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Abstract 
Process system analysis and consideration of model uncertainty are important toolboxes 
used by chemical engineers to improve process knowledge, exploit the effect of the most 
important factors on several output variables, and investigate the inherent uncertainty of 
model predictions that may arise from uncertainty in input variables and model 
parameters. These analyses are even more important in regulated environments, where it 
is crucial to monitor process performance and product quality. In this work, we perform 
system analysis and model uncertainty analysis of comprehensive two-dimensional liquid 
chromatography systems that are commonly employed in pharmaceutical analysis. It is 
found that 1D flow rate and 2D column length are the main design parameters influencing 
the feasibility of a design. But most importantly, deviations from the optimal solution due 
to model uncertainty are shown to be minimal for the case studies considered.   
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1. Introduction 
On-line comprehensive two-dimensional liquid chromatography (LCxLC) combines 
automated coupling of two liquid chromatography columns, 1D (column 1) followed by 
2D (column 2), with different selectivities and different designs (Stoll, 2017). In the 
LCxLC mode, all the fractions of the 1D effluent are transferred through a dual-loop 
modulation valve to the 2D column such that the components co-eluting from the first 
dimension (1D) are separated in the second dimension (2D). LCxLC systems are employed 
in a wide field of applications, including biopharmaceuticals, environmental, food and 
synthetic polymers due to their high peak capacity (Pirok, et al., 2018b); however, LCxLC 
design and method development remains a challenging and complex task due to the large 
number of design variables and the interactions between the columns.  
Many methods have been proposed seeking to develop a systematic procedure to replace 
trial-and-error approaches and one-variable-at-a-time strategies (Bedani, et al., 2012). 
Among these methods, some are based on the Poppe plot of plate time vs. plate height 



   

(Poppe, 1997). These methods have been used to develop most of the protocols available 
today (Wang, et al., 2006; Schoenmakers, et al., 2006); however, as they are specific to 
the system considered, they lack generality. Other models use the Pareto-optimality 
method to find the best combination of parameters given two or more objective functions 
(Vivó-Truyols, et al., 2010; Sarrut, et al., 2015). In these studies, the objective functions 
are sample-independent, i.e., the authors focus on optimizing column efficiency and 
number of plates, but they do not consider parameters such as retention and selectivity. 
The only sample-dependent optimization strategies that have been proposed are by Pirok 
et al. (2018a) and Tirapelle et al. (2023).  
This work applies our shortcut framework (Tirapelle, et al., 2023) for scenario analysis 
and for evaluation of model uncertainty. The scenario analysis will allow us to improve 
LCxLC process knowledge and understanding, but more importantly, to explore the 
design space systematically. The uncertainty evaluation allows us to investigate the 
impact of model inaccuracy on model predictions quantitatively. Both investigations are 
performed with the Global Systems Analysis (GSA) functionality of gPROMS 
ModelBuilder (Process Systems Enterprise, 2022). 

2. Materials and methods 
The shortcut model proposed by Tirapelle et al. (2023) consists of a set of analytical 
equations and relies on the Hydrophobic-Subtraction Model (HSM) (Wilson, et al., 2002; 
Snyder, et al., 2004) for the prediction of retention factors of different components in 
different reversed-phase (RP) columns. Due to its simplicity, the shortcut model can 
predict, in a matter of seconds, the position and band broadening of chromatographic 
peaks within the two-dimensional separation space of RPLCxRPLC systems. Combined 
with constraints on modulation time, maximum pressure drops, and minimum number of 
cuts per peak, the model has been embedded in a two-step framework for in-silico method 
development and optimization, and has been validated against rigorous numerical 
simulations based on the equilibrium dispersive model (EDM). However, the impact of 
model uncertainty and a proper exploration of the design space has yet to be considered 
and is therefore the focus of this work.  
Here, we implement the shortcut model in gPROMS ModelBuilder, version 7.1.1 
(Process Systems Enterprise, 2022), and we use the GSA functionality of gPROMS for: 
1) scenario analysis, to fully exploit the design space and gain insights into RPLCxRPLC 
performance; and 2) uncertainty analysis, to investigate the effect of the main source of 
model uncertainty on the separation quality. For the uncertainty analysis, we consider the 
quasi-Monte Carlo method, with quasi-random (Sobol) sequences for sample generation 
(Process Systems Enterprise, 2022).  
Throughout this work, we will consider four key performance indicators (KPIs), namely 
feasibility, total analysis time, overall separation quality, and number of components 
overlapping in the 2D chromatogram. For each design, feasibility suggests whether the 
design is off-spec (feasibility=0) or on-spec (feasibility=1) given the constraints on 
modulation time and pressure drop. The total analysis time, approximated by the analysis 
time of the 1D column (Vivó-Truyols, et al., 2010), indicates how long the separation 
process lasts. Finally, the overall separation quality (Pirok, et al., 2016) and the number 
of overlaps (Tirapelle, et al., 2023), being both functions of the 2D resolution (Schure, 
1997), indicate how good the separation is. 



