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ABSTRACT
Effective integration and compromise between theories and empir-
ical data are essential for an operational economic model. However,
existing economic models often neglect the intricate fluctuations
and transitions that occur in weeks and days. This research proposes
an Input–Output-based algorithm to introduce the time domain into
economic modelling. Using daily electricity consumption big data
in Chongqing as a proxy for economic activities, we quantitatively
analyse the chronological interactions among industrial sectors and
reveal that a longer duration is required by the heavy industry sec-
tor to signal an intermediate production in the service sector than
any other sectors in this municipality. With the proposed model,
we forecast the economic impact induced by demand changes for
consumer goods under three growth scenarios. The model not only
serves as a methodological bridge between theoretical and data-
driven approaches but also offers new insights into the dynamic
interplay of sectoral activities over time.
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1. Introduction

Contemporary economic research has made a jump from theory to evidence-based statis-
tical research, as we know it today (Hamermesh, 2013). In addition to the time-intensive
consumption statistics measured inmonetary terms, a vast number of studies have utilised
high-time–frequency big data to investigate human behaviours at the microscale (Wang
et al., 2018; Yuan et al., 2020). At the macroscale, many human activity indicators, such as
night-time lighting (Mellander et al., 2015), mobile phone usage (Šćepanović et al., 2015),
and primary energy consumption (Aslan et al., 2014), are used as proxies to analyse eco-
nomic functions. Compared to classic econometric studies based on economic data (e.g.
gross domestic production), emerging big-data economic research overcomes the tradi-
tional barriers to data collection. Proxy indicators can be updated frequently and at a
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higher resolution than conventional economic indicators. Thus, researchers are anticipat-
ing a promising future for studies in this domain. In this research, we conduct a case study
of regional and chronological economic analysis by utilising electricity consumption data.
It encompasses both cross-sectorial lagged induced demand andmultiplier effects from an
economic perspective.

Electricity data are often used as a good proxy to unearth the economic implications
of big data. Electricity consumption data are a typical genre of big data and meet the
‘3V’ requirements (volume, velocity, and variety). Some studies have recently adopted
popular machine learning (ML) tools such as artificial neural networks (Naimur Rah-
man et al., 2016; Zeng et al., 2019), convolutional neural networks (Dong et al., 2017),
back propagation neural networks (Naimur Rahman et al., 2016), pattern sequence-based
forecasting (Perez-Chacon et al., 2020; Viloria et al., 2020), and clustering analysis (Zhou
et al., 2017) for the purpose of pure prediction and pattern recognition based on electric-
ity consumption data. However, such an approach does not factor in economic rationales.
Qu et al. (2015) advanced one step further in analysing the patterns recognised through
the ML regression algorithm, but the interpretation of the results was still not within the
‘economic’ context. ML is based on regression computing algorithms that find the statis-
tically optimised solution to a specific question using large datasets. In addition to the
wide application of ML in various industries, econometric researchers have increasingly
employedML tomake economic performance predictions. The amount of related research
has increased drastically in recent years in both academia and industry. As summarised by
Harding and Lamarche (2021), utility bills form a good source of big data for energy eco-
nomic research. They also listed a few ML tools that are commonly used in this kind of
research. The least absolute shrinkage and selection operator (LASSO), which is proba-
bly the most well-knownML tool for economists (Mullainathan & Spiess, 2017), was used
to predict electricity usage based on weather forecast data (Ludwig et al., 2015). A litera-
ture review ofML tools used in econometrics was provided by Varian (2014). Additionally,
interested readersmay refer to Hastie et al. (2009) for advanced information on these tools.

However, as Crown (2019) noted, although ML may be a promising approach for
making historical data-based predictions, the underlying economic relationships among
parameters were unable to be explored. In a few exceptional cases, a relationship of
some sort may be deduced but cannot be supported by economic theories (Mullainathan
& Spiess, 2017). Einav and Levin (2014) argued that the integration of ML regression
algorithms and economic theory would be a persistent obstacle for data science and eco-
nomic interdisciplinary researchers. Notably, ‘trial and error’ ML applications should be
thoroughly revised to accommodate economic and engineering reasoning.

