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Abstract……. 

 

Retrotransposable elements (RTEs), although fragmented and mutated, contain 

regulatory elements able to influence the genome and transcriptome. The 

hypomethylated state of cancer genomes allows for RTE expression, thus 

revealing cancer-specific effects on the transcriptome. These effects were 

recently annotated through a genome-guided de novo transcriptome assembly, 

which is explored in this thesis to identify targets and biomarkers in epithelial 

cancers. The increased search space of the RTE transcriptome was used to 

identify known and novel breast tumour-specific transcripts, based on expression 

in The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) 

datasets, that may be present in liquid biopsies. These tissue-specific transcripts 

were searched for in blood derived extracellular RNAseq data, with the aim to 

separate breast tumour bearing donors and others, both healthy and not. 

Alternatively, cancer-specific plasma membrane proteins could be used to 

diagnose patients from tissue biopsies, and be used as therapy targets. The RTE 

transcriptome encodes predicted transmembrane domain containing open 

reading frames (ORFs) arising purely from RTEs and from gene-RTE chimeras. 

Although RTEs are present in the healthy genome, their derived peptides are not 

always tolerogenic, this combined with being less polymorphic than mutations, 

make RTEs a potentially rich source of universal cancer-specific antigen. In this 

work, candidates for in vitro stability testing were selected computationally based 

on their cancer specificity, possible antigenicity, and predicted transmembrane 

domain position. Beyond diagnosis, markers of patient survival and 

immunotherapy response are important for patient stratification and further 

elucidating disease mechanisms. In kidney renal clear cell carcinoma (KIRC), 

previous work had suggested several RTE loci were associated with response 

and give rise to tumour-associated antigens. This work explores the RTE 

expression landscape using an updated loci annotation in the context of KIRC-

characteristic pseudohypoxia, as well as surveying the KIRC-specific RTE 

transcriptome for markers of survival. 
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Impact Statement 

 

Due to the hypomethylated state of the cancer genome retrotransposable 

elements (RTEs) are able to influence the transcriptome, altering gene and 

isoform expression patterns, and contributing peptide sequences. However, the 

extent of this influence is incompletely understood, alongside the contribution of 

these sequences to cancer-specific biomarkers and targets. This thesis explores 

a previously built pan-cancer de novo transcriptome assembly uncovering the 

influence of RTEs on the cancer-specific transcriptome. Here it is shown that 

presence of RTE-derived sequences in RNA liquid biopsies is influenced by 

methodological artefacts highlighting the need for consistent quality controls and 

methodology when collecting and preparing extracellular RNA samples. Although 

RTE sequences in liquid biopsies were not useful for demarcating patient groups, 

RTE-derived sequences potentially giving rise to stable transmembrane proteins 

were identified for use as tissue biomarkers and immunotherapy targets. 

Alternatively, any non-coding isoforms identified may reduce expression of 

canonical transmembrane targets highlighting the requirement for further 

understanding of activation of RTE sequences prior to use of demethylating drugs 

to treat patients. Further testing of other cancer-specific candidate transcripts 

identified in this work is required as they have the potential to be stable and 

localise to the cell surface. Moreover, transcripts are identified which stratify 

patient response to immunotherapy and patient survival prior to treatment. 

Additionally, corrections have been made to HERV loci previously associated 

with response to immunotherapy.  
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Chapter 1. General Introduction 

The genomes of eukaryotic organisms vary greatly and seemingly randomly in 

size, without this variation reflecting the known number of genes encoded. With 

advancements in deoxyribonucleic acid (DNA) sequencing and genome 

assembly it became clear that the majority of many species’ genomes were 

comprised of repetitive sequence (Hartl, 2000). When the first draft of the human 

genome was published it was estimated only 5% of sequence was taken up by 

coding genes, with repetitive sequences, either of short repeated k-mers, much 

larger duplications, or transposable element-derived sequences representing 45-

60% of the genome (Lander et al., 2001). In the telomere-to-telomere assembly 

of the human genome 53.9% is estimated to be repetitive sequence (Hoyt et al., 

2022). Transposable elements are able to move their genetic information around 

the host genome and are inherited in a Mendelian fashion. They arose in 

genomes before humans evolved, with some insertions shared with a wide range 

of species, whilst others are primate- or human-specific. Retrotransposable 

elements (RTEs) are a form of transposable element and here specifically refer 

to ribonucleic acid (RNA) transposons which copy and paste themselves 

increasing the element copy number each time. These include long terminal 

repeat (LTR)-containing elements such as human endogenous retroviruses 

(HERVs). As well as non-LTR containing elements such as autonomous long 

interspersed nuclear elements (LINEs), and non-autonomous short interspersed 

nuclear elements (SINEs) and SINE-variable number tandem repeat (VNTR)-Alu 

(SVA) elements. Over evolutionary time these elements have become fixed in 

the genome and are present in all humans, but are mutated and degraded so that 

they are mainly no longer able to transpose. Over time some RTEs have been 

co-opted by the host working to increase the functional diversity of the genome. 

However, sequences that have not been co-opted yet remain in human DNA can 

still influence the transcriptome and therefore the biology of healthy and diseased 

cells.  
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1.1 Retrotransposable elements 

1.1.1 LTR retrotransposons 

LTR-containing elements include HERV and mammalian apparent LTR 

retrotransposon (MaLR) elements which account for approximately 8% of the 

human genome (Lander et al., 2001). HERVs are believed to have originated 

exogenously from infection of the germline by ancient retroviruses and have since 

undergone fixation, but still carry a similar genome to modern exogenous 

retroviruses. Local homologous recombination of HERVs and MaLRs leaves solo 

LTRs. The LTRs contain transcriptional regulatory elements and may flank the 

coding regions gag (producing the nucleocapsid, capsid, and matrix proteins), 

pro and pol (with splicing producing a protease, reverse transcriptase, and 

integrase), and env (producing the envelope and accessory proteins) (Figure 1) 

(Lander et al., 2001; Mao et al., 2021). Accessory proteins produced include Rec 

(Figure 1) which aids in nuclear export of HERV transcripts (Magin et al., 1999). 

However, some HERV-K (HML-2) insertions have a deletion of 292 base pairs 

which removes part of the envelope coding sequence and a splice site for Rec 

production (Figure 1). Instead the protein Np9 is produced (Lower et al., 1993; 

Lower et al., 1995). Most HERV loci are not polymorphic with only 20-30 

polymorphic HERV-K loci thus far identified (Chen and Li, 2019; Li et al., 2019). 

Although some loci may carry the same integration, some insertions remain 

whole whilst others are represented by solo LTRs (Chu et al., 2021). HERV 

expression is most notable in early human embryos where each group of HERVs 

is activated in a concerted way, producing both fully HERV-derived RNAs and 

RNAs spliced between HERV and non-repetitive genome sequences (Goke et 

al., 2015). The envelope proteins of HERV-W and HERV-FRD have been co-

opted and are also known as syncytin-1 and syncytin-2 respectively. Both are 

specifically expressed in the placenta and allow cell-cell fusion for formation of 

the syncytiotrophoblast layer (Blaise et al., 2003; Mi et al., 2000). 
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Figure 1: The structures of the main groups of RTEs present in the human genome. 
For the ERV structure the splicing patterns necessary to produce the envelope and 
accessory proteins Rec and Np9 in the HERVK group are shown. 
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1.1.2 LINEs 

LINEs represent approximately 20% of the human genome (Lander et al., 2001) 

with 180 LINE1 polymorphisms on average per person (Bennett et al., 2004). 

LINEs are autonomous elements responsible for the retrotransposition of not only 

themselves but SINEs, SVAs, and pseudogenes (Esnault et al., 2000). LINEs 

contain an RNA-polymerase II promoter in the 5’ untranslated region (UTR) able 

to drive transcription of both the LINE orf1 and orf2 (Figure 1) as well as 

sequences upstream of the LINE element giving rise to transcripts containing 

LINE sequence alongside sequences of upstream genes (Tubio et al., 2014). The 

internal LINE transcript is translated to two proteins (ORF1p and ORF2p) which 

have strong cis-preference to bind the exact RNA molecule encoding them (Wei 

et al., 2001). This specificity is mainly driven through ORF1p (Martin, 2006), 

although ORF2p may instead bind SINE, SVA, or processed messenger RNA 

(mRNA). Upon protein binding to the RNA, the complex moves to the nucleus 

where a new insertion is created. The endonuclease activity of ORF2p puts a 

nick in one strand of DNA and uses the break to prime reverse transcription of 

the RNA from the 3’ end. Often reverse transcription does not complete so many 

LINE loci are truncated at the 5’ end. New insertions are flanked by small target 

site duplications (TSDs). There are three groups of LINE elements, LINE1, LINE2, 

and LINE3 (Lander et al., 2001). The LINE1 group are the only autonomous 

elements still actively able to retrotranspose sequences (Esnault et al., 2000; 

Lander et al., 2001). 

1.1.3 SINEs 

SINEs, non-autonomous elements reliant on LINEs to retrotranspose, make up 

approximately 13% of the human genome yet encode no proteins (Figure 1) 

(Lander et al., 2001). The SINE promoter regions are either derived from the 

signal recognition particle component 7SL or from transfer RNA (tRNA) 

sequences (Lander et al., 2001). Only the Alu group of SINE elements with 

approximately 1.2 million copies is active within the human genome (Lander et 

al., 2001) with approximately 1283 polymorphisms per person (Bennett et al., 
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2004). The A-box and B-box within SINEs act as promoters which RNA 

polymerase III is able to bind (Orioli et al., 2012). Transcription of SINEs also 

occurs in an RNA polymerase III-independent manner due to insertion into gene 

introns (Zhang et al., 2021). In some cases, Alu elements form inverted repeats 

able to influence the degradation and translation of the host gene mRNA 

(Elbarbary and Maquat, 2017).  

1.1.4 SVAs 

There are approximately 2700 SVA element insertions in the human genome, 

with a subset restricted to the human genome (Wang et al., 2005). These are 

non-autonomous elements, reliant on LINE sequences for retrotransposition 

(Ostertag et al., 2003). Full length SVAs consist of five domains some with 

homology to other repeat types and flanked by TSDs (Figure 1). The Alu-like 

region consists of two antisense Alu elements and the SINE-region appears to 

be homologous to the 3’ end of the HERV-K10 envelope sequence alongside the 

3’ LTR. There are two regions with repeated sequences, a simple repeat region 

containing a repeated CCCTCT sequence and a variable number tandem repeat 

(VNTR) region containing repeats of a 35-50 base pair sequence. Before the final 

target site duplication there is a putative polyadenylation (poly(A)) signal and 

poly(A) tail (Wang et al., 2005). There are an estimated 56 polymorphic SVA 

insertions per person (Bennett et al., 2004) with all insertions potentially able to 

alter the transcriptome (Quinn and Bubb, 2014). Polymorphic SVA insertions 

have been shown to cause disease, with insertion into α-spectrin causing 

hereditary elliptocytosis (Ostertag et al., 2003). 
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1.2 Control of RTE expression 

RTE expression must be tightly controlled in order to reduce transposition events 

that increase genome instability (Cao et al., 2020), to reduce production of 

inflammatory RTE-derived nucleic acid structures, and to stop deleterious control 

of gene isoform expression through RTE sequences (Babarinde et al., 2021). 

Expression is controlled in two main ways, through methylation of element loci 

and direct protein binding both to RTE DNA and RNA. However, demethylation 

of RTEs is not sufficient for expression with requirement also for transcription 

factor (TF) binding to induce transcription (Attig et al., 2019; Kong et al., 2019). 

 

Double-stranded RNA (dsRNA), cytoplasmic double stranded DNA (dsDNA), and 

DNA-RNA hybrids lead to inflammatory responses within the cell. DsRNA is 

sensed via the retinoic acid-inducible gene I (RIG-I), melanoma differentiation-

associated protein 5 (MDA5), and mitochondrial antiviral-signalling protein 

(MAVS) dsRNA response pathway (Aktaş et al., 2017; Mehdipour et al., 2020). 

Cytoplasmic dsDNA and RNA:DNA hybrids can be sensed via the cyclic GMP 

(guanosine 3',5'-cyclic monophosphate)-AMP (adenosine monophosphate) 

synthase (cGAS) and stimulator of interferon genes protein (STING) pathway 

(Sun et al., 2013). Both pathways signal through the TANK (tumour necrosis 

factor receptor-associated factor family member-associated NF-kappa-B 

activator)-binding kinase 1 (TBK1) protein which then phosphorylates the 

interferon regulatory factor 3 (IRF3) allowing dimerization and activation of type I 

and III interferons (Zhou et al., 2020). These nucleic acid structures are formed 

most commonly through mis-localised LINE1 reverse transcription in the 

cytoplasm, however why this occurs outside the nucleus is unknown (De Cecco 

et al., 2019; Thomas et al., 2017). 

 

Protein binding to RTE sequences suppresses expression at the transcriptional 

level through recruitment of histone and DNA methyltransferases. Different 

methylation patterns are enriched across different elements, where for example 

intermediate age LTRs are associated with histone methylation and young LTRs 

rich in cytosine-phosphate-guanine (CpG) islands are suppressed with DNA 
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methylation (Ohtani et al., 2018). In order to inhibit transcription of young LINE1 

elements in euchromatic regions of DNA, transcription activation suppressor 

(TASOR) and M-phase phosphoprotein 8 (MPP8) bind and recruit histone 

methyltransferases (Liu et al., 2018). Krüppel-associated box domain zinc finger 

proteins (KRAB-ZFPs) bind a range of RTEs in DNA and repress transcription. 

KRAB-ZFPs recruit Krüppel-associated box-associated protein 1 (KAP1), and 

DNA and histone methyltransferases such as SETDB1 (su(var)3-9, enhancer-of-

zeste and trithorax domain bifurcated histone lysine methyltransferase 1), DNA 

methyltransferases (DNMTs), and heterochromatin protein 1 (HP1) (Ivanov et al., 

2007; Margolin et al., 1994; Witzgall et al., 1994). This leads to silencing in both 

early development and in differentiated adult cells (Tie et al., 2018). Knockout of 

various proteins binding RTEs at the DNA level to recruit DNA and histone 

methylators leads to increased RTE expression and increased signalling through 

dsRNA receptors (Aktaş et al., 2017; Mehdipour et al., 2020; Tie et al., 2018).  

 

Protein binding RTE-derived RNA works to sequester sequences in the nucleus 

and prevent potential translation. DExH-box helicase 9 (DHX9) binds inverted Alu 

repeats contained within transcripts and destabilises the dsRNA structure formed 

allowing mRNA processing and translation of the host transcript (Aktaş et al., 

2017). Alternatively, adenosine deaminase RNA specific 1 (ADAR1) catalyses 

adenosine-to-inosine RNA editing of these Alu repeat hairpins (Athanasiadis et 

al., 2004) which leads to sequestering of the host transcript in the nucleus (Chen 

et al., 2008). RNA-binding motif protein 4 (RBM4) post-transcriptionally regulates 

HERV-K and HERV-H group members, by binding the derived RNA and 

suppressing translation, with loss of RBM4 leading to increased translation of 

HERV-K envelope protein (Foroushani et al., 2020).  

 

To allow RTE sequence transcription, binding of specific TFs is required. When 

tumour and adjacent healthy tissue samples were compared the ratio of RTE 

RNA expression was consistent between tissue pairs suggesting TFs able to bind 

RTEs are tissue specific (Kong et al., 2019). Furthermore, similar upregulation of 

RTE-derived transcripts is seen across cancer types derived from similar healthy 
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tissues (Attig et al., 2019). Some RTEs are enriched for lineage-specific master 

TF binding sites (Cao et al., 2019). HERV-K LTRs contain sequences recognised 

by octamer-binding TF 4 (OCT4) which would have allowed fixation in the 

germline and early embryo (Fuentes et al., 2018). Some LTRs also contain 

hypoxia inducible factor (HIF) binding sites, which leads to upregulation of the 

corresponding HERVs as well as neighbouring genes in kidney renal clear cell 

carcinoma (KIRC) samples due to the uncontrolled activation of HIFs (Siebenthall 

et al., 2019). Additionally, LINE1 activation in placenta and pluripotent stem cells 

requires both hypomethylation and binding by the oestrogen receptor (Lanciano 

et al., 2024). 

1.3 Expression of RTEs in healthy tissues 

RTE expression has been seen in healthy embryonic and adult tissues. Loci in 

healthy cells have tissue-specific expression patterns (Chung et al., 2019; Goke 

et al., 2015; Larouche et al., 2020), and there is expression in medullary thymic 

epithelial cells suggesting some tolerance for RTE-derived peptides (Larouche et 

al., 2020). From analysis of the CHM13hTERT foetal human cell line, nascent 

transcription from the majority of full-length LINE1HS, SVA, and AluY insertions 

was detected (Hoyt et al., 2022). In peripheral blood mononuclear cells 

approximately 5.5% of all HERV and MaLR insertions were expressed, with some 

altering expression under interferon influence (Mommert et al., 2018). 

Furthermore, analysis of 48 healthy tissues in Genotype-Tissue Expression 

(GTEx) data showed polymorphic RTE insertions led to changes of isoform 

proportions and overall expression of neighbouring genes (Cao et al., 2020). 

Peptides bound to major histocompatibility complex class I (MHC-I) molecules on 

healthy cells derived from RTE sequences have been detected, suggesting that 

RTE-derived transcripts are also translated (Larouche et al., 2020). 
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1.4 RTEs and the non-cancerous transcriptome 

RTEs contain transcriptional control elements able to alter expression of other 

genes and lead to production of RTE-gene chimeric transcripts (Figure 2). RTEs 

contain elements such as TF binding sites, enhancer and promoter signals, RNA 

polymerase binding sites, and splice acceptor and donor sites.  

 

Some of these control elements within RTEs have been co-opted for use within 

the cell. On analysis of RTEs present in the human reference genome, 45.4% of 

enhancers and 5.1% of promoters were found to overlap an RTE (Simonti et al., 

2017). Additionally, enhancer-like RTEs, which are defined as enriched for 

binding lineage-specific master transcription factors, were able to demarcate cell 

identity (Cao et al., 2019). Younger and older RTEs were seen to be enriched for 

different TF binding motifs (Simonti et al., 2017) including enrichment for lineage-

specific master transcription factors (Cao et al., 2019; Fuentes et al., 2018; 

Kazachenka et al., 2023), and multiple RTE-derived promoters were identified 

near oncogenes (Jang et al., 2019). LINE1-containing transcripts have been 

shown to regulate T-cell exhaustion and quiescence through silencing of the 

corresponding protein-coding isoforms until the T-cell is activated (Marasca et al., 

2022). Upon T-cell activation general transcription factor IIF subunit 1 (GTF2F1) 

binds the intronic LINE1 elements leading to splicing out of those introns and 

production of the respective protein coding isoform (Marasca et al., 2022). In 

human pluripotent stem cells (hPSCs), 65% of non-coding and 26% of coding 

transcripts contained RTE-derived sequences (Babarinde et al., 2021). Both 

HERV and LINE1 sequences were also included in protein producing transcripts 

(Babarinde et al., 2021). However, RTE-containing transcripts in hPSCs were 

more often localised to the nucleus instead of the cytoplasm, had lower 

expression, and had disrupted coding sequences when compared to the non-

RTE containing transcripts (Babarinde et al., 2021). Furthermore, a LINE2 acts 

as a start site for several OCT4 variants able to produce functional protein 

(Papamichos, 2021). Additionally, the cluster of differentiation 274 (CD274) gene 

splices into a LINE2A omitting the canonical transmembrane domain and 

producing a soluble programmed death-ligand 1 (PD-L1) protein able to act as a 
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receptor antagonist involved in regulation of the immune response (Ng et al., 

2019). 

 

RTEs can influence the environmental stimuli that neighbouring genes respond 

to due to the TF-binding, enhancer, and promoter sites they contain. HERVs 

specifically have been suggested to influence interferon response pathways as 

many interferon-responsive enhancers are derived from HERV sequences, with 

insertion of HERVs near genes leading to interferon-inducible expression 

(Chuong et al., 2016). Additionally, an SVA between transient receptor potential 

vanilloid 1 (TRPV1) and 3 (TRPV3) is required for co-regulation of the two genes 

(Price et al., 2021). 

 

Analysis of polymorphic RTE insertions further show the influence these 

elements can have on the transcriptome. Upon RTE insertion expression of 

nearby genes was significantly altered due to enhancers losing chromatin 

accessibility in lymphoblastoid cell lines and induced pluripotent stem cells 

(Goubert et al., 2020). LINE1 insertions were able to influence the upstream 

methylation of the insertion site up to 300 bases away (Lanciano et al., 2024). 

Polymorphic Alu insertions have also been seen to disrupt control elements thus 

influencing expression of nearby genes (Payer et al., 2021). In reverse, the 

systematic clustered regularly interspaced short palindromic repeat (CRISPR) 

knock out targeting of HERV-K (HML-2) LTRs revealed long range effects on 

gene expression (Fuentes et al., 2018) likely due to the 3-dimensional structure 

of the genome (Raviram et al., 2018). Although, RTE insertions seen somatically 

in colorectal cancer samples did not have an effect on neighbouring gene 

expression (Cajuso et al., 2019).  
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Figure 2: The influence of RTEs on the transcriptome and production of RTE-gene 
chimeric transcripts. 

1.5 Expression of RTEs in cancer 

Dysregulation of RTE expression in cancer cells is likely due to the 

hypomethylated state of the cancer genome. Proximal hypomethylation is 

associated with RTE expression across cancer types (Kong et al., 2019) although 

specific TFs are also required for expression leading to cancer-specific 

expression of certain RTEs (Attig et al., 2019). Epigenetic profiling of KIRC cell 

lines showed demethylation and subsequent reactivation of HERVs alongside 

transcription of HERV sequences and transcription of other genes driven through 

HERV LTRs (Siebenthall et al., 2019). DNA demethylation is enriched in areas 

near RTEs (Kong et al., 2019) which may be due to downregulation of proteins 

targeting methylation complexes to the loci. MPP8, part of the human silencing 

hub (HUSH) complex which targets LINE-1 elements for histone methylation, is 

downregulated in multiple cancers (Tunbak et al., 2020). 

 

However, understanding of the progression of demethylation in the cancer 

genome remains incomplete. From analysis of samples of pre-neoplastic 

monoclonal B-cell lymphocytosis and chronic lymphocytic leukaemia the 

demethylated state appears early in cancer development and remains stable 
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throughout disease progression (Kretzmer et al., 2021). Although there were 

similarities in methylation levels across patients, gene expression varied, 

implying other levels of control are required for expression (Kretzmer et al., 2021). 

Furthermore, in colon tissue adjacent to colon tumours there was no significant 

difference in HERV-H and HERV-K (HML-2) LTR methylation, though HERV-K 

(HML-2) envelope protein was only detected in tumour tissues whilst the 

corresponding polymerase was detected more highly in the adjacent healthy 

tissue (Dolci et al., 2020). However, it is unknown if this hypomethylated state 

plays a role in causing cancer.  

 

Treatment of tumours with demethylating agents also increases RTE expression. 

Treatment of cancer cell lines with DNA demethylating agents led to increase in 

transcripts driven by RTE elements, particularly those induced from LTRs, with 

novel chimeric transcripts produced (Brocks et al., 2017; Goyal et al., 2023). 

Peptides derived from these treatment-induced chimeric transcripts were seen in 

cell lines and in acute myeloid leukaemia patient samples (Goyal et al., 2023). 

The suggested mode of action of the anti-tumoral effect of demethylating agents 

is through upregulation of inverted Alu repeat transcription and upregulation of 

other RTEs producing dsRNA leading to MAVS-dependent immune responses 

(Mehdipour et al., 2020). With depletion of ADAR1 in cancer cells, prohibiting the 

sequestering of dsRNA in the nucleus, shown to improve the efficacy of 

demethylating agents in reducing tumour growth in mice (Mehdipour et al., 2020; 

Sakurai et al., 2017). However, the expression of RTEs post-treatment in 

myelodysplastic syndromes and acute myeloid leukaemia did not determine 

treatment response (Kazachenka et al., 2019). 

 

Expression of RTEs still requires specific TFs, as in healthy tissues, leading to 

tissue-type specific expression of certain RTEs (Attig et al., 2019; Kong et al., 

2019). A HERV-H on Xp22.3 is specifically upregulated in colorectal, pancreatic, 

gastric, and oesophageal cancers (Kazachenka et al., 2023; Wentzensen et al., 

2007). A HERV-K (HML-2) on 17p13.1 is upregulated in hepatoblastoma when 

compared to healthy liver (Grabski et al., 2021). Whilst HERV-K gag RNA and 
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protein are upregulated in prostate cancer samples (Rezaei et al., 2021), and the 

RNA of HERV-K env, gag, and np9 is also upregulated in BRCA samples 

(Tavakolian et al., 2019). Regardless of the homology of these HERV sequences, 

they have expression specific to different tissues and conditions. 

 

Additionally, within every tumour there is a range of DNA mutations and 

dysregulated pathways, which can also affect RTE locus expression and RTE 

inclusion within chimeric transcripts. Mutations in genes producing the splicing 

machinery, as well as other mutation-independent mechanisms lead to abnormal 

splicing in tumours compared to healthy controls (Dvinge and Bradley, 2015; 

Frankiw et al., 2019). This abnormal splicing leads to intron retention, where 

those introns may contain RTEs, with conserved patterns of intron retention 

across cancers suggesting there is predisposition for inefficient splicing at 

specific intron boundaries (Dvinge and Bradley, 2015) potentially due to weaker 

splice signals (Wang et al., 2021). For example, oesophageal adenocarcinoma 

has especially high rates of intron inclusion across the genome, leading to high 

rates of RTE inclusion in transcripts (Kazachenka et al., 2023). 

