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Abstract

The one-way model in measurement-based quantum computing is equivalent to the

circuit model and allows for depth reduction at the cost of adaptive measurements

and ancilla overheads. The one-way model is also less compatible with devices of

low qubit connectivity and has mainly been experimentally realised on photonics

devices in the past. In this thesis, I introduce a tuneable hybrid model which allows

for more precise control of the amount of depth reduction and width overheads

achieved. This is done by splitting a circuit into multiple segments of equal depth

and converting each segment into a separate measurement pattern. Finally, the pat-

terns are linked in sequence. This approach is designed to make efficient use of the

limited resources available in the NISQ era. I also introduce algorithms using graph

theoretic techniques such as local complementation and pivoting to reduce the de-

gree of graph states, for easier implementation on restricted architectures. Finally, I

show the first experimental realization of the one-way model of a non-trivial quan-

tum circuit on an ion trap device, also demonstrating the use of the hybrid model

and local complementation algorithms in practice.
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ment patterns to be implemented on devices that would otherwise not have a suffi-

cient capacity of physical qubits to enable this. This technique can be of interest to

researchers working on near-term quantum devices or applications of measurement-

based quantum computing, as well as individuals and companies working in the

fast-developing industry of quantum computers in general. A second technique de-

veloped in this project is a family of algorithms which take advantage of the graph

theoretic properties of local complementation and pivoting to reduce the entangle-

ment depth of measurement patterns. These algorithms can be of great benefit to

any implementation of the one-way model because they are computationally cheap

to execute and can reduce the number of gates required to implement a measure-

ment pattern with no downside. During this project, I have demonstrated not only

the aforementioned techniques, but also one of the first ever implementations of the

one-way model of quantum computing (with adaptive measurements) on a real ion

trap device. Consequently, in addition to researchers working on near-term devices

or measurement-based quantum computing, this project is also of interest to those

working on the ion trap branch of quantum computers in particular. In fact, this

project has been co-funded by Quantinuum precisely because of its industrial rele-

vance and its overlap in the fields of NISQ computing, circuit compilation and ion
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Chapter 1

Introduction

The idea of quantum computing has been around since the early 1980s when mul-

tiple authors first discussed the potential of computers that use quantum mechanics

to simulate physics [3, 4, 5]. In 1980, Russian mathematician Yuri Manin first men-

tioned the idea of a quantum automaton that used superposition and entanglement

[3]. In the same year, Paul Benioff talked about a quantum mechanical Hamilto-

nian functioning as a model of Turing machines [4]. More famously, the beginning

of quantum computing is often credited to Richard Feynman for his 1982 journal

article titled “Simulating Physics with Computers” [5].

In the following decade, multiple algorithms were published which, although

not having direct applications, demonstrated that more information can be obtained

by querying a black box in a quantum superposition [6, 7, 8]. In 1994, mathemati-

cian Peter Shor’s quantum algorithm for factorization sparked widespread interest

and excitement in the field, as it simultaneously represented both a concrete applica-

tion of quantum computing in breaking widely used classical encryption strategies

and even more importantly, an area where quantum computers have the potential

to outperform classical machines [9]. In 1996, computer scientist Lov Grover pub-

lished a quantum algorithm which provides a quadratic speedup in the unstructured

search problem [10].

As early as 1995, a fundamental quantum logic gate - the controlled-NOT gate -

was first demonstrated on a system of trapped ions [11]. In 1996, David DiVincenzo

proposed a list of minimal requirements for the realization of a quantum computer
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[12]:

• Multiple qubits are needed, each of which is a 2-level system with an energy

gap that will always have a state in the subspace of these 2 levels.

• The qubits must be initialised in a known state.

• The qubits must have a long enough coherence time to allow all the quantum

gates and measurements to be performed during runtime.

• A universal set of quantum gates must be available (explained below).

• The qubits must be able to be measured.

Expanding on the fourth requirement, a universal set of quantum gates is one that

can reproduce any unitary operation to arbitrary accuracy using a finite sequence of

gates [13, 14].

Because chapter 5 of this thesis discusses an implementation of the techniques

introduced in earlier chapters on an ion trap device, I will elaborate a bit further

on how such devices commonly meet the DiVincenzo criteria. Typically, ions of

various molecules are confined and suspended through the use of an electromagnetic

field and the two-level systems required for the initialisation of qubits are achieved

using the electrons of the suspended ions [14]. Specifically, the electrons are excited

through a technique known as optical pumping which dates back to the 1960s and

which involves the electrons being raised to a higher energy level through the use

of a laser, before being allowed to decay to a lower state that is no longer coupled

with the laser, forming the ground state of the 2-level system [15].

Ion trap qubits are usually measured using lasers that are coupled to only one

of the two possible measurement outcomes [16]. If the superposition collapses to

that outcome, the laser will continuously excite the electron, which then proceeds

to continuously decay, emitting photons that can be collected through a photomul-

tiplier tube or charge-coupled device camera [16]. Conversely, if the superposition

collapses to the alternative state, no photons are detected [16].
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Single-qubit gates in ion trap devices are often accomplished using magnetic

dipole transitions, by exposing the ions to an external electromagnetic field with

a controlled frequency [17]. As for CNOT gates, they are typically implemented

using the Cirac-Zoller scheme proposed in 1995 where the interaction between a

pair of qubits is mediated by the joint motion of the involved ions [18]. It should

also be noted that ion trap qubits are inherently robust, exhibiting longer coherence

times compared to other technologies which is one of the reasons they were chosen

for our experiment [19].

The first physical realisation of a quantum computer dates back to the 2-qubit

experiment in 1998 by Chuang et al. which demonstrated Grover’s algorithm on a

system with four states, using nuclear magnetic resonance techniques on a solution

of chloroform molecules [20]. In 2001, an alternative technology for implementing

quantum computing using single-photon sources, linear optical elements and single-

photon detectors was shown to be possible, laying the foundation for the field of

linear optical quantum computing [21].

The first experimental demonstration of entanglement for a system of five pho-

tons was achieved in 2004 [22]. A 12-qubit machine using nuclear magnetic reso-

nance was benchmarked in 2006, marking the first time a quantum computer with a

number of qubits in the double digits was shown [23]. The first quantum controlled-

NOT gate acting on a pair of superconducting qubits was shown in 2007 [24] - an

important milestone considering the relative success achieved by superconducting

quantum devices in later years. In 2015, a 9-qubit superconducting quantum com-

puter was used to simulate a hydrogen atom [25]. This was followed by rapid de-

velopments in 2017, when IBM revealed 17-qubit [26] and 50-qubit [27] supercon-

ducting devices, advancing the technology to a more central role in the field. Google

broke this record in 2018 with their 72-qubit superconducting device “Bristlecone”

[28].

In 2018, the first ion trap device with a double-digit number of qubits was

introduced by IonQ [29, 30]. Specifically, this device can host 160 qubits, although

a string of quantum operations was achieved on 79 qubits at a time with only 11
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qubits being fully connected and subjected to full quantum operations [29, 30].

Nevertheless, this showed that ion trap devices are competing with superconducting

devices as potential candidates for a fault-tolerant machine in the future.

The year 2019 marked an extremely important milestone in the field, as Google

published a paper claiming quantum supremacy was achieved on a superconduct-

ing quantum computer with 53 qubits [31]. Specifically, they demonstrated that

the aforementioned device could complete a task which cannot be replicated by a

classical computer in the same timeframe. In 2023, IBM announced a 433-qubit

superconducting device [32].

In the late 20th century, quantum computing focused on the circuit model

which is structured - perhaps out of convenience - in a way analogous to how clas-

sical computers work: A number of reversible quantum logic gates are sequentially

applied on quantum bits, much like classical computers rely on classical logic gates

acting on classical bits [13]. However, in 2001, Robert Raussendorf and Hans J.

Briegel introduced an alternative model of quantum computation, by showing how

rather than reversible quantum gates it is possible to instead process the input state

through a series of destructive measurements, thus introducing measurement-based

quantum computing which is more suitable for linear optical devices [33]. In 2007,

the measurement calculus was introduced by Danos et al. which further streamlined

measurement-based quantum computing by introducing measurement patterns - a

more intuitive way to view measurement-based computations [34].

Parallel to these developments, the field of categorical quantum mechanics

was publicized in 2004 by Samson Abramsky and Bob Coecke as a way to apply

paradigms from mathematics and classical computer science to describe the physi-

cal processes that take place in quantum computing [35]. In this setting, sequential

processes are described by morphisms while parallel processes are described by

tensor products [35]. While wires in these diagrams can be bent, they are always

two-ended as a way to capture the no-cloning theorem [36, 37, 38] and no-deletion

theorems [39, 40] found in quantum information in contrast to classical information

[41].
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In 2008, categorical quantum mechanics were extended to ZX-calculus by Bob

Coecke and Ross Duncan, which is a rigorous graphical reasoning language used

to describe linear maps between qubits [42]. Many of the rewrite rules used today

were present in the original paper, with the addition of the Euler decomposition of

the Hadamard gate introduced in 2009 by Ross Duncan and Simon Perdrix [43].

These rewrite rules form a complete set for diagrams with phases up to π

2 as shown

in 2013 by Miriam Backens [44]. This result was later extended to include com-

pleteness for the approximately universal case including phases up to π

4 [45] and

the universal case where phases can take any arbitrary value in 2017 [46, 47]. This

means that any linear map between qubits can be represented with a ZX-diagram,

which encompasses all quantum circuits and measurement patterns. Consequently,

ZX-calculus is a convenient tool for bridging the standard circuit model and MBQC

representations as well as an intuitive way to describe measurement patterns in par-

ticular with some adjustments.

At this point, a distinction must be made between ‘logical’ qubits needed in

quantum algorithms and ‘physical’ qubits - the actual implementations of quantum

bits of information in some real 2-level system, whether that is accomplished via

trapped ions, superconducting circuits, entangled photons or any other technology.

While experimentalists strive to match the properties needed for quantum computa-

tion (as described by the DiVincenzo criteria) as closely as possible, physical sys-

tems are imperfect and prone to various types of quantum errors. Any non-isolated

quantum system - which by necessity includes any possible quantum computer -

is subject to decoherence due to contact with its environment which is a memory

issue and puts a time limit to the quantum computation that is determined by the

properties of the underlying technology [48, 49].

Other sources of quantum errors include initialisation errors, gate errors and

measurement errors which are caused by quantum operations which do not per-

fectly conform with the underlying mathematics 100% of the time [14]. While the

effect of an individual faulty operation might be relatively small, a deep circuit can

accumulate errors from multiple such operations until the real state of the system
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deviates substantially from its intended state [14]. Such errors accumulating from

multiple imperfect operations are often referred to as depolarizing noise and mod-

elled using a depolarizing channel [14]. When the depolarizing channel is strong

enough, the state of the output tends to the maximally mixed state regardless of the

state of the input [14].

Due to the presence of various sources of quantum errors, the notion of state

fidelity [50, 51] is often used in the field which is, in general, a measure of how

“close” one quantum state is to another. State fidelity is especially useful in quan-

tifying how close the quantum state achieved by an experimental realisation of a

quantum computation is to the theoretical or intended state. Improving the state

fidelity of quantum computations is necessary to make quantum computers prac-

tically useful and can be achieved through error suppression, error mitigation or

error correction [52, 14, 53, 54]. While these terms sound similar, they differ in

that they refer to tackling quantum errors at different levels and to different extents.

Error suppression generally involves minimizing the occurrence of quantum

errors and can be achieve by relatively simpler strategies such as reducing the depth

of a quantum circuit to minimize the effect of decoherence or reducing the num-

ber of quantum gates involved to minimize depolarization. Error mitigation often

refers to strategies that eliminate the impact of errors on the measurement outcomes

by making clever use of the underlying mathematics. Quantum error correction is

much more costly to use as it involves using many more ancillary qubits to spread

out quantum information and uses non-destructive measurements (such as parity

checks on multiple qubits) to detect and remove quantum errors before they be-

come a problem, in a way inspired by how redundancy is used in classical error

correction [52, 14, 53, 54].

Quantum error correction is typically viewed as an important long-term goal

in the field, as when physical error rates become lower than a certain threshold,

it will allow for arbitrarily deep circuits to be executed with high output fidelity

through the correct application of error correcting codes [55, 56, 57]. This will

enable fault-tolerant quantum computing in a manner similar to fault-tolerance in
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classical computers [58].

As I write this thesis, despite the rapid progress in recent years, a large-

scale universal quantum computer remains a distant goal. There are a lot of chal-

lenges that must be overcome before such machines can be realised, some of the

most serious ones being physical scalability and practical error correction. Conse-

quently, some of the more powerful quantum algorithms, such as Shor’s algorithm

or Grover’s algorithm, are more difficult to implement in the short-term.

However, smaller machines that support under a hundred physical qubits have

been available for some time [31] and others that support over a hundred qubits

are already under development [32]. Such devices are prone to various types of

quantum noise in their gates and measurements and because of that, they are often

referred to as noisy intermediate-scale quantum (NISQ) devices [59]. It is conceiv-

able that the first useful applications of quantum computing will emerge among

classes of quantum algorithms with less steep requirements, such as the variational

quantum eigensolver (VQE) [60, 61, 62], the quantum approximate optimisation

algorithm (QAOA) [63], or perhaps other approaches in the fields of quantum sim-

ulation and quantum chemistry [5, 64]. It is also possible that the first examples of

useful applications could be realisable on one of the NISQ devices already in exis-

tence or ones that may emerge in the near-term. The primary focus of this thesis is

to investigate how to optimise quantum circuits so that they can leverage the avail-

able resources as efficiently as possible in this NISQ setting. Near-term quantum

devices are characterised by limited numbers of physical qubits prone to noise [59],

creating a need for circuits to be compiled in a smart way to take advantage of the

available resources.

Much like compilers for classical computers are used to convert programs writ-

ten in a high-level language into machine code that is executable on a device [65],

there exist compilers such as Qiskit [66] and Pytket [2] which do the same for quan-

tum computers. In fact, heavy emphasis is given to the Pytket library in this thesis,

as the tools included in the library are very compatible with several of the theoreti-

cal concepts discussed and used throughout the thesis, such as measurement-based
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quantum computing, ZX-calculus and Pauli flow.

This thesis explores the relationship between the circuit model [12],

measurement-based quantum computing [67, 34] and ZX calculus [42]. Most of the

topics discussed in this thesis involve the conversion of quantum circuits into ZX

diagrams which allow for convenient simplifications and further transformations

into measurement patterns or back into circuits.

Circuit width and depth are not fixed, but depend heavily on the specific de-

vice or platform on which a quantum circuit is to be implemented. Consider the

following examples:

• A quantum circuit of width 20 is to be implemented on a device with a capac-

ity for 10 qubits. In this situation, there are simply not enough physical qubits

to fit the circuit on the device, so the priority is to try and reduce the width

of the circuit at any cost, otherwise the other resources become completely

irrelevant.

• A simulation where the ground state of a molecule can be estimated with in-

sufficient accuracy using a circuit of width 30, on a device with a capacity

for 70 qubits. In this case, the available capacity is more than twice what is

required, so it could be useful to convert the circuit to an equivalent circuit

which requires more qubits, but fewer 2-qubit gates. In this way, the excess

width available on the device is used to achieve an improvement in the accu-

racy of the simulation.

The technology on which a quantum device is based also affects how we eval-

uate these resources. For ion trap devices, depolarizing noise is less prominent than

it is for, say, superconducting devices because ions have longer coherence times.

However, the runtime of a circuit implemented on an ion trap device is also much

longer. Consequently, depth and entanglement depth are important for both tech-

nologies, but for different reasons.

While this thesis explores various techniques to convert or otherwise manipu-

late the resources required by a quantum circuit, it is always important to contrast
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them against device specifications to ultimately decide which form of the circuit is

most suitable for implementation, on a case by case basis.

Chapter 2 focuses on the background material required to understand the tech-

niques presented in this thesis. This background material includes an introduction to

the circuit model [12], an introduction to the one-way model of measurement-based

quantum computation [67, 34], some relevant graph theoretic techniques such as lo-

cal complementation and pivoting [68, 69, 70] and an introduction to ZX-calculus

[42]. Additionally, notions of causal flow [71] and Pauli flow [72] which are condi-

tions sufficient for determinism in the one-way model are also introduced.

Chapter 3 focuses on the trade-off between the number of qubits (width) and

the number of timesteps (depth) required to execute a given circuit or an equiva-

lent measurement pattern. This chapter introduces the hybrid model which allows

circuits to be converted into a sequence of small measurement patterns to fine-tune

the circuit width/depth trade-off to fit on a specified platform. In general, mea-

surement patterns require more physical qubits but exhibit a lower depth than their

equivalent circuits, with the hybrid model implementation existing in a spectrum

bounded by these two extremes. In addition to discussing the development process

and the advantages/disadvantages of the hybrid model, the same chapter explores

some approaches for routing circuits in the hybrid model on devices with restricted

qubit connectivity as well as the impact of these routing approaches on the resulting

depth. We find that the one-way model is less compatible with routing than the cir-

cuit model because converting a circuit to a measurement pattern often increases the

number of neighbouring qubits that each physical qubit has to interact with, which

translates to more SWAP gates being necessary during runtime. I have worked on

two separate solutions to this incompatibility between the hybrid model and routing

which are the main focus of chapters 4 and 5.