A dozen other studies have also attempted to use electricity consumption data to anal-
yse macroeconomic performance (Ashraf et al., 2013; Kim, 2015; Zhang et al., 2017). In
recent literature, high-time–frequency electricity consumption data have been widely used
to study the economic impact of COVID-19-related lockdowns (Fezzi & Fanghella, 2020;
Janzen & Radulescu, 2020; López Prol & O, 2020). Other electricity consumption data
are used to make electricity market predictions. For instance, Novan et al. (2020) utilised
data from 158,112 households in Sacramento, California, to investigate the relationship
between household electricity consumption and temperature. Unfortunately, as far as we
are aware, no studies on electricity consumption analysis have comprehensively integrated
classic economics into their modelling methods.
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In the pursuit of a suitable economicmodel for processing electricity consumption data,
the sequential interindustrymodel (SIM) proposed by Romanoff and Levine (1977), which
extends the traditional Leontief Input Output (IO) model to include production chronol-
ogy, has great potential. Since it was first proposed, variations in the SIM have been applied
in impact analyses of engineering project scheduling, large construction projects, and dis-
aster recovery (Levine & Romanoff, 1989; Okuyama et al., 2000 Okuyama et al., 2004;
Romanoff & Levine, 1990;). Recently, He et al. (2022) discussed in detail how the SIM
can be modified for macroeconomic modelling with big data integration potential. In a
similar context, He et al. (2022) proposed that economic sectors interact with each other
in response to consumers’ demands through a production network, a concept inherited
from the IO model, with production performed in a step-by-step manner. As an extended
IO model, the SIM’s economic outputs at each discrete time result from induced pro-
duction based on demands at previous discrete times. Based on empirical analysis with a
statistical regressionmodel, we can inversely determine the chronological production coef-
ficients from ample observations of demands and outputs. The chronological interlinkage
of economic sectors can thus be used for multiple purposes. First, it can be a quantitative
indicator that helps researchers understand how much input and time one sector needs to
respond to a unitary output in another. Second, the suggested interlinkages can be used for
short-term future disequilibrium predictions, supplementing current economic tools that
focus on long-term general equilibrium.

In this research, we used a dataset of daily electricity consumption in the Chongqing
municipality of China to investigate the chronological and intersectoral linkages of eco-
nomic sectors.We aggregated the data collected fromall commercially registered electricity
metres in Chongqing into eight sectors based on the registration information, namely,
food, chemical and mining, consumer goods, heavy industry, manufacturing, electric-
ity/heating/gas/water (EHGW), construction, and service. Robustness testing showed that
the model predictions displayed acceptable reliability. Motivated by the model’s good per-
formance, we further created three hypothetical scenarios to simulate how a change in
one sector quantitatively and chronologically affects all other sectors in the following two
months, showing the varied multiplier effect of the final demands of different sectors. This
research is a good example of the fusion of macroeconomic modelling and data science.
This study establishes a basis for further integration of economic and engineering theories.
Our research showcases new dynamics in economic research by incorporating engineering
thinking.

2. Methods

In our recent work (He et al., 2022), we explained in detail how the SIM can be improved by
incorporating big data calculations. Specifically, the general form of the SIM is as follows:

f (y(t),A(t)) = x(t) = y(t) +
l∑

i=1
A(i)x(t−i) ∀ i

〈
t y(t) = 0 if t

〉
m (1)

The subscript t denotes the specific demand and output at discrete time t. l is the number of
production layers.m is the number of discrete time intervals investigated, wherewe assume
that the impact of a higher number would be minimal and negligible. n is the number of
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Table 1. Illustration of SIM interactions. Each column shows the composition of the output x at time t
from all discrete past times. Each row shows the induced output of output x at time t in the future.

x(2)
x(2) = A(3) · x(0)

x(0) x(1) = A(2) · x(0) +A(2) · x(1)
Layer no. = y(0) = A(1) · x(0) +A(1) · x(1) +A(1) · x(2) . . .

Induced output of y(0) I · y(0)
Induced output of x(0) x(0) A(2) · x(0) A(3) · x(0)
Induced output of x(1) A(1) · x(1) A(2) · x(1)
Induced output of x(2) . A(1) · x(2)

propagation layers with powers that ideally approach infinity. This concept is similar to the
Taylor expansion of the Leontief inverse (I − A)−1, so the total output x(t) at time t is the
sum of the final demand y(t) at time t and the convoluted total of the ith layer of produc-
tion A(i) multiplied by the induced production in i at earlier discrete times. According to
our physical understanding, Equation 1 represents an economic system that responds to
the production signal ‘yesterday’. For instance, if one unit of a computer is purchased by
the consumer ‘yesterday’, the upstream keyboard manufacturer will deem the purchase a
market signal and thus produce one unit of the keyboard to be shipped to the computer
manufacturer for the production of one unit of a computer to refill the inventory.