1.5.1 Transposition of RTEs in cancer 

Upon de-repression of RTEs in cancer some are able to transpose. In colorectal 

cancer a mean of 25 polymorphic insertions were seen per tumour, and in two 

cases out of 202 patients there was an insertion into the adenomatous polyposis 

coli gene (APC) which would have disrupted the protein-coding sequence and 

potentially caused the cancer (Cajuso et al., 2019). This had been seen 

previously in a case of colorectal cancer initiated by a polymorphic LINE-1 

insertion into APC. This LINE-1 was restricted to certain genetic backgrounds 

with the patient’s family having developed a range of epithelial cancers (Scott et 

al., 2016). An Alu insertion into the mutY DNA glycosylase (MUTYH) is also 

associated with increased chance of developing early onset breast and gastric 

cancers (Zhu et al., 2011). Additionally, an SVA insertion into caspase 8 (CASP8), 

which led to abnormal splicing, is associated with increased risk of breast cancer 
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and cutaneous basal-cell carcinoma, but reduced risk of prostate cancer (Stacey 

et al., 2016). Analysis of 2954 samples from 38 cancer subtypes showed 35% of 

cancer samples had somatic polymorphic insertions when compared to matched 

adjacent tissues (Rodriguez-Martin et al., 2020). Though only 66/19166 events 

hit cancer-associated genes, there were some LINE-1 integrations which led to 

deletion of segments of chromosomes removing genes associated with tumour 

suppression (Rodriguez-Martin et al., 2020). Polymorphic insertions can lead to 

hereditary predisposition to cancers as in the cases of Lynch syndrome caused 

by insertion of an SVA in mutS homolog 2 (MSH2) or mutS homolog 6 (MSH6) 

(Yamamoto et al., 2021; Yang et al., 2021a), or an Alu insertion into MLH1 (Li et 

al., 2020b; Solassol et al., 2019). Some cases of hereditary breast and ovarian 

cancer syndrome are caused by Alu insertion into the breast cancer susceptibility 

1 DNA repair associated (BRCA1) gene (Bouras et al., 2021).  

1.5.2 Cancer-specific control of the transcriptome 

Alongside cancer-specific expression of canonical RTE-derived RNA and protein, 

there is cancer-specific expression of RTE-driven genes and non-canonical RTE-

gene chimeric transcripts (Figure 2). In large scale analyses of tumour 

transcriptomes, chimeric transcripts overlapping both RTE and known gene 

sequences have been identified (Attig et al., 2019; Babarinde et al., 2021; 

Burbage et al., 2023; Goyal et al., 2023; Merlotti et al., 2023; Shah et al., 2023). 

Promoters in RTEs drive expression of chimeric transcripts, and splice sites allow 

inclusion within gene transcripts (Attig et al., 2019; Babarinde et al., 2021; Merlotti 

et al., 2023; Shah et al., 2023), with some genes producing multiple chimeric 

isoforms (Attig et al., 2019; Shah et al., 2023). Splice donor sites from RTEs were 

found to be enriched in SINEs, and splice acceptors enriched in HERVs and DNA 

transposons (Merlotti et al., 2023). Furthermore, exonisation of RTEs was found 

to be biased towards the beginning of protein coding sequences, and in positions 

where the protein coding sequence would not be disrupted (Sela et al., 2010). 
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In some cases, RTE-derived expression drives cancer progression. A HERV-E 

provides a promoter site for a truncated cluster of differentiation 5 (CD5) protein, 

reducing expression of full-length CD5 which is required to regulate B-cell 

receptor (BCR) signalling. Increase in the truncated form increases BCR 

signalling allowing uncontrolled expansion of B lymphocytes potentially leading 

to chronic lymphocytic leukaemia (Renaudineau et al., 2005). Further alteration 

of BCR signalling driven by HERVs is seen in anaplastic large cell lymphoma and 

Hodgkin’s lymphoma where an LTR activates the colony-stimulating factor 1 

receptor (CSF1R) bypassing BCR signalling and again allowing uncontrolled cell 

expansion (Lamprecht et al., 2010). A HERV-derived long non-coding RNA 

(lncRNA), TROJAN, drives ubiquitination of the zinc finger and MYND (myeloid, 

Nervy, and DEAF-1) domain containing 8 (ZMYND8) metastasis-repressing 

factor leading to progression of triple-negative breast invasive carcinoma (triple-

negative BRCA) (Jin et al., 2019). Treatment of mice carrying BRCA tumours with 

an anti-sense oligonucleotide against TROJAN suppressed the tumours and 

reduced metastases to the liver, bone, and lung (Jin et al., 2019).  

In other cases, RTE-derived expression alters cancer biology. Truncated 

isoforms of calbindin 1 (CALB1) initiated by a HERV element promote growth of 

lung squamous cell carcinoma (LUSC) cell lines both in vitro and in vivo (Attig et 

al., 2023). Antisense HECT (homologous to the E6-AP carboxyl terminus) 

domain E3 ubiquitin protein ligase 2 (HECTD2) transcripts terminating in a 

HERV-H element were associated with better prognosis in uveal melanoma 

(UVM) and skin cutaneous melanoma (SKCM). Nuclear sequestration of 

transcripts with inverted Alu repeats due to adenosine-to-inosine editing by 

ADAR1 also controls translation of the host transcript (Chen et al., 2008). This 

method of control most commonly occurs in transcripts with inverted Alu repeats 

in the 3’UTR (Ku et al., 2024). Global shortening of UTRs in tumours may exclude 

3’UTR localised inverted Alu repeats from transcription, thus allowing translation 

of proteins previously downregulated through nuclear sequestration of their 

transcripts (Ku et al., 2024).  
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1.5.3 Expression of antigenic proteins 

In order to effectively treat cancer patients with immunotherapies there is a need 

for universal cancer-specific targets, allowing the immune system to differentiate 

healthy from tumour cells in all patients. Advances in whole genome sequencing 

have focused the search for tumour specific antigens on mutations of known 

proteins. However recent immunopeptidomics (sequencing of peptides bound by 

MHC-I molecules) data has shown peptides derived from presumed non-coding 

regions are displayed on MHC-I molecules of tumour cells, spurred by the finding 

that some tumours although responsive to immune checkpoint blockade had a 

low mutational burden. Immunopeptidomics data and Ribo-Seq (sequencing of 

transcripts bound by ribosomes) data have shown peptides derived from 

lncRNAs, pseudogenes, out of frame ORFs of known proteins, ORFs within 5’ 

and 3’ UTRs, and proteins derived from presumed non-coding transcripts (Chen 

et al., 2020; Chong et al., 2020; Laumont et al., 2018; Lu et al., 2019; 

Ouspenskaia et al., 2020). These peptides have been seen in healthy tissues and 

malignant samples of glioblastoma, chronic lymphocytic leukaemia, and 

melanoma, with 50.6% of peptides detected in this study found in two or three of 

10 cancer samples, suggesting the translation is not random (Ouspenskaia et al., 

2020). Similar results of MHC-I displayed peptides derived from non-canonical 

coding sequences were also seen in separate samples from melanoma and lung 

tumours, again with the same peptide detected in multiple samples (Chong et al., 

2020). It is possible that these peptides are pervasively produced and are not 

functional as they show different characteristics to the known human proteome 

including lower expression levels of both RNA and protein, lower predicted 

protein stability, higher iso-electric points, and are encoded by fewer exons (Lu 

et al., 2019). Although functionality may not be relevant for the purposes for 

antigen targeting, it should be noted that some proteins derived from lncRNAs 

are stable and specifically localise within the cell (Chen et al., 2020; Lu et al., 

2019). These displayed non-canonical peptides are derived from non-mutated 

yet aberrantly expressed regions, increasing the chance of being universally 

expressed compared to mutation-dependent antigens.  
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RTEs are a potential source of cancer-specific non-canonical proteins, with 

derived peptides previously seen displayed on tumour MHC-I molecules (Kong 

et al., 2019). RTE expression in cancer samples is associated with immune 

infiltration in both primary and metastatic samples suggesting these sequences 

are a source of antigenic proteins (Kong et al., 2019; Topham et al., 2020). RTE-

derived antigens include canonical proteins derived from internal coding 

sequences, such as HERV envelope glycoproteins, and non-canonical proteins 

derived from RTE-gene chimeric transcripts. 

 

Canonical peptides derived from RTE sequences can act as antigens. Peptides 

derived from a range of RTE sequences have been detected displayed on MHC-

I molecules across cancer types (Kong et al., 2019). From analysis of breast 

cancer tumours, 192 cancer-specific HERV loci with expression correlated with 

cytotoxic T-cell signatures have been identified (Bonaventura et al., 2022). Of 

these, 6 selected candidates coded for protein eliciting high-avidity T-cell 

responses able to lyse patient-derived organoids. Additionally, 13 of the epitopes 

identified were coded for by at least 10 individual HERV loci reducing the potential 

for epitope silencing (Bonaventura et al., 2022). A previous study also identified 

HERV-K envelope derived peptides were displayed on MHC-I on tumours, with 

antibodies targeting these peptides reducing tumour mass in mice bearing BRCA 

tumours (Wang-Johanning et al., 2012). Furthermore, treatment with chimeric 

antigen receptor T-cells targeted against HERV-K envelope protein reduced 

growth of mouse BRCA xenograft models and prevented metastasis (Zhou et al., 

2015). Peptides derived from HERV-E envelope protein have been detected 

bound to MHC-I molecules in KIRC patient samples, with in vitro recognition by 

cytotoxic T-cells (Cherkasova et al., 2016). In myeloid malignancies T-cells 

targeting HERV-derived peptides have also been detected, though response to 

therapy was not predicted by the expression of targeted HERVs potentially due 

to the small cohort size (Campbell et al., 2020).  

 

Chimeric transcripts derived from RTE and known gene sequences may also 

produce proteins with novel antigenic peptide either localised to the cell surface 
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plasma membrane or processed and displayed on MHC-I molecules for detection 

as non-self. Protein produced by chimeric transcripts has been detected 

displayed on MHC-I molecules from cancer cell lines and detected in cell lysates 

(Burbage et al., 2023; Shah et al., 2023). In non-small cell lung cancer (NSCLC) 

novel splice sites between RTEs and genes are a source of antigen with cytotoxic 

T-cells detected in patients targeted against the derived peptides (Merlotti et al., 

2023). These antigens were shared between patients as the RTEs involved were 

not polymorphic and therefore provided potential splice junctions in all patients. 

Non-canonical peptides may also arise from RTE-internal sequences. A peptide 

derived from a conserved LTR12C region in 88 transcripts which was expressed 

in a range of cancer cell lines has been seen presented on MHC-I molecules in 

tumour samples (Goyal et al., 2023).  

1.5.4 The effect of RTE expression on cancer biology and patients 
bearing tumours 

Different studies have associated RTE expression with different effects on patient 

survival, which may be due to overall RTE expression reflecting a different 

biology from expression of individual loci. Expression of HERVs has been shown 

to positively correlate with survival of KIRC patients, as well as with response to 

immunotherapy and cytotoxic T-cell signatures (Panda et al., 2018; Rooney et al., 

2015; Smith et al., 2018). However, other evidence suggests that the HERV loci 

annotation used in these studies was incorrect and HERV expression instead 

correlates with immune infiltrate and tumour purity (Au et al., 2021). Expression 

of the HERV-K envelope is required for rat sarcoma virus protein (Ras)-induced 

tumorigenesis of BRCA cell lines, with knockdown of all HERV-K loci leading to 

reduction in cell proliferation, invasion, and metastasis (Zhou et al., 2016). On the 

other hand, HERV-K expression in melanoma cell lines reduced tumorigenesis, 

as microphthalmia-associated transcription factor (MITF) binds HERV-K LTRs 

increasing expression of Rec which in turn reduces the invasive phenotypes and 

epithelial to mesenchymal transition of cells (Singh et al., 2020). Furthermore, in 

melanoma patients, HERV-K hypomethylation was associated with disease-free 

survival (Cardelli et al., 2020). HERV expression in UVM predicts the metastatic 
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potential of tumours, with dysregulation of HERVs on chromosomes 3 and 8 

associated with metastatic risk (Bendall et al., 2022). Increased HERV-H Xp22.3 

in oesophageal adenocarcinoma samples predicted better patient survival, 

alongside increased intronic RTE retention in transcripts also predicting better 

survival likely due to the concomitant downregulation of the respective functional 

protein-coding transcripts (Kazachenka et al., 2023). Additionally, in colorectal 

cancer samples, higher RTE transposition rates were associated with poor 

patient survival (Cajuso et al., 2019).  
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1.6 A de novo transcriptome assembly 

Previously a de novo transcriptome assembly was built to reveal effects of RTEs 

on the cancer transcriptome (Attig et al., 2019), this thesis utilises transcripts 

identified in this assembly. The pan-cancer de novo transcriptome assembly was 

created using a subset of randomly selected, subtype and sex (where possible) 

balanced, samples from 31 primary and one metastatic TCGA cancer sub-types 

(Attig et al., 2019). The method of assembly has been described previously (Attig 

et al., 2019). Briefly, the RNAseq data for 24 samples per subtype were trimmed 

of poor-quality regions and adapters using cutadapt (Martin, 2011) before being 

mapped to the Genome Reference Consortium human build 38 (GRCh38) using 

STAR (Dobin et al., 2013). Trinity (Grabherr et al., 2011) was then used for 

genome guided assembly of transcripts, creating one assembly per cancer 

subtype. The contigs were poly(A)-trimmed using SeqClean and filtered to 

remove artefactual or low quality contigs using bbduk (Bushnell, 2014). The 

respective RNAseq data was then remapped to the cancer-specific assembly 

using Salmon to ensure surviving contigs had even and accurate read coverage, 

as well as sufficient expression. The assemblies were then merged to find the 

longest continuous unique contigs in each region using gffread (Trapnell et al., 

2010). The assembly was then compared to the GENCODE database (Frankish 

et al., 2019) to assign strands to transcripts directly overlapping known exons, as 

well as assigning annotation levels to each transcript. As all transcripts expressed 

across cancers should have been captured, the assembly contains both cancer-

specific and healthy expressed transcripts. Additionally, although the assembly 

was created to identify RTE-derived transcripts, transcripts not overlapping RTEs 

will also have been assembled.  

 

The de novo transcriptome assembly revealed novel isoforms and expression 

drivers, some of which have already been described. For example, a novel 

isoform of CD274 was identified which produces a soluble form of PD-L1 due to 

read through into an intronic LINE2A element truncating the transcript after exon 

four (Figure 3a) (Ng et al., 2019). This truncated isoform does not contain the 

transmembrane domain, and does not function to inhibit T cells, though does act 
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as an antagonist by binding PD-1 and blocking canonical PD-L1 binding (Ng et 

al., 2019). Furthermore, three transcripts in the antisense orientation over the 

HECTD2 locus were found with some homology to the previously annotated 

antisense HECTD2 (HECTD2-AS), but with different transcriptional start sites 

(Figure 3b) (Attig et al., 2019). One of the antisense transcripts was expressed in 

uveal melanoma and both primary and metastatic skin cutaneous melanoma 

samples, and was linked to better prognosis in uveal melanoma and primary skin 

cutaneous melanoma. Another transcript was expressed in bladder urothelial 

carcinoma and as well as some healthy tissues. Samples with expression of 

these antisense transcripts had little or no sense expression of canonical 

HECTD2 (Attig et al., 2019). Additionally, three novel transcripts producing a 

truncated CALB1 protein have been identified (Figure 3c) initiated by a HERVH 

with expression driven through the TF Krüppel-like factor 5 (KLF5) (Attig et al., 

2023). The protein produced initiates in the third exon of canonical CALB1 

removing the first 51 amino acids (AA), but is still believed to be functional as loss 

of these transcripts in lung squamous cell carcinoma cell lines reduced growth 

both in vitro and in vivo (Attig et al., 2023).  
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Figure 3: The structure of novel isoforms identified by the de novo transcriptome 
assembly. a. The structure of the CD274 locus and the novel truncated isoform identified 
(Ng et al., 2019), alongside BAM files of RNAseq data from oesophageal carcinoma 
(ESCA) patient samples from TCGA. b. The structure of the HECTD2 locus and the three 
novel antisense transcripts identified (Attig et al., 2019), alongside BAM files of RNAseq 
data from skin cutaneous melanoma (SKCM) and bladder urothelial carcinoma (BLCA) 
patient samples from TCGA. c. The structure of the CALB1 locus and the three novel 
transcripts identified (Attig et al., 2023), alongside BAM files of RNAseq data from lung 
squamous cell carcinoma (LUSC) patient samples from TCGA. 
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Transcripts identified by the de novo transcriptome assembly may serve as 

cancer-specific biomarkers or therapy targets (Figure 4). The de novo 

transcriptome assembly has expanded the transcriptional search space available 

for identifying cancer-specific isoforms which may be used as biomarkers or as 

therapy targets, these are explored in Chapter 3: Results 1: Identification of 

cancer-specific transcripts. The identified cancer-specific transcripts can be used 

to separate specific cancer types from healthy tissues using tissue RNA profiles 

and it is possible this expression pattern would be reflected in the blood exRNA 

profiles of the respective cancer bearing patients. This is explored in the context 

of liquid biopsies for BRCA in Chapter 4: Results 2: Tumour-specific transcripts 

in extracellular RNA. Additionally, as the transcripts are so highly cancer specific, 

peptides derived from these transcripts may be useful for targeted therapies. The 

de novo transcriptome assembly revealed chimeric isoforms with both 

transmembrane protein coding gene-derived and RTE-derived regions. These 

peptides, altered from stable canonical peptides, are likely to be antigenic, may 

be localised to the same place as the canonical protein, and are more likely to be 

stable than the small potentially transmembrane peptides derived from other fully 

novel transcripts. The stability and localisation of three candidates are explored 

in Chapter 5: Results 3: Novel transmembrane domain containing proteins. In a 

separate approach to identifying antigenic transcripts as well as transcripts 

influencing patient survival, metastatic KIRC samples pre- and post- 

immunotherapy treatment were analysed, alongside an extended dataset from 

TCGA. In Chapter 6: Results 4: Exploration of HERV expression in metastatic 

KIRC, both the expression of transcripts from the de novo transcriptome 

assembly and expression of individual RTE loci were analysed to identify 

potential antigen sources and to further understand disease mechanisms through 

transcripts linked to patient survival. Finally, to further understand disease 

mechanisms associated with levels of hypoxia and patient survival in KIRC, 

KIRC-upregulated transcripts assembled in the de novo transcriptome are 

explored in Chapter 7: Results 5: Exploration of transcripts upregulated in KIRC. 
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Figure 4: An overview of the structure of this thesis and the exploration of the 
selected cancer-specific transcripts Results chapters are shown in bold.  
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1.7 Aims 

Previous work has begun to elucidate a role for RTEs in both healthy tissue and 

cancer biology, with roles in initiation, progression, and immunogenicity of 

tumours. A few RTE integrations have been co-opted over evolutionary time to 

be involved in processes including placental formation, regulation of T-cell 

quiescence, and as a source of enhancer, promoter, and TF-binding site 

sequences. However, less is known about the remainder of the integrations, most 

of which are epigenetically silenced in healthy tissues. Due to the hypomethylated 

state of the cancer genome, as well as mutations in splice machinery and RTE-

specific silencing machinery, RTEs become expressed both as fully RTE-derived 

transcripts and as RTE-gene chimeric transcripts. These transcripts may produce 

antigenic peptide, control downstream signalling pathways, or influence 

expression of other isoforms of the same gene. Due to the complexity of the 

effects of RTEs on the transcriptome, understanding of the roles these repetitive 

elements play is incomplete. We therefore set out to ask: 

 

1. To what extent do RTEs contribute to the cancer-specific transcriptome? 

2. As some of these RTE-overlapping transcripts can differentiate healthy 

and tumour tissue, are they also released into the blood for use as a liquid 

biomarker of tumour presence? 

3. Can the cancer-specific RTE-overlapping transcripts act as a source of 

transmembrane antigen for therapy targeting and for use as tissue 

biomarkers? 

4. Can the transcripts be used to stratify patients for immune checkpoint 

blockade treatment? 
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Chapter 2. Materials & Methods 

2.1 RNAseq data 

2.1.1 Original tissue datasets (Attig et al., 2019) 

RNAseq data from 768 cancer patients was downloaded from TCGA, with 24 

samples for each of the 31 primary and one metastatic cancer types (Table 1). 

Where possible, healthy tissue-matched controls were downloaded from TCGA 

and the GTEx consortium, totalling 811 samples (Attig et al., 2019) (Table 1). 

2.1.2 Expanded BRCA tissue dataset 

BRCA-specific transcript expression was validated in an additional TCGA BRCA 

dataset of 100 patients totalling 33 basal-like, 25 human epidermal growth factor 

receptor 2 (HER2)-enriched, 30 luminal A, 26 luminal B, and 28 matched normal 

tissue samples. The 100 patients were selected randomly ensuring a balance of 

cancer subtypes. 

2.1.3 Extracellular RNA sequencing datasets 

Publicly available independent extracellular RNA (exRNA) datasets were 

downloaded using the Sequence Read Archive (SRA) Toolkit (version 3.0.0). The 

Melanoma exRNA dataset was downloaded from the authors’ online repository 

(Table 2). In datasets where donors had given multiple samples, samples were 

pooled for analysis. Variation in methods for plasma or serum collection, 

presence of an extracellular vesicle (EV) isolation step, RNA isolation, and RNA 

sequencing was present amongst the studies (Table 2). 
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Table 1: Overview of RNAseq samples in the original dataset (Attig et al., 2019). 
Abbreviations of cancer types are shown where used. 

 
Tissue 

type 
Tissue origin Abbreviation 

Number of 
samples 

Healthy Adipose tissue  24 
Cancer Adrenocortical carcinoma ACC 24 
Cancer Pheochromocytoma and paraganglioma PCPG 24 
Healthy Adrenal gland  15 
Cancer Cholangiocarcinoma CHOL 24 
Healthy Bile duct  9 
Cancer Bladder urothelial carcinoma BLCA 24 
Healthy Bladder  22 
Healthy Blood  24 
Healthy Blood vessel  36 
Cancer Brain lower grade glioma LGG 24 
Cancer Glioblastoma multiforme GBM 24 
Healthy Brain  156 
Cancer Breast invasive carcinoma BRCA 24 
Healthy Breast  24 

Cancer 
Cervical squamous cell carcinoma and 
endocervical adenocarcinoma 

CESC 24 

Healthy Cervix  14 
Cancer Colon adenocarcinoma COAD 24 
Cancer Rectum adenocarcinoma READ 24 
Healthy Colorectal  42 
Cancer Esophageal carcinoma ESCA 24 
Healthy Esophagus  47 
Cancer Uveal melanoma UVM 24 
Healthy Fallopian tube  7 
Cancer Head and neck squamous cell carcinoma HNSC 24 
Healthy Head and neck  12 
Healthy Heart  24 
Cancer Kidney renal clear cell carcinoma KIRC 24 
Cancer Kidney renal papillary cell carcinoma KIRP 24 
Healthy Kidney  36 
Cancer Liver hepatocellular carcinoma LIHC 24 
Healthy Liver  24 
Cancer Lung adenocarcinoma LUAD 24 
Cancer Lung squamous cell carcinoma LUSC 24 
Healthy Lung  36 

Cancer 
Lymphoid neoplasm diffuse large B-cell 
lymphoma 

DLBC 24 

Healthy Muscle  12 
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Healthy Nerve  12 
Cancer Ovarian serous cystadenocarcinoma OV 24 
Healthy Ovary  12 
Cancer Pancreatic adenocarcinoma PAAD 24 
Healthy Pancreas  16 
Healthy Pituitary  12 
Cancer Mesothelioma MESO 24 
Cancer Prostate adenocarcinoma PRAD 24 
Healthy Prostate  24 
Healthy Salivary gland  12 
Cancer Skin cutaneous melanoma SKCM 24 
Cancer Metastatic skin cutaneous melanoma SKCM_m 24 
Healthy Skin  36 
Healthy Small intestine  12 
Cancer Sarcoma SARC 24 
Healthy Spleen  12 
Cancer Stomach adenocarcinoma STAD 24 
Healthy Stomach  24 
Cancer Testicular germ cell tumours TGCT 24 
Healthy Testis  12 
Cancer Thymoma THYM 24 
Healthy Thymus  2 
Cancer Thyroid carcinoma THCA 24 
Healthy Thyroid  24 
Cancer Uterine carcinosarcoma UCS 24 
Cancer Uterine corpus endometrial carcinoma UCEC 24 
Healthy Uterus  25 
Healthy Vagina  12 

 

   



Chapter 2 Materials and Methods 

 

52 

 

Table 2: Description of extracellular RNA sequencing datasets collected for 
analysis. 