Chapter 4 focuses on some strategies for reducing the entanglement depth of

measurement patterns by borrowing graph theoretic techniques such as local com-

plementation and pivoting. By specifically targeting high-degree vertices in the

graph state, it becomes possible to rewrite the corresponding ZX-diagram into one
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of lower degree - reducing the entanglement depth of the resulting measurement pat-

tern in the process. An important benefit of this approach is that it can potentially

reduce the depth overhead introduced by routing.

In chapter 5, I describe an experiment involving the physical realisation of the

topics discussed in chapters 3 and 4 on a 20-qubit ion trap device. Specifically, a

3-qubit circuit is split into two subcircuits, each of which is then converted to a mea-

surement pattern. Subsequently, each of the measurement patterns is subjected to

the depth reduction techniques involving local complementation before ultimately

being implemented on one of Quantinuum’s H1-series ion trap devices. The output

distribution is then compared against that of the original circuit. One of the rea-

sons for choosing an ion trap device for this experiment is due to the higher qubit

connectivity compared to an alternative such as a superconducting device. This in-

directly serves as another solution to avoid adding routing overheads to the one-way

model because all the qubits are fully connected to one another in this setting and no

SWAP gates need to be added. Using an error mitigation technique to remove depo-

larizing noise from the experimental results [73], it was possible to obtain an output

distribution for the hybrid model which conforms better to the output distribution

of the noise-free benchmark when compared to the circuit model.



Chapter 2

Background Material

2.1 Introduction

In this chapter I introduce the technical background required by the later chap-

ters of the thesis. Specifically, I introduce the circuit model first introduced in the

1980s [6], which was the first formal description of quantum computations and was

designed in a way analogous to classical circuits used by modern computers. Fur-

thermore, I introduce the notions of circuit width and depth (which I also apply to

measurement patterns later on) as limited resources needed by quantum computa-

tions and which have to be managed efficiently.

Subsequently, I introduce measurement-based quantum computation, a dif-

ferent yet equivalent approach to the circuit model where quantum operations are

performed via irreversible measurements instead of reversible quantum gates [33].

Measurement-based quantum computation allows quantum operations to be imple-

mented at a lower depth and requires a resource known as a graph state, the proper-

ties of which allow for some optimization strategies that become more important in

chapter 4.

ZX calculus is a diagrammatic reasoning language that is also introduced in

this chapter and serves as a convenient tool for transpiling quantum circuits from

the circuit model to the one-way model [42]. Additionally, it contains a number

of rewrite rules that can be used to simplify circuits and measurement patterns by

removing redundant elements from their description [42].
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The width of a graph has an upper bound determined by the width of the quan-

tum circuit it has originated from as well as the number of non-Clifford gates in-

volved in that circuit [74]. In this chapter, I include a derivation of this upper bound

for graphs with measurements restricted to the XY plane.

Additionally, two separate types of circuit samples have been used in this the-

sis. The first set of samples is randomly-generated Clifford+T circuits which has

been chosen due to being a general class which uses a universal gate set. The sec-

ond sample class are phase polynomial circuits which have applications in quantum

chemistry and VQE algorithms [75, 76]. In this chapter, I include a section with

more details on the specifics of the circuit generation procedures for these sample

classes.

Quantum circuits presented in the circuit model are inherently deterministic,

but that is not true for a general ZX diagram. One of the requirements for imple-

menting a ZX diagram as a measurement pattern is to ensure that it is deterministic,

which leads to a discussion about Pauli flow, a condition necessary and sufficient

for determinism in the one-way model [72], found in section 2.9 of this chapter.

2.2 Circuit model

The most commonly used resource in quantum computing are quantum bits of in-

formation or qubits (a term first coined in 1995 [77]) which are typically realised

using quantum mechanical 2-level systems [12]. While a qubit in general can ex-

ist as a coherent superposition of two orthonormal basis states, upon measurement

it collapses to one of the two possible states with a probability dependent on the

amplitudes in the superposition [14].

The Dirac notation or bra-ket notation is commonly used to represent the state

vectors of qubits with pure states |0⟩, |1⟩ and arbitrary superposition state |ψ⟩ as

shown in equations 2.1, 2.2 and 2.3 [78]. Note that the probability amplitudes α

and β are complex numbers:

|0⟩=

1

0

 , (2.1)



2.2. Circuit model 20

|1⟩=

0

1

 , (2.2)

|ψ⟩= α |0⟩+β |1⟩=

α

β

 . (2.3)

While a single qubit is said to span a 2-dimensional Hilbert space, a set of n qubits

forms an n-qubit register which is represented by the tensor product of the individual

qubit state vectors and spans a 2n-dimensional Hilbert space [14].

Quantum logic gates are reversible logic gates that form a parallel to classical

logic gates (such as AND, OR, NOT, NAND, NOR, XOR) used in conventional

computers [79]. Quantum logic gates act on state vectors and are commonly repre-

sented with 2nx2n unitary matrices U such that UU† = U†U = I. The group of all

such gates joined via the group operation of matrix multiplication is known as the

symmetry group U(2n) [79].

A quantum circuit is a computation that consists of a sequence of quantum

gates and measurements acting on a number of input qubits which are previously

initialised in some known quantum state(s) [12]. The circuit model generally refers

to the approach of viewing quantum computations in terms of quantum circuits, in

a way analogous to classical computers, which in many cases is more convenient

than using Hamiltonians [13].

More informally, the circuit model can be thought of as a 2-dimensional coor-

dinate system made of a spatial dimension spanning all the qubits involved in the

quantum circuit and a temporal dimension spanning all the timesteps during which

quantum operations can be executed [6]. Quantum logic gates are thus placed in

this coordinate system such that only one gate can act on any qubit during a single

timestep, but multiple gates can be executed in parallel during the same timestep as

long as they act on different sets of qubits.

A universal set of quantum gates and the one which is used predominantly

throughout this thesis is the Clifford+T set which consists of two single-qubit gates

(Hadamard and T gates) and the CNOT gate acting on two qubits, which are defined
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|0⟩ H

|0⟩ X X

|0⟩ T

Figure 2.1: An example of a simple quantum circuit acting on three qubits. This circuit
uses the Hadamard, T and CNOT gates which form a universal gateset. Due
to some operations being performed in parallel, only 3 timesteps are needed to
run this circuit even though it involves 7 different operations.

in equations 2.4, 2.5 and 2.6 respectively. The Clifford group can be generated using

Hadamard, CNOT and S gates (with S gates being equivalent to a sequence of two

T gates) and is a group of gates which maps tensor products of Pauli matrices to

other tensor products of Pauli matrices through conjugation [80].

H =
1√
2

1 1

1 −1

 , (2.4)

T =

1 0

0 eiπ/4

 , (2.5)

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (2.6)

The Clifford group is of particular importance in quantum computing, because ac-

cording to the theorem by Daniel Gottesman and Emanuel Knill, any circuit com-

prised entirely of Clifford gates can be efficiently simulated on a classical device

[80]. Yet, with just the addition of any non-Clifford gate (such as the T gate), uni-
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versality can be achieved [13, 14]. An example of a quantum circuit acting on three

qubits can be seen in figure 2.1.

It should be noted that in this thesis, the definition of the CM does not in-

clude/allow the existence of Quantum Fan-out gates [81]. Such circuits can po-

tentially use ancilla qubits to achieve depth reduction, much like what is possible

through MBQC. However, the implementation of such Fan-out gates is also non-

trivial [81].

2.3 Definitions of width and depth

To discuss how to optimise the use of the limited resources available, it is important

to first define what these resources are. I define width as the number of physical

qubits required to implement a quantum circuit. Depth is the number of timesteps

required to execute a quantum circuit. 2-qubit depth or entanglement depth is the

number of timesteps, which involve at least one 2-qubit gate, required to execute

the circuit.

A quantum circuit of width wC can only be executed on a device with a qubit

capacity of wD iif wC ≤ wD. Circuit depth is different from the number of required

operations because quantum operations can performed in parallel as long as they

act on different qubits, as shown in figure 2.1. A circuit with an excessively high

depth comes at the cost of additional exposure to errors such as depolarizing noise

[14]. Therefore, it is ideal to minimize the depth of a circuit when possible. How-

ever, some sources of errors (such as gate errors, measurement errors and cross-talk)

have less to do with the runtime of the circuit and more to do with the actual number

of operations involved. The gate fidelity of 2-qubit gates is often at least an order

of magnitude lower than the fidelity of single qubit gates, for many devices cur-

rently available (e.g. ibm algiers [82], Quantinuum H1-1 [23]), so the total number

of 2-qubit gates involved in the circuit is also a variable the must be taken under

consideration and minimized where possible.
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2.4 Measurement-based quantum computation
Measurement-based quantum computation (MBQC) is an alternative but equivalent

approach to the more commonly used circuit model. In the circuit model, state pro-

cessing is accomplished exclusively via quantum logic gates while measurements

are reserved until the very end, with the sole purpose of reading out the final state of

the outputs. In MBQC, ancilla qubits are initialised and entangled with the inputs

and measurements are used throughout the computation to process the state of the

inputs by carefully and irreversibly collapsing parts of the superposition. A final

round of measurements is still necessary at the end to read out the state of the ouput

qubits [67, 34].

Due to the non-deterministic nature of these destructive measurements used

for processing, it is necessary to apply Pauli corrections on the remaining qubits

following each such measurement, to ensure that the overall computation remains

deterministic until the end [67, 34]. However, instead of having to apply these cor-

rections explicitly as additional operations, it is possible to instead absorb them into

subsequent measurements by shifting the measurement basis accordingly, which

creates a new requirement for efficient MBQC in the form of adaptive measure-

ments [67, 34].

Despite the added cost of ancilla qubits and adaptive measurements, MBQC is

also universal and it allows circuits to be implemented at a lower depth (and lower

entanglement depth) [83, 34]. An example of a simple MBQC circuit that imple-

ments a Hadamard gate can be seen in figure 2.2. In this example, the first qubit is

initialised in an arbitrary state |ψ⟩ while a second qubit is an ancilla initialised in

the |+⟩ state. The qubits are entangled via a CZ gate and after a local rotation, the

first qubit is measured. This partially collapses the superposition such that the state

|ψ⟩ is teleported to the ancilla qubit. Depending on the classical outcome of the

measurement, the state of the second qubit branches out to one of two possibilities,

thus resulting in a non-deterministic outcome. To obtain a deterministic outcome,

a conditional X operation is applied on the second qubit and is dependent on the

outcome of the measurement of the first. Similarly, an MBQC circuit that teleports
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|ψ⟩ H

|+⟩ X
= |ψ⟩ H

Figure 2.2: A simple measurement-based quantum computation circuit showing how a
Hadamard gate can be applied via teleportation. The first qubit is an input
in an arbitrary state |ψ⟩ while the second qubit is an ancilla initialised in the
|+⟩ state. After the MBQC circuit is performed, the second qubit becomes an
output with the state of H |ψ⟩.

|ψ⟩ T † H

|+⟩ X
= |ψ⟩ T H

Figure 2.3: A simple MBQC circuit showing how a T gate can be applied via teleportation.
The first qubit is an input in an arbitrary state |ψ⟩ while the second qubit is an
ancilla initialised in the |+⟩ state. After the circuit is performed, the second
qubit becomes an output with the state of HT |ψ⟩.

a Z-rotation such as T gate can be seen in figure 2.3.

As seen in figures 2.2 and 2.3, MBQC circuits appear very similar to regular

quantum circuits. The main differences between the two is that adaptive measure-

ments and ancilla qubits are required in the MBQC setting. It is worth noting that

all the components for universality are present in the above examples. Specifically,

both T gates and Hadamard gates can be achieved via teleportation and both of these

patterns utilise a CZ gate which can be used along with Hadamard gates and T gates

to complete the Clifford+T gate set required for universality. Consequently, since

both the circuit model and MBQC are universal, they are equivalent and it is possi-

ble to rewrite any quantum circuit into an MBQC circuit by simply substituting all

the operation with the corresponding MBQC components.

However, this is not necessarily the most efficient way to convert circuits to

MBQC and thus, we make use of the measurement calculus formalism which was
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first introduced in 2007 by Danos et al. [34]. Under this formalism, we move away

from MBQC circuits to more specialized resources known as measurement patterns

as described by definition 2.4.1.

Definition 2.4.1 In general, a measurement pattern [34] P acts on a set of qubits

i ∈ V of which the subsets I, IC,O,OC ⊆ V represent the inputs, prepared qubits,

outputs and measured qubits respectively. The operations that make up the pattern

are separated into the following four types:

• Preparations are denoted by Nu and represent the initialisation of qubit u∈ IC

in the |+⟩ state.

• Entanglement operators are denoted by Ei j and represent CZ gates between

pairs of qubits i, j ∈V .

• Destructive measurements are denoted by Mλ ,α
v and represent a measurement

of qubit v ∈ OC in the plane λ ∈ {XY,XZ,Y Z} rotated by phase α .

• Corrections are denoted by Psv
k and represent Pauli rotations P ∈ {X ,Z} act-

ing on qubit k ∈V and conditional on the signal sv ∈ {0,1} representing the

classical outcome of a measurement on qubit v ∈ OC.

A general measurement pattern takes the form shown by equation 2.7,

P= ∏
v∈OC

(Psv
k Mλ ,α

v )Ei jNu. (2.7)

It is possible to concatenate multiple measurement patterns as the preparation step

commutes with all the other operators and the entanglement operators also commute

with the Pauli corrections up to a local rotation as shown in equations 2.8 and 2.9.

Consequently, regardless of the number of measurement patterns concatenated, the

resulting pattern can always be rewritten in the form shown by equation 2.7 [34].

Zsu
i Ei j = Ei jZ

su
i , (2.8)

Zsu
j X su

i Ei j = Ei jX
su
i . (2.9)
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As multiple measurement patterns are concatenated, their entanglement oper-

ators combine into the term Ei j, which now represents a network of connections

between the qubits involved in the measurement pattern. This network can be vi-

sually represented as a diagram of nodes interconnected by edges. Conveniently,

CZ gates are not only symmetrical but also commute with one another and thus the

diagram can remain very simple, without the need for any special ordering or direc-

tionality to be added to the edges. This diagram is commonly referred to as a graph

state [84].

The main advantage of viewing these entanglement operators as graph states

is that this allows some useful techniques to be borrowed from graph theory as

expanded upon in section 2.5. It should also be noted that the more crude version

of MBQC which achieved computation from the perspective of state teleportation

introduced in the earlier years is equivalent to the graph state representation that

became popular more recently [85].

2.5 Graph states
As explained in section 2.4, it is possible to concatenate multiple measurement pat-

terns and to merge their entanglement operators and preparatory steps into a broad

term of form Ei jNi. Conveniently, this term has the property of being easily repre-

sented using a graph of nodes joined together with directionless edges. The result is

known as a graph state and is the primary resource required for the implementation

of a measurement pattern. More formally, a graph state is defined as follows:

Definition 2.5.1 An undirected graph [86] G = (V,E) is defined by a set of vertices

i ∈V as well as a set of edges (i, j) ∈ E between pairs of vertices i, j ∈V .

Definition 2.5.2 An open graph [86] G = (V,E, I,O) is an undirected graph with

some additional defined subsets of vertices, I,O⊆V representing inputs and outputs

respectively.

Definition 2.5.3 A graph state [84] |G⟩ based on graph G is defined as shown in
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equation 2.10 and is the resource state required for a measurement pattern.

|G⟩= ( ∏
(i, j)∈E

CZi j) |+⟩⊗i
i (2.10)

A graph state consists of the preparation and entanglement steps of the measurement

pattern. The sets of qubits, entanglement operators, inputs and outputs of the graph

state correspond to the sets of vertices, edges, inputs and outputs of the underlying

simple graph G. The edges of G are unordered and there are no self-loops.

By mapping the graph states used in measurement patterns to graphs, it be-

comes possible to take advantage of some graph theoretic properties and techniques.

Definition 2.5.4 The neighbourhood [87] of u, NG(u) is the set of vertices v ∈ V

where (u,v) ∈ E.

Definition 2.5.5 The degree of a vertex [87] is equal to the number of its neigh-

bours, deg(u) = |NG(u)|

Definition 2.5.6 The degree of a graph [87] is denoted by ∆G and is the maximum

degree of any vertex in the graph.