In our research, x(t) and y(t)re vector sets with 8 elements that correspond to the 8 sec-
tors investigated.A(t) is a set of 8-by-8matrices that describe how inputs from the 8 sectors
induce outputs in the 8 sectors, an identical concept as that of the IO model (Leontief,
1953). To better illustrate the concept of the SIM in Equation 1, we produced Table 1 to
show how a single final demand at t = 0 will produce ripple impacts in the future. Refer-
ring to both Equation 1 and Table 1, we can interpret the outputs of the economic system
described by the SIM. On the first day, where t = 0, purchases are made by consumers to
fulfil their demand. Producers thus supply consumers with products from their inventory
stock. The purchase thus results in the transmission of a market signal to the economy to
initiate some intermediate production at t = 1, given asA(1) · x(0). On the next day, where
t = 2, themarket signal from t = 0 propagates to the second layer of the production coeffi-
cient to give a termA(2) · x(0). At the same time, the output or intermediate purchases that
occurred at t = 1 also signal some other products to be produced in the first layer of the
production coefficientmatrix to give a termA(1) · x(1). Hence, the total output level at t = 2
is thus given as x(2) = A(2) · x(0) + A(1) · x(1). The Sankey diagram in Figure 4 shows the
detailed impacts across time and sectors if 1 unit of final demand in heavy industry occurs
at t = 0 based on the approach in Table 1.

As explained by He et al. (2022), since x(t) can be expressed in terms of A(t) and y(t),
Equation 1 can be linearised into Equation 2:

[
I A(1) (A(1)

2 + A(2)) (A(1)
3 + A(1)A(2) + A(2)A(1) + A(3)) · · ·]

×

⎡
⎢⎢⎢⎣

y(n) y(n+1) · · ·
y(n−1) y(n) · · ·

...
... · · ·

y(0) y(1) · · ·

⎤
⎥⎥⎥⎦ = [

x(n) x(n+1) · · ·] (2)
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Then, the variables in Equation 2 become:

B = [
I A(1) (A(1)

2 + A(2)) (A(1)
3 + A(1)A(2) + A(2)A(1) + A(3)) · · · ]

U =

⎡
⎢⎢⎢⎣

y(n) y(n+1) · · ·
y(n−1) y(n) · · ·

...
... · · ·

y(0) y(1) · · ·

⎤
⎥⎥⎥⎦

V = [
x(n) x(n+1) · · ·]

Therefore, Equation 2 becomes:

BU = V (3)

Since U consists of y(t) and V consists of x(t), the observations from the electricity con-
sumption data can be reorganised. We can use a least square error regression algorithm
with constraints to change B and minimise the error of (BU − V)2. Notably, the elements
of the A matrix should also be in the range of 0–1 since the electricity inputs from other
sectors required to produce a 1 kWh output from a certain sector cannot exceed 1 kWh.
For obvious reasons, the electricity inputs of a sector cannot be negative. Hence, the ele-
ments bij of the Bmatrix, the products of the elements of the Amatrix, are set to be in the
range of 0–1. This relation is expressed as follows:

Find the B

That minimises (BU − V)2

Subject to 0 < bij < 1, where bij is any element of B

Thus, we can obtain the best-fitting B as the sum of the A(t) matrices’ power terms.
We then use the recursive algorithm in Equation 4 to unwarp each term in B and obtain
A(t). The statistical regression algorithm above first yields B, in which the second subma-
trix from the right is A(1). The third submatrix from the right, as shown in Equation 2,
is (A(1)

2 + A(2)). A(1)
2 is then subtracted from the term to obtain A(2). Again, knowing

A(1) and A(2), A(3) can be obtained in a similar manner. Thus, all the remaining A(t) can
be recursively obtained. Notably, some terms in A(t) may be smaller than 0 due to errors
propagated from the regression algorithm. We treated them as errors and omitted them in
our analysis and the Sankey illustration in Figure 4:

A(1) = A(1)

A(2) = (A(1)
2 + A(2)) − A(1)

2

A(3) = (A(1)
3 + A(1)A(2) + A(2)A(1) + A(3)) − (A(1)

3 + A(1)A(2) + A(2)A(1)) · · · · · ·
(4)

In addition, since we have no knowledge of the optimum values of the production and
induction layers, we vary the values of l and n to minimise the total error (BU − V)2. The
total absolute error is minimal at l = 8 and n = 12. For n > 12, our computer ran out of
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calculation memory. If hardware could support it, we could attempt higher n powers to
further minimise propagated errors.

