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Abstract

Generalisation in machine learning refers to the ability of a predictor learned on some dataset

to perform accurately on new, unseen data. Without generalisation, we might be able to

memorise the training data perfectly while predicting poorly on new data, a pathology known

as over-fitting. Despite its centrality, the generalisation behaviour of many methods remains

poorly understood, particularly in complex domains such as deep learning. Indeed, some

models that should over-fit according to traditional theoretical bounds do not. This thesis

addresses these issues, particularly in the context of classification, and introduces innovative

methods for producing non-vacuous generalisation bounds.

The primary thrust is in the development and application of PAC-Bayesian bounds,

which are usually used as a method for studying the generalisation of randomised predictors.

We begin with an introduction to previous work on the problem of generalisation and to

PAC-Bayesian ideas, before applying these in work based on a series of five papers (referenced

a-e below). Firstly in (a), we provide lower-variance methods for training stochastic neural

networks methods, improving the use of these PAC-Bayes bounds as training objectives. Then,

we use PAC-Bayes as a stepping stone to provide non-randomised bounds: (b) using margins,

both in general and for several different classifiers; (c) for a specific class of deterministic

shallow neural networks (where our bounds are the first to be non-vacuous on real-world data

using standard training methods); (d) for majority voting on finite ensembles of classifiers,

providing state-of-the-art (and sometimes sharp) guarantees. Lastly in (e), we introduce a

PAC-Bayes bound for a modified excess risk, using information about the relative hardness

of data examples to reduce variance and tighten a general bound.
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Chapter 1

Introduction

The evolution from classical statistics to modern machine learning is marked by a vast

increase in the size of datasets and their dimensions. Machine learning systems use data

to inform their predictions or decisions, reducing reliance on hard-coded rules or explicit

programming. These shifts from hard coded rules and small to large datasets has enabled

computers to tackle tasks that were previously considered infeasible or exceedingly complex.

Crucial to this transition is the development of methods which generalise on real world

data: specifically, useful algorithms should output models which perform well not only on their

training data, but also on unseen data from the same distribution. Without generalisation,

datasets are no more useful than lookup tables for previously-seen values, and when new

inputs are seen performance is correspondingly poor. Statistical theory shows that this is

in-general difficult, yet on a huge array of real-world tasks many machine learning methods

have empirically demonstrated excellent performance and generalisation. Exploring the gap

between theory and observation is the topic of this thesis.

This has broader implications extending well beyond the realm of academic curiosity:

as machine learning systems increasingly permeate all aspects of our lives, understanding the

theoretical underpinnings of their performance becomes essential. It is my belief that such

work will contribute to the development of more robust, reliable, and transparent machine

learning systems, ultimately fostering trust and facilitating their adoption across a wide

range of sectors. The importance and ubiquity of these tools in today’s world cannot be

overstated: in healthcare, they are used for disease detection, diagnosis, and prognosis; in

finance, for credit risk assessment, fraud detection, algorithmic trading, and market trend

forecasting; they have enabled technologies like speech recognition, machine translation,

sentiment analysis, and chatbots; and they underpin the personalised recommendations we

encounter daily in our digital lives, from the movies we watch on streaming platforms, the

products we buy online, to the music we listen to. The breakthroughs keep coming, and the

remarkably generic nature of machine learning methods means more applications are likely
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to be found as tools improve ever further. As applications of machine learning continue to

spread, so the case for putting its foundations on firmer theoretical ground grows.

We should note that this lack of theoretical understanding of why most machine learning

methods work is in in contrast to most statistical methods, where the theory often comes first.

Indeed, the predictions of classical statistical learning theory are often directly contradicted

by empirical results obtained by modern machine learning tools. The traditional prevailing

wisdom was that a model’s ability to generalise is inversely linked to some measure of its

“capacity”, for example the number of parameters, or the (in)-ability to memorise adversarially-

chosen data. However, many machine learning algorithms can perform well on real-world

tasks far better than their oversized capacity would suggest. In this thesis, we primarily

look to prove new generalisation bounds for machine learning methods in order to explain

this so-called “generalisation mystery”, leading to deeper understanding and the potential to

obtain guarantees for methods.

Although we draw ideas from a wide variety of sources, the primary tool used to

prove our bounds will be the PAC-Bayesian ideas introduced by Catoni (2003, 2004, 2007);

McAllester (1998, 1999); Shawe-Taylor and Williamson (1997). These have recently seen

a resurgence of interest through a variety of successful attempts to apply them to neural

networks, beginning with Dziugaite and Roy (2017, 2018); Zhou et al. (2019). They provide

a generic form of generalisation bound for randomised predictors; but the specific way in

which we use them differs from chapter to chapter. Some recurring themes are: the use of

bounds with specially-chosen randomised predictors as a stepping stone to prove new bounds

for non-random predictors, either through ensemble-style learning or margins (a measure of

confidence); the use of specific bounds as objectives to motivate new learning algorithms;

and attempts to provide the sharpest empirical bounds, i.e. those with the smallest gap

between the bound on performance and true performance as measured by a test set.

Research Contribution and Structure

During my PhD, I have primarily worked to formulate theoretical explanations of why

generalisation happens in real-world settings, and to use PAC-Bayesian tools to work towards

this goal. I began by addressing the question of optimising towards the tightest possible

PAC-Bayesian bounds in the simple setting of binary classification, giving new methods

for training the stochastic neural networks primarily used there that improved on existing

methods. My next three works addressed the question of applying PAC-Bayesian tools

to non-randomised classification methods, either through margins or majority votes. The

focus here was on using randomised predictors that somehow approximate the behaviour of

deterministic ones. First, I developed a generic framework for using PAC-Bayes as a stepping

stone in proving margin bounds, proving several new ones. Next, I used the concept of
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majority votes to obtain the first non-vacuous bounds for deterministic single-hidden-layer

networks. Finally, I obtained new margin bounds for voting-style predictors, giving far tighter

bounds than had previously existed in that setting. I completed this work at a more general

level, proving a new generic PAC-Bayes bound which can make specific bounds sharper.

This thesis comprises a background chapter and five core chapters of research contribu-

tions, each based on a single publication. It is designed to be read by someone with some

background knowledge of machine learning methods, particularly those for classification,

including basic neural networks, gradient descent-based training methods, and various forms

of linear prediction. Some knowledge of probability and statistics is also assumed, though

most more technical details, such as concerns of measurability, are elided. An outline of the

chapters is given below.

Chapter 2 Background.

We introduce the ideas of statistical learning theory with a particular focus on classifi-

cation problems. We overview different types of bounds, from VC and Rademacher to

margin-based and PAC-Bayesian. We finish with a brief overview of other approaches

to generalisation bounds and work applying them to neural networks.

Chapter 3 Introduction to PAC-Bayes and Concentration.

Here we provide a much more technical introduction and overview of PAC-Bayes ideas.

Particular emphasis is placed here on the techniques used for concentration of measure

and to prove generic PAC-Bayes bounds. This culminates in a proof of Catoni and

Maurer’s PAC-Bayes bounds (Catoni, 2004; Maurer, 2004), which we motivate through

the preceding treatment. These are the bounds primarily used in the later chapters,

but by introducing the proof techniques in detail we are able to overview the topic of

sub-Gaussian variables, used heavily in our margin-based bounds (Chapters 5 and 7)

and lay the groundwork for the new generic bound we prove in Chapter 8.

Chapter 4 Differentiable PAC-Bayes Objectives with Partially Aggregated Neural Networks.

This chapter is based on the paper Biggs and Guedj (2021), which is published in

Entropy. It examines the training of randomised neural networks for binary classi-

fication, particularly when they are being trained to optimise a PAC-Bayes bound.

A new training method is introduced which leads to lower variances of gradients by

considering the whole randomisation process; when applied to PAC-Bayes bounds for

these randomised networks, it leads to tighter empirical guarantees than previous work.

The primary ideas have been developed further by Clerico et al. (2022) to obtain tight

guarantees in multi-class classification.

Chapter 5 On Margins and Derandomisation in PAC-Bayes.
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This chapter is adapted from the publication Biggs and Guedj (2022a) which appeared

at AISTATS 2022. It is the first of three chapters examining methods to obtain

generalisation bounds for non-randomised predictors by using PAC-Bayesian methods

applied to specially constructed randomised predictors as a stepping stone. Specifically,

it introduces a method for proving margin bounds by constructing randomised predictors

that concentrate around a non-random predictor. These are used to prove new bounds

for two types of linear prediction, deep ReLU (Rectified Linear Unit) networks, and

“SHEL” networks, which we introduce. These SHEL networks consist of a single hidden

(Gaussian) error function layer, and arise as the average of a specially-constructed

function.

Chapter 6 Non-Vacuous Generalisation Bounds for Shallow Networks.

This chapter is adapted from Biggs and Guedj (2022b) which featured at ICML 2022.

It looks at providing generalisation bounds for deterministic single-hidden-layer neural

networks by de-randomising PAC-Bayesian bounds. This is done through the framework

of “majority votes” instead of using margins as above. Generalisation bounds for the

previously-introduced SHEL networks and for GeLU-activated (Gaussian Error Linear

Unit) single-hiden-layer networks are provided. In empirical evaluation these are the

first non-vacuous bounds for deterministic networks trained using standard methods

on real-world datasets.

Chapter 7 On Margins and Generalisation for Voting Classifiers.

This chapter is based on Biggs, Zantedeschi, and Guedj (2022) which appeared at

NeurIPS 2022. It revisits the idea of margins for majority voting of finite classifier

ensembles, proving new bounds by constructing a new, Dirichlet distribution–based

randomised predictor. These provide state-of-the-art guarantees on a number of

classification tasks, and are competitive with a test set on several of the task evaluations.

By providing such tight bounds we add perspective to the debate on the “margins

theory” proposed by Schapire et al. (1998) for the generalisation of ensemble classifiers.

Chapter 8 Tighter PAC-Bayes Generalisation Bounds by Leveraging Example Difficulty.

This chapter is based on Biggs and Guedj (2023) which was published at AISTATS

2023. Rather than focusing on a specific hypothesis class or even on classification,

this work takes a more general approach of looking to tighten the generic PAC-Bayes

bounds of e.g. Catoni (2007); Maurer (2004). It does this by introducing a modified

version of the excess risk which leverages information about the relative hardness of

data examples to reduce the variance of its empirical counterpart, tightening the bound.
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We empirically show that this new bound can improve numerical tightness on a number

of real-world datasets.

Additional work undertaken during the PhD. In addition to the above which forms a

coherent and standalone research contribution, I additionally completed work which is not

included in this thesis, since it does not relate in any way to understanding and optimising

generalisation. In the arXiv note Biggs (2022) I give a generalisation of the inverse Chernoff

bound often used for evaluation of PAC-Bayes bounds; this can lead to more computationally-

efficient numerical evaluation. In the work Biggs, Schrab, and Gretton (2023) which appeared

at NeurIPS 2023, we proposed a new two-sample statistical permutation test using maximum

mean discrepancy; theoretical guarantees are given and favourable empirical power compared

with similar tests is shown.

Notation. I have made a great effort to ensure consistency of notation throughout the thesis

as a pedagogical aid. Despite this, there are some small differences. The most notable is that

random vectors are denoted by capital letters in Chapters 2, 3 and 8, where linear algebra

does not play a large role, while in the other chapters they are reserved for linear operators

or matrices. Most of this notation is introduced in Chapter 2, and is recalled where necessary

in each chapter; there is a reference table on page 15.
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Chapter 2

Background

Here we introduce the main ideas of statistical learning theory as applied to

classification. We introduce classes of linear, majority voting and neural network–

based classifiers. We overview uniform convergence, PAC-Bayes and margin bounds,

and their applications to the above classes.

We begin by outlining a fairly general statistical learning theory setting alongside its

specialisation to classification. Our data lies in some space Z, on which is defined some data-

generating distribution D ∈ P(Z) (denoting by P(A) an appropriate space1 of probability

measures defined on set A). We are given access a (training) sample S = (Z1, . . . ,Zm) of

m ∈ N (the sample size) examples, Zi ∈ Z, assumed drawn independently and identically

distributed (i.i.d.) from D.

We wish to learn some parameter w ∈ W using S. Specifically, it should minimise the

(distribution-dependent) risk of w, which is defined in terms of a (bounded) loss function,

ℓ : W ×Z → [0,1], as

L(w) := E
Z∼D

[ℓ(w,Z)].

In other words, we wish to pick a parameter minimising the population (expected) loss.

We do not consider the more general case of unbounded loss functions, and note that the

bounding in [0,1] is without loss of generality (w.l.o.g.) since we can always re-scale.

Since we have an i.i.d. set of samples, a natural place to begin is with the data-dependent

empirical risk,

L̂(w) := 1
m

m∑
i=1

ℓ(w,Zi).

This is clearly an unbiased estimate of L(w) when w is independent of the sample (as when

we are using a test set), but when w is chosen based on the sample, it is biased, as we discuss
1An unstated assumption beyond this point will be that this set, its corresponding sigma field, and any

functions are constrained to make these measurability concerns immaterial, since such discussions add little

pedagogical value in our problems of interest.
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further below.

Test bounds. For now, we ask how well L̂(w) estimates L(w) in the unbiased case, where

w is fixed independent of the sample. This is a so-called test set bound. Using Hoeffding’s

inequality (Hoeffding, 1956), for a fixed w,δ ∈ (0,1) and m,

P
S∼Dm

|L(w)− L̂(w)| ≤

√
log 2

δ

2m

≥ 1− δ. (2.1)

In other words, we can upper bound the risk of w with high probability over the sample

using L̂(w): this is a Probably Approximately Correct (PAC; Valiant, 1984) result. The

high-probability part is vital, as it is always possible (if unlikely for large datasets) that we

received a particularly “unlucky” and unrepresentative sample. This bound is reasonably

tight: if we have 10000 samples and we are working at 99.9% confidence, then the square

root term is less than 0.02. Somewhat tighter test set bounds also exist, as we discuss in

Chapter 3.

2.1 Supervised Classification
We make the above concrete by considering a more specific setting, that of supervised

classification, which is the setting of Chapters 4 to 7 (but not Chapter 8, which instead

considers more generic bounded losses). Here we are given both an input space, X

(where for many problems, X ⊂ Rdin for some input dimension din), and a label space

Y = [dout] = {1, . . . ,dout}, where dout is the number of classes. A binary classification

problem has two classes, dout = 2; we will usually denote these {+1,−1} instead of {1,2}, as

this makes some formulas simpler. Our overall data space is Z = X ×Y ; we will also assume

that the data generating distribution factorises as D = DX ⊗DY|X . We note the noiseless

case where DY|X is deterministic, i.e. any x is unambiguously associated with a single label.

Our goal is to learn a classifier, classw : X → Y indexed by w (with the overall space

notated H), that predicts the most likely class given an x ∈ X (and hence approximates

the argmaximum of the “regression function” DY|X ). Examples of real world problems in

this setting include image classification of e.g. digits (as per LeCun et al., 2010) or items of

clothing (Xiao et al., 2017); here each input pixel is mapped and scaled into a component of

X = [0,1]din , and the labels correspond to different digits 0–9 or previously-defined clothing

types. A real world binary classification problem might be to take as input strings from SMS

messages, and classify whether each is spam or not (Dua and Graff, 2017).

This is formalised through by specialising to the misclassification loss function,

ℓ0(classw,(x,y)) = 111{classw(x) ̸= y} (denoting by 111{A} or 111A the indicator function on set

A). In this case the risk becomes the probability of misclassifying a new (data-distribution
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drawn) example,

L0(classw) = P
(X,Y )∼D

(classw(X) ̸= Y ).

Note that this means that incorrect predictions on regions of X with low probability under

DX do not necessarily increase the risk by much. The empirical risk is the proportion of

incorrect examples on the dataset,

L̂0(classw) = |{(x,y) ∈ S : classw(x) ̸= y}|
m

.

Thus this setting relates to the above more general setting by putting ℓ(w,(x,y)) =

ℓ0(classw,(x,y)).

2.1.1 Basic Classifiers
Here we introduce the basic classifiers we primarily consider in this thesis, without mentioning

the algorithms used to learn them.

All of the classification methods we directly consider in this thesis are score-based. This

means for a given x ∈ X , they output an intermediate set of values in Ŷ. For multi-class

classification, Ŷ = Rdout , and for binary classification Ŷ = R; the classification prediction is

the argmaximum index for the multi-class case, or the sign in the binary case. Specifically,

in the multi-class case our prediction functions can be defined by some (w-indexed) function

fw : X → Rdout , and the overall prediction is given by classw(x) = argmaxy∈Y fw(x)[y]

(with the [y] notation denoting the yth component); in the binary case fw : X → R and

classw(x) = sign(fw(x)).

We denote a space of such functions by F , with its exact definition (and that of Ŷ) being

contextual. Note that, just as the same weight w ∈ W might lead to identical score functions

fw ∈F , so can different fw lead to identical classification outputs and thus classw ∈H. Hence

H is a quotient space of F and F of W , so we will often be somewhat loose in distinguishing

these spaces, writing for example L0(fw) = L0(classw).

Binary linear prediction. One of the most fundamental forms of classifiers is linear

prediction, where X is in a vector space, and our score output is fwww(xxx) = ⟨www,xxx⟩ for www ∈ W

also in a (dual) vector space. We often assume the restriction of X and W to some origin-

centred balls. Since the classification output is the sign of fwww, it effectively divides X into

two half-spaces with opposite labels. Note this classifier can be considerably extended by first

mapping all data through some fixed feature mapping, ϕ : X → X ′, which can potentially

be seen as a pre-processing step. In this case, X might not be a vector space, while X ′

could potentially be an infinite dimensional space (where the infinite spaces are taken care

of implicitly, e.g. through kernel methods).
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Weighted majority votes. Here we have a set of “base” classifiers Hbase, where each

h∈ Hbase is a function h : X → Y . A majority vote is defined by a distribution Q∈ P(Hbase).

In the case where |H| = dvot < ∞, this can be characterised directly by a weight vector

www ∈ ∆dvot−1, where ∆d−1 = {aaa ∈ [0,1]d :
∑
i ai ≤ 1} is the d-dimensional simplex. The

(scored) majority vote (MV) then outputs

fwww(x)[k] = E
h∼Q

[111{h(x) = k}] =
∑

h∈Hbase

wi 111{h(x) = k}

for each k ∈ Y. The implied classifier is MVwww(x) := argmaxk∈Y fwww(x)[y]. When the base

classifier space is infinite, the sum in fwww is replaced by an integral, so the definition is

fQ(x)[k] = Ph∼Q(h(x) = k).

Feed-forward neural networks. Deep neural networks combine linear transformations

by learned parameters with various fixed non-linearities. When used for classification, they

are usually score-based, with output in Rdout (or potentially R when considering binary

classification). A feed-forward network takes the form

fW1,...,WL
(xxx) =WLϕL−1(WL−1ϕL−2(. . .ϕ1(W1xxx) . . .)),

for fixed-size matrices W1, . . . ,WL and fixed activation or “pooling” functions ϕi. For

example, in a fully-connected ReLU (Rectified Linear Unit) network, the matrix en-

tries are unconstrained and the activation functions are element-wise applied ReLU func-

tions, ReLU(t) = t111{t≥ 0}. Another feed-forward variant is convolutional neural networks

(Fukushima, 1980), which effectively constrain the weight matrices in a special way to ensure

translation-invariance. Recurrent (Rumelhart et al., 1985) or attention-based (Vaswani et al.,

2017) networks take other forms which can be considerably more complex.

2.2 Worst Case Bounds
Suppose that the space W has been chosen for us by a domain expert, and we have no prior

knowledge about the data distribution D. We wish to investigate how well we can choose w

based on the sample to optimise L(w). An algorithm, A : Zm → W, takes the sample and

outputs a parameter. Without prior knowledge, we would like to choose A to work as well as

possible regardless of the data distribution, D. We are therefore in some sense studying the

worst-case behaviour, since we are concerned about every D equally, even those that have

been chosen by an adversary.

Empirical Risk Minimisation. A natural choice of algorithm is empirical risk minimisation,

which chooses a predictor wERM ∈ argminw∈W L̂(w), called an empirical risk minimiser or

ERM (note that it may not be unique). Studying L(wERM) turns out to be considerably
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more complex than just looking at L̂(wERM), due to the aforementioned bias of this term.

The result in Eq. (2.1) is not applicable, because wERM depends on the sample, and L̂(wERM)

is a biased estimate of L(wERM). This bias creeps in because if |W| is large, then it is

likely that at least one w ∈ W leads to a large statistical fluctuation in L̂(w), and thus

underestimate L(w); the ERM is likely to pick such a value and hence maximise the bias.

The problem of generalisation. This problem can be truly pathological, as we show

through the following example. Consider ERM in a binary classification problem on X = [0,1],

with w ∈ W indexing the entire set of binary classification functions on X . Suppose the data

distribution is uniform on X and fixes y = 1 everywhere. Since the problem is noiseless, an

ERM returns a predictor matching any training data observed. However, since W indexes all

possible deterministic mappings X → Y, we must choose how it behaves elsewhere. A priori

we have no reason to favour or disfavour any over another, we could choose it to predict

y = −1 at every x not observed in the sample. This ERM has a risk of 1, since the sample

has measure zero under DX .

In the above, not only is wERM a poor parameter choice, but L̂(wERM) ≪ L(wERM) is a

poor indicator of performance; we call this over-fitting. We also say that ERM (the algorithm)

on a rich parameter space does not generalise. This latter term is slightly overloaded, as

we could say an algorithm generalises either when L(w) is low (but still potentially much

higher than L̂(w)), or when it does not over-fit; we lean towards the former definition but

may be somewhat loose.2

No-free-lunch. A natural question is if we can do better than the ERM. Unfortunately we

cannot in our worst-case scenario: there is no universal learner, in the sense that no algorithm

succeeds on every task. This fact is proved by several no-free-lunch theorems. For example,

consider a binary classification task on X with sample size m< |X |/2. Shalev-Shwartz and

Ben-David (2014) show that for any algorithm, A, there exists a data distribution, D, such

that both L(h∗) = 0 for some h∗, and

P
S∼Dm

(
L(A(S)) ≥ 1

8

)
≥ 1

7 .

Thus, there is a classifier that succeeds perfectly on the task (i.e., h∗), while our algorithm has

a constant probability of failing to get near the minimum risk. When the space X is infinite,

increasing the sample size will not even fix this problem. Therefore, on an unrestricted space

H, any algorithm that we choose will fail on some problem that another learner (e.g., one

that simply outputs h∗) will easily solve.
2A related concept is that of under-fitting; here W is relatively un-expressive or poorly matched to the

data distribution, so that even choosing the optimal w ∈ W results in a high risk L(w), while other spaces W

might give a far lower minimum risk.
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2.2.1 ERM can work!
However, the above examples could be seen as somewhat contrived, since they require a large

and expressive space W, that includes every possible classification function classw : X → Y.

None of our classifiers in Section 2.1.1 have these properties. The no-free-lunch theorem

shows that an ERM will succeed perfectly on the classifier space including only classw = h∗.

If our W is more restricted as in Section 2.1.1, but still contains a w achieving low risk, will

ERM work?

Uniform convergence. A sufficient condition for ERM’s consistency (in that it converges to

the minimum risk solution as m→ ∞) is uniform convergence3 (Vapnik, 1991). This requires

L̂(w) → L(w) simultaneously for all w ∈ W (in probability as m→ ∞). More formally,

P
S∼Dm

(
∃w ∈ W : |L(w)− L̂(w)|> ϵ

)
→ 0 as m→ ∞

at every ϵ > 0. We next examine some cases in which we have uniform convergence.

A training set union bound. When the class W is finite, we can directly apply Eq. (2.1)

to each w ∈ W with δ′ = δ/|W|, where |A| is the cardinality of set A. By the union bound,

P
(

∪w∈W : |L(w)− L̂(w)|>
√

log(2|W|/δ)/2m
)
<
∑
w∈W δ/|W| = δ, and therefore

P
S∼Dm

∀w ∈ W : |L(w)− L̂(w)| ≤

√
log(2|W|

δ )
2m

≥ 1− δ. (2.2)

Therefore a finite hypothesis class has the uniform convergence property at sample size rate

O(1/
√
m), and hence consistency of ERM on W . This is our first PAC bound for a training

set, and we see that it can be used both to estimate the error L(w) without a test set, and to

understand when a particular algorithmic approach will work. It tells us how large the error

can be based on the size of the sample, and that L̂(wERM) ≈ L(wERM) with high probability

(w.h.p.) whenever log |W| ≪m. The bound itself tells us that ERM with a small finite W

will get close to the minimum risk solution.

However, the need for log |W| < m can be quite restrictive. The classifiers we are

interested in have real-valued parameters, and thus an infinite W. In reality, floating point

operations on a computer are done at finite precision, but the number of bits needed to

represent our classifiers may be much larger than m (and even a single parameter represented

by n bits implies |W| = 2n). Further, we likely do not want to use algorithms which technically

rely on the details (and specific implementation) of floating point arithmetic, so we should

be able to analyse learning methods without relying on this limited precision. Note however
3Shalev-Shwartz et al. (2010) show that this is not actually a necessary condition for certain non-trivial

learning problems as specified by triples (ℓ,W,Z), though it is in the context of binary supervised classification.
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that many algorithms work well even in deliberately low-precision arithmetic, which is a first

indication of the deep links between compressibility and generalisation.

VC Dimension. More sophisticated uniform bounds for binary classification use the Vapnik-

Chervonenkis (VC) dimension (Vapnik and Chervonenkis, 1971). In fact, in this simple

setting, it turns out that a finite VC dimension is necessary and sufficient for both uniform

convergence and the consistency of ERM. Sufficiency follows from the simple bound (in

presentation, not proof, since this is a chaining-based bound; Lugosi, 2002):

P
S∼Dm

∀h ∈ H : |L0(h)− L̂0(h)| ≤ C

√
VC(H)+ log 2

δ

m

≥ 1− δ, (2.3)

where C > 0 is some constant. VC(H) is the VC dimension, that describes the “capacity” of

the class H to fit adversary-chosen labels.

Equation (2.3) matches a lower bound arising for some adversarial data distribution

(Anthony and Shawe-Taylor, 1993; Kontorovich and Pinelis, 2016; Vapnik, 1999). It has also

been extended to multi-class classification (Natarajan, 1989), and numerical improvements

to the base VC bound have been made by Leboeuf et al. (2021). In particular, the square

root term in the VC bound can be improved to Õ(VC/m) for w such that L̂0(w) = 0 (the

“realisable case”; note also the “relative deviation” bound of Anthony and Shawe-Taylor,

1993; Vapnik and Chervonenkis, 1971; Vapnik, 1999), and we can get “intermediate” rates of

Õ((VC/m)α) with α ∈ (1
2 ,1) under additional assumptions (e.g. on noise Boucheron et al.,

2005; Mammen and Tsybakov, 1999). Most of these bounds can be proved and refined further

by considering Rademacher (and Gaussian) complexities (Bartlett and Mendelson, 2002;

Koltchinskii and Panchenko, 2000) or covering arguments (see Anthony et al., 1999).

Learning our classifiers. For binary linear classification with feature space Rdhid , the

VC dimension is dhid + 1; for (binary) majority votes on Hbase it is upper bounded by

Õ(T × VC(Hbase)) where T is the number of non-zero weighted voters; for sign-function

activated feed-forward neural networks it is Θ̃(number of parameters) (Shalev-Shwartz and

Ben-David, 2014). Each of these are therefore learnable by an ERM with enough data (i.e.

m≫ VC).

Implementing ERM. A small but important concern is implementation: learning an ERM

can be computationally complex, and the ERM is rarely unique. ERM for linear classification

is known to be computationally hard (Ben-David and Simon, 2000) in general, though in the

noiseless and separable case (where there exists at least one www ∈ W achieving L0(fwww) = 0) it

can be solved through either linear programming or the Perceptron algorithm (Rosenblatt,

1958). For this reason, many popular algorithms for this class only output approximately error
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minimising solutions, generally by optimising some convex objective function; for example in

the support vector machine (Cortes and Vapnik, 1995). For majority votes, boosting also

minimises some convex objective (Freund and Schapire, 1997; Schapire, 1990). The error of

these nearly-ERM solutions can sometimes still be bounded by uniform convergence–style

arguments (Boucheron et al., 2005; Zhang, 2004).

Implementation is particularly challenging in deep neural networks, which are highly

non-convex, so finding the ERM may not be feasible, and most training methods for this case

employ some variant of gradient descent on a smooth surrogate loss function. Even when

interpolating the data (i.e., achieving zero train error) is possible, there may be very many

different possible parameters for this, and hence different ERMs, with potentially different

performance. However, this non-uniqueness of the ERM only matters in the low-data regime4,

and is not a problem for the case VC ≪m since Eq. (2.3) applies to every h simultaneously.

No better algorithm. The bound Eq. (2.3) is two-sided and holds for any w (and hence

any algorithmic output), so in the regime VC ≪m we really have L(w) ≈ L̂(w) with high

probability. The improved VC bound variants only increase the rate of this convergence,

making the empirical risk an even better proxy for the true risk. Therefore no other algorithm

can improve on ERM in this regime, at least by more than a small correction O(m− 1
2 ) term;

the improved bounds only show that this is also true sometimes for even less data. The only

thing that ultimately differs between D in these bounds is the risk of the best w ∈ W, and

any consistent algorithm must be (asymptotically) an ERM.

Various lower bounds (e.g. Shalev-Shwartz and Ben-David, 2014, Theorem 6.7) show

that m>Ω(VC(W)) is a necessary condition for general learning of W , in the sense that with

high probability L(A(S)) → infw∈W L(w) for any D. In this case, they also show that ERM

is a successful algorithm. We also have the no-free-lunch theorems showing that learning on

a class with no “complexity control” is not possible in general.

Therefore, in the worst-case situations where we must cover every D with equal impor-

tance, there are two possibilities: either we have enough data to solve the learning problem

(requiring m≫ VC), and the ERM is successful; or we do not, and learning is not possible in

general as shown by the no-free-lunch theorems.

2.3 Beyond Worst Case
The two-sided bound Eq. (2.3) shows that when VC ≪ m and asymptotically we cannot

improve on the ERM; no-free-lunch theorems suggest that we cannot in-general do anything

outside in this case. Have we therefore solved the generalisation puzzle? No, for a variety of
4Although technically, in multi-class classification where dout is allowed to grow with m, there are settings

where one ERM may be provably better than another regardless of data distribution (Daniely et al., 2011).
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reasons. The point linking all of them is that the above bounds are all worst-case, which is

not the usual setting in which machine learning is actually applied.

Machine learning practitioners often successfully apply algorithms without VC ≪ m:

for example, an SVM with infinite VC dimension successfully learns many real-world data

distributions, and neural networks with many more parameters than data often generalise

well. In many boosting methods, we reach an h obtaining zero empirical risk, then modify it

so that the zero empirical risk is maintained but the VC dimension is increased; we repeat

this process iteratively, but despite the increasing capacity, the true risk of each new h tends

to decrease. Therefore, VC bounds do not “explain” the generalisation which is commonly

seen on real world datasets.

This happens because real-world data distributions tend to have properties which make

them easier to learn than adversary-chosen ones (as required for no-free-lunch theorems),

and we often have some domain knowledge about what kind of predictors are likely to work

well. The free-lunch theorems (and test bound) show that if we choose our algorithm to

be well-matched to our problem, we can do very well. Fortunately, it turns out that some

algorithms have biases which are actually useful for a very wide variety of real-world tasks.

Approximation vs estimation trade off. Suppose we are given a class W that is too

large for our dataset: i.e. VC(W)>m. A classical approach is to restrict W to some less

complex set W ′. We can control the estimation error of L(w) − L̂(w) over the smaller

class W ′, since if this smaller class has e.g. VC(W ′) ≪m we can simply find an ERM within

it. The price we pay for this method is the approximation error L(w)− infw∗∈W L(w∗),

which will be large if we choose W ′ poorly for our problem, or too small.

We can then let W ′ grow depending on m or some sample-dependent quantities (which

could also potentially enable consistency even if the optimal w is not in one of the smaller

W ′). For example, depending on the “difficulty” of fitting the sample, which leads to ideas of

structural risk minimisation (Vapnik, 1999; Vapnik and Chervonenkis, 1974) and minimum

description length (Rissanen, 1978, 1983), which relates to compression, as discussed above.

This is also in some sense the dual of the regularisation approach (as first popularised

by Tikhonov et al., 1943), which considers instead minimising some functional L̂(w) +

pen(w), with pen(w) a weight-dependent penalty, and subsumes a wide variety of methods.

Finally, some algorithms might be implicitly (i.e. without being the solution of an explicitly

regularised optimisation problem) biased towards regularised or short-description-length

solutions, automatically trading off between estimation and approximation errors; this is

suggested to be behind the performance of boosting, stable algorithms (as discussed as far

back as Rogers and Wagner, 1978, see Devroye et al., 2013 for a more generic reference), and

sometimes SGD on neural networks.
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It is important to note that the above approach necessarily favours some w ∈ W over

others, and therefore by improving performance on some data distributions we worsen it on

others. We need to use some a priori knowledge of likely D to ensure it works. Fortunately,

it turns out that many real world datasets have properties in common, e.g. certain types of

smoothness, which makes it possible for fairly generic algorithms to perform well across a

variety of real world tasks.

Not all ERMs are created equal. On neural networks, we often find a set of parameters

giving zero empirical loss, so the solution is an ERM. Other ERMs usually also exist which

have far worse generalisation, as we can see through the following: Zhang et al. (2021, in

Figure 1(c)) fit a large neural network to zero training error on CIFAR-10 (Krizhevsky, 2009)

with 50% randomly corrupted labels, so S = Scorrupt ∪Suncorr, which is clearly an ERM

on Suncorr iid∼ D. This network obtains a test error on D of ≈ 0.7. The same network is

also trained to perfectly fit the uncorrupted sample without using Scorrupt, and obtains a

test error of ≈ 0.2. Both weight solutions are clearly ERMs since both achieve L̂(w) = 0

on Suncorr iid∼ D, but they achieve completely different risks, a fact which clearly cannot be

explained by VC-based bounds.

The above can potentially be explained in terms of an approximation/estimation trade

off: when fitting S with zero empirical risk, we end up minimising over a larger space of

functions than we do when fitting only Suncorr, and so we incur a much greater estimation

cost for the former. However, there are similar cases in which it can be shown the space is too

large to control the estimation error by uniform convergence. Nagarajan and Kolter (2019)

show that for linear classifiers and neural networks there are settings where any bounds

derived via uniform convergence fail (i.e. are near-vacuous, the bound on L(w) being greater

than 1), even when the stochastic gradient descent commonly used in these settings provably

generalises. Technically, these show that non-vacuous bounds cannot be constructed by

bounding the estimation part of the error through a uniform convergence bound, even when

we are aware of the data distribution and take account of implicit algorithmic bias to the

maximum extent possible.

Non-uniform bounds. We have seen that uniform convergence bounds essentially fully

characterise the worst-case behaviour of learners and motivate when generic ERM algorithms

should be used. In this thesis we work towards proving new and different bounds that involve

more information about the learning problem, in order to understand what qualities lead to

good generalisation and performance for different algorithms and data distributions outside

of the worst case. A general learning theory approach is to prove finite-sample PAC bounds



2.3. Beyond Worst Case 33

on L(A(S)) for different algorithms or weights, specifically results taking the general form

P
S∼Dm

(L(A(S)) ≤ bound) ≥ 1− δ (2.4)

for some bound. This bound term may depend on L̂(A(S)) as well as potentially other

quantities related to S and the algorithm.

We will primarily consider two types of bound: PAC-Bayesian, and margin bounds,

both of which we discuss further below. In fact, the margin bounds we prove (in Chapters 5

and 7) actually use PAC-Bayes as an intermediate step. They will hold for any (i.i.d.) data

and algorithm, but will be non-uniform so that the tightness is affected by the choice of

w (unlike in the uniform convergence bounds which hold “uniformly” over all w ∈ W, or

algorithmic bounds that hold only for a w output by a specific algorithm).

Alternative approaches we do not closely consider include compression-scheme based

bounds (Littlestone and Warmuth, 1986), stability or regularisation–based approaches (see

Devroye et al., 2013; Shalev-Shwartz and Ben-David, 2014, and references therein), and

(conditional) mutual information based bounds (which generally hold only in-expectation;

when not, they relate very closely to PAC-Bayes) as developed by, e.g. Grünwald et al.

(2021); Steinke and Zakynthinou (2020); Xu and Raginsky (2017).

2.3.1 Margin Bounds

Margin-based bounds are some of the most classical examples of non-uniform bounds, with

proofs utilising them as far back as Novikoff (1962) for the Perceptron algorithm. Mostly,

they are proved by considering Rademacher-complexity based arguments, the fat-shattering

dimension (which relates most closely to VC dimension), or by using PAC-Bayes bounds as

an intermediate step.

Linearly seperable data. Suppose our data is linearly separable, so for some www, L(classwww) =

0, using a binary linear classifier, classwww(xxx) = ⟨xxx,www⟩; but the dimension din ≫ m, so the

bound Eq. (2.3) or the faster-rate realisable version is vacuous. It turns out we can still get

high probability bounds if the sample is separable by some margin γ. Specifically, our www

defines some hyperplane that divides the space X into half-spaces of labels +1 and −1: if all

the data a distance of at least γ > 0 from this plane, we say it can be separated at margin γ.

This is a property of both the sample and the chosen www. Note that any www for which this is

possible is also an ERM, since the data is also classified exactly.

Assume that ∥xxx∥2 and ∥www∥2 are bounded for all xxx ∈ X ,www ∈ W. We show in Chapter 5

(Biggs and Guedj, 2022a, originally) that

P
S∼Dm

(
∀www ∈ W : L0(www) ≤ C

γ∗(www,S)−2 logm+log 1
δ

m

)
≥ 1− δ,
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where

γ∗(www,S) = sup
{
γ > 0 : min

(xxx,y)∈S
⟨yxxx,www⟩> γ

}
depends on both www and S.

Therefore, if we choose our algorithm to output a www maximising the margin γ∗ as much

as possible, we will get a faster reduction of the population risk. This applies even for high

or infinite dimensional X , justifying the use of the SVM (Cortes and Vapnik, 1995), which

outputs an approximately margin-maximising solution.

Of course, the bound depends on the data distribution having certain properties, and

adversarial distributions will not be separable. It gives improved rates of convergence for

favourable distributions, and shows that in the “small” data regime, not all ERMs are equal.

This would be a moot point, as the free-lunch theorem already demonstrates such, except

that it turns out this property is common on a fairly wide variety of real-world problems. The

reason machine learning works at all is because it turns out that many real-world problems

appear to have properties which can be exploited by fairly generic learners, so we usually do

not need to over-specialise our algorithms or rely on extremely large datasets.

General margins. Building on the above leads to a more general idea of margins, which

quantify how strongly we prefer one prediction has been made over another, in some ways a

measure of confidence. On an example (x,y), the margin is defined as

M(fw,x,y) = fw(x)[y]−max
y′ ̸=y

fw(x)[y′],

or in the binary case, M(fw,x,y) = yfw(x) (with y ∈ {+1,−1}; note these differ by a factor of

2 for consistency with the literature). The margin loss, ℓγ(w,(x,y)) = 111{M(fw,x,y) ≤ γ}

for γ ≥ 0, quantifies how often predictions are wrong or correct but with only low margin

(as a proxy for low confidence). We can use this to extend the above results to cases where

not all of the data is actually separable at margin γ. We define analogously with L0 and L̂0

the margin risks Lγ and L̂γ ; note that the misclassification loss is the margin loss at γ = 0,

which motivates its notation of ℓ0.

For linear binary classification and majority votes. To consider the margin without

arbitrary scaling, we constrain the sets X and W: for example, an L2 constraint, where we

set ∥xxx∥2 ≤ 1,∥www∥2 ≤ 1; or an L1/L∞ constraint, where we set ∥xxx∥∞ ≤ 1,∥www∥1 ≤ 1. This

extends to the case where we are using a fixed feature map first. We already discussed the

SVM, which uses the L2 constraint; while L1/L∞-constrained algorithms that approximately

maximise some margin include varieties of boosting (Freund and Schapire, 1997; Schapire,

1990) and bagging (Breiman, 2001, e.g. random forest), with such bounds also being applied

to majority votes for binary classification.
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In Chapter 5 we work to obtain tighter margin bounds for this setting, both under L2

and L1/L∞ norms. In Chapter 7 we prove a new margin bound for majority votes that is

seen to be empirically extremely tight, effectively explaining the generalisation we see on the

datasets to which we apply it.

For neural networks. Finally, similar bounds have been proved for deep neural networks

(see e.g. Bartlett et al., 2017; Neyshabur et al., 2018). Here, the bound complexity term

usually depends on various norms of the weights divided by the margin. Unfortunately,

these bounds are typically vacuous on real-world datasets. It may be that any such bounds

proved via uniform convergence–based arguments (which includes fat-shattering, Rademacher,

and some PAC-Bayes de-randomisation techniques) must fail in some settings where SGD

provably generalises (Nagarajan and Kolter, 2019). However, the idea that neural networks

generalise because they achieve a large margin on their datasets still has some traction, and

we prove two different margin bounds for neural networks in Chapter 5.

2.3.2 PAC-Bayes Bounds
PAC-Bayesian bounds (originated by Catoni, 2003, 2004, 2007; McAllester, 1998, 1999;

Shawe-Taylor and Williamson, 1997, we refer to recent surveys in Alquier, 2021; Guedj, 2019;

Hellström et al., 2023) have obtained a great deal of attention in recent years, since they are

the only framework within which non-vacuous bounds for (randomised or compressed variants

of) neural networks have been proved. Unlike the bounds we considered above, they generally

hold for randomised predictors or weights. Specifically, they tend to bound the expectation

of the risk with respect to a w sampled from some “posterior” distribution Q ∈ P(W). The

bounds also usually involve a “complexity measure” based on the Kullback-Liebler (KL)

divergence, KL(Q,P ) =EW∼Q

[
log dQdP (W )

]
, from some fixed “prior” distribution P ∈ P(W).

This prior can usually be chosen in any data-independent way, lending much flexibility to

the generic PAC-Bayesian bounds, as it is chosen to optimise the tightness for the problem

types or classification classes we are considering.