It is possible to leverage the graph-like structure of the qubits in the graph state

by making use of the stabilizer formalism [80]. An arbitrary error U can be repre-

sented by a discrete superposition of Pauli operators [80]. The stabilizer formalism

allows for a way to detect these Pauli errors when they act on a quantum state, using

only measurements which commute with the observables of interest, so as to avoid

collapsing the superposition in a way that is detrimental to the computation taking

place [80]. This is accomplished by defining a group of operators known as stabi-

lizers, S, which typically consist of parity checks across multiple qubits [80]. The

stabilizers are constructed carefully so that they anti-commute with individual Pauli

errors so that the errors can be spotted when a stabilizer is measured.

This becomes relevant in the construction of graph states because their struc-

ture allows for the existence of intuitive stabilizers known as graph stabilizers [88].

Because the graph state is constructed using a network of CZ gates, it is possible to
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use the commutation relationship of equation 2.9 to correct a Pauli-X error acting

on a qubit i by adding a Pauli-Z correction on each of its neighbours, j ∈ NG(i).

This leads to the definition of the graph stabilizer group shown in equation 2.11,

Si = Xi ∏
j∈NG(i)

Z j. (2.11)

The product of the graph stabilizers given by equation 2.11 can be used to

define the graph state and is in fact an equivalent but alternative definition to that of

equation 2.10 [88]. The graph state is invariant under the operation defined by the

graph stabilizers and we can take advantage of this property to correct Pauli errors

and measurement errors.

Constructing a graph state requires that the physical qubits involved are entan-

gled in a certain way that is indicated by operator Ei j. However, implementing this

operator on a real device can often depend on what 2-qubit gates are allowed by its

architecture as the relevant pairs of qubits are not necessarily physically adjacent.

Due to this limitation, it is useful to have tools which allow for an equivalent

measurement pattern with a modified edge set E ′
i j to be executed, such that it can

more easily fit on the restricted architecture. This is where we turn to an interesting

property of graph states which emerges from the interaction between graph stabi-

lizers and unitary operations [88]. Consider an arbitrary unitary operation U acting

on the graph state as shown in equation 2.12,

Si |G⟩= |G⟩ ,

USi |G⟩=U |G⟩ ,

USiU†U |G⟩=U |G⟩ .

(2.12)

It is important to note that the expression USiU† is functionally a new graph stabi-

lizer which leaves the new state U |G⟩ invariant. Therefore, it suffices to observe the

new stabilizer group USiU† in order to understand the effect of the operator U on

the edge set of the graph. Equivalently, we can use local rotations on the vertices of

the graph state to change the edge set to something more convenient.
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Consider the graph shown in figure 2.4, with graph stabilizer generators Sg =

{XZZ,ZXZ,ZZX}, with the full stabilizer group S = {III,XZZ,ZXZ,ZZX ,−YY I,

−Y IY,−IYY,−XXX}, under the effect of the local Clifford operator LC, given in

equation 2.13 [84, 89],

LC =
√

Xu
†

∏
v∈NG(u)

√
Zv. (2.13)

: :

u

1 2

Figure 2.4: Small graph with 3 vertices shown before the application of local Clifford op-
erator LC defined in equation 2.13, on vertex u.

Under this operation, the new graph is defined by the new stabilizer group

LCSL†
C. The graph stabilizer Su acting on vertex u, about which we are comple-

menting, is a special case and remains unchanged, indicating that the neighbour-

hood NG(u) is not affected, as shown in equation 2.14,

LCSuL†
C = (

√
Xu

†
∏

v∈NG(u)

√
Zv)(Xu ∏

v∈NG(u)
Zv)(

√
Xu ∏

v∈NG(u)

√
Zv

†
),

=
√

Xu
†Xu

√
Xu ∏

v∈NG(u)
(
√

ZvZv
√

Zv
†
),

= Xu ∏
v∈NG(u)

Zv,

= Su.

(2.14)

As for the entire stabilizer group, it is mapped to the new group S′ =

{III,XZZ,YY Z,Y ZY,−ZXI,−ZIX ,−IXX ,−XYY}, with the new generators be-

ing S′g = {XZZ,−ZXI,−ZIX}, indicating that the graph has been transformed to

that of figure 2.5, removing the edge between the shared neighbours of u, E1,2. In

general, the application of the local Clifford LC on a vertex u brings about a trans-

formation knows as local complementation which is one of the tools that allow us to

modify the edge set of a graph state and is described in definition 2.5.7 [68, 69, 70].
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: :

u

1 2

Figure 2.5: Small graph with 3 vertices shown after the application of local Clifford oper-
ator LC defined in equation 2.13, on vertex u.

Definition 2.5.7 Given a graph G = (V,E), local complementation (LC) [68, 69,

70] about vertex u ∈ V is defined as G ⋆ u = (V,E ′). For every pair of vertices

v,w ∈ NG(u), (v,w) ∈ E ′ iif (v,w) ̸∈ E. All other edges remain unchanged.

A visual demonstration of LC can be found in figure 2.6. The relationship between

: :

..

u

G

: :

..

u

G⋆u

Figure 2.6: Example showing how local complementation of graph G about vertex u affects
the neighbourhood of u. Left: G = (V,E). Right: G⋆u = (V,E ′).

graph states before and after the transformation is given by equation 2.15,

|G⟩= LC |G⋆u⟩ . (2.15)

While the neighbours of the affected vertex v ∈ NG(u) remain unchanged, each

vertex v is disconnected from its previously shared neighbours with u and gains a

new connection to the remaining neighbours of u [84, 89]. It should be noted that

when LC is applied on an open graph, it cannot be applied to the input vertices.

By carefully selecting what vertices to perform LC on, it is possible to reduce the

entanglement depth of the measurement pattern. More details as to how this is done

are found in chapter 4. LC has a convenient representation in ZX calculus which are

discussed in section 2.6. Another graph transformation which is derived from LC,

called edge local complementation (ELC) is described in definition 2.5.8 [68, 69].



2.5. Graph states 31

Definition 2.5.8 The edge local complementation (ELC) (also known as pivoting)

[68, 69] about edge (v,w) ∈ E is given by G(vw) = G ⋆ v ⋆w ⋆ v = G ⋆w ⋆ v ⋆w =

(V,E ′).

: :
..

v

G

G(vw)

w

A B

C

: :
..

v w

A B

C

Figure 2.7: Example showing how pivoting graph G about edge (v,w) affects the neigh-
bourhood of vertices v and w. Top: G = (V,E). Bottom: G(vw) = (V,E ′).

While ELC is equivalent to a sequence of three LC steps on a pair of neighbouring

vertices, we give it special importance because of its effect on the neighbourhoods

of the affected vertices. We can define subsets A(G,v,w),B(G,v,w),C(G,v,w) ⊆

V where A(G,v,w) = NG(v)−NG(w)−{w}, B(G,v,w) = NG(w)−NG(v)−{v},

C(G,v,w) = NG(v)∩NG(w). Now consider the ELC G(vw). For every pair of sets

X ,Y ∈ {A,B,C} and for every pair of vertices x ∈ X and y ∈Y , (x,y)∈ E ′ iif (x,y) ̸∈

E. Furthermore, A(G′,v,w) = B(G,v,w) and B(G′,v,w) = A(G,v,w). For every

other unaccounted pair of vertices, (x,y) ∈ E ′ iif (x,y) ∈ E.

A visual demonstration of how the edges of graph G change under pivoting

is shown in figure 2.7. It should be noted that the entanglement depth of a mea-

surement pattern is equal to degree of the underlying graph as the edges are imple-
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mented via CZ gates which can be parallelised as long as no two gates are acting on

the same qubit during the same timestep.

As is the case with LC, ELC can also be used to reduce the entanglement

depth of a measurement pattern and in some cases, it can even lead to higher depth

reduction than what can be achieved with just LC. Specific algorithms designed to

reduce entanglement depth with either LC and/or ELC are introduced and compared

in chapter 4.

While the measurement calculus and graph states serve as intuitive represen-

tations of MBQC, it is equally important to have a convenient tool for converting

quantum circuits to measurement patterns. This role is filled by ZX-calculus which

is discussed in section 2.6.

2.6 ZX-calculus

The ZX-calculus is a diagrammatic reasoning language used for representing linear

maps and it was first proposed in 2008 as an extension of categorical quantum me-

chanics [42]. It is convenient in that it is easy to convert both quantum circuits and

measurement patterns to and from ZX-calculus, thus serving as a bridge between

the two models. This is accomplished through a number of rewrite rules [42] which

can be used to transform and/or simplify a ZX diagram into an equivalent diagram.

The Euler decomposition of a Hadamard gate using ZX-calculus was also added to

the set of rewrite rules in 2009 [43] and in 2014 this set of rewrite rules was proven

to be complete [44].

In this section I provide an overview of ZX-calculus including a complete set of

rewrite rules which is sufficient for the purpose of this thesis. For a larger assortment

of rewrite rules and a more in-depth explanation please see the review paper by van

de Wetering [90] but do note that all the additional rewrite rules can be reproduced

from the ones present here. Also, note that ZX diagrams in this thesis are defined

up to a global phase.

ZX diagrams are composed of two types of elements: spiders and wires. Spi-

ders can have either the Z basis (coloured green) or the X basis (coloured red) and
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any number of wires. Wires drawn on the left hand side of a spider or a diagram

are traditionally inputs while those on the right are outputs. Spiders also contain a

phase α ∈ [0,2π) and represent the linear maps shown in figure 2.8. ZX diagrams

with no inputs represent a state preparation while ZX diagrams with no outputs rep-

resent a measurement effect. The Hadamard gate is also often used in ZX diagrams

α ::

α ::

= |0⟩⊗m ⟨0|⊗n + eiα |1⟩⊗m ⟨1|⊗n

= |+⟩⊗m ⟨+|⊗n + eiα |−⟩⊗m ⟨−|⊗n

n m

n m

Figure 2.8: Spiders with n-inputs and m-outputs. Top: Z spider (green). Bottom: X spider
(red).

and can either take the form of a yellow box or a blue wire and can equivalently be

decomposed into a series of green and red spiders as shown in figure 2.8 [43]. Fur-

thermore, some examples of ZX rewrite rules can be seen in figure 2.9 [44, 91, 45].

π

2
π

2
π

2= =

Figure 2.9: The different common representations of a Hadamard gate in ZX-calculus [43].

α: :

β: :
α +β

: :

: :
=

α: : = α: :

α π = −α

π

π

π

Figure 2.10: Some examples of ZX rewrite rules.

Note that a ZX-diagram represents the same linear map even if the wires are crossed
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or its shape is distorted. Furthermore, all the rewrite rules hold if the colours of all

the spiders in the diagram are inverted.

To more easily convert ZX-diagrams into measurement patterns it is necessary

to first normalise ZX-diagrams into a form that is more adjacent to that of a graph

state. Specifically, a graph state only contains one type of nodes whereas a general

ZX-diagram contains both red and green spiders. Similarly, a graph state only con-

tains one type of edges whereas a general ZX-diagram contains both simple wires

and Hadamard wires. Luckily, there exist rewrite rules for changing one color of

spiders to the other, as well as for merging two spiders of the same color as long as

they are connected by a simple wire (thus eliminating the wire in the process). This

allows us to transform the diagrams into forms more suitable for MBQC, namely

diagrams in graph state form and diagrams in MBQC form [92], described in defi-

nitions 2.6.1 and 2.6.2 respectively.

Definition 2.6.1 A ZX diagram is in graph state form [92] iif:

• There are no input wires.

• Every spider in the diagram is a green spider.

• Every spider in the diagram has a phase of 0.

• Every wire between two spiders is a blue wire (Hadamard edge).

• Every spider in the diagram is connected to exactly one output wire.

A ZX-diagram in graph state form is one that is perfect for representing the

entanglement operator Ei j of a measurement pattern (i.e. the graph state, hence

the name) as it contains no information outside of which qubits are connected. By

allowing each of the spiders in graph state form to be further connected to arbitrary

inputs or measurement gadgets, it is possible to account for the other components

of the measurement pattern such as the preparation operator Ni or the measurement

operator Mλ ,α
v ). With these additions we move from the graph state form to the

MBQC form described in definition 2.6.2.
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Definition 2.6.2 A ZX diagram is in MBQC form [92] iif:

• Each spider in the graph state diagram may be connected to either one or

zero input wires.

• Every spider in the diagram is a green spider unless it is degree-1.

• Every spider in the diagram has a phase of 0 or π

2 unless it is degree-1.

• Every wire between two spiders is a blue wire (Hadamard edge) unless one

of them is degree-1.

• Every spider in the diagram is connected to either one output wire or a

degree-1 spider, unless it is itself a degree-1 spider.

Every ZX diagram which represents a quantum circuit or a measurement pat-

tern can be transformed into MBQC-form [92]. An example of a ZX diagram in

MBQC-form can be seen in figure 2.11. ZX diagrams in MBQC-form can be di-

α

β

Figure 2.11: Example of a ZX diagram in MBQC-form. This diagram represents a mea-
surement pattern with four qubits, two inputs and two outputs. Of the two
non-output qubits, one is to be measured in the YZ plane (rotated by an angle
α) and the other in the XY plane (rotated by an angle β ).

rectly implemented as measurement patterns. In this case, all the non-input qubits

are typically prepared in the |+⟩ state. Subsequently, all the qubits are entangled

via CZ gates according to the graph, G = (V,E) defined by the underlying graph

state diagram.

It is possible to use LC and ELC on ZX diagrams in MBQC-form [93]. Doing

so changes the edges in the graph state diagram in exactly the same way discussed
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in definition 2.5.7. However, to preserve the linear map represented by the ZX

diagram we need to implement the local Clifford as described in equations 2.13 and

2.15.

Specifically, after performing LC about vertex u ∈ V , we have to add a red

spider with a phase of −π

2 to the output of the spider representing u. Similarly,

we have to add a green spider with a phase of π

2 to the outputs of the spiders rep-

resenting all the neighbours v ∈ NG(u). An example of an application of LC on

a ZX diagram in MBQC-form is shown in figure 2.12 ELC can also be applied

to ZX diagrams in MBQC-form by simply breaking it into three steps of LC as

described in definition 2.5.8. For non-output nodes (i.e. ancilla qubits which are

α

β

u

G

−π

2

π

2

α

β

u

G⋆u

π

2

π

2

Figure 2.12: Example of local complementation on a ZX diagram in MBQC-form. Top:
G = (V,E). Bottom: G⋆u = (V,E ′).

measured during processing) we can remove the added spiders by simply absorb-

ing them into the measurement effects and adjusting the measurement plane/angle

accordingly, while for the output qubits these phases can be grouped together and

simplified into a small number of single qubit rotations at the end. As a result we
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can largely disregard these spiders when considering the transformations caused by

local complementation on a ZX diagram. The effect of the accumulated phases on

some common measurement effects is shown in figure 2.13.
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Figure 2.13: Table showing how the phases accumulated through local complementation
on a ZX diagram in MBQC-form affect the measurement planes and angles of
the non-output vertices.

2.7 Upper bound for graph width
In this thesis, I also use the term ”width” to describe the number of nodes in a graph.

I derive the upper bound for the graph width, wg, with respect to the width of the

underlying circuit, wc, and the number of irreducible non-Clifford gates, gnc. The

derivation assumes an understanding of ZX calculus [42].

Any quantum circuit can be reduced to a diagram containing three types of

green spiders, connected via Hadamard edges: i) exterior/boundary spiders, ii) in-

terior non-Clifford spiders and iii) interior Pauli spiders which are only connected

to non-Clifford spiders [74]. Anything else can be removed using ZX rewrite rules.

A diagram of this form can be read as a measurement pattern with single-plane

measurements, with each spider corresponding to one qubit.

The boundary spiders in the diagram depend on the width of the original cir-

cuit. If measurements in multiple planes are allowed, there can be up to 2wc bound-

ary spiders. Here, only XY-plane measurements are allowed, which require up to

4wc boundary spiders. There can only be as many non-Clifford spiders in the dia-

gram as there are non-Clifford gates in the circuit.
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To understand the upper bound for the third type of spiders we look at how

they appear. Consider the 2-qubit circuit shown in figure 2.14 and the resulting ZX

diagram in figure 2.15. This is an example of a trapped Pauli spider. While defor-

mations are allowed in ZX calculus, this diagram is kept in a circuit-like form to

illustrate that there are two types of non-Clifford spiders contributing to the entrap-

ment of the Pauli. The two non-Clifford spiders on the horizontal line correspond to

T gates acting on the same qubit at different times in the original circuit. I refer to

these as temporal connections. The third non-Clifford spider is a T gate acting on a

different qubit which contributes to the entrapment of the Pauli via a CNOT gate. I

refer to this as a spatial connection.

T H H

T H H T

Figure 2.14: A simple 2-qubit circuit that leads to a trapped Pauli spider when converted to
a ZX diagram.

π

4

π

4
π

4

Figure 2.15: The circuit from figure 2.14 converted to a ZX diagram demonstrating a
degree-3 trapped Pauli spider.

Because the graph is derived from a circuit, every interior spider must have

at least 2 edges, which are the temporal connections of the gate in circuit form.