 

  

Project 
accession 

number 
Publication 

Sample 
type 

Sequencing 
method 

Condition 
# 

donors 
# 

samples 

PRJNA543872 
(Zhou et al., 

2019) 
Serum 

Small input 
liquid 

volume 
extracellular 

RNAseq 

Healthy 32 64 

Breast cancer 96 192 

PRJNA454814 
(Max et al., 

2018) 

Plasma 
and 

serum 
Illumina Healthy 13 156 

PRJNA290097 
(Yuan et al., 

2016) 
Plasma 

EVs 
Illumina 

Healthy 50 100 
Colorectal 

cancer 
100 200 

Pancreatic 
cancer 

6 12 

Prostate 
cancer 

36 72 

PRJEB24913 
(Buschmann 
et al., 2018) 

Serum 
EVs 

Illumina 
Healthy 10 49 

Sepsis/septic 
shock 

9 36 

https://github.c
om/alvinshi20/
ExosomeData 

(Shi et al., 
2020) 

Plasma 
EVs 

Illumina Melanoma 25 25 

PRJNA589238 
(Wang et al., 

2020) 
Plasma Illumina 

Healthy 6 6 
Lung cancer 6 6 

PRJNA655240 
(Sproviero et 

al., 2021) 
Plasma 

EVs 
Illumina 

Healthy 12 24 
Alzheimer’s 

disease 
12 24 

Fronto-
temporal 
dementia 

18 36 

Parkinson’s 
disease 

18 36 

Amyotrophic 
lateral 

sclerosis 
12 24 



Chapter 2 Materials and Methods 

 

53 

 

2.1.4 Metastatic KIRC samples from the ADAPTeR study 

Tumour RNAseq data from the ADAPTeR study was analysed as detailed 

previously (Au et al., 2021). Of the 15 patients enrolled in this phase II, single-

arm, open-label clinical trial of anti-programmed cell death protein 1 (PD-1) 

therapy (nivolumab) in treatment-naïve metastatic KIRC, 14 patients had 

RNAseq data of acceptable quality. A total of 60 primary tumour samples 

sequenced from these patients were used in this analysis, with 33 pre-treatment 

samples and 27 post-treatment samples. 

2.1.5 Purified immune cell datasets 

RNAseq samples of purified immune cell subsets were downloaded from publicly 

available sources GSE60424 (Linsley et al., 2014) and E-MTAB-8208 

(Kazachenka et al., 2019). Immune cells were sorted from peripheral blood and 

bone marrow aspirates respectively. 

2.1.6 Expanded KIRC tissue dataset 

All KIRC samples were downloaded from TCGA alongside any adjacent healthy 

kidney data, totalling 538 KIRC samples and 72 healthy samples (downloaded 

August 2021). The corresponding clinical data was also downloaded. Samples 

were not filtered by the VHL status. 

2.1.7 Renal carcinoma cell line dataset 

RNAseq data from a renal cell carcinoma cell line RCC4 with the Von Hippel–

Lindau tumour suppressor protein (VHL) stably transfected (RCC4VHL+) was 

downloaded from PRJNA494827 (Smythies et al., 2019). RCC4 lines have lost 

function of VHL which would usually allow response to hypoxia by guiding 

degradation of constitutively expressed HIFs under normoxic conditions. In order 

to reintroduce the response to hypoxia (instead of the cell continuously perceiving 

hypoxia) functional VHL is added back. Three RCC4VHL+ samples were cultured 
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in normoxic conditions, and three samples were cultured in hypoxic conditions of 

1% oxygen (O2) for 24 hours before RNA was extracted. 

2.2 RNAseq processing 

2.2.1 Annotation of HERV loci 

Previous studies had analysed expression of 66 (Mayer et al., 2011; Panda et al., 

2018; Rooney et al., 2015) and 3173 (Smith et al., 2018; Vargiu et al., 2016) 

HERV loci with regards to cytotoxic T-cell signatures and response to immune 

checkpoint blockade in KIRC. In order to analyse the expression of these HERV 

loci in the context of GRCh38, the 66 loci (Mayer et al., 2011) sequences had 

chromosomal coordinates identified using the basic local alignment search tool 

for nucleotide sequences (BLASTn) where the match with the greatest homology 

over the greatest length within GRCh38 was taken. For the 3173 HERV loci 

(Vargiu et al., 2016), where chromosomal coordinates for GRCh37 were given, 

the Lift Genome Annotations tool from the University of California, Santa Cruz 

(UCSC) (https://genome.ucsc.edu/cgi-bin/hgLiftOver) was used to convert to 

GRCh38 coordinates.  

Previously, a custom annotation derived from the Dfam 2.0 library (version 

150923) for GRCh38 was created (Attig et al., 2017). Here regions of the same 

provirus had been merged for quantification of whole locus expression. The 

GRCh38 coordinates for the 66 (Mayer et al., 2011) and 3173 (Vargiu et al., 2016) 

HERV loci were compared to this custom annotation to find overlapping loci. Loci 

from the Dfam-derived library had to begin, end, or be fully contained within the 

previously annotated loci to be considered a match (with a 5 nucleotide buffer 

added to either end of the locus). For further analysis, the list of LTR-containing 

elements identified in the Dfam-derived library were used.  



Chapter 2 Materials and Methods 

 

55 

 

2.2.2 Tissue and cell line RNAseq processing 

2.2.2.1 Expression of transcripts assembled in the de novo transcriptome 

To quantify expression of transcripts in the de novo transcriptome assembly 

Salmon was used as previously described (Attig et al., 2019). GNU parallel 

(Tange, 2023) was used to submit jobs. Binary alignment map (BAM) files were 

first converted to fastq format using SAMtools (version 1.3.1 (Danecek et al., 

2021)) before Trimmomatic (version 0.36 (Bolger et al., 2014)) was used to 

remove poor quality sequences and adapters. FastQC (version 0.11.8) was used 

to check the quality of trimmed fastq files. Salmon (version 0.8.2) was used to 

quasi-map reads to GRCh38 and to quantify expression of transcripts.  

2.2.2.2 Expression of individual RTE loci 

Hisat2 (version 2.1.0) was used to align reads to GRCh38 and SAMtools (version 

1.3.1,(Danecek et al., 2021)) was used to convert the output to BAM files. The 

featureCounts function from Subread (Liao et al., 2014) (version 1.5.0, with 

parameters -p -C -B -f -T 2 --primary), was used to measure expression of 

individual RTE loci, with multi-mapping reads randomly assigned.  

2.2.3 Extracellular RNAseq processing 

RNAseq data from each study were uniformly processed. GNU parallel (Tange, 

2023) was used to submit jobs in groups, Trimmomatic (version 0.36 (Bolger et 

al., 2014)) was used to remove adapters and poor quality sequences, as well as 

removing reads of less than 35 nucleotides. FastQC (version 0.11.8) was used 

to check the quality of trimmed fastq files. Sed was used to convert fastq files to 

fasta format, before the BLAST-like alignment tool (BLAT, version 37x1) (Kent, 

2002) was used to align the reads to the cancer-specific transcripts, and control 

sequences with 100% identity, and align reads to the LINE1HS and AluSp 

consensus sequences with 90% identity. 
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blat transcriptAndControl.fasta \ 

trimmed.fasta \ 

-q=rnax -t=dnax -minMatch=1 \ 

-minScore=0  tileSize=3 -out=psl -minIdentity=[90|100] \ 

-dots=100000 \  

BLATout.psl 

 

Outputs were then filtered to ensure the match length equalled the read length 

using awk. Prior to analysis of read alignment, donors with fewer than 20000 

reads surviving trimming were binned, this removed five healthy donors and five 

sepsis donors from the study PRJEB24913. Multimapping reads were counted 

once per patient. To normalise the data, reads aligned were expressed as a 

percentage of the reads surviving trimming. 

2.2.3.1 Analysis of spliced reads 

MATLAB (version R2022b, The MathWorks) was used to filter BLAT outputs to 

identify reads over splice junctions in exRNA data, ensuring reads overlapped at 

least the splice point and one nucleotide either side. Splice junctions at known 

exon boundaries in the housekeeping genes beta-actin (ACTB NM_001101.5_1) 

and glyceraldehyde-3-phosphate dehydrogenase (GAPDH NM_002046.7_5) 

were analysed (2.3.2: Selecting transcripts for use in RNA liquid biopsies). 

Reads overlapping splice sites in TCGA BRCA data were counted from BAM files 

downloaded directly from TCGA. SAMtools (version 1.3.1 (Danecek et al., 2021)) 

was used to convert the BAM files to the sequence alignment map (SAM) format 

followed by awk to filter the file for reads aligned to chromosomes 7 and 12 

(where control sequences were located) to reduce processing time. BEDOPS 

(version 2.4.20 (Neph et al., 2012)) was used to convert the filtered SAM file to a 

BED file. Then the BEDTools (version 2.30.0 (Quinlan and Hall, 2010)) function 

intersect was used to find reads which overlapped the exon junctions. 
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2.3 Selection of cancer-specific transcripts 

2.3.1 Selecting the cancer-specific transcriptome 

Cancer specific transcripts were selected by comparing expression of each 

transcript in each cancer to the expression in the respective healthy tissue where 

available, as well as expression in all other healthy tissues individually (Attig et 

al., 2019). These filters were defined previously (Attig et al., 2019). To be defined 

as cancer specific each transcript had to have a) expression of less than 10 

transcripts per million (TPM) in at least 90% of all healthy samples, b) expression 

of at least 1 TPM in 25% of the respective patients, c) median cancer expression 

of at least three times median expression of each healthy tissue, and d) median 

cancer expression of at least three times the 90th percentile of the respective 

healthy tissue. 

2.3.2 Selecting transcripts for use in RNA liquid biopsies 

From the list of cancer-specific transcripts selected above (2.3.1) transcripts with 

median expression of more than 0.5 TPM in each healthy tissue were removed. 

Followed by manual inspection of the specificity of transcripts across cancer and 

healthy samples. 

Housekeeping genes ACTB (NM_001101.5_1) and GAPDH (NM_002046.7_5) 

were also aligned to. As well as the Homo sapiens LINE1 (LINE1HS) and the 

AluSp consensus sequences. 

2.3.3 Selection of transmembrane domain containing candidates 

The list of cancer-specific transcripts selected above (2.3.1) were further filtered 

by removing all transcripts with any median healthy tissue expression greater 

than 0.5 TPM. The function orf_scanner (Young and Attig, 2019) was used to find 

all possible open reading frames in both directions containing at least 100 codons 

(including the stop codon). The ORFs were translated within orf_scanner, and 

the probability the sequence contained a transmembrane domain was predicted 
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by TMHMM (version 1.0 (Krogh et al., 2001)). Manual inspection of expression of 

transcripts predicted to contain at least one open reading frame encoding at least 

one transmembrane domain was carried out to ensure low levels of expression 

across healthy tissues. Boxplots of expression across the original TCGA and 

GTEx dataset (2.1.1) were plotted in MATLAB (version R2022b, The MathWorks) 

and transcripts with many high-expressing outliers across healthy tissues were 

removed. The structures of transcripts with highly cancer-specific expression 

were also manually inspected to ensure confidence in the assembly, RNAseq 

alignment data was visualised on IGV (Robinson et al., 2011) using BAM files 

directly downloaded from TCGA which had been aligned to GRCh38. For 

confidence in the alignment all splice sites and exons had to be well covered in 

the respective cancer samples. The selected ORFs were then checked for 

homology with known proteins using BLAST for peptide sequences (BLASTp) 

filtering for hits with at least 85% homology, and the position and direction of the 

peptide sequence was checked to ensure alignment with the directionality of 

splice sites within the transcript. 

2.3.4 Selection of transcripts upregulated in KIRC 

From the 32264 cancer-specific transcripts described above (2.3.1), kidney 

cancer (clear cell or papillary) upregulated transcripts were identified by selecting 

transcripts with mean expression of at least 0.5 TPM in either patient group giving 

8135 transcripts. Data from TCGA KIRC and TCGA adjacent healthy kidney were 

then compared to find transcripts significantly upregulated in KIRC using the 

Qlucore Omics Explorer (www.qlucore.com) with help from Prof. George 

Kassiotis (The Francis Crick Institute). Using linear expression values, 1914 of 

the 8135 transcripts were significantly upregulated in KIRC (fold change ≥ 2, q = 

0.05). Using log2 values with a cut-off of 0.1, 3200 of 8135 transcripts were 

significantly upregulated in KIRC (fold change ≥ 2, q = 0.05). Taking the union of 

the two lists, 3681 transcripts were selected as overexpressed in KIRC compared 

to both adjacent kidney tissue and other healthy tissues, though many transcripts 

may also be expressed in other cancers. 
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2.4 Statistical analysis and plotting 

2.4.1 RNAseq alignment 

RNAseq alignment data was visualised on IGV (Robinson et al., 2011) using BAM 

files directly downloaded from TCGA which had been aligned to GRCh38. 

Screenshots were taken to be included in figures. 

2.4.2 Venn diagrams 

Venn diagrams were made using Python (Van et al., 2009) packages matplotlib 

(Hunter, 2007), numpy (Harris et al., 2020), and matplotlib_venn (Tretyakov, 

2024), and were labelled in Microsoft PowerPoint. 

2.4.3 Enrichment of repeat types 

Enrichment analysis of repeat types was performed using Fisher’s Exact test in 

MATLAB (version R2022b, TheMathWorks), followed by the Bonferroni-Holm 

method to correct for multiple testing (Groppe, 2010). 

2.4.4 Differential expression analysis for HERVs in metastatic KIRC 

Differential expression analysis on log2 transformed data (with an expression cut 

off of 0.05) and heatmap plotting was performed on Qlucore Omics Explorer 

(www.qlucore.com) with help from Prof. George Kassiotis (The Francis Crick 

Institute). 

2.4.5 Heatmaps 

Heatmaps were plotted using Qlucore Omics Explorer (www.qlucore.com) with 

help from Prof. George Kassiotis (The Francis Crick Institute). Values were log2 

normalised using a cut-off of 0.05, and were further normalised between samples 

using a z-score. The heatmaps show the relative expression of RTE loci or 

transcripts. Variables were ordered using the hierarchical clustering function.  
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2.4.6 Correlation with the hypoxia score 

The hypoxia scores for all TCGA samples were kindly sent by Prof. David Mole 

(Nuffield Department of Medicine, University of Oxford) (Lombardi et al., 2022). 

The hypoxia scores for KIRC samples were filtered, however mismatches in 

sample names due to updates by TCGA to the naming system of files meant the 

mean hypoxia score per patient was used here. Of the 479 KIRC patients with 

hypoxia scores calculated for tumour samples, 406 had hypoxia scores for one 

sample, 70 for two samples, and three patients had the mean hypoxia score 

calculated from three samples.  

2.4.7 Survival analysis 

Overall survival time was downloaded alongside immune subtype annotations 

(which were not used) (Thorsson et al., 2018), 515 KIRC patients had available 

data. Survival analysis was run using R and RStudio (version 2023.12.0 Build 

369). The surv_cutpoint function of the survminer package (version 0.4.9) was 

used to calculate the best expression cut-off for each transcript ensuring a 

minimum of 20% of the patients per group. Of the 3861 transcripts 17 failed this 

step. Then the survfit and coxph functions of the survival package (version 3.5-

7) were used to fit a Cox proportional hazards regression model to the data and 

calculate the hazard ratio (HR), 95% confidence interval (CI95) and p-value. The 

survival curve was visualised using the simple survival analysis (Kaplan-Meier) 

option on GraphPad Prism (version 10.0.2).  

 

For multivariate analysis, association of the transcript expression with other 

clinical variables potentially affecting survival was tested using analysis of 

variance (ANOVA) or the students t-test on MATLAB (version R2022b, The 

MathWorks) with a significance threshold of p ≤ 0.05. Variables tested were: age 

at diagnosis, race, gender, prior treatment, prior malignancy, AJCC pathologic 

stage, and presence of treatment or therapy. Multivariate analysis was run using 

the coxph function of the survival package (version 3.5-7) incorporating variables 

associated with the expression of the selected transcript. The function ggforest 
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of the survminer package (version 0.4.9) was used to visualise the multivariate 

analysis. 

2.4.8 Other plotting 

All other data was plotted using MATLAB (version R2022b, The MathWorks) and 

GraphPad Prism (version 10.0.2). Pearson’s correlation analysis was performed 

in MATLAB, whilst other statistical tests were performed in GraphPad Prism. 

Figures were prepared using Microsoft PowerPoint.  
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2.5 Preparation of stably transduced cell lines 

Figure 5: An overview of laboratory work carried out. Methods are referenced in grey 
boxes. The tag sequence appended to the coding sequence of candidates allowed for 
specific antibody targeting of the candidate protein without a validated antibody for the 
protein itself. 
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2.5.1 Cell culture 

HEK293T cells were used to test the stability of various candidate proteins. 

HEK293T cells are a derivative of the HEK293 immortalised human embryonic 

kidney cells (Graham et al., 1977). HEK293T cells additionally contain the SV40 

large T antigen allowing use of the SV40 promoter (DuBridge et al., 1987).  

HEK293T cells were cultured in Iscove’s Modified Dulbecco’s Medium (IMDM, 

Sigma-Aldrich, I3390) supplemented with 5% foetal calf serum (FCS, Thermo 

Fisher Scientific), penicillin-streptomycin solution (Millipore-sigma, P4333-100ML, 

penicillin at 100 U/mL, streptomycin at 0.1 mg/mL), and L-glutamine (2 mM, 

Merck, G7513-100ML), and cultured at 95% humidity, 37oC, and 5% carbon 

dioxide (CO2). All cells were sourced from and verified as mycoplasma free by 

the Cell Services facility at The Francis Crick Institute. 

2.5.2 Plasmid preparation 

Plasmids were amplified using One Shot™ TOP10 competent Escherichia coli 

(Thermo Fisher Scientific, C404003). The bacteria stored at -80oC were thawed 

on ice, before 0.5 μL of plasmid DNA at 400 ng/μL was added to 25 μL of bacteria 

cells. The mixture was incubated on ice for 30 minutes, and heat shocked at 42oC 

for 30 seconds. After a further 5-minute incubation on ice, 350 μL of super optimal 

broth with catabolite repression (S.O.C) medium (Invitrogen, 15544034) was 

added, and the solution was shaken at 200 revolutions per minute (RPM) for 1 

hour at 37oC. From this solution, 100 μL was then spread onto a pre-warmed 

ampicillin plate before overnight incubation at 37oC. The next day single colonies 

were selected and added to 5 mL Luria-Bertani media (LB media, Media Team, 

The Francis Crick Institute) supplemented with 100 μg/mL ampicillin (Sigma-

Aldrich, A5354), this was shaken at 200 RPM for 6 hours at 37oC, and then 

transferred to 50 mL LB media and placed back into the shaker overnight. 

Plasmid DNA was then extracted using the Plasmid Plus Maxi Kit (Qiagen, 

12963). Aliquots of 50 mL of bacterial culture were spun at 3500 RPM for 20 

minutes at 4oC before resuspension in 8 mL of resuspension buffer. To this, 8 mL 

of lysis buffer was added and the solution inverted until viscous followed by a 3-
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minute incubation at room temperature. 8 mL of neutralisation buffer was added 

and the solution was inverted 6 times before the samples were spun at 3500 RPM 

for 10 minutes at 4oC. The plasmid containing supernatant was column purified 

using a vacuum pump, washed, and then eluted using nuclease-free water. The 

plasmid DNA concentration was measured using a NanoDrop spectrophotometer 

(Thermo Fisher Scientific). 

2.5.3 Production of stably transduced cell lines 

Stably transduced cell lines were produced through viral infection and, if required, 

single cell sorting on green fluorescent protein (GFP) using the MoFLO XDP cell 

sorter (BD Biosciences, Flow Cytometry Team, The Francis Crick Institute). Virus 

was generated using HEK293T cells plated at a density of 1.5x106 cells per 60 

mm well. Cells were plated the day before transfection in 5 mL of media and 

allowed to settle overnight. Prior to transfection the media was changed and the 

transfection solution was added dropwise to the well. The transfection solution 

contained per 60 mm well, 280 μL serum-free IMDM (Sigma-Aldrich, I3390) and 

30 μL GeneJuice (VWR International Ltd., 70967-4) which were mixed, vortexed, 

and incubated at room temperature for 5 minutes. To this 5 μL of DNA at a 

concentration of 1 μg/μL was added dropwise before a 15-minute room 

temperature incubation. The DNA comprised of an equal mix of vesicular 

stomatitis virus glycoprotein (VSVg) plasmid (pcVG-wt) and pHIT60, both kindly 

provided by Dr. Jonathan Stoye (The Francis Crick Institute, London, UK), as well 

as the open reading frames of the sequences of interest cloned into the pRV-

IRES-GFP vector (Table 3, Figure 6). Cloning the open reading frames into the 

vector was carried out Genewiz LLC, and was followed by sequencing to verify 

the plasmid structure. The open reading frame consisted of the coding sequence 

of the given target and either a FLAG tag or three HA tags. The supernatant 

containing the virus was collected three days after transfection and stored at -

80oC until use. 2 mL of viral stock with 4 μg/mL of polybrene (Sigma-Aldrich, TR-

1003-G) was added to HEK293T cells, plated at a density of 8.5x104 cells per 35 

mm well and spun at 1200 RPM for 45 minutes. After three days, in the case of 



Chapter 2 Materials and Methods 

 

65 

 

the ENPP3 and truncated ENPP3 transduced cells, populations were single cell 

sorted on GFP expression using a BD FACSAria II (BD Biosciences) (Flow 

Cytometry STP, The Francis Crick Institute).  
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Figure 6: Map of the pRV-IRES-GFP vector. Overviews of the coding sequences and 
tags are shown below the map. Adding tags to the coding sequences allows the proteins 
to be labelled using validated antibodies as there was no validated antibody available for 
the novel proteins. (IRES: internal ribosome entry site; eGFP: green fluorescent protein; 
CMV: cytomegalovirus) 
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Table 3: List of plasmids used for production of stably transfected lines 

Plasmid Description Reasoning 
pcVG-wt Contains VSVg membrane 

fusion protein 
Packaged separately to 
prevent virus from 
becoming self-replicating pHIT60 Contains the gag-pol 

sequence 
pRV-IRES-GFP Contains coding sequence 

of candidate protein, 
alongside an internal 
ribosome entry site and the 
GFP coding sequence. 

Allows production of 
candidate protein with a 
tag and successfully 
transduced cells to be 
sorted by presence of GFP 

2.6 Sample preparation and Western Blot 

2.6.1 Protein preparation for Western Blot 

Cells were washed twice with phosphate-buffered saline (PBS) stored at 4oC 

before being incubated on ice with radioimmunoprecipitation assay (RIPA, 

Sigma-Aldrich, R0278-50ML) buffer for 30 minutes to lyse the cells. The mixture 

was then spun at 14000 RPM for 10 minutes at 4oC. The protein concentration of 

the lysate was measured using the PierceTM BCA protein assay kit (Thermo 

Scientific, 23225). Stock solutions at a protein concentration of 500 μg/mL were 

made by mixing 100 μL of sample buffer (Laemmli 2x concentrate, Sigma-Aldrich, 

S3401-10VL), with 100 μg of protein lysate and RIPA buffer to a final volume of 

200 μL. Stock solutions were heat denatured at 95oC for 5 minutes before being 

frozen at -20oC. 

2.6.2 Western Blot 

Sample stock solutions were thawed on ice before being boiled at 95oC for 5 

minutes. 10 μg of protein per sample was loaded into a 4–20% Mini-PROTEAN® 

TGX™ precast polyacrylamide gel (Bio-Rad, 4561094) alongside a protein ladder 

(PageRuler Plus Prestained Protein Ladder, 10 kDa to 250 kDa, ThermoFisher, 

26619). The gel electrophoresis was run in a Mini-PROTEAN® Tetra Vertical 

Electrophoresis Cell (Bio-Rad) filled with protein running buffer (Media Team, The 
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Francis Crick Institute) at 180 V for 40 minutes. Samples were transferred to a 

0.2 μm nitrocellulose membrane (Trans-Blot Turbo Mini 0.2 μm Nitrocellulose 

Transfer Pack, Bio-Rad, 1704158) using the Trans-Blot Turbo dry transfer system 

(Bio-Rad, 1704150) turbo setting for mini TGX gels before blocking with 5% 

skimmed milk (Marvel) in Tris-buffered saline with 0.5% Tween-20 (TBS-T, Media 

Team, The Francis Crick Institute) for 1 hour. Membranes were stained overnight 

at 4oC with the primary antibody (Table 4) diluted in 5% skimmed milk in TBS-T. 

Membranes were washed for 15 minutes four times in TBS-T at room 

temperature before the horseradish peroxidase (HRP)-conjugated secondary 

antibody (Table 4) was added, diluted in 3% skimmed milk in TBS-T and 

incubated at room temperature for 1 hour. Membranes were then washed for 10 

minutes three times in TBS-T and visualised by enhanced chemiluminescence 

using Clarity™ Western ECL Substrate (Bio-Rad, 1705060) on a ChemiDoc 

XRS+ (Bio-Rad). Adobe Illustrator (v27.5, 64-bit) and Microsoft PowerPoint were 

used for labelling Western blot images. 