The following PAC-Bayes bound, (derived from Kakade et al. (2008), Corollary 8) is

very slightly different from those usually presented, but is more similar to Eq. (2.3) above. It

states that for a fixed “prior” P ∈ P(W) and some numerical constant C > 0,

P
S∼Dm

∀Q ∈ P(W) , E
W∼Q

L(W ) ≤ E
W∼Q

L̂(W )+C

√
KL(Q,P )+ log 1

δ

m

≥ 1− δ. (2.5)

For majority votes. One of the oldest uses of PAC-Bayesian methods (in Seeger, 2002,

applied to Gaussian process classification) is in obtaining bounds for the risk of the majority

vote of Q, i.e. L(MVQ). A wide variety of “oracle” bounds (Lacasse et al., 2010; Masegosa
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et al., 2020; Wu et al., 2021)5 have been proved that relate the risk of the majority vote

to the average risk of W sampled from Q, or similar quantities which can be bounded by

PAC-Bayesian methods.

The simplest and often tightest of these bounds is the first-order (FO) oracle bound

L(MVQ) ≤ 2 E
W∼Q

L(W ),

called the “folk” theorem by Langford and Shawe-Taylor (2003). This can be trivially

combined with Eq. (2.5) to obtain bounds for the majority vote risk in terms of the weighted

empirical risks of its components.

Majority votes over a finite set are the topic of Chapter 7, while in Chapter 6 we use a

neural network that can be expressed as a specially-constructed majority vote to prove a

generalisation result using the FO bound; technically some of the predictors in Chapter 4 or

Chapter 5 can also be seen as majority votes, though we do not use this fact directly.

For neural networks. The resurgence of interest in PAC-Bayesian methods has largely

come due to their successful application in obtaining non-vacuous generalisation bounds for

neural networks. Specifically, they have been used to obtain such bounds for neural networks

with Normally-distributed weights (Dziugaite and Roy, 2017, 2018; Langford and Caruana,

2002), and compressed networks (Zhou et al., 2019). Later results looked at optimising

PAC-Bayesian bounds for neural networks (Pérez-Ortiz et al., 2021b,c) as is our focus in

Chapter 4, or improving tightness by choosing the prior more optimally (Dziugaite et al.,

2020; Pérez-Ortiz et al., 2021a). Neyshabur et al. (2018) used a PAC-Bayes bound for these

Gaussian weight networks as a stepping stone to prove a margin bound for a deterministic

network, an approach we will also explore in Chapter 5.

5We discuss these extensively in Chapter 7.



Chapter 3

From Test Bounds to PAC-Bayes

This chapter provides an accessible introduction to the technical aspect and proofs

of PAC-Bayesian generalisation bounds, as well as giving intuition for why the

bounds look the way they do. A secondary aim is to introduce sub-Gaussian random

variables and their concentration, which are used in both Chapters 5 and 7 for the

de-randomsiation of PAC-Bayesian bounds via margins.

3.1 Introduction
This chapter can be read both as a new, stand-alone introduction to PAC-Bayes and

concentration; or the concentration part can be read as technical background for the margin-

based work in this thesis. We draw on the introductions of Langford (2005); van Erven

(2014) to PAC-Bayes, as well as on Boucheron et al. (2013) for concentration of measure.

Although the majority of this thesis builds off on a single PAC-Bayesian bound (or variations

thereof), Chapter 8 will build off of these ideas to prove a new PAC-Bayesian bound.

The most basic concentration inequality, which effectively forms the basis for all others

we discuss here, is Markov’s inequality. Let Z ≥ 0 be a random variable; then for any ϵ > 0

P(Z ≥ ϵ) ≤ ϵ−1E[Z].

This can also be stated in a PAC-like form as

P
(
Z ≤ δ−1E[Z]

)
≥ 1− δ.

This bound is extremely useful and general, but can be quite loose. We note also that taking

empirical averages of i.i.d. does not improve the bound, so the central limit theorem suggests

we could do better.

Chebyshev’s inequality can be obtained by applying Markov’s inequality to the non-

negative variable (Z−EZ)2 (where Z itself no longer needs to be non-negative):

P
(

|Z−EZ| ≤
√
δ−1V[Z]

)
≥ 1− δ.
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It bounds the deviation of a variable from its mean, rather than a general upper tail as in

Markov’s inequality.

This bound has the advantage that it effectively becomes tighter with increasing sample

size m, since the variance of a sum of i.i.d. variables is simply the sum of variances.

Application to L̂ gives the bound

P

(
|L(w)− L̂(w)| ≤

√
V[ℓ(Z1,w)]

mδ

)
≥ 1− δ. (3.1)

Thus provided the variance of the loss is bounded (a condition necessary for almost any

practical learning situation), we obtain O(1/
√
m) convergence of the empirical risk to its

population average. Suppose our losses are bounded in [0,1]; then V[ℓ(Z1,w)] ≤ 1
4 by

Popoviciu’s inequality. This gives our first “PAC bound”.

So are we finished with the topic of statistical learning theory? No, for a few reasons,

which we will address in the following order:

• The dependence on δ is sub-optimal; under conditions such as a bounded loss function

the dependence O(1/δ) can be greatly improved to O(log(1/δ)). Indeed, when “high-

probability” bounds are discussed, such a logarithmic dependence on δ is often assumed.

In order to prove such bounds, we introduce the Cramer-Chernoff method, which is at

the center of more general PAC-Bayesian proofs, and sub-Gaussian random variables,

which are utilised heavily in some of the following chapters.

• The dependence on m can sometimes be improved. Although the central limit theorem

would appear to suggest a rate of O(1/
√
m) cannot be improved, in certain cases

considerably tighter bounds on L(w) can still be obtained; for example when L̂(w) ≈ 0.

As a short example, consider when ℓ ∈ {0,1}, so that V[ℓ(Z1,w)] = L(w)(1−L(w)) ≤

L(w), and L̂(w) = 0 is observed; solving Eq. (3.1) for L(w) gives L(w) ≤ 1
mδ ∈ O(1/m).

• The above assumes that w is chosen independently of the sample. This corresponds to

the sample being from a test set. However, we may want to make predictions about

L(w) using the training sample. Such predictions can be useful in understanding why

and when certain learning algorithms work, as well as in obtaining guarantees. In order

to do so we introduce PAC-Bayesian bounds. Indeed, this last point will form the

majority of this thesis.

3.2 Test Bounds that are Logarithmic in δ

The Cramer-Chernoff method can lead to considerably tighter bounds.

Theorem 3.1. Chernoff Bound, PAC Form: for any δ ∈ (0,1) and random variable Z,

P
(
Z ≤ inf

λ>0

1
λ

log MZ(λ)
δ

)
≥ 1− δ
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where MZ(λ) := EeλZ is the moment-generating function of Z.

Proof. For any λ > 0, ϵ > 0,

P(Z ≥ ϵ) = P
(
eλZ ≥ eϵλ

)
≤ e−ϵλEeλZ =: δ

with the inequality following from Markov’s inequality since eλZ is non-negative. We invert

for ϵ and note that λ can be optimised independently of the realisation of Z to obtain the

final result.

The above is a slightly different form from the usual statements, and is chosen because

of its similarity to PAC-Bayesian inequalities later discussed. From this, many bounds of

a similar form to those used in PAC-Bayes can be obtained. The problem of obtaining

concentration has been reduced to that of obtaining tight upper bounds on the moment-

generating-function.

Sub-Gaussian Random Variables. The class of sub-Gaussian random variables are those

for which Gaussian-like concentration be obtained. They will be of great interest in proving

the margin bounds we later discuss, as well as in developing an understanding of PAC-Bayesian

proof techniques.

Definition (Sub-Gaussian Variable). We say random variable Z is σ2-sub-Gaussian

(sub-Gaussian with parameter σ2), if ∀t ∈ R

logE
[
et(Z−EZ)

]
≤ 1

2σ
2t2. (3.2)

Now what variables are sub-Gaussian? Firstly, we note that the inequality in Eq. (3.2)

is obtained by a Gaussian variable with variance σ2. Secondly, by Hoeffding’s lemma, a

random variable bounded in [a,b] is sub-Gaussian with parameter σ2 ≤ 1
4 (b−a)2. Finally,

we note that sums of independent sub-Gaussian variables are sub-Gaussian with parameter

σ2 = σ2
1 +σ2

2 (which folllows since by independence EeZ1+Z2 = EeZ1 ×EeZ2).

If a variable is sub-Gaussian, then

inf
λ>0

1
λ

log MZ−EZ(λ)
δ

≤ inf
λ>0

1
2σ

2λ+ log(1/δ)
λ

=
√

2σ2 log(1/δ). (3.3)

Further, if we take the empirical average of m i.i.d variables Zi, by Theorem 3.1

P

(
1
m

m∑
i=1

Zi−E[Z] ≤
√

2σ2 log(1/δ)
m

)
≥ 1− δ.

This gives our first improvement of Eq. (3.1), by applying the above to the (negative)

empirical risk we obtain Eq. (2.1) and the theorem below.

Theorem 3.2. For fixed w and ℓ ∈ [0,1]

P
S∼Dm

(
L(w) ≤ L̂(w)+

√
log(1/δ)

2m

)
≥ 1− δ



40 Chapter 3. From Test Bounds to PAC-Bayes

3.3 Faster-Rate Test Bounds
Now we have improved the rate in δ, what about the rate in m? We already showed how it

can be improved in Eq. (3.1), but what about with logarithmic δ? As a motivating example,

consider again loss values in {0,1}, so that mL̂ is Binomial distributed with parameters L(w)

and m. Suppose we observe L̂ = 0: the probability of obtaining such a realisation of losses

is PZ∼Binomial(L(w),m)(Z = 0) = (1 −L(w))m ≤ e−mL(w). Therefore with high probability,

observing L̂ = 0 implies that L(w) ≤ log(1/δ)
m , an O(1/m) rate.

Some of the sharpest results for bounded losses will be given through the following

method. First we introduce the following function, related to the moment-generating-function

of a Bernoulli random variable,

ΦC(p) = − 1
C

log(1−p+pe−C).

Now note that by convexity, for any t∈R and Z ∈ [0,1], exp(tZ) ≤ (1−Z)e0 +Zet. Therefore

MΦC(EZ)−Z(C) = Eexp(C(ΦC(EZ)−Z)) = Ee−CZ

1−p+pe−C ≤
E
[
1−Z+Ze−C]
1−p+pe−C = 1. (3.4)

By combination with Theorem 3.1 (noting that the result holds for any C > 0), for i.i.d.

Zi ∈ [0,1],

P

(
∀C > 0 : ΦC(EZ) ≤ 1

m

m∑
i=1

Zi+
1
Cm

log(1/δ)
)

≥ 1− δ.

Furthermore, ΦC is invertible. Through this we get the following result, which is strongly

reminiscent of Catoni’s (Catoni, 2007) PAC-Bayes theorem, with the exception of the infimum

over C.

Theorem 3.3. Catoni-like Bound: For fixed w and ℓ ∈ [0,1],

P
(
L(w) ≤ inf

C>0
Φ−1
C

(
L̂(w)+ 1

mC
log 1

δ

))
≥ 1− δ

where

Φ−1
C (x) := 1−e−Cx

1−e−C .

Before discussing the behaviour of the above as m and L̂(w) vary, we introduce an

alternative formulation of the above.

3.3.1 Bernoulli Small-kl Based Bounds
This result can be stated in an equivalent way using the Bernoulli KL divergence function

(or small-kl), which we discuss next, giving more intuition for the behaviour of this bound.

The variant takes the same form as our most commonly-used PAC-Bayes bound, just as

Theorem 3.3 is similar to the Catoni bound. Although they are equivalent here, once we

proceed to PAC-Bayesian analysis there are subtle differences between both results.
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For parameters p ∈ [0,1], q ∈ [0,1], we define the small-kl as

kl(q,p) := q log q
p

+(1− q) log 1− q

1−p
.

This function is convex in both arguments with a minimum at p= q.

Small-kl PAC-Bayes bounds will take the approximate form kl
(
L̂,L

)
≤ B for some

upper bound B > 0. We wish to invert these to get a bound on L, so we define the inverse

small-kl, which is a generalised inverse, as

kl−1(q,B) := sup{p ∈ (0,1) : kl(q,p) ≤B} .

The following useful lemma shows Theorem 3.3 can also be written using kl−1.

Theorem 3.4 (Small-kl inversion and Inverse CGF). For p ∈ (0,1), q ∈ [0,1), B > 0

kl−1(q,B) = inf
C>0

Φ−1
C (q+B/C).

Proof. This useful result is closely related to Germain et al. (2009, Proposition 2.1), who

show that for any 0 ≤ q ≤ p < 1

sup
C>0

[CΦC(p)−Cq] = kl(q,p).

Note that this can be seen as an instance of the Donsker-Varadhan equality (Donsker and

Varadhan, 1975). We slightly generalise the above by noting that when p < q,

sup
C>0

[CΦC(p)−Cq] = 0.

Therefore for any q ∈ [0,1], p ∈ (0,1),

sup
C>0

[CΦC(p)−Cq] = kl+(q,p),

where we define the upper tail kl (as also used in e.g. Biggs, 2022; Langford, 2002; Wu and

Seldin, 2022) as

kl+(q,p) :=

kl(q,p) for q ≤ p,

0 else.

Note that

kl−1(q,B) = sup{p ∈ [0,1] : kl(q,p) ≤B} = sup{p ∈ [0,1] : kl+(q,p) ≤B},

as the supremum will always be in the right hand part of the function where p≥ q. Combining

these results we find that

p≤ kl−1(q,B) ⇐⇒ kl+(q,p) ≤B ⇐⇒ sup
C>0

[CΦC(p)−Cq] ≤B

⇐⇒ p≤ inf
C>0

Φ−1
C (q+B/C).

from which the conclusion follows.
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Theorem 3.5. Relative-Entropy Test Set Bound: for fixed w,

P
(
L(w) ≤ kl−1

(
L̂(w), 1

m
log 1

δ

))
≥ 1− δ.

The technique we used to prove this bound is somewhat unorthodox (the usual method

proceeding via Chernoff’s relative entropy bound) but highlights the link with Theorem 3.3.

We discuss some relaxations of this bound in order to serve as intuition. By Pinsker’s

inequality, kl−1(q,B) ≤ q+
√
B/2, which gives a O(1/

√
m) rate. From this we directly

recover Theorem 3.2, so this formulation is strictly tighter. Further, when q = 0, kl−1(0,B) ≤

1 − e−B ≤ B, since kl(0,p) = − log(1 −p). This recovers the rate O(1/m) as seen with the

Binomial and L(w) = 0 seen above.

What happens between these two regimes (often known in learning theory as the agnostic

and realisable cases)? An alternative relaxation is given by a relative entropy relaxation

(proved in e.g. McAllester, 2003 and discussed further in Chapter 8) as kl−1(q,B) ≤

q+
√

2Bq+2B. This second variation shows the upper bound on L(w)− L̂(w) interpolates

between O(1/
√
m) when L̂(w) is large, and O(1/m) when it approaches zero. The inequality

Φ−1
C (x) ≤ 1

1−e−C x also implies that for any c > 1, L ≤ cL̂+O(1/m), where the constants in

the asymptotic notation depend on c.

Finally, we also note that the inverse kl function can be calculated straightforwardly by

a couple of iterations of Newton’s method, as can its gradients with respect to its arguments

(Clerico et al., 2022).

3.3.2 Alternative Fast-Rate Bounds
We mention also a slightly different approach using variances. We already discussed how

these can lead to faster rates without being logarithmic in δ. Logarithmic bounds in δ with

fast rates using variances can be obtained using so-called “Bernstein” inequalities. This has

been one of the main approaches in non PAC-Bayesian learning theory (and more recently,

in PAC-Bayes also) to obtaining such fast rates. We discuss this much further in Chapter 8,

where we are concerned with proving new fundamental PAC-Bayes bounds; in most other

places we use a bound similar to Theorem 3.5, which we discuss next.

3.4 PAC-Bayes Bounds
In order to move from the above “test set” bounds to PAC-Bayesian bounds, we introduce

the KL divergence and Donsker-Varadhan inequality.

Definition (Kullback-Liebler Divergence). For P,Q ∈ P(H), the KL divergence

KL(Q,P ) :=
∫

supp(P )
log
(
dQ

dP

)
dQ

if Q≪ P (Q is absolutely continuous w.r.t. P ) and +∞ otherwise.
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The KL is non-negative by Gibbs’ inequality (essentially an application of Jensen’s

inequality to the convex function x logx) and jointly convex in its arguments. If P is

taken uniform over a finite set, KL(Q,Unif(W)) = log |W| −H[Q] ≤ log |W| where H[Q]

is the entropy of Q (this sometimes reduces later PAC-Bayesian bounds to covering or

finite hypothesis space bounds). A less elementary property is the Donsker-Varadhan

dual formulation of the KL divergence, based on a following generalisation of the moment

generating function.

Theorem 3.6 (Csiszár (1975); Donsker and Varadhan (1975)). Let P ∈ P(Ω) be a probability

measure on Ω, and F be the set of measurable bounded real-valued functions on Ω. The

function KL(·,P ) has a convex dual, so that for any Q ∈ P(Ω),

KL(Q,P ) = sup
ϕ∈F

[∫
ϕdQ− log

∫
exp◦ϕdP

]
,

and for any ϕ ∈ F ,

log
∫

exp◦ϕdP = sup
Q∈P(Ω)

[∫
ϕdQ−KL(Q,P )

]
.

3.4.1 Generic PAC-Bayesian Result
This result can be used almost immediately to prove a result similar to the Cramer-Chernoff

bound Theorem 3.1.

Theorem 3.7 (Generic PAC-Bayes). For any fixed f : Zm×W and P ∈ P(W),

P
S∼Dm

(
∀Q ∈ P(W) : E

W∼Q
[f(S,W )] ≤ KL(Q,P )+ log Mf

δ

)
≥ 1− δ,

where

Mf := E
S′∼Dm

E
h∼P

[
ef(S′,W )

]
.

Proof. The proof of this statement is very similar to the Cramer-Chernoff method, but uses

Theorem 3.6. By Theorem 3.6, exponentiation, Markov’s inequality, and the definition of

Mf we find that

P
S∼Dm

(
sup

Q∈P(W)
E

W∼Q
[f(S,W )]−KL(Q,P )> log Mf

δ

)

= P
S∼Dm

(
log E

W∼P

[
ef(S′,W )

]
> log Mf

δ

)
= P
S∼Dm

(
E

W∼P

[
ef(S′,W )

]
>
Mf

δ

)
≤ E
S∼Dm

E
W∼P

[
ef(S′,W )

]
× δ

Mf

= δ.

The result follows by taking the complement of both sides.
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Similarly to in Theorem 3.1, the problem is reduced to that of bounding Mf . We

will study a few simple cases, firstly relating back to sub-Gaussian assumptions, then to

Theorem 3.3 and Theorem 3.5.

3.4.2 Sub-Gaussian PAC-Bayes
An easy case assumes that L(w)− L̂(w) is sub-Gaussian under Dm for any fixed w, and that

P is independent of S. This arises e.g. for bounded losses. The result obtained is like an

intermediate step in Theorem 3.2, and involves an additional scaling factor λ which cannot

be optimised over, unlike in Theorem 3.2.

Theorem 3.8 (Sub-Gaussian PAC-Bayes, e.g. Alquier et al., 20161). Let

log E
Z∼D

exp
(
t

(
ℓ(Z,w)− E

Z′∼D
ℓ(Z′,w)

))
≤ 1

2σ
2t2

for any t ∈ R, w ∈ W. Then for any fixed P ∈ P(W), δ ∈ (0,1) and λ > 0,

P
S∼Dm

(
∀Q ∈ P(W) : E

W∼Q
[L(W )− L̂(W )] ≤ 1

λ

(
KL(Q,P )+ log 1

δ
+ σ2λ2

2m

))
≥ 1− δ.

Proof. This result comes from Theorem 3.7 by substitution of f(S,W ) = λ(L(W )− L̂(W )).

We find that

Mf = E
S′∼Dm

E
h∼P

[
eλ(L(W )−L̂(W ))

]
= E
h∼P

E
S′∼Dm

[
eλ(L(W )−L̂(W ))

]
since P is independent of S. This factorises by the independence of the Zi and the individual

terms are bounded by the sub-Gaussian assumption.

Note that in particular, we can set λ=
√
m to get the high probability result over all Q

that

E
W∼Q

[L(W )− L̂(W )] ≤
KL(Q,P )+ log 1

δ + 1
2σ

2
√
m

,

with O(1/
√
m) convergence. However, unlike in Theorem 3.2, we cannot choose λ optimally

to place a square root over all the terms, because KL(Q,P ) is different for different values of

Q and therefore not known beforehand. This could be compared to the result in Eq. (3.3)

before taking the infimum over λ. Note also the crucial step where the order of expectations

under P and D is exchanged, through the independence of the prior from the data.

3.4.3 Catoni’s PAC-Bayes Bound
We next discuss a PAC-Bayes bound based on Theorem 3.3, where a similar issue of not

being able to optimise over C arises.

Theorem 3.9. Catoni’s PAC-Bayes Bound: Given ℓ ∈ [0,1], P ∈ P(W) and C > 0,

P
S∼Dm

(
E

W∼Q
L(W ) ≤ Φ−1

C

(
E

W∼Q
L̂(W )+

KL(Q,P )+ log 1
δ

mC

))
≥ 1− δ.

1Note also Alquier and Biau (2013b); Guedj and Alquier (2013b) which consider PAC-Bayesian regression

under sub-Gaussian noise, rather than sub-Gaussian losses.
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Proof. For fixed C > 0, consider f(S,W ) = C(ΦC(L(w)) − L̂(W )) in Theorem 3.7. Again

using the independence of P from S, and the Zi from each other

Mf = E
h∼P

E
S′∼Dm

[
eC(ΦC(L(w))−L̂(W ))

]
=
∏
i

eC(ΦC(L(w))−ℓ(Zi,W )) ≤ 1,

with the last step following from Eq. (3.4). Therefore

P
S∼Dm

(
∀Q ∈ P(W) : E

W∼Q
[ΦC(L(W ))] ≤ E

W∼Q
L̂(W )+

KL(Q,P )+ log 1
δ

Cm

)
≥ 1− δ.

Now ΦC is convex so by Jensen’s inequalty we can replace EQΦC(L) by ΦC(EQL) in the

above. Inversion of ΦC then gives the result.

The above bound is extremely tight when C is carefully chosen; in fact, when C is

optimal, the bound is the tightest possible for {0,1}-valued losses that can be proved using

Theorem 3.7 (Foong et al., 2021). However, as already noted, C cannot be chosen using the

data. One solution to this is to define a covering of C, i.e. a set {Ci : i ∈ N}, and combine

the bounds holding for each Ci in the cover using a union bound. This is the approach used

in the following bound (whose full proof we neglect, but which begins by constructing a

cover with Ci = αi for α > 1 and i ∈ N ). In the bound, α > 1 is a parameter controlling the

spacing of the cover, which we set near to 1 (e.g. 1+10−5) when empirically evaluating.

Theorem 3.10 (Catoni, 2007, Theorem 1.2.6). Given P ∈ P(W), α > 1 and δ ∈ (0,1)

P
S∼Dm

(
∀Q ∈ P(W) : E

W∼Q
[(L(W ))] ≤ inf

C>1/m
Φ−1
C

(
E

W∼Q
L̂(W )+ Kα

Cm

))
≥ 1− δ.

where

K := KL(Q,P )+ log 1
δ

+2log
(

log(α2Cm)
logα

)
.

This bound has the advantage that it gives a linear objective function in Q of

E
W∼Q

L̂(W )+ KL(Q,P )
Cm

,

where C is either fixed, or optimised in Theorem 3.10 alternatively with this linear objective.

Can we however optimise to get a bound in the form of Theorem 3.5? It turns out that

we can get such a bound through a different method, which is of similar overall tightness to

the above.

3.4.4 Maurer’s PAC-Bayes Bound

An alternative, more direct approach to obtain a result like Theorem 3.5 relies on the following

lemma.
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Theorem 3.11 (Maurer, 2004, Eq. 1). Let Zi ∈ [0,1], i ∈ [m] be i.i.d. random variables with

mean µ; then for any m≥ 12,

Eexp
(

kl
(

1
m

m∑
i=1

Zi, µ

))
≤ 2

√
m.

From this we give the following bound, a slightly weaker version of which was originally

proved in Seeger et al. (2001).

Theorem 3.12. Maurer’s PAC-Bayes Bound (Maurer, 2004; Seeger et al., 2001): Given

P ∈ P(W), and ℓ ∈ [0,1],

P
S∼Dm

(
∀Q ∈ P(W) : kl

(
E

W∼Q
L̂(W ), E

W∼Q
L(W )

)
≤

KL(Q,P )+ log 2
√
m
δ

m

)
≥ 1− δ.

Proof. The proof is very similar to that of Theorem 3.9. With f(S,W ) =mkl
(
L̂(W ),L(W )

)
,

Theorem 3.11 gives Mf ≤ 2
√
m in Theorem 3.7 (since we can exchange the order of expec-

tations over P and S by the independence of P from S). Since kl is jointly convex in its

arguments, kl
(
EW∼Q L̂(W ),EW∼QL(W )

)
≤ EW∼Q kl

(
L̂(W ),L(W )

)
= EW∼Q f(S,W )/m,

so the result follows from Theorem 3.7.

An immediate corollary of this bound is a result similar to the test bound Theorem 3.5,

with an extra log(2
√
m) term and the change-of-measure KL-divergence term, which generally

makes the largest contribution to the bound.

P
S∼Dm

(
∀Q ∈ P(W) : E

W∼Q
L(W ) ≤ kl−1

(
E

W∼Q
L̂(W ),

KL(Q,P )+ log 2
√
m
δ

m

))
≥ 1− δ.

2Technically Maurer (2004) proved the above for m ≥ 8, while the extension to 1 ≤ m ≤ 7 was performed

via a numerical verification in Germain et al. (2015), Lemma 15.



Chapter 4

Differentiable PAC-Bayes Objectives

with Partially Aggregated Neural

Networks

We make two related contributions motivated by the challenge of training stochastic

neural networks, particularly in a PAC-Bayesian setting: (1) we show how averaging

over an ensemble of stochastic neural networks enables a new class of partially-

aggregated estimators, proving that these lead to unbiased lower-variance output

and gradient estimators; (2) we reformulate a PAC-Bayesian bound for signed-

output networks to derive in combination with the above a directly optimisable,

differentiable objective and a generalisation guarantee, without using a surrogate

loss or loosening the bound. We show empirically that this leads to competitive

generalisation guarantees and compares favourably to other methods for training

such networks. Finally, we note that the above leads to a simpler PAC-Bayesian

training scheme for sign-activation networks than existing work by Letarte et al.

(2019).

4.1 Introduction
The use of stochastic neural networks has become widespread in the PAC-Bayesian and

Bayesian deep learning (Blundell et al., 2015) literature as a way to quantify predictive

uncertainty and obtain generalisation bounds. PAC-Bayesian theorems generally bound

the expected loss of randomised estimators, so it has proven easier to obtain non-vacuous

numerical guarantees on generalisation in such networks.

However, when training these networks in the PAC-Bayesian setting, the objective used

is generally somewhat divorced from the bound on misclassification loss itself, because the
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non-differentiability of bounds and stochasticity of predictors lead to difficulties with direct

optimisation. For example, Langford and Caruana (2002), Zhou et al. (2019), and Dziugaite

and Roy (2017) all initially train non-stochastic networks under a surrogate loss. These

are used as the mode of a distribution over predictors with variance chosen, respectively,

through a computationally-expensive sensitivity analysis, as a proportion of weight norms,

or by optimising an objective with both a surrogate loss function and a different dependence

on the Kullback–Leibler (KL) divergence from their bound.

In exploring methods to circumvent this gap, we note that PAC-Bayesian bounds

can often be straightforwardly adapted to aggregates or averages of estimators, leading

directly to analytic and differentiable objective functions (for example, Germain et al., 2009).

Unfortunately, averages over deep stochastic networks are usually intractable or, if possible,

very costly (as found by Letarte et al., 2019).

Motivated by these observations, our main contribution is to obtain a compromise by

defining new and general “partially-aggregated” Monte Carlo estimators for the average

output and gradients of deep stochastic networks, with the direct optimisation of PAC-

Bayesian bounds in mind. Although our main focus here is on the use of this estimator in a

PAC-Bayesian application, we emphasise that the technique applies generally to stochastic

networks and thus has links to other variance-reduction techniques for training them, such as

the path-wise estimator used in the context of neural networks by (Kingma and Welling, 2013)

amongst many others or Flipout (Wen et al., 2018); indeed, it can be used in combination

with these techniques. We prove that this application leads to lower variances than a Monte

Carlo forward pass and lower variance final-layer gradients than REINFORCE (Williams,

1992).

Our first application of this general estimator is to non-differentiable “signed-output”

networks for binary classification (with a final output ∈ {−1,+1} and arbitrarily complex

other structure, see Section 4.3). This allows direct application of partial-aggregation to

neural networks under the misclassification loss. As well as reducing variances as stated above,

a small amount of additional structure in combination with partial-aggregation enables us to

extend the path-wise estimator to the other layers, which usually requires a fully differentiable

network and eases training by reducing the variance of gradient estimates.

We adapt a binary classification bound from Catoni (2007) to these networks, yielding

straightforward and directly differentiable objectives when used in combination with aggrega-

tion, closing this gap between objectives and bounds. Since most of the existing PAC-Bayes

bounds for neural networks have a heavy dependency on the distance from initialisation of

the obtained solution, we would intuitively expect these lower variances to lead to faster

convergence and tighter bounds (from finding low-error solutions nearer to the initialisa-

tion). We indeed observe this experimentally, showing that training PAC-Bayesian objectives
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in combination with partial aggregation leads to competitive experimental generalisation

guarantees, and improves upon naive Monte Carlo with REINFORCE.

A further contribution is an specialisation of our method to sign-activation neural

networks, where we define new and computationally efficient gradient estimators. This

application leads us to a similar PAC-Bayesian training method to Letarte et al. (2019) for

these networks, but is arguably much simpler. That work successfully aggregated networks

with all sign activation functions ∈ {+1,−1} and a non-standard tree structure, but incurred

an exponential KL divergence penalty and a heavy computational cost. Further, the lower

variance of our obtained estimator predictions enables us to use the Gibbs estimator directly

(where we draw a single sample function for every new example), leading to a modified bound

on the misclassification loss which is a factor of two tighter without a significant performance

penalty. We show empirically that our method lets us train deeper such networks and obtains

tighter bounds.

A final contribution is an outline for generalising our partial-aggregation estimators to

more general settings.

Overview. In Section 4.2 we refresh notation and discuss gradient-based optimisation of

the misclassification loss in a PAC-Bayesian setting as well as aggregated predictors. In

Section 4.2.1 we introduce our “partial-aggregation” approach to the above problem in a

binary classification setting, showing how lower-variance gradient estimates can be obtained,

before specialising the above in Section 4.3 to the use of neural networks with binary-only

activation functions (as in Letarte et al., 2019), giving a different formulation of the above

and a more computationally efficient gradient estimator. We then go in the other direction

in Section 4.5 and show how partial-aggregation can be generalised beyond the binary

classification setting. We give empirical results in Section 4.6 for the optimisation of PAC-

Bayes bounds using partial-aggregation for binary classification, before discussing our results

in Section 4.7.

4.2 Background
We begin by refreshing notation and the requisite background. We will primarily consider the

problem of binary classification, or learning (a distribution over) parameterised functions of

the form {fθ : X → {+1,−1}|θ ∈ Θ ⊂ Rdθ } with X ⊂ Rd0 . These functions should minimise

the out-of-sample misclassification risk, L0(fθ) =E(xxx,y)∼D 111{fθ(xxx) ̸= y}, and be chosen based

on an i.i.d. sample S = {(xxxi,yi)}mi=1
iid∼ D from the data distribution D, using the surrogate

of in-sample empirical risk, L̂0(f).

We take a PAC-Bayesian approach, introducing a distribution Q over θ; Q itself will

be parameterised by ϕ ∈ Φ ⊂ Rdϕ , and we often assume it has a density, qϕ. PAC-Bayesian
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theorems then provide bounds on the expected generalisation risk of our randomised classifiers,

where every prediction is made using a newly sampled function from our posterior, fθ, θ ∼Q,

i.e. they bound Eθ∼QL0(fθ). Note that the term L̂0(f) is typically non-differentiable, since

ℓ0 is non-continuous. This is a problem when trying to optimise bounds, and is usually

addressed by introducing a surrogate loss function. However, we note that while ℓ0(fθ,(xxx,y))

is non-differentiable, Eθ∼Q ℓ0(fθ,(xxx,y)) might be with respect to ϕ, the parameter of Q.

To explore this possibility, we consider averaging to obtain Q-aggregated prediction

functions,

FQ(xxx) := E
θ∼Q

fθ(xxx) (4.1)

as often also seen in PAC-Bayes. Because fθ(xxx) ∈ {+1,−1} is a signed-output function, there

is an exact equivalence between the linear and misclassification losses; i.e. ℓ0(fθ,(xxx,y)) =

ℓlin(fθ,(xxx,y)), where the linear loss is defined for any score-output function as ℓlin(f,(xxx,y)) =
1
2 (1−yf(xxx)). By linearity we then have

E
θ∼Q

ℓ0(fθ,(xxx,y)) = E
θ∼Q

ℓlin(fθ,(xxx,y)) = ℓlin(FQ,(xxx,y)). (4.2)

If FQ is differentiable with respect to ϕ, we have removed the difficult stochastic derivative

and replaced it by a simple non-stochastic one when optimising with respect to ϕ.

Combining this with Theorem 3.10 (and recalling that α > 1 is a hyperparameter set

very close to 1), we then obtain a directly optimisable, high-probability bound on the

misclassification loss:

E
θ∼Q

L0(fθ) ≤ Φ−1
λ/m

[
L̂lin(FQ)+ α

λ

(
KL(Q,P )− logδ+2log

(
logα2λ

logα

))]
(4.3)

simultaneously holding for any λ > 1, with Φ−1
γ (t) := 1−exp(−γt)

1−exp(−γ) . This slightly opaque

bound was used previously by Zhou et al., 2019, and gives almost identical results to the

better-known “small-kl” PAC-Bayes bounds originated by Langford and Seeger (2001); Seeger

et al. (2001). It is chosen because it leads to objectives that are linear in the empirical loss

and KL divergence, like

L̂lin(FQ)+ KL(Q,P )
λ

. (4.4)

This objective is minimised by a Gibbs distribution and is closely related to the evidence

lower bound (ELBO) usually optimised by Bayesian Neural Networks (Blundell et al., 2015).

Such a connection has been noted throughout the PAC-Bayesian literature; we refer the

reader to Germain et al. (2016) or Knoblauch et al. (2019) for a formalised treatment.

4.2.1 Analytic Q-Aggregates for Signed Linear Functions
Q-aggregate predictors can be stated in closed analytic form for functions like fwww(xxx) =

sign(www ·xxx) under a normal distribution, Q(www) =N (µµµ,I).1 This case was specifically considered
1We define the sign function and “signed” functions have outputs ∈ {+1,−1}, as the terminology “binary”,

used sometimes in the literature, suggests to us too strongly an output ∈ {0,1}).
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in a PAC-Bayesian context for binary classification by Germain et al. (2009), obtaining a

differentiable objective similar to the SVM. They show that (as also in Langford, 2005)

E
www∼N (µµµ,I)

fwww(xxx) = E
www∼N (µµµ,I)

sign(www ·xxx) = erf
(

µµµ ·xxx√
2∥xxx∥

)
, (4.5)

using the Gaussian error function erf(x) = 2√
π

∫ x
0 e

−t2dt, which leads to the closed form

E
www∼N (µµµ,I)

ℓ0(fwww,(xxx,y)) = 1
2

(
1−y erf

(
µµµ ·xxx√
2∥xxx∥

))
.

This is smooth and differentiable with respect to µµµ, a parameter of Q, and thus can give an

easy gradient-optimisable objective function.

An approach which builds on the above was Letarte et al. (2019), which considered

extending Q-aggregates to signed-output feed-forward neural networks with sign activation

functions, but they did not obtain a closed form for the aggregate.

4.2.2 Monte Carlo and Gradients for More Complex Q-Aggregates
In general, the framework of Q-aggregates can be extended to less tractable cases (for

example, with fθ a randomised or a “Bayesian” neural network, see, e.g., (Blundell et al.,

2015)) through a simple and unbiased Monte Carlo approximation using {θt}Tt=1
iid∼ Q:

FQ(xxx) = E
θ∼Q

fθ(xxx) ≈ 1
T

T∑
t=1

fθt(xxx) =: F̂Q(xxx). (4.6)

Suppose Q has a density qϕ and we wish to obtain gradients w.r.t. ϕ without a closed

form for FQ(xxx) = Eθ∼qϕ
fθ(xxx). There are two main possibilities. One is REINFORCE

(Williams, 1992), which makes a Monte Carlo approximation to the right hand side of the

identity ∇ϕEθ∼qϕ
fθ(xxx) = Eθ∼qϕ

[fθ(xxx)∇ϕ logqϕ(θ)]2.

The other is the path-wise estimator, also known as the “re-parameterisation trick”.

This additionally requires that fθ(xxx) be differentiable with respect to θ, and that the

probability distribution of qϕ has a “standardisation” function, Sϕ, which removes the ϕ

dependence. This turns a parameterised qϕ into a non-parameterised distribution p: for

example, Sµ,σ(X) = (X−µ)/σ to transform a general normal distribution into a standard

normal. If this exists, the right hand side of ∇ϕEθ∼qϕ
fθ(xxx) = Eϵ∼p∇ϕfS−1

ϕ
(ϵ)(xxx) generally

yields lower-variance estimates than REINFORCE (see Mohamed et al., 2019, for a modern

survey). In fact, the variance introduced by REINFORCE can make it difficult to train

neural networks when the path-wise estimator is not available.

Unfortunately, we have defined fθ to be non-continuous, so the pathwise estimator is not

directly applicable. However, in this work find a compromise between the analytically closed

form of (4.5) and the basic monte carlo estimators that enable us to make differentiable
2The proof of this identity exchanges derivative with integral and uses the log-derivative trick ∇ϕqϕ(θ) =

qϕ(θ)∇ϕ logqϕ(θ)
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certain classes of network and extend the path-wise estimator where otherwise it could not

be used. Through this we are able to stably train a new class of network.

4.3 Aggregating Signed-Output Networks
Suppose we have a neural network for binary-classification with a final linear projection and

the rest of the network taking an arbitrary stochastic form (for example convolutions, residual

layers or a non-feedforward structure). We divide the parameter set θ= vec(www,θg) ∈ Θ ⊂ Rdθ ,

into www ∈ Rdfinal for the final layer, and θg ∈ Θg ⊂ Rdθ−dfinal the parameter set excluding www,

for the non-final layers of the network. The predictions of the network are binary in {+1,−1}

and take the form

fθ(xxx) := sign(www ·ggg(xxx,θg)) (4.7)

with non-final layers included in ggg : X × Θg → Adfinal ⊆ Rdfinal . We call such a binary

classification network (Eq. (4.7)) a signed-output network.

We introduce a distribution over parameters, Q(θ), which factorises like Q(θ) =

Qwww(www)Qg(θg), which is consistent with the literature (where Q factorises over neural net-

work layers). The final layer weights are drawn from a unit variance normal distribution,

Qwww(www) = N (µµµ,I), while the distribution Qg could be any tractable form.

Single Hidden Layer. As a clarifying example we will briefly consider the case of a neural

network a hidden ReLU layer and Gaussian weights. This sets fθ(xxx) = sign(www2 ·ReLU(W1xxx)),

where ReLU(t) = t111{t > 0} is applied elementwise. ggg(xxx,W1) = AAA1(W1xxx) for elementwise

applied activation AAA1, and the randomised parameters are θ = vec(www2,W1), W1 ∈ Rd1×d0 ,

www2 ∈ Rd1 . The distribution Q(θ) =Q2(www2)Q1(W1) factorises over the layers as above, and

Q1(W1) is Gaussian-distributed.

Signed-Outputs for PAC-Bayes. We now move to obtain stochastic binary classifiers with

guarantees for the expected misclassification error, Eθ∼QL0(fθ), which we do by optimising

PAC-Bayesian bounds. These PAC-Bayes bounds (as in Theorem 3.10) will usually involve

the non-differentiable and non-convex misclassification loss ℓ0. However, to train a neural

network we usually need to replace this by a differentiable surrogate or use REINFORCE, as

discussed in Section 4.1. When using our signed output networks, we can instead use the

trick in Eq. (4.2) to reduce it to the problem of studying the aggregates FQ, with the trick

also applicable to the gradients, since ℓlin is linear.

Partial-Aggregation. We recover a similar functional form to that considered in Sec-

tion 4.2.1 by rewriting the function as sign(www ·aaa) with aaa∈Adfinal the randomised hidden-layer
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activations. This arises by combining Eq. (4.5) with the factorisation of the layers:

FQ(xxx) = E
Q(θ)

[fθ(xxx)] = E
Qg(θg)

E
Qwww(www)

[sign(www ·ggg(xxx,θg)] (4.8)

= E
Qg(θg)

[
erf
(

µµµ ·ggg(xxx,θg)√
2∥ggg(xxx,θg)∥

)]
. (4.9)

In most cases the outer expectation cannot be calculated exactly or involves a large

summation, so we resort to a Monte Carlo estimate. Specifically, using Eq. (4.6) and Eq. (4.9)

with independent samples {(wwwt,θg,(t))}Tt=1
iid∼ Q and aaat := ggg(xxx,θg,(t)) leads to two different

unbiased estimators for the output of FQ(xxx):

F̂Q(xxx) := 1
T

T∑
t=1

sign(wwwt ·aaat) (4.10)

F̂ ∗
Q(xxx) := 1

T

T∑
t=1

erf
(

µµµ ·aaat√
2∥aaat∥

)
. (4.11)

The second we call the “partially-aggregated” estimator. We can use the above further to

obtain gradient estimates with respect to µµµ using either REINFORCE (for Eq. (4.10)) or

direct differentiation of Eq. (4.11) coupled with a Monte Carlo evaluation of aaa. This gives

the estimators ∇̂∇∇µµµFQ
∗

≈ ∇̂∇∇µµµFQ ≈ ∂FQ(xxx)
∂µµµ defined by

∇̂∇∇µµµFQ(xxx) := 1
T

T∑
t=1

sign(wwwt ·aaat)(µµµ−wwwt)

∇̂∇∇µµµFQ
∗
(xxx) := 1

T

T∑
t=1

aaat

∥aaat∥

√
2
π

exp
[

−1
2

(
µµµ ·aaat

∥aaat∥

)2]
.