If a trapped Pauli only has temporal connections and no spatial connections it is

possible to extract the phase to the boundaries, leaving only the identity behind

which leads to simplifications. This means that at least one spatial connection is

required in order to turn the spider into degree-3 or higher, to prevent it from being

simplified. This means that a minimum of 3 non-Clifford spiders are required to

contain a trapped Pauli spider.
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However, it is also possible for the non-Clifford spiders to contribute to multi-

ple trapped Paulis. Consider the circuit shown in figure 2.16 and the corresponding

ZX diagram shown in figure 2.17. It is possible for a non-Clifford spider to make

multiple spatial connections, either to the same qubit in different instances in time

or multiple qubits. A non-Clifford spider with a temporal connection to trapped

Pauli may also form a temporal connection with a second trapped Pauli (one in the

past and one in the future).

T H H

T H H T H H T H H T

Figure 2.16: A 2-qubit circuit which leads to multiple trapped Paulis in ZX calculus.
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Figure 2.17: The circuit from figure 2.16 converted to a ZX diagram demonstrating multi-
ple degree-3 trapped Pauli spider with the minimum required number of non-
Clifford gates.

In the worst case scenario (which looks like the one in figure 2.17), each

trapped Pauli is connected to exactly 3 non-Clifford spiders, a single non-Clifford

spider provides the spatial connection required for every trapped Pauli and all the

trapped Paulis are located on the same qubit (in the circuit model) allowing for

maximum reusability of the non-Clifford spiders on the temporal axis. In such a

scenario, the maximum number of trapped Paulis in the diagram is equal to gnc - 2.

The upper bound for graph width is thus given by equation 2.16,

wg ≤ 4wc +2gnc −2. (2.16)
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2.8 Circuit generation procedure

Two classes of sample circuits have been used in this work. The first are random

Clifford+T circuits. These are generated using single-qubit Hadamard and T gates

as well as two-qubit CNOT gates. Each of these building blocks is assigned a ratio

with the sum of the three ratios being 1. For the samples in this work, the ratios

for Hadamard, CNOT and T gates are 0.49, 0.49 and 0.02 respectively. The process

for the random circuit generation is outlined in algorithm 1. The resulting circuits

may contain a number of redundancies such as two Hadamard gates acting on the

same qubit in a row. To make the samples more meaningful, they are simplified

using routines of the PyZX [1] and pytket [2] libraries. Clifford+T circuits are in-

teresting samples because the set of gates they employ is sufficient for universality.
Algorithm 1: The process for building random Clifford+T circuits

Input: Number of qubits,n ∈ N

Total gates,gt ∈ N

Gate ratios,ri ∈ [0,1] where ∑
3
i=1 ri = 1

Output: Circuit,Cn

begin

Initialise Cn with n qubits in the state |0⟩;

for each gate g up to gt do

Randomly pick a gate type according to weights ri;

Randomly pick a target qubit;

if g is a CNOT then

Randomly pick a control qubit from the remaining qubits;

Add g to Cn;

end

end

The second class of circuits used are phase polynomials [75, 76]. These are

defined using an arbitrary number of Pauli gadgets. Each of the gadgets is defined

by an n-qubit Pauli operator as well as a phase implemented by a Z rotation. An

example showing a Pauli gadget with the operator IXZXZ and a phase of π

4 is shown
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in figure 2.18. The algorithm for generating phase polynomial circuits is outlined

in algorithm 2. Phase polynomials are related to quantum chemistry applications

such as VQE algorithms which is why they were chosen as samples for this thesis.
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Algorithm 2: The process for building random phase polynomials
Input: Number of qubits,qn ∈ N

Number of polynomials, pn ∈ N

Output: Circuit,Cqn

begin

Initialise Cqn with qn qubits in the state |0⟩;

for each phase polynomial pi up to pn do

Initialise subcircuit, C′
qn , with qn qubits;

Define set of qubits, L = {q1, ...,qn};

Generate a random integer, m ∈ [1,4qn);

Construct a qn-qubit Pauli, P, from m;

Generate a random phase, θ ∈ [0,2π);

for each single-qubit Pauli component Pi in P do

if Pi = Ii then

L = L\{qi};

else if Pi = X i then

Add a H(qi) gate to C′
n;

else if Pi = Y i then

Add H(qi), S(qi), H(qi) gates to C′
n;

end

while size of L > 1 do

Split L into pairs (qa,qb) leaving any odd qubit out;

for each pair (qa,qb) do

Add a CNOT(qa,qb) gate to C′
n;

L = L\{qa};

end

end

Define a circuit C′
n

† which is the reverse of C′
n;

Add C′
n to Cn;

Define a ZPhase gate with a phase of θ , acting on the only qubit

left in L and add it to Cn;

Add C′
n

† to Cn;

end

end
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H H

H H

T

Figure 2.18: A 5-qubit circuit implementing a Pauli gadget defined by the Pauli operator
IXZXZ and a phase of π

4 .

2.9 Determinism in MBQC and Pauli flow

As explained in section 2.6, a ZX-diagram in MBQC-form sufficiently describes

the preparation, entanglement and measurement components of a measurement pat-

tern defined in equation 2.7. Specifically, the diagram contains information about

the number of physical qubits needed, what state they have to be prepared in, how

they are meant to be entangled to form the graph state and in what measurement

planes/angles they are to be measured. However, there is a piece of the puzzle miss-

ing: how to order the measurements and how to apply the corresponding corrections

needed to ensure a deterministic output.

To accomplish this, the non-deterministic measurements that occur during the

execution of a measurement pattern are considered to be affected by a Pauli error iff

the negative eigenstate is observed. Whenever a computational basis measurement

returns the negative eigenstate, that is equivalent to the result of the positive eigen-

state flipped under the effect of a Pauli-X error. The Pauli errors can then be cor-

rected by taking advantage of the graph stabilizers defined in equation 2.11 [71, 72].

However, qubits that have already been measured can no longer be corrected, which

imposes a dependency order on the measurements/corrections to make the measure-

ment pattern runnable [71, 72, 92].

In 2006, the notion of causal flow was introduced by Danos and Kashefi, which

is a condition sufficient but not necessary for determinism in the one-way model
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[71]. This means that if an open graph is found to have causal flow, it is possible

to order its measurements and corrections such that the pattern can be run in a de-

terministic way. Furthermore, an algorithm for finding causal flow (if a graph has

one) was later publicized by Mehdi Mhalla and Simon Perdrix [94]. However, oth-

erwise deterministic graphs might not necessarily exhibit causal flow. Additionally,

the definition of causal flow restricts measurements to just the XY plane.

A more general condition called Pauli flow was found in 2007 by Browne et al

[72]. Pauli flow is both a necessary and sufficient condition for determinism in the

one-way model and has loosened the restriction to allow for Pauli measurements as

well as measurements about an arbitrary angle in the XY, XZ and YZ planes [72].

More recently, an algorithm was produced by Will Simmons which can be used to

find Pauli flow for an arbitrary ZX-diagram in MBQC-form iff one exists [95], with

a pythonic implementation of this algorithm available in the Pytket library [2] used

in this thesis. It should also be noted that both LC and ELC are operations which

preserve Pauli flow [95, 93].

2.10 The need for a hybrid model

By using the various tools and formalisms introduced in this chapter, quantum cir-

cuits can be rewritten as ZX-diagrams and then normalised to their MBQC form

so that they can be implemented as measurement patterns. When rewriting the cir-

cuit model into ZX-calculus, all the operations are converted to ZX spiders and

after all the simplifications and rewrite rules are applied, whatever spiders remain

in the diagram constitute the qubits involved in the graph state (with the spiders

corresponding to measurement effects being an exception).

Therefore, it is not surprising that measurement patterns typically display

lower depth at the cost of additional ancilla qubits because if one carefully observes

the conversion process, they may notice that quantum gates in the circuit model are

effectively converted into qubits in the graph state - a quite literal conversion of

depth to width.

However, this process is not very flexible as it does not give us the choice
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of how much of the circuit’s depth to convert and it can easily lead to situations

where the measurement pattern requires too many qubits to be implementable on a

device. This lack of flexibility is precisely the motivation for developing a hybrid

between the circuit model and MBQC so that the previously inaccesible depth-width

spectrum which exists between the two pure models can be navigated. This hybrid

model is the focus of chapter 3.



Chapter 3

Hybrid model of quantum

computation

3.1 Introduction

In this chapter, I introduce a hybrid model of quantum computation (HMQC) which

serves as a tuneable mid-point between the circuit model and MBQC, such that

the width-depth tradeoff between the two approaches can be controlled and tailored

for implementation on a known platform. Specifically, converting a circuit into

a measurement pattern can drastically reduce the depth and 2-qubit depth at the

cost of increasing width, as multiple ancilla qubits are required. However, both the

circuit model and MBQC can be viewed as two fixed points in what is a spectrum

of depth-to-width conversion. The purpose of our description of the hybrid model

is to tap into this spectrum for more flexible control of the resource trade-off.

In section 3.2, I provide a definition of the hybrid model before providing an

example of how HMQC can be constructed. In section 3.3, I provide an example

of a HMQC with one MBQC segment, demonstrating how the width and depth of

the HMQC forms a spectrum bounded by the circuit model and MBQC, depending

on the subcircuit selected for conversion. In section 3.4, I expand this analysis to

include up to two MBQC segments, showing that more than one MBQC segment

opens the door for ancilla reusability from one measurement pattern to the next,

which in turn leads to a better width-depth tradeoff.
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As the number of MBQC layers increases, it becomes impractical to fully enu-

merate all the possible HMQC combinations. Consequently, I provide a more sys-

tematic approach which leads to the targetted hybrid model which accounts for

n-layers of MBQC, defined in section 3.5. The goal of our implementation of the

hybrid model is to optimise the ratio of depth reduction to ancilla overhead needed.

The targeted hybrid model we introduce in section 3.5 is the iteration that we find

to be best at accomplishing this goal, as it is designed to maximize the reusability

of ancilla qubits between segments, minimising the qubit overhead required.

A comparison between the width and depth of the circuit model, HMQC and

MBQC can be found in section 3.6. HMQC is primarily aimed towards depth re-

duction and achieves a higher amount of depth reduction when applied to deeper

circuits. In section 3.6, I also introduce a method of determining whether this tech-

nique is suitable for a specific circuit (or circuit class) as well as approximately

predicting the performance of the converted circuit. Finally, I discuss an attempt

to route hybrid model circuits for devices with limited qubit connectivity and the

challenges involved in that process, in section 3.7.

3.2 Definition of the hybrid model
In this section, I provide a formal definition for the hybrid model while also pro-

ducing an example, demonstrating how the hybrid model is constructed. First, let’s

consider the general case of HMQC that we describe in definition 3.2.1:

Definition 3.2.1 The hybrid model is the sequential composition of n-layers of com-

putation, with each individual layer being described in either the circuit model or

in MBQC. The inputs of a layer are mapped to the corresponding outputs of the

preceding layer. Classical signals can be communicated between layers.

It follows from definition 3.2.1 that if every layer is in circuit model form, then the

entire computation is equivalent to the circuit model. Likewise, if every layer is a

measurement pattern then the entire computation is a form of MBQC, albeit not in

a standard form.
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Here, I describe the compilation process used to produce a HMQC. This repre-

sentation is constructed by splitting a quantum circuit into two or more subcircuits

along its depth. Any number of the resulting segments are converted to measure-

ment patterns which introduce ancilla qubits but do not affect the number of input

and output qubits. For a measurement pattern to be implemented deterministically,

it is necessary to use classical feedforward in the form of Pauli corrections on the

remaining qubits following each measurement. This feedforward can either be car-

ried out in the same layer as the measurement pattern or it can be passed on to

subsequent layers and grouped together with classical information emerging from

those layers.

Consider the circuit c0 shown in figure 3.1. This circuit can be converted en-

tirely to a measurement pattern as shown in figure 3.2. Alternatively, it can be split

down the middle into two subcircuits, c1 and c2, performed in sequence. We can

convert c1 and c2 into separate graphs as shown in figure 3.3. The outputs of the

graph derived from c1 are feeding into the inputs of the graph derived from c2. Per-

forming the two segments in sequence results in the same number of outputs as the

original circuit but the width and the depth of the overall operation have changed.

In this case we do not observe significant reduction of depth because the original

c0

|0⟩ H

|0⟩ H T

|0⟩ T T

|0⟩

Figure 3.1: A randomly-generated 4-qubit circuit of depth 10, composed of CNOT,
Hadamard and T gates.

circuit is too shallow. However, the same process may be applied to deeper circuits

for more interesting results.
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π/4

π/2

INPUTS OUTPUTS

Figure 3.2: c0 converted to a single graph state. Each vertex represents a different qubit, so
12 qubits are needed to execute the corresponding measurement pattern.

c1 c2

H

H T

T T

π/4

π/2

Figure 3.3: Two graph states obtained by splitting c0 into two subcircuits and converting
each one to MBQC separately. Because the ancilla qubits used for the first
graph state can be reused for the second graph state, only 10 qubits are needed
to execute the computation in this form.

3.3 Hybrid model with one MBQC segment

Since transpiling an entire circuit to MBQC converts a certain amount of depth

into width, it is reasonable to expect that transpiling only a subcircuit of the original
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circuit would likewise result in only a partial conversion of depth to width. Consider

a circuit c, of depth d. Furthermore, we define an arbitrary subcircuit ci of c, where

parameter i is an index used to enumerate all the possible unique subcircuits of c.

Consequently, subcircuit ci can be fully defined with two parameters: Its depth,

di ∈ [1,d] and its offset from the beginning of the circuit, ki ∈ [0,d − di]. Since

both di and ki scale linearly with d, the number of possible subcircuits i scales

quadratically with d.

To illustrate the properties of the hybrid model with one MBQC segment, we

use a numerical example, the results of which are shown in figure 3.4. For each

case i we convert only subcircuit ci to MBQC while leaving the rest of circuit c

in the circuit model. The overall width and depth of the HMQC implemention of

c is marked as an individual datapoint in figure 3.4. The circuit used to produce

figure 3.4 is a randomly-generated 5-qubit Clifford+T circuit of depth=90. There

are i+ 1 datapoints in the figure and they form part of the depth-width spectrum

bounded by the circuit model and MBQC, indicating the part of the spectrum which

is achievable by only converting a single subcircuit to MBQC. The dashed box

contains the cases where the width is lower than full MBQC but higher than the

circuit model and the depth is lower than the circuit model but higher than full

MBQC. The dashed diagonal line represents the rate by which depth is converted to

width in the full MBQC case. Consequently, any datapoint which exists within the

bounded box demonstrates that it is possible to obtain a version of the circuit which

has lower depth than the circuit model form and lower width than the pure MBQC

form.

Additionally, the datapoints which exist below the dashed diagonal are even

more interesting as they represent a case where the ratio of reduced depth divided

by increased width is lower than the full MBQC conversion. However, in the case

where only a single subcircuit is converted to MBQC there are very few datapoints

below the dashed diagonal. These datapoints are artifacts of the ZX-diagram rewrite

operations and are not significant (or scalable). In cases with more than one MBQC

segment ancilla qubits can be recycled from one measurement pattern to the next so
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Figure 3.4: The figure shows the width-depth tradeoff of a randomly-generated 5-qubit
Clifford+T circuit with an original depth=90 after converting a single, arbi-
trarily selected subcircuit to MBQC. The top-left corner of the bounded box
indicates the circuit model. The bottom-right corner indicates a full conversion
to MBQC. Every other datapoint represents the case where only subcircuit ci is
converted to MBQC. The dashed diagonal represents the depth-width conver-
sion rate when converting the entire circuit to MBQC.

we expect more datapoints below the dashed diagonal to appear.
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3.4 Hybrid model with two MBQC segments
We expect to see higher depth reduction in the case where two subcircuits are con-

verted to MBQC at the same time instead of one, as this allows ancilla qubits to be

recycled. Consider the case where the circuit is split down the middle, such that the

first segment has a depth d1 = d/2 and offset k1 = 0 and the second segment has

a depth d2 = d/2 and offset k2 = d/2. In this situation, each segment is converted

to MBQC separately. As a result, the entire depth of the original circuit is con-

verted, but there are two measurement patterns instead of one. This process can be

expanded to include all possible combinations of two MBQC segments. To better

illustrate this, we perform a numerical analysis, the results of which are shown in

figure 3.5. The circuit used for figure 3.5 is the same randomly-generated 5-qubit

Clifford+T circuit that was used for figure 3.4.

By converting two subcircuits to MBQC, more options are introduced and a

broader slice of the width-depth trade-off spectrum becomes accessible. There exist

many more instances of the hybrid model where the datapoints are located below the

dashed diagonal, thus indicating a lower ratio of reduced depth divided by increased

width than a full conversion to MBQC. This happens because the recycled ancillas

lower the overall requirement for physical qubits in the entire HMQC. Since an

arbitrary subcircuit can be defined using two parameters, the depth di and the offset

ki, each of which scales linearly with the depth of the original circuit d, the number

of possible subcircuits scales quadratically with d.