2.7 Flow cytometry 

2.7.1 Sample preparation 

Extracellular and intracellular staining was done in parallel in v-bottomed 96-well 

plates. 5x105 cells per well suspended in media were added before the plate was 

centrifuged at 1200 RPM for 5 minutes at 4oC. Media was flicked off and 100 μL 

of either flow cytometry staining buffer (FACS buffer, PBS, 2% FCS, 0.1% Azide) 

for extracellular staining or fixation buffer (3:1 fixation diluent (Invitrogen, 00-

5223-56) and fixation concentrate (Invitrogen, 00-5123-43)) for intracellular 

staining was added to each well, followed by a 20-minute incubation at 4oC. After 

incubation an additional 100 μL of either FACS buffer for extracellular staining or 

permeabilization buffer (Invitrogen, 00-8333-56) for intracellular staining was 

added to each well and the plate was centrifuged at 1200 RPM for 5 minutes at 

4oC. Buffers were flicked off and antibodies (Table 5) diluted in 200 μL of FACS 

or permeabilization buffer were added to each well for extracellular and 
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intracellular staining respectively. The plate was incubated at 4oC for 30 minutes, 

before washing the samples twice with 200 μL of either FACS or permeabilization 

buffer and centrifuging at 1200 RPM at 4oC for 5 minutes each. The secondary 

antibody (Table 5) was then added, again diluted in 200 μL of either FACS buffer 

for extracellular or permeabilization buffer for intracellular staining. The plate was 

incubated at 4oC for 30 minutes, before samples were washed twice with 200 μL 

of FACS or permeabilization buffer and centrifuged at 1200 RPM at 4oC for 5 

minutes each. All samples were then resuspended in 100 μL FACS buffer and 

filtered through a 100 μm mesh sieve.  

2.7.2 Sample and data analysis 

Samples were analysed on an LRS Fortessa (BD Biosciences) and output data 

were analysed using BD FACSDiva v8.0 and FlowJo v10.8.1 (BD Life Sciences). 
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Table 4: List of Western blot antibodies. 

Target Clone Species Conjugation Dilution Source 

FLAG M2 Mouse  1:1000 
Sigma-
Aldrich 
(F1804) 

Mouse IgG Polyclonal Rabbit HRP 1:2000 
Abcam 
(ab6728) 

HA 3F10 Rat  1:200 
Roche 
(ROAHAHA) 

Rat IgG Polyclonal Goat HRP 1:1000 
Cell 
Signalling 
(7077S) 

Vinculin Polyclonal Rabbit  1:1000 
Cell 
Signalling 
(4650S) 

β-actin AC-15 Mouse HRP 1:1000 
Abcam 
(ab49900) 

 

Table 5: List of flow cytometry antibodies. 

Target Clone Species Conjugation Dilution Source 
HA 3F10 Rat  1:50 Roche 

(ROAHAHA) 
Rat IgG Polyclonal Goat Alexa Fluor® 

594 
1:1000 Abcam 

(ab150160) 
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Chapter 3. Results 1: Identification of cancer-

specific transcripts 

3.1 Aims 

From the previously assembled de novo transcriptome cancer-specific transcripts 

overlapping LTRs have been characterised in order to further understanding of 

the role of LTR elements in cancer biology (Attig et al., 2019). To create a more 

comprehensive list of transcripts overlapping other RTEs, or no RTE, all potential 

cancer-specific transcripts were identified from those assembled in the de novo 

transcriptome (2.3.1: Selecting the cancer-specific transcriptome; Figure 7). This 

list of 32264 transcripts (Figure 7) will be the focus of work presented in this thesis 

(Figure 4, Figure 7). 

Figure 7: Aims for Results 1: Identification of cancer-specific transcripts. Aims are 
shown in dashed boxes and methods are referenced in grey boxes. 
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3.2 Introduction 

RTEs contain control elements able to influence the transcriptome (1.4: RTEs 

and the non-cancerous transcriptome, 1.5.2: Cancer-specific control of the 

transcriptome). In cancer, the hypomethylated genome unleashes the potential 

effects of RTEs on the transcriptome (1.2: Control of RTE expression, 1.5: 

Expression of RTEs in cancer) producing cancer-specific effects not seen in 

healthy tissues. A de novo transcriptome has previously been built (Attig et al., 

2019) (1.6: A de novo transcriptome assembly) revealing the effects of RTEs on 

the cancer transcriptome. 
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3.3 Results 

3.3.1 Sequences represented by the de novo transcriptome assembly 

In order to understand the extent to which RTEs contribute to the transcriptome 

expressed in cancer, annotation of the de novo transcriptome assembly was 

analysed. The de novo transcriptome assembly (Attig et al., 2019) represents 

transcripts of both known and novel sequence, overlapping both gene and RTE 

sequences (Figure 8). The de novo transcriptome assembly contains 1001931 

transcripts, 75.6% (757566/1001931) of which overlap at least one RTE (Figure 

8a). Of the 757566 transcripts that overlap RTE sequences, 98.0% 

(742748/757566) overlap at least one SINE, LINE, or HERV, though they may 

also overlap other repeat types (Figure 8a). At the time of annotation, 8.23% 

(82462/1001931) of the transcripts did not overlap a known gene or repeat 

(Figure 8a). The transcripts assembled were mainly multiexonic, though 23.05% 

were monoexonic (Figure 8b).  
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Figure 8: Overview of the sequences represented by the de novo transcriptome 
assembly.  a. The total number of de novo assembled transcripts overlapping gene and 
RTE sequences, alongside the numbers of transcripts overlapping the three most well-
represented RTE groups. The number of transcripts overlapping neither known gene or 
RTE sequences are shown under “none”. b. The proportion of monoexonic and 
multiexonic transcripts assembled. 
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3.3.2 Sequences represented by the cancer-specific transcriptome 

To understand the contribution of RTEs to the cancer-specific transcriptome, 

cancer-specific transcripts were identified (2.3.1: Selecting the cancer-specific 

transcriptome). The cancer-specific transcriptome also represents known and 

novel transcripts, containing gene and RTE sequences (Figure 9a). From the 

1001931 transcripts assembled, 32264 were selected as cancer-specific, some 

expressed in one cancer and others across cancer types. These transcripts 

represent a range of known and novel sequences, the majority of which overlap 

at least one RTE (Figure 9a). Of the 32264 transcripts, 1245 do not overlap a 

known gene or repeat at the time of annotation. Only 1.51% of all transcripts 

overlapping neither a gene or repeat (1245/82462) were selected as cancer-

specific, compared to 3.37% of transcripts overlapping either a gene, repeat, or 

both being selected as cancer-specific (31019/919469). This increased selection 

of transcripts overlapping some known sequence may be because fully novel 

transcripts have less expression in cancer, or because these transcripts are less 

likely to be assembled correctly. Of the 32264 transcripts 23217 overlap at least 

one RTE, with 95.90% (22265/23217) of these overlapping at least one SINE, 

LINE, or HERV though they may also overlap other repeat types (Figure 9a). Of 

the 32264 transcripts 17648 overlap known genes, representing sequences from 

11115 unique genes. The majority of the transcripts are multiexonic (Figure 9b). 

When compared to the entire de novo transcriptome assembly (2.4.3: Enrichment 

of repeat types), the cancer-specific transcripts are enriched in specific subtypes 

of RTEs. Although most of these are HERVs, there was also enrichment for SVA, 

MaLR, SINE, and LINE subtypes (Figure 9c).   
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Figure 9: Overview of the sequences represented by the 32264 cancer-specific 
transcripts. a. The total number of cancer-specific transcripts overlapping gene and 
RTE sequences, alongside the numbers of transcripts overlapping the three most well-
represented RTE groups. The number of transcripts overlapping neither known gene or 
RTE sequences are shown under “none”. b. The proportion of monoexonic and 
multiexonic transcripts selected as cancer-specific. c. RTE subtypes with significant 
enrichment when compared to the whole de novo transcriptome assembly (as described 
in 2.4.3: Enrichment of repeat types). 
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3.4 Discussion 

Other work has also identified RTE-containing transcripts, in both cancer and 

human pluripotent stem cells. Using a combination of long and short read 

sequencing, transcripts expressed in human pluripotent stem cells were identified, 

with 65% of non-coding and 26% of coding transcripts overlapping at least one 

RTE (Babarinde et al., 2021). These RTE-containing transcripts were generally 

expressed at lower levels than non-RTE containing isoforms over the same gene. 

The incorporation of RTEs into novel isoforms overlapping known genes was 

likely to disrupt open reading frames in coding sequences, which in some 

instances led to HERV and LINE1 derived peptides (Babarinde et al., 2021). 

Additionally, to identify potential antigenic cancer-specific transcripts driven by 

RTEs, a transcriptome assembly was built using pan-cancer samples from TCGA 

(Shah et al., 2023). In agreement with the transcriptome assembly analysed in 

this thesis, some genes had multiple isoforms overlapping RTEs, with enrichment 

for overlapping ERV and SVA RTEs (Shah et al., 2023). Peptide production from 

specific candidates was also confirmed through whole cell mass spectrometry 

and immunopeptidomics (Shah et al., 2023). 

 

Isoforms specific to cancer may contain canonically intronic regions. Increased 

intron retention is seen across cancer cell lines and patient samples, and may be 

due to mutations in splice machinery. Though abnormal splicing in samples has 

also been seen in the absence of splicing machinery mutants (Dvinge and 

Bradley, 2015). Some introns, termed “exitrons”, are included due to weaker 

splice signals at their boundaries, often do not contain stop codons, and are in 

frame with other gene exons. Exitron-containing isoforms of a given gene have 

been shown to be expressed at higher levels than isoforms with intron retention, 

and in some cases may be the dominant isoform. This additional inclusion of 

sequence may still disrupt canonical open reading frames though, as in the cases 

of the forkhead box protein O4 (FOXO4) and Msx2-interacting protein (SPEN) 

tumour suppressors which were found to be truncated in tumour samples due to 

exitron inclusion (Wang et al., 2021).  
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Expression of some transcripts may be artefactual. Monoexonic transcripts 

identified here, and in other transcriptome assemblies, may be derived from real 

monoexonic transcripts, or may be due to the aligner being unable to assemble 

the contig fully due to gaps in the sequence created by either damage during 

RNA preparation or differences in the reference and sample genomes (Babarinde 

et al., 2021). It is possible the monoexonic transcript may also be a spliced-out 

intron sequenced prior to degradation (Babarinde et al., 2021). Furthermore, 

artefacts from the reverse transcription step of library preparation for sequencing 

can introduce false introns, or “falsitrons” (Schulz et al., 2021). These falsitrons 

are created by the reverse transcriptase skipping regions of sequence contained 

within hairpin loops, these loops are often formed by inverted Alu repeats. 

Additionally, as the de novo transcriptome assembly analysed here was created 

in an un-stranded way, some transcripts represent artefactual merging of almost 

overlapping genes running in opposite directions. Due to these caveats, 

candidate transcripts were manually inspected before further analysis. 

 

Quantifying the expression of RTEs is complex due to their repetitive nature and 

presence in introns. Approximately one third of human protein coding transcripts 

and three quarters of non-coding transcripts contain an exon derived from an 

RTE (Lanciano and Cristofari, 2020). Although poly(A) filtered RNAseq datasets 

reduce the measurement of intronic and pervasive transcription of RTEs 

(Lanciano and Cristofari, 2020) it is still difficult to ensure that transcription seen 

from an individual RTE locus is due to activation of that locus. Due to the 

repetitive nature of RTEs long reads are required to accurately map to a specific 

locus. Increasing the read length from 50 to 100 base pairs increases the amount 

of the genome which can be uniquely mapped to from 68% to 88% (Lanciano and 

Cristofari, 2020). However, some sequences overlapping Alu, LINE1, and 

tandem repeat regions cannot be uniquely mapped to even with synthetic read 

lengths of 1000 base pairs (Li et al., 2014). For the analysis in this thesis Salmon 

(Patro et al., 2017) has been used to quantify the expression of the de novo 

assembled transcripts. Salmon assigns multimapping reads based on a 

probabilistic model after aligning all uniquely mapping reads. This can lead to an 
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underestimation of transcripts with smaller proportions of unique areas (Storvall 

et al., 2013), but is still believed to be the most accurate method of quantifying 

repetitive elements (Lanciano and Cristofari, 2020).  

 

Polymorphisms in the sample and reference genome leads to misalignment of 

reads, which would be especially problematic for polymorphic RTE insertions. 

RTE insertions differing from the current reference genome have been seen in 

healthy (Cao et al., 2020) and cancer patient samples (Bennett et al., 2004; 

Rodriguez-Martin et al., 2020). These polymorphic insertions led to changes in 

isoform proportions and overall expression of nearby genes (Cao et al., 2020) 

which may produce unusual gene expression patterns when RNAseq samples 

are aligned to the reference genome and polymorphic insertions are ignored. 

Integrations of LINE1s have also been seen to delete parts of chromosomes, 

knocking out tumour suppressor genes, and again producing unusual gene 

expression patterns when polymorphisms are not considered during RNAseq 

alignment (Rodriguez-Martin et al., 2020).  

3.5 Conclusion 

Overall, the de novo transcriptome previously assembled revealed the effects of 

RTE reactivation on the cancer transcriptome (Attig et al., 2019). The 32264 

cancer-specific transcripts identified will serve as the basis for this thesis. Manual 

inspection of transcripts will be carried out where feasible due to the caveats of 

the assembly and of quantifying RTE expression. 
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Chapter 4. Results 2: Tumour-specific transcripts in 

extracellular RNA 

4.1 Aims 

Some RTE-overlapping transcripts are able to demark healthy and tumour 

tissues, as well as differentiate between tumour types (Attig et al., 2019). It is 

possible these transcripts are released into patient blood, with detection 

potentially useful as a biomarker of disease presence. In order to validate the use 

of these transcripts as a blood-based biomarker, the presence of BRCA tumour-

specific transcripts was quantified in blood of healthy donors and patients bearing 

BRCA tumours. BRCA was selected due to the availability of data. In order to 

ensure other diseases would not confound the specificity of this detection, BRCA 

tumour-specific transcripts were also quantified in the blood of independent 

healthy donors, patients bearing other tumour types, and patients with non-

cancerous diseases. Furthermore, samples were also analysed to assess 

whether the liquid biopsy RNAseq data quality confounded the detection of 

tumour-specific transcripts (Figure 10). 

  



Chapter 4 Results 

 

82 

 

Figure 10: Aims for Results 2: Tumour-specific transcripts in extracellular RNA. 
Aims are shown in dashed boxes and methods are referenced in grey boxes. (BRCA: 
breast invasive carcinoma; exRNA: extracellular RNA). 
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4.2 Introduction 

RNA is present both freely in blood and contained within extracellular vesicles. A 

range of exRNA species have been detected in blood including microRNAs 

(miRNAs), piwi-interacting RNAs, lncRNA, pseudogenes, LINEs, SINEs, HERVs, 

and gene-derived mRNA (Freedman et al., 2016; Larson et al., 2021; Nikitina et 

al., 2016; Qin et al., 2016; Savelyeva et al., 2017; Skog et al., 2008; Wang-

Johanning et al., 2013; Yuan et al., 2016). The majority of sequences detected in 

exRNA samples are ribosomal and mitochondrial RNA, and only 2% of reads 

map to mRNA, which is consistent with cellular levels (Larson et al., 2021). The 

mechanism behind export of RNA from the cell is unknown, but it is suggested to 

be controlled as the whole transcriptome is not represented in pooled exRNA 

samples (Freedman et al., 2016; Groot and Lee, 2020; Hinger et al., 2018; Zhou 

et al., 2019). RNA-binding proteins such as the heterogeneous nuclear 

ribonucleoprotein A2/B1 (hnRNPA2B1) and Argonaute-2, along with membrane 

proteins involved in EV biogenesis (caveolin-1 and neural sphingomyelinase 2) 

have been shown to influence sorting of miRNAs into EVs (Groot and Lee, 2020). 

ExRNA may also exist outside of EVs (Murillo et al., 2019), therefore an EV 

isolation step in sample preparation will influence which RNAs are detected in 

sequencing. The function of exRNA is unknown, though multiple studies have 

suggested that exRNA packaged into EVs could be used for intercellular 

communication. This could allow transfer of drug resistance, and encourage 

malignant growth of nearby healthy cells as reviewed by O’Neill and colleagues 

(O’Neill et al.). It should be noted that the evidence for this communication is 

based on in vitro systems and the way in which EVs target specific cells in vivo 

is unknown. 

 

Liquid biopsies would theoretically allow sampling of oligonucleotides the whole 

tumour has contributed to, at multiple time points, in a less invasive manner than 

tumour biopsies. This could be used understand the expression profile of the 

tumour, or to detect the presence of a tumour, with the potential for large-scale 

screening. Many previous studies have focused on circulating tumour DNA 

(ctDNA) due to its stability and representation of tumour mutational burden 
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(Happel et al., 2020). But exRNA is an enticing alternative, not only reflecting 

mutations (Shi et al., 2020; Skog et al., 2008), but splicing, RNA-editing (Giraldez 

et al., 2018), and transcript expression changes (Murillo et al., 2019; Shi et al., 

2020; Siravegna et al., 2017). Paired RNAseq from tumour and blood EVs shows 

strong correlation between expression levels of transcripts (average R2 = 0.82) 

(Shi et al., 2020). Further to this, unlike ctDNA which requires cell death for 

release, production of exRNA occurs normally in healthy cells (Happel et al., 

2020). Although the source of each exRNA molecule is unknown, it could be 

inferred if the source transcript is specific to a certain cell type, RNA-carrier, or 

disease state (Murillo et al., 2019; Shi et al., 2020).  

 

Previous studies have shown the exRNA species found in cancer patient’s serum 

and plasma samples differentiate them from healthy individuals (Mithraprabhu et 

al., 2019; Mugoni et al., 2022; Skog et al., 2008; Tian et al., 2020; Wang et al., 

2020; Yuan et al., 2016; Zhou et al., 2019). From a finger prick of serum Zhou 

and colleagues (Zhou et al., 2019) found differences in the exRNA profiles of 32 

healthy individuals and 96 BRCA patients. Using defined sets of genes the 

majority of individuals could be correctly classified suggesting exRNA could be 

used as a diagnostic tool (Zhou et al., 2019). Excision repair cross-

complementing 1 (ERCC1) transcripts bound to EVs also differentiates BRCA 

bearing individuals from healthy (Keup et al., 2021). Skog and colleagues (Skog 

et al., 2008) were able to detect lowering levels of epidermal growth factor 

receptor (EGFR) mutations in exRNA after surgical resection of glioblastoma 

which tracked with tumour burden. Differences in exRNA profiles from individuals 

with benign oesophagitis and early stage oesophageal squamous cell carcinoma 

have also been seen (Tian et al., 2020). Additionally, exosomal LINC02418 

expression levels have been shown to distinguish colorectal cancer patients from 

healthy (Zhou et al., 2019), and 640 genes were shown to be differentially 

expressed between patients with and without non-small cell lung cancer (Wang 

et al., 2020). Further to diagnosing patients, work has begun on stratifying 

patients into treatment groups based on exRNA profiles. Mithraprabhu and 

colleagues (Mithraprabhu et al., 2019) found high cereblon (CRBN) expression 
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coupled with low secreted protein acidic and cysteine rich (SPARC) expression 

before treatment associated with shorter overall survival in relapsed and 

refractory multiple myeloma patients (Mithraprabhu et al., 2019). Furthermore, 

profiling extracellular vesicles of melanoma patients during immune checkpoint 

inhibitor treatment revealed differentially expressed genes between those 

responding and not responding to treatment (Shi et al., 2020). Differences in 

chronological age and sex have also been found to influence exRNA profiles 

(Max et al., 2018; Yuan et al., 2016; Zhou et al., 2019). 

 

The majority of previous studies have removed RTEs from consideration. This 

was partially due to the difficulty mapping short reads to repetitive sequences, 

and partially to remove intronic repeat reads from confounding expression 

measurements of genes of interest (Giraldez et al., 2019). Though some targeted 

studies have been performed, Balaj and colleagues (Balaj et al., 2011) used 

microarrays to measure RTE expression in tumour cell line conditioned media, 

finding enrichment in LINE1 and HERV RNA compared to healthy controls. 

Previous findings also showed HERV-K (HML-2) mRNA in the serum of patients 

with early stage breast cancer which was not present in healthy individuals 

(Wang-Johanning et al., 2013). More recently, HERV envelope RNA was found 

in lung cancer patient blood, distinguishing them from healthy samples (Zare et 

al., 2018). Furthermore, pancreatic cancer patient blood was found to be enriched 

in expression, though not diversity, of Alu sequences (Reggiardo et al., 2023).  
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4.3 Results 

4.3.1 Differences in data sources 

Independent sources of data were collected for uniform analysis (2.1.3: 

Extracellular RNA sequencing datasets, 2.2.3: Extracellular RNAseq processing). 

Between conditions in different datasets, there were large differences in the read 

length and number of reads surviving trimming (Figure 11). Read lengths ranged 

between a median of 36.9 nucleotides (PRJEB24913 Healthy) to a median of 131 

(PRJNA589238 Lung cancer) nucleotides (Figure 11a). Shorter reads may have 

been more likely to align non-specifically than longer reads, but this could not be 

corrected for. There was also large variation in the number of reads surviving 

trimming both between and within conditions (Figure 11b). Mean read length and 

read survival after trimming were significantly positively correlated (Pearson’s 

correlation coefficient, r = 0.49, p = 9.60 x 10-29), this was expected as after 

trimming shorter reads were more likely to fall below the 35-nucleotide threshold. 

Additionally, there was a significant positive correlation between the number of 

reads surviving trimming and the raw number of reads aligned to both ACTB 

(Pearson’s correlation coefficient, r = 0.60, p = 1.11 x 10-44, Figure 12a) and 

GAPDH (Pearson’s correlation coefficient, r = 0.59, p = 2.30 x 10-43, Figure 12b). 

This suggests the exRNA samples do not represent a saturated pool of reads, 

and increasing exRNA sample size would increase detection of other transcripts. 

The large differences in the number of reads surviving trimming was partially 

corrected for by expressing aligned reads as a percentage of the reads surviving 

trimming.  

4.3.2 Alignment to control sequences 

Alignment to control sequences showed variation between conditions (Figure 

13a-b, 2.2.3: Extracellular RNAseq processing). Samples from all conditions in 

the studies PRJNA290097 and PRJNA454814 had poor alignment to ACTB and 

GAPDH. Alignment to controls was higher in more recent studies (Table 2) 

suggesting this data may be of better quality.  
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Figure 11: Differences in exRNA data sources (The legend for all graphs is at the 
bottom of the figure). a. Mean read length per patient grouped by condition. b. Number 
of reads surviving trimming per patient grouped by condition. 
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Figure 12: Alignment to control sequences normalised to the number of reads 

surviving trimming (The legend for all graphs is at the bottom of the figure). a. 
The relationship between the number of reads surviving trimming and the raw 
number of reads aligned to ACTB and b. GAPDH per patient.
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Figure 13: Alignment to control sequences in each condition (The legend for all 
graphs is at the bottom of the figure). a. The percentage of reads surviving 
trimming aligned to ACTB and b. GAPDH per patient grouped by condition. 
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4.3.3 Selection of breast cancer specific transcripts 

In total, 34 BRCA specific transcripts were selected (2.3.2: Selecting transcripts 

for use in RNA liquid biopsies). From hierarchical clustering of transcript 

expression across TCGA cancer, TCGA adjacent healthy, and GTEx healthy 

tissues, the transcripts form two main clusters (Figure 14a, 2.4.5: Heatmaps). 

One cluster of 18 transcripts appear to be breast tissue specific with some low-

level expression in healthy breast tissue and higher expression in BRCA samples. 

The other 16 transcripts were very lowly expressed in healthy tissue, but are 

expressed at higher levels across different cancer types. In order to validate the 

transcript expression in a larger cohort of samples an additional 100 TCGA BRCA 

samples were analysed (2.1.2: Expanded BRCA tissue dataset, 2.2.2.1: 

Expression of transcripts assembled in the de novo transcriptome). Hierarchical 

clustering of transcript expression in these additional patients again showed two 

clusters of transcript expression (Figure 14b, 2.4.5: Heatmaps). One cluster of 12 

transcripts was expressed across all four subtypes and their represented stages 

whilst maintaining low expression in adjacent healthy breast tissue. The other 

cluster of 22 transcripts were only sporadically expressed in basal-like tumours, 

but were expressed across HER2-enriched, luminal A, and luminal B tumours, 

with some sporadic expression also in adjacent healthy tissue.  

 

The selected transcripts represented both known gene and RTE sequences. 

Transcripts overlapped exons of 24 genes, with some genes represented more 

than once (Table 6). Transcripts also overlapped a range of DNA, LINE, SINE, 

and HERV elements (Table 7). As some sequences were represented multiple 

times, only unique reads were counted per patient. Of the transcript sequences 

represented, 14 overlap sequences already known, 12 overlap sequences part 

of which are known and part of which are novel, and eight overlap fully novel 

transcript sequences. Examples of known and novel transcript structures are 

shown in Figure 15. 
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Figure 14: Expression of selected breast cancer specific transcripts.  a. Expression 
of the 34 transcripts across TCGA cancer, TCGA adjacent healthy, and GTEx healthy 
tissues, ordered by hierarchical clustering. Transcripts split into two main clusters, one 
with expression across healthy and cancerous breast tissue, and a second with 
expression across cancers but little in healthy. b. Expression of the 34 transcripts across 
the additional 100 TCGA BRCA patients, ordered by hierarchical clustering. 
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Table 6: List of genes represented by the 34 BRCA specific transcripts. 