Re-parameterisation for other layers. Since the partially-aggregated final layer is now

differentiable, we may also be able to use of path-wise gradients for the other layers, which

would not be possible otherwise due to the non-continuity of the sign function. For exam-

ple, this is possible in the single-hidden-layer ReLu case discussed above, since then g is

differentiable in W1, and Q1(W1) has a renormalisable density. Computationally, we might

implement the above by analytically finding the distribution on the “pre-activations” W1xxx

(trivial for the normal distribution) before sampling this and passing through the activation.

With the path-wise estimator this is known as the “local reparameterization trick” (Kingma

et al., 2015). It can lead to considerable computational savings on parallel minibatches

compared to direct hierarchical sampling, via aaa=AAA1(W1xxx) with W1 ∼Q1. We will utilise

this in all our reparameterizable dense networks, and a variation on it to save computation

when using REINFORCE in Sections 4.4 and 4.6.

This partial aggregation estimator thus leads to lower-variance gradient estimates and

better-behaved training objectives across a range of other possible network structure.
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4.3.1 Lower Variance Estimates of Aggregated Sign-Output

Networks
Here we prove some small results to show when lower variance estimates result from using

the aggregated estimator. In particular, we find that the reduction in variance from using

the partial-aggregation estimator is controlled by the norm ∥µµµ∥, so that for small ∥µµµ∥ (as

could be expected early in training) the difference can be large, while as ∥µµµ∥ grows, the

difference in variance is controlled and we could reasonably revert to the Monte Carlo (or

Gibbs) estimator. Note also that as FQ(xxx) → ±1 (as expected after training), both variances

disappear.

We also show that the non-aggregated gradients are noisier in all cases than the aggregate,

and demonstrate that these lower variances also lead to lower variance loss estimates.

Proposition 4.1. With the definitions given by Eqs. (4.10) and (4.11), for all xxx ∈ Rd0 ,

T ∈ N, and Q with normally-distributed final layer,

0 ≤ VQ[F̂Q(xxx)]−VQ[F̂ ∗
Q(xxx)] ≤ 1

T

(
1−
∣∣∣∣erf

(
∥µµµ∥√

2

)∣∣∣∣2
)
.

Proposition 4.2. Under the conditions of Proposition 4.1 and y ∈ {+1,−1},

E
Q

[ℓlin(F̂ ∗
Q,(xxx,y))] = E

Q
[ℓlin(F̂Q,(xxx,y))] = E

Q
[ℓ0(fθ,(xxx,y))]

while

VQ[ℓlin(F̂ ∗
Q,(xxx,y))] ≤ VQ[ℓlin(F̂Q,(xxx,y))] = 1

T
VQ[ℓ0(fθ,(xxx,y))] = 1

4T (1−|FQ(xxx)|2).

From the above we see that we can use the partially-aggregated F̂ ∗
Q in the linear loss

as a lower-variance way to estimate the misclassification loss under θ ∼Q compared with

a standard MC estimate from T samples. Below, we show that the final-layer gradient

estimates are strictly improved by the partially-aggregated estimator.

Proposition 4.3. Under the conditions of Proposition 4.1,

Cov[∇̂∇∇µµµFQ
∗
(xxx)]+ 1−2/π

T
I ⪯ Cov[∇̂∇∇µµµFQ(xxx)],

where A⪯B ⇐⇒ B−A is positive semi-definite. Thus, for all uuu with ∥uuu∥ = 1,

V[∇̂∇∇µµµFQ
∗
(xxx) ·uuu]+ 1−2/π

T
≤ V[∇̂∇∇µµµFQ(xxx) ·uuu].

Note 1−2/π ≈ 0.36> 0.

We note that the linearity of the linear loss (which is equivalent to the misclassification

loss for our signed-output functions) means that Proposition 4.3 also applies to the loss

gradient estimates up to scaling.
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Proof of Proposition 4.1. The left identity follows directly since conditioning cannot increase

the variance. Since EQ F̂Q(xxx) = EQ F̂ ⋆Q, we also have

VQ[F̂Q(xxx)]−VQ[F̂ ⋆Q(xxx)] = 1
T

(
1−E

aaa

∣∣∣∣erf
(

µµµ ·aaa√
2∥aaa∥

)∣∣∣∣2
)

≤ 1
T

(
1−
∣∣∣∣erf

(
∥µµµ∥√

2

)∣∣∣∣2
)
.

Proof of Proposition 4.2. The first equation follows from the linearity of the loss and the

equivalence Eq. (4.2). For the second we note

VQ[ℓlin(F̂Q,(xxx,y))] = E
Q

∣∣∣∣12(yFQ(xxx)−yF̂Q(xxx))
∣∣∣∣2 = 1

4VQ[F̂Q(xxx)]

and a similar result for F̂ ∗
Q, so the inequality follows from Proposition 4.1. Since F̂Q =∑T

t=1 fθt and fθt ∈ {+1,−1}, we have ℓlin(FQ,(xxx,y)) = 1
T

∑T
t=1 ℓ0(fθt ,(xxx,y)). The first

equality then follows by the independence of the θt and the second by substitution.

Proof of Proposition 4.3. Basic algebra shows (using EQ ∇̂∇∇µµµFQ = EQ ∇̂∇∇µµµFQ
∗
) that

Cov[∇̂∇∇µµµFQ(xxx)]−Cov[∇̂∇∇µµµFQ
∗
(xxx)] = 1

T

(
I−E

[
aaaaaaT

∥aaa∥2
2
π
e

−
(

µµµ·aaa
∥aaa∥

)2])
.

Thus for uuu ̸= 000,

TuuuT
(

Cov[∇̂∇∇µµµFQ(xxx)]−Cov[∇̂∇∇µµµFQ
∗
(xxx)]

)
uuu= ∥uuu∥2 − 2

π
E
[

|uuu ·aaa|2

∥aaa∥2 e
−
(

µµµ·aaa
∥aaa∥

)2]
≥ ∥uuu∥2

(
1− 2

π

)
.

Above we took uuu inside the expectation term, which is then bounded using |uuu ·aaa|/∥aaa∥ ≤ ∥u∥,

and e−|t| ≤ 1 for all t ∈ R.

4.4 All Sign Activation Networks
Here we examine an important special case previously examined by Letarte et al. (2019): a

feed-forward network with all sign activations and normal weights. For this setting combine

our partial aggregation idea with another idea of “conditional sampling” is inspired by the

local reinforce trick. This lets us define and use a marginalised REINFORCE-style gradient

estimator for conditional distributions; this does not necessarily have better statistical

properties but in combination with the above is much more computationally efficient.

These networks take the form

f sign
θ (xxx) = sign(wwwL · sign(WL−1 . . .sign(W1xxx) . . .))

with θ := vec(wwwL, . . . ,W1) and Wl := [wwwl,1 . . .wwwl,dl
]T ; l ∈ {1, ...,L} are the layer indices. For

the weight distribution, we choose unit-variance normal distributions on the weights, which
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factorise into Ql(Wl) =
∏dl
i=1 ql,i(wwwl,i) with ql,i = N (µµµl,i, Idl−1). ggg(xxx,vec(W1, . . . ,WL−1)) =

sign(WL−1 . . .sign(W1xxx) . . .) is the final layer activation, which could easily be sampled by

mapping xxx through the first L−1 layers with draws from the weight distribution. Therefore

we could simply apply our partial aggregation to the final layer and be finished.

Instead, we go on to make an iterative replacement of the weight distributions on each

layer by conditionals on the layer activations. If al is the activations of the hidden layer l

(with aaa0 := xxx the input), then the conditional distribution Q̃l(aaal|aaal−1) is that defined by

sampling Wl ∼Ql and setting aaal = sign(Wlaaal−1). These conditionals can be found in closed

form: we can factorise individual hidden units Q̃l(aaal|aaal−1) :=
∏dl
i=1 q̃l,i(al,i|aaal−1), and find

their activation distributions (with z a dummy integration variable in Normal distribution

N (z;µ,σ2)):

q̃l,i(al,i = ±1 |aaal−1) =
∫ ∞

0
N (z;±µµµl,i ·aaal−1,∥aaal−1∥2)dz = 1

2

[
1± erf

(
µµµl,i ·aaal−1√

2∥aaal−1∥

)]
.

We can then write

F sign
Q (xxx) =

∑
aaa1∈{+1,−1}d1

Q̃1(aaa1|xxx) . . .
∑

aaaL−1∈{+1,−1}dL−1

Q̃L−1(aaaL−1|aaaL−2) erf
(
µµµL ·aaaL−1√

2∥aaaL−1∥

)
.

(4.12)

The number of terms is exponential in the depth so we instead hierarchically sample

the aaal. This leads to a “local REINFORCE trick” gradient estimator inspired by local

reparameterisation, which leads to a considerable computational saving over sampling a

separate weight matrix for every input. Using samples {(aaat1 . . .aaatL−1)}Tt=1 ∼ Q̃, this is defined

by
∂F sign

Q (xxx)
∂µµµl,i

≈ 1
T

T∑
t=1

erf
(
µµµL ·aaatL−1√

2∥aaatL−1∥

)
∂

∂µµµl,i
log q̃l,i(atl,i|aaatl−1). (4.13)

Comparison to Letarte et al. (2019). Our formulation in Eq. (4.13) and Eq. (4.12)

somewhat resembles the PBGNet model of Letarte et al. (2019), but derived in a very different

way. Both are equivalent in the single-hidden-layer case, but with more layers PBGNet

uses an unusual tree-structured network to make the individual activations independent

and avoid an exponential computational dependency on the depth in Eq. (4.12). This

makes the above summation exactly calculable in less time, but in practice the speed up

is not enough, so they resort further to a Monte Carlo approximation. Informally, this

draws new samples for every layer l based on an average of those from the previous layer,

aaal|{aaa
(t)
l−1}Tt=1 ∼ 1

T

∑T
t=1 Q̃(aaal|aaa(t)

l−1). This approach is justified within their tree-structured

framework but leads to an exponential KL penalty which—as hinted by Letarte et al. (2019)

and shown empirically in Section 4.6—makes PAC-Bayes bound optimisation strongly favour

shallower such networks. Our formulation avoids this, is more general—applying to alternative

network structures—and we believe it is significantly easier to understand and use in practice.
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4.5 The General Partial Aggregation Estimator
Q-aggregation can instead be generalised to more complex neural networks. This leads to

different lower-variance Monte Carlo estimators for their outputs and gradients. Specifically,

we can generalise to the form

rθ(xxx) = ψ(ggg(xxx,θg),www) (4.14)

with θ = vec(www,θg) ∈ Θ ⊂ Rdθ , www ∈ Rdfinal , and θg ∈ Θg ⊂ Rdθ−dfinal the parameter set

excluding www, for the non-final layers of the network. These non-final layers are included in

ggg : X × Θg → Adfinal ⊆ Rdfinal and the final output passes through ψ : Rdfinal ×Rdfinal → R.

For simplicity we have used a one-dimensional output but we note that the formulation and

below derivations could extend to a vector-valued function. We require the distribution over

parameters to factorise like Q(θ) =Qwww(www)Qg(θg).

We then recover a similar functional form to that considered in Section 4.2.1 by rewriting

the function as ψ(aaa,www) with aaa= ggg(xxx,θg) the hidden-layer activations. We define the “aggre-

gated” final layer function, I(aaa) :=
∫
ψ(aaa,www)dQwww(www), which may be analytically tractable.

For example, with www∼N (µµµ,I) and ψ(aaa,www) = sign(aaa ·www) as in Section 4.3.1, we recall Eq. (4.5)

where I(aaa) = erf
(

µµµ·aaa√
2∥aaa∥

)
.

When this is analytically tractable, we can define a general form of the partial aggregation

estimator using

RQ(xxx) = E
Qg(θg)

E
Qwww(www)

[ψ(ggg(xxx,θg),www)] = E
Qg(θg)

[I (ggg(xxx,θg))].

We therefore obtain a general partially-aggregated estimator, R̂∗
Q(xxx) alongside the

standard Monte Carlo estimate R̂Q(xxx) in

R̂Q(xxx) := 1
T

T∑
t=1

ψ(aaat,wwwt) R̂∗
Q(xxx) := 1

T

T∑
t=1

I(aaat) (4.15)

where aaat = ggg(xxx,θg,(t)) for {wwwt,θg,(t)}Tt=1
iid∼ Q. Assuming the existence of densities qϕ, we

can use these to also define the REINFORCE and partial-aggregation gradient estimators as

∇̂∇∇µµµRQ(xxx) := 1
T

T∑
t=1

ψ(wwwt ·aaat)∇ϕ logqϕ(wwwt) ∇̂∇∇µµµRQ
∗
(xxx) := 1

T

T∑
t=1

∇ϕIϕ(aaat). (4.16)

We show below partial-aggregation can lead to lower variances. We note also that under

additional conditions, it might enable the use of the path-wise estimator for the gradients of

non-final layers by making the overall output continous in cases where ψ is not.

Proposition 4.4. For a function defined by Eq. (4.14) with the unbiased Q-aggregation

estimators defined by Eqs. (4.15) and (4.16),

VQ[R̂∗
Q(xxx)] ≤ VQ[R̂Q(xxx)].
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and

CovQ[∇̂∇∇µµµFQ
∗
(xxx)] ⪯ CovQ[∇̂∇∇µµµFQ(xxx)]

where A⪯B ⇐⇒ B−A is positive semi-definite.

Proof. The first part follows since conditioning cannot increase the variance. For the second

part, writing vvv := ∇ϕ logqϕ(www) and using the unbiasedness of the estimators,

CovQ[∇̂∇∇µµµFQ(xxx)]−CovQ[∇̂∇∇µµµFQ
⋆
(xxx)]

= E
Q

[∇̂∇∇µµµFQ(xxx)∇̂∇∇µµµFQ(xxx)T ] − E
Q

[∇̂∇∇µµµFQ
⋆
(xxx)∇̂∇∇µµµFQ

⋆
(xxx)T ]

= 1
T
E
aaa

[
E
www

[ψ(www ·aaa)2 vvvvvvT ] − ∇ϕIϕ(aaa)∇ϕIϕ(aaa)T
]

= 1
T
E
aaa

[
Covwww[ψ(www ·aaa)∇ϕ logqϕ(www)]

]
⪰ 0

where in the final lines we have used ∇ϕIqϕ
(aaat) = ∇ϕEwww[ψ(www ·aaa)] = Ewww[ψ(www ·aaa)vvv] and the

positive semi-definiteness of the covariance.

4.6 Empirical Evaluation
We now move to obtain binary classifiers with guarantees for the expected misclassification

error on a real dataset by optimising PAC-Bayesian bounds. Such bounds (as in Theorem 3.10)

will usually involve the non-differentiable and non-convex misclassification loss ℓ0. However,

to train a neural network we usually need to replace this by a differentiable surrogate, as

discussed in the introduction. Instead we use the gradient descent objective function

L̂lin(F̂ ∗
Q)+ KL(Q,P )

λ
. (4.17)

based on Eq. (4.4) with the partial-aggregation estimator and its gradient estimates ∇̂∇∇µµµFQ
∗
.

λ is either held fixed (“fix-λ”) or simultaneously optimised on alternative minibatches

using Eq. (4.3) (with α= 1+10−5) throughout training for automatic regularisation tuning

(“optim-λ”).

Our experiments (Table 4.1) run on “binary”-MNIST, dividing MNIST into two classes,

of digits 0–4 and 5–9. The considered neural networks had three hidden layers with 100 units

per layer and sign, sigmoid (sgmd) or relu activations, before a single-unit final layer with

sign activation. Q is chosen as an isotropic, unit-variance normal distribution with initial

means drawn from a truncated normal distribution of variance 0.05. The data-free prior

P is fixed equal to the initial Q, as motivated by Dziugaite and Roy (2017, Section 5 and

Appendix B).

The objectives fix-λ and optim-λ were used for batch-size 256 gradient descent with

Adam (Kingma and Ba, 2014) for 200 epochs. Every five epochs, the bound (for a minimising

λ) was evaluated using the entire training set; the learning rate was then halved if the bound
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Table 4.1: Average (from ten runs) binary-MNIST losses and bounds (δ = 0.05) for the best

epoch and optimal hyperparameter settings of various algorithms. Hyperparameters and

epochs were chosen by bound if available and non-vacuous, otherwise by training linear loss.

mlp pbg
Reinforce Fix-λ Optim-λ

sign relu sign sgmd relu sign sgmd relu

Train Linear 0.78 8.72 26.0 18.6 8.77 7.60 6.35 6.71 6.47 5.41

error, 1σ 0.08 0.08 0.8 1.4 0.04 0.19 0.10 0.11 0.18 0.16

Test 0–1 1.82 5.26 25.4 17.9 8.73 7.88 6.51 6.85 6.84 5.61

error, 1σ 0.16 0.18 1.0 1.5 0.23 0.30 0.19 0.27 0.21 0.20

Bound 0–1 - 40.8 100 100 21.7 18.8 15.5 22.6 19.3 16.0

error, 1σ - 0.2 0.0 0.0 0.04 0.17 0.04 0.03 0.31 0.05

was unimproved from the previous two evaluations. The best hyperparameters were selected

using the best bound achieved in these evaluations through a grid search of initial learning

rates ∈ {0.1,0.01,0.001}, sample sizes T ∈ {1,10,50,100}. Once these were selected training

was repeated 10 times to obtain the values in Table 4.1.

λ in optim-λ was optimised through Eq. (4.3) on alternate mini-batches with SGD

and a fixed learning rate of 10−4 (whilst still using the objective (4.17) to avoid effectively

scaling the learning rate with respect to empirical loss by the varying λ). After preliminary

experiments in fix-λ, we set λ=m= 60,000, the training set size, as is common in Bayesian

deep learning.

Baselines. We also report the values of three baselines: reinforce, which uses the fix-λ

objective without partial-aggregation, forcing the use of REINFORCE gradients everywhere;

mlp, an unregularised non-stochastic relu neural network with tanh output activation; and

the PBGNet model (pbg) from Letarte et al. (2019). For the latter, a misclassification

error bound obtained through ℓ0 ≤ 2ℓlin must be used as their test predictions were made

by averaging multiple weight draws, giving a prediction function ∈ [−1,+1], not ∈ {+1,−1}.

Further, despite significant additional hyperparameter exploration, we were unable to train

a three layer network through the PBGNet algorithm directly comparable to our method,

likely because of the exponential KL penalty (in their Equation 17) within that framework;

to enable comparison, we therefore allowed the number of hidden layers in this scenario to

vary ∈ {1,2,3}. Other baseline tuning and setup was similar to the above, see Section 4.A

for more details.
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4.7 Discussion
The experiments demonstrate that partial-aggregation enables training of multi-layer non-

differentiable neural networks in a PAC-Bayesian context, which is not possible with RE-

INFORCE gradients and a multiple-hidden-layer PBGNet (Letarte et al., 2019). These

obtained only vacuous bounds, and our misclassification bounds also improve those of a

single-hidden-layer PBGNet.

Our experiments raise a couple of questions: firstly, why is it that lower variance

estimates empirically lead to tighter bounds? We speculate that the faster convergence

of SGD in this case takes us to a more “local” minimum of the objective, closer to our

initialisation. Since most existing PAC-Bayes bounds for neural networks have a very strong

dependence on this distance from initialisation through the KL term, this leads to tighter

bounds. This distance could also be reduced through other methods we consider out-of-scope,

such as the data-dependent bounds employed by Dziugaite and Roy (2018) and Letarte et al.

(2019).

A second and harder question is asking why the non-stochastic mlp model obtains a

lower overall error. The bound optimisation is empirically quite conservative, but does not

necessarily lead to better generalisation; understanding this gap is a key question in the

theory of deep learning.

Survey of later work. Two later publications by different authors examined very similar

topics to this work, with ideas coming from this original publication. Clerico et al. (2022)

combined our general partial-aggregation idea with a gradient estimator for the misclassi-

fication loss under multi-class linear classification with Gaussian-distributed weights from

Clerico et al. (2023). Through this they were able to directly gradient-optimise PAC-Bayes

bounds for deep neural networks with Gaussian weights, obtaining state-of-the-art bounds

for multi-class classification.

Fortier-Dubois et al. (2023) further explored the aggregation of signed-activation networks

with Gaussian weights based on our Eq. (4.12) with conditional distributions over the

activations. They note that this sum, which we approximate by sub-sampling, can be directly

calculated in much faster time by a dynamic program, at the expense of higher memory

usage.
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4.A Further Experimental Details
4.A.1 Aggregating Biases with the Sign Function
We used a bias term in our network layers, leading to a simple extension of the above

formulation, omitted in the main text for conciseness:

E
www∼N (µµµ,Σ),b∼N (β,σ2)

sign(www ·xxx+ b) = erf
(

µµµ ·xxx+β√
2(xxxTΣxxx+σ2)

)

since www ·xxx+ b∼ N (µµµ ·xxx+β,xxxTΣxxx+σ2) and

E
z∼N (α,β2)

signz = P (z ≥ 0)−P (z < 0)

= [1−Φ(−α/β)]−Φ(−α/β)

= 2Φ(α/β)−1 = erf(α/
√

2β).

The bias and weight co-variances were chosen to be diagonal with a scale of 1, which

leads to some simplification in the above.

4.A.2 Scaling REINFORCE
During evaluation reinforce draws a new set of weights for every test example, equivalent

to the evaluation of the other models; but doing so during training, with multiple parallel

samples, is prohibitively expensive. Two different approaches to straightforward, not partially-

aggregated, gradient estimation for this case suggest themselves, arising from different

approximations to the Q-expected loss of the minibatch, B ⊆ S (with data indices B). From

the identities

∇ϕ E
θ∼qϕ

L̂B(fθ) = E
θ∼qϕ

1
|B|

∑
i∈B

ℓ(fθ,(xxxi,yi))∇ϕ logqϕ(θ)

= 1
|B|

∑
i∈B

E
θ∼qϕ

ℓ(fθ,(xxxi,yi))∇ϕ logqϕ(θ)

we obtain two slightly different estimators for ∇ϕEθ∼qϕ
L̂B(fθ):

1
T |B|

T∑
t=1

∑
i∈B

ℓ(fθ(t,i) ,(xxxi,yi))∇ϕ logqϕ(θ(t,i))

1
T |B|

∑
i∈B

T∑
t=1

ℓ(fθt ,(xxxi,yi))∇ϕ logqϕ(θt).

The first draws many more samples and has lower variance but is much slower compu-

tationally; even aside from the O(|B|) increase in computation, there is a slowdown as the

optimised BLAS matrix routines cannot be used, and the very large matrices involved may

not fit in memory (see Kingma et al., 2015, for more information).

Therefore, as is standard in the Bayesian Neural Network literature with the path-wise

estimator, we use the latter formulation, which has a similar computational complexity to
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local-reparameterisation and our marginalised REINFORCE estimator (4.13). We should

note though that in preliminary experiments, the alternate estimator did not appear to lead

to improved results. This clarifies the advantages of marginalised sampling, which can lead

to lower variance with a similar computational cost.

4.A.3 Dataset Details

We used the MNIST dataset version 3.0.1, available online at http://yann.lecun.com/

exdb/mnist/, which contains 60,000 training examples and 10,000 test examples, which

were used without any further split, and rescaled to lie in the range [0,1]. For the “binary”-

MINST task, the labels +1 and −1 were assigned to digits in {5,6,7,8,9} and {0,1,2,3,4},

respectively, and images were scaled into the interval [0,1].

4.A.4 Hyperparameter Search for Baselines

The baseline comparison values offered with our experiments were optimized similarly to the

above, for completeness we report everything here.

The MLP model had three hidden ReLu layers of size 100 each trained with Adam, a

learning rate ∈ {0.1,0.01,0.001} and a batch size of 256 for 100 epochs. Complete test and

train evaluation was performed after every epoch, and in the absence of a bound, the model

and epoch with lowest train linear loss was selected.

For PBGNet we choose the values of hyperparameters from within these values giving

the least bound value. Note that, unlike in Letarte et al. (2019), we do not allow the

hidden size to vary {∈ 10,50,100}, and we use the entire MNIST training set as we do not

need a validation set. While attempting to train a three hidden layer network, we also

searched through the hyperparameter settings with a batch size of 64 as in the original, but

after this failed, we returned to the original batch size of 256 with Adam. All experiments

were performed using the code from the original paper, available at https://github.com/

gletarte/dichotomize-and-generalize.

Since we were unable to train a multiple-hidden-layer network through the PBGNet

algorithm, for this model only we explored different numbers of hidden layers ∈ {1,2,3}.

4.A.5 Final Hyperparameter Settings

In Table 4.2 we report the hyperparameter settings used for the experiments in Table 4.1

after exploration. To save computation, hyperparameter settings that were not learning

(defined as having a whole-train-set linear loss of > 0.45 after ten epochs) were terminated

early. This was also done on the later evaluation runs, where in a few instances the fix-λ

sigmoid network failed to train after ten epochs; to handle this we reset the network to

obtain the main experimental results.

For clarity we repeat here the hyperparameter settings and search space:

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/gletarte/dichotomize-and-generalize
https://github.com/gletarte/dichotomize-and-generalize
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Table 4.2: Chosen Hyperparameter

settings and additional details for results in Table 4.1. Best hyperparameters were chosen by

bound if available and non-vacuous, otherwise by best training linear loss through a grid

search as described in Section 4.6 and Section 4.A.4. Run times are rounded to nearest 5 min.

mlp pbg
Reinforce Fix-λ Optim-λ

sign relu sign relu sgmd sign relu sgmd

Init. LR 0.001 0.01 0.1 0.1 0.01 0.1 0.1 0.01 0.1 0.1

Samples, T - 100 100 100 100 50 10 100 100 10

Hid. Layers 3 1 3 3 3 3 3 3 3 3

Hid. Size 100 100 100 100 100 100 100 100 100 100

Mean KL - 2658 15,020 13,613 2363 3571 3011 5561 3204 4000

Runtime/min 10 5 40 40 35 30 25 35 30 25

• Initial Learning Rate ∈ {0.1,0.01,0.001}.

• Training Samples ∈ {1,10,50,100}.

• Hidden Size = 100.

• Batch Size = 256.

• Fix-λ, λ=m= 60,000.

• Number of Hidden Layers = 3 for all models, except PBGNet ∈ {1,2,3}.

4.A.6 Implementation and Runtime
Experiments were implemented using Python and the TensorFlow library (Abadi et al., 2015).

Reported approximate runtimes are for execution on a NVIDIA GeForce RTX 2080 Ti GPU.
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Chapter 5

On Margins and Derandomisation in

PAC-Bayes

We give a general recipe for derandomising PAC-Bayesian bounds using margins,

with the critical ingredient being that our randomised predictions concentrate

around some value. The tools we develop straightforwardly lead to margin bounds

for various classifiers, including linear prediction—a class that includes boosting and

the support vector machine—single-hidden-layer neural networks with an unusual

erf activation function, and deep ReLU networks. Further, we extend to partially-

derandomised predictors where only some of the randomness is removed, letting us

extend bounds to cases where the concentration properties of our predictors are

otherwise poor.

5.1 Introduction
PAC-Bayesian generalisation bounds have recently seen a resurgence of interest after the

comparative successes of a series of papers applying them to deep neural networks, beginning

with Dziugaite and Roy (2017, 2018); Neyshabur et al. (2018), and Letarte et al. (2019);

Zhou et al. (2019). One can use these to understand where to apply techniques and motivate

new learning algorithms (as for example Foret et al., 2021), as well as provide certification

for a given predictor and address the more ambitious goal of understanding generalisation.

One particularly useful aspect of PAC-Bayesian results compared to standard PAC/VC

results is that they are non-uniform: the tightness of the guarantee on the generalisation

error depends on the specific predictor chosen, not merely on its performance on the training

set. This is necessary in cases where our broad class can easily overfit—as for example with

many neural networks architectures, which were shown by Zhang et al. (2021) to be able

to fit random training labels—since any guarantee must then selectively favour predictors
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which are reasonable given real data. If our strategic choice of learner turns out to be a good

match in practice to the data-generating distribution, the bound should reflect this.

But how to measure this match based only on the training data? A common approach

is that we should not just take into account the train error of a given predictor but also

its confidence. One way to formalise this is the concept of a margin, introduced to bound

the error of the perceptron (Novikoff, 1962) and later used to motivate the support vector

machine (Cortes and Vapnik, 1995). A confident predictor with a large margin on a given

example will be locally robust to parameter (and data) perturbations. If this is true across

the dataset our bounds should reflect this and be tighter. From the perspective of Occam’s

razor this robustness leads to a large set of valid perturbations giving near-equivalent (in

terms of dataset outputs) predictors; some predictor in this set is thus likely to be close to a

“simple” prediction rule of the kind that we should generally favour (Schapire et al., 1998).

Remarkably, this idea of parameter robustness—as measured by margins—can be

formalised through the lens of PAC-Bayes, which more typically bounds the loss of randomised

predictors (although work on derandomised PAC-Bayesian bounds is as old as the field,

particularly when relating to the average prediction; bounds holding with high probability

over a sampled predictor directly drawn from the PAC-Bayes posterior appear in e.g. Alquier

and Biau, 2013a; Catoni, 2007; Guedj and Alquier, 2013a). After picking a derandomised

prediction rule, we can construct a (weighted) class of “proxy” predictors that approximate

this rule, with the size and diversity of this class growing with the allowed margin. Since

a larger such class is more likely to overlap strongly with our PAC-Bayesian prior, tighter

bounds are obtained for larger margins. This idea has been used informally by Langford

and Seeger (2001) and Langford and Shawe-Taylor (2003): here we formalise and extend it

considerably.

A critical ingredient in this process is the construction of randomised classifiers that have

favourable concentration properties—simply, that the parameters are robust to perturbations—

so that their deviations from a central derandomised prediction rule are bounded with high

probability. The insight that these deviations need only be controlled with high probability

rather than certainty is crucial in obtaining better rates and simplifying proofs, and opens

the door to the application of powerful concentration of measure results.

We use this to prove bounds for a variety of useful situations. Firstly L2 and L1 normed

linear prediction; in the L2 “hard-margin” case this improves on the bound of Bartlett and

Shawe-Taylor (1998) and matches the lower bound of Grønlund et al. (2020); the other

bounds relax to the state of the art with simpler proofs. Next for one-hidden-layer neural

networks with erf activations, involving an interesting new randomised predictor taking the

form of a mixture distribution. Finally we prove a bound for deep ReLU networks which is a

slight improvement on that of and has proof ideas drawing from Neyshabur et al. (2018).
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We go further and introduce the idea of partially-derandomised predictors, which remove

only some of the randomness from the proxy predictors. This enables us to obtain bounds in

further cases which would otherwise be difficult to address. We hope that these tools can be

further developed to address situations where classical bounding techniques have not worked

well (such as in deep neural networks), and that our derived corollaries—such as that for

linear prediction—can be used in practice for the provision of self-certifying predictors and

model selection.

Outline. In Section 5.2 we give an overview of our general method and of the bounds proved

with it. We introduce our technique for proving margin bounds through PAC-Bayes in

Section 5.3 before giving such bounds for a variety of different prediction function types and

discussing previous bounds in Section 5.4. In Section 5.5 we show how our method can be

generalised to “partially-derandomised’ predictors before summarising in Section 5.6.

Notation. We will consider classification of i.i.d. examples from a distribution, D, on some

product space Z =X ×Y , by vector-valued predictors in a function space H ⊂ ŶX . For binary

classification Y = {+1,−1}, Ŷ = R and we take the sign of the output as our prediction, while

for multi-class prediction, Y = [dout] := {1, . . . ,dout}, Ŷ = Rdout and the maximum argument

is the prediction. In our specific function space bounds X will always be a subset of a real

vector space; when the dimension is finite we denote it by din.

The multi-class margin, M : H×Z → R is the mapping

M(f,x,y) := f(xxx)[y]−max
y′ ̸=y

f(xxx)[y′]

where by f(x)[y] we indicate the yth component of f(x). In a slight abuse of notation we also

define the binary margin M(f,x,y) := yf(x). The margin loss is ℓγ(f,z) = 111{M(f,z) ≤ γ};

note it has the rescaling property ℓγ(f,z) = ℓβγ(βf,z) for any β > 0. 1

The margin error is Lγ(f) :=Pz∼D{M(f,z) ≤ γ}, so L(f) :=L0(f) is the misclassification

loss or probability of error, and L̂γ(f) := m−1|{(x,y) ∈ S : yf(x) ≤ γ}| for the empirical

margin error (defined for some sample S ∼ Dm and margin γ ≥ 0). We will also use the

abbreviation PD(A) = Pz∼D(A) and similar for the expectation.

5.2 Overview of Results
For each function f in the class H we define a corresponding proxy distribution Q such that

∀z ∈ Z : P
g∼Q

(M(g,z)−M(f,z)> γ/2) ≤ ϵ.

1In a slight abuse of notation we will freely interchange M(f,x,y) as per Chapter 2 and the less cluttered

M(f,z) where z = (x,y).
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In other words, the proxy distribution margins concentrate around f . This ϵ high probability

term is a crucial difference from the covering number approach, and considerably simplifies

proofs, since only a concentration bound is required. For example, if Q is a sub-Gaussian

distribution with mean f for any fixed xxx, the above is possible with exponentially small ϵ

(i.e. ϵ ∈ O(exp
(
−γ2))). For example, we might choose the class of linear predictors fwww with

parameters www; a possible sub-Gaussian Q adds zero-mean Gaussian noise to these parameters.

When this happens, we can replace the loss of f with a loss of Q, at the price of a larger

margin requirement to avoid an error (and a small additive term). Specifically, we show that

the above implies

L0(f)− E
g∼Q

Lγ/2(g) ≤ ϵ and E
g∼Q

L̂γ/2(g)− L̂γ(f) ≤ ϵ.

The purpose of constructing Q is that a PAC-Bayesian bound can then be freely applied

to it using the loss ℓγ/2. Such a PAC-Bayesian bound then involves a complexity term

KL(Q,P ) for prior P , which can sometimes be made quite small for clever choices of P . We

optimise Q to trade off the additive ϵ terms (essentially by adjusting the tightness of the

concentration) with the usual KL term (which increases as the proxy shrinks to a point). This

gives a margin bound for f in which explicit dependence on the proxy has been eliminated.

Since in most cases we would like our bounds to be simultaneously valid for every γ > 0,

a final step is often a union bound of some kind over different possible cases for this. We

briefly overview the specific bounds proved in this work below.

L2-normed linear predictors. This is the class of linear binary classifiers, fwww(xxx) = ⟨www,xxx⟩,

with ∥www∥2 ≤ 1, and ∥xxx∥ ≤ R. In this case, our class of proxy functions is constructed by

adding standard Gaussian noise to the weight vector, and a zero-mean Gaussian prior on the

weight vector. The proof also involves an additional scaling trick which simplifies the KL

divergence and enables free choice of γ > 0, without a union bound argument.

A relaxation of our high probability margin bounds on this class (w.l.o.g. setting R= 1)

is given by

L0(fwww) ≤ L̂γ(fwww)+O

√γ−2 logm+log 1
δ

m

 ,
holding simultaneously for all γ > 0 and ∥www∥2 ≤ 1. Note however that our general form is

significantly tighter than this weak relaxation.

L1/L∞-normed linear predictors. The above bound with L2 norms for X and w, applies

to situations such as the SVM. We also provide bound for linear classification under different

norm constraints, where the L1 norm of the weights and L∞ norm of the features is restricted,

as in boosting. The overall function takes the form fwww =
∑
wixi which can be approximated
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in a sub-Gaussian way (since the features are bounded) by sampling index i with probability

wi. Since this does not give us control of the sub-Gaussian constant, we average multiple

draws like T−1∑T
t=1xi(t), with i(t) ∼ Categ(www) for each i ∈ [T ]. The number of averaged

features T , controls the size of ϵ (with ϵ ∈ O(e−T )).

Overall, this leads to bounds for such predictors that relax to

L0(fwww) ≤ L̂γ(fwww)+O

√γ−2 logm logdin +log 1
δ

m

 ,
where din is the number of input features. Note again that the final form of our bound is

considerably tighter than the above.

SHEL Networks Although the above contributions present significant improvements over

previous margin bounds, their proof ideas still closely correlate with existing work. In the case

of our bounds for SHEL networks, we introduce significant new ideas in the constriction of the

proxy distribution, leading to a bound with new features, in particular a lack of dependence

on the width. SHEL (single hidden erf layer) networks are defined straightforwardly for

normalised data by fU,V (xxx) = V erf(Uxxx).

The proxy distribution has three components: the error function (erf) activation arises

through the aggregation of a sign(www ·xxx) with normally-distributed www; this is turned into a

vector output by multiplying by a vector random variable supported on {+1,−1}dout ; then

multiple hidden units are differentiated by using a mixture distribution over the above, with

each component of the mixture corresponding to a different hidden unit in fU,V . To control

the sub-Gaussian constant we use the averaging trick from the L1 case; essentially this lets

us trade off the size of ϵ with the KL divergence.

Overall, this leads to bounds for SHEL networks like

L0(FU,V ) ≤ L̂γ(FU,V )+ Õ
(√

dhid
γ

√
m

(
V∞∥U −U0∥F +∥V ∥F

))
,

with V∞ := maxij |Vij | and U0 being a data-free matrix of “prior” hidden-unit features.

ReLU Neural Networks. Another class of classifiers we consider is that of fully-connected

feedforward neural networks with weight matrices {Wi}hi=1. In this case we also construct a

class of proxy functions by adding Gaussian noise to the weight matrices, refining a result

from Neyshabur et al. (2018) to bound ϵ as a function of the noise scaling. The trade off

between ϵ and the KL is controlled by adjusting the bandwidth of the randomisation, as is

essentially also the case for the L2 predictors. Overall, this leads to a ReLU Neural Network

result like

L0(fwww) ≤ L̂γ(fwww)+ Õ

√√√√h
∏
i ∥Wi∥2

2
mγ2

∑
i

∥Wi∥2
F

∥Wi∥2
2

 ,
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where h is an upper bound on the number of units in any layer. This result is very similar to

that from Neyshabur et al. (2018), but the full formulation removes some logarithmic terms

and our proof is arguably much simpler.

5.3 General Method
We introduce a set of approximations or proxies for our chosen function f , defined by2

P(f,ϵ,γ) =
{
Q ∈ P(H) : ∀z ∈ Z, ∀ζ ∈ {+1,−1} : P

g∼Q
(ζ(M(f,z)−M(g,z))> γ/2) ≤ ϵ

}
.

This result simply defines P as a set of distributions over predictors, so that the margins of

these distributions concentrate around f at everywhere; the parameters γ and ϵ just define

the sharpness of this concentration. This implies that we can replace f by Q at cost of the

additional margin and ϵ term. Our main PAC-Bayesian result is the following.

Theorem 5.1. Fix data distribution D, δ ∈ (0,1), margin γ > 0 and prior P ∈ P(H). With

probability ≥ 1− δ over sample S ∼ Dm, simultaneously for any f ∈ H and ϵ≥ 0,

L0(f) ≤ kl−1

(
L̂γ(f)+ ϵ,

infQ∈P(f,ϵ,γ) KL(Q,P )+ log 2
√
m
δ

m

)
+ ϵ.

Proof. From the trivial identity 111{t ∈A} ≤ 111{t ∈B}+111{t ∈A}111{t /∈B} on sets A,B,

ℓ0(f,z)− E
g∼Q

ℓγ/2(g,z) = E
g∼Q

[111{M(f,z) ≤ 0}−111{M(g,z) ≤ γ/2}]

≤ E
g∼Q

[111{M(f,z) ≤ 0}111{M(g,z)> γ/2}]

≤ E
g∼Q

[111{M(g,z)−M(f,z)> γ/2}].

Similarly, Eg∼Q ℓγ/2(g,z)− ℓγ(f,z) ≤ Eg∼Q[111{M(f,z)−M(g,z)> γ/2}]. Thus for any Q ∈

P(f,ϵ,γ) and at all z ∈ Z

ℓ0(f,z)− E
g∼Q

ℓγ/2(g,z) ≤ ϵ and E
g∼Q

ℓγ/2(g,z)− ℓγ(f,z) ≤ ϵ.

These hold for any f ∈ H, and are true independently of the sample. Substitute these into

Theorem 3.12 with the ℓγ/2 margin loss, which is simultaneously valid for any Q, and take

the infimum over ϵ and Q to obtain the result.

The PAC-Bayesian part of our proofs is therefore extremely simple; the difficulty arises

in constructing a sensible proxy distribution and prior. The following results are useful for

that.
2Note that by using ζ ∈ {+1,−1} in ζ(M(f,z) − M(g,z)) rather than |M(f,z) − M(g,z)| we can avoid

the need for two sided bounds, removing a later factor of 2 in the sub-Gaussian case.
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5.3.1 Sub-Gaussian Concentration
The primary type of concentration we will use is the sub-Gaussian kind; the below gives a

weaker sufficient condition of this type.

Proposition 5.1. Let Q ∈ P(H) be such that for all x ∈ X ,y ∈ Y, t ∈ R, we have

Eg∼Q[g(xxx)] = f(xxx) and

E
g∼Q

[exp(t(f(xxx)[y]−g(xxx)[y]))] ≤ exp
(

1
2σ

2t2
)
.

Then Q ∈ P(f,ϵ,γ) for any γ > 0 with

ϵ≤

exp
(
−γ2/8σ2) for Y = R,

exp
(
−γ2/16σ2) Y = Rdout .