3.5 Hybrid model with n MBQC segments
When we allow for n subcircuits to be converted to MBQC, the number of possible

combinations scales exponentially with the depth of the original circuit. To see that,

consider that the original circuit has enough space for at most d subcircuits of depth

di = 1 and each of those subcircuits can exist in 2 forms: in the circuit model or

converted into a measurement pattern. Once we allow for an arbitrary combination

of segments in the hybrid model, the number of possible combinations is at least

2d . In fact, it’s higher than that because two adjacent slices of the circuit could
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Figure 3.5: The figure shows the width-depth tradeoff of a randomly-generated 5-qubit
Clifford+T circuit with an original depth=90 after converting two, arbitrarily
selected subcircuits to MBQC. The top-left corner of the bounded box indi-
cates the circuit model. The bottom-right corner indicates a full conversion
to MBQC. Every red datapoint represents the case where only subcircuit ci

is converted to MBQC. Every yellow point represents the case where non-
overlapping subcircuits ci and c j are simultaneously converted to MBQC. The
dashed diagonal represents the depth-width conversion rate when converting
the entire circuit to MBQC.

be converted individually into two separate measurement patterns, or merged and

converted together into a larger one.

Therefore, it is not realistic to test out every possible conversion and pick the

best one. Instead, it is preferable to have a more systematic approach to splitting

and converting the circuit. Converting a single subcircuit to MBQC adds a number

of ancilla qubits. If another subcircuit is converted, it is possible to recycle these

ancillas by re-initialising them after the first MBQC segment is completed so that

they can be reused in the second segment. This means that the total number of qubits

required will not increase if the second segment doesn’t involve more ancillas than

the first.
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Furthermore, the relationship between the width in MBQC wg, the width in the

circuit model wc and the number of non-Clifford gates in the circuit model gnc is

discussed in section 2.7. The upper bound for graph width was derived in the same

section and was shown in equation 2.16, which we reproduce here for convenience,

wg ≤ 4wc +2gnc −2. (3.1)

Consequently, as long as a single subcircuit is converted to MBQC, then all the

remaining subcircuits should also be converted to MBQC because this results in

depth reduction at no added cost, provided that no segment requires more ancillas

than the first. From equation 3.1, the width of a segment is known to depend on the

width of the original circuit (which is not affected by the choice of subcircuit) as

well as the number of non-Clifford gates in the corresponding subcircuit.

To maximize ancilla reusability, the circuit should be split up into segments

containing the same number of non-Clifford gates. In this thesis, we are primar-

ily interested in Clifford+T circuits and phase polynomial circuits. The reasons for

these classes of circuits being important as well as the process in which they are

being generated are discussed in section 2.8. For these classes of circuits, the dis-

tribution of non-Clifford gates can be approximated to be uniform along the depth

of the circuit. This leads to definition 3.5.1.

Definition 3.5.1 The targeted hybrid model is a special case of the generalised hy-

brid model, where the following conditions apply:

• Every subcircuit is converted to MBQC as long as it results in a depth reduc-

tion.

• Every subcircuit has the same depth before conversion to MBQC (up to -1

timesteps).

Targeted HMQC involves splitting a circuit into segments of equal depth and

converting each one to MBQC. Refer to figure 3.6 for a visual demonstration of

how targeted HMQC results in a better utilisation of resources. Again, we turn
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Figure 3.6: Abstract visual comparison of different implementations of the same quantum
circuit. The horizontal dimension represents depth, while the vertical dimen-
sion represents width. Blue sections represent a circuit or subcircuit in the cir-
cuit model while red sections represent measurement patterns. Yellow sections
represent resources that would be taken up but not utilised during implementa-
tion. The shape on the left represents a full MBQC implementation. The shape
at the top-right represents the full circuit model implementation. The shape at
the middle-right represents an arbitrarily selected version of the hybrid model
while the shape at the bottom-right represents the version of the targeted hybrid
model involving 5 MBQC segments.

to a numerical example to better demonstrate the properties of targeted HMQC.

These results are shown in figure 3.7 which involve a case of targeted HMQC for

varying numbers of segments of equal depth, applied to a randomly-generated 10-

qubit Clifford+T circuit. For each datapoint, the base circuit is the same, but it is

split into a different number of subcircuits which are then individually converted

first to ZX-diagrams and then to measurement patterns. The resulting depth and

width for the measurement patterns in sequence are then used to mark the points
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within the tradeoff spectrum. Note that not only are there many data points that

correspond to ‘cheaper’ depth reduction than MBQC but it is now much easier to

compute these cases because the number of segments i now scales linearly with the

depth of the circuit d under this new setting. For the remainder of this thesis, the

term ‘HMQC’ will refer to the targeted hybrid model unless otherwise stated.

Figure 3.7: Width-depth tradeoff of a randomly-generated 10-qubit Clifford+T circuit after
converting to the targeted hybrid model. Each datapoint represents the case
where the circuit is split into N subcircuits of equal depth and each subcircuit
is converted into a measurement pattern. The color of the datapoints indicates
the value of N. The top-left corner of the bounded box indicates the circuit
model. The bottom-right corner indicates a full conversion to MBQC. The
dashed diagonal represents the depth-width conversion rate when converting
the entire circuit to MBQC.
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3.6 Resource comparison in the hybrid model
To better evaluate whether the technique discussed in this chapter is worth using

for a specific circuit or circuit class, I developed a model to estimate the width and

depth of HMQC. While the relationship between circuit width and MBQC width

is largely understood and governed by equation 3.1, the relationship between the

parameters of the original circuit and the depth of the corresponding measurement

pattern is still unknown and varies on a case by case basis. Due to this, it was not

possible to produce a fully analytical model.

However, the depth of a measurement pattern was empirically found to be

half of its width for both the randomly-generated Clifford+T circuits and the phase

polynomial circuits. Therefore, it was possible to incorporate this approximation

and the corresponding margins of error into a numerical predictive model that serves

as an informative reference point to determine whether a circuit would be worth

converting to the hybrid model. The procedure I followed to accomplish this is

explained in this section.

For reasons discussed in section 2.8, two separate sample sets of 1000 random

Clifford+T circuits and 1000 phase polynomials of widths wc ∈ [5,25] and depths

dc ∈ [50,2500] were used. Each sample was converted to a graph and the resulting

graph properties were compared to their circuit properties. Figures 3.8 and 3.9

demonstrate a strong linear dependence of the graph width, wg, to both the width

of the original circuit, wc, and the number of non-Clifford gates in the circuit, gnc.

The numerical relationship extracted from the samples is of a similar form to the

theoretical upper bound for graph width, given in equation 3.1.

I have chosen to develop and use heuristics to represent the relationship be-

tween circuit and graph width in the predictive model. This is done because the

coefficients extracted numerically from the samples better capture the behaviour

of the average case circuit, as opposed to the worst case circuit described by the

theoretical upper bound. These heuristics were obtained by using linear regression

techniques on the data extracted from both the random Clifford+T samples and the

phase polynomial samples as shown in figures 3.8 and 3.9 respectively. Specifically,
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Figure 3.8: Relationship between the graph width, circuit width and number of non-
Clifford gates in a sample set of random Clifford+T circuits.

wg is treated as the dependent variable of a linear model while wc and gnc are treated

as the two regressors of the model. The approximation of wg takes the form shown

in equation 3.2,

wg = αwc +βgnc. (3.2)

For the random Clifford+T samples, the graph width is denoted by wg,r with

the coefficients determined via regression to be αr = 2.56 and βr = 1.10. Similarly,

the graph width for the phase polynomial samples is denoted by wg,p and the co-

efficients are αp = 2.83 and βp = 1.02. The relative standard deviation for wg,r is

±3.8% while the relative standard deviation for wg,p is ±3.9%. In order to verify

the robustness of the heuristics in the face of different datasets, I have investigated

the effects of applying the approximation for wg,p on the random circuit samples

and found the new relative standard deviation to be equal to ±6.1%. Similarly, I

have taken the heuristic derived from the random circuits and applied it to the phase

polynomial samples to find a relative standard deviation of ±6.8%. As expected,
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Figure 3.9: Relationship between the graph width, circuit width and number of non-
Clifford gates in a sample set of phase polynomial circuits.

using the approximation derived from one sample set to another lowers the accuracy

but the difference is small which indicates that the relationship of wg to wc and gnc

is very consistent between circuit classes.

The depth in the graph state, dg, was found to be dependent on both wg and

wc, taking the form shown in equation 3.3. The graph depth for the random circuit

samples is denoted by, dg,r, with the coefficients found via regression to be γr =

13.9,δr = 0.51 and εr = 0.37. The graph depth for the phase polynomial samples is

denoted by dg,p with the coefficients found to be γp = 17.1,δp = 0.84 and εp = 1.39.

dg = γ +δwg − εwc (3.3)

Note that the heuristics which describe the graph depth are less accurate than

those for the graph width, with dg,r exhibiting a relative standard deviation of

±13.1% when applied to the random circuit samples and ±36.2% when applied to

the phase polynomials. Similarly, dg,p has a relative standard deviation of ±13.4%
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when applied to phase polynomials and ±51.8% when applied to random circuits.

In essence, this means that the heuristics for graph depth which are extracted from

one circuit class are not accurate enough to be used on the other. This happens

because each version of the predictive model is based on a different sample class

and subject to different circuit properties. Consequently, if accuracy is required,

it would be best to use approximations developed specifically for the circuit class

under consideration.

For the case where a circuit is split into N subcircuits and then converted into

a sequence of graphs, the final width wh and depth dh, are given by the equations

3.4 and 3.5 respectively. These approximations are based on equations 3.2 and 3.3

respectively since the hybrid model still involves graph states. Note that for classes

of circuits where non-Clifford gates are not concentrated on a specific part of the

circuit but can instead be assumed to be distributed uniformly (which is true for both

random circuits and phase polynomials), the number of such gates in each subcircuit

is ≈ gnc
N . Also note that the overall depth of HMQC is equal to the sum of the depth

of all the segments but the same is not true for the width due to how qubits are

reused between segments. As a result, only the depth equation is multiplied by the

number of segments, N,

wh = αwc +β
gnc

N
, (3.4)

dh = (γ +δwh − εwc)N. (3.5)

By knowing the number of non-Clifford gates and the number of qubits in a quan-

tum circuit and by referring to equations 3.4 and 3.5 as well as the empirically

obtained margins of error found from the samples it is possible to develop a pre-

dictive model which determines whether the methods presented in this paper are

suitable to be used for a specific circuit or a class of circuits. Examples of such a

predictive model in use can be seen in figures 3.10 and 3.11.

The margin of error for this predictive model reaches up to ±20% as it is based

on a number of approximations which are affected by the large variance seen be-

tween different circuits of the same width/depth class. The purpose of these heuris-
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tics is simply to be used as tools to approximately predict the behaviour of a circuit

converted to HMQC, mainly to determine whether such a conversion is worthwhile

in the first place. Despite the large margin of error, it is still possible to use these

approximations to predict whether HMQC can be used to navigate the width-depth

resource spectrum for a given application. Once this is determined, there is no fur-

ther need to rely on the approximations as the actual circuit can simply be converted

and investigated in more detail.

The predictive models are more likely to succeed when used for circuits in the

same class for which they were developed. For example, the accuracy of the model

derived from the Clifford+T sampels is lower when used on the phase polynomial

samples. Therefore, if a similar model is needed for a circuit class outside of those

considered in this thesis, it is recommended that a new specialised model is derived

for the circuit class in question.

Figure 3.10: Example of the predictive model (blue curved lines) determining ahead of
time the region where the depth and width of HMQC will lie in when applied
to a randomly-generated 5-qubit Clifford+T circuit. The dotted lines maintain
the same meaning they had in figures 3.4 and 3.5.
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Figure 3.11: Example of the predictive model (blue curved lines) determining ahead of
time the region where the depth and width of HMQC will lie in when applied
to a randomly-generated 5-qubit phase polynomial circuit. The dotted lines
maintain the same meaning they had in figures 3.4 and 3.5.

Despite the differences between MBQC and HMQC introduced in this the-

sis, the hybrid model inherits many properties from MBQC since it still relies on

graph states, adaptive measurements and ancilla qubits. When converting a quan-

tum circuit to a graph state, high-degree graphs can be produced which can lead to

difficulties implementing the graphs on devices with limited qubit connectivity. To

fit the graphs on such architectures, it is often necessary to route the circuit, which

can lead to a large number of SWAP gates being added. As such, it is important

to assess how the hybrid model performs in such a setting, which is the focus of

section 3.7.

3.7 Routing for restricted architectures
In this section, three different strategies for routing a hybrid model circuit on a de-

vice with limited connectivity are compared. The architecture under consideration
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is assumed to be a 2D square lattice (degree-4 connectivity). This architecture is

chosen primarily for its simplicity and for the fact that it is sufficient to demonstrate

the negative impacts of the routing process on the depth of the final circuit. In real

applications, the available connectivity is often even sparser than the one used here

but that can only increase the impact of routing even further.

The mapping of the circuits onto the grid is achieved by using the methods

native to Pytket [2]. This is done by iterating through the two-qubit gates in the

temporal order in which they appear, assigning each qubit a temporary placement

on the architecture, until a two-qubit gate is found which does not conform to the

current placement. When that happens, the algorithm aims to move one of the qubits

to a new location using SWAP gates, so as to make the two-qubit gate executable.

Candidate placements are scored, selecting the one which requires the fewest SWAP

gates to be achieved. This is repeated until the entire circuit object is placed on the

device [2].

Some special considerations are made for each strategy to accommodate for

the properties unique to the hybrid model, as opposed to a simple measurement

pattern in general. Specifically, a measurement pattern on its own can be read as

a circuit object and mapped on a device in a straightforward way, such that logical

qubits that have to be entangled are either arranged to be physical neighbours on

the device from the beginning or have to be moved closer to one another via SWAP

gates during runtime. When considering the hybrid model, one has to remember

that multiple measurement patterns are involved and so deciding how they are to be

mapped on the device and interconnected becomes a bit more complicated.

The three approaches under consideration are the following: Naive routing,

separate routing and sequential routing. In the case of naive routing, instead of

treating the different measurement patterns as separate circuit objects, they are all

interconnected into a single circuit object and handed to the routing algorithm to-

gether. In the case of separate routing, each measurement pattern is mapped on the

architecture one at a time. Consequently, the outputs of one segment do not auto-

matically align with the corresponding inputs of the next segment and thus an inter-
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mediary step is required where the appropriate network of SWAP gates is generated

between segments. Pseudo-code outlining the three different routing strategies is

found in algorithm 3.

In the case of sequential routing, the segments are still mapped individually

and one at a time on the architecture, but the inputs of each segment are locked in

the location of the outputs of the preceding segment. This means that the routing

method has less freedom when mapping all but the first segment but this removes

the overhead caused by having to add extra SWAP gates between segments.

Figure 3.12: Comparison of the three routing approaches. Each data point represents a
different randomly-generated Clifford+T circuit, of a width in the range wc ∈
[2,15] and depth in the range of d ∈ [100,2300] and each color represents
a different routing approach. The x-axis represents the depth of the original
circuit before routing. The y-axis represents the percentage of the routed depth
of the hybrid model compared to the routed depth of the circuit model.

Once again, we turn to a numerical analysis to illustrate the comparison of the

three routing strategies, the results of which are shown in figure 3.12. Here we have
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applied each of the routing strategies on multiple circuits of varying sizes. All the

samples used are randomly-generated Clifford+T circuits with a variety of widths

in the range wc ∈ [2,15] and depths in the range of d ∈ [100,2300]. Furthermore, in

all the cases, the circuits were split into 3 segments, each subcircuit was converted

to MBQC and the resulting measurement patterns were linked together with each of

the three routing strategies. It should be noted than when the circuits under consid-

eration are shallow to begin with, the depth overhead added due to routing is dom-

inant and therefore, completely invalidates any potential depth reduction expected

from MBQC. However, for deeper circuits it is possible to reach a depth reduction

of up to 50% even after routing, which is still much lower than the 90% possible

without architecture restrictions for the same cases but still potentially worthwhile.

Looking more closely at the results revealed that routing separately results in

the lowest overall depth 30.7% of the time, the lowest 2-qubit depth 29.2% of the

time and the lowest 2-qubit gate count 23.4% of the time for the collected samples.

Routing sequentially results in the lowest overall depth 74.1% of the time and lowest

2-qubit depth 75.5% of the time and the lowest 2-qubit gate count 90.1% of the

time. As seen in figure 3.12 the difference between the three approaches in practice

is negligible and hard to spot, so each approach could be used in a real application.