  

Gene represented 
Number of 
transcripts 

Cancer tissue or 
breast tissue 
cluster 

Previous associations 
with breast cancer 

ABCC11 1 Breast tissue (Honorat et al., 2008) 
ANKRD30A 1 Breast tissue (Mathe et al., 2015) 
C1QTNF6 1  - 
COL10A1 3 Cancer tissue (Zhou et al., 2022) 
COL11A1 1 Cancer tissue (Shi et al., 2022) 
DLG5 1 Cancer tissue (Liu et al., 2019) 
ELP2 1 Breast tissue - 
FHAD1 1 Breast tissue - 
FSIP1 2 Breast/cancer tissue (Li et al., 2020a) 
H2AC18 1 Cancer tissue - 
H2AC19 1 Cancer tissue - 
IQCK 1 Cancer tissue - 
KNOP1 1 Cancer tissue (Li et al., 2023) 
LINC00504 1 Breast tissue (Feng et al., 2021) 
LINC02544 1 Cancer tissue (Guo et al., 2020) 
LRRC15 3 Cancer tissue (Yang et al., 2021b) 
MMP11 1 Cancer tissue (Kim et al., 2021) 
MMP13 1 Cancer tissue (Li et al., 2022) 
MS4A7 1 Breast tissue (Wu et al., 2023) 
NT5DC1 1  (Jia et al., 2023) 
POTEJ 1 Cancer tissue - 

SLC39A6 1 Breast tissue 
(de Nonneville et al., 
2023) 

SRMS 2 Breast tissue (Limsakul et al., 2023) 
TESMIN 1 Cancer tissue - 
none 8 Breast tissue  
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Table 7: List of RTEs represented by the 34 BRCA specific transcripts 

   

RTE type Number of transcripts 
DNA 6 

HERV 5 
LINE 11 
SINE 13 
none 13 



Chapter 4 Results 

 

96 

 

Figure 15: Structures of six of the selected transcripts alongside BAM files from 
five TCGA BRCA samples.  a. The structure and expression of three transcripts 
overlapping a known sequence from the LRRC15 gene. b. The structure and expression 
of a novel transcript overlapping RTE sequences and a region overlapping no known 
gene or RTE. c. The structure and expression of two novel transcripts spliced between 
two RTE elements. 
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4.3.4 Alignment to breast cancer specific transcripts 

ExRNA sequencing data from 96 BRCA bearing donors and 32 healthy donors 

(PRJNA543872) were aligned to the 34 BRCA specific transcripts (2.2.3: 

Extracellular RNAseq processing). Although there was little change in the number 

of transcripts aligned to, reads aligned were more prevalent in BRCA bearing 

donors compared to healthy donors (Figure 16a-b). There was a small increase 

in the number of different transcripts aligned to in samples from BRCA bearing 

donors compared to healthy donors (Mann-Whitney, p = 6.90 x 10-4, BRCA: n = 

96, median = 19 transcripts, healthy: n = 32, median = 17 transcripts, Figure 16a). 

However, BRCA bearing donors had a marked increase in the percentage of 

reads surviving trimming aligned to the 34 BRCA specific transcripts (Mann-

Whitney, p = 1.35 x 10-30, BRCA: n = 96, median = 0.02498% reads surviving 

trimming, healthy: n = 32, median = 0.005691% reads surviving trimming, Figure 

16b). This suggested that using a cut off of 0.01238% reads surviving trimming 

aligned to the 34 BRCA specific transcripts the BRCA bearing donors could be 

separated from healthy donors. 

 

It is possible other cancers and patient comorbidities may impact the sensitivity 

and specificity of the test. In order to test whether samples from patients with 

other diseases would contain sequences which would confound expression of 

the selected transcripts, exRNA sequencing data from independent studies 

(Table 2, 2.2.3: Extracellular RNAseq processing) was aligned to the 34 BRCA 

specific transcripts. A total of 317 additional donors were used across six studies, 

including 86 healthy donors (13 sampled longitudinally (Max et al., 2018)), 167 

donors bearing cancerous diseases, and 64 bearing non-cancerous diseases. 

Again, there were some similarities in the number of transcripts aligned to (Figure 

16a), but read prevalence was much higher in BRCA bearing donors compared 

to all other donors (Figure 16b). Using the same cut-off defined previously 

(0.01238% reads surviving trimming) it appeared that BRCA bearing donors 

could be separated from all other samples (Figure 17).  
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Figure 16: Alignment to the 34-breast cancer specific transcripts per condition 
(The legend for all graphs is at the bottom of the figure). a. Number of transcripts aligned 
to (of the 34) per patient in each condition across all datasets. b. The percentage of 
unique reads surviving trimming aligned to all 34 BRCA specific transcripts per patient 
in each condition across all datasets.  
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However, there were some anomalies in the data which required further 

exploration. Firstly, some transcripts were substantially more highly aligned to 

than others, and secondly, the healthy donors from PRJNA543872 were easily 

distinguished from other healthy donors in the independent studies (Figure 17). 

 

 

Figure 17: Alignment to the 34-breast cancer specific transcripts per patient.  
Number of transcripts aligned to per patient against the percentage of unique reads 
surviving trimming aligned to those transcripts per patient in each condition across all 
datasets.  
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4.3.5 Questions about data quality 

In an attempt to validate the sequencing had been performed on RNA instead of 

DNA, the number of reads which overlapped splice sites in the control sequences 

were analysed (Figure 18, 2.2.3.1: Analysis of spliced reads). To lend context to 

the results, this splicing was compared to 24 TCGA BRCA tissue samples (2.1.1: 

Original tissue datasets (Attig et al., 2019)). The amount of splicing over each 

control was expressed as a percentage of the total number of reads overlapping 

that control sequence. Many donors had zero spliced reads over the controls, not 

because there was no splicing, but because no reads were detected anywhere 

along the control sequences. Here it is impossible to tell if RNA or DNA was 

sequenced using spliced reads on ACTB and GAPDH alone. In cases were 100% 

of reads over the control were spliced, only one or two reads were aligned to the 

control and all were aligned over splice junctions, indicating RNA was present but 

at low levels. 
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Figure 18: Reads overlapping splice junctions in control sequences.(The legend 
for all graphs is at the bottom of the figure). a. Reads overlapping splice junctions in 
ACTB and b. GAPDH as a percentage of the total reads aligned to ACTB and GAPDH 
respectively per patient in each condition across datasets. 
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There were also discrepancies in the read alignment patterns across breast 

cancer specific transcripts. Instead of equal coverage across the whole transcript 

some transcripts contained large read peaks overlapping RTEs (Figure 19). 

These peaks overlapped LINE1HS and AluSp sequences, and regions were well 

conserved when compared to the respective consensus sequences. There are 

many RTE copies in DNA, and not all are expressed in RNA, in order to explore 

whether this upregulation in RTE-derived sequences was BRCA-specific or an 

artefact of the study, the RNAseq data was re-aligned to the LINE1HS and AluSp 

consensus sequences. In order to capture reads across all the LINE1HS and 

AluSp family members, BLAT was run using a minimum identity of 90%, whilst 

ensuring the match and read length were the same (2.2.3: Extracellular RNAseq 

processing). This showed a study-specific upregulation of both RTEs in 

PRJNA543872 when compared to the other independent datasets (Figure 20).  

 

Artefactual differences in PRJNA543872 could also be seen when comparing 

healthy data across studies. The healthy data from PRJNA543872 had increased 

alignment to the LINE1HS (Figure 20a) and AluSp (Figure 20b) consensus 

sequences, alongside increased alignment to BRCA-specific transcripts (Figure 

17) when compared to healthy donors from other studies. PRJNA543872 healthy 

donors could be clearly distinguished from other healthy donors using the 

percentage of reads surviving trimming aligned to BRCA-specific transcripts 

(Figure 17), these reads come from alignment with LINE1HS and AluSp (Figure 

19). 

 

Overall, some transcripts have especially high expression in BRCA patient 

exRNA samples. The read alignment to these transcripts is not evenly spread 

across the transcript length but is instead concentrated to LINE1HS and AluSp 

overlapping regions (Figure 19). The detection of LINE1HS and AluSp is 

increased in both healthy and BRCA-bearing donors of the PRJNA543872 study, 

this is not seen in other studies, and thus is a study-specific artefact (Figure 20).  

In an attempt to correct for the artefactual upregulation of LINE1HS and AluSp, 

transcripts containing large read peaks over these RTEs were removed. This 
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reduced the magnitude of variation between healthy datasets, but also removed 

the main source of variation between all conditions and BRCA bearing donors 

were no longer distinguishable from other donors (Figure 21). 
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Figure 19: Structures of the three BRCA specific transcripts containing large 
peaks of read alignment over RTE elements (intronic regions of the transcripts are 
not shown).  Read counts shown are pooled from all patients. Different exons are shown 
in different shades of blue, gene exons overlapped by transcripts are not necessarily 
complete.  
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Figure 20: Expression of LINE1HS (a) and AluSp (b) per patient in each condition 
allowing for 90% match identity. (The legend for all graphs is at the bottom of the 
figure). There is a study specific increase of both repeat types in PRJNA543872. 
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Figure 21: ExRNA expression per condition after removal of the three transcripts 
containing large peaks over RTEs. Number of transcripts aligned to per patient against 
the percentage of unique reads surviving trimming aligned to those transcripts per patient 
in each condition 
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4.3.6 Attempts in other cancer types 

Following the same transcript selection method as used previously (2.3.2: 

Selecting transcripts for use in RNA liquid biopsies), SKCM specific transcripts 

were selected and reads from the Melanoma study were aligned using BLAT 

(2.2.3: Extracellular RNAseq processing). Although there was good alignment to 

several transcripts, the study did not contain any healthy donors to compare 

alignment levels to (Table 2). Alignment of an independent dataset showed 

melanoma bearing donors to have lower levels of SKCM specific transcripts 

compared to healthy donors. 

 

In an attempt to reduce non-specific read alignment from homologous sequences, 

and given the lung cancer dataset (PRJNA589238) had such long reads (Figure 

11a), Salmon was used for alignment as described for tissue data (2.2.2.1: 

Expression of transcripts assembled in the de novo transcriptome). Lung cancer 

specific transcripts were selected with the same method as used previously 

(2.3.2: Selecting transcripts for use in RNA liquid biopsies). However, both lung 

cancer patient and healthy donor samples were equally lacking in transcript 

presence.  
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4.4 Discussion 

BRCA bearing donors could not be distinguished from others using the 34 BRCA 

specific transcripts from the de novo transcriptome assembly. Although TCGA 

BRCA patient samples had high and specific expression of the 34 BRCA specific 

transcripts, many of these transcripts were poorly represented in BRCA bearing 

donor exRNA samples. This may be because the 96 BRCA-bearing patients did 

not have tumours expressing the selected transcripts. The transcript expression 

was validated from the original pool of 24 patients with a larger group of 100. 

However, as these 100 patients represent under one tenth of the total TCGA 

BRCA patient pool (100/1095) it is possible that selection of a different 100 

patients would have shown no expression of transcripts in some tumours. There 

may also be biases in RNA packaging for extracellular release (Freedman et al., 

2016; Groot and Lee, 2020; Hinger et al., 2018; Zhou et al., 2019), or lack of 

stability of the transcripts in the blood, although there is disagreement on this 

area. Some suggest that even in the presence of RNase in the blood exRNA 

species can be stable through protection in EVs (Freedman et al., 2016). Others 

suggest there is a higher frequency of RNA modification of RNA in EVs compare 

to intracellular RNA (Hinger et al., 2018). 

 

Transcripts that contained conserved RTE regions were detected at higher levels 

in BRCA bearing donor exRNA samples. Read coverage across the highly 

expressed transcripts was not constant, with specific peaks over regions of 

LINE1HS and AluSp RTEs. The increased detection of LINE1HS and AluSp was 

not BRCA donor sample specific but study specific. This may have been due to 

any number of differences between datasets collected in the methods of 

collection, preparation, and sequencing of the exRNA samples. The increased 

detection of LINE1HS and AluSp sequences may also be due to DNA 

contamination, but as there were so few reads aligned to ACTB and GAPDH 

sequences in samples from the breast cancer study the frequency of spliced 

reads could not be usefully analysed. Comparison of RTEs in cell free DNA and 

in cellular DNA showed Alu was detected at higher proportions and LINE1 at 
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lower proportions outside the cell, but both were still detected at very high levels 

(Gezer et al., 2022). 

 

Alignment to repetitive sequences using short reads requires a balance of 

specificity and sensitivity. In order to increase alignment specificity, BLAT was 

used, an alignment software specialised for shorter reads with few gaps or 

mismatches, alongside a minimum alignment identity of 100%. Although this 

meant that reads from mutated transcripts would be binned, as well as any reads 

altered whilst in the blood, it increased the likelihood reads would map to their 

true origin. But as the database BLAT was given only contained the 34 BRCA 

specific transcripts, it was blind to the rest of the human transcriptome, so with 

that data alone it was impossible to tell if the reads could have also been aligned 

elsewhere. In order to improve alignment specificity a more stringent filter on read 

length could have been applied, but this would have further restricted the size of 

the exRNA samples. The correlation of ACTB and GAPDH read alignment with 

read length suggested that reduced exRNA sample sizes would reduce the 

likelihood of detecting any given sequence, thus reducing the sensitivity of the 

test. It has previously been shown that the ability to distinguish sepsis donors 

from healthy donors is dependent on the miRNA yield (Buschmann et al., 2018). 

However, increasing the acceptable read length may have improved the 

specificity of read alignment. When aligning to the Genome Reference 

Consortium human build 37 (GRCh37) with a read length of 35 nucleotides used 

as the minimum here, there was a 16% probability the read would map to multiple 

coordinates (Li et al., 2014). As the transcriptome covers a smaller sequence 

space than the genome, the probability of multimapping is likely to be lower in 

this case. But the probability of multimapping could perhaps act as a guide to 

help set the minimum read length required for confident read alignment to any 

given sequence of interest. 

 

There is a lack of systematic studies to show the impact of technical methods on 

the exRNA species detected in samples. This lack of understanding limits the use 

of exRNA as a biomarker as there may be unknown impacts from sample storage, 
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EV purification, adapter ligation, and sequencing techniques (Everaert et al., 

2019; Giraldez et al., 2018; Qin et al., 2016; Yuan et al., 2016). Study of different 

exRNA isolation, library preparation, and sequencing methods have shown these 

methods define expression differences of samples in clustering analysis (Murillo 

et al., 2019). Furthermore, biases from library preparation altered the exRNA 

species detected, with more recently developed methods detecting more long 

intergenic non-coding RNA than older ones (Murillo et al., 2019). Additionally, 

differences have been seen when sequencing the same synthetic miRNA pools 

in different laboratories (Giraldez et al., 2018). These synthetic exRNA profile 

results clustered by extraction and library preparation protocols. Although the 

relative expression values within samples were similar, comparison between 

samples using read counts was inaccurate (Giraldez et al., 2018). This variation 

has also been explored in patient samples, with differentially expressed miRNAs 

between healthy and sepsis donors being dependent on the EV isolation method 

used (Buschmann et al., 2018). 

 

Due to the lack of accepted quality controls in the field, there is no way to define 

the best protocols for processing patient samples. Although various methods are 

impacting the exRNA species detected in each sample, which method reflects 

the true pool of exRNA species is unknown. Additionally, with exRNA samples 

originating from such small input volumes, heterogeneity in detected species 

between samples from the same individual is likely to be high (Everaert et al., 

2019), further reducing the ability to identify the best protocols for patient samples. 

Though one longitudinal study has shown some stability of exRNA profiles of 

healthy donors over two months (Max et al., 2018). This stability would not 

necessarily be reflected in a disease state such as cancer, especially when 

combined with anti-cancer treatments which can also affect the function of 

healthy cells.  
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4.5 Conclusion 

Overall, the selected 34 BRCA specific transcripts (which could distinguish breast 

cancer patients using RNA expression from tumour biopsies) could not be used 

to distinguish BRCA bearing donors from others using serum RNA, partially due 

to artefacts of the methods used in the independent datasets, and partially due 

to the poor representation of most of the 34 transcripts in the BRCA bearing donor 

samples. Further work needs to be done to define agreed upon quality controls 

for exRNA datasets, and agreed upon protocols to allow comparison between 

studies if exRNA species are to become a reliable biomarker for disease. 
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Chapter 5. Results 3: Novel transmembrane domain 

containing proteins 

5.1 Aims 

Figure 22: Aims for Results 3: Novel transmembrane domain containing proteins. 
Aims are shown in dashed boxes and methods are referenced in grey boxes. 
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5.2 Introduction 

Novel transcripts identified by the de novo transcriptome assembly may give rise 

to antigenic proteins localised to the cell surface plasma membrane (1.5.3: 

Expression of antigenic proteins). Proteins localised to the cell surface are 

available for B cell or antibody recognition without the requirements of processing 

and display on MHC molecules, thus increasing the likelihood of being shared 

across many tumours. The de novo transcriptome assembly identified both 

sequences chimeric with canonical transmembrane domain containing proteins, 

and fully novel sequences which may also code for transmembrane domain 

proteins. Here a list of potential highly cancer-specific candidates was selected, 

and three candidates were tested in vitro for protein stability and localisation 

(Figure 22). 
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5.3 Results 

5.3.1 Selection of candidate transcripts 

From the original cancer-specific list of 32264 transcripts, 313 were selected after 

identifying highly cancer-specific transcripts containing at least one open reading 

frame coding for at least one transmembrane domain (Figure 22, Figure 23a, 

2.3.3: Selection of transmembrane domain containing candidates). The selected 

transcripts were upregulated in a range of cancer types, with some transcripts 

upregulated in multiple cancers (Figure 23b). Most transcripts were multiexonic, 

though some were monoexonic (Figure 24a), several of which overlapped HERV 

elements. The open reading frames within the transcripts ranged in length from 

100 to 3312 AA (Figure 24c), with the much larger open reading frames generally 

overlapping known gene exons.  
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Figure 23: Selection of the candidate cancer-specific transmembrane-domain 
coding transcripts. a. The filtering steps used to select the candidate transcripts 
alongside the number of transcripts kept at each stage. Manual inspection of the raw 
expression values of each transcript in every tissue type was performed to ensure 
healthy tissues had few outlying values (expression inspection). b. The cancers that the 
313 selected transcripts were upregulated in, some transcripts are counted multiple 
times if upregulated in multiple cancer types. 
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Figure 24: Structure of the candidate cancer-specific transmembrane-domain 
coding transcripts. a. The proportions of monoexonic and multiexonic transcripts. b. 
The proportion of already annotated sequence represented by the candidate transcripts. 
c. A histogram of the length of each of the 327 ORFs derived from the 313 candidate 
transcripts (using a bin width of 50 AA). 
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The selected transcripts represented both known and novel sequences (Figure 

24b, 2.3.3: Selection of transmembrane domain containing candidates). Of the 

313 transcripts, 131/313 partially overlapped a known sequence with additional 

sequence derived from either RTEs, intergenic, or intragenic regions, with a 

range of effects on the canonical sequence including truncating the peptide and 

addition of RTE-derived peptide to the ORF. A small number of the selected 

transcripts (10/313) directly overlapped a HERV, and the ORF predicted to 

contain a transmembrane domain had homology with HERV Env proteins. 

Furthermore, 70/313 transcripts were comprised of completely novel sequence, 

not overlapping an exon of a known or hypothetical gene, and not overlapping 

any known open reading frame of a HERV element. Alongside 11/313 transcripts 

representing, either partially or fully, hypothetical gene sequences. Additionally, 

91 were transcripts which represented, partially or fully, known gene sequences 

with no unique regions. In some cases these were lncRNAs with predicted ORFs, 

in others known genes coding for transmembrane domain proteins which were 

ectopically expressed in cancer. The presence of known transmembrane domain 

containing proteins in the candidate list lent confidence to the transmembrane 

domain predictions.  

 

For example, a novel transcript isoform of gamma-aminobutyric acid A receptor 

alpha 3 subunit (GABRA3) was identified (Figure 25a), which codes for the same 

transmembrane domain containing ORF (Figure 25b) as the canonical isoform. 

Canonical GABRA3 is expressed in brain tissue, brain lower grade glioma, and 

glioblastoma multiforme samples (Figure 26). Alongside other subunits, the 

protein forms a gamma-aminobutyric acid (GABA)-responsive chloride channel. 

GABRA3 RNA and protein expression have been associated with increased 

metastasis and cell proliferation alongside poor patient survival in breast cancer 

(Gumireddy et al., 2016), hepatocellular carcinoma (Liu et al., 2008), lung cancer 

(Liu et al., 2016; Liu et al., 2009; Loriot et al., 2014), pancreatic cancer (Long et 

al., 2017), and melanoma (Loriot et al., 2014). The GABRA3 transcript, alongside 

coding for the GABRA3 protein, also harbours miRNA sequences miR-105 and 

miR-767 in the first intron (Loriot et al., 2014). MiR-105 promotes metastasis 
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through weakening vascular endothelial barriers (Zhou et al., 2014). MiR-767 

inhibits TET2 which regulates DNA methylation levels and increased expression 

of miR-767 is associated with increased cell proliferation and invasiveness (Jia 

et al., 2020; Zhou et al., 2014).  

The isoform identified by the de novo transcriptome assembly appears to use a 

separate promoter to the canonical contained within a LINE1 and splices into a 

second novel exon within an AluJb before splicing into the second canonical exon 

of GABRA3 (Figure 25a). The novel isoform is predicted to lead to ectopic 

expression of the same protein in LUSC, testicular germ cell tumours (TGCT), 

and both primary and metastatic SKCM samples (Figure 26).  

Another cancer-specific isoform of GABRA3 has previously been annotated 

(Loriot et al., 2014). From 5’ RACE data in melanoma cell lines an isoform driven 

through the bidirectional promoter of the melanoma antigen gene family member 

A3 (MAGEA3) was identified. This isoform skipped the first exon of GABRA3, 

splicing instead into the second exon, maintaining the canonical ORF and the 

miRNA sequences harboured in the first intron. The exons spliced into upstream 

of GABRA3 code for an upstream ORF likely to elicit transcript degradation 

through nonsense-mediated decay, thus no GABRA3 protein was detected in 

melanoma lines expressing this transcript (Loriot et al., 2014). This may be the 

true source of the transcript identified by the de novo transcriptome assembly, 

though RTE sequences are still used to form the transcript the expression may 

not be driven through these elements. There must however be a source of the 

ectopic GABRA3 protein which may not be produced from the upstream ORF-

containing MAGEA3-associated transcript. 
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Figure 25: The structure of a novel GABRA3 isoform identified by the de novo 
transcriptome assembly.  a. The structure of the GABRA3 locus and the novel isoform 
identified, alongside BAM files of RNAseq data from brain lower grade glioma (LGG) and 
metastatic skin cutaneous melanoma (SKCM_m) patient samples from TCGA. b. The 
TMHMM output showing the position of transmembrane domains within GABRA3. 
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Figure 26: The expression of a novel GABRA3 isoform identified by the de novo 
transcriptome assembly alongside the expression of canonical GABRA3.  
Expression values per patient are shown in a mirrored boxplot for TCGA and GTEx 
healthy (grey), and TCGA cancer (red) samples.Data are clipped to a maximum of 15 
TPM.
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Three candidate transcripts were selected for in vitro validation of protein stability 

and localisation (2.5: Preparation of stably transduced cell lines, 2.6: Sample 

preparation and Western Blot, 2.7: Flow cytometry). As highest confidence was 

placed in stability of transmembrane domains from genes known to code for 

transmembrane domain proteins and sequences with highest antigenicity were 

likely to be derived from RTEs, two candidates selected were truncations of 

known proteins with addition of RTE-derived peptides. A third candidate, tested 

for stability by Dr Jane Loong, was derived from a transcript overlapping a HERV-

H but with no homology to known HERV proteins. 

5.3.2 A novel truncated isoform of ENPP3 

A novel isoform of the ectonucleotide pyrophosphatase/phosphodiesterase 3 

(ENPP3) was identified, with specific expression in KIRC (Figure 27a and Figure 

28). The canonical form of ENPP3 is expressed on a range of epithelial and 

mucosal cells, as well as on mast cells and basophils (Bühring et al., 2004). 

Canonical ENPP3 cleaves extracellular ATP (Tsai et al., 2015) and cGAMP 

(Mardjuki et al., 2024), and intracellular UDP-GlcNAc (Korekane et al., 2013). 

Cleavage of ATP regulates basophil and mast cell responses (Tsai et al., 2015). 