Proof. Considering the zero-mean random variable X = f(x)[y]−g(x)[y] for g ∼Q (which

is σ2-sub-Gaussian) and fixed (x,y) ∈ Z, the Chernoff bound (see Boucheron et al., 2013, for

example), immediately implies the one-sided tail bounds

max(P(X > t), P(−X > t)) ≤ et
2/2σ2

for all t > 0. In the binary margin case, M(f,z) = yf(x) which is either f(x) or −f(x);

setting t= γ/2 in the above therefore gives the bound.

In the multi-class case we consider the upper bound obtained by letting y′ achieve the

maximum margin for g; then M(f,z) ≤ f(x)[y]−f(x)[y′], so

P
g∼Q

{
M(f,z)−M(g,z)> γ

2

}
≤ P
g∼Q

{
f(x)[y]−f(x)[y′]−g(x)[y]+g(x)[y′]> γ

2

}
.

Since both f(x)[y] − g(x)[y] and f(x)[y′] − g(x)[y′] are σ2-sub-Gaussian, their sum is 2σ2-

sub-Gaussian and the bound follows by repeating the process on with signs reversed.

A simpler analysis could have used the bound |M(f,z)−M(g,z)| ≤ 2maxy∈Y |f(x)[y]−

g(x)[y]| instead, leading to similar PAC-Bayes bounds; our more sophisticated variant

improves constants in some derived bounds and removes a factor of dout, the number of

classes.

Sometimes, we may have a method for producing a sub-Gaussian proxy, but no easy

way to control the tightness of its concentration; for example when considering bounded

prediction functions. In this case, we can resort to averaging over multiple samples, with an

additional KL cost, as shown by the following useful theorem.

Theorem 5.2. Suppose there is a ρf ∈ P(H) for each f ∈ H which is σ2-sub-Gaussian with

mean f . Fix T ∈ N, γ > 0 and π ∈ P(H); with probability at least 1− δ for every f

L0(f) ≤ kl−1

(
L̂γ(f)+e− 1

8Tγ
2σ−2

,
T KL

(
ρf ,π

)
+log 2

√
m
δ

m

)
+e− 1

8Tγ
2σ−2

in the binary classification case. In the multi-class case 1
8 is replaced by 1

16 in the exponentials.
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Proof. We average over T i.i.d. samples from ρf , so that our overall proxy function looks like

g(xxx) = T−1∑T
t=1 g

(t)(xxx) for g(t) iid∼ ρf ; this resulting proxy function is σ2/T -sub-Gaussian.

Since T and π ∈ P(H) are data-independent, we can use Theorem 5.1 with this proxy,

and a prior defined by the same averaging technique but with using π. Combing with

Proposition 5.1 we obtain the result.

Other concentration assumptions. We note that although we only discuss sub-Gaussian

concentration here, it is possible to require other concentration properties, for example

sub-exponential ones; our framework easily accommodates these. Sub-Gaussianity is only the

simplest way to ensure such concentration, and we primarily consider it in our later results

as it already leads to simple proofs of margin bounds in multiple settings.

5.3.2 Hard Margin Bounds
We can also give a slightly different form of bound which we use when considering hard

margins, i.e. when we have a predictor which interpolates the data perfectly with some

margin γ∗ so that L̂γ∗(f) = 0. Note that unlike Theorem 5.1, we must fix ϵ≥ 0 in advance

(although this is what we commonly do in most of our later proofs anyway).

Theorem 5.3. Fix data distribution D, δ ∈ (0,1), γ > 0, ϵ ∈ [0, 1
2 ] and prior P ∈ P(H).

With probability ≥ 1− δ over sample S ∼ Dm, simultaneously for any f ∈ H, observing that

L̂γ(f) = 0 implies

L0(f) ≤
infQ∈P(f,ϵ,γ) KL(Q,P )+ log 1

δ

m
+4ϵ log 1

ϵ
.

Proof. We obtain from Catoni’s bound Theorem 3.9 for Q ∈ P(f,ϵ,γ) that

CΦC(L0(f)− ϵ)−C(ϵ+ L̂γ(f)) ≤ KL(Q,P )+ logδ−1

m

with probability at least 1− δ simultaneously for all f . From this, with probability at least

1− δ if we observe that L̂γ(f) = 0 we find3

CΦC(L0(f)− ϵ)−Cϵ≤ KL(Q,P )+ logδ−1

m

Since ϵ and L0(f) are data independent, we can choose an optimal C, and the overall bound

follows from Lemma 5.4.

5.3.3 Relation to Covering
Here we discuss how our bounds can be used to derive a standard covering approach as

a sub-case; we show that this leads to certain problems, which are circumvented by the

concentration approach. A further consequence is that covering-based bounds usually lead to
3For propositions p(f), ∀f : p(f) =⇒ ∀f : q(f) → p(f), where → is the material conditional.
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“uniform” bounds which are subject to problems discussed in Nagarajan and Kolter (2019).

All the bounds we provide in later sections are non-uniform and avoid these pitfalls.

By setting ϵ= 0 with certain choices of prior we can obtain a fairly standard “covering”

approach: call Nγ a γ-net of H, if for any f ∈ H, there exists g ∈Nγ such that |M(f,z)−

M(g,z)| ≤ γ for all z ∈ Z. If we choose a prior supported everywhere on a γ/2-net for H, we

can achieve ϵ= 0 for a proxy Q≪ P , i.e. with a non-infinite KL divergence. The simplest

approach chooses P0 as uniform on these covering functions in Nγ/2 so that

inf
Q∈P(f,ϵ=0,γ)

KL(Q,P ) ≤ log |Nγ/2|

where |Nγ/2| is the cardinality of the net. A more sophisticated choice of non-uniform prior

enables structural risk minimisation-type covering number bounds.

However, such bounds will typically be dependent on the dimension of the parameter

space, as demonstrated by the following result for linear classification. Our bounds in the

following sections will avoid this dimension-dependence by permitting ϵ > 0.

Theorem 5.4. Consider binary classification with functions fwww = ⟨www,xxx⟩ and xxx∈Rdin ,∥xxx∥2 ≤

1. For any prior P on weights in Rdin , there exists a www such that ∥vecw∥2 ≤ 1 and

inf
Q∈P(f,ϵ=0,γ)

KL(Q,P ) ≥ Ω(din).

Proof of Theorem 5.4. Firstly we note that H is a space of linear functions, so we can

represent Q by its corresponding distribution over Rdin . In the second step we substitute the

margin definition and use this property.

P(fwww, ϵ= 0,γ)

=
{
Q ∈ P(H) : ∀z ∈ Z, ∀ζ ∈ {+1,−1} : P

g∼Q
(ζ(M(f,z)−M(g,z))> γ/2) = 0

}
=
{
Q ∈ P(Rdin) : ∀(xxx,y) ∈ Z, ∀ζ ∈ {+1,−1} : P

uuu∼Q
(ζy(⟨xxx,www⟩−⟨xxx,uuu⟩)> γ/2) = 0

}
=
{
Q ∈ P(Rdin) : ∀xxx ∈ X : P

uuu∼Q
(⟨xxx,www−uuu⟩> γ/2) = 0

}
=
{
Q ∈ P(Rdin) : ∀xxx ∈ X , ∀uuu ∈ Supp(Q) : ⟨xxx,www−uuu⟩ ≤ γ/2

}
=
{
Q ∈ P(Rdin) : ∀uuu ∈ Supp(Q) : ∥www−uuu∥2 ≤ γ/2

}
=
{
Q ∈ P(Rdin) : Supp(Q) ⊂ Ball(www,γ/2)

}
.

Combining with the Lemma 5.5 we find that KL(Q,P ) ≥ − logP [Ball(www,γ/2)].

Since www can be any such that ∥www∥2 ≤ 1 and thus chosen in an adversarial manner based

on P , P must not over-weight any such ball. The P which minimises the KL over all such

admissible choices of Q is thus uniform over the set of possible balls Ball(www,γ/2), which is

the set Ball(000,1+γ/2) (since ∥www∥2 ≤ 1).
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Basic calculation then shows that

KL(Q,P ) ≥ − log vol[Ball(www,γ/2)]
vol[Ball(0,1+γ/2)] = d log 2+γ

γ
= Ω(d).

5.4 Main Results
5.4.1 L2 Linear Prediction
First we demonstrate our framework in action by deriving generalisation bounds for L2-

normed linear predictors. Specifically, we consider linear predictors with an L2 norm on both

the weights and the input vector. These bounds essentially follow from an initial Gaussian

assumption combined with the sharp (sub-Gaussian) concentration of the predictor output

around its mean. We hope they can be useful for self-certification in the low data regime,

and for model (or kernel) selection without a validation set.

Theorem 5.5. Consider the binary classification setting with X in Hilbert space with ∥x∥2 ≤ 1

and fwww(xxx) = ⟨xxx,www⟩. Fix δ ∈ (0,1). With probability ≥ 1− δ over the sample simultaneously

for all ∥www∥2 ≤ 1 (and thus fwww) and all γ > 0,

L0(fwww) ≤ kl−1

(
L̂γ(fwww)+ 1

m
,

4γ−2 logm+log 2
√
m
δ

m

)
+ 1
m
.

Additionally, under the same conditions and probability, provided γ⋆ = max{γ > 0 :

L̂γ(fwww) = 0} exists,

L0(fw) ≤
8γ−2
⋆ logm+log 1

δ

m
.

We call the first and second results above “hard” and “soft” margin respectively, and

note that the first bound can be relaxed to

L0(fwww) ≤ L̂γ(fwww)+

√
L̂γ(fwww) ·C

m
+ C+

√
C+2
m

, (5.1)

where we define C := 2log(2/δ)+9(R/γ)2 logm.

In the hard margin case Theorem 5.5 improves on Bartlett and Shawe-Taylor (1998,

Theorem 4.17, which uses fat-shattering) by a factor of O(logm), matching the lower bound

of Grønlund et al. (2020, Theorem 4). In the soft margin case the relaxation Eq. (5.1) is

of the same order as the state-of-the-art bound given by Grønlund et al. (2020) but with

explicitly stated constants. The small-kl form given in Theorem 5.5 is considerably tighter

still. We emphasise also the extreme simplicity of our proof compared to that given for the

state-of-the-art in Grønlund et al. (2020, Theorem 2 with proof in Section 2, p.3-7).

We also note other weaker soft margin results, such as Bartlett and Mendelson (2002,

Theorem 22, using Rademacher complexity), Bartlett and Shawe-Taylor (1998, Theorem
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3.12), and McAllester (2003), which is itself an attempt to find a expression for the implicit

PAC-Bayesian result of Langford and Shawe-Taylor (2003), and uses a similar proof method

to ours. We also acknowledge the result of Hanneke and Kontorovich (2021, Theorem 1)

which gives a algorithm-dependent hard-margin bound specifically for the SVM output, and

eliminates the logm factor. This is provably optimal in the algorithm-dependent (as ours is

in the general) case, which is shown in Grønlund et al. (2020, Theorem 5). We discuss these

existing bounds at greater length in Section 5.B.

We note that the soft-margin formulation of the bound is true universally across γ > 0,

allowing the bound can be optimised for γ in O(m) time. If the margin is large for most

examples, we can choose γ so that L̂γ is small and Eq. (5.1) shows that the bound is O(1/m)

(which is of the same order as the hard-margin bound). Since the minimum margin can be

sensitive to outliers, this bound will often be tighter than the hard-margin one.

We note that we can consider the slightly more general case ∥x∥2 ≤R by simply scaling

the margin to γ/R, so scaling the data does not affect the bound. However, we note that the

bound can sometimes be decreased by normalising the data (as this maximises the margin

for every data point), so we recommend this when using such predictors.

Proof of Theorem 5.5. We use the scaling property of the margin loss to obtain a result

that holds for any γ > 0 simultaneously. Specifically, we note that for any β > 0 we can scale

f by β−1 and give the same overall predictions, so L0(f) = L0(β−1f), while the empirical

margin risk is scaled as L̂θ(β−1f) = L̂βθ(f).

Now consider a prior on the weight of N (0, I), and a proxyQ on fuuu where uuu∼N (β−1www,I).

The KL divergence from this prior is 1
2β

−2∥www∥2
2 ≤ 1

2β
−2. Further, Q is sub-Gaussian with

constant σ = 1 with mean fwww/β , since fuuu(xxx) − fwww/β(xxx) has distribution N (0,∥x∥2
2) and

∥xxx∥ ≤ 1. Therefore, by Proposition 5.1, Q ∈ P(fwww/β ,e− 1
8θ

2
,θ).

Applying Theorem 5.1 to fwww/β with margin θ, and using the scaling property of the

margin loss with the linearity fwww/β = β−1fwww therefore gives

L0(fwww) ≤ inf
β>0

[
kl−1

(
L̂βθ(fwww)+exp

(
−1

8θ
2
)
,

1
2β

−2 +log 2
√
m
δ

m

)
+exp

(
−1

8θ
2
)]

.

We note β > 0 can be freely chosen based on the data in the above, so we set θ2 = 8log(m)

(which is data-independent), and re-parameterise β = γ/θ to get the soft margin result.

If instead we use Theorem 5.3, and the re-parameterise β = γ∗/θ,

L0(fwww) ≤ inf
β>0:L̂βθ(fwww)=0

[
1
2β

−2 +log 1
δ

m
+4exp

(
−1

8θ
2
)

· 1
8θ

2

]
=

4(1+γ−2
∗ ) logm+log 1

δ

m
.

THe statement follows since γ∗ ≤ 1.
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5.4.2 L1/L∞ Linear Prediction

Theorem 5.5 is a bound under L2 norms for X and w, applying to situations such as the

SVM. Here we provide a bound for linear classification under different norm constraints,

where the L1 norm of the weights and L∞ norm of the features is restricted, as in boosting.

Specifically, this is for the case when ∥www∥1 ≤ 1 and ∥xxx∥∞ ≤ 1 (without loss of generality,

since we can always re-scale the margin).

These results are similar but not identical to to the k-th margin bound of Gao and Zhou

(2013), or the central result of Langford and Seeger (2001). The fundamental proof idea is

to approximate our predictor by a randomised, unweighted, sum of features, as originally

proposed by Schapire et al. (1998); the boundedness of these features leads to sub-Gaussian

concentration around their mean, similarly to in Theorem 5.5.

Theorem 5.6. Consider the binary classification setting with X ⊂ Rdin with ∥x∥∞ ≤ 1

and let fwww(xxx) = ⟨xxx,www⟩. Fix δ ∈ (0,1) and γ > 0. With probability ≥ 1 − δ over the sample

simultaneously for all ∥www∥1 ≤ 1,

L0(fwww) ≤ kl−1

(
L̂γ(fwww)+ 1

m
,

⌈
8γ−2 logm

⌉
log2din +log 2

√
m
δ

m

)
+ 1
m
.

Since γ ∈ (0,1) for non-vacuous results, a union bound argument can be used to extend

the above to fixed-precision γ.

Proof. For simplicity we assume initially that the weights are non-negative; negative weights

can later be included through the standard method of doubling the dimension. Our prediction

function has the form fwww(x) =
∑din
k=1wkxk. We set ρf to output xi where the index

i∼ Categ(www); π has the same form with a uniform distribution on indices. Since ∥x∥∞ ≤ 1,

this is bounded and therefore 1-sub-Gaussian.

KL
(
ρf ,π

)
= logdin −H[www] where H[www] is the entropy of a categorical variable with

(normalised) weights www. This expression using H[www] could be explicitly used (or with a

non-uniform prior) to improve the bound, as in Seeger et al. (2001); we will ignore this here

and just use the upper bound KL
(
ρf ,π

)
≤ logdin.

Setting T =
⌈
8γ−2 logm

⌉
in Theorem 5.2 and using a standard dimension doubling trick

to include negative weights gives the final result.

5.4.3 SHEL Networks

Here we prove generalisation bounds for a one-hidden-layer neural network with a slightly

unusual erf activation function that looks much like a tanh or other sigmoidal-type functions

as more commonly used. This is inspired by the work of Germain et al. (2009); Letarte

et al. (2019) and Biggs and Guedj (2021), which consider averaging over the predictions
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of functions like fw : Rdin → R,x 7→ sign(www · xxx), where www ∼ N (uuu,I), giving “aggregated”

prediction functions of the form

E
www∼N (uuu,I)

sign(www ·xxx) = erf(uuu ·xxx/
√

2∥xxx∥2). (5.2)

With a clever choice of weight distribution, we can combine the sub-Gaussian concentration

of the bounded sign function with its tractable average to get bounds for one-hidden layer

networks of the following form.

Definition. Single Hidden Erf Layer (SHEL) Network4: Given V ∈ Rdout×dhid and U ∈

Rdhid×din , this is the neural network fU,V : Rdin → Rdout defined by

fU,V (x) = V erf
(

Ux√
2∥x∥2

)
(5.3)

where the erf activation function is applied elementwise.

Theorem 5.7. Fix prior parameters U0 ∈ Rdhid×din and δ ∈ (0,1),α > 1. With probability

≥ 1− δ over any γ > 0,U ∈ Rdhid×din ,V dout×dhid ,

L0(fU,V ) ≤ kl−1

(
L̂γ(fU,V )+ 1

m
,
C(U,V,γ)+ log 4

√
m
δ

m

)
+ 1
m
.

with V∞ := maxij |Vij | in

C(U,V,γ) = 17
(
αV∞dhid

γ

)2(∥U −U0∥2
F

2dhid
+ ∥V ∥2

F

V 2
∞dhid

log2
)

logm+2log
(

log(α2V∞dhid/γ)
logα

)
.

a SHEL network fU,V as defined in Eq. (5.3).

Prior parameters. This generalisation bound for depends on a set of prior parameters

(or “random features”), U0, chosen independently of the training data, for example the

initialisation of the network (this choice has been extensively discussed in the literature,

beginning with Dziugaite and Roy, 2017).

Scaling dependence. At first glance this bound might appear to grow with width, since

although the norm terms are usually seen to be roughly constant under increasing dhid, the
√
dhid term is obviously not. However, this is not necessarily true: the range of the network

(and thus maximum margin) is bounded by dhidV∞, so provided the margin per-unit (γ/dhid

for the γ used in the bound) remains constant, the bound would actually decrease with dhid.

To emphasise this, we note that the above bound is unchanged under two simple

transformations, which ensures dimensional consistency (if it were not, we could perform

these operations to obtain a possibly arbitrarily tight bound). (1) Scale V ; the bound and
4Note that we will use a slightly more general definition in Chapter 6
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norm term exactly cancel since we can scale γ by the same amount and obtain the same

empirical margin loss. (2) Double the width of network, with exact copies of weights in the

copy: we can again double γ for a fixed margin loss, while the squared norms also double.

Empirical evaluation. Although the main contribution of this paper is in the refinement of

methods for proving PAC-Bayes margin bounds, in Section 8.5 we also make some empirical

evaluations of Theorem 5.7, and a partially derandomised generalisation of it. Since these

bounds were in general vacuous, we adopt the procedures of Jiang et al. (2020b) and

Dziugaite et al. (2020) to compare such bounds; training to a fixed cross-entropy of 0.3 and

setting margin loss L̂γ(fU,V ) = 0.2, we examine changes in the big-O complexity measure

in Theorem 5.7 versus generalisation error under different hyperparameter changes. Our

complexity measure is predictive under training set size changes and somewhat predictive

under learning rate changes, but like most such measures (Dziugaite et al., 2020), it is not

predictive under changes of width, implying the per-unit margin decreases significantly with

width. We interpret this as follows: at initialisation uuui ·xxx ∼ d
− 1

2
in is small, so if weights

stay near their initialisation (as is usual for wider networks trained by SGD), units are less

saturated and the per-unit margin decreases. This is avoided in lower dimensions or by

scaling up the weight initialisations with din, but as this is further from the typical SGD

training scenario we avoid this.

Optimisation of the prior. We have in the above empirical evaluation neglected to utilise

optimised data-dependent priors (as initiated by Ambroladze et al., 2006; Parrado-Hernández

et al., 2012), which has been demonstrated to vastly tighten bounds in the case of neural

networks due to the stability of training. These ideas have been heavily used in recent papers

for neural networks (Dziugaite et al., 2021, for example) and were found to significantly

improve the actual bound values in preliminary experiments, in some cases leading to non-

vacuous (although loose) results. As our focus is more on the theoretical side of providing

a method to prove margin bounds, we decided to focus on the data-independent case for

simplicity.

Related Work. Here we mention previous work (Letarte et al., 2019; Biggs and Guedj,

2021, Chapter 4) on PAC-Bayesian neural networks with erf activations, as well as a wide

range of results obtaining generalisation bounds for neural networks, in particular Neyshabur

et al. (2019) which focuses specifically on one-hidden-layer networks. Banerjee et al. (2020)

uses similar methods to ours by looking at Gaussian perturbations to the weights of a deep

ReLU network, but their bound relies on the strong assumption of bounds on the Hessian

and gradients of the network across weight values, and as formulated is not evaluable nor
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decreases with m.

We also highlight an interesting connection to a strand of work (Daxberger et al., 2021;

Kristiadi et al., 2020) in the Bayesian neural network literature, where networks involving

only some randomised weights (effectively, partially-derandomised networks) were found to

offer many of the benefits of more general networks while offering considerable computational

saving.

Proof of Theorem 5.7. Let ρf be a probability distribution on functions taking the form

g(xxx) = sign(www ·xxx)rrr,

where (www,rrr) ∈ Rd× {+1,−1}dout is sampled through the following hierarchical procedure:

draw a mixture component k ∼ Uniform(dhid); then www ∈ Rd from Gaussian N (Uk,·, I) (with

mean vector as a row of U); then for each i ∈ [dout] draw a component of rrr ∈ {+1,−1}dout

such that Errr[i] = Vik/V∞.

It is straightforward to see from Eq. (5.2) that the expectation of this is proportional to

fU,V ,

E
g∼ρf

[g(xxx)] = 1
dhidV∞

dhid∑
k=1

Vik erf
(
Uk;· ·x√
2∥x∥2

)
= 1
V∞dhid

fU,V (xxx).

Further, since g(xxx)[y] ∈ [+1,−1], ρf is 1-sub-Gaussian.

Applying this result in Theorem 5.2 with margin θ > 0 and T =
⌈
16θ−2 logm

⌉
gives

L0(fU,V ) ≤ kl−1

(
L̂θ
(

fU,V
V∞dhid

)
+ 1
m
,

⌈
16θ−2 logm

⌉
KL
(
ρf ,π

)
+log 2

√
m
δ

m

)
+ 1
m
.

where we used the equivalence L0(fU,V /V∞dhid) = L0(fU,V ).

We define a π ∈ P(H) in the same functional form, but with a data-free matrix U0 for

the Gaussian compontnets and zero mean V 0 = 0. Writing ρf (www,rrr) for the density on www,rrr

and similarly for the conditionals and marginals, we find by repeatedly using the chain rule

for KL divergnce (Cover and Thomas, 2006) that

KL
(
ρf (www,rrr),π(www,rrr)

)
≤ KL

(
ρf (k,www,rrr),π(k,www,rrr)

)
= KL

(
ρf (k),π(k)

)
+KL

(
ρf (www,rrr|k),π(www,rrr|k)

)
= KL

(
ρf (www,rrr|k),π(www,rrr|k)

)
= KL

(
ρf (www|k),π(www|k)

)
+KL

(
ρf (rrr|k),π(rrr|k)

)
= 1
dhid

dhid∑
k=1

∥Uk,· −U0
k,·∥2

2
2 + 1

dhid

dhid∑
k=1

dout∑
i=1

h(Vik/V∞)

≤
∥U −U0∥2

F

2dhid
+ ∥V ∥2

F

V 2
∞dhid

log2.
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Above we used the KL divergence for a Normal variable and defined h(x) =

KL(X,Uniform({+1,−1})) for variable X with mean x supported on {+1,−1}; from

Lemma 5.3, h(x) ≤ x2 log2.

It remains to cover possible values of θ. Firstly we note that for θ ≥ 1 the bound is

trivially true by the boundedness of f(xxx), and thus we need only consider θ−2 > 1. For

α > 1 and i= 0,1, . . ., set θi = α−i and δi = δ/2(i+1)2. Applying the union bound over the

above equation with these parameters we get that with probability at least 1 − (π2/6)δ ≥

1 − 2δ that the above is true for each pair of θi and δi. We choose the largest θi such

that θi ≤ θ < θi−1, so that i ≤ 1 − logα(θ). Since L̂θ ≤ L̂θi
is increasing, 1/θi ≤ α/θ, and

log(1/δi) ≤ log(1/δ)+2log(2+ loga(1/θ)) = log(1/δ)+2log(log(α2/θ)/ log(α)). Substituting,

we obtain the result.

Generalisation to bounded functions. We note that in the proof of Theorem 5.7 we can

replace the sign activation functions used in the proxy function distribution by any bounded

activations, for example sigmoid. Indeed, any feature map which is bounded and independent

from the final layer is possible. The caveat is that the obtained networks have modified

activation functions which may not be analytically tractable.

5.4.4 Feed-forward ReLU Networks

Finally, we give a bound for deep feed-forward ReLU networks, similar in form and proof to

that given by Neyshabur et al. (2018). Although the new result shares the same shortcomings

(as discussed in, for example, Dziugaite et al., 2020), we hope our simplified proof and

unifying perspective will help clear the way for future improvements.

The new bound replaces a factor of d, the number of layers, with one of
√

logm. This

comes from a simplification in the proof where we merely require ϵ≤ O(m−1) concentration

of the margin rather than insisting ϵ= 0 as in the original. Bounding this term for simple

Gaussian weights with the same perturbation bound as their proof, gives a simple form for

KL divergence. Combination with Theorem 5.2 and a cover of different weight variances and

margins completes the proof.

A second difference between Theorem 5.8 and the bound of Neyshabur et al. (2018) is

the appearance of prior matrices (to bring the bound into line with others which often set

these to the initialisation) and the norm bound W⋆. This W⋆ term arises from these prior

matrices and can be eliminated if the prior matrices are set to zero. This is because re-scaling

the weights and margins will then not affect the bound due to the positive homogeneity of

the ReLU (so ∥Wi∥2/γ = ∥W̃i∥2/γ̃ and ∥Wi∥F /∥W∥2 = ∥W̃i∥F /∥W̃∥2 for re-scaled W̃i and

γ̃).
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Theorem 5.8. Let fwww : X → Rdout on X = {x ∈ Rdin : ∥x∥2 ≤R} be a fully-connected, feed-

forward ReLU neural network weights www = vec(Wi) for Wi with i ∈ [L] layers and no more

than h units per layer. Fix δ ∈ (0,1),W⋆ > 0 and prior weight matrices {W 0
i }Li=1. With

probability at least 1−δ simultaneously for all Wi : ∥Wi∥2 ≤W⋆ and γ > 0, L0(fwww)− L̂γ(fwww)

is upper bounded by

O


√√√√h(R

∏L
i=1 ∥Wi∥2)2 log(mhL)

γ2m
·
L∑
i=1

∥Wi−W 0
i ∥2
F

∥Wi∥2
2

+
log 1

δ +L log logW⋆

m

 .
In order to prove Theorem 5.8we begin with two lemmas used.

Lemma 5.1 (Neyshabur et al., 2018; Lemma 2, Perturbation Bound.). In the setting

of Theorem 5.8, for any layer weights Wi, x ∈ X and weight perturbations Ui such that

∥Ui∥2 ≤ L−1∥Wi∥2,

∥fwww(xxx)−fwww+uuu(xxx)∥2 ≤ eR

(
L∏
i=1

∥Wi∥2

)
L∑
i=1

∥Ui∥2
∥Wi∥2

where www = vec(Wi) and uuu= vec(Ui).

Lemma 5.2. Let www = vec(Wi) and uuu = vec(Ui) for weights Wi and perturbations Ui. If

the perturbations are isotropic Gaussian with per-layer variances σ2
i , then for all 0 < γ <

2supwww∈X ,y∈[dout] |fwww(www)[y]|,

P{|M(fwww,z)−M(fwww+uuu,z)|> γ/2} ≤ 2h
L∑
i=1

exp
(

− 1
32h

(
γ∥Wi∥2

σieR(
∏
i ∥Wi∥2)

)2
)
.

Proof. Suppose ∥Ui∥2 ≤ ciγ∥Wi∥2 with c−1
i = 4eRL

∏
i ∥Wi∥2for every i. Then ∥Ui∥2 ≤

L−1∥Wi∥2 if γ < 2eR
∏
i ∥Wi∥2. This is true for the allowed γ since |fwww(xxx)[y]| ≤R

∏
i ∥Wi∥2

by the Lipschitz property. For such perturbations the assumptions of Lemma 5.1 are satisfied,

and by substitution ∥fwww(xxx)−fwww+uuu(xxx)∥2 ≤ γ/4. Therefore by the logical contrapositive, if

∥fwww(xxx)−fwww+uuu(xxx)∥2 > γ/4 then for some i we have ∥Ui∥2 > ciγ∥Wi∥2.

If the perturbations are randomised, we can use the above combined with the union

bound to show that (letting y′ ̸= y achieve the maximum margin)

P{|M(fwww,z)−M(fwww+uuu,z)|> γ/2}

≤ P{|fwww(xxx)[y]−fwww(xxx)[y′]−fwww+uuu(xxx)[y]+fwww+uuu(xxx)[y′]|> γ/2}

≤ P{2∥fwww(xxx)−fwww+uuu(xxx)∥∞ > γ/2}

≤ P{∥fwww(xxx)−fwww+uuu(xxx)∥2 > γ/4}

≤ P{∃i : ∥Ui∥2 > ciγ∥Wi∥2}

≤
d∑
i=1

P{∥Ui∥2 > ciγ∥Wi∥2}.
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We set Ui to be isotropic Gaussian with per-layer variances of σ2
i . To complete the proof

we use a result of Tropp (2012) for such Gaussian random matrices, that

P{∥Ui∥2 > t} ≤ 2he−t2/2hσ2
i .

Proof of Theorem 5.8. We choose Q in the form fwww+uuu with Gaussian Ui and per-layer

variances σi. P has the form fwww0+uuu where www0 = vec(W 0
i ) for data-independent W 0

i . Suppose

fwww has weights such that

σ−2
i ≥ 32h

(
eR(

∏
i ∥Wi∥2)

γ∥Wi∥2

)2
log(mhL) (5.4)

for every i and the chosen γ. Then from Lemma 5.2 and (a relaxation of) Theorem 5.1 with

high probability for all such Wi,

L0(fwww) ≤ L̂γ(fwww)+ 4
m

+

√√√√ 1
2m

(
d∑
i=1

∥Wi−W 0
i ∥2
F

2σ2
i

+log 2
√
m

δ

)
.

This is a generalisation bound holding for any such weights.

We complete the proof by constructing covers for σi and γ. We only need to consider

γ < R
∏
i ∥Wi∥2 =: Cγ (an upper bound on the range of the function) as otherwise the

L̂γ term is 1 and the bound is vacuous. Since ∥Wi∥2 ≤ W⋆ for all i we have that σ−2
i ≥

32e2h∥Wi∥−2
2 ≥ 32e2hW−2

⋆ and σi ≤ 15h−1/2W 2
⋆ =: Cσ.

For t= 0,1,2, . . . choose margins γ(t) =Cγ/2t and let the bound for this margin hold with

probability δ(t) = δ/(t+1)2, so that taking a union bound the above holds simultaneously for

every γ(t) with probability at least 1−π2δ/6 ≥ 1−2δ. To find a bound holding simultaneously

for all γ, we choose the t such that γ(t) ≤ γ < γ(t−1), and then replace this term with γ by

using the facts that L̂γ(t) ≤ L̂γ , 1/γ(t) ≤ 2/γ, and log(1/δ(t)) ≤ log(1/δ)+2log log2(4Cγ/γ).

Repeating this same covering process for every choice of σi, we obtain with probability at

least 1 − 2δ simultaneously for all γ,σi (and thus also for the tightest σi satisfying Eq. (5.4))

that L0(fwww)− L̂γ(fwww) is upper bounded by

4
m

+

√√√√ 1
2m

(
4
L∑
i=1

∥Wi−W 0
i ∥2
F

2σ2
i

+log 2(L+1)
√
m

δ
+2log log2

4Cγ
γ

+
L∑
i=1

2log log2
4Cσ
σi

)

∈ O


√√√√√hR2

(∏L
i=1 ∥Wi∥2

2

)
log(mhL)

γ2m
·
L∑
i=1

∥Wi−W 0
i ∥2
F

∥Wi∥2
2

+
log 1

δ +L log logW⋆

m

 .
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5.5 Partially-Derandomised Results
Here we consider a slight generalisation of our results. Say we wish to consider margin

bounds with a predictive distribution Q̃, rather than a deterministic predictor f ; perhaps

Q̃ is lower-variance than Q, or “partially-derandomises” it. For example, we might want

to “stack” our SHEL network on top of a ReLU network with Gaussian weights used as a

feature map. Through our extension we can obtain a margin bound for this case where the

final layers are deterministic but the ReLU ones are not, adding only a KL term for the

randomised ones.

This is interesting because it enables empirical comparisons with deeper networks on

more complex datasets without severe overfitting, which we hope can form a stepping stone

between totally-randomised PAC-Bayesian bounds and non-random margin bounds, while

helping in the understanding of one-hidden-layer network generalisation. This provides a

middle ground between a series of works obtaining bounds for stochastic neural networks

such as Dziugaite and Roy (2017), and those providing margin bounds for non-stochastic

DNNs, such as (in a PAC-Bayesian context) Neyshabur et al. (2018). We discuss this specific

case further in Section 8.5.

In general, suppose we have predictive distribution Q̃; we construct a coupling with Q,

π ∈ Π(Q̃,Q), where by Π(Q̃,Q) we denote the set of distributions on H×H with marginals

Q̃ and Q, that satisfies the margin condition. Specifically, we redefine

P(Q̃,ϵ,γ) =
{
Q ∈ P(H) : inf

π∈Π(Q̃,Q)
sup

z∈Z,ζ=±1
P

(f,g)∼π
(ζ(M(f,z)−M(g,z))> γ/2) ≤ ϵ

}
.

It is straightforward to adapt the proof of Theorem 5.1 to replace L0(w) by E
w∼Q̃L0(w),

L̂γ(w) by E
w∼Q̃ L̂γ(w), and use the redefinition of P. Similarly, the sub-Gaussian results

Proposition 5.1 and Theorem 5.2 can be adapted in the same way by defining the following

slight generalisation of sub-Gaussianity for coupling π ∈ Π(Q̃,Q):

E
π

exp(t(f(x)[y]−g(x)[y])) ≤ exp
(
t2σ2/2

)
and E

f∼Q̃f(x)[y] = Eg∼Qg(x)[y], for all t ∈ R, (x,y) ∈ Z.

Note that stacking our SHEL network on a randomised feature map with the proxy

definition from the original proof satisfies this condition due to the boundedness of the final

output. We thus adapt results for SHEL networks to such a partially-derandomised setting,

giving experimental evaluations in Section 8.5.

5.6 Conclusion
In this work we have provided a unified framework for derandomising PAC-Bayes bounds

using margins. In particular this leads to new bounds or greatly simplified proofs for a
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variety of settings. It also enables the novel idea of partial-derandomisation, which provides

a halfway house for estimators which cannot be so easily derandomised.

Specifically: we provided in Theorem 5.5 bounds for L2-regularised linear classification

which improve upon classical results and match the state-of-the-art order given in Grønlund

et al. (2020) while providing explicit (and small) constants as well as a considerably simplified

proof. We then gave further bounds in Theorem 5.7 for the novel setting of single-hidden-

erf-layer (SHEL) networks, as well as a bound in Theorem 5.8 that improves slightly on

Neyshabur et al. (2018, Theorem 1). We feel that SHEL networks have much potential as a

setting to explore margin bounds for deterministic neural networks—matching contemporary

practice—through improved concentration techniques and priors. In Section 5.5 we extend

our results to the novel situation where we only partially de-randomise, for example by

simultaneously learning a (randomised) feature map.

Although we recognise that our final results for linear prediction and deep ReLU networks

are relatively small improvements on existing results, we believe our radically simplified proofs

and explicit link of derandomisation to concentration (a link which has been occasionally

used implicitly in proofs in the literature) are significant and novel contributions to a difficult

and central problem in their own right. We show in Section 5.3.3 how reducing PAC-Bayes

derandomisation to a covering approach leads to a sub-optimal dependence on the dimension,

which is observed in some prior results such as the prior ReLU bound (Neyshabur et al., 2018).

We believe that by highlighting this issue we point the way forward to further simplifications

and improvements, and hope the machine learning and statistics community will leverage

these tools going forward.

Similarly, we feel that a major implication of our work is to show that for non-vacuous

neural network margin bounds, we need tighter bounds on the concentration properties of

networks. Networks are observed to be quite robust to perturbation in practice, far better

than the Lipschitz constant-dependent bounds of our Theorem 5.8 and Neyshabur et al. (2019)

would suggest. Tighter concentration bounds would immediately lead to improved margin

bounds through our framework and would represent a major contribution to contemporary

statistical learning theory.
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5.A Additional Technical Lemmas
Lemma 5.3. Let X ∈ P({+1,−1}) be a random variable with E[X] = x, and

h(x) := KL(X,Uniform({+1,−1})) = 1
2 [(1+x) log(1+x)+(1−x) log(1−x)]

the KL divergence from a uniform prior. Then

h(x) ≤ x2 log2.

Proof of Lemma 5.3. The first equation is simply an explicit statement of the KL divergence.

It is easy to see from convexity that h(x) ≤ x2; the improved (and optimal) constant of log2

requires a more complex argument, as follows.

Calculation gives the Maclaurin series

(1+x) log(1+x)+(1−x) log(1−x) = x2 +
∞∑
n=2

x2n

n(2n−1)

which has a radius of convergence of 1. Therefore

h(x)/x2 = 1
2 + 1

2

∞∑
n=2

x2n

(n+1)(2n+1)

which is an increasing function on (0,1) with supremum log2. From the definition, x ∈ [−1,1].

A similar argument applies for (−1,0) and equality is achieved at x= 0, so the inequality

holds (and is the tightest possible).

Lemma 5.4. For all ϵ ∈ [0, 1
2 ],p ∈ [0,1],p > ϵ (with the final condition ensuring the left hand

side is well-defined),

kl(ϵ : p− ϵ) ≥ p+4ϵ log ϵ.

Proof. Firstly, by Theorem 3.4

sup
C>0

[CΦC(p− ϵ)−Cϵ] = kl(ϵ : p− ϵ).

Note that − log(p−ϵ) ≥ 0 if p≤ 1 and thus ϵ log ϵ
R−ϵ ≥ ϵ log ϵ. Using the bound logx≤ x−1 we

also have that (1− ϵ) log 1−ϵ
1+ϵ−R ≥R−2ϵ. Combining these results, kl(ϵ : p− ϵ) ≥ p+ ϵ(log ϵ−

2); combination with the bound ϵ(log ϵ−2) ≥ 4ϵ log ϵ in the specified range to completes the

proof.

Lemma 5.5. Let µ̃ be a probability distribution supported only on A, then for any other

probability distribution ν

KL(µ̃,ν) ≥ − logν(A).

Proof. For the case ν(A) = 0 or where µ̃ is not absolutely continuous w.r.t. ν the above

holds trivially as the KL is infinite.
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Thus assume ν(A)> 0 and µ̃≪ ν. Define the restriction (or conditional distribution) of

ν to A as

ν̃ =

ν/ν(A) on A

0 else.

Given the above assumptions, we have

dµ̃

dν
= dµ̃

dν̃

1
ν(A)

so from the definition of and non-negativity of KL divergence,

KL(µ̃,ν) = log 1
ν(A) +KL(µ̃, ν̃) ≥ − logν(A).

5.B Comparison of Theorem 5.5 to Existing Bounds
Here we discuss how our results in Theorem 5.5 compare to existing results. All of the

following will be in the setting of this theorem with R= 1 (since all bounds only depend on

R through the scaling R/γ).

5.B.1 Hard Margin Case
The best existing result for this case is the following, from Bartlett and Shawe-Taylor (1998,

Theorem 4.17):

L0 ≤ 1
m

(
2k log 8em

k
log32m+2log 8m

δ

)
∈ O

(
1
m

(
γ−2
⋆ log2m+log 1

δ

))
where k = ⌊577γ−2

∗ ⌋.

From this we see that not only does Theorem 5.5 improve in order by removing a factor

of logm, but also considerably improves the constant factors.

Grønlund et al. (2020) show that there exists a dataset, and an estimator with ∥w∥2 ≤ 1,

such that:

L0 ≥ Ω
(

logm
mγ2

⋆

)
which is matched by our Theorem 5.5 and confirms it cannot be improved in order without

additional assumptions.

5.B.2 Soft Margin
Several somewhat different results appear in this case. Using Rademacher complexity,

Theorem 21 of Bartlett and Mendelson (2002) implies the following (where the big-O follows

by combination with the trivial bound L0 ≤ 1):

L0 ≤ L̂γ + 4√
mγ

+
(

8
γ

+2
)√ log 4

δ

m
= L̂γ +O

(√
γ−2 +log(1/δ)

m

)
.
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Based on a more complex bound in Langford and Shawe-Taylor (2003), McAllester

(2003) gives the bound (for m≥ 4):

L0 ≤ L̂γ + 8
mγ2 +2

√√√√2
(

L̂γ
mγ2 + 4

m2γ4

)
log mγ

2

4 +O

(√
logm+log(1/δ)

m

)

= L̂γ +O

(
logm
mγ2 +

√
logm
mγ2 L̂γ +

√
logm+log(1/δ)

m

)
.

The above also leads to a hard-margin formulation which is however weaker than the Bartlett

and Shawe-Taylor (1998) bound for all but very tiny margins, as pointed out by Grønlund

et al. (2020).

The state-of-the-art, nearly tight bound given by Grønlund et al. (2020) is the following,

not given with any constants,

L0 ≤ L̂γ +O

(
γ−2 logm+log(1/δ)

m
+
√
γ−2 logm+log(1/δ)

m
· L̂γ

)
which is shown in the same paper to be nearly-tight, in the existential sense that there exist

data distributions for which it cannot be improved.

This matches exactly the bound given in Theorem 5.5 in order, but we emphasise both

the simplicity of our proof and that we give constants, making it actually evaluable in

practice.