However, the exact statistics do seem to suggest that the sequential routing approach

is slightly preferable which is to be expected because it is the more nuanced of the

three.
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Algorithm 3: Routing strategies.
Input: List of subcircuits, ci ∈C

Architecture object, α

Output: Routed circuit, c′

NAIVE(C,α)
begin

c′ = [ ]
for ci ∈C do

if i < N then
Map inputs of ci+1 to outputs of ci

c′+= ci
end
Route c′ on α

return c′
end

SEQUENTIAL(C,α)
begin

c′ = [ ]
for ci ∈C do

if i = 0 then
Route ci on α

else
Route ci on α with locked inputs

if i < N then
Map inputs of ci+1 to outputs of ci

c′+= ci
end
return c′

end

SEPARATE(C,α)
begin

c′ = [ ]
for ci ∈C do

Route ci on α

if i > 0 then
Generate swap circuit, cS moving the outputs of ci−1 to the inputs of ci
c′+= cS

c′+= ci
end
return c′

end
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3.8 Summary of the hybrid model
In this chapter, I have introduced the hybrid model of quantum computation which

is a sequential layering of the circuit model and the one-way model. The goal of

our version of the hybrid model is to achieve a high fraction of the depth reduction

achieved by the one-way model at a lower fraction of the qubit overhead required by

pure MBQC. It succeeds in doing so by maximizing reuse of ancilla qubits from one

measurement pattern to the next, thus minimising the total number of qubits needed

for the entire HMQC. This is accomplished by splitting the original circuit into N

subcircuits of equal depth before converting each one to a measurement pattern. The

inputs of each segment are then mapped to the outputs of the preceeding segment.

As for the classical information that emerges during each MBQC segment, such as

the outcomes of the mid-circuit measurements and the corresponding conditional

corrections, these can be handled either in the same layer by absorbing them as

rotations to the basis of future measurements, or passed to subsequent layers.

It should be noted that HMQC is not a universally suitable approach. While

it can be used to reduce the depth of a quantum circuit, thus reducing the effect

of decoherence, it does so at the cost of adding more measurements and qubit re-

initialisation. In platforms where measurements are costly, this can lead to higher

amounts of depolarizing noise.

Additionally, while the results are promising in the fully connected setting, our

attempts at routing the measurement patterns for restricted architectures have shown

that graph states usually have a high vertex degree and contain more interconnected

qubits when compared to the quantum circuits from which they are derived. As a re-

sult, more SWAP gates are needed to place the measurement patterns on a restricted

architecture and much of the depth reduction achieved through the conversion to

MBQC (or HMQC) is lost to this overhead.

In the next chapters, I provide two separate solutions to deal with the routing

overhead. First, I introduce algorithms based on local complementation and piv-

oting in chapter 4 which aim to reduce the degree of a graph/ZX-diagram so as to

directly reduce the number of SWAP gates needed to place the graphs. A second



3.8. Summary of the hybrid model 68

solution is to consider devices with all-to-all connectivity, such as the Quantinuum

H1-1 ion trap device [23]. An experimental implementation of the hybrid model on

this device is discussed in chapter 5.



Chapter 4

Local complementation passes

4.1 Introduction

Implementations of the one-way model or the hybrid model introduced in chapter 3

can involve high-degree graphs which are difficult to place on devices with restricted

qubit architectures because physical qubits can only interact with a small number of

neighbouring qubits. Consequently, attempting to use any form of MBQC on such

a platform can result in large overheads of SWAP gates, as discussed in section 3.7.

However, tools such as local complementation (LC) and edge local complementa-

tion (ELC) or pivoting, discussed in section 2.5, allow for graph transformations

which change the set of edges Ei j of a graph G, using local Clifford operations. By

leveraging these techniques it is possible to reduce the entanglement depth of the

measurement patterns. In this chapter, I introduce and discuss the implementation

of specialised algorithms that LC and ELC to reduce entanglement depth.

Both LC and ELC can change the degree of various vertices in a graph. It

follows that these transformations can be exploited to obtain a new graph, equiva-

lent to the original, with a lower maximum degree. However, the number of graphs

equivalent under LC is intractable for larger graphs [96, 97]. An exhaustive ap-

proach where every possible case in the LC equivalent class would be investigated

and the most suitable candidate would be selected is not feasible. Consequently, a

more careful and computationally cheaper approach must be followed.

Specifically, I introduce four separate algorithms that can be used to find a se-
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quence of LC and/or ELC operations on carefully selected vertices to reduce the

maximum degree of the graph. The first algorithm relies exclusively on LC opera-

tions and is discussed in section 4.2. The second uses only ELC operations and is

discussed in section 4.3. The third algorithm uses both techniques but prioritises LC

operations which are cheaper. The fourth algorithm expands upon the third, by se-

lecting the best of a finite number of possible solutions each separated by a certain

degree of randomisation. Since both the third and fourth algorithms are compos-

ite approaches that build up on the first two, they are jointly discussed in section

4.4. Finally, the results of these algorithms in practice are shown and compared in

section 4.5.

4.2 Local complementation algorithm

The first algorithm I introduce is one which only relies on LC operations. Consider a

ZX diagram in MBQC-form, with the underlying graph G=(V,E, I,O) where I ⊆V

is the set of inputs and O ⊆ V is the set of outputs. It is possible to reduce ∆(G)

by identifying all the vertices where deg(v) = ∆(G) and applying a transformation

such that deg′(v) < ∆(G) (where deg′ represents the degree of a vertex after the

transformation). Applying LC about v does not change any of the edges of the vertex

v itself, but it does affect the edges of its neighbours, NG(v). In order to reduce ∆(G)

it is necessary to find a vertex u ∈ NG(v) where G⋆u results in deg′(v)< deg(v).

Additionally, it is important to ensure that for every vertex w∈NG(u),deg′(w)<

∆(G). By understanding the effect of LC on the neighbourhood NG(u), the new
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degree of vertex w, deg′(w) can be derived as shown in equation 4.1,

deg′(w) = New degree of w,

deg(w) = Previous degree of w,

|NG(u)−NG(w)−{w}|= Neighbours added to w due to G⋆u,

|NG(u)∩NG(w)|= Neighbours removed from w due to G⋆u,

deg′(w) = deg(w)+ |NG(u)−NG(w)−{w}|− |NG(u)∩NG(w)|

= |NG(w)|+ |NG(u)−NG(w)−{w}|− |NG(u)∩NG(w)|

= |NG(w)|+ |NG(u)|−2|NG(u)∩NG(w)|−1.

(4.1)

In the pseudocode below, I present algorithm 4 which iteratively identifies the neigh-

bours of maximum degree vertices in a graph and attempts to find valid instances

of LC to affect them. The algorithm terminates when no further improvements can

be found for the graph. The resulting graph has an equal or lower maximum degree

than the original and thus, the underlying measurement pattern also has a lower

entanglement depth.
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Algorithm 4: Reduces the degree of a graph using LC.
Input: The original graph,G = (V,E, I,O)
Output: The improved graph,G′ = (V,E ′, I,O)

ALG4(G)
begin

G′ = G
apply = True
while apply do

(G′,apply) = LC PASS(G′)
end
return G′

end

LC PASS(G) Reduces ∆(G) by 1 using LC.
begin

G′ = G
U = {}
for u ∈V do

if deg(u) = ∆(G′) then
U =U ∪{u}

end
successes = 0
for u ∈U do

if deg(u) = ∆(G′) then
for v ∈ NG’(u)− I do

if LC CHECK(G′,v) then
G′ = G′ ⋆ v
successes = successes+1
break

end
else

successes = successes+1
end
return (G′,successes == |U |)

end

LC CHECK(G,v) Checks if LC reduces degree.
begin

B = NG(v)
for w ∈ B do

Degree of w after the edges change.
deg′(w) = |NG(w)|+ |B|−2|B∩NG(w)|−1
if deg′(w)≥ ∆(G) then

return False
end
return True

end
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Algorithm 4 was tested on degree-4 square lattices of width wg ∈ [3,10] which

had been previously distorted with random applications of LC. Figure 4.1 illustrates

the partial recovery of the distorted graphs that was possible using algorithm 4.

For each separate grid size, this procedure was repeated 20 times, with figure 4

illustrating the average values.

It should be noted that the scaling of algorithm 4 is polynomial in the size of the

graph and can be estimated by observing the factors proportional to the number of

vertices n that emerge at different points in the algorithm. The algorithm is applied

iteratively while reducing the entanglement depth of the graph by 1 (at worst) during

each iteration. As a vertex can, at most, be entangled with every other vertex, the

number of iterations cannot exceed n−1. During each iteration, the algorithm has

to locate all the (current) maximum degree vertices, u ∈V in the graph which adds

another factor proportional to and upper-bounded by n. For each maximum degree

vertex u, the algorithm has to consider all of its neighbours v ∈ NG(u) as potential

candidates for local complementation, adding another factor of n−1 to the scaling.

Finally, for each candidate vertex v, we have to consider the impact of the local

complementation G⋆v on its own neighbourhood, w∈NG(v). So the overall scaling

of algorithm 4 is upper-bounded by O(n4) where n is the number of vertices in the

graph.

There is still room for improvement between the output of algorithm 4 and the

benchmark indicated by the dashed horizontal line, which motivated the develop-

ment of other more effective algorithms discussed in sections 4.3 and 4.4.

4.3 Pivoting algorithm

ELC can also reduce the maximum degree of a graph, and here I propose a second

algorithm, algorithm 5, which exclusively relies on ELC to accomplish this. ELC

is a more complex and more computationally expensive operation than LC but it

is expected to allow us to find some potential improvements that algorithm 4 may

have missed.

To reduce deg(u) using ELC it is necessary to identify the neighbours v ∈
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Figure 4.1: Evaluating the effectiveness of algorithm 4 in lowering the maximum degree of
graphs of width wg ∈ [3,10]. The graphs are constructed by distorting a degree-
4 square lattice using random applications of LC. The blue datapoints indicate
the number of maximum edges after distortion and before recovery. The yellow
datapoints indicate maximum edges after using algorithm 4 which relies on LC.
The dashed horizontal line indicates the original degree of the lattice before the
distortions and the minimum achievable after recovery. This is done 20 times
for each width value and the datapoints indicate the average max edges before
and after the application of algorithm 4.

NG(u) and for each v, to identify its own neighbours w ∈ NG(v)−{u}. The focus

is on three subsets, A(G,v,w),B(G,v,w),C(G,v,w) ⊆ V as previously discussed in

section 2.5. I define the vertices in these sets as follows: a ∈ A,b ∈ B,c ∈ C. The

new degrees of these vertices in G′ = G(vw) are given by equation 4.2 which is

derived in a way similar to 4.1,

deg′(a) = |NG(a)|+ |B|+ |C|−2|B∩NG(a)|−2|C∩NG(a)|,

deg′(b) = |NG(b)|+ |A|+ |C|−2|A∩NG(b)|−2|C∩NG(b)|,

deg′(c) = |NG(c)|+ |B|+ |A|−2|B∩NG(c)|−2|A∩NG(c)|.

(4.2)

As such, I present algorithm 5 which iteratively identifies the neighbours of maxi-

mum degree vertices in a graph and attempts to find neighbouring connected pairs
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of vertices v and w where ∆(G(vw)) ≤ ∆(G). The algorithm terminates when no

further improvements can be found for the graph.

The scaling of algorithm 5 can be derived similarly to algorithm 4 with the

difference that pivoting is a rotation about a pair of vertices rather than a single ver-

tex. This means that in the worst case scenario where every vertex is entangled with

every other vertex, the number of possible pivoting operations is proportional to n2

instead of n (which is the case for local complementation). This raises the overall

scaling of algorithm 5 to O(n5). This is slightly more expensive than algorithm

4 because pivoting is a higher order operation when compared to LC. However, it

is still polynomial scaling and it can easily be run on a classical machine even for

larger graphs.
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Algorithm 5: Reduces the degree of a graph using ELC.
Input: The original graph,G = (V,E, I,O)
Output: The improved graph,G′ = (V,E ′, I,O)

ALG5(G)
begin

G′ = G
apply = True
while apply do

(G′,apply) = ELC PASS(G′)
end
return G′

end

ELC PASS(G) Reduces ∆(G) by 1 using ELC.
begin

G′ = G
U = {}
for u ∈V do

if deg(u) = ∆(G′) then
U =U ∪{u}

end
successes = 0
for u ∈U do

if deg(u) = ∆(G′) then
EP = {}
for v ∈ NG’(u)− I do

for w ∈ NG’(v)− I −{u} do
if (w,v) ̸∈ EP then

EP = EP ∪{(v,w)}
end

end
for (v,w) ∈ EP do

if ELC CHECK(G′,v,w) then
G′ = G′(vw)

successes = successes+1
break

end
else

successes = successes+1
end
return (G′,successes == |U |)

end

ELC CHECK(G,v,w) Checks if ELC reduces degree.
begin

A = NG(v)−NG(w)−{w}
B = NG(w)−NG(v)−{v}
C = NG(v)∩NG(w)
for X ∈ {A,B,C} do

Y,Z ∈ {A,B,C}−{X}
for x ∈ X do

Degree of x after the edges change.
deg′(x) = |NG(x)|+ |Y |+ |Z|−2|Y ∩NG(x)|−2|Z ∩NG(x)|
if deg′(x)≥ ∆(G) then

return False
end

end
return True

end
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Algorithm 5 was tested on degree-4 square lattices of width wg ∈ [3,10] which

had been previously distorted with random applications of LC. Figure 4.2 illustrates

the partial recovery of the distorted graphs that was possible using only ELC. Again,

this procedure was repeated 20 times for each separate grid size and the figure shows

the averaged resulting depth before and after the algorithm is applied. Algorithm

5 performs better than algorithm 4 on the same set of distorted grid samples which

was analysed in figure 4.1, as pivoting is a higher order operation than LC. However,

algorithm 5 still does not provide full recovery of the original grid and so a new

algorithm that uses both local complementation and pivoting is discussed in section

4.4.

Figure 4.2: Evaluating the effectiveness of algorithm 5 in lowering the maximum degree of
graphs of width wg ∈ [3,10]. The graphs are constructed by distorting a degree-
4 square lattice using random applications of LC. This is done 20 times for
each separate value of width with the datapoints in the figure representing the
average number of maximum edges. The blue datapoints indicate the number
of maximum edges after distortion and before recovery. The green datapoints
indicate maximum edges after using algorithm 5 which relies on pivoting. The
dashed horizontal line indicates the original degree of the lattice before the
distortions and the minimum achievable after recovery.
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4.4 Composite algorithms
Algorithms 4 and 5 may each find a number of possible improvements that do not

necessarily overlap. As such, I expect the best approach to be a combination of the

two. Thus, I present algorithm 6 which prioritises LC operations where possible (as

they are cheaper) but attempts to find a further depth reduction using ELC when LC

reaches a dead end.

Algorithm 6: Reduces the degree of a graph using both LC and ELC.
Input: The original graph,G = (V,E, I,O)
Output: The improved graph,G′ = (V,E ′, I,O)

ALG6(G)
begin

G′ = G
apply = True
while apply do

(G′,apply) = LC PASS(G′)
if not apply then

(G′,apply) = ELC PASS(G′)

end
return G′

end

Furthermore, I have noticed that the results of algorithm 6 are somewhat de-

pendent on the form of the original graph it is given as an input. If the solution space

of interest contains all the graphs equivalent to G under LC, algorithms 4, 5 and 6

follow a trajectory of minimising ∆(G) towards a local minimum in this solution

space.

The scaling of algorithm 6 is O(n5) where n is the number of vertices in the

graph. This is the same cost as algorithm 5 since this algorithm also uses pivoting

but in practice it may prove slightly cheaper than algorithm 5 because algorithm 6

prioritises LC over pivoting whenever possible.

Therefore, I introduce algorithm 7, which expands upon algorithm 6 by select-

ing the best of a number of solutions with each solution being obtained from a dif-

ferent starting point in the solution space. This is achieved by first creating multiple
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copies of the original graph state, each of which represents a different optimisation

‘attempt’. Each copy is subjected to different number of random LC operations,

called ‘distortions’ to ensure that each attempt has a different starting point. Algo-

rithm 6 is then applied to each copy separately and the results are compared to pick

the graph with the lowest degree. This process is equivalent to exploring multiple

local minima in the solution space.

The scaling of algorithm 7 is O(n5+c) where n is the number of vertices in the

graph and c is a constant factor (related to the number of attempts and distortions

chosen).

Algorithm 7: Reduces the degree of a graph using LC, ELC and some
randomisation.