Alteration of ATP concentration in tumours may influence Treg function, as ATP 

has been shown to inhibit Tregs (Schenk et al., 2011), thus increased ENPP3 

expression may reduce inflammation. Some cancer cell lines continuously 

release cGAMP due to mis-segregation of DNA (Carozza et al., 2020; Mackenzie 

et al., 2017), if this also occurs in tumours ENPP3 may further reduce 

inflammation through cleavage of cGAMP therefore reducing STING activation 

(Mardjuki et al., 2024; Wang et al., 2023). An LTR element upstream of ENPP3 

has been shown to control expression of the gene in a HIF-dependent manner 

(Siebenthall et al., 2019). ENPP3 is expressed in healthy kidney tissue and is 

further upregulated in KIRC (Doñate et al., 2016; Thompson et al., 2018) (Figure 

28). Due to the upregulation in KIRC, an antibody drug conjugate against ENPP3 

has been tested in Phase I clinical trials, but although some patients responded 

there were dose-limiting reversible effects to patient corneas (Thompson et al., 

2018). The novel ENPP3 isoform identified codes for a truncated ENPP3 protein 
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(Figure 27b). While the canonical protein is 875 AA with only the first 22 AA 

localised intracellularly and 829 AA localised extracellularly, the truncated form is 

492 AA long with the first 471 AA identical to the canonical and the final 21 AA 

donated by a LINE2 along with a stop codon (Figure 27a). These final 21 AA may 

be displayed outside the cell, though were predicted by TMHMM to form a second 

transmembrane helix (Figure 27b). Additionally, the truncation of the protein 

would display peptide sequences and structures that although are contained 

within the canonical form would not be available for antibody or BCR binding of 

the canonical form. The truncated isoform had lesser expression in KIRC 

compared to the canonical isoform, but the expression was more cancer-specific 

and still very high (Figure 28). Considering isoform expression in TCGA and 

GTEx across adjacent healthy and healthy tissue types, 49% (396/811) of 

samples have canonical ENPP3 expression over 0.5 TPM, whereas only 3.7% 

(30/811) express the truncated isoform above this threshold, reducing the 

likelihood of on-target toxic effects. However, Western blot of cell clone lysates 

transduced with the FLAG-tagged coding sequence for either the canonical or 

truncated ENPP3 isoforms (see Supplementary figure 1 for transduction 

efficiency of clones, 2.5: Preparation of stably transduced cell lines, 2.6: Sample 

preparation and Western Blot) showed the protein derived from the truncated 

isoform was not detectable in HEK293T cells (Figure 27c) and was therefore 

unlikely to be stable. 
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Figure 27: The structure and stability of a novel ENPP3 isoform identified by the 
de novo transcriptome assembly.  a. The structure of the ENPP3 locus and the novel 
isoform identified, alongside BAM files of RNAseq data from kidney renal clear cell 
carcinoma (KIRC) patient samples from TCGA. b. The TMHMM output showing the 
position of transmembrane domains within ENPP3 (left) and the potential peptide of 
truncated ENPP3 (right). c. A Western blot (with help from Dr Laura Doglio) showing the 
stability of canonical ENPP3-FLAG (with an estimated molecular weight of 100 kDa), 
however the truncated ENPP3-FLAG (with an estimated molecular weight of 54 kDa) 
could not be detected.  
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Figure 28: The expression of a novel ENPP3 isoform identified by the de novo 
transcriptome assembly alongside the expression of canonical ENPP3. Expression 
values per patient are shown in a mirrored boxplot for TCGA and GTEx healthy (grey), 
and TCGA cancer (red) samples. Data are clipped to a maximum of 300 TPM.
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A novel truncated isoform of PLD3 

A novel isoform of phospholipase D family member 3 (PLD3) was also identified, 

with specific expression in uterine carcinosarcoma (UCS) (Figure 29a, Figure 30). 

The canonical form of PLD3 is a lysosomal protein which is localised to the 

endoplasmic reticulum, Golgi apparatus, and early endosomal membranes 

(Gonzalez et al., 2018). In lysosomes the protein is cleaved near the 

transmembrane domain releasing the large catalytic domain into the lysosome 

(Gonzalez et al., 2018). The catalytic domain cleaves single stranded RNA and 

DNA, preventing accumulation which would lead to continuous activation of toll-

like receptors (TLRs) TLR9 and TLR7, and potential autoimmunity (Gavin et al., 

2021; Gavin et al., 2018). For trafficking into endosomes, PLD3 must be trafficked 

first to the cell membrane (Gonzalez et al., 2018). 

 

The novel PLD3 isoform identified codes for a truncated PLD3 protein (Figure 

29a). The canonical PLD3 isoform codes for a 490 AA protein, while the truncated 

isoform codes for a 263 AA protein with the first 227 AA identical to the canonical 

and 36 amino acids donated by an AluJr. Only the first 37 AA of both proteins 

would be localised intracellularly if localised to the cell surface membrane, with 

the novel 36 AA donated by the AluJr available for antibody binding extracellularly 

(Figure 29b), as well as any peptides revealed by the protein truncation.  

Western blot of cell population lysates transduced with the HA-tagged coding 

sequence for the truncated PLD3 isoform showed the protein derived from this 

sequence was stable in HEK293T cells (Figure 31a) (see Figure 31b for 

transduction efficiency of the cell population, 2.5: Preparation of stably 

transduced cell lines, 2.6: Sample preparation and Western Blot, 2.7: Flow 

cytometry). This was also shown through flow cytometry, where intracellular 

staining of the transduced cell population was seen, however extracellular 

staining showed no detectable surface protein in HEK293T cells (Figure 31b). 

This protein may localise to intracellular membranes instead along with the 

canonical PLD3. 
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Figure 29: The structure of a novel PLD3 isoform identified by the de novo 
transcriptome assembly.  a. The structure of the PLD3 locus and the novel isoform 
identified, alongside BAM files of RNAseq data from uterine carcinosarcoma patient 
samples from TCGA. b. The TMHMM output showing the position of transmembrane 
domains within PLD3 (left) and the potential peptide of truncated PLD3 (right). 
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Figure 30: The expression of a novel PLD3 isoform identified by the de novo 
transcriptome assembly alongside the expression of canonical PLD3. Expression 
values per patient are shown in a mirrored boxplot for TCGA and GTEx healthy (grey), 
and TCGA cancer (red) samples. Data are clipped to a maximum of 150 TPM. 
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Figure 31: The stability and localisation of the truncated PLD3 protein produced 
by the novel PLD3 isoform identified by the de novo transcriptome assembly.  a. 
A Western blot showing the stability of the truncated PLD3-HA (PLD3-SINE-HA) protein 
(with an estimated molecular weight of 34 kDa). b. Flow cytometry showing extracellular 
staining (left) and intracellular staining (right) of parental HEK293T cells and transduced 
HEK293T cells. Successfully transduced cells are marked with GFP (Figure 6), and the 
anti-HA antibody was visualised with a secondary antibody conjugated to Alexa-Fluor 
530.  
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5.3.4 A HERVH-derived transcript 

Additionally, a fully novel transcript overlapping a HERV-H on chromosome 13 

was identified, with specific expression in oesophageal carcinoma (ESCA), head 

and neck squamous cell carcinoma (HNSC), and stomach adenocarcinoma 

(STAD) (Figure 32a, Figure 33). This transcript does not overlap a canonical open 

reading frame within the HERV-H, and the derived protein has no homology to 

any known protein (BLASTp, with minimum homology of 85%). Within this novel 

2626 nucleotide transcript a 116 AA protein was identified which was predicted 

to contain a transmembrane domain, with the first 53 AA predicted to be displayed 

outside the cell if the protein localised to the surface plasma membrane (Figure 

32b) 

Western blot of cell population lysates transduced with the HA-tagged coding 

sequence for the open reading frame, with cells prepared and samples analysed 

by Dr Jane Loong (2.5: Preparation of stably transduced cell lines, 2.6: Sample 

preparation and Western Blot), showed the protein derived from this sequence 

was not detectable in HEK293T cells (Figure 32c) and therefore unlikely to be 

stable. 
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Figure 32: The structure and stability of a novel HERV-H-derived transcript 
identified by the de novo transcriptome assembly.  a. The structure of the HERV-H 
locus and the novel transcript identified, alongside BAM files of RNAseq data from head 
and neck squamous cell carcinoma (HNSC) patient samples from TCGA. b. The 
TMHMM output showing the position of the transmembrane domain within the derived 
protein. c. A Western blot (Dr Jane Loong) showing the lack of stability of the HA-tagged 
HERV-H-derived protein (with an estimated molecular weight of 16 kDa). 
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Figure 33: The expression of a novel HERV-H-derived transcript identified by the 
de novo transcriptome assembly. Expression values shown for TCGA and GTEx 
healthy (grey), and TCGA cancer (red) samples. 
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5.4 Discussion 

It is possible that transmembrane domain containing proteins with peptide 

donated by RTEs can be stable. Although the truncated ENPP3 isoform and the 

HERV-H-derived protein were not stable when transduced into HEK293T cells, 

the truncated PLD3 was. It is possible the RNA of the two candidates that were 

not stable at the protein level has some function, however for the aims of this 

project stable protein was required. The instability of truncated ENPP3 aligns with 

previous studies of mouse nucleotide pyrophosphatase/phosphodiesterase 1 

(NPP1), a paralogue of ENPP3, where the orthologous domains removed in this 

truncation were shown to be required for stability and localisation of NPP1 

(Gijsbers et al., 2003). Although the truncated PLD3 was stable the protein did 

not localise in detectable levels to the cell surface plasma membrane. Some 

surface localisation of the canonical form had been seen previously, though this 

was rare (Gonzalez et al., 2018). The truncation of PLD3 may still have 

implications for the cell as the domains removed are required for catalysing 

cleavage of single stranded RNA and DNA (Gavin et al., 2018). Knock-out of 

PLD3 in mice led to development of fatal liver inflammation, which was rescued 

when all TLRs required for activation of the immune response against 

accumulation of single stranded RNA and DNA in the cell were concomitantly 

knocked out (Gavin et al., 2021; Gavin et al., 2018). However, the expression of 

the truncated PLD3 is much lower than the canonical form (Figure 30), and it is 

unknown to what extent the truncated form would allow for accumulation of 

oligonucleotides and the following inflammation. Other work has also shown that 

peptides containing RTE-derived sequences can produce stable protein through 

mass spectrometry analysis of cell lysates and in vitro testing (Burbage et al., 

2023; Merlotti et al., 2023; Ng et al., 2019; Shah et al., 2023). Two additional 

transmembrane domain proteins with RTE sequences appended have also been 

shown to be stable and localise to the cell surface membrane, with the potentially-

antigenic RTE sequences displayed outside the cell. L1PA2_GABRG2 and 

THE1C_TMEM260 with 64 and 4 AA derived from RTEs added to the start of the 

canonical proteins respectively, were both shown to be stable in Western blot 

analysis of cell membranes and through immunofluorescence staining of natively 
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expressing cells (Shah et al., 2023). Neither of these transcripts were assembled 

in this de novo transcriptome assembly. 

 

The ORFs derived from some candidate transcripts may not be translated. Many 

of the candidate ORFs selected here are very short compared to the majority of 

canonical proteins. Previous work surveying ORFs in prokaryotic and eukaryotic 

genomes showed the average protein length in eukaryotes to be 472 AA, with a 

lack of proteins below 100 AA and a preference for those over 250 AA long 

(Tiessen et al., 2012). The majority of ORFs selected for in this analysis are under 

250 AA (190/327), including the unstable HERVH-derived protein. Although there 

are examples of extremely small proteins active once complexes are formed 

(Tiessen et al., 2012), small ORFs are poorly conserved compared to the longer 

canonical ORFs (Couso and Patraquim, 2017). Though on the other hand, a long 

ORF derived from the truncated ENPP3 transcript was not stable. Additionally, 

analysis of the known human proteome has shown correlation between transcript 

length and protein size (Lopes et al., 2021). This is somewhat reflected in the 

selected candidates, however there are some candidates with very large 

transcripts containing very small ORFs, these are perhaps much less likely to be 

translated, such as the HERVH-derived transcript where a 116 AA protein was 

derived from a 2626 nucleotide transcript.  

 

Accurate prediction of translatability of ORFs would make candidate selection 

more efficient. In order to prioritise candidates for in vitro stability testing a range 

of filters can be used including selecting for peptides with high predicted stability, 

peptides coded for by larger numbers of exons, or by the longest ORF within the 

transcript. But previous work on non-canonical peptide expression derived from 

lncRNAs has shown the peptides produced have different characteristics to the 

current known human proteome (Chen et al., 2020; Lu et al., 2019). The lncRNA-

derived peptides were shorter, coded for by fewer exons, and were predicted to 

have lower stability and iso-electric points (Lu et al., 2019). Thus, to create an 

algorithm able to predict translatability of non-canonical ORFs based on 

knowledge of canonical ORFs may mean many real and stable proteins would 



Chapter 5. Results 

 

144 

 

not pass the filtering. Additionally, some peptides which are not stable but are 

highly homologous to canonical proteins, such as the truncated ENPP3, may 

wrongly pass filtering. Peptides could also be searched for in mass spectrometry 

data, but including all possible ORFs would drastically increase the false 

discovery rate, added to difficulties distinguishing the canonical protein from 

isoforms with small unique regions of peptide derived from RTEs.  

 

If the proteins are targetable, expression may be selected against. Complete 

regression of tumours requires continuous expression of the antigenic protein 

being targeted in all cancer cells. This situation is most likely to arise if the protein 

being targeted is required for cell survival within the tumour. However, only 4.1% 

of genes encoding cell surface proteins have been shown to be necessary for 

survival compared to 14% of genes encoding proteins localised elsewhere (Hu et 

al., 2021). Added to this, in selecting cancer-specific transcripts, it is likely all 

transcripts required for cell survival are removed as expression would also be 

needed in healthy cells. Alternatively, there may also be some proteins the cell is 

unable to downregulate. The reactivation of RTEs in cancer appears to be due to 

a combination of genome hypomethylation and TF availability. How much control 

the short-term evolution seen in tumours has over which specific RTE loci are 

active and are therefore able to influence the proteome is unknown. Further 

studies into the timeline of RTE activation in cancer development, and 

mechanisms involved in re-silencing specific loci are needed. 

5.5 Conclusion 

In summary, novel transcripts identified by the de novo transcriptome assembly 

have the potential to code for stable transmembrane domain containing proteins 

with RTE-derived peptides. Although, neither the truncated ENPP3 isoform or 

HERV-H-derived protein were stable, the truncated PLD3 with 36 AA donated by 

an AluJr element was stable. The localisation of the truncated PLD3 was not to 

the cell surface membrane, but the stability of this protein suggests the potential 

for stability of the other cancer-specific candidates expressed across patients 
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identified here which are yet to be tested. Those with highest potential to be stable 

are likely to be those with homology to known transmembrane domain proteins. 

Furthermore, this analysis has revealed a potential mechanism behind the 

upregulation of an ectopically expressed known transmembrane protein in cancer 

GABRA3, where the novel cancer-specific transcript isoform produces the same 

protein as the canonical brain-specific isoform, with pro-tumorigenic effects. 
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Chapter 6. Results 4: Exploration of HERV 

expression in metastatic KIRC 

6.1 Aims 

Sequences produced by RTEs may be antigenic driving an immune response 

against tumours (1.5.3: Expression of antigenic proteins). Certain HERV loci have 

been associated with spontaneous regression, response to immune checkpoint 

blockade, and cytotoxic T-cell signatures in KIRC (Panda et al., 2018; Rooney et 

al., 2015; Smith et al., 2018; Takahashi et al., 2008). In order to assess whether 

HERV expression associated with anti-PD-1 treatment of metastatic KIRC 

patients in the ADAPTeR study (2.1.4: Metastatic KIRC samples from the 

ADAPTeR study), expression of loci was analysed (Figure 34, 2.2.2.2: 

Expression of individual RTE loci, 2.4.4: Differential expression analysis for 

HERVs in metastatic KIRC). As loci previously associated with response were 

not mapped to GRCh38 these loci were mapped and matched to a custom Dfam 

library (Attig et al., 2017) (2.2.1: Annotation of HERV loci). Expression of these 

and other HERV loci from the Dfam library was then analysed in the RNAseq 

dataset from the ADAPTeR study, consisting of 60 tumour biopsies from 14 

patients (Figure 34, 2.1.4: Metastatic KIRC samples from the ADAPTeR study). 

Additionally, HERV-derived transcript expression (Attig et al., 2019) was also 

analysed for association with response to anti-PD-1 therapy (2.2.2.1: Expression 

of transcripts assembled in the de novo transcriptome, 2.4.4: Differential 

expression analysis for HERVs in metastatic KIRC). Additionally, to ensure 

associations with response were not confounded by immune cell infiltrate, 

expression of HERV loci and derived transcripts was assessed in purified 

immune cell datasets (2.1.5: Purified immune cell datasets). 
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Figure 34: Aims for Results 4: Exploration of HERV expression in metastatic KIRC. 
Aims are shown in dashed boxes and methods are referenced in grey boxes. 
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6.2 Introduction 

KIRC has been seen to spontaneously regress and respond to immune 

checkpoint blockade, but the antigen source is unknown. KIRC is the most 

common histological subtype of kidney cancer (Ricketts et al., 2018) and is highly 

immune infiltrated (Ricketts et al., 2018; Rooney et al., 2015; Thorsson et al., 

2018). Spontaneous regression has been seen in rare cases (Cole and Everson, 

1956; Janiszewska et al., 2013; Snow and Schellhammer, 1982), alongside 

response to checkpoint inhibitors seen even in metastatic disease (Albiges et al., 

2019; Au et al., 2021; Motzer et al., 2015; Xu et al., 2020). But the source of 

antigen driving the immune response to the tumour is unknown. Expressed non-

synonymous single nucleotide variants, tumour mutational burden, and 

frameshift insertions or deletions do not correlate with response to 

immunotherapy in KIRC (Au et al., 2021; Braun et al., 2020; McDermott et al., 

2018; Motzer et al., 2020; Turajlic et al., 2017).  

 

Previously, expression of HERVs in KIRC has been associated with response to 

immune checkpoint blockade and cytotoxic T-cell tumour infiltrate levels. In a 

study of patients with metastatic KIRC treated with hematopoietic stem cell 

transplantation, one patient had regression leading to survival of four years post-

treatment. The donor T-cells in this patient responded to a tumour-restricted 

antigen derived from a HERV-E sequence (ERVE-4 or HERV 2256) (Takahashi 

et al., 2008). Furthermore, in a pan-cancer analysis, ERV3-2 expression has 

been associated with response to immune checkpoint blockade in 11 cancer 

types, with increased ERV3-2 expression associated with response to anti-PD-1 

therapy in primary KIRC (Panda et al., 2018). Expression of HERV-E, HERV-H, 

and HERV-K group members have been associated with increased cytotoxic T-

cell signatures, both across various tumour types and in primary KIRC (Rooney 

et al., 2015). HERV 4700 has also been shown to associate with immunotherapy 

response in KIRC, with Ribo-Seq data suggesting this locus may be translated 

(Smith et al., 2018). 
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To allow quantification of whole HERV loci potentially able to produce antigen, 

two lists of complete HERV proviruses have been previously compiled. These 

loci have been used to correlate HERV expression with immunotherapy response 

and cytotoxic T-cell signatures. In 2011 a list of potentially transcribed HERV loci 

was compiled to create a uniform nomenclature of separate transcriptional units 

for inclusion within the standardised nomenclature of human genes defined by 

the Human Genome Organisation Gene Nomenclature Committee (HGNC) 

(Mayer et al., 2011). Inclusion on this list required the HERV locus to have an 

mRNA sequence published in a public database, with the complementary DNA 

(cDNA) sequence uniquely mappable to the human reference genome (GRCh37), 

and with sequence representative of viral genes (as opposed to solo LTR 

elements) (Mayer et al., 2011). Fusions of HERVs and HERV insertions within 

other HERVs would not be represented by this list of loci, nor would any HERV 

locus overlapping another known transcript, such as those from known genes, as 

they would no longer be defined as a separate transcriptional unit in this case. 

From these criteria, a limited list of 66 loci were identified from the RepBase (Bao 

et al., 2015) database of repeat loci, with all names beginning “ERV” such as 

ERV3-2 (Mayer et al., 2011). A second larger list was compiled in 2016, again 

focused on potentially transcribed loci and excluding solo LTRs. This list included 

HERVs inserted within other HERVs and loci where recombination had occurred 

which were merged into single HERV locus annotations. The list of 3173 

potentially transcribed HERV loci was expected to represent around one quarter 

of total HERV sequences within the human genome, with the naming convention 

for the list beginning “HERV” followed by a unique number, such as HERV 4700 

(Vargiu et al., 2016). These lists were used in previous studies analysing HERV 

expression in KIRC and the correlation with immune checkpoint blockade 

response, and the list of 3173 is the basis of the tool hervQuant (Smith et al., 

2018). The list of 66 loci from Mayer and colleagues (2011) was used in the study 

of response to immune checkpoint blockade by Rooney and colleagues (2015) 

and in the study of correlation with cytotoxic T-cell signatures by Panda and 

colleagues (2018). The list of 3173 loci from Vargiu and colleagues (2016) was 
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used by Smith and colleagues (2018) to correlate HERV expression with 

immunotherapy response in KIRC and other cancers.  

 

In order to identify correlates of immune checkpoint blockade response, data from 

a clinical trial of anti-PD-1 therapy in treatment-naïve metastatic KIRC patients 

was analysed. This data is from the ADAPTeR clinical trial (NCT02446860) 

consisted of 15 patients with metastatic KIRC treated with an anti-PD-1 antibody 

(nivolumab) (Au et al., 2021). To assign therapy responsiveness to these patients, 

those with partial response or stable disease of at least 6 months were selected 

as responders regardless of the overall change in tumour size whilst on treatment. 

Therefore, 5 patients were selected as responders, and 10 as non-responders. 

Patients underwent multi-region tumour biopsies of both primary and metastatic 

sites, with a total of 115 biopsies taken over four time points: at baseline, week 9 

after treatment start, nephrectomy if performed, and at disease progression. In 

alignment with other studies, analysis of genomic features such as tumour 

mutational burden, expressed non-synonymous single nucleotide variants, and 

frameshift insertions or deletions did not correlate with response to therapy. 

However, T-cell receptor (TCR) sequencing did reveal immunotherapy response 

was associated with maintenance of pre-treatment expanded TCR clones, 

suggesting an ongoing antigen response boosted by anti-PD-1 therapy. Analysis 

of T-cells in responding patients showed upregulation of granzymes B and K 

required for T-cell cytotoxicity.  
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6.3 Results 

6.3.1 Analysis of previously annotated HERV loci 

In order to analyse the expression of HERV loci previously associated with 

response to immunotherapy and cytotoxic T-cell signatures in KIRC the loci had 

to be mapped to GRCh38. Mapping the previously annotated HERV loci to 

GRCh38 revealed errors in the older assemblies (2.2.1: Annotation of HERV loci). 

Of the 66 loci identified by Mayer and colleagues (2011), 47 were also identified 

by Vargiu and colleagues (2016). The previously annotated lists in total 

corresponded to 7989 unique LTR element annotations from the Dfam-derived 

library, with many previously annotated single loci overlapping multiple Dfam-

derived elements (Figure 35a). From the Mayer list the majority of annotations 

(49/66) only overlapped a single locus from the Dfam-derived library, one locus 

had no match identified, and one locus overlapped four LTR elements (Figure 

35a). The list from Vargiu and colleagues (2016) was more poorly annotated 

when compared to the Dfam-derived library, with only 22% (701/3173) of loci 

corresponding to a single element. For 12% (381/3173) of loci no match could be 

found in the Dfam library, though perhaps matching would have been more 

efficient if the buffer allowed for locus overlap had been increased. The majority 

of the loci annotated previously (2091/3173, 66%) matched more than one LTR 

element from the Dfam-derived library, with one locus matching 18 separate 

elements (Figure 35a). Upon further inspection of locus alignment in GRCh38 

there was also overlap with other RTE types, including SINEs and LINEs, and 

overlap with canonical gene exons. 
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Figure 35: The number of Dfam-derived LTR-containing loci the previously 
annotated HERV lists overlapped.  a. The number of Dfam-derived loci overlapped by 
the 3173 loci from Vargiu and colleagues (2016) (left) and by the 66 loci from Mayer and 
colleagues (2011) (right). b. The number of Dfam-derived loci overlapped by HERVs 
previously associated with response to immune checkpoint blockade or associated with 
cytotoxic T-cell signatures.  
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Expression of previously identified HERVs did not associate with response to 

anti-PD-1 therapy (Figure 36a). When responders and non-responders were 

compared (2.4.4: Differential expression analysis for HERVs in metastatic KIRC), 

expression of none of the HERVs previously associated with response correlated 

with response to anti-PD-1 therapy, or were significantly differentially expressed 

between responders and non-responders. This may be due to the lack of 

statistical power with such a small sample size. Although, several of the loci were 

more highly expressed, though not significantly, in non-responders opposing 

completely previous observations (Figure 36a). 

