlying mechanisms 

in support of our findings, to assess the putative detrimental role of metformin therapy and 

other GLM, and to investigate whether patients with cancer requiring an ICI-based treatment 

should be prioritized for optimization of T2DM therapy.  
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Table 1:  Baseline patients’ characteristics for the overall population and according to the receipt of 
diabetes medications. ECOG-PS: eastern cooperative oncology group-performance status; NSCLC: 
non-small cell lung cancer; BMI: body mass index; PD-1/PD-L1: programmed death-1/programmed 
death-ligand 1; GLM: glucose lowering medications. 

 Total No GLM GLM  
 N° (%) - 1395 1169 - N° (%) 226 - N° (%) p-value 
AGE, (years) 

Median 
Range 

 
68 

21 – 91 

 
68 

21 – 91 

 
71 

22 – 88 
P < 0.0001 

SEX 
Male 
Female 

 
888 (63.7) 
507 (36.3) 

 
721 (61.7) 
448 (38.3) 

 
167 (73.9) 
59 (26.1) 

P = 0.0005 

ECOG-PS 
0 – 1 
≥ 2 

 
1205 (86.4) 
190 (13.6) 

 
1011 (86.5) 
158 (13.5) 

 
194 (85.8) 
32 (14.2) 

P = 0.7963 

Primary Tumor 
NSCLC 
Melanoma 
Renal cell carcinoma 
Others 

 
763 (54.7) 
345 (24.7) 
209 (15.0) 
78 (5.6) 

 
625 (53.5) 
296 (25.3) 
185 (15.8) 
63 (5.4) 

 
138 (61.1) 
49 (21.7) 
24 (10.6) 
15 (6.6) 

P = 0.0730 

No. of metastatic sites 
≤ 2 
> 2 

 
726 (52.0) 
669 (48.0) 

 
593 (50.7) 
576 (49.3) 

 
133 (58.8) 
93 (41.2) 

P = 0.0253 

Treatment line of Immunotherapy 
First 
Non-First 

 
519 (37.2) 
876 (62.8) 

 
422 (36.1) 
747 (63.9) 

 
97 (42.9) 
129 (57.1) 

P = 0.0522 

BMI (kg/m
2
) 

Median (range)  
Underweight (≤ 18.5) 
Normal weight (18.5 - 25) 
Overweight (25 -30) 
Obese (≥ 30) 

 
25.1 (13.6 – 50.8) 

59 (4.2) 
628 (45.0) 
508 (36.4) 
200 (14.3) 

 
24.9 (13.6 – 50.8) 

54 (4.6) 
538 (46.0) 
415 (35.5) 
162 (13.9) 

 
25.6 (16.4 – 43.2) 

5 (2.2) 
90 (39.8) 
93 (41.2) 
38 (16.8) 

P = 0.0075 
 

P = 0.0711 

Baseline steroids  
No 

 
1043 (74.8) 

 
868 (74.3) 

 
175 (77.4) P = 0.3135 
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Table 2: Fixed multivariable analyses for the risk of death and disease progression/death within the 
whole cohort. A centre-specific conditional interpretation by using frailty models was applied to 
correct all the 95%CIs. GLM: glucose lowering medications; BMI: body mass index; NSCLC: non-
small cell lung cancer; ECOG-PS: eastern cooperative oncology group performance status. 

 

         Yes 352 (25.1) 301 (25.7) 51 (22.6) 
Baseline systemic antibiotics  

No 
         Yes 

 
1043 (74.8) 
352 (25.1) 

 
1076 (92.0) 

93 (8.0) 

 
199 (88.1) 
27 (11.9) 

P = 0.0502 

Metformin 
No 
Yes  

 
1248 (89.5) 
147 (10.5) 

-  
147 (65.0) - 

Other oral diabetes medications 
No 
Yes 

 
1270 (91.0) 
125 (9.0) 

-  
125 (55.3) - 

Insulin therapy 
No 
Yes 

 
1319 (94.6) 

76 (5.4) 
-  

76 (33.6) - 

 
Multivariate Analysis 

Risk of death Risk of disease progression/death 

VARIABLE  HR (95% CI) HR (95%CI) 
GLM 

No 
Yes 

 
1 

1.29 (1.07-1.56) 

 
1 

1.21 (1.03-1.43) 
BMI 
Continous 

 
0.97 (0.96-0.99) 