Input: The original graph,G = (V,E, I,O)
Output: The improved graph,G′ = (V,E ′, I,O)

ALG7(G,attempts,distortions)
begin

G′ = G
I′ =V − I
for i ∈ [1,attempts] do

G′′ = G
for k ∈ [1,distortions] do

u ∈RAND I′

G′′ = G′′ ⋆u
end
G′′ = ALG6(G′′)
if ∆(G′′)< ∆(G′) then

G′ = G′′

end
return G′

end

Algorithms 6 and 7 were tested on degree-4 square lattices of width wg ∈ [3,10]

which had been previously distorted with random applications of LC. This was

done 20 times for each value of width. Figure 4.3 illustrates the partial recovery

of the distorted graphs that was possible using both LC and pivoting. Algorithm 6

performs better than algorithms 4 and 5 on the same set of distorted grid samples

which were analysed in figures 4.1 and 4.2, which is expected as there are now
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two operations available that can be used to reduce the graph. In cases where LC

cannot provide any further reduction, pivoting might be able to and vice versa. As a

result, algorithm 6 outperforms both algorithms 4 and 5 which only rely on a single

operation each. Algorithm 7 is another step-up from algorithm 6 which finally fully

recovers up to 10x10 grids. This is achieved by widening the solution subspace

investigated through multiple attempts.

Figure 4.3: Evaluating the effectiveness of algorithms 6 and 7 in lowering the maximum
degree of graphs of width wg ∈ [3,10]. The graphs are constructed by dis-
torting a degree-4 square lattice using random applications of LC. The blue
datapoints indicate the number of maximum edges after distortion and before
recovery. The purple datapoints indicate maximum edges after using algorithm
6 which uses Lc and pivoting but prioritizes the former. The red datapoints in-
dicate maximum edges after using algorithm 7 which is a variant of algorithm
6 which uses multiple attempts to search through a broader solution subspace.
The dashed horizontal line indicates the original degree of the lattice before the
distortions and the minimum achievable after recovery.
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4.5 Result comparison for degree reduction algo-

rithms

In this section, I discuss the results of applying algorithms 4, 5, 6 and 7 presented

in sections 4.2-4.4 on a variety of sample graphs. I have chosen to investigate three

different classes of graphs for this analysis and four different approaches at reducing

∆(G) for each of the three sample classes.

The first type of samples were obtained by distoring an nxn square lattice

through a series of LC operations on randomly chosen vertices. The original graphs

have a low degree, ∆(G) = 4, which increases after the distortions. The reason for

choosing this sample class is to evaluate how well the algorithms manage to recover

the original grid. The minimum degree achievable is already known so there is a

target result to use as a benchmark for the algorithms. As previously mentioned, the

algorithms are applied 20 times to each separate grid size and the results presented

in this section are the averages.

The second type of samples were obtained by generating random Clifford+T

circuits. Specifically, I initialised quantum circuits with n qubits (20 separate cir-

cuits for each value of n ∈ [3,10]), then added a total of 500 gates out of which

20% were T gates, 40% were Hadamard gates and 40% were CNOT gates. These

gates were applied to random qubits/pairs of qubits. The resulting circuits were

then converted into a ZX diagram in MBQC-form. This sample class was chosen

because the Clifford+T gate set is universal making this a useful benchmark for the

algorithms. The specific numbers of gates were chosen to make the resulting mea-

surement patterns have width and depth similar to the corresponding square lattice

samples.

The third type of samples are phase polynomials of width n containing a num-

ber of randomly-generated Pauli gadgets [75, 76]. These samples are interesting be-

cause phase polynomials are used in quantum chemistry applications such as VQE

algorithms. The number of Pauli gadgets was chosen so that these graphs had a

similar original width and depth to the corresponding square lattices. As before, 20
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separate phase polynomial circuits were considered for each value of n ∈ [3,10] and

the results in this section are averages.

I have compared the four different algorithms on each of these sample sets.

Algorithm 4 only uses LC operations making its scaling O(n4). As a result this

is the cheapest of the algorithms in terms of computational power. Algorithm 5

exclusively uses ELC operations making its scaling O(n5). Algorithm 6 uses both

LC and ELC thus also giving it a scaling of O(n5). However, it prioritises LC

operations whenever they lead to an improvement which means that its effective

scaling will be lower than algorithm 5. Algorithm 7 is essentially an expansion of

algorithm 6 with the addition of a constant factor.

Figure 4.4 compares the results of each algorithm on distorted square lattices of

varying sizes. All four algorithms succeed in reducing the maximum degree of the

grid. The approach using ELC as outlined in algorithm 5 is more effective than the

approach relying purely on LC. This is to be expected since ELC can be viewed as a

higher order operation. However, algorithm 6 produces even better results showing

that the combination of both LC and ELC is more effective than the exclusive use of

either one. The addition of some randomisation (algorithm 7) leads to the complete

recovery of the original grid structure for sizes up to 10x10. Table 4.1 shows the

numerical values of figure 4.4 in more detail.

Figure 4.5 compares the results on randomly-generated Clifford+T circuits of

varying width. Table 4.2 lists the numerical values of figure 4.5. Figure 4.6 com-

pares the results on randomly-generated phase polynomials of varying width. Table

4.3 shows the numerical values of figure 4.6 in more detail. In both cases, the

outcomes follow the same hierarchy seen in the grid samples, with algorithm 7 re-

sulting in the lowest entanglement depth. Regardless of the circuit class chosen

as the samples, the results show that the same hierarchy exists in the effectiveness of

the four algorithms as what would be expected. Specifically, algorithm 7 is a direct

improvement over algorithm 6, therefore, it performs better in every scenario, while

algorithm 6 is itself a direct improvement over algorithms 4 and 5 as it incorporates

and consequently outperforms both. The only connection that is less direct is that
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Figure 4.4: Comparing the effectiveness of four algorithms to lower the maximum degree
of graphs of width ∈ [3,10]. The graphs are constructed by distorting a degree-
4 square lattice using random applications of LC. The blue datapoints indicate
the number of maximum edges after distortion and before recovery. The yellow
datapoints indicate maximum edges after using algorithm 4 which relies on LC.
The green datapoints indicate maximum edges after using algorithm 5 which
relies on pivoting. The purple datapoints indicate maximum edges after using
algorithm 6 which uses LC and pivoting but prioritizes the former. The red
datapoints indicate maximum edges after using algorithm 7 which is a variant
of algorithm 6 applied over several attempts. The dashed horizontal line indi-
cates the original degree of the lattice before the distortions and the minimum
achievable after recovery.

between algorithms 4 and 5 as they are based on different operations, but the latter

outperforming the former is within expectations because pivoting is in many ways a

higher order operation than LC: Not only is one step of pivoting equivalent to three

steps of LC but pivoting is performed about pairs of vertices rather than individual

vertices, giving algorithm 5 more choices at every iteration, which is also reflected

in the slightly steeper scaling. However, considering that all four algorithms are

computationally cheap to run on a classical machine due to their low polynomial

scaling - with only minor differences between the cheaper and most expensive of

the four - in most cases, algorithm 7 should be used as it is the most comprehensive
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n Original Algorithm 4 Algorithm 5 Algorithm 6 Algorithm 7
3 6.5 4.8 6.0 4.0 4.0
4 9.2 6.7 7.2 5.0 4.0
5 14.2 10.6 8.6 6.0 4.0
6 18.9 13.1 10.1 4.6 4.0
7 25.1 14.1 10.9 5.9 4.0
8 27.7 14.7 11.7 5.8 4.0
9 33.4 17.4 12.3 8.0 4.0

10 41.8 22.4 13.4 6.9 4.0

Table 4.1: Table showing the numerical values of the datapoints in figure 4.4. Grids of
dimensions n×n are distorted and then subjected to each of the four algorithms
for a maximum edge reduction. This is repeated 20 times for each size n ∈
[3,10]. The entries in the table represent the average maximum edges for each
sample size after each algorithm is applied.

n Original Algorithm 4 Algorithm 5 Algorithm 6 Algorithm 7
3 14.6 10.6 9.1 8.7 7.8
4 17.7 13.7 12.1 11.5 10.5
5 22.1 17.3 14.7 14.2 12.9
6 24.7 19.8 17.2 16.6 15.2
7 29.7 23.5 20.0 19.6 18.5
8 32.3 25.9 22.5 22.4 21.0
9 35.1 28.7 24.5 23.9 23.0

10 38.1 30.7 27.5 26.9 26.3

Table 4.2: Table showing the numerical values of the datapoints in figure 4.5. 20 randomly-
generated Clifford+T circuits for each width n ∈ [3,10] are converted to ZX
diagrams in MBQC-form. They are then distorted and then subjected to each
of the four algorithms for a maximum edge reduction. The entries in the table
represent the average maximum edges for each sample size after each algorithm
is applied.

and best performing option.

In general, the algorithms introduced in this chapter can be used to reduce

entanglement depth of measurement patterns both in the pure one-way model and

the hybrid model introduced in chapter 3. Specifically, reduced entanglement depth

can help make any version of MBQC more compatible with devices that exhibit low

connectivity between physical qubits as less interconnected graphs are easier to fit

onto chips with restricted architectures and require fewer SWAP gates to do so - a

topic that was discussed more extensively in section 3.7. As previously mentioned,

an alternative solution is to consider devices with full connectivity, to bypass the
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Figure 4.5: Comparing the effectiveness of four algorithms to lower the maximum de-
gree of graphs of width ∈ [3,10]. The graphs are constructed by converting
randomly-generated Clifford+T circuits to measurement patterns. The blue dat-
apoints indicate the number of maximum edges after distortion and before re-
covery. The yellow datapoints indicate maximum edges after using algorithm 4
which relies on LC. The green datapoints indicate maximum edges after using
algorithm 5 which relies on pivoting. The purple datapoints indicate maximum
edges after using algorithm 6 which uses LC and pivoting but prioritizes the
former. The red datapoints indicate maximum edges after using algorithm 7
which is a variant of algorithm 6 applied over several attempts.

routing problem entirely, such as the Quantinuum H1-1 ion trap device [23]. Addi-

tionally, having a measurement pattern with lower entanglement depth means that,

by definition, fewer timesteps are required to prepare the underlying graph state. As

the preparation of the graph state is constructed mainly by CZ gates, a lower en-

tanglement depth directly results in fewer serialised CZ gates, which is equivalent

to a lower execution time for the measurement pattern. Consequently, the algo-

rithms introduced in this chapter remain beneficial and relevant even in the absence

of routing and on platforms with full connectivity.

In chapter 5, I discuss an implementation of the hybrid model and the depth

reduction algorithms on a quantum circuit executed on the H1-1 device. The goals
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Figure 4.6: Comparing the effectiveness of four algorithms to lower the maximum de-
gree of graphs of width ∈ [3,10]. The graphs are constructed by converting
randomly-generated phase polynomial circuits to measurement patterns. The
blue datapoints indicate the number of maximum edges after distortion and
before recovery. The yellow datapoints indicate maximum edges after using
algorithm 4 which relies on LC. The green datapoints indicate maximum edges
after using algorithm 5 which relies on pivoting. The purple datapoints indi-
cate maximum edges after using algorithm 6 which uses LC and pivoting but
prioritizes the former. The red datapoints indicate maximum edges after using
algorithm 7 which is a variant of algorithm 6 applied over several attempts.

of this experiment are many: It serves as a proof-of-concept of the techniques in-

troduced in this thesis and a practical demonstration of their use in practice. It also

serves as one of the first implementations of the one-way model on a device which

supports adaptive measurements. Finally, it allows for a more meaningful evalua-

tion of both the hybrid model and the algorithms introduced in this chapter.
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n Original Algorithm 4 Algorithm 5 Algorithm 6 Algorithm 7
3 14.2 10.3 9.8 8.9 8.2
4 21.2 16.0 13.7 12.9 12.0
5 27.8 21.3 19.1 17.3 16.2
6 30.7 26.0 23.8 23.8 22.1
7 34.9 29.2 27.2 27.3 26.6
8 34.7 31.0 30.2 29.8 29.1
9 37.2 33.0 32.1 31.7 31.5

10 38.2 34.4 33.8 33.4 32.9

Table 4.3: Table showing the numerical values of the datapoints in figure 4.6. 20 randomly-
generated phase polynomial circuits for each width nin[3,10] are converted to
ZX diagrams in MBQC-form. They are then distorted and then subjected to each
of the four algorithms for a maximum edge reduction. The entries in the table
represent the average maximum edges for each sample size after each algorithm
is applied.



Chapter 5

Ion trap implementation

5.1 Introduction

While the one-way model of quantum computation is equivalent to the circuit model

and carries its own set of advantages and disadvantages, experimental realizations

of MBQC have been scarcer, mainly due to the additional requirements such as

adaptive measurements and higher numbers of physical qubits needed. Still, there

have been experimental demonstrations of feed-forward and non-destructive CNOT

gates acting on independent photon qubits since the early 2000s [98, 99].

Additionally, this was more recently expanded to a demonstration of MBQC

on a photonics device containing up to 5 qubits [100]. Despite these promising

results in the field of optics, there have not been any notable realizations of the one-

way model on other platforms, such as superconducting qubits or ion traps. One

of the goals of this thesis was to change this, by achieving a realization of not only

the one-way model but also the techniques developed earlier in the thesis, on an

ion trap device. The motivation for this experiment was partly to produce a proof-

of-concept for the one-way model in a platform other than photonics, but also to

more specifically observe how our techniques work in practice, using non-trivial

measurement patterns using up to 18 physical qubits.

This chapter focuses on the experimental implementation of the hybrid model

and the local complementation pass technique on the Quantinuum H1-1 [23],

achieved over the months of March & April 2023.
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In section 5.2, the motivation for an experimental implementation of the tech-

niques presented in this work are discussed. In the same section, the reasons for

choosing this particular hardware over alternatives are also given. The device speci-

fications of the H1-1 device used for the experiment are listed in section 5.3. Section

5.4 gives a more detailed description of the experimental setup, including informa-

tion about the methods and sample circuits used. The results of the hybrid model

implementation are compared to both a noiseless benchmark and a circuit model

implementation on the same device in the presence of noise. This comparison is

visually presented in section 5.5.

5.2 Motivation for the experiment

While measurement patterns in the one-way model can be read and executed in a

manner very similar to quantum circuits, they exhibit some additional properties

which make the requirements for an experimental realisation steeper than that of an

equivalent circuit.

The two most important such properties are the requirement for adaptive mea-

surements and the fact that converting a circuit to a measurement pattern requires a

large qubit overhead. The Quantinuum H1 series ion trap devices [23] are among

the first cases of quantum hardware to support adaptive measurements. The H1-1

device used in this thesis allows up to 20 physical qubits to be stored at once which

is also sufficiently large to accommodate the qubit overhead introduced when tran-

spiling our 3-qubit circuit sample to a version of the hybrid model introduced in

chapter 3.

It is important to note that the specific sample circuit used in this experiment

was explicitly chosen to have a high enough circuit depth, such that converting

it to a single measurement pattern requires more qubits than what the device can

accommodate, yet under 20 qubits when the hybrid model is used instead. An

additional reason for choosing this specific device is the fact that this hardware does

not require routing during compilation which, as discussed in section 3.7, would

result in large depth overheads when combined with MBQC.
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Finally, this machine is compatible with the Pytket library which is used ex-

tensively throughout this thesis and includes useful tools such as the conversion of

quantum circuits to ZX-diagrams and measurement patterns. Therefore, this partic-

ular experimental setup not only meets the requirements for an implementation of

the one-way in general, but is also extremely compatible with the specific tools and

requirements related to this thesis.

5.3 Quantinuum H1-1 device specifications

This section contains information about the H1-1 device. All the data comes from

the ”System Model H1 Product Data Sheet” from the official Quantinuum website

[23].

The H1-series devices (two at the time of writing) feature 20 physical qubits

with all-to-all connectivity and quantum gates implemented via lasers. The devices

use the quantum charged-coupled device (QCCD) architecture with five zones for

parallel gates [101]. The devices also allow mid-circuit measurements and qubit

reuse after the mid-circuit measurements which meet the key requirements for the

execution of MBQC and HMQC. The native gate set involves the single-qubit rota-

tions and two-qubit ZZ gates defined by equations 5.1-5.3,

U1q(θ ,φ) = e−i(cosφX+sinφY ) θ

2 =

 cosθ

2 −ie−iφ sinθ

2

−ieiφ sinθ

2 cosθ

2

 , (5.1)
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2 =

e−i λ

2 0

0 ei λ

2

 , (5.2)
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1 0 0 0

0 eiθ 0 0

0 0 eiθ 0

0 0 0 1
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The conversion from the Clifford+T gateset we use to the native gateset used by the

H1-1 device is handled automatically by the TKET compiler when a circuit object
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is passed for compilation [2, 23]. Table 5.1 lists the error rates of various operations

for the H1-1 device.

Error cause Minimum val. Typical val. Maximum val.
Single-qubit gate 1×10−5 4×10−5 3×10−4

Two-qubit gate 1.7×10−3 2×10−3 5×10−3

State preparation & measurement 2×10−3 3×10−3 5×10−3

Memory error/qubit for d = 1 1×10−4 2×10−4 1×10−3

Measurement cross-talk 5×10−6 1×10−5 2×10−4

Table 5.1: Known error rates of various operations of the Quantinuum H1-1 ion trap device.
Minimum, typical and maximum values are listed for each type.