In our analysis of the electricity consumption data from Chongqing, we used only the
first 500 samples of the 971 data points in the dataset for model training to obtain A(t), as
described in Equations 3 and 4. Substituting A(t) into Equation 1, we further investigated
the robustness of the model and analysed the chronological linkages in production. Based
on the mean and standard deviation of the growth rate of the eight sectors in the dataset,
we also simulated three scenarios of change in the growth rate of the final demand for con-
sumer goods two months into the future. As described in Equation 5, for the investigated
sector:

μ̄ =
(

(m−1)

√y(n)

y(1)
− 1

)
(5)

where μ̄ is the daily average growth rate. m is the number of samples observed, 971 in
our case. Based on the values located at the 2.5 percentiles above and below μ̄, we esti-
mate the high and low daily growth rates, μh and μl, of the observed samples, which are
used for forecasting scenarios. Using 1000 simulations of normally distributed daily growth
rates, as described below in Equation 6, we create aMonte Carlo simulation for future total
consumption predictions across all 8 sectors.

y(t) = y(t−1) (1 + g) where g ∼ N(μ, σ 2)

x(t) = f (y(t),A(t)) (6)

where g represents the growth rates for all three scenarios.σ 2 is the variance of the observed
samples in y.

3. Data

We used the electricity consumption data from the Chongqing State Grid Research
Institute. The State Grid is the monopolistic electricity supplier in Chongqing, China.
Chongqing has a population of 31 million people and an area of 82,000 km2. Its GDP
was $362 billion in 2020. Every electricity consumer, regardless of whether commercial
or household in nature, pays their electric metre fare to the State Grid. When regis-
tering a metre reading, the state grid also registers commercial customers’ nature of
business in accordance with the Industrial Classification for National Economic Activ-
ities (GB/T 4754-2017) (UN, 2008). Among the 708 sectors listed, 440 sectors were
included in the Chongqing dataset. We sampled daily electricity consumption data from
1 March 2018 to 21 November 2020, with 971 data points in total across the time
dimension.

As explained previously, electricity consumption data can be and have been used as
proxy data for economic research. This is because there is generally a positive correla-
tion between electricity consumption and economic activities, as both the residential and
commercial sectors require electricity to function. Increased electricity consumption typi-
cally signifies increased industrial production, business operations, and consumer demand
in the respective sectors. Even though the unit electricity input needed by sectors differs
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due to the nature of the corresponding production processes, the scale of production is
still endogenously proportional to the sector’s electricity consumption, thus revealing an
input–output relation different from that measured in monetary terms. For example, con-
sidering the case in which making one bicycle requires 1 kg of metal and 1 kg of rubber,
if the prices are 2 dollars/kg for metal and 1 dollar/kg for rubber, then the input–output
relation in the bicycle industry would be 2:1 in monetary terms. At the same time, if the
electricity inputs are 5 kWh/kg for metal and 1 kWh/kg for rubber, then the input–output
relation in the bicycle industry would be 5:1 in electricity terms. In addition, electricity
consumption data are often available on a real-time or near-real-time basis, allowing for
a rapid analysis of economic trends compared to analyses based on traditional indicators,
such as GDP, which are usually released quarterly or annually.

However, several pointsmust be consideredwhen adopting electricity data as a proxy for
economic activities. For instance, energy efficiency improvements, driven by technologi-
cal advancements, can result in decreased electricity consumption, even when economic
activities are increasing, leading to an underestimation of economic growth. Hence, similar
to inflation and deflation when measuring economic activities in GDP, technical fac-
tors should preferably be addressed in different sectors if accounting is to be improved.
Furthermore, electricity consumption data may not accurately capture non-electricity-
based activities and informal economies, such as agriculture and small-scale industries,
even though they constitute a significant part of the economies of some regions. An
important assumptionmade in this research is that the activities ofmedium and large busi-
nesses captured by the electricity consumption data are sufficient to cover most economic
activities.

To verify our assumption that electricity data can reflect economic clustering, we design
a simple algorithm to show the extent of sector synchronisation and, thus, supply chain
integration. By calculating the correlations between every two sectors, a set of correlation
values ranging from −1 to 1 is obtained. Subtracting the correlation values from 1 yields a
set of values ranging from 0 to 2, where a large value indicates a low correlation, and vice
versa. Using the value as a distance and each sector as a node, we create the plot shown
in Figure 1 to determine whether certain relationships exist. As shown in Figure 1, we can
clearly identify some clustering patterns. Hence, it is reasonable to aggregate the sectors
into larger sectors.