5.C Empirical Evaluation of Theorem 5.7
5.C.1 Experimental setup
All experiments were performed using the Tensorflow 2 library (Abadi et al., 2015) in Python,

on a single workstation with a Nvidia RTX 2080 Ti GPU. Code for the results is licensed

under an MIT license is available in the supplementary material for the published version of

the paper (Biggs and Guedj, 2022a).

We train SHEL networks and a partially-aggregated variation thereof under different

hyperparameter configurations. We use this to compare changes in the generalisation error

(the difference between test and train misclassification errors) with the complexity term from

Theorem 5.7 given by √
dhid

γ
√
m

(
V∞∥U −U0∥F +∥V ∥F

)
. (5.5)

Following previous empirical evaluations of such complexity terms, we train to a fixed

value of cross-entropy; see Jiang et al. (2020b) for further discussion. The margin γ is set

as that giving a fixed Lγ(fU,V ) = 0.2, or E
f∼Q̃Lγ(fU,V ) = 0.2 for the partially aggregated

version.

For the partially-aggregated version, we include a feature map of three additional dense

ReLU layers with Gaussian weight matrices with independent components, means {Wi}3
i=1
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and variances of σ. Again using the initialisation as a prior, this adds a term of√√√√ 3∑
i=1

∥Wi−W 0
i ∥2
F /4mσ2

to the right hand side of the bound. To enable comparison, we set σ to make this term

constant and equal to a half when calculating E
f∼Q̃Lγ(f). This is done during the evaluation

phase, and training is performed on the non-stochastic version (weights as means) as in

Dziugaite and Roy (2017).

These experiments aim to evaluate the predictive ability of this complexity measure

under changes of procedures. To this end we provide plots of the generalisation, G(ω), and

complexity measure, C(ω), for trained parameters ω versus some change in hyperparameter

value.

We also provide evaluations using the sign-error, a measure of predictive power defined

in Dziugaite et al. (2020) as

1
2 E
ω,ω′

[1− sign(C(ω′)−C(ω)) · sign(G(ω′)−G(ω))]

where ω and ω′ are parameters obtained through training with one changed hyperparameter

between them. The maximum over such pairs of hyperparameter settings is a measure of the

robustness of predictions made about the generalisation based on the complexity measure;

if this value is low, the complexity measure makes robust predictions. We provide this

maximum, the median, and the mean of the above (as in Jiang et al., 2020b) for different

setups and allowing different hyperparameters to vary.

5.C.2 SHEL Network
On the MNIST (LeCun et al., 2010) dataset, we examine the following hyperparameter

settings, finding through the sign error (Table 5.1) that predictions under changes of training

size are quite robust, while those under changes of learning rate or width are poor. We

additionally provide plots (Figs. 5.1 to 5.3) for some selected hyperparameter values to verify

the above. This poor prediction under such changes is unfortunately a feature of many such

complexity measures (Dziugaite et al., 2020).

• Learning rate ∈ {10−3,3×10−3,10−2,3×10−2,10−1}.

• Train set sizes ∈ {60000,30000,15000,7500}.

• Width ∈ {50,100,200,400,800}.

• Batch size = 200.

• Learning algorithm SGD with momentum parameter = 0.9.



5.C. Empirical Evaluation of Theorem 5.7 89

Figure 5.1: Changes in complexity measure and generalisation error versus training set size

under fixed other hyperparameters, for a SHEL network trained on MNIST.

Figure 5.2: Changes in complexity measure and generalisation error versus learning rate

under fixed other hyperparameters, for a SHEL network trained on MNIST.

Figure 5.3: Changes in complexity measure and generalisation error versus width under fixed

other hyperparameters, for a SHEL network trained on MNIST.
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Variable Hyperparameter Max SE Median SE Mean SE

Learning Rate 1.0 0.60 0.56

Width 1.0 1.0 0.90

Train Size 0.2 0.0 0.00

All 1.0 0.60 0.53

Table 5.1: Statistics of the sign error, SE, under different varying hyperparameters for a

SHEL network trained on MNIST.

5.C.3 Partially-Derandomised SHEL
Again on the MNIST dataset, we evaluate the partially-derandomised version of the above

under the same hyperparameter values, excluding learning rates of 0.1 and 0.03 which

sometimes led to numerical instability. Figures 5.4 to 5.6 provide sample results and the

sign-error results are reported in Table 5.2.

These sign error results show that predictions under changes of training size are com-

pletely robust, while those under changes of learning rate or width are still poor. The

predictions for width are somewhat improved, though we note that our estimate of this

quantity may be somewhat noisy as the generalisation error appears largely independent of

width.

Variable Hyperparameter Max SE Median SE Mean SE

Learning Rate 1.0 0.60 0.49

Width 1.0 0.40 0.46

Train Size 0.0 0.0 0.0

All 1.0 0.20 0.31

Table 5.2: Statistics of the sign error, SE, under different varying hyperparameters for a

partially-derandomised SHEL network trained on MNIST.
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Figure 5.4: Changes in complexity measure and generalisation error versus training set size

under fixed other hyperparameters, for a partially-derandomised SHEL network trained on

MNIST.

Figure 5.5: Changes in complexity measure and generalisation error versus learning rate

under fixed other hyperparameters, for a partially-derandomised SHEL network trained on

MNIST.
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Figure 5.6: Changes in complexity measure and generalisation error versus width under fixed

other hyperparameters, for a partially-derandomised SHEL network trained on MNIST.



Chapter 6

Non-Vacuous Generalisation Bounds

for Shallow Networks

We focus on a specific class of shallow neural networks with a single hidden layer,

namely those with L2-normalised data and either a sigmoid-shaped Gaussian error

function (“erf”) activation or a Gaussian Error Linear Unit (GELU) activation. For

these networks, we derive new generalisation bounds through the PAC-Bayesian

theory; unlike most existing such bounds they apply to neural networks with

deterministic rather than randomised parameters. Our bounds are empirically

non-vacuous when the network is trained with vanilla stochastic gradient descent

on MNIST, Fashion-MNIST, and binary classification versions of the above.

6.1 Introduction
The study of generalisation properties of deep neural networks is arguably one of the topics

gaining most traction in deep learning theory (see, e.g., the recent surveys Jiang et al., 2020b;

Kawaguchi et al., 2020). In particular, a characterisation of out-of-sample generalisation

is essential to understand where trained neural networks are likely to succeed or to fail,

as evidenced by the recent NeurIPS 2020 competition "Predicting Generalization in Deep

Learning" (Jiang et al., 2020a). One stream of this joint effort, which the present paper

contributes to, is dedicated to the study of shallow neural networks, potentially paving the

way to insights on deeper architectures.

Despite numerous efforts in the past few years, non-vacuous generalisation bounds

for deterministic neural networks with many more parameters than data remain generally

elusive. Those few non-vacuous bounds that exist primarily report bounds for networks

with randomised parameters, for example Gaussian weights, which are re-drawn for every

prediction (a non-exhaustive list of references would begin with Dziugaite and Roy, 2017,

2018; Hellström and Durisi, 2021; Neyshabur et al., 2017, 2018), or for compressed versions
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of the trained networks (Zhou et al., 2019). While these undoubtedly advanced knowledge on

generalisation in deep learning theory, this is far from contemporary practice which generally

focuses on deterministic networks obtained directly through stochastic gradient descent

(SGD), as we do.

The PAC-Bayesian theory is thus far the only framework within which non-vacuous

bounds have been provided for networks trained on common classification tasks. Given its

focus on randomised or “Gibbs” predictors, the aforementioned lack of results for deterministic

networks is unsurprising. However, the framework is not limited to such results: one area

within PAC-Bayes where deterministic predictors are often considered lies in a range of

results for the “majority vote”, or the expected overall prediction of randomised predictors,

which is itself deterministic.

Computing the average output of deep neural networks with randomised parameters is

generally intractable: therefore most such works have focused on cases where the average

output is simple to compute, as for example when considering linear predictors. Here,

building on ideas from Biggs and Guedj (2022a), we show that provided our predictor

structure factorises in a particular way, more complex majority votes can be constructed.

In particular, we give formulations for randomised predictors whose majority vote can be

expressed as a deterministic single-hidden-layer neural network. Through this, we obtain

classification bounds for these deterministic predictors that are non-vacuous on the celebrated

baselines MNIST (LeCun et al., 2010), Fashion-MNIST (Xiao et al., 2017), and binarised

versions of the above. We believe these are the first such results.

Our work fundamentally relates to the question: what kind of properties or structures

in a trained network indicate likely generalisation to unseen data? It has been shown by

Zhang et al. (2017) that neural networks trained by SGD can perfectly overfit large datasets

with randomised labels, which would indicate a lack of capacity control, while simultaneously

generalising well in a variety of scenarios. Thus, clearly any certification of generalisation

must involve extracting additional information other than the train loss—for example, the

specific final network chosen by SGD. How do the final parameters of a neural network

trained on an “easy” data distribution as opposed to a pathological (e.g., randomised label)

one differ? A common answer to this has involved the return of capacity control and the

norms of the weight matrices, often measured as a distance to the initialisation (as done,

e.g., in Bartlett et al., 2017; Dziugaite and Roy, 2017; Neyshabur et al., 2018).

We suggest, following insights from Dziugaite et al. (2021), that a better answer lies in

utilising the empirically-observed stability of SGD on easy datasets. We give bounds that are

tightest when a secondary run of SGD on some subset of the training set gives final weights

that are close to the full-dataset derived weights. This idea combines naturally in the PAC-

Bayes framework with the requirement of perturbation-robustness of the weights—related to
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the idea of flat-minima (Hinton and van Camp, 1993; Hochreiter and Schmidhuber, 1997)—

to normalise the distances between the two runs. By leveraging this commonly-observed

empirical form of stability we effectively incorporate information about the inherent easiness

of the dataset and how adapted our neural network architecture is to it. Although it is a deep

and interesting theoretical question as to when and why such stability occurs under SGD,

we believe that by making the link to generalisation explicit we solve some of the puzzle.

Setting. We consider dout-class classification on a set X ⊂Rdin with “score-output” predictors

returning values in Ŷ ⊂ Rdout with multi-class label space Y = [dout], or in Ŷ = R with binary

label space Y = {+1,−1}. We recall that the prediction is the argmaximum or sign of the

output and the misclassification loss is defined as ℓ0(f,(xxx,y)) = 111{argmaxk∈[dout] f(xxx)[k] ̸= y}

or ℓ0(f,(xxx,y)) = 111{yf(xxx) ≤ 0} respectively. It is will prove useful that scaling does not enter

into these losses and thus the outputs of classifiers can be arbitrarily re-scaled by c > 0

without affecting the predictions. We write L0(f) := E(xxx,y)∼D ℓ0(f,(xxx,y)) and L̂0(f) :=

m−1∑
(xxx,y)∈S ℓ0(f,(xxx,y)) for the risk and empirical risk of the predictors with respect to

data distribution D and i.i.d. m-sized sample S ∼ Dm.

Overview of our contributions. We derive generalisation bounds for a single-hidden-layer

neural network FU,V with first and second layer weights U and V respectively taking the

form

FU,V (xxx) = V ϕ

(
β
Uxxx

∥xxx∥2

)
with ϕ being an element-wise activation. If the data is normalised to have ∥xxx∥2 = β these

are simply equivalent to one-hidden-layer neural networks with activation ϕ and the given

data norm. We provide high-probability bounds on L0(FU,V ) of the approximate form

2 E
f∼Q

L̂0(f)+O
(
β∥U −Un∥F +∥V −V n∥F√

m−n

)
,

where Q is a distribution over predictors f , which depends on U and V but does not

necessarily take the form of a neural network. The construction of this randomised proxy Q

is central to our PAC-Bayes derived proof methods. The bounds hold uniformly over any

choice of weight matrices, but for many choices the bounds obtained will be vacuous; what

is interesting is that they are non-vacuous for SGD-derived solutions on some real-world

datasets. Un and V n are matrices constructed using some subset n <m of the data. Since

we consider SGD-derived weights, we can leverage the empirical stability of this training

method (through an idea introduced by Dziugaite et al., 2021) to construct Un,V n which

are quite close to the final true SGD-derived weights U,V , essentially by training a prior on

the n-sized subset in the same way.
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Outline. In Section 6.2 we give an overview of results from previous works which we use.

In Section 6.3 we give a bound on the generalisation error of binary classification SHEL

networks, which are single hidden layer networks with “erf” activations. In Section 6.4 we

extend to multi-class classification using a simple assumption, giving a general formulation

as well as results for “erf”- and GELU-activated networks. In Section 6.5 we discuss our

experimental setting and give our numerical results, which we discuss along with future work

in Section 6.6.

6.2 Background and Related Work

We use Theorem 3.12 (Maurer’s inverse-kl bound) as our foundational PAC-Bayes bound.

We again note that although the bound holds over all “posterior” distributions Q, a poor

choice (for example, one over-concentrated on a single predictor) will lead to a vacuous

bound. We will use the relaxation kl−1(t,c) ≤ t+
√
c/2 which gives an idea of the behaviour

of Theorem 3.12; however in the case of t close to 0 the original formulation is considerably

tighter.

Data-Dependent Priors. A careful choice of the prior is essential to the production of

sharp PAC-Bayesian results. A variety of works going back to Ambroladze et al. (2006)

and Parrado-Hernández et al. (2012) (and further developed by Dziugaite and Roy, 2018;

Dziugaite et al., 2021; Pérez-Ortiz et al., 2021a,c; Rivasplata et al., 2018, among others)

have considered dividing the training sample into two parts, one to learn the prior and

another to evaluate the bound. Formally, we divide S = Sprior ∪Sbnd and use Sprior to learn

a prior Pn where n= |Sprior|, then apply the PAC-Bayesian bound using sample Sbnd to a

posterior Q learned on the entirety of S. The resulting bound replaces L̂0 by L̂bnd
0 , P by

the data-dependent Pn, and m by m−n = |Sbnd|; thus the KL complexity term may be

reduced at the cost of a smaller dataset to apply the bound to.

Dziugaite et al. (2021) used this when considering training neural networks by con-

structing a so-called “coupled” prior Pn which is trained in the same way from the same

initialisation as the posterior Q by stochastic gradient descent with the first n examples from

the training set forming one epoch. Due to the stability of gradient descent, the weights

of Pn and Q evolve along similar trajectories; thus stability of the training algorithm is

leveraged to tighten bounds without explicit stability results being required (and we do

not study the conditions under which SGD provides such solutions). In many ways this

can be seen as an extension of previous work such as Dziugaite and Roy (2017) relating

generalisation to the distance from initialisation rather than total weight norms.
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Majority Votes. Since PAC-Bayesian bounds generally consider the risk of randomised pre-

dictors, a natural question is whether prediction accuracy can be improved by “voting” many

independently drawn predictions; such a majority vote predictor takes the deterministic form

MVQ(xxx) := argmaxkPf∼Q(argmaxf(xxx) = k). Several strategies have been devised to obtain

bounds for these predictors via PAC-Bayesian theorems, with the simplest (and often most

successful) being the unattributed first-order bound ℓ0(MVQ,(xxx,y)) ≤ 2Ef∼Q ℓ0(f,(xxx,y))

valid for all (xxx,y), called the “folk theorem” by Langford and Shawe-Taylor (2003) and the

first-order bound elsewhere. This can be substituted directly into PAC-Bayesian theorems

such as Theorem 3.12 above to obtain bounds for the majority vote at a de-randomisation cost

of a factor of two. This is the result we use, since across a variety of preliminary experiments

we found other strategies including the tandem bound of Masegosa et al. (2020)1 and the

C-bound of Lacasse et al. (2006) were uniformly worse, as also discussed by Zantedeschi et al.

(2021).

Gaussian Sign Aggregation. To exploit the useful relationship above, Germain et al. (2009)

considered aggregating a kind of linear prediction function of the form f(xxx) = sign(www ·xxx)

with www ∼Q= N (uuu,I). In this case the aggregation can be stated in closed form using the

Gaussian error function “erf” as

E
www∼N (uuu,I)

sign(www ·xxx) = erf
(

uuu ·xxx√
2∥xxx∥2

)
. (6.1)

This closed-form relationship has been used since by Letarte et al. (2019) and Biggs and

Guedj (2021) in a PAC-Bayesian context for neural networks with sign activation functions

and Gaussian weights; Biggs and Guedj (2022a) used it to derive a generalisation bound for

SHEL (single hidden erf layer) networks, which have a single hidden layer with erf activation

function. We will consider deriving a different PAC-Bayesian bound for this same situation

and develop this method further in this work.

Other Approaches. A wide variety of other works have derived generalisation bounds for

deterministic neural networks without randomisation. We note in particular the important

works of Bartlett et al. (2017), Neyshabur et al. (2017) (using PAC-Bayesian ideas in their

proofs) and Arora et al. (2018), but contrary to us, they do not provide empirically non-

vacuous bounds. Nagarajan and Kolter (2019) de-randomise PAC-Bayesian bounds by

leveraging the notion of noise-resilience (how much the training loss of the network changes

with noise injected into the parameters), but they note that in practice their bound would

1Masegosa et al. (2020) observe that these alternative bounds are often prefereable to the first order bound

as optimisation objectives, but in this work we are not considering bounds as objectives at all, rendering this

a moot point here.
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be numerically large. Many of these approaches utilise uniform convergence, which may lead

to shortcomings as discussed at length by Nagarajan and Kolter (2019); we emphasise that

the bounds we give are non-uniform and avoid these shortcomings. Finally, we also highlight

the works of Neyshabur et al. (2015, 2019) which specifically consider single-hidden-layer

networks as we do – as in the recent study from Tinsi and Dalalyan (2021). Overall we

emphasise that, to the best of our knowledge, all existing bounds for deterministic networks

are vacuous when networks are trained on real-world data.

6.3 Binary SHEL Network
We begin by giving a bound for binary classification by a single hidden layer neural network

with error function (“erf”) activation. Binary classification takes Y = {+1,−1}, with predic-

tion the sign of the prediction function. The specific network takes the following form with

output dimension dout = 1. Although the erf activation function is not a commonly-used

one, it is very close in value to the more common tanh activation. It can also be rescaled to

a Gaussian CDF activation, which is again very close to the classical sigmoid activation (and

is itself the CDF of the probit distribution).

Definition. SHEL Network. (Biggs and Guedj, 2022a) For U ∈ Rdhid×din , V ∈ Rdhid×dout ,

and β > 0, a β-normalised single hidden erf layer (SHEL) network is defined by

F erf
U,V (xxx) := V · erf

(
β
Uxxx

∥xxx∥2

)
.

The above is a single-hidden-layer network with a first normalisation layer, or if the data

is already normalised the overall scaling ∥xxx∥2 can be absorbed into the β parameter. This

parameter β could easily be absorbed into the matrix U and mainly has the effect of scaling

the relative learning rate for U versus V when training by gradient descent, as shown by

looking at ∂
∂U F

erf
U,V (xxx), something which would normally be affected by the scaling of data.

A higher β means more “feature learning” takes place as U has a relatively larger learning

rate.

For binary classification, the majority vote of distribution Q is MVQ(xxx) =

sign(Ef∼Q sign(f(xxx))). By expressing the (binary classification) SHEL network directly

as the majority vote of a randomised prediction function, we can prove a PAC-Bayesian

generalisation bound on its error using the first-order bound. The misclassification error of

the randomised function can further be stated in closed form using the Binomial cumulative

distribution function (CDF), giving rise to a bound where the distribution Q does not appear

directly.2

2We note that the bound with a Binomial expansion used in the binary case is closely related to the very

generic “binomial bound” used earlier by Lacasse et al. (2010).
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Theorem 6.1. In the binary setting, fix network prior parameters uuu0
1, . . . ,uuu

0
dhid

∈ Rdin ,vvv0 ∈

Rdhid , β > 0, bound tuning parameter T ∈ N+, and data distribution D. For δ ∈ (0,1), with

probability at least 1−δ under the sample S ∼Dm, simultaneously for any U ∈Rdhid×dout ,vvv ∈

Rdhid ,

L0(F erf
U,vvv) ≤ 2 kl−1

 1
m

∑
(xxx,y)∈S

Bin
(
T

2 ; T, 12

(
1+ yFU,vvv(xxx)

∥vvv∥1

))
,
Tκ+log 2

√
m
δ

m

 .
Here F erf

U,vvv is a SHEL network with β-normalised activation,

κ :=
dhid∑
k=1

|vvvk|
∥vvv∥1

(
β2∥uuuk−uuu0

k∥2
2 +log

(
2 |vvvk|/∥vvv∥1

|vvv0
k|/∥vvv0∥1

))
and Bin(k;r,p) is the CDF of a Binomial distribution with parameters r,p.

6.4 Multi-class Networks
We now go further and show that various single-hidden-layer multi-class neural networks

can also be expressed as the expectation of randomised predictors. We show specific results

for multi-class SHEL networks as well as GELU-activation (Hendrycks and Gimpel, 2016)

networks as defined below. We also give a more general form of the result as a aggregation

of individual aggregated predictors which allows these results to be extended further.

We make a simple assumption based on the first-order bound to extend PAC-Bayesian

bounds to this case. This is necessary because under certain choices of PAC-Bayes posterior

Q, the majority vote does not give the same prediction as the expected vote as was the

case in Section 6.3, i.e. there exist Q such that argmaxkEf∼Q f(xxx)[k] ̸= MVQ(xxx) at certain

adversary-chosen values of xxx. Thus we assume that L0(Ef∼Q f(xxx)) ≤ 2Ef∼QL0(f), (denoted

⋆), which follows from the first order bound in the case EQ f(xxx) ≈ MVQ(xxx), which we later

verify empirically.3

6.4.1 SHEL Networks
Here we give a generalisation bound for a multi-class variant of the SHEL network using

the above assumption. The proof is slightly different from the binary case, but still relies on

the useful fact that the SHEL network can be written as the expectation of a randomised

predictor. This predictor however takes a slightly different form to that in the binary case.

Theorem 6.2. In the multi-class setting, fix prior parameters U0 ∈ Rdhid×din and V 0 ∈

Rdout×dhid , σV > 0, β > 0, and data distribution D. For δ ∈ (0,1), with probability at least
3The following is a counterexample to this assumption in 3-class classification: suppose that at a fixed xxx,

f(xxx) = [1,0,0]T with probability 3/4 under f ∼ Q, and f(xxx) = [0,4,0]T otherwise. The majority vote predicts

the first class, while the expectation EQ f(xxx) predicts the second class. However for the majority of xxx the

assumption holds.
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1− δ under the sample S ∼ Dm, simultaneously for any U ∈ Rdhid×din ,V ∈ Rdout×dhid such

that assumption (⋆) is satisfied,

L0(F erf
U,V ) ≤ 2 kl−1

(
E

f∼Q
L̂0(f),

κ+log 2
√
m
δ

m

)
.

Here F erf
U,V is a SHEL network with β-normalised activation,

κ := β2∥U −U0∥2
F + ∥V −V 0∥2

F

2σ2
V

,

and

E
f∼Q

L̂0(f) := 1
m

∑
(xxx,y)∈S

P
W1,W2

(argmax [W2 sign(W1xxx)] ̸= y),

with the probability PW1,W2 over draws of vec(W2) ∼ N (vec(V ),σ2
V I),vec(W1) ∼

N (vec(U), 1
2β

−2I). Note that vec is the vectorisation operator and sign is applied element-

wise.

Differences to Biggs and Guedj (2022a). In their Theorem 5, Biggs and Guedj (2022a)

give a bound for generalisation in SHEL networks, with L0(F erf
U,V ) upper bounded under

similar conditions to Theorem 6.2 by

L̂γ(F erf
U,V )+ Õ

(√
dhid

γ
√
m

(
V∞∥U −U0∥F +∥V ∥F

))
,

where L̂γ(g) =m−1|{(xxx,y) ∈ S : g(xxx)[y]−maxk ̸=y g(xxx)[k] ≤ γ}|, the proportion of γ-margin

errors in the training set, and V∞ := maxij |Vij |. Thus a margin loss of the actual predictor

used rather than a stochastic one appears. A tighter formulation more similar to Theorem 6.2

is also given in an appendix and the bound could be similarly adapted to a data-dependent

prior.

The derivation of the bound is quite different from ours, relying on a quite differently-

constructed randomised version of Q (which is however constructed to have mean F erf
U,V ),

and a de-randomisation procedure relying on margins and concentration rather than a

majority vote bound. Both the form of Q used and the de-randomisation step lead to issues

which we have addressed through our alternative formulation of Q and a majority vote

bound: de-randomisation requires a very low variance Q, leading to the
√
dhid/γ term in the

bound, which is empirically very large for low margin losses. Thus as demonstrated in their

experiments, the big-O term increases with widening networks. Finally we note the most

important distinction to our work: contrary to the present work, Biggs and Guedj (2022a)

do not obtain non-vacuous bounds in practice.

6.4.2 GELU Networks
The Gaussian Error Linear Unit is a commonly-used alternative to the ReLU activation

defined by GELU(t) := Φ(t) t where Φ(t) is the standard normal CDF. Far from the origin,
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the Φ(t) is saturated at zero or one so it looks much like a smoothed ReLU or SWISH

activation (defined by Ramachandran et al., 2018 as t/(1 + e−ct) for some c > 0). It was

introduced to lend a more probabilistic interpretation to activation functions, and fold in

ideas of regularisation by effectively averaging the output of adaptive dropout (Ba and Frey,

2013); its wide use reflects excellent empirical results in a wide variety of settings.

Definition. GELU Network. For U ∈ Rdhid×din , V ∈ Rdhid×dout , and β > 0, a β-normalised

single hidden layer GELU network is defined by

FGELU
U,V (xxx) := V ·GELU

(
β
Uxxx

∥xxx∥2

)
where GELU(t) := Φ(t) t.

Theorem 6.3. In the multi-class setting, fix prior parameters U0 ∈ Rdhid×din and V 0 ∈

Rdout×dhid , σV > 0, σU > 0 β > 0, and data distribution D. For δ ∈ (0,1), with probability at

least 1− δ under the sample S ∼ Dm, simultaneously for any U ∈ Rdhid×din ,V ∈ Rdout×dhid

such that assumption (⋆) is satisfied,

L0(FGELU
U,V ) ≤ 2 kl−1

(
E

f∼Q
L̂0(f),

κ+log 2
√
m
δ

m

)
. (6.2)

Here FGELU
U,V is a single-hidden-layer GELU network with β-normalised activation,

κ :=
(
β2 + 1

σ2
U

)
∥U −U0∥2

F

2 + ∥V −V 0∥2
F

2σ2
V

,

and Ef∼Q L̂0(f) is

1
m

∑
(xxx,y)∈S

P
W1,W2

(
argmax

[
W2(111W1xxx⊗(W ′

1xxx))
]

̸= y
)
,

with the probability PW1,W2 is over draws of vec(W2) ∼ N (vec(V ),σ2
V I),vec(W1),∼

N (vec(U),β−2I) and vec(W ′
1) ∼ N (vec(V ),σ2

UI). Here vec is the vectorisation opera-

tor and the indicator function 111y is applied element-wise.

Although the proof method for Theorem 6.3 and the considerations around the hyper-

parameter β are the same as for Theorem 6.2 and SHEL networks, one notable difference

is the inclusion of the σU parameter. When this is very small, the stochastic predictions

are effectively just a linear two-layer network with adaptive dropout providing the non-

linearity. The ability to adjust the variability of the stochastic network hidden layer and thus

Ef∼Q L̂0(f) is a major advantage over the SHEL network; in SHEL networks this variability

can only be changed through β, which is a fixed parameter related to the deterministic

network, not just a quantity appearing only in the bound.
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6.4.3 General Form
Both of the above bounds can effectively be derived from the same formulation, as both take

the form

F (xxx) := E
f∼Q

f(xxx) =
dhid∑
k=1

vkHk(xxx), (6.3)

where vvvk ∈Rdout are the column vectors of a matrix V ∈Rdout×dhid and Hk : X →R is itself a

predictor of a form expressible as the expectation of another predictor. This means that there

exists a distribution on functions Qk ∈ P(F) such that for each xxx∈X , Hk(xxx) =Eh∼Qk [h(xxx)].

The bound on the generalisation of such predictors takes essentially the same form those

given in the rest of this section.

Theorem 6.4. Fix a set of priors P k ∈ P(F) with k ∈ [dhid], a prior weight matrix

V 0 ∈ Rdout×dhid , σV > 0, δ ∈ (0,1). With probability at least 1− δ under the sample S ∼ Dm

simultaneously for any V ∈ Rdout×dhid and set of Qk ∈ P(F) such that assumption (⋆) holds,

L0(F ) ≤ 2 kl−1

(
E

f∼Q
L̂0(f),

κ+log 2
√
m
δ

m

)
(6.4)

where F is the deterministic predictor given in Eq. (6.3),

κ :=
dhid∑
k=1

KL
(
Qk,P k

)
+ ∥V −V 0∥2

F

2σ2
V

,

and

E
f∼Q

L̂0(f) := 1
m

∑
(xxx,y)∈S

P
www·,h·

argmax

dhid∑
k=1

wwwkhk(xxx)

 ̸= y


is the stochastic predictor sample error where the probability is over independent draws of

wwwk ∼ N (vvvk,σ2
V I),hk ∼Qk for all k ∈ [dhid].

6.5 Numerical Experiments
For numerical evaluation and the tightest possible values of bounds, a few further ingredients

are needed, which are here described. We also give the specific way these are evaluated in

our later experiments.

Bounding the empirical error term. We note that there is rarely a closed form expression

for Ef∼Q L̂0(f), as there is in the binary SHEL bound. In the multi-class bounds, this term

must be estimated and bounded by making many independent draws of the parameters

and using the fact that the quantity is bounded in [0,1] to provide a concentration bound

through, for example, Hoeffding’s inequality. This adds a penalty to the bound which reduces

with the number of independent draws and thus the amount of computing time invested in

calculating the bound, but this is not a theoretical drawback of the bound. We give here a
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form which is useful in the neural network setting, where it is computationally efficient to

re-draw predictors for every prediction, but we make T passes through the dataset to ensure

a tight bound. This formulation is considerably more computationally efficient than drawing

a single h for every pass of the dataset.4

Theorem 6.5 (Train Set Bound). Let ℓ ∈ [0,1], Q be some distribution over predictors and

hi,t
iid∼ Q be i.i.d. draws for i ∈ [m], t ∈ [T ]. Then with probability at least 1−δ′,

E
f∼Q

L̂0(f) ≤ 1
mT

m∑
i=1

T∑
t=1

ℓ(hi,t,(xxxi,yi))+

√
log 1

δ′

2mT .

In our results, we will set δ′ = 0.01 (zero in the binary SHEL case), T = 20, and the

generalisation bound δ = 0.025; combining them our overall results will hold with probability

at least δ+ δ′ = 0.035, as in Dziugaite and Roy (2017).

Variance Parameters β and σ. The parameters β, σV and σU control the variances of

the weights in the stochastic estimator defined by Q, but fulfil different functions. The β

parameter appears in the non-stochastic shallow network FU,V and thus affects the final

predictions made and the training by SGD, and can be related to data normalisation as

discussed above. We therefore set it to the fixed value of β = 5 in all our experiments.

However the σ parameters appear only on the right hand side of the bounds for multi-

class SHEL and GELU, and can be tuned to provide the tightest bounds—as they grow the

KL term reduces but the performance of Q will degrade. We therefore optimise the final

bounds over a grid of σ values as follows: choose a prior grid of σV values, σV ∈ {σ1
V , . . . ,σ

r
V },

and combine via a union bound argument to add a log(r) term to κ where r is the number

of grid elements. The same practice is applied to σU in the GELU case. In practice we use a

grid σ ∈ {0.05,0.06, . . . ,0.2} for both. Thus the tuning of σU and σV is not a feature of the

network like β, but rather a tool to optimise the tightness of the bounds.

The parameter T appearing in Theorem 6.1 fufils a similar function, trading off the

performance of L̂0(Q⊗T ) versus the complexity term, but we do not optimise it like the

above in our experiments, fixing it to T = 500 in all our results.

Coupling Procedure. We adopt a 60%-prefix coupling procedure for generating the prior

weights Un,V n (rather than U0,V 0, and similarly in the binary case) as in Dziugaite et al.

(2021). This works by taking the first 60% of training examples used in our original SGD

run and looping them in the same order for up to 4000 epochs. Note that this also replaces

m by m−n and S by Sbnd in the bounds, so we are making a trade off between optimising
4Note the result below is based on a version of Hoeffding’s bound which does not require identical means

for different random variables. See also Biggs (2022) for a more sophisticated version of the same idea.
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the prior and the tightness of the bound (affected by m−n). These are used to train a prior

model of the same architecture with the same learning rate from the same initialisation (this

is valid because the initialisation is data-independent). The best bound from the generated

prior weights was chosen (with a small penalty for this choice added to the bound via a

union argument).

Numerical Results. In order to evaluate the quality of the bounds provided, we made many

evaluations of the bound under many different training scenarios. In particular we show that

the bound behaves in similar ways to the test error on changes of the width, learning rate,

training set size and random relabelling of the data.

The following results follow by training β-normalised SHEL and GELU networks with

stochastic gradient descent on the cross-entropy loss to a fixed cross entropy value of 0.3 for

Fashion-MNIST and 0.1 for MNIST. When evaluating the binary SHEL bound (Theorem 6.1)

we use binarised versions of the datasets where the two classes consist of the combined classes

{0, . . . ,4} and {5, . . . ,9} respectively (following Dziugaite and Roy, 2017; Letarte et al., 2019),

training to cross-entropy values of 0.2 for Bin-F (binarised Fashion-MNIST) and 0.1 for

Bin-M (binarised MNIST) respectively. We trained using SGD with momentum = 0.9 (as

suggested by Hendrycks and Gimpel, 2016 and following Biggs and Guedj, 2022a) and a

batch size of 200, or without momentum and a batch size of 1000 (with this larger batch

size stabilising training). We evaluated for ten different random seeds, a grid search of

learning rates ∈ {0.1,0.03,0.01} without momentum, and additionally ∈ {0.003,0.001} with

momentum (where small learning rate convergence was considerably faster), and widths

∈ {50,100,200,400,800,1600} to generate the bounds in Table 6.1.

From these results we also show plots in Fig. 6.1 of the test error, stochastic error

Ef∼Q L̂bnd
0 (f) and best prior bound versus width for the different dataset/activation com-

binations, with more plots given in the appendix. We also note here that in all except the

width = 50 case, our neural networks have more parameters than there are train data points

(60000). Using the test set, we also verified that assumption (⋆) holds in all cases in which it

is used to provide bounds.

6.6 Discussion
In Table 6.1 we have given the first non-vacuous bounds for two types of deterministic neural

networks trained on MNIST and Fashion-MNIST through a standard SGD learning algorithm,

both with and without momentum. The coupled bounds are in all cases far from vacuous,

with even the full bounds being non-vacuous in most cases, particularly on the easier MNIST

task. Further, Figs. 6.1 and 6.2 show that the bounds are robustly non-vacuous across a

range of widths and learning rates. Since these are direct bounds on L0(FU,V ) rather than
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Best Coupled Bounds with Momentum

Data Test Err Full Bnd Coupled Bnd

SHEL Bin-M 0.038 0.837 0.286

SHEL Bin-F 0.085 0.426 0.297

SHEL MNIST 0.046 0.772 0.490

SHEL Fashion 0.150 0.984 0.727

GELU MNIST 0.043 0.693 0.293

GELU Fashion 0.153 0.976 0.568

Best Coupled Bounds without Momentum

Data Test Err Full Bnd Coupled Bnd

SHEL Bin-M 0.037 0.835 0.286

SHEL Bin-F 0.085 0.425 0.300

SHEL MNIST 0.038 0.821 0.522

SHEL Fashion 0.136 1.109 0.844

GELU MNIST 0.036 0.742 0.317

GELU Fashion 0.135 1.100 0.709

Table 6.1: Results for β-normalised (with β = 5) SHEL and GELU networks trained with and

without momentum SGD on MNIST, Fashion-MNIST and binarised versions of the above,

after a grid search of learning rates and widths as described above. Results shown are those

obtaining the tightest coupled bound (calculated using Theorem 6.2 and Theorem 6.3 for

the multi-class datasets, and Theorem 6.1 for the binary datasets), with the accompanying

full train set bound and test error for the same hyper-parameter settings.

the usual PAC-Bayes Ef∼QL0(f), we emphasise that (for fixed hyper-parameters) no trade

off is made between the tightness of the bound and the real test set performance, which is

usually worse for a higher-variance (and thus more tightly bounded) Q.

Stability and Robustness Trade-Off. The two main contributions to the bound are the

empirical error Ef∼Q L̂0(f) and the KL divergence incorporated in κ. Ef∼Q L̂0(f) can be

seen roughly as measuring a combination of the difficulty of the task for our predictor FU,V
combined with some kind of perturbation resistance of its weights (like the idea of a flat

minimum originated in Hinton and van Camp, 1993 and discussed at length by Dziugaite

and Roy, 2017); while κ is here an empirical measure of the stability of the training method,

scaled by the inverse width of the perturbation robustness.

When optimising the trade-off between these terms through a choice of σU ,σV values,
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Error and Bound Comparison by Width

Figure 6.1: Changes in bound on left (L) hand axis, and test error and stochastic bound error

Ef∼Q L̂bnd
0 (f) on the right (R) axis versus width for SHEL and GELU networks trained

with momentum SGD and learning rate 0.01 on Fashion-MNIST and MNIST. Error bars

show 1 standard deviation from ten different random seeds. The different scales are chosen

so the trade-off between Ef∼Q L̂bnd
0 (f) and complexity terms can be seen more easily by

neglecting the overall factor of 2, and the trends can be seen more clearly. We include an

option in our code to generate these figures with a common scaling instead.

we find that the complexity contribution to the bound remains relatively consistent across

datasets and architectures, while it is the stochastic error that varies. This is especially true

of multi-class SHEL networks as seen in Fig. 6.1, perhaps since there is no easy way to set

the stochastic error small by adjusting the variability of the Q hidden layer. This is in direct

contrast to many works (Dziugaite et al., 2020; Jiang et al., 2020b) evaluating the predictive

ability of PAC-Bayesian bounds for generalisation on hyper-parameter changes, which fix

the weight variances as the largest leading to a bound on Ef∼Q L̂0(f) of a fixed value, say

0.1. Our results show that this approach may be sub-optimal for predicting generalisation,

if as in our results the optimal trade-off tends to fix the κ term and trade off the size of

Ef∼Q L̂0(f) instead of the reverse5.

Width Comparison. For the width comparisons we note that it is difficult to discern the

real trend in the out-of-sample error of our trained networks. The test sets only have 10000

examples and thus any test-set estimate of L0(FU,V ) is subject to error; if the differences

between test errors of two networks of different widths is smaller than about 0.02 (obtained

through a Hoeffding bound) it is not possible to say if generalisation is better or worse. It is
5The use of bi-criterion plots as suggested by Neyshabur et al. (2017) may therefore offer an better

alternative when comparing vacuous bounds.
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Error and Bound Comparison by Learning Rate

Figure 6.2: Changes in bound on left (L) hand axis, and test error and stochastic bound

error Ef∼Q L̂bnd
0 (f) on the right (R) axis versus learning rate for width 200 SHEL and

GELU networks trained with momentum SGD on Fashion-MNIST and MNIST. Scales are

as in Fig. 6.1.

therefore possible that the pattern of weaker bounds for wider SHEL networks seen is a strong

amplification of an existing trend, but it seems more likely it is an artefact of the bound

shared with that of Biggs and Guedj (2022a). Assuming the latter conclusion that the trained

network true error really is relatively width-independent, the GELU bound does better

matching this prediction (with this also being true in the momentum-free case, see appendix).

The value of Ef∼Q L̂bnd
0 (f) stays roughly constant as width increases, while we observe that

the optimal bound σU tends to decrease with increasing width. We attribute to this the

tighter bounds for wide GELU networks, since the SHEL network has no comparable way to

reduce the randomness of the hidden layer in Q, as we discuss at the end of Section 6.4.2.

Lower-Variance Stochastic Predictions. Following from the above, we note that in

general Ef∼Q L̂bnd
0 (f) is smaller for comparably-trained GELU networks than the SHEL

networks. We speculate that this arises from the increased randomness of the hidden layer of

Q in Theorem 6.2: the sign activation is only {+1,−1}-valued and the amount of information

coming through this layer is therefore more limited; and a {+1,−1}-valued random variable

has maximum variance among [+1,−1]-bounded variables of given mean. In future work we

will explore whether variance reduction techniques such as averaging multiple samples for

each activation can improve the tightness of the bounds, but we also emphasise both that

the bounds are still non-vacuous across a range of widths, and that the ability to adjust this

variability is a central advantage of our new GELU formulation.
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Learning Rate Comparison and Stability. In the case of training with momentum SGD

we see that a very large learning rate leads to weaker and higher-variance bounds, with

significantly larger norm contribution in κ. We speculate this arises because of the reduced

stability at such high rates: we found in general that small batch sizes (particularly under

vanilla SGD) and fast learning rates caused the training trajectory of Un,V n to diverge more

greatly from that of U,V .

Improving Prior Coupling. With the instability of high learning rates and the empirical

observation that in many cases Ef∼Q L̂0(f) was very close to Ef∼QL0(f) (as estimated

from the test set), we see that there is a degree of slackness in the bound arising from the

κ term. We speculate that it may be possible to make more efficient use of the sample

S in constructing Un,V n to reduce this term further. This might be possible through an

improved coupling scheme, or through extra side-channel information from Sbnd which can

be compressed (as per Zhou et al., 2019) or is utilised in a differentially-private manner (as

by Dziugaite and Roy, 2018).

Majority Votes. In our results we rely on the novel idea of randomised single-hidden-

layer neural networks as the expectation or majority vote of randomised predictors for

de-randomisation of our PAC-Bayes bound. For the multi-class bounds we rely on an

additional assumption, so a first step in future work could be providing further conditions

under which this assumption can be justified without relying on a test set. Next, we found

empirically (similarly to many PAC-Bayesian works) that Ef∼QL0(f)> L0(FU,V ), in other

words the derandomised predictor was better than the stochastic version on the test set. By

de-randomising through the first order bound, we introduce a factor of 2 which cannot be

tight in such cases. Removal of this term would lead to considerably tighter bounds and even

non-vacuous bounds for CIFAR-10 (Krizhevsky, 2009), based on preliminary experiments,

where the training error for one-hidden-layer networks on CIFAR-10 was greater than 0.5

so such bounds could not be non-vacuous, but the final bounds were only around 1.1−1.2.