 
0.98 (0.97-0.99) 

Age 
Continuous 

 
0.99 (0.99-1.00) 

 
0.99 (0.99-1.00) 

Primary Tumour  
NSCLC 
Melanoma 
Kidney 
Others 

 
1 

0.72 (0.56-0.93) 
0.55 (0.43-0.71) 
0.89 (0.64-1.23) 

 
1 

0.87 (0.68-1.10) 
0.74 (0.59-0.92) 
1.09 (0.82-1.44) 

Sex 
Female 
Male 

 
1 

1.14 (0.98-1.32) 

 
1 

1.13 (0.99-1.29) 
Treatment line 

First 
Non-first 

 
1 

1.24 (1.05-1.46) 

 
1 

1.24 (1.07-1.44) 
N° of metastatic sites  

≤ 2 
>2 

 
1 

1.57 (1.36-1.83) 

 
1 

1.41 (1.24-1.62) 
ECOG PS  

0-1 
≥2 

 
1 

2.32 (1.91-2.80) 

 
1 

1.92 (1.61-2.30) 
Baseline corticosteroids 

No 
 
1 

 
1 



25 

 

 

 

 

 

 

 

 

 

 

Figures’ legend: 

Figure 1: Kaplan-Meier survival estimates according to the receipt of any diabetes 
medication. A) Overall Survival whole cohort; patients on any diabetes medication: 14.5 
months (95%CI: 11.1 – 18.3; 148 events), patients not receiving diabetes medications: 18.9 
months (95%CI: 15.9 – 21.5; 684 events). B) Progression Free Survival whole cohort; 
patients on any diabetes medication:  8.0 months (95%CI: 6.2 – 10.4; 185 events), patients 
not receiving diabetes medications: 8.2 months (95%CI: 7.1 – 9.4; 872 events). C) Overall 
Survival PSM cohort; patients on any diabetes medication: 14.4 months (95%CI: 11.2 – 18.7; 
148 events), patients not receiving diabetes medications: 18.7 months (95%CI: 16.1 – 22.1; 
466 events). D) Progression Free Survival PSM cohort; patients on any diabetes medication:  
8.0 months (95%CI: 6.2 – 10.6; 185 events), patients not receiving diabetes medications: 8.4 
months (95%CI: 7.5 – 10.1; 593 events). PSM: propensity score matching. 
 
Figure 2: Kaplan-Meier survival estimates according to the receipt of metformin only after 
the exclusion of patients on other DM and insulin therapy. A) Overall Survival PSM cohort; 
patients on metformin only: 11.4 months (95%CI: 9.3 – 15.9; 66 events), patients not 
receiving metformin: 20.4 months (95%CI: 17.5 – 26.3; 363 events). B) Progression Free 
Survival PSM cohort; patients on metformin only:  7.9 months (95%CI: 4.3 – 11.4; 79 
events), patients not receiving metformin: 8.9 months (95%CI: 7.3 – 10.9; 260 events). 
Kaplan-Meier survival estimates according to the receipt of other DM/insulin therapy only 
after the exclusion of patients on metformin. C) Overall Survival PSM cohort; patients on 
other DM/insulin therapy only: 19.3 months (95%CI: 14.7 – 24.8; 48 events), patients not 
receiving DM/insulin therapy: 18.1 months (95%CI: 14.8 – 21.9; 174 events). D) Progression 
Free Survival PSM cohort; patients on other DM/insulin therapy only:  10.1 months (95%CI: 
6.9 – 16.5; 61 events), patients not receiving DM/insulin therapy: 8.2 months (95%CI: 6.6 – 
11.6; 222 events). PSM: propensity score matching; DM: diabetes medications. 
 
Figure 3: Gene set analysis showing the differential regulation of 22 gene expression 
signatures on the basis of diabetic status. Targeted transcriptomic analysis using NanoString 
PanCancer immune profiling was perform to compare patients with diabetes (n=11) with  

    Yes 1.64 (1.39-1.93) 1.51 (1.30-1.75) 
Baseline antibiotics 

No 
    Yes 

 
1 

1.44 (1.15-1.81) 

 
1 

1.35 (1.09-1.68) 
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non-diabetic controls (n=11). Methodological information for the gene set enrichment 
analysis and its interpretation is provided as supplementary methods. 

 
 