Based on the GB/T 4754-2017 specifications and our interpretations of sector descrip-
tions, we organised the 440 sectors into eight sectors: food, chemical & mining, consumer
goods, heavy industry, manufacturing, EHGW, construction, and service.We also decoded
the specifications to determine whether the sectors are more strongly associated with final
or intermediate consumption. In this context, the total production was calculated as the
final plus intermediate production, similar to the construction of IO tables. The organ-
ised data are presented in Figure 2, where patterns of electricity consumption can be
clearly observed. For instance, a drastic and persistent decrease in the total consumption of
heavy industry andmanufacturing industry was identified around February 2020, which is
consistent with the lockdownmeasures imposed in Chongqing due to the COVID-19 out-
break. For a detailed specification of sector aggregation, please refer to the Supplementary
Information.
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Figure 1. An illustrationof sector clusteringusing electricity consumptiondata as evidence Sectorswith
morepositively correlatedelectricity consumptionarepositionedcloser to eachother, andvice versa. The
red circles indicate clusters formed based on analysis of the sector labels.

4. Results

4.1. Robustness testing

We sampled 500 days of the 971 total days with observations in the dataset to conduct
model training. By comparing the outputs simulated with the trained model and all 471
remaining observations of the total outputs of the eight sectors, we produced Figure 3
to show the errors of both the statistical regression training and predictions in percent-
ages. No significant change in error levels occurs after the training-prediction boundary is
reached, suggesting that themodel is effectively generalizable to unseen data and accurately
captures the underlying relationship between the input variables and the target variable. In
technical terms, overfitting occurs when the model learns the noise in the training data,
leading to high accuracy for the training set but poor performance for the test set. Con-
versely, underfitting occurs when the model fails to capture the underlying patterns in the
data, resulting in poor performance for both the training and test sets. The results indicate
that the regressed model is influenced by neither overfitting nor underfitting, indicating
that themodel is likely to performwell in cases with new and unseen data. Some spikes can
be seen across all eight sectors, which highly correspond to abnormal spikes in the actual
data, as shown in Figure 2, suggesting that our model is able to filter out outliers among
actual observations. This finding reinforces the robustness of our model and analysis.



ECONOMIC SYSTEMS RESEARCH 9

Figure 2. Plots of chronological electricity consumption in eight sectors. The consumption is cate-
gorised into total and final consumption for the eight sectors according to their descriptions. Cyclical
patterns can clearly be seen in the chronological datasets.

In addition, the error level is within −30% to 30% for most sectors, a tolerable value
for ensuring the accuracy of the model. Among all eight sectors, the service sector has the
lowest error level, while the food sector has the highest. A possible reason for the high
error level of the food sector may be its significantly lower level of electricity consumption
compared to other sectors. Throughout the 3-year observation period, the daily electricity
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Figure 3. The eight diagrams show the differences between the simulated and actual outputs of the
eight sectors in percentages. To the left of the red dotted lines are the errors of the statistical regression
model based on 500 historical observations. To the right of the red dotted lines are the errors of the
predicted outcomes compared with the actual observations.

consumption of the food sector never surpassed 0.5% of the daily total electricity con-
sumption of the eight sectors. An unproportionally higher value of electricity consumption
means that a higher level of noise is more likely to corrupt the information from the food
sector. In other words, the food sector is affected by greater systematic error than other
sectors, decreasing the accuracy of linkages modelled between the food sector and other
sectors. Hence, caution should be taken when analysing food sector results in this specific
case study. As proposed in signal process engineering, more advanced engineering may be
needed to filter out noise and improve pattern recognition (Tuzlukov, 2018).

Moreover, as elaborated in the Data section, the I–O relationship revealed here using
electricity consumption is not necessarily proportional to monetary input from the corre-
sponding industry for the output sector, as described by the production coefficient A in
the conventional IO Model. Table 2 quantitatively compares the differences between the
production coefficients of the eight sectors in Chongqing obtained both from this research
using the developed SIM algorithm and from the 2017 IO Table of Chongqing. For eas-
ier comparison, the A(t) matrices are aggregated along the time horizon by summing all
A(t) into a single A, mathematically represented as

∑8
t=1 A(t). In Table 2(a), it should be

noted that only nonnegative terms are kept in the aggregated A matrix for the same rea-
son described in the Methods section. In addition, the sensitivity analysis in the previous
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Table 2. The input–output production coefficients obtained (a) from the electricity consumption data
in this research and (b) from the 2017 Input–Output Table for Chongqing (a) Production coefficients for
Chongqing obtained in this research from electricity consumption data.