Improved bounds for the majority vote have been the focus of a wide variety of PAC-Bayesian

works (Lacasse et al., 2006; Masegosa et al., 2020), and can theoretically give tighter results

for L0(MVQ) than Ef∼QL0(f), but these are not yet competitive. They universally led to

inferior or vacuous results in preliminary experiments. However, there is still much scope for

exploration here: alternative formulations of the oracle C-bound lead to different empirical

bounds, and improvement of the KL term (which appears more times in an empirical C-bound

than Theorem 3.12) may improve these bounds more than the first order one. We also hope

that offering this new perspective on one-hidden-layer networks as majority votes can lead

to better understanding of their properties, and perhaps even of closely-related Gaussian
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processes (Neal, 1996).

Deeper networks and convolutions. An extremely interesting question whether this

approach will generalise to convolutions or deeper networks. For convolutions, the parameter

sharing is not a problem as separate samples can be taken for each convolution kernel position

(although potentially at a large KL divergence cost that might be mitigated through the use

of symmetry). For deeper networks the answer is less clear, but the empirically-observed

stability of most trained networks to weight perturbation would suggest that the mode of

a Bayesian neural network may at least be a close approximation to its majority vote, a

connection that could lead to further results.

Summary. We have provided non-vacuous generalisation bounds for shallow neural networks

through novel methods that make a promising new link to majority votes. Although some

aspects of our approach have recently appeared in the PAC-Bayesian literature on neural

networks, we note that all previous results obtaining non-vacuous generalisation bounds

only apply to randomised versions of neural networks. This often leads to degraded test

set performance versus a deterministic predictor. By providing bounds directly on the

deterministic networks we provide a setting through which the impact of robustness, flat-

minima and stability on generalisation can be explored directly, without making potentially

sub-optimal trade-offs or invoking stringent assumptions.

In future work we intend to address two main potential sources of improvement: through

progress in majority votes to tighten the step from stochastic to deterministic predictor; and

through development of the prior (perhaps thorough improved utilisation of data), a strand

running parallel to much PAC-Bayesian research on neural networks.
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6.A Proofs
Proof of Theorem 6.1. Consider randomised functions sign(www ·xxx) with www ∼ ρ. ρ is a mix-

ture of Gaussians distribution with 2dhid components. We denote by ρ(k) = Categ(q) the

distribution over the choice of component k, with weights

q = 1
∥vvv∥1

[max(0,vvv1), . . . ,max(0,vvvdhid),max(0,−vvv1), . . . ,max(0,−vvvdhid)].

ρ(www|k) denotes the corresponding components, with distributions ρ(www|k) = N (uuuk, 1
2β

−2I) for

k ∈ {1, . . . ,dhid}, and ρ(www|k) = N (−uuuk, 1
2β

−2I) for k ∈ {dhid + 1, . . . ,2dhid}. uuuk are the rows

of U . This dimension-doubling trick accommodates the use of negative final-layer weights.

It is easy to show that Ewww∼ρ sign(www ·xxx) = 1
∥vvv∥1

F (xxx), where we abbreviate by F (xxx) =

F erf
U,vvv(xxx) the SHEL network with parameters U,vvv as given above. This follows using the

expectation of a mixture followed by using the aggregation of a sign function under a Gaussian

weight given in Eq. (6.1), which gives

E
www∼ρ

sign(www ·xxx) =
dhid∑
k=1

qk erf
(
β
uuuk ·xxx
∥xxx∥2

)
+

2dhid∑
k=dhid+1

qk erf
(
β

−uuuk ·xxx
∥xxx∥2

)
= F (xxx)

∥vvv∥1

To obtain a PAC-Bayes bound in full, we also choose a set of prior weights U0,vvv0 to

define a π distribution that takes the same structure as ρ. The mixture index distribution is

π(k) = Categ(p) with

p= 1
2∥vvv0∥1

[|vvv0
1|, . . . , |vvv0

dhid
|, |vvv0

1|, . . . , |vvv0
dhid

|],

and component distributions, π(www|k), defined as per ρ(www|k) but with weights uuu0
k instead.

Using the chain rule for KL divergence (Cover and Thomas, 2006) twice and the non-negativity

of the KL,

KL(ρ(www),π(www)) ≤ KL(ρ(www,k),π(www,k)) = KL(ρ(www|k),π(www|k))+KL(ρ(k),π(k)) (6.5)

where ρ(www,k) and π(www,k) are the joint distributions on www and mixture index k. From the

definitions of the KL divergence for categorical and Gaussian distributions in the above,

KL(ρ(www),π(www)) ≤
dhid∑
k=1

qkβ∥uuuk−uuu0
k∥2

2 +
dhid∑
k=1

qk log qk
pk

= κ.

To move to a PAC-Bayes bound on the SHEL network we consider averaging copies

of the above, so our overall posterior takes the form f(xxx) = 1
T

∑T
t=1 sign(wwwt ·xxx) ∼ Q with

www1, . . . ,wwwT
iid∼ ρ. The prior is defined analogously using π. KL(Q,P ) ≤ T KL(ρ(www),π(www)) by

the i.i.d. nature of the wwwt.

The predictions of the SHEL network, signF (xxx), are equivalent to a majority vote of f(xxx),

since MV(xxx) = sign(Esign(f(xxx))) is 1 if Ef(xxx) ∝ F (xxx) ≥ 0 and vice-versa for −1. Therefore
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the first order bound can be used to see that ℓ0(F,(xxx,y)) ≤ 2EQ ℓ0(f,(xxx,y)). Combining

with Theorem 3.12, the following holds with probability ≥ 1− δ

L0(F erf
U,vvv) ≤ 2 kl−1

(
E

f∼Q
L̂0(f),

Tκ+log 2
√
m
δ

m

)
.

To complete the result we also note the closed form for the Q-expected empirical

misclassification loss:

E
Q
ℓ0(f,(xxx,y)) = P

Q
(yf(xxx) ≤ 0)

= P
Q

(
T∑
t=1

y sign(wwwt ·xxx) ≤ 0
)

= P
Q

(
T∑
t=1

1
2(y sign(wwwt ·xxx)+1) ≤ 1

2T
)

= P
Q

(
T∑
t=1

111y=sign(wwwt·xxx) ≤ 1
2T
)

= Bin
(
T

2 ; T, P
www∼ρ

(y = sign(www ·xxx))
)

= Bin
(
T

2 ; T, 12

(
1+ yF (xxx)

∥v∥1

))
where we have interchanged 111y=sign(www·xxx) = 1

2 (y sign(www ·xxx)+1).

All of the above can be readily extended to the data-dependent prior case, replacing

U0 → Un, vvv0 → vvvn, m→m−n, and L̂0 → L̂bnd
0 .

Proof of Theorem 6.4. We are considering a distribution on functions of the form∑
kwww

khk(xxx) where for each index k ∈ [dhid] we have wwwk ∼ N ( 1
σV
vvvk, I) and hk ∼ Qk.

This slightly different formulation can take advantage of the scaling-invariance of the final

layer to the misclassification loss when V 0 = 0, so we can then choose σV > 0 arbitrarily.

The expectation of this takes the form given in Eq. (6.3) scaled by 1/σV and leads to the

empirical loss above.

Given another distribution P taking a similar form with wwwk ∼ N ( 1
σV
vvv0
k, I) and com-

ponents P k, the KL divergence can be expressed (using the chain rule for KL divergence)

as

KL(Q,P ) ≤
dhid∑
k=1

KL
(
Qk,P k

)
+ ∥V −V 0∥2

F

2σ2
V

.

We prove the overall bound by combining Theorem 3.12 with the assumption (⋆).

Proof of Theorem 6.2. Apply the bound from Theorem 6.4 with the individual units as

hk(xxx) = sign(wwwk ·xxx) and wwwk ∼ N (uuuk, 1
2β

−2I) alongside Theorem 6.4. The aggregated form of

the sign activation function is given in (6.1). The prior takes the same form as the posterior

with weight means U0,V 0 and the same variances, leading to the form of KL divergence for

Gaussian weights given in κ.
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Proof of Theorem 6.3. The proof takes the same form as that of Theorem 6.2. We note

that the expectation under the given probability distributions of E[W2(111W1xxx⊗(W ′
1xxx))] =

∥xxx∥2F
GELU
U,V (xxx), but since the misclassification loss is scaling-invariant this gives equivalent

results. Choosing appropriate prior forms as in Theorem 6.2 gives the KL divergence which

we substitute into Theorem 6.4.

Proof of Theorem 6.5. Define ξ =
∑T
t=1
∑m
i=1

1
mT ℓ(hi,t,(xxxi,yi)) which has expectation

EQ ξ=Ef∼Q L̂0(f). This quantity is a sum ofmT independent random variables in {0,1/mT},

where there are T variables with mean EQ 1
mT ℓ(h,(xxxi,yi)) for each i. Hoeffding’s bound

(which does not require identical means) then gives the result.

6.B Additional Results and Code
We provide all of our results and code to reproduce them along with the figures (including

with the option of using the same scaling for the bound and errors, as described in Fig. 6.1)

in the supplementary material for the original publication Biggs and Guedj (2022b). We

also note here that the “erf” function is included in a wide variety of common deep learning

libraries.

Here we also provide Figs. 6.3 and 6.4 similar to Figs. 6.1 and 6.2 for GELU and

SHEL networks trained without momentum and with a batch size of 1000, as described in

Section 6.5. We then also provide further similar plots for networks trained with momentum

and a batch size of 200 as in Section 6.5 with different learning rates and widths, to show

the similar behaviour across a variety of regimes.
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Error and Bound Comparison by Width

Figure 6.3: Changes in bound on left (L) hand axis, and test error and stochastic bound error

Ef∼Q L̂bnd
0 (f) on the right (R) axis versus width for SHEL and GELU networks trained

with vanilla SGD and learning rate 0.01 on Fashion-MNIST and MNIST. Scales are as in

Fig. 6.1.
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Figure 6.4: Changes in bound on left (L) hand axis, and test error and stochastic bound

error Ef∼Q L̂bnd
0 (f) on the right (R) axis versus learning rate for width 200 SHEL and

GELU networks trained with vanilla SGD on Fashion-MNIST and MNIST. Scales are as in

Fig. 6.1.
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Figure 6.5: Changes in bound on left (L) hand axis, and test error and stochastic bound

error Ef∼Q L̂bnd
0 (f) on the right (R) axis versus width under fixed other hyperparameters,

for a GELU network trained with momentum on Fashion-MNIST.



114 Chapter 6. Non-Vacuous Generalisation Bounds for Shallow Networks

102 103

Layer Width

0.0

0.2

0.4

0.6

0.8

1.0

C
ou

p
le
d
B
ou

n
d

Step Size: 0.1

Coupled Bound (L)

Test Error (R)

Stochastic Error (R)

102 103

Layer Width

0.0

0.2

0.4

0.6

0.8

1.0

C
ou

p
le
d
B
ou

n
d

Step Size: 0.01

Coupled Bound (L)

Test Error (R)

Stochastic Error (R)

102 103

Layer Width

0.0

0.2

0.4

0.6

0.8

1.0

C
ou

p
le
d
B
ou

n
d

Step Size: 0.001

Coupled Bound (L)

Test Error (R)

Stochastic Error (R)

0.0

0.1

0.2

0.3

0.4

0.5

S
to
ch
as
ti
c
E
rr
or

/
T
es
t
E
rr
or

0.0

0.1

0.2

0.3

0.4

0.5

S
to
ch
as
ti
c
E
rr
or

/
T
es
t
E
rr
or

0.0

0.1

0.2

0.3

0.4

0.5

S
to
ch
as
ti
c
E
rr
or

/
T
es
t
E
rr
or

Error and Bound Comparison by Width

Figure 6.6: Changes in bound on left (L) hand axis, and test error and stochastic bound

error Ef∼Q L̂bnd
0 (f) on the right (R) axis versus width under fixed other hyperparameters,

for a GELU network trained with momentum on MNIST.
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Figure 6.7: Changes in bound on left (L) hand axis, and test error and stochastic bound

error Ef∼Q L̂bnd
0 (f) on the right (R) axis versus width under fixed other hyperparameters,

for a SHEL network trained with momentum on Fashion-MNIST.
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Figure 6.8: Changes in bound on left (L) hand axis, and test error and stochastic bound

error Ef∼Q L̂bnd
0 (f) on the right (R) axis versus width under fixed other hyperparameters,

for a SHEL network trained with momentum on MNIST.
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Error and Bound Comparison by Learning Rate

Figure 6.9: Changes in bound on left (L) hand axis, and test error and stochastic bound error

Ef∼Q L̂bnd
0 (f) on the right (R) axis versus learning rate under fixed other hyperparameters,

for a GELU network trained with momentum on Fashion-MNIST.
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Figure 6.10: Changes in bound on left (L) hand axis, and test error and stochastic bound error

Ef∼Q L̂bnd
0 (f) on the right (R) axis versus learning rate under fixed other hyperparameters,

for a GELU network trained with momentum on MNIST.
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Figure 6.11: Changes in bound on left (L) hand axis, and test error and stochastic bound error

Ef∼Q L̂bnd
0 (f) on the right (R) axis versus learning rate under fixed other hyperparameters,

for a SHEL network trained with momentum on Fashion-MNIST.
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Figure 6.12: Changes in bound on left (L) hand axis, and test error and stochastic bound error

Ef∼Q L̂bnd
0 (f) on the right (R) axis versus learning rate under fixed other hyperparameters,

for a SHEL network trained with momentum on MNIST.



Chapter 7

On Margins and Generalisation for

Voting Classifiers

We study the generalisation properties of majority voting on finite ensembles of

classifiers, proving margin-based generalisation bounds via the PAC-Bayes theory.

These provide state-of-the-art guarantees on a number of classification tasks. Our

central results leverage the Dirichlet posteriors studied recently by Zantedeschi et al.

(2021) for training voting classifiers; in contrast to that work our bounds apply to

non-randomised votes via the use of margins. Our contributions add perspective

to the debate on the “margins theory” proposed by Schapire et al. (1998) for the

generalisation of ensemble classifiers.

7.1 Introduction
Weighted ensemble methods are among the most widely-used and effective algorithms known

in machine learning. Variants of boosting (Chen and Guestrin, 2016; Freund and Schapire,

1997) are state-of-the-art in a wide variety of tasks (Nielsen, 2016; Shwartz-Ziv and Armon,

2022) and methods such as random forest (Breiman, 2001) are among the most commonly-

used in machine learning competitions (see, e.g., Bell and Koren, 2007; Uriot et al., 2021),

valued both for their excellent results and interpretability. Even when these algorithms do

not directly produce the best learners for a task, the best performance in competitions is

often obtained by an ensemble of “strong learners”—the output of a collection of different

algorithms trained on the data—contrasted to the weak learners usually considered in the

ensemble learning literature.

Among the oldest ideas to explain the performance of ensemble classifiers, and machine

learning methods in general, is the concept of margins. First introduced to analyse the

Perceptron algorithm (Novikoff, 1962), margins relate closely to the idea of confidence in

predictions in ensemble learning, with a large margin implying that a considerable weighted



118 Chapter 7. On Margins and Generalisation for Voting Classifiers

fraction of voters chose the same answer. This was first leveraged to obtain early margin-based

generalisation bounds for ensembles by Schapire et al. (1998), in an attempt to understand the

excellent generalisation of boosting, a surprising result given classical Vapnik-Chervonenkis

theory. This “margins theory” was explored further in a number of works (Gao and Zhou,

2013; Grønlund et al., 2020; Wang et al., 2008) and is among the leading explanations for

the success of such methods and boosting in particular.

The same thread of margin bounds for ensemble methods has also been taken up in

parallel in PAC-Bayes theory by Biggs and Guedj (2022a); Langford and Seeger (2001). PAC-

Bayes provides a natural framework both for deriving margin bounds, and for considering

ensemble methods in general, particularly majority votes where the largest-weighted ensemble

prediction is taken. Within the framework, the weightings are typically considered as the

parameter of a categorical distribution over individual voters. PAC-Bayes theorems then

directly provide generalisation bounds for the performance of this “randomised” proxy for

the majority vote, a.k.a. Gibbs classifier. These can then be de-randomised by such margin-

based techniques, or through a variety of oracle bounds (Lacasse et al., 2010; Langford and

Shawe-Taylor, 2003; Masegosa et al., 2020; Shawe-Taylor and Hardoon, 2009), motivating

new learning algorithms (Germain et al., 2015; Lacasse et al., 2006; Laviolette et al., 2017;

Lorenzen et al., 2019; Roy et al., 2011; Viallard et al., 2021; Wu et al., 2021).

Uniquely among PAC-Bayesian approaches, Zantedeschi et al. (2021) instead consider

Dirichlet distributions over the voters. Any sample from this distribution already implies a

vector of voting weights, and it is on the performance and optimisation of these “stochastic

majority votes” they primarily focus. As an aside, they provide an oracle result which allows

their bounds to be de-randomised, but this introduces an irreducible factor such that the

bound on the true fixed vote can never be less than double that of the stochastic version.

It also neglects to leverage the generally high confidence of predictions obtained by their

algorithm.

Our contribution. By combining tools from margin bounds and the use of Dirichlet majority

votes, we provide a new margin bound for non-randomised majority votes. This is in contrast

to Zantedeschi et al. (2021) which primarily considers stochastic majority votes. Our bound

empirically compares very favourably to existing margin bounds and in contrast to them are

applicable to multi-class classification. Remarkably, our empirical results are also sharper

than existing PAC-Bayesian ones, even when the algorithm optimising those bounds is used.

Our primary tool is a new result relating the margin loss of these stochastic votes to the

misclassification loss of the non-randomised ones in a surprisingly sharp way. This tool can

additionally be utilised alongside a further idea from Zantedeschi et al. (2021) to obtain an

alternative form of the bound which is more amenable to optimisation. Through this work
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we provide further support to the margins theory for ensembles, showing that near-sharp

bounds based on margins alone can be obtained on a variety of real-world tasks.

Outline. The rest of this section introduces the problem setup, notation and summarises

main results. Section 7.2 provides background on PAC-Bayes, Dirichlet majority votes and

margin bounds, relating them to our new results. Section 7.3 states and summarises our

new theoretical results, giving the most relevant proofs (all remaining proofs are deferred to

appendices). Section 7.4 empirically evaluates these new results before we conclude with an

overall discussion in Section 7.5.

7.1.1 Notation and setting
We recall the definition of majority voting algorithms on a finite set of “base” classifiers,

Hbase, from X (which will generally be arbitrary here, since we do not need assumptions

about the base classifiers) to Y = [dout] := {1, . . . ,dout}. The base classifiers hi ∈ Hbase take

the form hi :X →Y for i∈ [dvot] so that |Hbase| = dvot. Majority votes on a finite set consider

weightings θθθ in ∆dvot−1, the simplex, and return the highest-weighted overall prediction.

This can be expressed as

MVθθθ(x) = argmaxk∈Y
∑

i∈[dvot]
θi 111hi(x)=k .

We are primarily interested in learning a weighting θθθ with small misclassification risk based

on the sample S.

The margin of majority vote MVθθθ on example (x,y) is derived from the minimal gap

between the total weight assigned to the true class y and to any other predicted class:

M(θθθ,x,y) :=
∑

i:hi(x)=y
θi−max

k ̸=y

∑
i:hi(x)=k

θi.

The corresponding margin loss is ℓγ(MVθθθ,(x,y)) := 111M(θθθ,x,y)≤γ for margin γ ≥ 0.

7.1.2 Overview of results
Our main result is a margin bound of the following form: with high probability ≥ 1− δ over

the sample, simultaneously for any θθθ ∈ ∆dvot−1 and K > 0,

L0(MVθθθ) ≤ O
(
L̂γ(MVθθθ) + e−Kγ2

+
DDir(Kθθθ,111)+ log mδ

m

)
(7.1)

where DDir(ααα,βββ) is the KL divergence between Dirichlet random vectors with parameters ααα

and βββ, with 111 a vector of ones implying a uniform Dirichlet prior distribution on the simplex.

The term e−Kγ2 is a de-randomisation penalty. The parameter K is chosen freely in an

arbitrary data-dependent way1 to balance the requirements of the different terms: it must
1This is possible because K arises as a parameter of the Dirichlet posterior considered in our proof, rather

than as a hyper-parameter of the bound.
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be large enough to decrease this exponential term, while too-large a parameter increases the

KL divergence from the uniform prior. This result is surprisingly strong; in particular there

is no dependence on the dimensionality (i.e., number of voters dvot) in the exponential term,

an advantage discussed further in Section 7.3.2.

In Eq. (7.1), L̂γ(MVθθθ) is the 0-1 valued γ-margin loss which enables comparison with

existing margin bounds for trained weighted ensembles. We further consider a second

scenario, where the generalisation bound is also used to train the model itself. We note

that the γ-margin loss L̂γ(MVθθθ) appearing in Eq. (7.1) has null gradients, so the bound

cannot be directly optimised by gradient descent. To rectify this we also prove a variation

of the bound, replacing the above loss by its expectation under a Dirichlet stochastic vote,

Eξξξ∼Dir(Kθθθ) L̂γ(MVξξξ), which is bounded in differentiable closed form to give an alternative,

optimisation-friendly bound.

In our evaluations we focus on these two complementary scenarios, obtaining state-of-

the-art empirical results. Across different scenarios and tasks our results outperform both

existing margin bounds (including a sharpened version of the result from Biggs and Guedj

(2022a) which may be of independent interest), and PAC-Bayes bounds, even when it is not

used as the objective. Further, in contrast to existing margin bounds our results also hold

for multi-class majority votes.

7.2 Background

7.2.1 PAC-Bayes bounds

We use the PAC-Bayes bound Theorem 3.12 as the basis for our results, leading to bounds

involving the inverse small-kl function. We recall that kl−1(u,c) ∈ O(u+ c)2, giving Eq. (7.1)

from Theorem 7.1 when using a uniform prior.

7.2.2 Margin bounds

In the learning theory literature there exists a rich tradition of using the concept of a

margin, which quantifies the confidence of predictions, to explain generalisation. This is

particularly evident in the case of voting algorithms such as boosting, where traditional

Vapnik-Chervonenkis based techniques predict classical overfitting which is not ultimately

observed. The “margins theory” was developed by Schapire et al. (1998) to explain this

discrepancy. By considering the weightings θθθ as the parameter of a categorical distribution,

they proved a bound of the form (holding with probability greater than 1−δ over the sample,

as for all bounds in this section) L0(MVθθθ) ≤ Lγ(MVθθθ) + Õ
(

1
γ

√
m

)
. Although there was

initially some debate about the validity of the theory (Breiman, 1999), eventually Gao and

2I.e. kl−1(u,c) ≤ C(u + c) for some constant C. Note we also have kl−1(u,c) ≤ u + C′√c) for a different

constant C′; for small u the former bound can be tighter.
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Zhou (2013, Theorem 4) provided the following improved bound which further supported

that a large-margin voting classifier could generalise: simultaneously for any γ >
√

8/dvot

and θθθ ∈ ∆dvot−1 in binary classification,

L0(MVθθθ) ≤ kl−1
(
L̂γ(MVθθθ),

1
m

(
8log(2dvot)

γ2 log 2m2

logdvot
+log mdvot

δ

))
+ logdvot

m
. (7.2)

More recently, a similar bound (proved through a PAC-Bayesian method based on Seeger

et al., 2001 and also valid for only binary classification) was proved in Biggs and Guedj

(2022a, Theorem 8). Here we give the improved variant Theorem 5.6 appearing in Chapter 5

that was provided as an intermediate step in the original proof and is strictly (and empirically

considerably) sharper than the final result: for any fixed margin γ > 0, simultaneously for

any θθθ ∈ ∆dvot−1

L0(MVθθθ) ≤ kl−1
(
L̂γ(MVθθθ)+ 1

m
,

1
m

(⌈
8γ−2 logm

⌉
logdvot +log 2

√
m

δ

))
+ 1
m
. (7.3)

Since γ ∈ (0,1) for non-vacuous results, a union bound argument can be used to extend the

above to fixed-precision γ, and this result has the advantage of being valid for small γ as are

often observed empirically.

Our contributions. Firstly we mention the smaller contribution of the improved form of

the bound from Biggs and Guedj (2022a) given in Eq. (7.3); a proof is given in Section 7.B

alongside further refinements and evaluation. However we show that in many cases even this

improved version and Eq. (7.2) give weak or vacuous results. As a result of this weakness (and

thus perhaps null result for the margins theory applied to voting classifiers) we present a new

margin bound in Theorem 7.1 based on Dirichlet distributions as a theoretical intermediate

step. This is also valid in the multi-class case, unlike the above results which are only for

binary classification. Empirically the bound is observed to give an enormous improvement in

tightness than the existing margin bounds and in some cases is near-sharp.

7.2.3 Dirichlet stochastic majority votes
In most results from the PAC-Bayes framework, and in the proof of the existing results given

in Section 7.2.2, the majority vote weightings θθθ are considered the parameters of a categorical

distribution over voters. Zantedeschi et al. (2021) instead consider PAC-Bayesian bounds

(specifically, Theorem 3.12 with the misclassification loss) applied to a hypothesis class of

majority votes of the form MVξξξ, where ξξξ ∼ Dir(ααα) is drawn from a Dirichlet distribution

with parameter ααα. This distribution has mean Eξξξ = ααα/
∑dvot
i=1 αi with a larger sum

∑dvot
i=1 αi

giving a more concentrated or peaked distribution (see Section 7.A for more details).

Since ξξξ is randomised, the bounds from Zantedeschi et al. (2021) apply to “stochastic

majority votes” rather than the more typical deterministic ones we consider here. However,

the use of such Dirichlet distributions over voters in the PAC-Bayes bounds rather than the
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more usual categorical ones is a major step forward as it allows the correlation between voters

to be more carefully considered. This is because with a categorical distribution, the expected

Gibbs risk is simply an average of the losses of individual predictors, without taking into

account how well the combination of their predictions performs. Conversely, the Dirichlet

distribution gives a (stochastic) majority vote of predictors, so if the errors of base voters are

de-correlated, the better performance that results from their combination can be accounted

for in the bound. We will utilise and de-randomise these stochastic majority votes as a

stepping stone to bounds for deterministic predictors MVθθθ directly.

As is common in the PAC-Bayes literature, Zantedeschi et al. (2021) use their new bound

as an optimisation objective to obtain a new algorithm, here using stochastic gradient descent.

The bound with Dirichlet posterior obtained directly from Theorem 3.12 includes the expected

misclassification loss with respect to the Dirichlet parameters, Eξξξ∼Dir(ααα) ℓ(MVξξξ,(x,y)), which

has null gradient for any sampled ξξξ. They therefore additionally upper bound this term by

the differentiable closed form

E
ξξξ∼Dir(ααα)

ℓ(MVξξξ,(x,y)) ≤ I 1
2

 ∑
i:hi(x)=y

αi,
∑

i:hi(x)̸=y
αi

 , (7.4)

where Iz(a,b) is the regularised incomplete beta function, which has a sigmoidal shape. The

inequality is sharp in the binary classification case, and is used in the training objective

and final evaluation of their method. As an aside, Zantedeschi et al. (2021) also proved an

oracle bound which allows their result to be de-randomised, but this introduces a irreducible

factor of two. This bound, which holds with probability at least 1−δ over the sample for any

θθθ ∈ ∆dvot−1,K > 0 is given by

L0(MVθθθ) ≤ 2kl−1

(
E

ξξξ∼Dir(Kθθθ)
L̂0(MVξξξ),

DDir(Kθθθ,βββ)+ log 2
√
m
δ

m

)
.

Our contributions. Firstly, we provide a new margin bound for majority vote algorithms

utilising Dirichlet posteriors as a theoretical stepping stone. We show that this bound gives

sharper bounds on the misclassification loss than the bound from Zantedeschi et al. (2021),

doing better than the irreducible factor, even when applied to the output of their algorithm.

We show further that the bound is also tighter when applied to the outputs of other PAC-

Bayes algorithms derived from “categorical”-type posteriors. Finally, we give an altered

form of the bound involving the expectation of the margin loss Eξξξ∼Dir(ααα) ℓγ(MVξξξ,(x,y))

and a result analogous to Eq. (7.4) for this case. Through this we are able to obtain a new

PAC-Bayes objective which is compared to existing PAC-Bayes optimisation methods.
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7.3 Main results
Our main results use the idea of Dirichlet stochastic majority votes from Zantedeschi et al.

(2021) as an intermediate step to prove new margin bounds for deterministic majority

votes. In this section, first we give our main result in Theorem 7.1 and discuss further. In

Section 7.3.1 we give an alternative bound obtained by a very similar method which is more

amenable to optimisation, and we provide proofs for these results in Section 7.3.2.

The central step in these proofs is in constructing a proxy Dirichlet distribution ξξξ ∼

Dir(Kθθθ) over voters, the loss of which is bounded à la PAC-Bayes, and de-randomised using

margins to obtain bounds directly for MVθθθ. The primary complexity term appearing in

our bounds is therefore DDir(Kθθθ,βββ), the KL divergence between Dirichlet distributions

with parameters Kθθθ and βββ respectively. As with PAC-Bayes priors, βββ can be chosen in

arbitrary sample-independent fashion, but we typically choose it as a vector of ones, giving

a uniform distribution on the simplex as prior as in Eq. (7.1). The bounds also involve a

de-randomisation penalty of O(e−Kγ2) where γ is the margin appearing in the loss; this

term upper bounds the difference between our randomised proxy ξξξ and its mean θθθ and gets

smaller with K as the distribution concentrates tightly around its mean. This parameter K

can be optimised in any data-dependent way to obtain the tightest final bound.

Theorem 7.1. For any D ∈ P(X ×Y), m∈N+, margin γ > 0, δ ∈ (0,1), and prior βββ ∈Rdvot
+ ,

with probability at least 1− δ over the sample S ∼ Dm simultaneously for every θθθ ∈ ∆dvot−1

and K > 0,

L0(MVθθθ) ≤ kl−1

(
L̂γ(MVθθθ)+e− 1

4 (K+1)γ2
,
DDir(Kθθθ,βββ)+ log 2

√
m
δ

m

)
+e− 1

4 (K+1)γ2
.

Theorem 7.1 differs from the existing margin bounds of Eqs. (7.2) and (7.3), and Schapire

et al. (1998) in a specific and significant way, with θθθ appearing not only in the loss function

L̂γ(MVθθθ), but also in the KL complexity term. Empirically we find our bound to be an

improvement but it is possible to generate scenarios where the pre-existing bounds are

non-vacuous while ours is not, since the KL divergence is unbounded for certain choices of θθθ,

for example when one of the components is exactly zero. This difference arises because the

existing bounds all use the idea of a categorical distribution with parameter θθθ in their proofs

(which has KL divergence from a uniform prior upper bounded by logdvot), while we use a

Dirichlet. This gains us the surprisingly tight de-randomisation result (Theorem 7.3) used in

all proofs.

7.3.1 PAC-Bayes bound as objective
We note here that it is non-trivial to directly obtain a training objective for optimisation

from Theorem 7.1, due to the non-differentiability of the margin loss L̂γ(MVθθθ). Therefore,

in order to compare results with a wide variety of methods that optimise PAC-Bayes bounds
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(including those used by Zantedeschi et al., 2021, as baselines), we obtain a relaxed and

differentiable formulation in Theorem 7.2 for direct optimisation.

Theorem 7.2. Under the conditions of Theorem 7.1 the following bound also holds

L0(MVθθθ) ≤ kl−1

(
E

ξξξ∼Dir(Kθθθ)
L̂γ(MVξξξ),

DDir(Kθθθ,βββ)+ log 2
√
m
δ

m

)
+e−(K+1)γ2

.

Using the incomplete Beta function Iz(a,b) we also have the following result, which is sharp

in the binary classification case,

E
ξξξ∼Dir(ααα)

ℓγ(MVξξξ,(x,y)) ≤ I 1+γ
2

 ∑
i:hi(x)=y

αi,
∑

i:hi(x)̸=y
αi

 .
Theorem 7.2 has a stronger PAC-Bayesian flavour than Theorem 7.1, with an expected

loss under some distribution appearing (complicating the final optimisation of K), while

Theorem 7.1 takes a form much closer to that of a classical margin bound. The second part

of the result is analogous to Eq. (7.4) used by Zantedeschi et al. (2021). We combine both

parts to calculate the overall bound in closed form and obtain gradients for optimisation.

7.3.2 Proof of main results
The proof of Theorems 7.1 and 7.2 essentially follow from applying a simple PAC-Bayesian

bound in combination with the key Theorem 7.3 below. In some sense this is our most

important and novel result. Our whole approach is largely motivated by its surprising

tightness; in particular there is no dependence on the dimension, which is avoided by careful

use of the aggregation property of the Dirichlet distribution. This surprising tightness

arises because to obtain a tightly concentrated Dirichlet distribution on ξξξ ∼ Dir(ααα), the

concentration parameter K =
∑dvot
i=1 αi must grow linearly with the dimension. In fact, even a

uniform distribution (which will be less peaked than our final posterior) has
∑dvot
i=1 αi = dvot,

so the de-randomisation step below, which is tighter for higher K, is effectively very cheap

in higher dimensions.

Theorem 7.3. Let θθθ ∈ ∆dvot−1 and K > 0. Then for any γ > 0 and (x,y),

ℓ0(MVθθθ,(x,y)) ≤ E
ξξξ∼Dir(Kθθθ)

ℓγ(MVξξξ,(x,y))+e−(K+1)γ2
,

E
ξξξ∼Dir(Kθθθ)

ℓγ(MVξξξ,(x,y)) ≤ ℓ2γ(MVθθθ,(x,y))+e−(K+1)γ2
.

For our proofs we first recall the aggregation property of the Dirichlet distribution: if

(ξ1, . . . , ξdvot) ∼ Dir((α1, . . . ,αdvot)), then (ξ1, . . . , ξdvot−1 +ξd) ∼ Dir((α1, . . . ,αdvot−1 +αdvot)).

We further note the following crucial concentration-of-measure result. The aforementioned

lack of dimensionality in Theorem 7.3 is possible because Theorem 7.4 depends only on∑dvot
i=1 αi, and this value is unchanged by aggregation, which avoids the dimension dependence

that would otherwise be introduced by the requirement ∥uuu∥2 = 1 below.
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Theorem 7.4 (Marchal and Arbel, 2017). Let XXX ∼ Dir(ααα), t > 0, and uuu ∈ Rd with ∥uuu∥2 = 1.

Then

P
XXX

{uuu · (XXX−EXXX)> t} ≤ exp
(

−2
(

d∑
i=1

αi+1
)
t2

)
.

Proof of Theorem 7.1 and Theorem 7.2. The proof of our main results is completed by

applying the PAC-Bayes bound Theorem 3.12 with the γ-margin loss to a Dirichlet prior and

posterior with parameters βββ and Kθθθ respectively. Substituting the first part of Theorem 7.3

gives the first part of Theorem 7.2, and additionally substituting the second part and

re-scaling γ → γ/2 gives Theorem 7.1.

For the second part of Theorem 7.2, define correct labels c= {i : hi(x) = y} for fixed (x,y)

so that the (randomised) weight of correct labels is W :=
∑
i∈c ξi ∼ Beta

(∑
i∈cαi,

∑
i/∈cαi

)
by the aggregation property of the Dirichlet distribution. Then

E
ξξξ
ℓγ(MVξξξ,(x,y)) ≤ E

ξξξ

{
W ≤ 1+γ

2

}
= I 1+γ

2

∑
j∈c

αj ,
∑
i/∈c

αj


using 111

{
ai−maxj ̸=i aj ≤ γ

}
≤ 111

{
ai−

∑
j ̸=i aj ≤ γ

}
= 111

{
ai ≤ 1+γ

2

}
for aaa ∈ ∆dout−1 (with

equality for dout = 2 classes), and that Iz(a,b) is the CDF of a Beta distribution with

parameters (a,b).

Proof of Theorem 7.3. Define γ2 > γ1 such that γ := γ2 −γ1, and ααα=Kθθθ. From the trivial

inequality 111x∈A−111x∈B ≤ 111x∈A 111x/∈B we derive

∆ := ℓγ1(MVθθθ,(x,y))− E
ξξξ∼Dir(ααα)

ℓγ2(MVξξξ,(x,y)) = E
ξξξ∼Dir(ααα)

[111M(θθθ,x,y)≤γ1 −111M(ξξξ,x,y)≤γ2 ]

≤ E
ξξξ∼Dir(ααα)

[111M(θθθ,x,y)≤γ1 111M(ξξξ,x,y)>γ2 ] ≤ E
ξξξ∼Dir(ααα)

[111M(ξξξ,x,y)−M(θθθ,x,y)>γ ]

= P
ξξξ∼Dir(ααα)

 ∑
i:hi(x)=y

ξi−max
j′ ̸=y

∑
i:hi(x)=k′

ξi−
∑

i:hi(x)=y
θi+max

j ̸=y

∑
i:hi(x)=k

θi > γ


≤ P
ξξξ∼Dir(ααα)

 ∑
i:hi(x)=y

ξi−
∑

i:hi(x)=k
ξi−

∑
i:hi(x)=y

θi+
∑

i:hi(x)=k
θi > γ



where in the last inequality we set k = argmaxk ̸=y
∑
i:hi(x)=k θi, and use that

maxj
∑
i:hi(x)=j θi− maxj

∑
i:hi(x)=j ξi ≤ maxj

∑
i:hi(x)=j θi−

∑
i:hi(x)=k ξi for any k. We

rewrite the above in vector form (with inner product denoted uuu ·vvv) as

∆ ≤ P
ξξξ∼Dir(ααα)

{
1√
2


1

−1

0


︸ ︷︷ ︸

uuu

·

(
∑
i:hi(x)=y ξi∑
i:hi(x)=k ξi∑

i:hi(x)/∈{k,y} ξi


︸ ︷︷ ︸

ξ̃ξξ

−


∑
i:hi(x)=y θi∑
i:hi(x)=k θi∑

i:hi(x)/∈{k,y} θi


︸ ︷︷ ︸

E ξ̃ξξ

)
>

1√
2
γ

}
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= P
ξ̃ξξ∼Dir(α̃αα)

{
uuu · (ξ̃ξξ−E ξ̃ξξ)> 1√

2
γ

}

where by the aggregation property of the Dirichlet distribution ξ̃ξξ ∼ Dir(α̃αα) with

α̃αα :=

 ∑
i:hi(x)=y

αi,
∑

i:hi(x)=k
αi,

∑
i:hi(x)/∈{k,y}

αi

T .
Applying Theorem 7.4 we obtain ∆ ≤ e−(

∑
i
α̃i+1)γ2

= e−(
∑dvot

i=1 αi+1)γ2
. This gives the

first inequality by setting γ1 = 0,γ2 = γ. Setting γ1 = γ,γ2 = 2γ and swapping θθθ and ξξξ gives

an almost identical proof (with some signs reversed) of the second inequality.

7.4 Empirical evaluation
In this section we empirically validate our results against existing PAC-Bayesian and margin

bounds on several classification datasets from UCI (Dua and Graff, 2017), LIBSVM3 and

Zalando (Xiao et al., 2017). Since our main result in Theorem 7.1 is not associated with any

particular algorithm, we use θθθ outputted from PAC-Bayes-derived algorithms to evaluate

this result against other margin bounds (Fig. 7.1) and PAC-Bayes bounds (Fig. 7.2). We

then compare optimisation of our secondary result Theorem 7.2 with optimising those

PAC-Bayes bounds directly (Fig. 7.3). All generalisation bounds given are evaluated with

a probability 1−δ=0.95. Further details not provided here including tabulated results,

description of datasets, training mechanisms and compute are provided in Section 7.C.

The code for reproducing the results is available at https://github.com/vzantedeschi/

dirichlet-margin-bound.

Strong and weak voters. Similarly to Zantedeschi et al. (2021) we consider both using

data-independent and data-dependent voters. This brings our experimental setup in line

with a common workflow for machine learning practicioners: the training set is sub-divided

into a set for training several different strong algorithms, and a second set on which the

weightings of these are optimised. More specifically, the weak voter setting, used only for

binary classification, uses axis-aligned decision stumps (denoted stumps), with thresholds

evenly spread over the input space (6 per feature and per class). The stronger voters (denoted

rf ) are learned from half of the training data, while the other half is used for evaluating and

optimising the different generalisation bounds (note this reduces m). These take the form of

random forests (Breiman, 2001) of M=10 trees optimising Gini impurity score on n
2 bagged

samples and
√
din drawn features for each tree, with unbounded maximal depth.

3https://www.csie.ntu.edu.tw/~cjlin/libsvm/

https://github.com/vzantedeschi/dirichlet-margin-bound
https://github.com/vzantedeschi/dirichlet-margin-bound
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Optimising γ and K in bounds. In reporting margin bounds we optimise over a grid of

margin γ values in (0,1), and additionally over K for Theorem 7.1. Since Theorem 7.1 and

Eq. (7.3) as stated require a fixed margin, we apply a union bound over the values in the

grid, replacing δ in these bounds with δ/N where N is the number of grid points.

Existing PAC-Bayes bounds. We compare to state-of-the-art PAC-Bayesian bounds (and

derived algorithms) for weighted majority vote classifiers: the First Order (Langford and

Shawe-Taylor, 2003), the Second Order (Masegosa et al., 2020), Binomial (Lacasse et al.,

2010) (with the number of voters set to 100) and the two Chebyshev-Cantelli-based (Wu

et al., 2021) empirical bounds from categorical-type Gibbs classifiers with parameter θθθ, and

we refer to these as FO, SO, Bin, CCPBB and CCTND respectively (more details are given in

Section 7.C). We denote by f2 the factor two bound derived in Zantedeschi et al. (2021, Annex

A.4) from Dirichlet majority votes. All prior distributions for PAC-Bayes bounds, including

ours, are set to uniform. We also refer by the same names to the outputs of optimising these

bounds with stochastic gradient descent; details on training and initialisation are given in

Section 7.C.

