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Enhancing neural operator learning with invariants
to simultaneously learn various physical

mechanisms

Siran Li"", Chong Liu®" and Hao Ni»'*

Partial Differential Equations (PDEs) play a
fundamental role in the modelling and analysis
of a wide range of physical and geometric prob-
lems. Numerous numerical techniques, classical
and new, have been proposed to approximate the
PDE solutions, aiming at attaining high accuracy
and efficiency. Most recently, by utilising deep
neural networks to represent PDE solutions, ma-
chine learning (ML) methods have emerged as
a revolutionary tool that demonstrates enormous
potential to overcome the curse of dimensional-
ity and to deal with complex geometries.

The neural operator approach, which uses
neural networks to learn the differential opera-
tor, stands out as the arguably most promising
ML approach to simulate physical systems [1,4]].
It nonetheless faces two major challenges: (i), it
is only applicable to PDEs generated by a single
physical mechanism; and (ii), it requires access
to high-level physical information governing the
PDEs, which is infeasible or expensive to collect
in real-world applications.

To this end, Zhang et al [3]] propose a novel
neural operator learning framework — Physics
Invariant Attention Neural Operator (PIANO)
— for deciphering and integrating physical
knowledge from PDEs sampled from multi-
physical scenarios. Such PDEs, most notably,
contain various physical invariants (PIs), e.g.,
PDE coefficients and boundary/initial data.

In contrast to abundant literature focusing on
one single fixed PDE (e.g., [4l5]), [3]] tackles the
dataset generated by a family of PDEs with vary-
ing parameters arising from multi-physical pro-
cesses. PIANO (Figure [I)) is proposed to en-
hance the neural operator method by incorporat-
ing the inherent invariance of PDEs.

To illustrate the idea, consider the schematic

initial-boundary value problem of PDEs:

O = R(u, 0g),
u(x,0) = ug(x), ()
B(u)[x,t,08] =0, (x,1) € Qx[0,T],

where R and 8B are the differential and boundary
operators, respectively, governed by global pa-
rameters § = (g, 0g). [3]] focuses on the case
that 6 is independent of 7.

The learning task of PIANO is to predict the
next z-frame solution given the past #-frame solu-
tion, using a dataset consisting of solutions gov-
erned by diverse parameters. Compared with [2]],
an essential feature of [3]] is that it assumes no
prior knowledge about PDE parameters.

PIANO consists of two branches: (i), a PI
encoder to extract invariant representation, and
(i), a personalised operator to predict the com-
plementary field representation of each PDE.
Contrastive learning is employed to learn the
embedding of each PDE in a data-driven fash-
ion. In addition, three physics-aware cropping
strategies are proposed to enhance consistency
with the inherent invariance of the PDE sys-
tem. Extensive numerical results on Burgers’
equation and Navier— Stokes equations show that
the proposed PIANO consistently outperforms
the existing methods by reducing the relative er-
rors by 13.6%-82.2%. Moreover, the supervised
learning tasks of predicting the PDE coefficients
demonstrate the usefulness of the learned PI rep-
resentation in downstream tasks.

In conclusion, PIANO proposed by Zhang et
al 3] provides a novel, general framework for
learning PDEs arising from multi-physical pro-
cesses. It significantly improves empirical per-
formance, renders applicable to general back-
bone models, and further inspires the design of
neural operators for foundation models of PDE
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Figure 1.  (Left) Flowchart of the overall framework of PIANO. (Right) lllustration of "split and merge” trick and the network
architecture, which effectively integrates the Pl embedding to neural operator. Adapted from |[3].

learning. Future research could explore the the-
oretical underpinnings of PIANO and extend
its numerical validation to higher-dimensional
problems. It is also of great interest to extend
PIANO to the out-of-distribution generalisation
tasks and transfer learning, noting that [3] stud-
ied only such possibilities of the PI encoder.
Moreover, the idea of utilising personalised en-
coders derived from larger models — which en-
ables PIANO to accelerate the inference time
while preserving the expressive power — opens
up new avenues for the design of foundational
models for PDE learning and the study of com-
plex multi-physical problems in science and en-
gineering.
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