Food
Chemical &
Mining

Consumer
Goods

Heavy
Industry Manufacturing EHGW Construction Service

Food 0.07 0.07 0.00 0.00 0.02 0.00 0.06 0.00
Chemical & Mining 0.08 0.02 0.00 0.04 0.02 0.01 0.08 0.00
Consumer Goods 0.07 0.04 0.03 0.02 0.01 0.01 0.07 0.00
Heavy Industry 0.17 0.30 0.48 0.71 0.56 0.00 0.01 0.00
Manufacturing 0.00 0.00 0.25 0.15 0.39 0.00 0.05 0.00
EHGW 0.00 0.82 0.00 0.58 0.00 0.16 0.11 0.00
Construction 0.07 0.04 0.11 0.07 0.00 0.01 0.09 0.01
Service 0.10 0.05 0.16 0.11 0.01 0.02 0.05 0.04

Food
Chemical &
Mining

Consumer
Goods

Heavy
Industry Manufacturing EHGW Construction Service

Food 0.06 0.00 0.04 0.00 0.00 0.00 0.01 0.00
Chemical&Mining 0.00 0.01 0.01 0.01 0.00 0.12 0.05 0.00
Consumer Goods 0.05 0.00 0.19 0.00 0.02 0.00 0.01 0.02
Heavy Industry 0.05 0.00 0.03 0.06 0.12 0.01 0.44 0.03
Manufacturing 0.01 0.00 0.01 0.00 0.31 0.01 0.06 0.02
EHGW 0.01 0.00 0.01 0.01 0.01 0.18 0.01 0.03
Construction 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00
Service 0.09 0.01 0.08 0.02 0.08 0.07 0.15 0.18

paragraphs reveals that errors in the production coefficients exist. Both error sources con-
tribute to the inaccuracy of Table 2(a), making some of the column sums of the aggregated
Amatrix larger than 1. Although apparent differences can be seen in the results of the two
methods, some identical and key results can be observed. For instance, the total interme-
diate output from the heavy industry sector (the row sums of the heavy industry sector)
is significantly larger than that from the other sectors in both sets of results. In addition,
the contribution from the EHGW sector is significantly greater than that in the mone-
tary IO table, possibly due to the adoption of electricity consumption as an indicator of all
production activities.

To quantitatively compare the dissimilarity between the two production coefficient
matrices, we adopted the methods of Avelino (2017). The two matrices yield a mean abso-
lute deviation of 0.1124, mean absolute percentage error of 100.3366, weighted absolute
percentage error of 2.6448, standardised weighted absolute difference of 0.9395, and PSI
statistic of 4.5557. The significant differences show that the two matrices are indeed very
distinct.

4.2. Chronological interlinkages of sectors

The SIM simulates how today’s production will induce further production in the future.
With the electricity consumption data from Chongqing, we can reveal the chronological
interactions among eight sectors in Chongqing or theA(t) matrices explained in theMeth-
ods section. Due to the size of theA(t) matrices, we are not able to present them in themain
text. For readers’ reference, the complete A(t) is included in the Supplementary Informa-
tion. In A(t), intermediate linkages are significantly larger when t = 1, showing that most
intermediate responses occur immediately after a demand signal is received. However, the
EHGW sector demonstrates prolonged intermediate linkages to the chemical and mining



12 K. HE ET AL.

Figure 4. Sankey diagram showing the chain of responses to one unit of demand in heavy industry in
all eight sectors. Bars in different colours and with different codes indicate the scale of electricity con-
sumption and economic outputs in the respective chronological production sector. The label beloweach
column indicates the number of layers delayed for that column. Thebands connect the intermediate out-
puts and later outputs induced by them. The scales of the bands and columns are proportional to the
scale of electricity consumption/economic outputs induced. Transactions less than 0.01 kWhare omitted
for visual clarity.

sector at 8 > t > 1, indicating that interactions between these two sectors take longer than
interactions between other sector pairs.

To better depict the underlying concept, we plotted a Sankey diagram in Figure 4 to
quantitatively illustrate the time lags in the induced production for one unit of demand
(1 kWh in this case study) in the heavy industry sector. A detailed explanation of the deriva-
tion and construction of the Sankey diagram can be found inTable 1 and the corresponding
paragraphs. From left to right, each of the eight columns in varied colours represents one
calendar day as a production layer. The grey transparent bands connect the intermediate
outputs and later outputs induced by them, with their widths proportional to the induced
quantities. Hence, as explained in theMethods section and shown in Figure 4, when 1 kWh
of final demand in the heavy industry sector is fulfilled, amarket signal is sent out to induce
a series of production events that propagate through the network across the eight sectors.
A total of 7.73 kWh of output is generated throughout the eight sectors as a response to
1 kWh of demand in the heavy industry sector. This magnifying effect of demand can be
inferred as the multiplier for the final demand of the heavy industry sector. The induced
quantities decrease as the production layers extend into the future, in accordance with the
logic that the multiplier impacts of the demand signal decay over time. In addition, the
heavy industry sector induced the greatest production in the EHGWsector among all eight
chronological layers (1.51 kWh, the sum of all bars labelled ‘EHGW’ in Figure 4), which
further induced a large proportion of outputs from the heavy industry sector (1.19 kWh,
79% of the 1.51 kWh of EHGW electricity consumption induced), illustrating the close
connection between EHGW and heavy industry.