Description of figures. In Fig. 7.1 we compare Theorem 7.1 with the existing margin

bound of Eq. (7.2) and the improved Biggs and Guedj (2022a) bound given in Eq. (7.3)

(which in this thesis is Theorem 5.6, proved in Chapter 5). Since Eq. (7.3) is strictly better

than the original result and the latter was vacuous in almost all cases considered (see

Section 7.B), we do not include it. All datasets are for binary classification as the existing

results only cover this case, and the θθθ values considered are the outputs of either the FO-

or f2-optimisation using either the weak or the strong voters described above. Figure 7.2

extends this evaluation of Theorem 7.1 to improve generalisation results, by applying it to

the models optimised with the PAC-Bayes bounds FO, SO, Bin and f2 as objective. In this

case, we consider both binary and multi-class datasets. In Fig. 7.3 we directly compare the

outputs of optimising state-of-the-art PAC-Bayesian bounds with our optimisation-ready

variant result Theorem 7.2. These experiments were carried out on strong voters, as standard

in the literature (e.g. Lorenzen et al., 2019; Masegosa et al., 2020; Wu et al., 2021).

7.5 Discussion and conclusion
We observe overall that in many cases the existing margin and PAC-Bayes bounds are

insufficient to explain the generalisation observed, while our new bound is consistently tight,

and sometimes sharp (i.e. it approaches the true test error).

Figure 7.1 demonstrates that existing margin bounds can be insufficient to explain the

generalisation observed, which could be construed as a null result for the “margins theory”.
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Figure 7.1: Theorem 7.1 (ours) compared with the margin bounds of Eq. (7.3) (BG+),

Eq. (7.2) (GZ), and the test error. Settings are rf (first row) and stumps (second row) on

the given datasets, with θθθ output by optimising either FO or f2 (first and second column

groupings respectively).

However, our new bound obtains empirically very sharp results in almost all cases, reaffirming

to the theory. Note that due to the non-convexity of our bound, the reported values are local

minima and can potentially be improved by applying a thorougher search for the optimal

K, still giving a similarly valid bound. For instance, simply by enlarging the search space

for K our bound drops to 0.36±0.10 on ADULT with decision stumps as voters, beating

existing bounds also in this setting. Unlike the existing results, θθθ also arises in the complexity

(KL divergence) term and so the bound is not equally tight for every θθθ at fixed margin loss.

Further examination of this property could add additional nuance and perspective to the

theory.

When comparing to existing PAC-Bayes bounds in Fig. 7.2, remarkably Theorem 7.1

is always tighter than just using the bound which is being optimised. We speculate that

this arises partially due to the irreducible factors appearing in those bounds; for example

the FO or f2 bounds can never be tighter than twice the train loss of the associated Gibbs

classifier, while ours has no such limitation. This result is quite valuable as it demonstrates

that Theorem 7.1 can be readily used in an algorithm-free manner: the choice of learning

algorithm is up to the practitioner, but the bound will then often provide an excellent

guarantee on the obtained weights θθθ.

Finally, in Fig. 7.3, our optimisation-friendly variant bound Theorem 7.2 is seen to

be competitive in terms of test error while giving an improved-or-equal final bound on all

datasets. When considering the less-common setting of binary stumps (see Section 7.C) we

found that sometimes this objective converged to a sub-optimal local minimum. We speculate

that this arises due to the highly non-convex nature of the objective combined with a strong

K-inflating gradient signal from the O(e−Kγ2) term. Thus future work to improve these
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Figure 7.2: Theorem 7.1 (our bound) compared with the bounds of FO, SO, Bin or f2

(original bound), and test errors. For each column grouping, θθθ is the output from optimising

the corresponding PAC-Bayes bound (as named underneath) for rf on the given dataset.

The blue column is the final value of the bound used as objective, the green is the test error,

and the orange is the value of our bound when θθθ is plugged into it (so that our bound is not

used as an objective here).

results even further could start with the use of the quasi-convex small-kl relaxation from

Thiemann et al. (2017). We note however that this is overall less important than our main

results, as both our bounds are still extremely tight when used in an algorithm-free way and

applied to the output of another algorithm as discussed above.

Overall, we note that in many cases (a majority in Fig. 7.2) our main bound of

Theorem 7.1 is very close to the test set bound and thus cannot actually be improved any

further, with the problem of providing sharp guarantees based on the training data alone

effectively solved in many cases.

Conclusion. We obtain empirically very strong generalisation bounds for voting classifiers

using margins. We believe these are highly relevant to the community, since voting-based

classifiers and margin-maximising algorithms are among the most popular and influential

in machine learning. Dirichlet majority votes have already obtained excellent results in the

stochastic setting (Zantedeschi et al., 2021), but our new result in Theorem 7.3 showing they

are well-approximated by their mean should open new directions in the more conventional

deterministic setting.

Our results also have practical relevance: for example, in the strong voter machine

learning workflow described above, instead of setting data aside as a test set, this data can

be freed up to learn even stronger voters, since a strong out-of-sample ensemble guarantee

can still be provided even without a test set.

In future work we hope to expand these results further to other (non-majority) voting
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Figure 7.3: Theorem 7.2 (ours) as optimisation objective compared to other PAC-Bayes

results (FO, SO, Bin, CCPBB and CCTND) as objectives in the rf setting. For each objective

the test error and bound associated with the objective is shown.

schemes like those with score-output voters (as in e.g. Schapire et al., 1998), and ensembles

of voters with finite VC dimension.
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7.A Properties of the Dirichlet distribution
The Dirichlet measure has probability density function w.r.t. Lebesgue measure given by:

f(x1, . . . ,xd;ααα) = 1
B(ααα)

d∏
i=1

xαi−1
i

where B(ααα) is the multivariate Beta function,

B(ααα) :=
∏d
i=1 Γ(αi)

Γ(
∑d
i=1αd)

.

The mean of a Dirichlet is Eξ∼Dir(ααα) ξξξ = ααα/
∑d
i=1αi. The KL divergence between two

Dirichlet distributions is the following, given in e.g. Zantedeschi et al. (2021):

DDir(ααα,βββ) = log B(βββ)
B(ααα) +

d∑
i=1

(αi−βi)(ψ(αi)−ψ(α0)) = logB(βββ)−HDir(ααα).

7.B Additional details on margin bounds
We firstly note that the definition of the margin given in Gao and Zhou (2013) and Biggs

and Guedj (2022a) is slightly different from our own in that it allows for negative weights.

Biggs and Guedj (2022a) uses a dimension doubling trick to allow these negative weights

(as they consider only the binary case), which we remove in Eq. (7.3) to replace the factor

log(2dvot) by logdvot. This definition leads however to identical definitions in the case of the

majority vote for binary classification, where w ≥ 0 and ∥w∥1 = 1.

Technical, the above papers consider prediction functions like Fθθθ(x) =
∑dvot
i=1 θihi(x)

with output set Y = {+1,−1}. The functions hi(x) can be positive or negative. The margin

is defined as as yFθθθ(x). We translate this into our equivalent formulations as

yFθθθ(x) = y

 ∑
i:hi(x)=1

θi−
∑

i:hi(x)=−1
θi

=
∑

i:hi(x)=y
θi−

∑
i:hi(x)=−y

θi (7.5)

which is the binary margin as we define it in Section 7.1.1. Thus ℓγ(MVθθθ,(x,y)) =

111M(θθθ,x,y)≤γ = 111yFθθθ≥γ .

Here we also note the original result from Biggs and Guedj (2022a) that is adapted and

improved in Eq. (7.3) and Chapter 5; since this is obtained by applying an upper bound to

the inverse small-kl and an additional step, it is strictly looser than the result we give in

Eq. (7.3). We compare the these different margin bounds as a function of γ below.

Theorem 7.5. For any margin γ > 0, δ ∈ (0,1), sample size m ∈ N, each of the following

results holds with probability at least 1− δ over the sample S ∼ Dm simultaneously for any

θθθ ∈ ∆dvot−1,

L0(MVθθθ) ≤ L̂γ(MVθθθ)+
√
C

m
· L̂γ(MVθθθ)+ C+

√
C+2
m

, (7.6)

where C := 2log(2/δ)+19γ−2 logdvot logm.
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7.B.1 Further improvement to Eq. (7.3)
A question which naturally arises from looking at the proof of Eq. (7.3) and Theorem 7.5 is

whether we can do better by choosing T in a more optimal way, rather than just setting it

to
⌈
8γ−2 logm

⌉
. We thus prove a bound here which is valid for the optimal choice of T ; in

practice this is seen to be slightly tighter than Eq. (7.3), although the improvement from

Theorem 7.5 to that result is far greater.

For any θθθ ∈ ∆dvot−1 with probability at least 1− δ over the sample,

L0(MVθθθ) ≤ inf
T∈N+

[
kl−1

(
L̂γ(MVθθθ)+e− 1

8Tγ
2
,
T logdvot +log mδ

m

)
+e− 1

8Tγ
2
]

(7.7)

A slightly weaker version of this result, with an extra m−1 log(2
√
m) term, could be

proved from

L0(MVθθθ) ≤ kl−1

(
L̂γ(MVθθθ)+e− 1

8Tγ
2
,
T logdvot +log 2

√
m
δ

m

)
+e− 1

8Tγ
2
,

which is an intermediate step in the proof of Eq. (7.3). We note however that the optimal

T depends on the data only through L̂γ(MVθθθ) ∈ {0,m−1,2m−1, . . . ,1}. The last possibility

gives a trivial bound. A union bound over the m non-vacuous possibilities gives Eq. (7.7)

with the extra logarithmic factor.

In order to remove this term, we use a slightly more sophisticated argument applied

to a different PAC-Bayes bound (Catoni’s bound, Theorem 3.9). We recall the function

ΦC(p) which appears in this bound, and that it can be related to the small-kl inversion via

Theorem 3.4.

Proof of Eq. (7.7). Following the proof steps of Theorems 5.1 and 5.2 with PAC-Bayes

bound Theorem 3.9, then using the 1-sub-Gaussianity of the predictors as in the proof of

Theorem 5.6 we obtain for any data-independent C > 0,T ∈ N+,γ > 0 that

L0(MVθθθ)−e− 1
8Tγ

2
≤ Φ−1

C

(
k

m
+e− 1

8Tγ
2

+
T logdvot +log 1

δ

Cm

)
.

where k :=mL̂γ(MVθθθ) is the number of margin errors.

Since the only quantity on the left hand side in this bound unknown before we see data

is the value of k, there exists a Ck dependent on the value of k that optimises the bound,

and a Tk that depends on this pair. Since there are only m such values giving non-vacuous

bounds (k =m is trivially vacuous), we can apply a union bound over all these bounds with

δ = δ/m to give the following with probability ≥ 1− δ:

L0(MVθθθ) ≤ min
T∈N+

min
C>0

[
e− 1

8Tγ
2

+Φ−1
C

(
k

m
+e− 1

8Tγ
2

+
T logdvot +log mδ

Cm

)]
.

Applying the inversion of Theorem 3.4 gives the result.
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Figure 7.4: Values of different bounds versus margin at margin error L̂γ (0 or 0.2). Dimension

dvot = 100, probability δ = 0.5 and dataset size m (2000 or 10000) are also fixed. The bounds

are Theorem 7.1 (ours) with three different samples θθθ ∼ Uniform(∆dvot−1), compared with

the margin bounds of Theorem 7.5 (BG), Eq. (7.3) (BG+), Eq. (7.7) (BG++), Eq. (7.2)

(GZ), and the margin error L̂γ .

7.B.2 Comparison of margin bounds
In Fig. 7.4 we compare the various bounds given above in a non-experimental way, fixing

the margin loss L̂γ to a particular value and seeing how the bounds change if that value of

the loss is achieved for different values of the margin γ ∈ (0,1). Since (uniquely among the

bounds), the value of θθθ appears in our bound Theorem 7.1, we show three different sampled

possible values, drawn uniformly from the simplex.

The results for “categorical”-based bounds demonstrate that the refined bounds Eqs. (7.3)

and (7.7) are much tighter that the result as given in Theorem 7.5 by Biggs and Guedj

(2022a). Both these refinements are also tighter than Eq. (7.2) from Gao and Zhou (2013).

We used Eq. (7.3) in the main paper because it is closer to an exiting result (as it appears in

the proof from Biggs and Guedj, 2022a), and is not much worse than the refinement Eq. (7.7),

particularly when compared to our far stronger new result Theorem 7.1.

This figure also shows that, at least for some values of θθθ, this new bound can be far

tighter than all the existing bounds. One interesting facet of this is that the bound is

improved very little for γ above a certain point, quite a different behaviour to the other

bounds. Empirically this was seen too in our other experiments, with the optimised γ often

being quite small. Of course, for some values of θθθ this bound will be weaker, but we observe

the same kind of results in our main experimental results, where this is a learned value.

7.C Additional experimental details and evaluations

Dataset descriptions. We provide the description of the classification datasets considered

in our empirical evaluation.

Haberman (UCI) prediction of survival of n= 306 patients who had undergone surgery
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from din = 3 anonymized features.

TicTacToe (UCI) determination of a win for player x at TicTacToe game of any of

the n= 958 board configurations (din = 9 categorical states).

Mushrooms (UCI) prediction of edibility of n= 8,124 mushroom sample, given their

din = 22 categorical features describing their aspect.

Adult (LIBSVM a1a) determining whether a person earns more than 50K a year

(n= 32,561 people and din = 123 binary features).

CodRNA (LIBSVM) detection of non-coding RNAs among n= 59,535 instances and

from din = features.

Pendigits (UCI) recognition of hand-written digits (10 classes, din = 9 features and

n= 12,992).

Protein (LIBSVM) din = 357 features, n= 24,387 instances and 3 classes.

Sensorless (LIBSVM) prediction of motor condition (n = 58,509 instances and 11

classes), with intact and defective components, from din = 48 features extracted from

electric current drive signals.

MNIST (LIBSVM) prediction of hand-written digits (n= 70,000 instances and 10

classes) from din = 28×28 gray-scale images.

Fashion-MNIST (Zalando) prediction of cloth articles (n= 70,000 instances and 10

classes) from din = 28×28 gray-scale images.

In all experiments, we convert all categorical features to numerical using an ordinal encoder

and we standardize all features using the statistics of the training set.

Baseline descriptions. We report the generalization bounds of the literature used for

training weighted majority vote classifiers in our comparison. We additionally note: Cat(θθθ)

the categorical distribution over the base classifiers (with θi the weight associated to voter

hi ∈ Hbase), and DCat(θθθ,πππ) the KL-divergence between two categorical distribution with

parameters θθθ and πππ; ℓTND(h,h′,x,y) := 111{h(x) ̸= y}111{h′(x) ̸= y} the tandem loss proposed

in Masegosa et al. (2020) and L̂TND(h,h′) := E(x,y)∼Uniform(S) ℓTND(h,h′,x,y) its in-sample

estimate; ℓBin(θθθ,T,x,y) :=
∑T
k= T

2

(T
k

)
(1−θy)kθ(T−k)

y for θy =
∑
hi(x)=y, which is the proba-

bility that among T voters randomly drawn from Cat(θθθ) at least T
2 of them are incorrect, as

defined in Lacasse et al. (2010).
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• First Order (FO, Langford and Shawe-Taylor, 2003):

For any D ∈ P(X ×Y), m ∈ N+, δ ∈ (0,1), and prior πππ ∈ ∆dvot−1, with probability at

least 1− δ over the sample S ∼ Dm simultaneously for every θθθ ∈ ∆dvot−1,

L0(MVθθθ) ≤ 2kl−1

(
E

h∼Cat(θθθ)
L̂0(h),

DCat(θθθ,πππ)+ log 2
√
m
δ

m

)
.

• Second Order (SO, Masegosa et al., 2020):

For any D ∈ P(X ×Y), m ∈ N+, δ ∈ (0,1), and prior πππ ∈ ∆dvot−1, with probability at

least 1− δ over the sample S ∼ Dm simultaneously for every θθθ ∈ ∆dvot−1,

L0(MVθθθ) ≤ 4kl−1

(
E

h∼Cat(θθθ),h′∼Cat(θθθ)
L̂TND(h,h′),

2DCat(θθθ,πππ)+ log 2
√
m
δ

m

)
.

• Binomial (Bin, Lacasse et al., 2010):

For any D ∈ P(X ×Y), m ∈ N+, T ∈ N+, δ ∈ (0,1), and prior πππ ∈ ∆dvot−1, with

probability at least 1−δ over the sample S ∼ Dm simultaneously for every θθθ ∈ ∆dvot−1,

L0(MVθθθ) ≤ 2kl−1

(
E

(x,y)∼Uniform(S)
ℓBin(θθθ,T,x,y),

TDCat(θθθ,πππ)+ log 2
√
m
δ

m

)
.

• Chebyshev-Cantelli tandem loss bound (CCTND, Wu et al., 2021, Theorem 12);

• Chebyshev-Cantelli tandem loss bound with an offset (CCPBB, Wu et al., 2021,

Theorem 15);

• Dirichlet Factor-Two (f2, Zantedeschi et al., 2021):

For any D ∈ P(X ×Y), m ∈ N+, δ ∈ (0,1), and prior βββ ∈ Rdvot
+ , with probability at

least 1− δ over the sample S ∼ Dm simultaneously for every θθθ ∈ ∆dvot−1 and K > 0,

L0(MVθθθ) ≤ 2kl−1

(
E

ξξξ∼Dir(Kθθθ)
L̂(MVξξξ),

DDir(Kθθθ,βββ)+ log 2
√
m
δ

m

)
.

Optimisation of PAC-Bayesian bounds. To optimize the baselines CCPBB and CCTND,

we rely on the code released by its authors 4, with the Gradient Descent option and building

random forests as described in our main text. When optimising the PAC-Bayesian bounds

FO, SO, Bin, f2 and ours, we initialize θθθ’s to be uniform, i.e. θi = 1/dvot, and K = 2.

We then optimise the posterior parameters of the method (α=Kθ for Dirichlet, and θ for
4https://github.com/StephanLorenzen/MajorityVoteBounds/tree/44cec987865ddce01cd27076019394538cee85ca/

NeurIPS2021

https://github.com/StephanLorenzen/MajorityVoteBounds/tree/44cec987865ddce01cd27076019394538cee85ca/NeurIPS2021
https://github.com/StephanLorenzen/MajorityVoteBounds/tree/44cec987865ddce01cd27076019394538cee85ca/NeurIPS2021
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Categorical distributions) with the Adam optimiser (Kingma and Ba, 2014) with running

average coefficients (0.9,0.999), batch size equal to 100 and learning rate set to 0.1. All

methods are run for a maximum of 100 epochs with patience of 25 epochs for early stopping

and a learning rate scheduler reducing it by a factor of 10 with 2 epochs patience.

At each run of an algorithm, we randomly split a dataset into training and test sets of

sizes 80% − 20% respectively, and optimise/evaluate the bounds only with the half of the

training set that was not used for learning the voters (in the case of data-dependent ones).

Note that we do not make use of a validation set, as we use the risk certificates as estimate

of the test error for model selection. Finally, we report the value of Seeger’s "small-kl" bound

of Theorem 3.12, even when a different type of bound has been optimised (e.g. for the

CCPBB and CCTND baselines), and we average all results over 5 different trials.

Margin bound comparison. Given a pre-trained model, hence fixed θ and initial Kinit

(which is different from 1. only for the models trained via Dirichlet bounds), we search for its

optimal risk certificate by evaluating a given bound at 1,000 values of γ, spaced evenly on a

log scale with base 10 and in the interval [10−4,0.5). For our margin bound, for each of these

γ values we also optimise K ∈ [Kinit ,Kinit 216] using the golden-section search technique to

obtain the tightest upper bound. Notice that this does not add significant computational

overhead to the search. Also for these experiments, the bounds are evaluated with the portion

of training data that was not used for learning the voters.

Compute. All experiments were run on a virtual machine with 16 vCPUs and 128Gb of

RAM.

7.C.1 Additional results
In Fig. 7.5, Fig. 7.6 and Fig. 7.7 we report the results from Fig. 7.1, Fig. 7.2 and Fig. 7.3 in

the main text. Here we deploy a different scale per dataset so that they can be easily read,

also when the bounds and test errors are very small. Additionally, in Fig. 7.8 we provide

the test errors and risk certificates obtained by optimising the generalization bounds with

decision stumps as voters. Although our certificates are always the tightest, we found that

in some cases our method converges to sub-optimal solutions. We speculate that this arises

due to the highly non-convex nature of the objective combined with a strong K-inflating

gradient signal from the O(e−Kγ2) term. Thus future work to improve these results even

further could start with the use of the quasi-convex small-kl relaxation from Thiemann et al.

(2017). We note however that this is overall less important than our main results, as both

our bounds are still extremely tight when used in an algorithm-free way and applied to the

output of another algorithm.
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Figure 7.5: Theorem 7.1 (ours) compared with the margin bounds of Eq. (7.3) (BG+),

Eq. (7.2) (GZ), and the test error. Settings are rf (first row) and stumps (second row) on

the given datasets, with θθθ output by optimising either FO or f2 (first and second column

groupings respectively).
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Figure 7.7: Theorem 7.2 (ours) as optimisation objective compared to other PAC-Bayes

results (FO, SO, Bin, CCPBB, CCTND and f2 ) as objectives, with a Random Forest as set

of voters.
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results (FO, SO, Bin, f2 ) as objectives, with decision stumps as voters.



Chapter 8

Tighter PAC-Bayes Generalisation

Bounds by Leveraging Example

Difficulty

We introduce a modified version of the excess risk, which can be used to obtain

empirically tighter, faster-rate PAC-Bayesian generalisation bounds. This modified

excess risk leverages information about the relative hardness of data examples to

reduce the variance of its empirical counterpart, tightening the bound. We combine

this with a new bound for [−1,1]-valued (and potentially non-independent) signed

losses, which is more favourable when they empirically have low variance around 0.

The primary new technical tool is a novel result for sequences of interdependent

random vectors which may be of independent interest. We empirically evaluate

these new bounds on a number of real-world datasets.

8.1 Introduction and overview of contributions
Generalisation bounds are of paramount importance in machine learning, both for under-

standing generalisation, and for obtaining guarantees for predictors. Obtaining the tightest

possible bounds shines light on the former and leads to numerically better guarantees for the

latter.

Consider a parameterised learning problem where we are interested in training a predictor

hw depending on weights w (e.g., a neural network). In PAC-Bayes, predictions are typically

made by drawing randomised weights W ∼Q where Q is a so-called posterior distribution,

then predicting hW (x) for some input x. Thus the learning is moved from the parameter w

to a distribution Q over W .

PAC-Bayesian generalisation bounds (Catoni, 2007; McAllester, 1998, 1999; Shawe-Taylor

and Williamson, 1997) allow for quantifying the generalisation performance of predictors of
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the form hW with high probability. They can also be used as a stepping stone to proving

bounds where w is not random, for example for majority votes (Biggs et al., 2022; Masegosa

et al., 2020; Zantedeschi et al., 2021). The recent surge in attention given to the PAC-Bayesian

approach partially derives from a number of works establishing numerically non-vacuous

bounds for neural networks with randomised (Biggs and Guedj, 2021; Dziugaite and Roy,

2017, 2018; Dziugaite et al., 2021; Letarte et al., 2019; Pérez-Ortiz et al., 2021c; Zhou et al.,

2019) or non-randomised (Biggs and Guedj, 2022b) weights on real-world datasets. We refer

to Guedj (2019) and Alquier (2021) and the many references therein for a broad introduction

to PAC-Bayes.

Two terms commonly appear in PAC-Bayes bounds: kl := KL(Q,P ), which defines the

complexity of Q as a Kullback-Leibler divergence from some sample-independent reference

measure (usually referred to as “prior”) P ; and lg, a term logarithmic in the probability δ.

If the number of examples is m, then at worst lg ≤ O(log(m/δ)). The simplest such bound

for bounded losses (McAllester, 1998) takes the form

generalisation gap of Q≤ O

(√
kl+lg
m

)
,

holding with probability at least 1−δ over the sample. The above is rarely tight, and was

greatly improved by the bound of Maurer (2004), which we discuss further in Section 8.1.3.

Maurer’s bound has the advantage that it can (when the empirical loss of Q is small) achieve

a faster rate of convergence, where the dependence O(
√

kl/m) is improved to the “fast-rate”

O(kl/m). Since commonly kl ≫ lg, this can lead to numerically tighter bounds.

A major question in (PAC-Bayesian) learning theory is under what conditions such rates

can be possible.

As in VC theory, such fast-rates are possible when the empirical risk of Q is zero, but

it is also possible to get close to this fast regime under more general conditions. Getting

such faster rates is a primary motivation for “Bernstein” and “Bennett”-type bounds (which

leverage low variance to get faster rates) in classical learning theory, as well as for the

introduction of the excess loss, which combines nicely with the former.

8.1.1 Notation
In order to further discuss existing approaches, we define our terms more thoroughly. In

the following, we examine different PAC-Bayesian generalisation bounds for bounded losses

ℓ : W ×Z → [0,1] (where the specific range [0,1] is w.l.o.g. due to the possibility of rescaling).

We let W denote the weight space and Z is the sample space.

A generalisation bound is an upper bound on the risk L(w) := EZ∼D ℓ(w,Z), that holds

for some data-dependent hypothesis w. We extend this by abuse of notation in a PAC-

Bayesian setting to also write L(Q) := EW∼QL(W ) for PAC-Bayesian posterior distribution
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Q ∈ P(W).

We also introduce notation for a sequence of examples, z1:i = (z1, . . . ,zi) ∈ Z⋆, where

A⋆ := ∅∪
⋃∞
i=1Ai is the set of sequences of elements in set A and we notate z1:0 = ∅. Learning

takes place based on a i.i.d. sample of size m, S = Z1:m ∼ Dm, and we define the empirical

(in-sample) risk using it as L̂(w) = EZ′∼Uniform(S) ℓ(w,Z′).

8.1.2 Fast rates and excess losses
The simplest PAC-Bayesian bound which can achieve fast rates (and therefore tighter bound

values) is the following:

L− L̂ ≤
√

kl+lg
m

·2L̂ + 2kl+lg
m

. (8.1)

This bound1 (which is a relaxation of Maurer’s bound, see Section 8.1.3) has a well-studied

form common in classical learning theory where the kl term is replaced by a different

complexity term. When L̂ → 0 it achieves the fast rate on L− L̂ of O(kl/m) and will be

numerically tighter, but otherwise (for example, on a difficult dataset where L̂ is large) the

square root term typically dominates.

A common question in learning theory has therefore been on whether empirical risk under

the square root can be replaced by something faster-decaying, like a variance (Tolstikhin

and Seldin, 2013) or an excess risk. The excess risk (which we later generalise from this

definition) is introduced by comparing the loss of our hypothesis w to a fixed “good”

hypothesis w⋆ (we leave aside for now the question of choosing w⋆) in a modified loss

function, ℓ̃(w,z) = ℓ(w,z)− ℓ(w⋆,z). This has the population and sample counterparts

E(w) := E
Z∼D

ℓ̃(w,Z) = L(w)−L(w⋆)

and

Ê(w) := E
Z∼Uniform(S)

ℓ̃(w,Z).

For example, Mhammedi et al. (2019) prove the “Unexpected Bernstein” PAC-Bayes

bound

E ≤ Ê +O

(√
kl+lg
m

· V̂ + kl+lg
m

)
,

where V̂ (Q) = EW∼Q[ 1
m

∑m
i=1 |ℓ(W,Zi)− ℓ(w⋆,Zi)|2]. The idea is that the second loss term

in the excess risk “de-biases” and reduces the variance term in V̂ (Q), so that if the predictors

err on a similar set of examples, Ê(w) will be small, giving a faster rate. Such bounds on E

can be converted back into generalisation bounds, by using that L(w⋆)− L̂(w⋆) ≤O(
√

lg/m)

(since w⋆ is independent of the dataset) to get a bound like

L ≤ L̂+O

(√
kl+lg
m

· V̂ + kl+lg
m

+
√

lg
m

)
. (8.2)

1Note that for the sake of clarity we will make the slight notational abuse of omitting the argument of L,

L̂, E and Ê when the context is clear.
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Since in most cases lg ≪ kl, the final term is usually an insignificant price compared with

the reduction from L̂ to V̂ . The rate of the final term can also be improved even further

using assumptions about the noise (as examined at length in Mhammedi et al., 2019), or

using dataset evaluations of the loss of w⋆.

A problem with this approach is the fact that w⋆ must be independent of the data.

This means we must split the dataset as with PAC-Bayes data-dependent priors (as in, e.g.,

Mhammedi et al., 2019; Parrado-Hernández et al., 2012; Pérez-Ortiz et al., 2021a; Rivasplata

et al., 2018), into parts used to produce w⋆ (and potentially learn a prior), and to actually

apply the bound to. This reduces the effective sample size in the bound (e.g., from m to

m/2 when a 50-50 split is used). This issue can be partially circumvented through the use of

forwards-backwards “informed” priors (introduced in Mhammedi et al., 2019 and named such

by Wu and Seldin, 2022), but in expectation over different splits of the data this approach

is actually weaker than the naive splitting procedure, since it uses Jensen’s inequality to

combine two bounds.

8.1.3 KL-based bounds

The most well known (and often tightest) PAC-Bayesian bound for bounded losses ∈ [0,1] is

Maurer’s bound (Maurer, 2004):

kl
(
L̂(Q)∥L(Q)

)
≤

KL(Q,P )+ log 2
√
m
δ

m

where kl(q∥p) = q log qp + (1− q) log 1−q
1−p is the KL divergence between Bernoulli distributions

of biases q, p. This bound can be inverted to obtain an upper bound directly on L by defining

the inverse

kl−1(u∥b) := sup{r : kl(u∥r) ≤ b}.

The bound in Eq. (8.1) is obtained through the relaxation kl−1(u∥b) ≤ u+
√

2bu+ 2b

(McAllester, 2003). However, note that this relaxed bound can be considerably weaker,

as it does not leverage the combinatorial power of the small-kl. It has been shown (Foong

et al., 2021) that no bound on the naive loss (but not necessarily when we leverage the excess

loss) can improve Maurer’s bound (aside from the open question of whether it is possible to

remove the logarithmic factor).

We note also that although the small-kl bound can be re-scaled to use the excess loss,

this leads to a bound like Eq. (8.2) with V̂ = Ê+1
2 ≥ 1

2 L̂ (by applying the bound to E+1
2 and

relaxing as above). This does not lead to fast rates under different conditions to usual, since

it is still necessary that L̂ → 0.

Recently, Adams et al. (2022) proved a generalisation of this bound which holds for

vector-valued losses, ℓℓℓ : W ×Z → ∆M−1 (with
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simplexM the M-dimensional simplex),

kl
(

E
W∼Q

ÛUU(W )∥ E
W∼Q

µµµ(W )
)

≤
KL(Q,P )+ log ξ(M,m)

δ

m
.

where Ûi(w) = 1
m

∑m
i=1 ℓi(w,z) and µµµ= ES ÛUU , and ξ(M,m) is a polynomial function of m.

We also note a closely related earlier bound in Seldin and Tishby (2010, Theorem 2). Inverting

such a bound is somewhat more complicated, but we can use it to obtain an upper bound on∑
iαiUi for some set of coefficients αi. This is the tool we will use to obtain our bounds.

8.1.4 Our contributions

From the above starting points, we pursue two parallel and complimentary directions of

improvement. First we provide a generalisation of the excess risk which allows w⋆ to be

learned from the stream of data as we receive it. In this way, we are able to more effectively

“de-bias” our bounds, reducing the effective variance term. This is intended to demonstrate

how PAC-Bayes bounds can be made tighter by using information from the training set (in a

sense, the relative difficulty of different examples) more efficiently.

Secondly, we observe that Eq. (8.1) is a relaxation of Maurer’s bound, and this weakening

leads to a loss of some of the tightness of the original “kl” formulation. Thus we give a new

bound which leverages the tightness of kl-based bounds like Maurer’s, but also relaxes to

a form like that in Eq. (8.2). Specifically, it reduces to the form given in Eq. (8.2) with

V̂ (Q) = EW∼Q
1
m |ℓ(W,Zi) − ℓ(w⋆,Zi)|. This is very similar (if slightly larger) to the term

given in Mhammedi et al. (2019), although both are equivalent when ℓ∈ {0,1}, as for example

with the misclassification loss, which ensures faster rates under similar conditions. However

this form of our bound is only a relaxation, and the kl-type formulation that we give for it

is considerably tighter empirically, and we show it is strictly tighter under a {0,1}-valued

loss. In combination, these lead to a new bound on the out-of-sample risk that is empirically

tighter than Maurer’s bound in some cases, a feat very rare in the literature.

This new bound is related to the “split-kl” bound of Wu and Seldin (2022), which

decomposes the excess loss into positive and negative parts, and applies Maurer’s bound to

each. Our result instead derives from a starting point of vector-based and ternary ∈ {−1,0,1}

losses, which can potentially lead to tighter bounds2, but combines with their decomposition

when extending to non-ternary bounded losses.

In order to prove these results, we make several technical contributions, including new

results for simplex-valued Martingales within PAC-Bayes and a new method for relaxing our

kl-type bound.

2In the standard regime of kl ≫ logm, basic empirical comparisons show our bound to be 5−10% tighter,

but when logm ≫ kl our bound can be weaker.
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8.2 Warm up
In this section we give a simplified version of our main results, discussing only classification.

In this setting, Z = X ×Y for Y = {1, . . . ,dout}, and S = {(Xi,Yi)}mi=1. Our predictions are

given by hw(x) for w ∈ W and we consider the misclassification loss, ℓ(w,(x,y)) = 111hw(x) ̸=y.

We consider positive and negative deviations of the excess loss, Ê+ and Ê−, which

we will define for general losses in the next section. For intuition, in the specific case of

misclassification loss they are equal to the following

Êmc
+ = E

W∼Q

[
|{(x,y) ∈ S : hW (x) ̸= y,hw⋆(x) = y}|

m

]
,

Êmc
− = E

W∼Q

[
|{(x,y) ∈ S : hW (x) = y,hw⋆(x) ̸= y}|

m

]
.

Thus in this case we are merely counting the numbers of two different types of loss: an error

using w but not using w⋆, and the converse. If neither predictor or both predictors err, this

incurs no loss. These two error types have simple interpretations as counts, which is similar

to the work of Adams et al. (2022), and indeed the preliminary results we show here could

follow fairly straightforwardly from theirs.

We note that E = E+ −E−, and

Êmc
+ + Êmc

− = 1
m

m∑
i=1

P
W∼Q

(hW (Xi) ̸= hw⋆(Xi)),

a form which commonly appears in learning theory, and can also be controlled by Mammen-

Tsybakov or Massart noise conditions.

Our main result implies the following (weakened) relaxed bound:

E ≤ Ê +2
√

kl+lg
m

· (Ê+ + Ê−)+2kl+lg
m

(8.3)

with lg = log(2m/δ).

We then can easily go from Eq. (8.3) to a bound on the population risk (like Eq. (8.2)),

since w⋆ is independent of the data, and can be estimated empirically with no complexity

penalty. The (simplest) Hoeffding bound gives L(w⋆) − L̂(w⋆) ≤
√

log(1/δ)/2m. Overall,

with cancellations (and a union bound, so that the following holds with probability 1−2δ)

this gives a bound of

L ≤ L̂+2
√

kl+lg
m

· (Ê+ + Ê−)+2kl+lg
m

+
√

logδ−1

2m . (8.4)

The last term is complexity-free and hence will generally be dominated by the other terms.

8.2.1 KL-type formulation
Here we show that the above can be considerably tightened into a “kl”-type formulation.

This can be relaxed back into the previous form, similarly to the way in which Maurer’s
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bound implies the much weaker result in Eq. (8.1). Collecting the error type counts into the

vector

Ê(Q) = [Ê+(Q), Ê−(Q),1− Ê+(Q)− Ê−(Q)]T ,

we will prove the bound

E(Q) ≤ ϕ

(
Ê(Q),

KL(Q,P )+ log 2m
δ

m

)

where ϕ(uuu,b) := sup{r1 − r2 : rrr ∈ ∆3−1, kl(uuu∥rrr) ≤ b}.

This function (and its gradients) can be calculated by a simple procedure outlined in

Section 8.B.2 This form leverages the tightness of the kl bound and is empirically much

tighter than Eq. (8.3). In the next section we give a more detailed analysis of this function

and show that it implies several relaxations, including Eq. (8.3), the unexpected Bernstein

bound (for certain losses), and a split-kl type inequality similar to that from Wu and Seldin

(2022).

For intuition, we point out that this basic result (though not the relaxations which

require further proofs, or the general bounded loss forms, since their result applies only for

count-based losses) can be proved by application of results from Adams et al. (2022) to a

vector loss of counts, ℓℓℓ : W ×Z → ∆3−1, with

ℓ1 = 111hw ̸=y,hw⋆ =y,

ℓ2 = 111hw=y,hw⋆ ̸=y,

ℓ3 = 1− ℓ1 − ℓ2.

Just as above, this result can be combined with a (test set) bound on L(w⋆) using L̂(w⋆)

to provide a generalisation bound for Q, as in Eqs. (8.2) and (8.4). Again, to leverage the

tightness of the kl formulation, we could replace the weaker Hoeffding bound used before

with a tighter (kl-based, inverted) Chernoff bound (as given in e.g. Foong et al., 2022):

L(w⋆) ≤ kl−1

(
L̂(w⋆)

∥∥∥∥∥ log 1
δ

m

)
.

Thus we can get an overall result with two inverse kl-type terms, which is much tighter in

practice than the formulations given in the previous section. In Section 8.3 we give formal

statements of the above and adapt the bound to work for any bounded loss function.

8.2.2 Generalising the excess loss
A problem with formulations using the excess risk is that the optimal choice of w⋆ is

essentially impossible to know in advance. In order to optimally de-bias bounds, w⋆ ought

to perform similarly to our overall posterior, essentially identifying difficult examples, but

this is very difficult when it must be chosen in a data-free way. One solution to this problem
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is data-splitting, but this is sub-optimal because it reduces the amount of data available to

the bound.

Here instead, drawing on PAC-Bayesian tools for non-independent, martingale based

losses, we propose an alternative solution through a generalisation of the excess risk. We

first recall the notation z1:i for a sequence of examples z1, . . . ,zi. Given a sequence of i.i.d.

variables Zi, it turns out we can derive empirically-calculable bounds by considering a

sequence of losses like

ℓ(w,Zi)− ℓ(w⋆i (Z1:i−1),Zi). (8.5)

Here, instead of being fixed in a data independent way, w⋆i (Z1:i−1) is an online sequence of

weights learned using the first i−1 examples. If the procedure used to learn the w⋆i is similar

to that used to learn W ∼Q, and is relatively stable to changes in dataset size, the errors of

Q and the w⋆i will be highly correlated. The terms in Eq. (8.5) will mostly cancel, reducing

the excess risk and tightening the overall bound. This approach can be easily generalised to

stochastic online algorithms, a procedure mentioned by Mhammedi et al. (2019) as “online

estimators”, but not used empirically. We note that, unlike with data-dependent priors in

PAC-Bayes bounds, no data-splitting is necessary for this procedure, the bound still uses all

of the training data with m= |S|.

To clarify further, this technique can tighten any bound that leverages excess losses

to achieve faster rates, such as ours or the unexpected Bernstein, but not Maurer’s bound.

Ordering examples by difficulty is not necessary; what is useful is that a learner on the first

i points makes similar errors to our (whole-dataset) posterior, leveraging the notion that

not all examples have the same difficulty. This is what we mean by “leveraging example

difficulty”.

8.3 Main results
In the following, ℓ : W ×Z → [0,1] is a bounded loss and S = Z1:m is an i.i.d. sample

from unknown distribution D. We choose a sequence of online estimators Q⋆i ∈ P(W) for

i∈ {1, . . . ,m}, each depending on only the previous i−1 examples Z1:i−1. This might be done

for example through choosing Q⋆i = A(Z1:i−1), where A : Z⋆ → P(W) is a predetermined

algorithm.

Our de-biased (generalised, in that it depends on i examples) loss for the ith example

takes the form

ℓ̃(w,z1:i) := ℓ(w,zi)− E
W ′∼Q⋆

i

[ℓ(W ′,zi)].

As in Wu and Seldin (2022), we distinguish two different types of sample errors (corresponding

to positive and negative parts ℓ̃ > 0 and ℓ̃ < 0) with corresponding generalised empirical risk
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values:

Ê+(Q) := E
W∼Q

[
1
m

m∑
i=1

max(ℓ̃(W,Z1:i),0)
]
,

Ê−(Q) := E
W∼Q

[
1
m

m∑
i=1

max(−ℓ̃(W,Z1:i),0)
]
.

For notational convenience we collect these in the vector

Ê(Q) = [Ê+(Q), Ê−(Q),1− Ê+(Q)− Ê−(Q)]T .

Given a PAC-Bayesian posterior Q ∈ P(W), we define the generalised excess risk as

E(Q) := L(Q)−L⋆

with

L⋆ := 1
m

m∑
i=1

E
Z

E
W∼Q⋆

i

[ℓ(W,Z)].

We next present a result in two parts which can be used to control E and L⋆, and hence

obtain a bound on L(Q) directly.

Theorem 8.1 (Generalisation Loss Bound). Fix data distribution D ∈ P(Z), prior P ∈

P(W), m≥ 3, δ ∈ (0,1), and bounded loss ℓ : Z×W → [0,1]. Let S =Z1:m ∼ Dm be a sample

and Q⋆i ∈ P(W) be any sequence of online estimators with i= 1, . . . ,m, each depending only

on the i−1 examples Z1:i−1, and let E and Ê be as defined in this section.

Then, with probability at least 1− δ over S for arbitrary posterior Q ∈ P(W),

L(Q) ≤ ϕ

(
Ê(Q),

KL(Q,P )+ log 2m
δ

m

)
+L⋆,

where ϕ(uuu,b) := sup{r1 − r2 : rrr ∈ ∆3−1, kl(uuu∥rrr) ≤ b}.

Further, with probability at least 1− δ over S,

L⋆ ≤ kl−1

(
1
m

m∑
i=1

E
W∼Q⋆

i

[ℓ(W,Zi)]
∥∥∥∥∥ log 1

δ

m

)
.