   

3. Results and discussion 
In the following sections, we will discuss the results of scenario (or parametric) analysis 
and model uncertainty analysis. As case studies, we will consider two of the mixtures 
used in Tirapelle et al. (2023), consisting of 8 and 16 components, all of which are to be 
separated. For the 8-component mixture, the columns considered are the Flare C18 
(Diamond Analytic) and the Vydac 218MS (Grace/Vydac). For the 16-component 
mixture, the ZirChrom-PBD (ZirChrom) and the Primesep B (SIELC) columns are used 
(see Tirapelle et al., 2023 for further information). 
3.1. Scenario analysis 
As input factors for the scenario analysis, we consider the internal diameter, length, and 
flow rate of both 1D and 2D columns, as well as sample loop volume and pH pair. The 
input factors are assumed to have a uniform probability distribution, except for the pH 
pair, which has a discrete probability distribution. This is because only four combinations 
of pH pairs are possible for the case studies considered, since the column-selectivity 
database (Stoll, 2020) provides the column cation-exchange activity at just pH 2.8 and 
pH 7. The probability of occurrence of each pH pair is 25%. More information on input 
factors is summarized in Table 1. 

 
Figure 1 shows the resulting parallel plots for the 8-component mixture (top) and 16-
component mixture (bottom). In both cases, 20,000 different scenarios are evaluated, of 
which only 1.34% and 0.55% are meeting the specifications (dark blue lines). (These 
numbers clearly indicate why experimental LCxLC method development is so 
challenging, if not impossible, and why in-silico procedures are needed.) Interestingly, 
the top three variables impacting (at 5% statistical significance) the feasibility of a given 
design are, in order, the 1D flow rate (mainly characterized by a 1D flow rate smaller than 
2 mL/min), 2D column length (smaller than 12 cm) and 2D column internal diameter 
(smaller than 2 cm). Furthermore, on-spec designs favor larger columns and up to four-
fold smaller flow rates in the 1D column compared to the 2D column. Also of interest is 
the fact that it is most often preferable to operate both columns at low pH. Higher pH 
values in the 1D column result in longer overall analysis time (not shown here), while 
operating the 2D column at higher pH reduces the number of feasible solutions (see pH 
pairs 3 and 4). These results can be used to reduce the range of variability of the 
parameters in the subsequent optimal design procedure, improving convergence 
significantly and reducing the solution time for optimization, and thereby improving the 
accuracy of the resulting designs significantly. This approach will allow users to develop 
accurate RPLCxRPLC methods systematically and quickly, and to choose the best 
settings and columns without labor- and material-intensive trial-and-error strategies. 

Table 1. Input factors considered in the scenario analysis, with their relative symbol, probability 
distribution, and range of variability (bounds). Note that the pH pair indicates four possible 
combinations of pH, in order: (2.8, 2.8)=1, (7.0, 2.8)=2, (2.8, 7.0)=3, and (7.0, 7.0)=4. 