In comparison, the food sector is the least associated with the heavy industry sector,
with 0.08 kWh (the sum of all bars labelled with F in Figure 4) of output induced from
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the 1 kWh of final demand from the heavy industry sector. The impact of the food sector
output in layer 1 does not extend far into the future, with less than 0.01 kWh of output
induced in layer 2 of heavy industry, as highlighted in red in Figure 4. Furthermore, it can
be observed that the service sector induced outputs into the more distant future, a feature
not seen in sectors such as the food, consumer goods, and chemical sectors. The 0.1 kWh
demand of the service sector in layer 1 induced 0.01 kWh of output in layer 6 of the heavy
industry sector, almost equivalent to the induced output in layer 2 of the heavy industry
sector, as shown by the branches highlighted in blue in Figure 4. This may result from the
longer logistic chain and, thus, longer duration of demand signal propagation in the service
sector, which is an interesting takeaway of our analysis.

The size of the vertical bars in Figure 4 also conveys valuable insights derived from the
trained model. In the first layer, a total output of 1.67 kWh is produced. However, in the
second layer, the output decreases to a mere 0.76 kWh. Interestingly, none of the layers
following the first layer exhibit sizes larger than that of the second layer. This observation
suggests that the required electricity outputs decrease as time progresses into the future, a
phenomenon that is consistent with the physical performance of the economic system.

Since the information from the Sankey diagram is too abundant to be fully analysed
here, we have included the data used to construct Figure 4 in the Supplementary Informa-
tion. In the Supplementary Information, together with an analysis of the heavy industry, we
present the same chronological outputs given a 1 kWh demand from the seven other sec-
tors. However, it should be noted that the chronological lag between sectors should not be
considered equivalent to the transmission time from one sector to another. This is because
the time needed for one sector to respond to the demand change in another may be a result
of interactions among multiple factors, including the nature of the industry, the size of the
business, the availability of effective communication channels, etc. Depending on the con-
text, transportation may not play a role in determining the time delay, as businesses can
react to market signals with their inventories to conduct production. On the other hand,
the service sector, for instance, may naturally adjust its production level much quicker in
response to market signals, as they rely less on inventory build-up in comparison.

4.3. Scenario predictions

The chronological coefficients obtained, as discussed in the previous section, can be used
to predict the multiplier effects in all sectors given forecasts of the final demand changes in
one sector. We varied the daily growth rate of final demand for consumer goods and made
forecasts of the daily outputs of all eight sectors for the next 80 days. We chose 80 days as
the prediction boundary to avoid systematic uncertainties that may not be captured by our
modelling. For instance, our model cannot capture the impact of sudden changes, such as
disaster events, on capital equipment, as the model assumes unchanged productivity.

Figure 5 effectively illustrates the prediction results for various scenarios. In each of
these scenarios, the historical observations can be observed to the left of the distinct red
dotted lines, while the predictions extending 80 days into the future are displayed to the
right of these same red dotted lines. As part of the scenario-setting process, we altered the
forecast of the daily growth of final consumption in the consumer goods sector, ranging
from an increase of 0.41% to a decrease of−0.40% for the surging and plunging scenarios,



14 K. HE ET AL.

respectively. These adjustments were based on the careful calculation of past data vari-
ances. For the baseline scenarios, we derived the mean growth rates of final demand for all
sectors by meticulously analysing historical calculations. At the end of the 80-day predic-
tion period, the calculated model predicted a difference of 3.5GWh/day in the mean value
of total electricity consumption within the consumer goods sector. Intriguingly, while the
final consumption levels in the surging and plunging scenarios remained unchanged, the
heavy industry (with a difference of 18.8 GWh/day), manufacturing (with a difference of
6.8 GWh/day), and EHGW (with a difference of 11.7 GWh/day) sectors exhibited more
significant differences in the mean values of their forecasted total electricity consumption
on the 80th day compared to that for the consumer goods sector. From this observation,
we can deduce that any fluctuations in the final demand for consumer goods tend to have
a more pronounced impact on these three sectors than on other sectors.