With probability at least 1 − 2δ, the above hold simultaneously, and L(Q) = E(Q) +L⋆ is

bounded by the sum of the right hand sides.

This is a complex result, so to begin we note that a deterministic and data-free choice

of Q⋆i as a distribution fixed to w⋆ recovers the results from Section 8.2.1. The relaxed form

given by Eq. (8.3) is still also valid with the modified forms of the excess risk, and gives

intuition about the bound; in this more general (bounded, not misclassification) case,

Ê+ + Ê− = 1
m

m∑
i=1

E
W∼Q

|ℓ(W,Zi)− E
W ′∼Q⋆

i

ℓ(W ′,Zi)|.
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In the next sub-sections, we examine some corollaries and relaxations of this bound.

We also note here that it is possible to directly calculate the value and gradients of ϕ with

respect to both of its arguments using a procedure outlined by Adams et al. (2022), which

could be very useful in optimising the bound directly as an objective.

8.3.1 Relaxation to Maurer

As a basic sanity check to show that the new bound leverages the tightness of a small-kl-based

bound, we show that it can be used to recover Maurer’s bound (up to a factor 2 in front of the

logarithmic term). Assume the realisable case3, where there exists w⋆ such that ℓ(w⋆,z) = 0

for all z in the support of D. This ensures that Ê− = 0, L(Q) = E(Q), and

Ê+(Q) = E
W∼Q

[
1
m

m∑
i=1

ℓ(W,Zi)
]

= L̂(Q).

We also have the following.

Proposition 8.1. For any u ∈ [0,1] and b > 0

ϕ([u,0,1−u], b) = kl−1(u∥b).

Combining Proposition 8.1 with our Theorem 8.1 in this setting implies that

L(Q) ≤ kl−1

(
L̂(Q)

∥∥∥∥∥KL(Q,P )+ log 2m
δ

m

)
,

which is Maurer’s bound (up to a constant factor for the log term). In the realisable case, we

would expect L̂(Q) → 0 and de-biasing is not necessary to achieve faster rates, so this shows

that we can recover the tightest known bound for that scenario.

8.3.2 Relaxation to unexpected Bernstein and noise conditions

The following result can be used to obtain a number of relaxations of our result that enable

more direct comparison to Mhammedi et al. (2019).

Proposition 8.2. For any uuu ∈ ∆3−1, b > 0,

ϕ(uuu,b) ≤ inf
η∈(0,1)

1
η

(
1−eu1 log(1−η)+u2 log(1+η)−b

)
≤ inf
η∈(0,1)

fη(u1 −u2 + cη(u1 +u2)+ b/η)

where fη(t) = η−1(1−e−ηt) ≤ t, and cη = −1− log(1−η)/η is a term also appearing in the

unexpected Bernstein bound.
3Surprisingly, we can assume this w.l.o.g. by a mathematical trick, extending W to contain a special,

non-learnable point w† such that ℓ(w†,z) = 0 for all z. However, this deprives us of the use of excess losses,

which can give tighter bounds when we do not learn a low-risk solution as in the “true” realisable case.
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This enables us to relax our main result to find that simultaneously for any η ∈ (0,1)

E ≤ fη

(
Ê+ − Ê− + cη(Ê+ + Ê−)+ kl+lg

mη

)
. (8.6)

Firstly we note that setting η = 1−e−C for C > 0 gives a bound similar to Catoni’s Catoni

(2007) with a free choice of C and an extra log(2m) term, and recovers it exactly when

Ê− = 0.

We also compare this relaxation with the strongest form of the unexpected Bernstein

(given by Mhammedi et al. (2019) and Theorem 8.6 our appendix), which takes the form

E ≤ Ê+ − Ê− + cηV̂ + kl+lg
mη

for a relatively free (it must be chosen from within some covering grid) choice of η. In the

specific case of the misclassification loss (and non-randomised Q⋆i each supported on a single

point), the term Ê+ + Ê− = V̂ , is equal to that from the unexpected Bernstein. We therefore

recover a bound (Eq. (8.6)) taking the same form but with an extra fη(t) ≤ t around it, so

in the case of misclassification loss our bound is always at least as strong as the results of

Mhammedi et al. (2019). For more general losses, since the squaring of the loss difference

terms in V̂ makes them smaller, the unexpected Bernstein might be more able to leverage

small but non-zero per-example excess losses.

A corollary of this misclassification equivalence is that our bound can achieve faster

rates under a (c,β)-Mammen-Tsybakov noise condition. These noise conditions for the

misclassification loss imply a β-Bernstein condition. Under the analysis of Mhammedi et al.

(2019, Section 5), with the same learning algorithm choices, our bound therefore achieves a

rate of at least Õ(m−1/(2−β)).

8.3.3 Relaxation to split-kl
A relaxation of our bound that is very similar in form to the recent PAC-Bayes split-kl

inequality from Wu and Seldin (2022) is obtained through the following proposition.

Proposition 8.3. For any uuu ∈ ∆3−1, b > 0,

ϕ(uuu,b) ≤ kl−1(u1∥b)−kl−1
LB(u2∥b)

≤ u1 −u2 +2
√
b · (u1 +u2)+2b,

where kl−1
LB(u∥b) := inf{r ∈ [0,1] : kl(u∥r) ≤ b} is the lower tail small-kl inversion.

This gives the bound

E ≤ kl−1
(
Ê+

∥∥∥∥kl+lg
m

)
−kl−1

LB

(
Ê−

∥∥∥∥kl+lg
m

)
. (8.7)

This is essentially the same as the split-kl inequality (Wu and Seldin, 2022), except that we

have lg = log 2m
δ while in their bound lg = log 4

√
m
δ , so the constants in ours are slightly
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worse, as in Section 8.3.1. Their main bound is not limited to excess losses, but is primarily

aimed at losses where there are three different special values to be focused on (in the simple

case, {−1,0,1}, as here). We note that the techniques they use to do this (which involve

re-scaling and translating loss functions) could also be combined with our (non-split) kl

formulation.

8.3.4 Aside: slight generalisations
We here give a slight generalisation of our main result. This suggests two different possible

directions for our main technical results.

Theorem 8.2. For any measurable ℓ̃ : W ×Z⋆ → [−1,1] as defined above and any D ∈

P(Z),m≥ 3, with probability at least 1−δ over S ∼ Dm simultaneously for all Q ∈ P(W),

L(Q) ≤ ϕ

(
L̂(Q),

KL(Q,P )+ log 2m
δ

m

)
,

where we have defined

L̂+(Q) := E
W∼Q

[
1
m

m∑
i=1

max(ℓ̃(W,Z1:i),0)
]
,

L̂−(Q) := E
W∼Q

[
1
m

m∑
i=1

max(−ℓ̃(W,Z1:i),0)
]
,

L̂(Q) := [L̂+(Q), L̂−(Q),1− L̂+(Q)− L̂−(Q)]T ,

L(Q) := 1
m

m∑
i=1

E
Zi

[ℓ̃(Z1:i)|Z1:i−1],

and ϕ(uuu,b) := sup{r1 − r2 : rrr ∈ ∆3−1, kl(uuu∥rrr) ≤ b}.

Firstly, this shows that we can straightforwardly consider general “signed” loss in [−1,1],

rather than an excess loss. This takes our work closer to that of Wu and Seldin (2022).

We can also consider a more general de-biasing term, setting ℓ̃= ℓ(w,zi)−ℓ⋆(z1:i), where

ℓ⋆ :Z⋆ → [0,1]. However, to obtain bounds on L(Q) with for arbitrary choices of this function,

we must also bound

L(Q)−L(Q) = 1
m

m∑
i=1

E
Zi

[ℓ⋆(Z1:i)|Z1:i−1].

This is difficult in general, but in some cases the following result is useful: One way to do

this is suggested by the following:

Theorem 8.3 (Martingale Chernoff-Hoeffding Inversion). Let Ui ∈ [0,1], i= 1, . . . ,m have

conditional expectations E[Ui|U1:i−1] = µi, and averages Ū := 1
m

∑m
i=1Ui, µ̄ = 1

m

∑m
i=1µi.

Then with probability at least 1−δ,

µ̄≤ kl−1

(
Ū

∥∥∥∥∥ log 1
δ

m

)
.
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This result shows that any fixed method of choosing the de-biasing term can work. For

example, we could train some model on the first i− 1 points to predict the loss (which is

in [0,1]) of the next data point. As long as this model is not trained on the i-th point, its

evaluation on this point is akin to a real test-set evaluation, and so we can get a relatively

sharp bound on the term L(Q)−L(Q).

8.4 Proofs and corollaries
Firstly, we prove two theorems which generalise theorems of Adams et al. (2022) to random

variables with a dependence structure, using ideas from Seldin et al. (2012). These results

may be of interest in their own right.

Theorem 8.4 (Generalisation of Lemma 5 in Adams et al., 2022 and Lemma 1 in Seldin

et al., 2012). Let UUU1, . . . ,UUUm be a sequence of random vectors, each in ∆M−1, such that

E[UUU i|UUU1, . . . ,UUU i−1] = µµµi

for i= 1, . . . ,m. Let VVV 1, . . . ,VVVm be independent Multinomial(1,M,µµµi)4. random vectors such

that EVVV i = µµµi. Then for any convex function f : ∆m
M−1 → R:

E[f(UUU1, . . . ,UUUm)] ≤ E[f(VVV 1, . . . ,VVVm)].

Proof. Let EM denote the set of canonical (axis-aligned) M -dimensional basis vectors, for

example E3 = {[1,0,0], [0,1,0], [0,0,1]}. We will denote typical members of this set by ηηηi,

and tuples ηηη1:m = (ηηη1, . . . ,ηηηm) ∈ ∆m
M−1. Firstly we show that the definitions in the theorem

lead to a Martingale-type result:

E

[
m∏
i=1

UUU i ·ηηηi

]

= E
UUU1:m−1

[(
m−1∏
i=1

UUU i ·ηηηi

)
E
UUUm

[UUUm|UUU1:m−1] ·ηηηm

]

= E
UUU1:m−1

[(
m−1∏
i=1

UUU i ·ηηηi

)
µµµm ·ηηηm

]

=
m∏
i=1

µµµi ·ηηηi.

In Adams et al. (2022, proof of Lemma 5), it is shown that for any convex function

f : ∆m
M−1 → R and uuu1:m = (uuu1, . . . ,uuum) ∈ ∆m

M−1,

f(uuu1:m) ≤
∑

ηηη1:m∈Em
M

(
m∏
i=1

uuui ·ηηηi

)
f(ηηη1:m).

4A multinomial distribution Multinomial(m,M,ppp) is supported on non-negative integers x1 . . .xM summing

to m, with probability mass function m!
x1!...xM ! px1

1 . . .p
xM
M .



152 Chapter 8. Tighter Bounds by Leveraging Example Difficulty

Applying this result to the random variables UUU1:m and combining with the Martingale-type

result leads to the following:

E[f(UUU1:m)]

≤ E

 ∑
ηηη1:m∈Em

M

(
m∏
i=1

UUU i ·ηηηi

)
f(ηηη1:m)


=

∑
ηηη1:m∈Em

M

E

[
m∏
i=1

UUU i ·ηηηi

]
f(ηηη1:m)

=
∑

ηηη1:m∈Em
M

(
m∏
i=1

µµµi ·ηηηi

)
f(ηηη1:m)

=
∑

ηηη1:m∈Em
M

(
m∏
i=1

P(VVV i = ηηηi)
)
f(ηηη1:m)

= Ef(VVV 1:m).

The final step in the proof followed via the definition of expectation w.r.t. the VVV i.

Theorem 8.5 (Martingale PAC-Bayes for Vector KL.). Let UUU1(w), . . . ,UUUm(w) be a sequence

of random vector valued functions, each in ∆M−1, such that

E[UUU i(w)|UUU1(w), . . . ,UUU i−1(w)] = µµµi(w)

for i= 1, . . . ,m and all w ∈ W. Define

ÛUU(Q) := E
W∼Q

[
1
m

m∑
i=1

UUU i(W )
]

and

µ̄µµ(Q) := E
W∼Q

[
1
m

m∑
i=1

µµµi(W )
]
.

Then for fixed P ∈ P(W), δ ∈ (0,1), with probability at least 1−δ (over {UUU i(w) : i ∈ 1, . . . ,m :

w ∈ W}), simultaneously for all Q ∈ P(W),

kl
(
ÛUU(Q)

∥∥∥µ̄µµ(Q)
)

≤
KL(Q,P )+ log ξ(M,m)

δ

m

where ξ(M,m) is defined for m≥M by

√
πe1/12m

(m
2

)M−1
2

M−1∑
k=0

(
M

k

)
1

(mπ)k/2Γ
(
M−k

2
) .

Proof. The proof begins by a common pattern in PAC-Bayesian proofs (as first pointed out

by Germain et al., 2009). By Jensen’s inequality, the Donsker-Varadhan change-of-measure

theorem, Markov’s inequality and the independence of P from {UUU i,µµµiii}, the following holds

with at least 1−δ for any Q:

mkl
(
ÛUU(Q)

∥∥∥µ̄µµ(Q)
)

−KL(Q,P )
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≤m E
W∼Q

kl
(

1
m

m∑
i=1

UUU i(w)
∥∥∥∥∥µ̄µµ(w)

)
−KL(Q,P )

≤ log E
W∼P

[
emkl( 1

m

∑m

i=1UUUi(w)∥µ̄µµ(w))]
≤ log 1

δ
E
UUUi

E
W∼P

[
emkl( 1

m

∑
i
UUUi(w)∥µ̄µµ(w))]

≤ log 1
δ

E
W∼P

E
UUUi

[
emkl( 1

m

∑
i
UUUi(w)∥µ̄µµ(w))] .

By applying Theorem 8.4 to the inner term we find that

E
UUUi

[
emkl( 1

m

∑
i
UUUi(w)∥µ̄µµ(w))]

≤ E
VVV i

[
emkl( 1

m

∑
i
VVV i(w)∥µ̄µµ(w))]

≤ Ē
VVV

[
emkl(V̄VV ∥µ̄µµ(w))

]
,

where V̄VV ∼ Multinomial(m,M,µ̄µµ(w)). The latter step follows as the expectation of a convex

sum of Multinomial variables is maximised by variables having the same constants, µµµi = µ̄µµ

(Hoeffding, 1956). This final term is shown in Corollary 7 of Adams et al. (2022) to be upper

bounded by ξ(M,m) uniformly for all w. We divide both sides by m to obtain the theorem

statement.

In showing the simpler form of our bound also we use the following.

Proposition 8.4. For any m≥ 3, ξ(3,m) ≤ 2m.

Proof. For M = 3 the upper bound in Theorem 8.5 evaluates to

1
2e

1
12m

(
1+ 3√

m
+ 6
πm

)
·m.

The right hand part of this is a decreasing function of m and less than 2 for m≥M = 3.

Proof of Theorem 8.1. Set M = 3 and

UUU i(w) =


max(ℓ̃(w,Z1:i),0)

max(−ℓ̃(w,Z1:i),0)

1−|ℓ̃(w,Z1:i)|


in Theorem 8.5, and bound ξ(3,m) with Proposition 8.4. This gives the first part of the

statement. For the second, we set Ui = EW∼Q∗
i
[ℓ(W,Zi)] in Theorem 8.3 and note that

µi =EW∼Q∗
i
EZ∼D[ℓ(W,Z)] since Q⋆i is independent of Zi. The final part is obtained through

a union bound of the two events.

Proof of Theorem 8.2. The proof is the same as the first part of the proof of Theorem 8.1.
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Proof of Proposition 8.1. We know that kl([u,0,1−u]∥rrr) ≥ kl(u∥r1) by Adams et al. (2022,

Proposition 9), with equality when r2 = 0. Therefore we can set r2 = 0 without making it

any more difficult to satisfy the constraint kl([u,0,1−u]∥rrr) ≤ b. In this case

ϕ([u,0,1−u], b) = sup{r1 : kl(u∥r1) ≤ b}

which is the definition of kl−1.

Proof of Proposition 8.3. Firstly, we recall (Adams et al., 2022, Proposition 9) that

kl(uuu∥vvv) ≥ kl(ui∥vi) for any i. This immediately gives the first inequality upon inversion, if

we note that v1 −v2 ≤ c for all kl(uuu∥vvv) ≤ b implies that ϕ(uuu,b) ≤ c. The first term is bounded

with v1 ≤ kl−1(u1∥b) ≤ u1 +
√

2bu+2b as in the relaxation of Maurer’s bound. Next we know

that by Taylor’s theorem, for any lower bound 0 ≤ p < q ≤ 1, there exists s ∈ [p,q] such that

kl(q∥p) = (p− q)2

2s(1−s) ≥ (p− q)2

2q .

Therefore

−v2 ≤ −u2 +
√

2bv2.

The proof is completed by summing these and applying the bound
√
a+

√
b≤

√
2(a+ b) for

a,b≥ 0 (square both sides and subtract a+ b to reduce this to Young’s inequality).

8.5 Experiments
In this section we empirically compare our bound to that of Maurer (2004) and the Unexpected

Bernstein (Mhammedi et al., 2019), with a particular focus on the tightening arising through

de-biasing by online estimators. For completeness, we give the exact statements of the bounds

used in Section 8.B, along with the procedure for calculating our bound.

We replicate the experimental setup of Mhammedi et al. (2019), looking which looks at

classification with the 0-1 loss by logistic regression of UCI datasets.

The data space is Z = X ×Y = Rd × {0,1}. Our hypotheses take the form hw(x) =

111ψ(w·x)> 1
2
, where 111 is the indicator function and ψ(t) = 1/(1+e−t) is the standard logistic

function. The 0-1 loss can be written as

ℓ(w,(x,y)) = |y−111ψ(w·x)> 1
2

|.

Specifically, we look at learning w by regularised logistic regression, which (for sample S and

regularisation constant λ) outputs

LGRλ(S) = argmin
w∈W

λ∥w∥2

2 + 1
|S|

∑
(x,y)∈S

σw(x,y)

with

σw(x,y) = −y logψ(w ·x)− (1−y) log(1−ψ(w ·x)).
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Dataset Test Maurer UB Ours

Haberman 0.273 0.415 0.583 0.501

Breast-C 0.037 0.139 0.208 0.164

Tictactoe 0.043 0.214 0.369 0.245

Banknote 0.050 0.129 0.192 0.136

kr-vs-kp 0.045 0.167 0.247 0.164

Spambase 0.169 0.324 0.501 0.306

Mushroom 0.003 0.055 0.082 0.056

Adult 0.170 0.234 0.384 0.211

Table 8.1: Test error of LGRλ(S), and bounds for Q(S) with optimised σ as obtained on the

UCI datasets listed. The datasets are ranked in order of size, from least examples to most.

The bounds evaluated are Maurer’s small-kl bound, the unexpected Bernstein bound and

our Theorem 8.1, with the latter two using online estimators for de-biasing as described.

This is solved empirically using the L-BFGS algorithm (Liu and Nocedal, 1989).

We set δ=0.05 and λ=0.01 on all datasets. In our bounds we choose posterior Q(S) =

N (LGRλ(S),σ2I), with σ2 ∈ {1/2, . . . ,1/2J : J = ⌈log2m⌉} chosen to minimise the bound

being considered. For our prior we fix P = N (0,σ2
0I). Note that we are not using data-

dependent priors as originally studied in Mhammedi et al. (2019), in order to isolate the

effect of de-biasing; data-dependent PAC-Bayes priors are a rich topic in their own right.

The sequence of online estimators for our bound and the Unexpected Bernstein are

chosen as the deterministic predictors outputted by LGRλ(Z1:i−1); for computational reasons

we update these only after every 150 examples, so that each new online estimator predicts

the next 150 points. For the first 150 data points the online estimators are not yet effective

so we simply choose them to have zero error, which does not change the bound on the loss of

the online estimators.

The experiments use several UCI datasets, encoded and pre-processed using the same

methods as Mhammedi et al. (2019). Specifically, we encode categorical variables in 0−1

vectors (increasing the effective dimension of the feature space), remove any instances with

missing features, and scale each feature to have values in [−1,1]. Experiments are repeated

20 times with different data shuffling and test-train allocation, and expectation with respect

to Gaussian variables are evaluated using Monte Carlo estimates.

Discussion. Empirically we observe that our bound more effectively leverages the de-biasing

of online estimators than the unexpected Bernstein, providing a tighter numerical guarantee
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in every case. On the smaller datasets it is somewhat weaker than Maurer’s bound, but it

is close to or better than it on the larger datasets. This arises because when the number

of examples is very small, the online estimators are poor surrogates for the final posterior,

and the de-biasing term is only weakly correlated with the loss. On the larger datasets, the

de-biasing process is more effective and our bound is the tightest.

8.6 Summary
In Theorem 8.1 we have provided a new PAC-Bayesian bound which can be used alongside

an extension of excess losses. In particular, this extension of the excess loss is able to use

information about the difficulty of examples in a pseudo-online fashion, as the learning

algorithm passes over the dataset. This minimises the variance of our generalised excess

loss. Our new bound is able to leverage this reduced variance to obtain tighter overall

generalisation bounds and fast rates under broader settings.

By harnessing the power of online estimators and small-kl-based bounds in a new way,

we have provided a new direction for numerical and theoretical improvements in PAC-Bayes

bounds. Information about the difficulty of examples is most easily used for stable algorithms

in our framework, which links nicely to further ideas like the complimentary use of data-

dependent or distribution-dependent priors. In future work these same ideas could also

be explored in an information-theoretic generalisation setting, such as the CMI setting of

Steinke and Zakynthinou (2020); and extended to time-uniform bounds Haddouche and

Guedj (2022).
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8.A Additional proofs and theorems

8.A.1 Proof of proposition 8.2

Proof. We begin with the Donsker-Varadhan variational definition of the KL divergence for

probability measures µ,ν on A:

KL(µ,ν) = sup
g:A→R

E
A∼µ

[g(A)]− log E
A∼ν

[exp◦g(A)].

Adapting to the case of the excess loss, |A| = 3 and the probabilities of the possible events are

measured by qqq,ppp ∈ ∆3−1. The set of real-valued functions on this space can be parameterised

by a vector of values for each event, rrr ∈ R3, so that the above equation is expressible as

kl(qqq,ppp) = sup
rrr∈R3

3∑
i=1

qiri− log
( 3∑
i=1

pie
ri

)

= sup
rrr∈R3

q1(r1 − r3)+ q2(r2 − r3)+ r3 − log
(
er3
(
p1(er1−r3 −1)+p2(er2−r3 −1)+1

))
= sup
rrr∈R3

q1(r1 − r3)+ q2(r2 − r3)− log
(
p1(er1−r3 −1)+p2(er2−r3 −1)+1

)
.

Now we introduce the following reparamterisation of r1 −r3 = log(1−η), r2 −r3 = log(1+η′)

so that

kl(qqq,ppp) = sup
η<1,η′>−1

− log
(

(−ηp1 +η′p2 +1)e−q1 log(1−η)−q2 log(1+η′)
)

which can be re-arranged to give the following form very close to our final result

sup
η<1,η′>−1

ηp1 −η′p2 −
(

1−eq1 log(1−η)+q2 log(1+η′)−kl(qqq,ppp)
)

= 0.

If we then relax the result by insisting that η′ = η ∈ (0,1), we find that

p1 −p2 ≤ inf
η∈(0,1)

1
η

(
1−eq1 log(1−η)+q2 log(1+η)−kl(qqq,ppp)

)
which gives the first part of our result.

Rearranging terms,

q1 log(1−η)+ q2 log(1+η) = q1 − q2 + q1

(
− log(1−η)−η

η

)
+ q2

(
− log(1+η)+η

η

)
≤ q1 − q2 +(q1 + q2)

(
− log(1−η)−η

η

)
= q1 − q2 + cη(q1 + q2)

where it is easily verified that − log(1+η)+η ≤ − log(1−η)−η for η > 0.

Substitution of the definitions gives our proposition.
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8.A.2 Proof of theorem 8.3
Proof. We show that

P
(
Ū ≥ µ̄+ t

)
≤ e−m·kl(µ̄+t∥µ̄). (8.8)

From this, the proof of Theorem 4 in Biggs (2022) implies our theorem statement. By

Markov’s inequality and the convexity of t 7→ ect,

P
(
Ū ≥ µ̄+ t

)
≤ P

(
emλŪ ≥ emλ(µ̄+t)

)
≤ e−mλ(µ̄+t)E

[
emλŪ

]
≤ e−mλ(µ̄+t)E

[
m∏
i=1

eλUi

]

≤ e−mλ(µ̄+t)E

[
m∏
i=1

(1−Ui+Uie
λ)
]

≤ e−mλ(µ̄+t)E

[
m∏
i=1

(1−µi+µie
λ)
]

where in the final step we have used the same telescoping property of conditional expectations

as in the proof of Theorem 8.4. By the arithmetic-geometric mean inequality, the product

term is upper bounded by(
1
m

m∑
i=1

(1−µi+µie
λ)
)m

= (1− µ̄+ µ̄eλ)m.

Substitution shows that the probability above is upper bounded by(
1− µ̄+ µ̄eλ

eλ(µ̄+t)

)
.

Optimising this bound w.r.t. λ gives the form on Eq. (8.8).

8.A.3 PAC-Bayes unexpected bernstein with generalised excess

loss
In this section we reproduce the following central result of Mhammedi et al. (2019) in the

form used by our empirical comparison (which uses de-biasing but not informed priors).

Theorem 8.6 (PAC-Bayes unexpected Bernstein Excess Loss). For loss ℓ ∈ [0,1], for

any fixed η ∈ (0,1) and prior P ∈ P(W), with probability at least 1−δ over the sample S

simultaneously for any Q ∈ P(W)

E(Q)− Ê(Q) ≤ cηV̂ (Q)+
KL(Q,P )+ log 1

δ

mη
.

Here cη = η+log(1−η)
η ,

E(Q) := L(Q)− 1
m

m∑
i=1

E
Z

E
W∼Q⋆

i

[ℓ(W,Z)],
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Ê(Q) := L̂(Q)− 1
m

m∑
i=1

E
W∼Q⋆

i

[ℓ(W,Z)],

V̂ (Q) := E
W∼Q

[
1
m

m∑
i=1

|ℓ(W,Zi)− E
W ′∼Q⋆

i

ℓ(W ′,Zi)|2
]
.

We note that if the online estimators are fixed these quantities reduce to the standard

excess risk terms. In order to prove this result, we first state and prove some intermediate

results.

Proposition 8.5 (Unexpected Bernstein Lemma; Mhammedi et al., 2019, Lemma 13). Let

U ≤ 1 a.s.; then for any η ∈ (0,1)

Eeη(E[U ]−U−cηU
2) ≤ 1

where cη = η+log(1−η)
η .

Proof. For t < 1, define the decreasing function

f(t) = log(1− t)+ t

t2
.

Let u≤ 1 and η ∈ (0,1), so that uη ≤ η < 1. Since f is decreasing,

f(η) ≤ f(uη) =⇒ log(1−η)+η

η2 ≤ log(1−uη)+uη

(uη)2 =⇒ exp
(
ηcηu

2 −ηu
)

≤ 1−uη.

Setting u= U and taking the expectation, and using 1− t≤ e−t,

Eexp
(
ηcηU

2 −ηU
)

≤ 1−E[U ]η ≤ e−E[U ],

dividing through by the right hand side gives the result.

We also give the following unexpected Bernstein counterpart of Theorem 8.5 which can

be used to trivially prove the main result.

Theorem 8.7. Let U1(w), . . . ,Um(w) be a sequence of random bounded functions, valued in

[0,1], such that

E[Ui(w)|U1(w), . . . ,Ui−1(w)] = µi(w)

for i= 1, . . . ,m and all w ∈ W. Define

Û(Q) := E
W∼Q

[
1
m

m∑
i=1

Ui(W )
]

and µ̄(Q) := E
W∼Q

[
1
m

m∑
i=1

µi(W )
]
.

For any fixed P ∈ P(W), δ ∈ (0,1),η ∈ (0,1), with probability at least 1−δ (over all Ui),

simultaneously for all Q ∈ P(W),

µ̄(Q)− Û(Q) ≤
cη
m

m∑
i=1

E
W∼Q

|Ui(W )|2 +
KL(Q,P )+ log 1

δ

m

where cη = η+log(1−η)
η .
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Proof. Firstly, we combine Proposition 8.5 with recursion of conditional expectations to

find that

Eexp
(
η

m∑
i=1

(µi−Ui− cηU
2
i )
)

≤ E

[
m∏
i=1

exp
(
η(µi−Ui− cηU

2
i )
)]

≤ E
U1:m−1

[
m−1∏
i=1

exp
(
η(µi−Ui− cηU

2
i )
)

· E
Um

[exp
(
η(µm−Um− cηU

2
m)
)
|U1:m−1]

]

≤ E
U1:m−1

[
m−1∏
i=1

exp
(
η(µi−Ui− cηU

2
i )
)]

≤ 1.

Next, as in the proof of Theorem 8.5, we combine this with Donsker-Varadhan, Markov’s

inequality and the independence of P from U1:m to find the following holds with probability

at least 1−δ for all Q:

E
W∼Q

[
η

m∑
i=1

(µi(W )−Ui(W )− cηUi(W )2)
]

−KL(Q,P )

≤ log E
W∼P

[
η

m∑
i=1

(µi(W )−Ui(W )− cηUi(W )2)
]

≤ log E
U1:m

E
W∼P

[
η

m∑
i=1

(µi(W )−Ui(W )− cηUi(W )2)
]

≤ log 1
δ

E
W∼P

E
U1:m

[
η

m∑
i=1

(µi(W )−Ui(W )− cηUi(W )2)
]

≤ log 1
δ
.

Dividing both sides through by mη gives the result.

Proof of Theorem 8.6. In Theorem 8.7, set

Ui(w) = ℓ(w,Zi)− E
W∼Q⋆

i

ℓ(W,Zi)

for each i, which is bounded above by 1.

8.A.4 Relaxation of small kl
In the following, we prove a relaxation of the inverse small kl which leads to a form much

more similar to the unexpected Bernstein, and is used later to motivate our experimental

setup.

Proposition 8.6. For 0 ≤ q < 1 and b > 0,

kl−1 (q∥b)< inf
η∈(0,1)

[
(1+ cη)q+ b

η

]
where cη := −η+log(1−η)

η .
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In Germain et al. (2009, Proposition 2.1) it is proved that

Proposition 8.7. For any 0 ≤ q ≤ p < 1,

sup
C>0

[CΦC(p)−Cq] = kl(q∥p)

where

ΦC(p) = − 1
C

log(1−p+pe−C).

Proof of Proposition 8.6. For any C > 0, CΦC(p)−Cq ≤ kl(q∥p), and thus

kl−1(q∥b) = sup{p ∈ (0,1) : kl(q∥p) ≤ b} ≤ sup{p ∈ (0,1) : CΦC(p)−Cq ≤ b} = Φ−1
C (q+ b/c)

with the latter step following by the invertibility of ΦC . Since 1−e−t ≤ t with equality only

at t= 0,

Φ−1
C (t) = 1−e−Ct

1−e−C ≤ Ct

1−e−C .

As b > 0 and q ≥ 0, we have q+ b/c ̸= 0 and therefore

Φ−1
C (q+ b/c)< Cq+ b

1−e−C .

Introducing η = 1−e−C ∈ (0,1) (so that C = − log(1−η)),

Cq+ b

1−e−C = − log(1−η)
η

q+ b

η
= (1+ cη)q+ b

η
.

Chaining these results, and taking an infimum of both sides over the free variable η ∈ (0,1)

completes the proof.

8.B Full bounds used in experiments
In our experiments, we use the following bounds, obtained through Theorem 8.1 or (a slight

refinement of) Theorem 8.6 with online estimators. In the unexpected Bernstein case, we

combine the result with a grid over possible values of η, in the same way as the original

paper. over possible values of η.

Theorem 8.8 (Generalisation Loss Bound). Fix D ∈ P(Z),P ∈ P(W), δ ∈ (0,1), and

ℓ : Z ×W → [0,1]. With probability at least 1 − δ over Z1:m = S ∼ Dm, for a sequence of

online estimators Q⋆i ∈ P(W) with i = 1, . . . ,m, where each depenends only on the i− 1

examples Z1:i−1, and for any posterior Q ∈ P(W), the following holds

L(Q) ≤ϕ




Ê+(Q)

Ê−(Q)

1− Ê+(Q)− Ê−(Q)

 , KL(Q,P )+ log 4m
δ

m

+kl−1

(
1
m

m∑
i=1

E
W∼Q⋆

i

[ℓ(W,Zi)]
∥∥∥∥∥ log 2

δ

m

)

with

Ê+(Q) := E
W∼Q

[
1
m

m∑
i=1

max(ℓ(W,Zi)− E
W∼Q⋆

i

[ℓ(W,Zi)],0)
]
,
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Ê−(Q) := E
W∼Q

[
1
m

m∑
i=1

max( E
W∼Q⋆

i

[ℓ(W,Zi)]− ℓ(W,Zi),0)
]
.

Theorem 8.9 (Unexpected Bernstein for Generalisation Loss). Fix D ∈ P(Z),P ∈

P(W), δ ∈ (0,1), and ℓ : Z ×W → [0,1]. With probability at least 1− δ over Z1:m = S ∼ Dm,

for a sequence of online estimators Q⋆i ∈ P(W) with i= 1, . . . ,m, where each depenends only

on the i−1 examples Z1:i−1, and for any posterior Q ∈ P(W), the following holds

L(Q) ≤ L̂(Q)+ inf
η∈G

[
cηV̂ (Q)+

KL(Q,P )+ log 2K
δ

mη

]
+kl−1

(
1
m

m∑
i=1

E
W∼Q⋆

i

[ℓ(W,Zi)]
∥∥∥∥∥ log 2

δ

m

)

where

V̂ (Q) := E
W∼Q

[
1
m

m∑
i=1

|ℓ(W,Zi)− E
W ′∼Q⋆

i

ℓ(W ′,Zi)|2
]

and

G :=
{

1
2 , . . . ,

1
2K :K =

⌈
log2

(
1
2

√
n

log(1/δ)

)⌉}
.

Proof. Combine Theorem 8.6 with the bound on L⋆ in Theorem 8.1 and take a union bound

over the grid G.

8.B.1 Bounding the online estimator loss
We note here that Mhammedi et al. (2019) originally used an alternative bound to go from

the excess loss to the Generalisation risk. Instead of using the bound on L⋆ in Theorem 8.1

as we do above, they used the bound

1
m

m∑
i=1

E
Z

E
W∼Q⋆

i

[ℓ(W,Z)] ≤ 1
m

m∑
i=1

E
W∼Q⋆

i

[ℓ(W,Zi)]+ inf
η∈G

[
cη
m

m∑
i=1

E
W∼Q⋆

i

|ℓ(W,Zi)|2 +
KL(Q,P )+ log |G|

δ

mη

]
.

In the case of the 0-1 misclassification loss used in our experimental setup, where ℓ2 = ℓ, this

simplifies to the following:

1
m

m∑
i=1

E
Z

E
W∼Q⋆

i

[ℓ(W,Z)] ≤ inf
η∈G

[
(1+ cη)

(
1
m

m∑
i=1

E
W∼Q⋆

i

ℓ(W,Zi)
)

+
KL(Q,P )+ log |G|

δ

mη

]
.

As we find through Proposition 8.6, our Theorem 8.1 implies that

1
m

m∑
i=1

E
Z

E
W∼Q⋆

i

[ℓ(W,Z)]< inf
η∈(0,1)

[
(1+ cη)

(
1
m

m∑
i=1

E
W∼Q⋆

i

ℓ(W,Zi)
)

+
KL(Q,P )+ log 1

δ

mη

]

which is strictly stronger (for example, our result holds simultaneously over all η ∈ (0,1) with

no grid size penalty, and even for the optimal η this bound is slacker). Therefore, the second

part of our result Theorem 8.1 represents a significant contribution, that can be leveraged in

combination with the original unexpected Bernstein bound to tighten it in the case of 0-1

losses (and it may also give tighter numerical bounds with some other loss functions also).
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We note that Theorem 8.1 can also easily be combined with the backwards-forwards dataset

split used by Mhammedi et al. (2019).

In order to make the fairest empirical comparison between the effects of de-biasing on

our bound versus the unexpected Bernstein, we therefore use our bound in the comparison.

8.B.2 Calculation of inverse kl ϕ

Based directly on Proposition 11 in Adams et al. (2022), we give the following proposition,

which can be used to calculate ϕ(uuu,b).

Proposition 8.8. Fix uuu ∈ ∆3−1 and b > 0. Define the increasing function

fuuu(s) := log
(
u1 + u2

1+2s + u3
1+s

)
+u2 log(1+2s)+u3 log(1+s)

and its inverse s⋆ := f−1
uuu (b). If t := −exp(−s⋆)−1, then

ϕ(uuu,b) =
u1
t+1 − u2

t−1
u1
t+1 + u2

t−1 + u3
t

.

Computationally, we can find the inverse s⋆ by a simple bisection-search or Newton’s

method. Our slight re-parameterisation (where we write f in terms of s instead of t= −e−s−1

as used by Adams et al., 2022) of the original result makes this calculation considerably more

numerically stable.

We note as an aside that once we have calculated s⋆, we can also use it to find the

gradients ∂
∂ui

ϕ(uuu,b) and ∂
∂bϕ(uuu,b), which may be useful when directly optimising the bound

as an objective.

8.C Further experimental details
Below we provide additional information about the datasets used and tabulated empirical re-

sults. Our code is available at https://github.com/biggs/tighter-pac-bayes-difficulty.

https://github.com/biggs/tighter-pac-bayes-difficulty
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Dataset Size Test Maurer UB Ours

Haberman 306 0.2726 ± 0.0388 0.4140 ± 0.0114 0.5829 ± 0.0176 0.5020 ± 0.0113

Breast-C 699 0.0371 ± 0.0133 0.1387 ± 0.0049 0.2079 ± 0.0070 0.1635 ± 0.0068

Tictactoe 958 0.0427 ± 0.0151 0.2148 ± 0.0056 0.3683 ± 0.0215 0.2456 ± 0.0069

Banknote 1372 0.0498 ± 0.0113 0.1292 ± 0.0033 0.1926 ± 0.0075 0.1359 ± 0.0038

kr-vs-kp 3196 0.0449 ± 0.0084 0.1670 ± 0.0023 0.2466 ± 0.0039 0.1633 ± 0.0029

Spambase 4601 0.1694 ± 0.0132 0.3238 ± 0.0027 0.5015 ± 0.0082 0.3054 ± 0.0032

Mushroom 8124 0.0026 ± 0.0013 0.0551 ± 0.0007 0.0820 ± 0.0015 0.0565 ± 0.0009

Adult 32561 0.1696 ± 0.0045 0.2341 ± 0.0013 0.3842 ± 0.0024 0.2108 ± 0.0014

Table 8.2: Test error of LGRλ(S), and bounds for Q(S) with optimised σ as obtained on

the UCI datasets listed. The datasets are ranked in order of size, from least examples to

most. This size (listed) is the dataset size before the 20% test set is removed. The bounds

evaluated are Maurer’s small-kl bound, the unexpected Bernstein bound and our Theorem 8.1

as described in Section 8.B, with the latter two using online estimators for de-biasing as in

Section 8.5. Results are an average of 20 runs with standard errors provided.
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Conclusion

This thesis has examined generalisation within machine learning from a variety of different

angles, attempting to address the shortfalls of classical learning theory in settings such as

deep learning, where it fails to make useful predictions. Our research aims to improve this

by developing new and meaningful generalisation bounds.

Our diverse research contributions are united by this goal, the use of PAC-Bayesian

methods, and a number of recurring themes. To begin, all of the works focused on providing

empirically tighter bounds, whether for specific methods or in general (as in Chapter 8).

Chapters 5 to 7 focused on deriving non-randomised bounds (using margins or majority

voting) via a specially-chosen randomised proxy. These approaches yielded the first non-

vacuous bounds for deterministic shallow neural networks on real-world data and provided

state-of-the-art guarantees for majority voting on finite ensembles of classifiers. Chapters 4

and 7 looked at improving PAC-Bayesian methods as objectives, advancing theoretical

understanding and providing practical tools for improved model training.

These developments have broad and fundamental implications. By improving our

understanding of generalisation, particularly in settings where traditional bounds suggest

overfitting, we build a foundation for more robust and reliable machine learning systems.

This is crucial for fostering trust and safeguarding their adoption in sectors such as healthcare

and finance, where reliability and trustworthiness is paramount. Public policy around these

systems cannot be effectively developed without the transparency of genuinely understanding

how they operate.

The publications forming this thesis have already influenced subsequent work, as ev-

idenced by citations and follow-on research. A few other potential future directions—in

addition to those already suggested in the chapters themselves—that could follow include:

• Further development of aggregation as a training method for learning stochastic neural

networks, building on the results in Chapter 4 and closely related follow on work in

Clerico et al. (2022).
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• By finding ways to express deeper neural networks as ensembles, there is potential to

extend the non-vacuous results in Chapter 6 to deeper networks or different architectures.

In particular, the proof method for shallow GELU networks in Chapter 6 is related to

the gated linear units (Shazeer, 2020) with layer normalisation (Ba et al., 2016) used

by modern transformer architechures (Vaswani et al., 2017).

• The concentration-based method for obtaining margin bounds formalised in Chapter 5

and used to great effect in Chapter 7 could be extended to other settings, such as

mutual information bounds (Russo and Zou, 2016; Xu and Raginsky, 2017, and many

others), or applied to different function classes.

• The new general bound for excess risk in Chapter 8 could be adapted to other frameworks

such as mutual information, or with other PAC-Bayes derived bounds (such as the

margin bounds elsewhere in this thesis) to obtain even tighter bounds; as a technique

it has the potential to make many existing bounds tighter.

In conclusion, this thesis represents a significant step towards a deeper understanding of

generalisation in machine learning. By developing new theoretical tools and demonstrating

their practical relevance, we contribute to the ongoing effort to build more robust, trustworthy,

and transparent machine learning systems. This work underscores the importance of rigorous

theoretical foundations in advancing the field and ensuring the responsible deployment of AI

technologies.
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