5.4 Experiment overview
The circuit sample used in this experiment is a randomly generated 3-qubit phase

polynomial circuit with 20 phase gadgets which is produced using the algorithm

described in section 2.8. The reason for choosing a sample in the class of phase

polynomial circuits is due to their relevance in NISQ applications, such as quantum

chemistry where the VQE algorithm is often used [60, 61, 62].

The sample was chosen to contain no fewer than 20 phase gadgets because

it has to be sufficiently deep to demonstrate the benefits of depth reduction that

would not be present when transpiling a shallower circuit to MBQC or the hybrid

model. It also does not contain any more than 20 phase gadgets or 3 qubits because

that would exceed the qubit capacity of the H1-1 device using the hybrid model

even after splitting it into two segments. If the sample was any wider or deeper,

it would require at least three segments to be implemented via the hybrid model.

This specific sample cannot be implemented in a single segment, in a pure MBQC

form, as the corresponding pattern requires more than 20 qubits and thus exceeds

the capacity of the device.

The sample circuit is then simplified, removing redundant gate pairs (such as

a sequence of two Hadamard gates acting on the same qubit in a row or similar), by

using some of the methods available in the Pytket library. The next step is to split

the circuit into two subcircuits of equal depth as described in section 3.2 and to con-

vert each one of them into a ZX-diagram in MBQC-form using the corresponding
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methods from the Pytket library. On each of the resulting measurement patterns, a

Python implementation of algorithm 6 discussed in section 4.2 is applied, in order

to reduce the entanglement depth of the patterns as much as possible.

It is also important to note that because the original circuit contains 3 qubits,

the resulting measurement patterns in the hybrid model also contain 3 logical qubits

each, but many more physical qubits (close to 20). Therefore, input/output maps are

generated during the conversion to measurement patterns and the physical qubits of

the second pattern have to be re-labelled so that the 3 output qubits of the first

pattern are fed into the corresponding input qubits of the second pattern.

Subsequently, the measurement patterns are compiled together into a new cir-

cuit object (which also contains adaptive measurements) and then executed on the

H1-1 device. The original circuit is also executed on the device directly as a point

of comparison, but also run on the H1-1E emulator with quantum noise disabled

to serve as a benchmark. The results of the benchmark, the circuit model and the

hybrid model are then compared in section 5.5.

5.5 Result discussion
The original sample circuit used in this experiment is a 3-qubit circuit which can be

seen in figure 5.1. When transpiled into a single measurement pattern, the entan-

glement depth decreases but the width increases to 28 which means that this mea-

surement pattern exceeds the qubit capacity of the H1-1 device. However, when a

2-segment version of the hybrid model is used the width decreases to 18, allowing

the new circuit to be executed on the device. Table 5.2 shows a comparison of width,

2-qubit depth and total number of 2-qubit gates between the 3 implementations.

Resource Circuit Model One-way Model Hybrid Model (N = 2)
Qubits 3 28 18

2-qubit Depth 36 12 13
2-qubit Gates 36 77 68

Table 5.2: Comparison of width, 2-qubit depth and total number of 2-qubit gates for a quan-
tum circuit implemented in the circuit model, one-way model and the hybrid
model with 2 segments. Both the one-way model and hybrid model implemen-
tations have been subjected to the depth reduction algorithm from chapter 4.
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Figure 5.1: The original 3-qubit sample circuit implemented on the device.
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These metrics are also illustrated in figure 5.2 which compares the same re-

sources while placing into perspective the effectiveness of the hybrid model com-

pared to the normal version of the one-way model. The black dotted line con-

nects the circuit model and MBQC data points and is there to highlight that the hy-

brid model results in ‘cheaper’ depth reduction than pure MBQC. The red vertical

dashed line indicates the qubit capacity of the H1-1 device. The MBQC implemen-

Figure 5.2: Comparison of the resource requirements of three different implementations
for the sample circuit shown in figure 5.1. The x-axis indicates the qubit re-
quirement while the y-axis indicates the 2-qubit depth requirement. The three
implementations are as follows: Blue = Circuit model, Orange = MBQC, Grey
= Hybrid model (with 2 segments). The vertical dotted line represents the qubit
capacity of the device.

tation cannot be executed on the device due to its qubit requirement but the circuit

model implementation and the hybrid model implementation are both run on the

device for comparison. The circuit model is first executed on the H1-1E emulator,

which is designed to perform like the real device but provides the option for quan-

tum noise to be turned off, to serve as a benchmark for the other two results. Each

of the three instances is run and measured 100000 times to minimize any statistical

variation. The output distributions are plotted side-by-side in figure 5.3. To more
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Figure 5.3: Comparison of the benchmark (blue), circuit model (orange) and hybrid model
(grey) output distributions for 100000 shots. A horizontal dashed line is placed
at a frequency of 0.125 which indicates what a uniform distribution would look
like for a the 3-qubit circuit shown in figure 5.1.

accurately compare two output distributions Di,D j, a metric called total variation

distance [102] is used, which is defined in equation 5.4,

d(Di,D j) = Max(|Di(u)−D j(u)| : u ∈ Di,D j). (5.4)

Both the circuit model and the hybrid model are compared against the benchmark

distribution. For the circuit model, the total variation distance is 0.017 and for the

hybrid model it is 0.034 indicating that the latter is further off from the error-free

values. As shown in figure 5.3, for most measurement outcomes the hybrid model

results tend closer to the uniform distribution than the circuit model.

Consider the single-qubit depolarizing channel ∆1,k(ρ) given in equations 5.5

and 5.6 and parameterised by scalar k [14],

∆1,k(ρ) =
3

∑
i=0

KiρK†
i , (5.5)
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K0 =

√
1− 3k

4
I,Ki =

√
k
4

Pi, i ∈ [1,3]. (5.6)

In this case, when the scalar k is large, the strength of the channel is maximized

and the measured state of the system tends to the maximally-mixed state, which

for the single qubit case returns each outcome with a 50% probability [14]. This

can be generalised to the n-qubit case with a depolarising channel ∆n,k(ρ) given in

equations 5.7 and 5.8,

∆n,k(ρ) =
4n−1

∑
i=0

KiρK†
i , (5.7)

K0 =

√
1− (4n −1)k

4n I,Ki =

√
k
4n Pi, i ∈ [1,4n −1]. (5.8)

A simplified but equivalent definition of the n-qubit depolarizing channel is given

in equation 5.9 [14],

∆n,k(ρ) = ρk = (1− k)ρ + k
I

2n . (5.9)

When we consider the 3-qubit case (as is the sample circuit executed on the

ion trap device) given by equation 5.10, the maximally-mixed state would look

like a uniform distribution over the eight possible measurement outcomes, each

occurring with a probability of 12.5%. Therefore, by observing the measurement

results on the device, given in figure 5.3, we notice that for the hybrid model case,

the measurements are closer to the maximally-mixed state than the circuit model

case which indicates the presence of strong depolarizing noise.

ρk = (1− k)ρ + k
I
8

(5.10)

From the definition of the depolarizing channel, when the scalar parameter k tends

to 0 the effect of the depolarizing channel disappears and the result tends to the

error-free value unaffected by depolarizing noise while when k tends to 1 the result

instead tends to the maximally-mixed state - a uniform distribution, as indicated in
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equations 5.11,

lim
k→0

ρk = ρ,

lim
k→1

ρk =
I
8
.

(5.11)

It is then reasonable to make the assumption that the experimental results on the

H1-1 device are subject to different levels of depolarizing noise. This assumption

introduces the possibility of correcting for the effects of the noise with simple error

mitigation techniques [73].

It should be noted that each qubit is normally subject to its separate, local

depolarizing channel, while the error mitigation technique we use would only be

useful in reducing the effect of global depolarizing noise acting on the entire system

[73]. In practice, we notice that the error mitigation technique seems to work better

in the hybrid model case than it does in the circuit model case, which would indicate

that converting the circuit to a graph state has the welcome side-effect of moving the

depolarising noise acting on the qubits individually into something closer to global

depolarising noise, making it easier to remove.

We define the probability of observing the measurement outcome b as pb for

the noise-free case and as pb
k in the presence of depolarizing noise. To calculate the

latter, we use equation 5.12,

pb
k = Tr[|b⟩⟨b|UρkU†],

= Tr[|b⟩⟨b|U((1− k)ρ + k
I
8
)U†],

= (1− k)Tr[|b⟩⟨b|UρU†]+ kTr[|b⟩⟨b|U I
8

U†],

= (1− k)pb + kTr[|b⟩⟨b| I
8
],

= (1− k)pb +
k
8
),

= (1− k)pb +
k
8
)+

1− k
8

− 1− k
8

,

= (1− k)(pb − 1
8
)+

1
8
.

(5.12)
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The effect of the scalar parameter k is to move the measurement outcomes from

their real value closer to the uniform distribution. Therefore, the noisy measurement

outcomes pb
k can be scaled back to the real outcomes pb using k. Figure 5.4 is pro-

duced by varying an estimate of k for each model and adjusting the real results

accordingly while computing the new total variation distance from the benchmark

for each case. By choosing the points where the total variation distance is at its min-

Figure 5.4: Readjusting the experimental outcomes for the circuit (orange) and hybrid
models (blue) by using different estimates of the depolarisation parameter, k
(x-axis) and then comparing the modified distributions against the benchmark
to obtain a new total variation distance (y-axis).

imum it is possible to obtain good estimates of the depolarization parameter. For the

circuit model, when k = 0.87 the total variation distance decreases to 0.013 (previ-

ously 0.017) and for the hybrid model, when k = 0.68 the total variation distance

decreases to 0.011 (previously 0.034). The repolarised distributions are illustrated

in figure 5.5. While this re-polarization approach does largely correct the discrep-

ancy between the experimental output distribution of the hybrid model and that of

the benchmark in this case, in order for this technique to be practically useful it

is important to understand the factors which contribute to the higher depolariza-

tion parameter in the case of the hybrid model and to develop an alternative way of
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Figure 5.5: Comparison of the benchmark (blue), circuit model (orange) and hybrid model
(grey) output distributions for 100000 shots after adjustments for depolarisa-
tion. A horizontal dashed line is placed at a frequency of 0.125 which indicates
what a uniform distribution would look like for a 3-qubit circuit.

computing k in the absence of a benchmark distribution as that will no longer be

available when considering industrial applications. Perhaps the increased noise is

caused by the higher total number of 2-qubit gates in the hybrid model case and that

can be verified in the future through further research.

5.6 Experiment summary
The experiment on the H1-1 device has produced many meaningful results. While

demonstrations of the one-way model have been achieved in the past in optics, in

this thesis I have realised the first implementation of the one-way model of a mea-

surement pattern derived from a non-trivial phase polynomial circuit on an ion trap

device. In addition to the general feasibility of the one-way model, this experiment

has provided proof-of-concept for the techniques introduced in earlier chapters of

this thesis.

Specifically, the circuit which was tested on the device was chosen to have

dimensions that would result in a measurement pattern too large to fit within the

20-qubit capacity of the H1-1 device if converted to a single measurement pattern.
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It was only by taking advantage of the hybrid model technique that an MBQC im-

plementation of the circuit could be accomplished, by splitting the circuit into two

measurement patterns rather than one. This solidifies the position of the hybrid

model as a customization approach which allows quantum circuits to be converted

to a tuneable version of the one-way model, taking into account device limitation.

Furthermore, by using algorithm 6 introduced in chapter 4 it was possible to

achieve a level of depth reduction in the hybrid model that is very close to that

of the standard one-way model. Consequently, we eliminated the requirement for

10 additional ancilla qubits for little to no compromise in terms of a reduction to

entanglement depth, as indicated in table 5.2.

The experimental results are also cause for optimism when compared to the

circuit model. While the unprocessed outcome distribution for the hybrid model

exhibited a higher total variation distance than the circuit model, the opposite was

true after using an error mitigation strategy to reduce the effects of depolarizing

noise on the outputs. Further research is needed to explore this topic, but it may be

possible to refine the strategy to obtain even better results from the one-way model

which would be in line with the original motivations for considering MBQC in the

first place.



Chapter 6

Conclusions and future work

While there remain some challenges to overcome before large-scale, fault-tolerant

quantum computers become available, we have already entered an era where quan-

tum devices with qubit capacities in the triple digits are on the horizon. These NISQ

devices might not be sufficient for practical implementations of Shor’s algorithm or

Grover’s algorithm but by carefully leveraging the available resources it may be

possible to realise useful applications in quantum simulations of chemistry, biology

and material science.

The circuit model and one-way model of quantum computation serve as two

equivalent but distinct approaches to compiling quantum circuits on a given plat-

form. While the former is focused on using a smaller number of physical qubits at

the cost of a higher depth in the time-domain, the latter includes more ancilla qubits

with the goal of minimizing the depth of measurement patterns.

As these two options are quite rigid and not necessarily conducive to the effi-

cient use of the limited resources characteristic of NISQ devices, I have introduced

a third approach - a hybrid model of quantum computation - which serves to bridge

the spectrum spanned by the two extremes and which functions as a tuneable version

of MBQC that can be modified to fit hardware requirements with higher precision.

The hybrid model was introduced and evaluated in chapter 3. It was com-

pared to the circuit and one-way models, showing how most of the depth reduction

achieved by the one-way model can be reached with only a fraction of the qubit

overhead. However, I have also found that any form of MBQC - whether the origi-
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nal one-way model or the hybrid model - is less compatible with routing strategies

than the circuit model. I attribute this to the high-degree of graph states which

necessitates that more SWAP gates are used to fit the graphs on restricted architec-

tures.

To work around the routing incompatibility, I have introduced multiple algo-

rithms which build upon one another and use local complementation and pivoting as

tools to reduce the entanglement depth of measurement patterns. These algorithms

were introduced in chapter 4. While this solution was motivated by the large depth

overheads added during routing, reducing the entanglement depth of a measurement

pattern is beneficial even in the fully connected setting.

Combined with the fact that these algorithms are computationally cheap to run

on a classical machine, exhibiting low-polynomial scaling of, at most, O(n5) where

n is the number of vertices in the graph, these algorithms can be widely useful

for any implementation of the one-way model. This remains true even outside of

routing or the hybrid model implementations discussed in this thesis.

In chapter 5, I have discussed the experimental realisation of the hybrid model

and the local complementation algorithms on the Quantinuum H1-1 ion trap device.

This is the first experimental realisation of the one-way model on an ion trap device,

only made possible by the fact that the H1 series devices support mid-circuit mea-

surements, reuse of qubits after the mid-circuit measurements and operations con-

ditional on these measurements. Furthermore, the H1 series devices have a large

enough capacity for physical qubits to allow non-trivial quantum circuits to be run

after conversion into measurement patterns.

Additionally, this experiment showcased the primary advantage of the hybrid

model as the sample circuit was too large to be run on the device in the form of

a single measurement pattern, yet became implementable when separated into two

subcircuits and executed as a sequence of the two resulting measurement patterns.

The unprocessed output of the hybrid model was subject to higher levels of

depolarizing noise than the circuit model, likely due to the higher total number of 2-

qubit gates and measurements involved, but it was possible to obtain better results (a
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lower total variation distance) from the hybrid model after using an error mitigation

strategy to reduce the effect of the depolarizing channel. This is a cause of optimism

in line with the original motivation of using MBQC as it indicates that the one-way

model might have the side effect of moving local depolarizing noise closer to global

depolarizing noise, which is more easily removed using error mitigation techniques.

Between the depth reduction algorithms and the focus on platforms with all-to-

all connectivity such as ion traps, we have provided two potential solutions to deal

with the depth overheads added due to routing. It should be noted that recent work

by Grzesiak et al. indicates that it may be possible to achieve even more efficient

implementations of graph states on ion trap devices, by simultaneously applying

multiple CZ gates acting on the same set of qubits, thus lowering entanglement

depth even more [103]. Due to a lack of time, I have not had the opportunity to

test how well the LC algorithms reduce the routing overhead on superconducting

devices with low connectivity and this is something that I hope to test in the future.

While the algorithms introduced in chapter 4 prioritised entanglement depth

reduction, they can also be changed to prioritise reducing the total number of 2-

qubit gates, with very few minor modifications. In the future, I can test how this

alternative strategy performs in practice and whether reducing the total number of

2-qubit gates helps improve the accuracy of the simulation even more than a lower

entanglement depth.

When designing the hybrid model and LC algorithms, I used sample circuits

of two main classes: Randomly-generated Clifford+T circuits which are a broad

circuit class constructed with a universal gate-set and randomly-generated phase

polynomial circuits which constitute a more specialized class of circuits, adjacent

to those needed in VQE applications.

The specific circuit-generation processes used were discussed in section 2.8. A

phase polynomial circuit from the same sample set was also chosen for the experi-

mental implementation on the H1-1 device. In the future, I plan to perform a similar

experiment on circuits taken directly from quantum simulation applications which

should lead to even better insight as to the usefulness of the techniques discussed in



104

this thesis, when applied in practice.
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