On the other hand, when comparing the differences in total electricity consumption
across various sectors under the plunging and surging scenarios in proportion to the base-
line scenario, the trained model reveals that the most substantial relative difference in
total electricity consumption occurs within the consumer goods sector, at 43%. The heavy
industry and manufacturing sectors exhibit the next-largest relative difference for these
scenarios, at 21% each. In contrast, the EHGW sector, with a 13% relative difference, is the
sector with the second smallest relative difference after displaying the third largest absolute
difference. The disparity between absolute and relative measurements may be attributed to
the varying energy intensities in different sectors. For instance, the EHGW sector is nat-
urally energy intensive, while other sectors, such as service sectors, utilise less energy in
their production processes. As a result, the absolutemeasurementmay bemore appropriate
for predicting the electricity consumption required in each respective sector. Conversely,
relative measurements can serve as a good indicator of changes in economic activity
levels.

5. Conclusion and discussion

In this research, we used the SIM to explore the possibility of reconciling modelling and
regression analysis. Since electricity consumption is a good approximation of economic
activities, the promising results of this research can be directly applied to local economic
planning. For instance, the revealed chronological interconnections among sectors can
help us better understand the industrial symbiosis among sectors, thus helping to predict
the impacts of external shocks onfinal demand. Integrating economicmodelling and statis-
tical algorithms can support emerging computational science, a third approach to scientific
exploration in addition to theoretical and experimental science. From weather forecast-
ing to mechanical design, computational science has proven incredibly useful in providing
effective solutions at a significantly reduced cost. The availability of massive datasets and
improvements in computational power support scientific research by providing a sound
basis for the validation of theories and models, as well as enabling analyses that were
previously impossible without emerging computational tools. This research demonstrates
the successful application of computational science in the field of economics, showcas-
ing the potential of harnessing advanced technology to gain deeper insights into complex
economic systems and inform decision-making processes.
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Figure 5. The simulated outputs/electricity consumption of eight sectors under three scenarios of
growth in the consumer goods sector, plotted with error ranges. The daily growth rates of sectors are
estimated based on historical means and variances, but the mean growth rate of the consumer goods
sector is varied to simulate the changes across all sectors under the three scenarios. To the right of the
red dotted lines, the coloured areas show the error ranges, while the black solid lines show the predicted
mean outputs.

Specifically, the algorithm proposed for the SIM is designed to analyse the economic
structure of a region across various sectors over time. Sufficient data on economic perfor-
mance are plugged into the model to identify the chronological interdependencies within
the economy. This enables the ‘nowcasting’ of economic output by sector, providing vital
information for decision-makers. Such insights are crucial for establishing quick policy
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responses to economic shocks and mitigating direct and indirect economic losses through
effective resource allocation and intervention strategies.

Nevertheless, some additional technical improvements could further enhance our
algorithm in future studies. For example, in this study, the number of layers for production
propagation is set to only eight due to computational power limitations. Thus, upgrading
computer hardware may further improve the accuracy of the results in this research as well
as any future research that adopts our algorithm. In addition, it may be useful to integrate
real-world surveys on supply chains for reference when determining the number of layers.
Alternatively, knowledge of engineering processes, geolocations, and infrastructure capac-
ities may aid in modelling delays in propagation between different sectors. Access to such
information may also improve over time with the increased availability of big data from
various sources.

Furthermore, the classification of the final demand and intermediate output in this
research is based on empirical judgement. For instance, due to possible misinterpretations
andmisinformation provided by consumers, systematic errormay be embedded in the data
used in this research and thus deteriorate model performance. Technical signal processing
methods, such as noise filtering, can improve the accuracy of data analysis and thereby
enhance model performance.

In addition, in the study of Romanoff and Levine (1981), a detailed explanation and
a comprehensive discussion were provided regarding the difference between anticipa-
tory and responsive demands. In all the simulations conducted in this study, responsive
demands were assumed. Thus, intermediate production only responded to demands that
had already occurred. In real-world situations, this assumption may not always hold, as
some changes in production activities will occur before a change in actual demand is
observed through market forecasting and speculation.

Finally, the SIM is an oversimplified economic model in which the nonlinear effects
of variables such as capital constraints and price elasticity are not considered. Although
the simple and linear features of the SIM provide efficient estimates for production coef-
ficients in the short term, nonlinearity should be considered to further develop the SIM
and incorporate more economic theories in the next stages of modelling. Therefore, it may
be interesting to look at the hybridisation of control system engineering and economic
modelling. The nonlinear modules in control systems can be used to model the nonlinear
feedback effects of certain sectors in the whole economy. In this regard, the SIM could be
deemed as a system identification model, but without a black box structure, thus support-
ing research on and analyses of chronological processes. Further developments may push
the frontier of integrated economic-cybernetic research.
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