Input factor Symbol Distribution Bounds 
1D diameter (cm) d1 Uniform [0.1, 3.0] 
2D diameter (cm) d2 Uniform [0.1, 3.0] 
1D length (cm) L1 Uniform [2.0, 15.0] 
2D length (cm) L2 Uniform [2.0, 15.0] 
1D flow rate (mL/min) FR1 Uniform [0.05, 5.00] 
2D flow rate (mL/min) FR2 Uniform [0.05, 5.00] 
Sample loop volume (mL) LV Uniform [0.01, 1.00] 
pH pair (-)  pair Discrete [1, 4] 

 



   

Having considered what design options are practically available, we now discuss how 
different on-spec designs affect the separation performance. Figure 2 shows the impact 
of 1D column (left) and 2D column (right) design parameters on overall separation quality 
and analysis time. The size and intensity of the bubbles refer to the column internal 
diameter and length, respectively (blue: 8 components; orange: 16 components). With the 
increase in the number of components, there are fewer on-spec designs available, and 
there is a significant decline in separation performance. Furthermore, more analysis time 
is required to achieve good separation quality. If we compare the two panels, we can see 
that the design of the 2D column is most critical (i.e., the design space is smaller). Note 
that the impact of each parameter on the separation performance may differ between 
different samples. The only significant parameters (at 5% statistical significance) 
impacting the overall separation quality are pH pair, d1, d2 and FR2 for the 8-component 
mixture and L2 for the 16-component mixture. This result shows that each parameter may 
impact the separation performance differently when different mixtures are considered, 
indicating that sample-dependent (or targeted) optimization strategies should be preferred 
over sample-independent (or untargeted) optimization strategies. 

3.2. Uncertainty analysis 
The shortcut model used in this work relies on the Hydrophobic Subtraction Model 
(HSM) for the prediction of the retention factors. Since the HSM is an empirical model 
with experimentally measured solute-specific parameters and derived column-specific 
parameters, it is subjected to inaccuracy. According to Wilson et al. (2002), the HSM 
model can predict the retention factor 𝑘𝑘 𝑥𝑥 𝑖𝑖 of component i in dimension x with a prediction 
accuracy of ±0.7%. To evaluate how much this uncertainty in 𝑘𝑘 𝑥𝑥 𝑖𝑖 values impacts the 
response factors, and whether this impact jeopardizes the results of the shortcut model, 
we perform an uncertainty analysis. 

 

 
Figure 1. Parallel plots of the different scenarios tested for the 8-component mixture (top) and 
16-component mixture (bottom). The dark blue lines refers to the feasible (on-spec) designs.  



   

For the uncertainty analysis, we consider the mixture of 8 components and the optimal 
design obtained by Tirapelle et al. (2023). All the 𝑘𝑘 𝑥𝑥 𝑖𝑖 values are assumed to follow a 
normal distribution with mean 𝑘𝑘� 𝑥𝑥 𝑖𝑖 and standard deviation 𝜎𝜎 𝑥𝑥 𝑖𝑖 = 0.007, while the number 
of uncertainty scenarios is set to 1000. Figure 3 shows the distributions of each KPI as a 
function of the uncertainty in the retention factors. The figure shows that the inaccuracy 
of the model does not impact the feasibility of the method (i.e., all scenarios are on-spec). 
The uncertainty results in a probability of occurrence of two- and four-component 
overlapping of 39.8% and 5.4%, respectively. However, the distribution of the overall 
separation quality suggests that the extent of the band overlap is minimal (expected value 
for the overall separation quality of 0.979); thus, components can still be separated but 
with a lower yield (i.e., overlapping parts will go to waste or will require reprocessing). 
This reveals that inaccuracies introduced by the underlying HSM model do not impact 
the performance of a given RPLCxRPLC system, thus demonstrating that the shortcut 
model can be safely used for in-silico RPLCxRPLC method development.  

4. Conclusions 
In this work, we have considered method development and optimization of on-line 
comprehensive two-dimensional liquid chromatography (LCxLC); in particular, we have 
demonstrated how global system analysis allows gaining insight into the performance of 
LCxLC systems and assessing the impact of the main sources of model uncertainty on the 
responses. Although model uncertainties impact the process performance, variation in the 
overall separation quality is limited, hence the proposed methodology is robust and 
permits developing fast and accurate two-dimensional designs.  

 

 
Figure 2. Bubble plot of the overall separation quality vs. analysis time of on-spec designs. The 
bubble size and color gradient refer to column internal diameter and column length, respectively, 
for the 1D column (left) and 2D column (right). The blue and orange color-maps refer to the 8-
component and 16-component mixtures, respectively. 

 
Figure 3. Distribution of feasibility, analysis time, number of overlaps and overall separation 
quality as a result of uncertainty in the retention factors of the Hydrophobic-Subtraction Model. 
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