 

This lack of association with response may also be due to poor assembly of 

previously annotated loci. In this analysis, Dfam-derived loci overlapping the 

previously associated loci were used (2.2.1: Annotation of HERV loci). This was 

because many of the loci previously associated with response were incorrectly 

annotated (Figure 35a). If the incorrectly annotated loci positions had been used 

instead it is possible a correlation with response may have been seen. Of the 

HERV loci previously associated with either cytotoxic T-cell signatures or immune 

checkpoint blockade response, seven matched a single Dfam-derived locus, 

though some of these were poorly annotated (Figure 35b). The ERVK-3 locus 

(Mayer et al., 2011) previously correlated with cytotoxic T-cell signatures in 

primary KIRC (Rooney et al., 2015) overlapped one Dfam-derived locus, however 

the overlap was incomplete, with ERVK-3 only overlapping a small portion of the 

HERV-K annotated in RepeatMasker and the Dfam-derived library (Attig et al., 

2017) (Figure 37). Additionally, the locus of ERV3-2, previously shown to 

correlate with immune checkpoint blockade response in 11 cancer types 

including primary KIRC (Panda et al., 2018), overlapped two HERV loci 

incompletely (Figure 38b). The corresponding locus (HERV 2637) from the list 

published by Vargiu and colleagues (2016) not only overlapped multiple LTR-

containing loci, but also a LINE element, and part of the final exon of WDR91 

(Figure 38b). It was possible these errors appeared when the coordinates were 

lifted from GRCh37 to GRCh38, but looking at the original GRCh37 coordinates, 

the HERV 2637 locus did originally overlap non-LTR elements and the final exon 
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of WDR91 (Figure 38a). It is possible that expression of genes such as WDR91 

may associate with patient response to immunotherapy, which may have driven 

any association seen previously. 
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Figure 36: The relative expression of HERVs and LTR-overlapping transcripts in 
pre-treatment and week 9 samples from patients treated with anti-PD-1 therapy. 
Figure adapted from Au et al (2021). a. Relative expression of HERV loci significantly 
differentially expressed between responders and non-responders, as well as those 
previously associated with immune checkpoint blockade response and cytotoxic T-cell 
signatures. b. Relative expression of LTR-overlapping transcripts significantly 
differentially expressed between responders and non-responders, which includes 
transcripts overlapping the previously identified ERVE-4 (Smith et al., 2019; Takahashi 
et al., 2008) and HERV 4700 (Smith et al., 2018).   
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Figure 37: The structure of ERVK-3 in GRCh38.  ERVK-3 overlaps an intron of 
NEPRO-AS1. In the Dfam derived database of repeat loci (Attig et al., 2017) the ERVK-
3 overlaps a portion of a HERV, in the most recent update of RepeatMasker (May 2024) 
the ERVK-3 also overlaps a portion of a HERV. The annotation from 2016 is therefore 
incomplete. 
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Figure 38: The structure of ERV3-2 and the corresponding HERV 2637. Loci 
positions shown in both a. GRCh37 and b. GRCh38. HERV 2637 overlaps part of a gene 
exon, as well as multiple HERV loci and a LINE locus in both the Dfam derived library of 
repeat loci (Attig et al., 2017) and in the RepeatMasker database. This is true for both 
GRCh38 and GRCh37. The corresponding ERV3-2 overlaps multiple HERV loci in both 
the Dfam derived library of repeat loci (Attig et al., 2017) and in the RepeatMasker 
database. 
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Additionally, many of the previously identified HERV loci were expressed in 

purified immune cell samples (Figure 39, 2.1.5: Purified immune cell datasets). 

The ERV3-2 locus had especially strong expression across immune cell subsets 

in both GSE60424 (Linsley et al., 2014) and E-MTAB-8208 (Kazachenka et al., 

2019). This may explain the correlation with immune checkpoint blockade 

response seen across cancers (Panda et al., 2018), as expression of ERV3-2 

pre-treatment reflects immune infiltrate pre-treatment. On the other hand, the 

ERVE-4 integration which has been shown to produce antigen leading to tumour 

regression (Takahashi et al., 2008) had lesser and more sporadic expression in 

immune cells (Figure 39), suggesting it is more specific to KIRC tumour cells. 

6.3.2 Analysis of HERV loci annotated in the Dfam-derived library 

Expression of other HERV loci identified in the Dfam-derived library (Attig et al., 

2017) are associated with response to anti-PD-1 therapy (Figure 36a). There 

were 10 HERVs derived from 8 distinct loci which distinguished responders from 

non-responders in this cohort (2.4.4: Differential expression analysis for HERVs 

in metastatic KIRC). The HERVs were significantly differentially expressed 

(absolute fold change ≥2, q ≤ 0.05) and were mainly expressed in responders 

both pre- and post- treatment, and non-responders post-treatment (Figure 36a). 

Some of these loci also had expression in immune cell subsets (Figure 39), and 

their increased expression in responders may be due to increased immune 

infiltrate in these tumours at baseline (Au et al., 2021). Increased expression of 

these HERV loci in post-treatment non-responder samples may indicate 

increased immune infiltrate in these tumours due to the anti-PD-1 therapy. 

6.3.3 Analysis of HERV-overlapping transcripts assembled in the de novo 
transcriptome 

Expression of HERV-overlapping transcripts from the de novo transcriptome 

assembly was associated with response to anti-PD-1 therapy (Figure 36b, 

2.2.2.1: Expression of transcripts assembled in the de novo transcriptome, 2.4.4: 

Differential expression analysis for HERVs in metastatic KIRC). Previously, 570 
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LTR-overlapping transcripts from the de novo transcriptome assembly have been 

identified to be upregulated in a cancer-specific way in primary KIRC (Attig et al., 

2019). In differential expression analysis, 12 transcripts derived from 9 HERV loci 

were significantly differentially expressed (absolute fold change ≥2, q ≤ 0.05) 

(Figure 36b). These transcripts overlapped HERV loci also overlapping ERVE-4 

and HERV 4700 which have previously been identified to correlate with 

immunotherapy response (Panda et al., 2018; Smith et al., 2019; Takahashi et 

al., 2008). However, here expression was greatest in non-responders pre-

treatment, whereas previously increased expression was seen in patients 

responding to immune checkpoint blockade. This increase in non-responders 

may be due to the transcripts identified correlating with tumour purity (Figure 40), 

which would be expected as the transcripts were selected as KIRC-specific. 

Increased transcript expression indicated increased tumour purity and therefore 

lack of immune infiltrate pre-treatment.   
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Figure 39: The log2 normalised expression of HERVs previously associated with 
response to immune checkpoint blockade, cytotoxic T-cell signatures, and 
correlated with response to anti-PD-1 therapy in this cohort in purified immune 

cell subsets.  Figure adapted from Au et al (2021). a. GSE60424 (Linsley et al., 

2014) and b. E-MTAB-8208 (Kazachenka et al., 2019). 
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Figure 40: The correlation of LTR-overlapping transcripts associated with 
response to anti-PD-1 therapy with tumour purity. Figure adapted from Au et al 
(2021). a. The correlation of all transcripts associated with response with tumour purity. 
b. Examples of specific transcripts and the relationship between expression and tumour 
purity. 
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6.4 Discussion 

In this patient cohort, HERV expression was associated with tumour purity and 

type of immune infiltrate. Using updated HERV loci annotation from the Dfam-

derived library (Attig et al., 2017) and the de novo transcriptome assembly (Attig 

et al., 2019), HERV expression correlated with tumour purity in this dataset of 60 

tumour biopsies from 14 anti-PD-1 treated metastatic KIRC patients. Few HERV 

loci were significantly differentially expressed between responders and non-

responders, possibly due to the small sample size, with increased expression in 

responders pre- and post- treatment and non-responders post-treatment. Several 

of these loci had expression in purified immune cell subsets, potentially 

explaining their upregulation in responding tumours as those biopsies had 

increased tumour infiltrate (Au et al., 2021). Additionally, few HERV-overlapping 

transcripts were significantly differentially expressed, with increased expression 

here in non-responders post-treatment. This opposes the expression pattern 

seen for the HERV loci but is explained by the transcripts analysed being selected 

for as KIRC-specific. Most transcripts that associated with response also 

positively correlated with tumour purity. Thus, as the immune-expressed HERV 

loci increase in expression, the tumour-specific HERV-overlapping transcripts 

decrease in expression. Here HERV expression reflects tumour purity and 

immune infiltrate levels, although provision of antigen is not ruled out, it is not well 

supported in this dataset. The only previously associated HERV loci with 

overlapping transcripts expressed at significantly different levels in responders 

and non-responders were ERVE-4 and HERV 4700, both of which have been 

suggested to provide antigen (Smith et al., 2018; Takahashi et al., 2008). 

However, although neither are expressed in purified immune cell subsets, both 

are unexpectedly upregulated in non-responders pre-treatment. Previous work 

has shown that peptides derived from the ERVE-4 locus are human leukocyte 

antigen (HLA)-A*02 and A*11 restricted (Smith et al., 2018), thus correlation with 

response to immune checkpoint blockade is likely to only be seen in cohorts of 

patients with these HLA haplotypes. 
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Previously annotated HERV loci did not associate with response to anti-PD-1 

therapy in this cohort, which may be due to poor annotation of the loci coordinates. 

None of the individual HERV loci previously identified to correlate with immune 

checkpoint blockade response or cytotoxic T-cell signatures in KIRC were found 

to correlate with response to anti-PD-1 therapy in this cohort. Furthermore, these 

HERV loci were non-significantly upregulated in non-responders pre-treatment 

completely opposing previous results. Many of these previously identified loci, 

including ERV3-2 associated with immune checkpoint blockade response in 11 

cancer types (Panda et al., 2018), were expressed in purified immune cell 

subsets, potentially explaining the association previously seen. Added to this, the 

annotations of the previously identified potentially-translated HERV-loci (Mayer 

et al., 2011; Vargiu et al., 2016) were very poor when compared to the more 

recent Dfam-derived loci (Attig et al., 2017). Many of the loci overlapped more 

than one HERV locus as annotated in the Dfam-derived library, with one locus 

overlapping 18 separate loci. Some annotated loci also incompletely overlapped 

HERVs. These issues with previous annotations would have led to different 

expression levels being associated with the HERV compared to using the HERV 

coordinates from the Dfam-derived library, explaining why here using the more 

recent library the same associations are not seen.  

 

HERVs are likely to be upregulated in this cohort as passengers of uncontrolled 

HIF1α and HIF2α activity. Polybromo 1 (PBRM1) and VHL mutation were 

common in this cohort, with 62% and 77% of patients presenting respectively with 

these clonal and sub-clonal alterations, which is typical of KIRC samples (Au et 

al., 2021). VHL works to continuously ubiquitinate HIF1α and HIF2α (hypoxia 

inducible factors, HIFs) under normoxic conditions. Under hypoxia, or when VHL 

is mutated, HIF1α and HIF2α are no longer continuously degraded and are able 

to translocate to the nucleus and act as TFs. It has been shown HIFs are able to 

bind LTR elements, leading to transcription of HERV loci as well as controlling 

transcription of other genes (Siebenthall et al., 2019). Furthermore, mutation of 

the chromatin remodelling protein PBRM1 has been associated with increased 

HERV expression also in a HIF-dependent manner. If antigen was to be derived 
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from HERV loci or HERV-overlapping transcripts, the amount of time it would take 

for the tumour to evolve away from expressing any given HERV locus is unknown, 

given the expression is due to such an uncontrolled upregulation of HIF activity. 

Added to this, due to the repetitive nature of HERV elements, it is possible that 

the same antigen may be derived from multiple loci, further increasing the 

promise of HERVs as a source of therapeutic targets. 

6.5 Conclusion 

Overall, in this cohort expression of HERV loci and HERV-overlapping transcripts 

reflected immune infiltrate and tumour purity. Here significantly differentially 

expressed HERV loci were upregulated in responders and were expressed 

across immune cell subsets. Whereas LTR-overlapping KIRC-specific transcripts 

significantly differentially expressed between responders and non-responders 

were upregulated in non-responders pre-treatment. These associations indirectly 

correlated, through levels of immune infiltrate and tumour purity, the HERV 

expression with response to anti-PD-1 therapy in 14 patients with metastatic 

KIRC. Further associations and potential antigen sources may be revealed using 

larger and HLA haplotyped patient cohorts. This analysis does not agree with 

what has been previously published, where increased HERV expression was 

seen in tumour samples of patients responding to immune checkpoint blockade 

and in tumours with increased cytotoxic T-cell signatures (Panda et al., 2018; 

Rooney et al., 2015; Smith et al., 2018). The reason for differing conclusions is 

likely to be in the annotated loci used in this analysis, where a more recent list of 

loci derived from the Dfam database (Attig et al., 2017) were used instead of two 

previously compiled lists (Mayer et al., 2011; Vargiu et al., 2016). These 

previously complied HERV loci were poorly annotated when compared to the 

Dfam-derived library, with fragmented and incomplete elements, as well as 

elements merging multiple HERV loci alongside non-LTR elements such as 

SINEs and LINEs, and known gene exons. 
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Chapter 7. Results 5: Exploration of transcripts 

upregulated in KIRC 

7.1 Aims 

To further understand the complex association between hypoxia and patient 

survival, transcripts upregulated under hypoxia were analysed. As KIRC samples 

undergo the permanent activation of HIFs this cancer type was used as a model 

of continuous hypoxia. Thus, transcripts identified by the de novo transcriptome 

assembly upregulated in KIRC were selected for further exploration (Figure 41). 

Analysis of a transcriptome inclusive of RTE sequences is especially interesting 

as they contain elements HIFs may bind only under the hypomethylated state of 

the cancer genome (D'Anna et al., 2020; Siebenthall et al., 2019). 
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Figure 41: Aims for Results 5: Exploration transcripts upregulated in KIRC. Aims 
are shown in dashed boxes and methods are referenced in grey boxes. (HIFs: hypoxia 
inducible factors; KIRC: kidney renal clear cell carcinoma)  
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7.2 Introduction 

The majority of KIRC tumours undergo permanent activation of the hypoxia 

response pathway, regardless of the presence of a hypoxic environment. In 

healthy cells, a ubiquitination complex including VHL constitutively ubiquitinates 

HIF1α and HIF2α, leading to proteasome-dependent degradation of these TFs. 

Under hypoxia, VHL is no longer able to bind HIF proteins efficiently (Maxwell et 

al., 1999), allowing HIF1α and HIF2α to form heterodimers with HIF1β (also 

known as the aryl hydrocarbon receptor nuclear translocator (ARNT)) and bind 

hypoxia response elements in the genome, inducing hypoxia-responsive genes. 

However, in KIRC the function of both alleles of the VHL gene is lost in 50-80% 

of tumours through mutation, deletion, or hypermethylation (Foster et al., 1994; 

Gnarra et al., 1994; Herman et al., 1994), leading to activation of HIF1α and 

HIF2α targets regardless of the oxygen concentration within the cell. 

 

Hypoxia influences the expression of transcripts by altering gene expression and 

splicing patterns, as well as inhibiting nonsense-mediated decay. Gene 

expression under hypoxia is regulated in a HIF-dependent manner, with HIFs 

directly altering expression of genes involved in angiogenesis, apoptosis, cell 

motility, cell proliferation, and metabolism (Samanta et al., 2017). Genes 

upregulated include stanniocalcin 2 (STC2) which promotes proliferation under 

hypoxic conditions (Law and Wong, 2010), vascular endothelial growth factor A 

(VEGFA) which regulates angiogenesis (Siebenthall et al., 2019) and leads to the 

characteristic vascularisation signatures seen in KIRC (Ricketts et al., 2018), and 

carbonic anhydrase 9 (CA9) which is involved in ion transport (Sena et al., 2014a; 

Siebenthall et al., 2019). Additionally, HIFs control expression of other TFs such 

as OCT4 involved in maintenance of pluripotency (Nichols et al., 1998) and basic 

helix-loop-helix family member e41 (BHLHE41) involved in regulation of invasive 

tumour phenotypes (Montagner et al., 2012). 

 

Furthermore, hypoxia influences splicing patterns leading to preferential 

expression of specific isoforms. Hypoxia has been shown to regulate the splicing 

patterns of both HIF and non-HIF targets (Sena et al., 2014a), influencing which 
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functional isoform is produced (Hirschfeld et al., 2009; Sena et al., 2014a; Sena 

et al., 2014b) or promoting non-coding isoform production (Memon et al., 2016). 

The cellular communication network factor 1 (CYR61) gene locus can produce 

an isoform with intron three retention giving rise to a truncated CYR61 protein, or 

an isoform with intron three splicing giving rise to the active proangiogenic protein. 

Under hypoxia in breast tumours, production of the active form was favoured 

(Memon et al., 2016). Adrenomedullin produces two isoforms, one including 

intron three giving rise to the proadrenomedullin N-terminal 20 peptide (PAMP), 

and one splicing intron three giving rise to both PAMP and adrenomedullin (AM) 

proangiogenic peptides. Under hypoxia, in both cancer and normal cell lines, the 

production of the PAMP/AM isoform is favoured by 62:1 compared to under 

normoxia where it is favoured at 12:1 (Sena et al., 2014b). In TCGA colon 

adenocarcinoma samples, DNA damage repair genes, and RNA splicing genes 

switch to the production of non-coding isoforms in a hypoxia-dependent manner 

(Memon et al., 2016). 

 

Hypoxia has additionally been shown to inhibit nonsense-mediate decay, further 

regulating expression of specific isoforms. Under normoxia UPF1 RNA helicase 

and ATPase (UPF1) binds transcripts targeted for nonsense-mediated decay, 

and localises to processing bodies where the transcript is degraded. However, 

under hypoxic conditions, UPF1 aberrantly localises to stress granules, 

prohibiting degradation of the transcript and potentially allowing translation of 

open reading frames. The activating transcription factor 4 (ATF-4), a protein 

involved in protection from cellular stress, contains two upstream ORFs before 

the open reading frame for ATF-4 and the first exon junction. Thus, under 

normoxia, the ATF-4 transcript is degraded via nonsense-mediated decay. 

However, under hypoxia the transcript is stabilised in stress granules and the 

ATF-4 protein is produced (Gardner, 2008). 

 

Quantifying levels of hypoxia is complex due to the constitutive transcription, 

translation, and degradation of HIFs. As the correlation coefficient of HIF1α 

mRNA and protein is estimated to be 0.02 (Shenoy, 2020), either protein 
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concentration or target gene expression must be quantified. Here, a pan-cancer 

hypoxia score calculated by Lombardi and colleagues has been used to quantify 

HIF activation (Lombardi et al., 2022). This score combines expression of 48 HIF 

target genes regulated by hypoxia in six cell lines, including the renal cancer cell 

line RCC4 with VHL stably transfected, as measured by ChIPseq and RNAseq 

data. All 48 genes were bound by HIF1α and HIF2α increasing the robustness of 

the signature. The expression of each gene was measured across TCGA cancer 

subtypes, expression of the genes was quantile normalised to ensure highly 

expressed genes did not skew the score, and total normalised expression of the 

48 genes in each sample was calculated. As expected the hypoxia scores of 

KIRC samples were significantly higher than those of adjacent healthy kidney 

samples, and KIRC samples had some of the highest hypoxia scores across all 

cancer types (Lombardi et al., 2022).  

 

The impact of this permanent activation of the hypoxia response pathway on 

patient survival is debated in the literature. HIF1α protein staining has been 

associated with better patient survival (Lidgren et al., 2005), and ChIPseq data 

has shown HIF1α-bound genes are generally associated with better patient 

survival (Salama et al., 2015). HIF1α has also been shown to slow tumour growth 

when re-expressed in cell lines which have lost the functional version of the gene 

(Biswas et al., 2010) and stabilisation of HIF1α in the 786-O KIRC cell line also 

stably transfected with VHL slowed tumour growth in vivo (Maranchie et al., 2002). 

Although nuclear HIF1α protein staining has been associated with worse patient 

survival (Fan et al., 2015). On the other hand, HIF2α has been shown to increase 

xenograft growth when over-expressed (Biswas et al., 2010). Additionally, 

cytoplasmic staining of HIF2α has been associated with worse patient survival 

(Fan et al., 2015), alongside ChIPseq data which has shown HIF2α-bound genes 

are generally associated with worse patient survival (Salama et al., 2015). It 

should be noted, any association with patient survival may also be impacted by 

other variables such as low immune infiltrate which when paired with upregulation 

of the hypoxia response pathways was associated with poor patient survival (Bai 

et al., 2022).  
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7.3 Results 

7.3.1 Transcripts upregulated in KIRC 

In order to identify transcripts upregulated under the activation of the hypoxia 

pathway, those upregulated in KIRC were identified (2.3.4: Selection of 

transcripts upregulated in KIRC). Transcripts upregulated in KIRC represent both 

gene and RTE sequences. Of the 3681 KIRC-specific transcripts selected, 1065 

transcripts overlapped known genes and no RTEs, 1153 only overlapped RTEs, 

and 1280 overlapped both known genes and RTEs, with 183 transcripts 

overlapping neither (Figure 42a). The most frequently overlapped RTE type were 

SINEs, but both LINE and LTR elements were also represented (Figure 42a). 

When compared to the whole de novo transcriptome assembly (2.4.3: 

Enrichment of repeat types) there was enrichment of LTR elements, as well as a 

LINE1 group and several Alu groups (Figure 42b). The selected transcripts were 

mainly multiexonic (Figure 42c). The transcripts represented 1742 genes with 

most genes only overlapped by one transcript (Figure 42d).  
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Figure 42: Overview of the sequences represented by the 3681 KIRC-specific 
transcripts. a. The total number of cancer-specific transcripts overlapping gene and 
RTE sequences, alongside the numbers of transcripts overlapping the three most well-
represented RTE groups. b. RTE subtypes with significant enrichment in the 3681 
transcripts when compared to the whole de novo transcriptome assembly. c. The 
proportion of the 3681 transcripts that are either monoexonic or multiexonic. d. The 
number of times each of the unique 1742 genes represented are overlapped by a 
transcript. 
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7.3.2 Association of transcripts with hypoxia 

Considering the typical lack of VHL in KIRC and therefore continuous activation 

of the hypoxia response pathway, the correlation with the mean hypoxia score for 

each sample (Lombardi et al., 2022) was calculated for each transcript (2.4.6: 

Correlation with the hypoxia score). Of the 3681, 1516 transcripts significantly 

correlated with the mean hypoxia score in TCGA KIRC samples (Pearson’s 

correlation coefficient, p ≤ 0.05), though correlations for most transcripts were not 

strong with only 240 transcripts correlating with |r| ≥ 0.2 (Figure 43a). 

7.3.3 Association of transcripts with survival 

Given that these upregulated transcripts may confer a survival advantage to the 

tumour cells, univariate survival analysis was performed (2.4.7: Survival analysis). 

Of the 3681 transcripts 3664 had sufficient expression variation for the Cox 

proportional hazards regression model to be fitted. Of these 3664 transcripts, 

2413 significantly associated with survival (HR ≤ 0.667 or ≥ 1.5, p ≤ 0.05, Figure 

43b), with more stringent filtering 934/3664 significantly associated with survival 

(Cox univariate test, HR ≤ 0.5 or ≥ 2, p ≤ 0.05, Figure 43b). The association with 

survival of some of these transcripts is explored here. 
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Figure 43: The association of the 3681 KIRC-specific transcripts with hypoxia and 
survival.  a. The Pearson’s correlation coefficient of the 3681 transcripts with the mean 
hypoxia score (Lombardi et al., 2022) for that patient. Bars in darker grey show the 
number of transcripts with significant correlation (p ≤ 0.05). b. The hazard ratio derived 
from the univariate Cox proportional hazards regression model fitted for each of the 
3664/3681 transcripts. Each point is coloured by the p-value, and the two pairs of hazard 
ratio thresholds are shown as dashed lines. Here a value greater than one implies 
increased expression of the transcript is associated with poorer patient survival. 
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7.3.3.1 A CCL28 isoform associated with better patient survival 

The canonical C-C motif chemokine ligand 28 (CCL28) isoform is induced by 

hypoxia in a HIF1α-dependent manner and recruits immunosuppressive 

regulatory T-cells (Tregs) to tumours. The canonical CCL28 protein, as detected 

by enzyme-linked immunosorbent assays (ELISA), has been shown to increase 

in the supernatant of ovarian (Facciabene et al., 2011), liver (Ren et al., 2016), 

and lung cancer lines (Huang et al., 2016; Liu and Wei, 2021) under hypoxia, with 

this increase ablated upon knock down of HIF1α. Increased CCL28 expression 

in these cancers increased recruitment of Tregs to tumours (Facciabene et al., 

2011; Liu and Wei, 2021; Ren et al., 2016). However, contrary to this 

immunosuppressive role of canonical CCL28, the transcript detected as 

upregulated in KIRC (Figure 44a) had expression associated with better patient 

survival (Figure 45a). This transcript overlapped an isoform of CCL28 already 

annotated (NM_001301875.2) predicted to code for an 80 AA protein which is 47 

AA shorter than the canonical protein. The short isoform utilises a separate first 

exon, but shares the same second and third exons with the canonical transcript 

(Figure 44a). From inspection of BAM files (Figure 44a) and analysis of 

expression data (Figure 44b) it became clear the short isoform is dominant in 

kidney tissue, with little expression of the canonical isoform in either adjacent 

healthy kidney or KIRC samples. While 66.7% of adjacent healthy kidney 

samples (48/72) and 82.9% of KIRC samples (446/538) have short isoform 

expression of at least 1 TPM, only 1/72 adjacent healthy kidney and 5/538 KIRC 

patient samples have expression of the canonical isoform above the same 

threshold.  
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Figure 44: The structure of the CCL28 locus and expression of the canonical and 
short isoforms. a. The structure of the CCL28 locus alongside BAM files of RNAseq 
data from KIRC patient samples from TCGA. b. The expression of the canonical and 
short isoforms in 72 adjacent healthy kidney samples from TCGA (left) and 538 KIRC 
samples from TCGA (right). c. The association between expression of the short CCL28 
isoform with the mean hypoxia score (Lombardi et al., 2022) per sample in TCGA KIRC 
patients. d. The expression of canonical and short form CCL28 in RCC4VHL+ cells 
(Smythies et al., 2019) under normoxic and hypoxic conditions.  
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Figure 45: Survival analysis and protein stability of the short CCL28 isoform.  a. 
Univariate survival analysis for the expression of the short CCL28 isoform in 515 KIRC 
patients, using a threshold of 4.36 TPM with 276 patients categorised as having low 
expression and 239 as high. b. Multivariate analysis of the effect of expression of short 
CCL28 on patient survival. c. A Western blot showing the stability of canonical CCL28-
HA (with an estimated molecular weight of 17.6 kDa), however the short CCL28-HA (with 
an estimated molecular weight of 12.6 kDa) could not be detected.  
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This short CCL28 isoform is also inducible under hypoxia. Although there is weak 

correlation with the sample hypoxia score (Lombardi et al., 2022) (Pearson’s 

correlation coefficient, r = 0.14, p = 0.0014, Figure 44c) in a renal cell carcinoma 

cell line RCC4VHL+ (2.1.7: Renal carcinoma cell line dataset) the short isoform 

expression is increased under hypoxic conditions (Figure 44d). In these cells the 

canonical isoform is not expressed, reflecting what is seen in the KIRC patient 

samples.  

 

Cox univariate survival analysis showed the short form of CCL28 was associated 

with survival of KIRC patients (2.4.7: Survival analysis). Here increased 

expression of the short form associated with better patient survival (HR = 0.49, 

CI95 = 0.36 – 0.67, p = 1.7 x 10-5, Figure 45a). Analysis of clinical variables 

potentially effecting survival showed short form CCL28 expression associated 

with pathologic stage (ANOVA, p ≤ 0.05) and prior malignancy (t-test, p ≤ 0.5). 

Multivariate survival analysis showed increased CCL28 short isoform expression 

significantly reduced the hazard ratio independently of these other variables (HR 

= 0.57, CI95 = 0.41 – 0.79, p = 6.97 x 10-4, Figure 45b).  

 

To characterise the potential stability of the protein encoded by this short CCL28 

isoform, HEK293T cells were transduced with plasmid expressing either the 

canonical CCL28 or the short CCL28 (2.5: Preparation of stably transduced cell 

lines). The sequences included a HA tag as the commercial antibody against the 

canonical CCL28 may not have bound the short form (see Supplementary figure 

2 for the transduction efficiency of the cell populations). Western blot of lysates 

from these cells showed only the canonical isoform was stable (Figure 45c, 2.6: 

Sample preparation and Western Blot) implying the expression of this transcript 

must be a marker of some other process.  
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7.3.3.2 A truncated ENPP3 isoform reducing the survival advantage of 

canonical ENPP3 

Of the genes overlapped by the 3681 KIRC-specific transcripts, ENPP3 was 

overlapped 14 times. ENPP3 has been introduced previously in Chapter 5 (5.3.2: 

A novel truncated isoform of ENPP3). The canonical ENPP3 protein is 

upregulated in KIRC (Doñate et al., 2016; Thompson et al., 2018) potentially due 

to a HIF-inducible LTR upstream of the gene (Siebenthall et al., 2019). One of 

the transcripts identified in this analysis is the truncated ENPP3 transcript 

described in Chapter 5 (5.3.2: A novel truncated isoform of ENPP3) as possibly 

coding for an antigenic truncated ENPP3 protein, however the protein was not 

stable. 

 

There was strong upregulation of both the canonical and truncated ENPP3 

isoforms at the RNA level between adjacent healthy kidney and KIRC samples 

from TCGA (Figure 46a). Although the ENPP3 locus has been shown to be 

hypoxia-inducible (Siebenthall et al., 2019), there was weak correlation of the 

mean hypoxia score (Lombardi et al., 2022) with both the canonical ENPP3 

isoform (Pearson’s correlation coefficient, r = 0.16, p = 5.2 x 10-4, Figure 46b) and 

the truncated isoform (Pearson’s correlation coefficient, r = 0.20, p = 8.6 x 10-6, 

Figure 46b). Interestingly, analysis of RNAseq data from a renal cell carcinoma 

cell line RCC4VHL+ (2.1.7: Renal carcinoma cell line dataset) showed only the 

truncated isoform expression increased under hypoxic conditions (Figure 46c), 

suggesting this isoform is under separate control to the canonical even though 

they share many of the same exons.  
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Figure 46: The expression of the canonical and truncated isoforms of ENPP3. a. 
The expression of the canonical and truncated isoforms in 72 adjacent healthy kidney 
samples from TCGA (left) and 538 KIRC samples from TCGA (right). b. The correlation 
of the canonical ENPP3 isoform (left) and the truncated ENPP3 isoform (right) with the 
mean hypoxia score (Lombardi et al., 2022) per sample in TCGA KIRC samples. c. The 
expression of canonical and truncated ENPP3 in RCC4VHL+ cells (Smythies et al., 2019) 
under normoxic and hypoxic conditions.  
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Both the canonical and truncated ENPP3 isoforms were associated with survival 

(2.4.7: Survival analysis). Canonical ENPP3 expression is associated with better 

survival in KIRC patients (HR = 0.46, 0.34 – 0.62, CI95 = 0.34 – 0.62, p = 8.56 x 

10-7, Figure 47a). The truncated ENPP3 transcript previously described in 

Chapter 5 (5.3.2: A novel truncated isoform of ENPP3), which did not produce 

stable protein, also associated with better patient survival (HR = 0.63, CI95 = 0.47 

– 0.86, p = 0.0048, Figure 47b). This was expected as the expression of the 

truncated isoform is highly correlated with the expression of the canonical isoform 

in both adjacent healthy kidney (Pearson’s correlation coefficient, r = 0.995, p = 

3.7 x 10-74, Figure 46a) and in KIRC samples (Pearson’s correlation coefficient, r 

= 0.591, p = 6.2 x 10-52, Figure 46a). In order to see if the truncated isoform had 

an effect on survival independently of the locus expression, the ratio of truncated 

to canonical ENPP3 expression was used. This ratio had the opposing survival 

association to either isoform alone (HR = 1.39, CI95 = 0.98 – 1.96, p = 0.045, 

Figure 47c, 2.4.7: Survival analysis) using a threshold of 0.26 to split the patients. 

This suggests that regardless of the overall amount of locus expression, if the 

truncated isoform expression is more than 20.6% of the canonical isoform then 

too much of the canonical form is replaced by the non-protein producing isoform 

and the survival advantage of the canonical ENPP3 is lost. The ratio of the 

truncated and canonical ENPP3 isoforms did not associate with any other clinical 

variable tested so multivariate survival analysis was not run.  
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Figure 47: Survival analysis for the canonical and truncated isoforms of ENPP3 
and their ratio. a. Univariate survival analysis for the expression of canonical ENPP3 in 
515 KIRC patients using a threshold of 107 TPM with 241 patients defined as having low 
expression and 274 as high. b. Univariate survival analysis for the expression of 
truncated ENPP3 in 515 KIRC patients, with a threshold of 23.5 TPM defining 297 
patients as low expressers and 218 as high. c. Univariate survival analysis for the ratio 
of expression of the truncated to the canonical isoforms of ENPP3 using a threshold of 
0.26 defining 380 patients as having a low ratio and 135 as having a high ratio. 
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7.4 Discussion 

Non-coding isoforms induced under hypoxia associate with survival. The majority 

of KIRC tumours undergo continuous activation of the hypoxia response pathway 

through constitutive HIF activation due to the loss of VHL. To explore the complex 

effect tumour hypoxia has on survival of KIRC patients, transcripts assembled in 

the de novo transcriptome were analysed. Of the transcripts assembled, 3681 

were upregulated in KIRC compared to healthy tissues though may also be 

expressed in other cancer types. The majority of these transcripts (2413/3681) 

were associated with the overall survival of patients. This included a short isoform 

of CCL28 and the truncated ENPP3 isoform which was characterised in Chapter 

5 (5.3.2: A novel truncated isoform of ENPP3). 

 

The expression of a short CCL28 isoform was associated with better overall 

survival of patients despite canonical CCL28 recruiting immunosuppressive 

Tregs under hypoxic conditions in other cancer types. The difference in the 

expected result was explained by adjacent healthy kidney and KIRC samples 

rarely expressing canonical CCL28, instead the short isoform which does not give 

rise to a stable protein is dominant. The canonical isoform is induced under 

hypoxia in a HIF1α-dependent manner, but in RCC4VHL+ cells only the short 

isoform was expressed and induced further under hypoxia. Thus, here the better 

overall survival associated with the short isoform of CCL28 is not due to loss of 

the canonical form in some patients but is instead a marker of some other process 

associated with hypoxia. This cell type-specific expression of isoforms both 

driven by HIFs may be due to methylation of the relevant promoters for each 

isoform, methylation of CpG nucleotides within the consensus binding sequences 

for HIFs sterically hinders HIF binding (D'Anna et al., 2020). 

 

Additionally, expression of a truncated ENPP3 isoform was associated with better 

overall survival in patients. This truncated isoform does not produce stable 

protein thus the association with survival was likely due to the high correlation of 

the truncated ENPP3 with canonical ENPP3, the expression of which was also 

highly associated with better patient survival. The ratio of truncated to canonical 
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ENPP3 was calculated to understand the association of the truncated isoform 

with survival independently of locus expression. Increase in the ratio of truncated 

to canonical isoforms was associated with poorer patient survival. This implies 

the canonical isoform is beneficial for patient survival and increases in the 

proportion of the truncated form (which does not produce stable protein) is 

therefore detrimental to overall survival. Why the canonical ENPP3 protein is 

beneficial to patient survival is yet unknown. Previous work has shown the 

ENPP3 locus is upregulated under hypoxia due to an upstream HIF-responsive 

LTR. The RCC4VHL+ cell line data showed that only the truncated isoform was 

upregulated under hypoxia, suggesting hypoxia additionally controls usage of the 

LINE2A element the truncated form terminates in. 

 

There is lack of strong correlation between the selected transcripts and the pan-

cancer hypoxia score even when cell line data shows hypoxia has an effect on 

expression. The 3681 transcripts were selected from the original list of 32264 

cancer-specific transcripts which were filtered for expression in at least 25% of 

the sample of a given tumour type. This consistent transcript expression was 

further selected for by choosing transcripts significantly upregulated in the KIRC 

sample population when compared to adjacent healthy kidney. This consistent 

expression of transcripts is not reflected in the range of hypoxia scores calculated 

for KIRC samples (Lombardi et al., 2022), reducing the ability to detect hypoxia-

induced transcripts in the list of 3681. The transcript expression could be 

correlated with pan-cancer hypoxia scores to allow for a larger range of transcript 

expression and hypoxia pathway induction, but this would mask any KIRC-

specific regulation. To identify a broader set of hypoxia-induced transcripts the 

pan-cancer scores and cancer-specific transcript list could be correlated. 

Furthermore, other factors such as tumour purity, the level of hypoxia required 

for transcript induction, and non-overlapping roles of HIF1α and HIF2α may also 

have influenced how well correlated the transcript expression and hypoxia score 

were. 
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It is possible many of the transcripts upregulated in KIRC only appear to be 

upregulated due to being stabilised by the inhibition of nonsense-mediated decay. 

The quantity of a given transcript in a cell is a balance between the production 

(transcription) and the stability (through nonsense-mediated decay or other 

pathways), thus to increase the perceived expression of a transcript either the 

transcription must increase or the decay decrease. Inhibiting nonsense-mediated 

decay leads to accumulation of transcripts in stress granules (Gardner, 2008) 

increasing the expression measured through RNAseq. As KIRC undergoes 

continuous hypoxia there may be a large number of transcripts selected as 

upregulated in KIRC as they are no longer being degraded. Some of the 

transcripts here positively associated with survival may be a marker of cellular 

stress and chronic accumulation of transcripts. In order to understand which 

transcripts are induced under hypoxia in KIRC, global run-on sequencing (Core 

et al., 2008) datasets surveying nascent transcription could be used.  

7.5 Conclusion 

Due to the constitutive activation of the hypoxia response pathways in the 

majority of KIRC tumours, the transcripts upregulated in this tumour type were 

analysed to further understand the association of hypoxia in tumours and patient 

survival. Hypoxia influences the expression of a range of transcripts which may 

in turn influence patient survival in opposing ways. The selection of transcripts 

upregulated under hypoxic conditions is dependent upon the methylation 

landscape of the cell as HIFs are unable to bind methylated regions (D'Anna et 

al., 2020). A short non-coding CCL28 isoform is upregulated in a hypoxia 

dependent manner and is associated with better patient survival, though what 

this isoform is a marker of and why this isoform is chosen over the canonical in 

kidney tissues is unknown. With the hypomethylated state of RTEs in cancer, 

HIFs may be able to influence the expression of more transcripts than in healthy 

tissues through binding of RTE sequences. ENPP3 is downstream of an LTR 

able to be bound by HIFs allowing upregulation of the gene locus under hypoxia 

(Siebenthall et al., 2019). But the benefit to patients conferred by the canonical 
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protein expression is limited by expression of a truncated non-protein coding 

isoform terminating in a LINE2A which is induced under hypoxia differently to the 

canonical isoform. 
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Chapter 8. General Discussion 

8.1 Summary of findings 

Analysis of transcripts identified in the previously assembled pan-cancer de novo 

transcriptome has revealed effects of RTEs on cancer-promoting and cancer-

repressing genes (Attig et al., 2019) and uncovered a greater search space for 

the identification of cancer-specific targets and biomarkers. Exploring the 32264 

cancer-specific transcripts of the 1001931 assembled transcripts showed that 

95.90% overlapped at least one RTE with enrichment of SVA and HERV 

elements. Although these transcripts could be used to distinguish various tumour 

types from others and from healthy tissues using RNAseq from solid biopsies, 

this was not the case with liquid biopsies. There was limited detection of most of 

the selected BRCA-specific transcripts in patient blood samples, and sequences 

that were detected appeared to be an artefact of the methods used in one study. 

However, RTE-derived transcripts may act as a source of transmembrane and 

other antigens for use as biomarkers or as therapy targets. Of the 32264 cancer-

specific transcripts 313 contained at least one ORF predicted to code for at least 

one transmembrane domain. Of the three candidates tested for stability and 

localisation, a truncated ENPP3 with sequence donated by a LINE2A, a truncated 

PLD3 with sequence donated by an AluJr, and a non-canonical HERV-H ORF, 

only the truncated PLD3 was stable. Although the protein did not localise to the 

surface membrane at detectable levels, this still indicates potential for other 

transmembrane proteins containing RTE-derived sequences to be stable. 

Furthermore, the expression specifically of HERV loci and derived transcripts in 

metastatic KIRC patients was able to distinguish responders from non-

responders treated with anti-PD-1 therapy. This ability to distinguish response 

was most likely due to the HERV loci expression correlating with immune infiltrate, 

and the HERV-derived transcript expression correlating with tumour purity. 

Additionally, transcripts upregulated in primary KIRC and associated with patient 

survival were also explored to gain a better understanding of disease 

mechanisms under continuous hypoxia responses. The truncated ENPP3 
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isoform was shown to be induced under hypoxia and reduced the survival 

advantage conferred to patients by the canonical ENPP3. An isoform of CCL28 

was also characterised which had opposing survival associations to the 

immunosuppressive Treg-recruiting canonical isoform expressed in other 

cancers. This CCL28 isoform was also induced under hypoxia and did not give 

rise to stable protein.  

8.2 The extent to which RTEs contribute to the cancer-specific 
transcriptome 

RTEs contribute to both the healthy and cancer transcriptomes, providing control 

elements like TF binding sites, splice sites, enhancer and promoter regions, and 

poly(A) tails, as well as contributing peptide sequences to both RTE-only and 

RTE-chimeric transcript ORFs. In the cancer transcriptome these effects may be 

more pronounced due to the hypomethylated state of the genome allowing for 

activation of RTE sequences. Cancer-specific transcripts identified from a 

previously assembled pan-cancer de novo transcriptome (Attig et al., 2019) 

revealed the broad effects of RTEs across cancer transcriptomes. This 

transcriptome assembly has identified novel cancer-specific transcripts which, as 

the selection criteria ensured expression across at least 25% of patients per 

cancer type, may act as a source of RNA and potentially protein biomarkers and 

treatment targets. The transcripts assembled also offer an insight into the biology 

of tumours, such as explaining a potential source of the ectopic expression of a 

brain-specific gene GABRA3 in TCGT, LUSC, SKCM, and SKCM_m, and 

explaining why CCL28 gene expression is associated with better patient survival 

in KIRC where a short isoform was dominant over the canonical. The cancer-

specific transcripts were mainly enriched in groups of SVA and HERV elements, 

and there was also enrichment for specific LINE, SINE, and MaLR groups. A few 

RTE groups were seen at lower than expected levels in cancer, but it would 

perhaps be more interesting to analyse transcripts specific to healthy tissues to 

see if these are enriched in other RTE types which are downregulated in cancer. 

However, the de novo transcriptome assembly was created using a subset of 

cancer samples from TCGA, so healthy-specific transcripts are likely to be rare. 
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To allow for this analysis, a transcriptome derived of samples from both healthy 

and cancer disease states must be assembled. A larger number of samples per 

tissue type also need to be used as pan-cancer assembly created since using a 

larger dataset from TCGA identified transcripts not assembled here (Shah et al., 

2023). Additionally, other conditions may induce RTE expression such as ageing 

and infection. As cancer specificity here was defined by comparing to healthy 

tissues of varying ages and infection histories this reduced the likelihood of other 

conditions being the cause of activation. Furthermore, although the contribution 

of RTEs overlapping transcripts has been surveyed here, this data does not give 

insight into why these specific RTEs are upregulated or the effect other loci may 

be having on the expression of neighbouring transcripts whose sequence they 

do not donate to (the enhancer activity of RTEs). In order to understand the global 

context of transcript regulation, regulatory networks need to be built integrating 

RNAseq for transcript expression, ChIP-seq for DNA binding protein patterns, 3D 

genomic mapping data to understand DNA-DNA interactions, and DNA 

sequencing analysis to profile polymorphic insertions which may further be 

influencing the transcriptome. Long-read RNAseq data may also be incorporated 

to improve confidence in the source of RTE transcripts.  

8.3 The use of RTE-derived sequences in liquid biopsies 

As the cancer-specific transcripts identified by the de novo transcriptome 

assembly were able to distinguish healthy and cancerous tissues in solid biopsies, 

it is possible RNA released from these tissues into the blood would allow exRNA 

species to define patients bearing certain tumours. Of the 34 BRCA specific 

transcripts selected, only three were well detected in BRCA patient blood 

samples. All three transcripts had uneven read coverage with large peaks over 

LINE1HS and AluSp overlapping regions. This upregulation was not BRCA 

patient-specific but specific to the published dataset, with upregulation seen in 

the healthy samples of this dataset but not in the healthy samples of other 

independently published datasets. As there is no accepted quality control for 

exRNA samples it was impossible to tell if the increased detection of RTE 
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sequences was reflective of better or poorer sample quality. In an attempt to 

understand the sample quality reads were aligned to ACTB and GAPDH, and 

read alignment as well as reads aligned over splice junctions was analysed. More 

recent studies had greater alignment of reads and spliced reads over these 

control sequences, and had more similar patterns of splicing to those seen in 

tissue data, suggesting these patient exRNA profiles were of better quality than 

earlier data with limited read alignment to controls and limited numbers of spliced 

reads. This approach may be a valuable measure of DNA contamination and 

depth of sequencing in exRNA datasets. In order to conclude the usefulness of 

RTE-derived cancer-specific transcripts as a liquid biomarker, data quality 

measures need to be agreed upon and datasets with longer read lengths need 

to be analysed to ensure specific mapping to the transcripts selected. Systematic 

analysis of variables affecting RTE detection in blood is also required to ensure 

the detection is due to RNA presence and not DNA contamination.  

8.4 RTE-derived transcripts as a source of transmembrane 
antigen 

Highly cancer-specific proteins localised to the cell membrane can be used to 

distinguish malignant cells from healthy, and can therefore be used as 

biomarkers and as antigens for targeted therapy. Of the three candidates tested 

identified from the de novo transcriptome assembly, only a truncated PLD3 with 

sequence donated from an AluJr element was stable in HEK293T cells, however 

the protein did not localise to the surface membrane at detectable levels. The 

study detecting canonical PLD3 on the surface of cells noted the rarity of the 

localisation (Gonzalez et al., 2018), a more sensitive approach may have 

detected localisation of truncated PLD3 to surface but whether this would be 

enough to elicit an anti-tumour immune response is unknown. Alternatively, the 

truncated protein may be processed and displayed via MHC-I molecules on the 

cell surface, with the 36 AA derived from the AluJr potentially giving rise to a set 

of antigenic peptides. Another candidate tested, the truncated ENPP3 terminating 

in a LINE2A, was not stable and further analysis showed that increased ratios of 

truncated to canonical ENPP3 was detrimental to patient survival. Canonical 
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ENPP3 is used as a transmembrane target of antibody drug conjugates 

(Thompson et al., 2018) and here activation of a LINE2A reduced expression of 

the canonical. The stability of the truncated PLD3 does suggest other 

transmembrane protein candidates containing protein sequence derived from 

RTEs may be stable, but prioritising candidates for in vitro testing is difficult 

without tools to accurately predict stability. Peptidomics and Ribo-seq data could 

be mined, but the ability of these datasets to differentiate isoforms of genes is 

limited, and the false discovery rate would drastically increase if all possible RTE-

overlapping ORFs were added to the libraries searched. RTE-derived peptides 

are an attractive source of antigen as they are more likely to be shared between 

different patients than antigens which require sequence mutation. However, only 

in rare cases is the tumour dependent on RTE expression meaning it is possible 

for the tumour to escape a therapy targeted to RTE-derived peptides. As RTE 

expression is generally dysregulated in cancer due to hypomethylation of the 

genome, it is unknown how rapidly tumour evolution would be able to silence 

expression of a given locus. In xenograft mouse models HERV-K and HERV-E 

envelope protein targeted cytotoxic T-cells were able to reduce tumour growth 

without the tumour escaping (Cherkasova et al., 2016; Wang-Johanning et al., 

2012; Zhou et al., 2016). But these xenograft tumour models are grown over a 

very short period of time compared to the amount of time tumours remain and 

are treated for in humans and thus do not reflect the evolutionary potential of a 

human malignancy.  

8.5 RTE expression in stratifying patients for immune 
checkpoint blockade treatment 

Previous work analysing RNAseq data from KIRC patients has shown HERV 

expression is increased in patients responding to immune checkpoint blockade 

therapy and HERV expression is positively correlated with cytotoxic T-cell 

signatures. In order to analyse expression of previously identified HERV loci 

(Mayer et al., 2011; Vargiu et al., 2016) in the context of GRCh38, the 

corresponding coordinates were found and compared to an updated annotation 

of HERVs from a Dfam-derived library (Attig et al., 2017). This comparison 
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revealed the errors in previous loci annotations, with some fragmented, 

incomplete, or over-extended to include other non-LTR RTEs and even parts of 

gene exons. According to PubMed, 40 studies have cited the list published by 

Mayer and colleagues (Mayer et al., 2011) and 96 studies have cited the list 

published by Vargiu and colleagues which is used by the hervQuant tool (Vargiu 

et al., 2016). This ongoing analysis leads to incorrect associations with HERV 

expression and hides potentially correct associations. Analysis of the updated 

annotation of HERV loci for GRCh38 and RNAseq from a small cohort of 

metastatic KIRC patients treated with anti-PD-1 therapy showed that HERV loci 

differentially expressed between responding and non-responding patients was 

correlated with immune infiltrate. These HERV loci were more highly expressed 

in responders, but on further inspection of purified immune cell subsets, it was 

found that the HERV expression was increased in these samples due to 

expression in immune cells. HERV-derived KIRC-specific transcript expression, 

which represented a different sequence space to the loci alone, was also 

analysed. The significantly differentially expressed transcripts were upregulated 

in non-responders, unlike the loci. The transcripts positively correlated with 

tumour purity which was higher in non-responders likely due to the lack of 

immune infiltrate (with the immune cells in turn expressing the identified HERV 

loci). Although HERV expression was differentially expressed between 

responders and non-responders the association with response was indirect, 

through tumour purity and immune infiltrate. In order to further understand the 

contribution of RTEs to patient responses to anti-PD-1 therapy, larger cohorts of 

patients need to be analysed with all RTE loci considered instead of just HERVs. 

Additionally, to reveal any immune response against RTE-derived antigens 

expression of the identified list of 313 candidate transcripts potentially coding for 

transmembrane domain containing proteins could be compared in responders 

and non-responders. As well as the expression of a larger list of KIRC-specific 

RTE-overlapping transcripts in HLA-typed individuals to explore the contribution 

of MHC-I display of predicted peptides from these sequences to patient 

responses to immunotherapy. 
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8.6 Conclusions 

Overall, the upregulation of RTEs in cancer has complex implications for tumour 

progression and treatment. RTE-derived transcripts may provide antigen and 

allow for targeting of tumour cells, but these transcripts may also drive initiation 

and progression of cancer. Additionally, due to the repetitive and mutated nature 

of these elements annotating their coordinates has been problematic, further 

clouding understanding of RTE biology. RTEs also influence the transcriptome of 

healthy cells, both in co-opted functions and in some cases leading to the 

development of disease. With advancements in epigenetic drugs to treat cancers 

which hypomethylate the genome and are currently delivered in a systemic 

manner, further understanding of the effects of upregulated RTE-derived 

transcripts is required to ensure treatment is beneficial to patients. 
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Chapter 9. Appendix 

Supplementary figure 1: Transduction of HEK293T cells with coding sequences of 
the ENPP3 isoforms. GFP expression as measured by flow cytometry of untransduced 
HEK293T cells and HEK293T cells transduced with constructs containing the canonical 
and truncated ENPP3-FLAG coding sequences. GFP presence indicates successful 
transduction (Figure 6) and the percentage of the population which was GFP positive is 
shown. Transduced populations were grown from single cells sorted on high GFP 
expression.  
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Supplementary figure 2: Transduction of HEK293T cells with the coding sequence 
of short CCL28. GFP expression as measured by flow cytometry of untransduced 
HEK293T cells and HEK293T cells transduced with a construct containing the short 
CCL28-HA coding sequence. GFP presence indicates successful transduction (Figure 
6) and the percentage of the population which was GFP positive is shown. 
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