
Reversible Effects as Inverse Arrows

Chris Heunen1

School of Informatics
University of Edinburgh

United Kingdom

Robin Kaarsgaard2

Datalogisk Institut
University of Copenhagen

Denmark

Martti Karvonen3

School of Informatics
University of Edinburgh

United Kingdom

Abstract

Reversible computing models settings in which all processes can be reversed. Applications include low-
power computing, quantum computing, and robotics. It is unclear how to represent side-effects in this
setting, because conventional methods need not respect reversibility. We model reversible effects by adapting
Hughes’ arrows to dagger arrows and inverse arrows. This captures several fundamental reversible effects,
including serialization and mutable store computations. Whereas arrows are monoids in the category
of profunctors, dagger arrows are involutive monoids in the category of profunctors, and inverse arrows
satisfy certain additional properties. These semantics inform the design of functional reversible programs
supporting side-effects.
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1 Introduction

Reversible computing studies settings in which all processes can be reversed: pro-

grams can be run backwards as well as forwards. Its history goes back at least as far

as 1961, when Landauer formulated his physical principle that logically irreversible

manipulation of information costs work. This sparked the interest in developing
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reversible models of computation as a means to making them more energy efficient.

Reversible computing has since also found applications in high-performance comput-

ing [29], process calculi [8], probabilistic computing [32], quantum computing [31],

and robotics [30].

There are various theoretical models of reversible computations. The most well-

known ones are perhaps Bennett’s reversible Turing machines [4] and Toffoli’s re-

versible circuit model [33]. There are also various other models of reversible au-

tomata [26,24] and combinator calculi [1,19].

We are interested in models of reversibility suited to functional programming

languages. Functional languages are interesting in a reversible setting for two rea-

sons. First, they are easier to reason and prove properties about, which is a boon

if we want to understand the logic behind reversible programming. Second, they

are not stateful by definition, which eases reversing programs. It is fair to say

that existing reversible functional programming languages [20,34] still lack various

desirable constructs familiar from the irreversible setting.

Irreversible functional programming languages like Haskell naturally take se-

mantics in categories. The objects interpret types, and the morphisms interpret

functions. Functional languages are by definition not stateful, and their categori-

cal semantics only models pure functions. However, sometimes it is useful to have

non-functional side-effects, such as exceptions, input/output, or indeed even state.

Irreversible functional languages can handle this elegantly using monads [25] or

more generally arrows [17].

A word on terminology. We call a computation a : X → Y reversible when it

comes with a specified partner computation a† : Y → X in the opposite direction.

This implies nothing about possible side-effects. Saying that a computation is par-

tially invertible is stronger, and requires a ◦a† ◦a = a. Saying that it is invertible is

even stronger, and requires a◦a† and a†◦a to be identities. We call this partner of a

reversible computation its dagger. In other words, reversible computing for us con-

cerns dagger arrows on dagger categories, and is modeled using involutions [15]. In

an unfortunate clash of terminology, categories of partially invertible maps are called

inverse categories [6], and categories of invertible maps are called groupoids [10].

Thus, inverse arrows on inverse categories concern partially invertible maps.

We develop dagger arrows and inverse arrows, which are useful in two ways:

• We illustrate the reach of these notions by exhibiting many fundamental reversible

computational side-effects that are captured (in Section 3), including: pure re-

versible functions, information effects, reversible state, serialization, vector trans-

formations dagger Frobenius monads [14,15], recursion [21], and superoperators.

Because there is not enough space for much detail, we treat each example in-

formally from the perspective of programming languages, but formally from the

perspective of category theory.

• We prove that these notions behave well mathematically (in Section 4): whereas

arrows are monoids in a category of profunctors [18], dagger arrows and inverse

arrows are involutive monoids.

C. Heunen et al. / Electronic Notes in Theoretical Computer Science 341 (2018) 179–199180



This paper aims to inform design principles of sound reversible programming

languages. The main contribution is to match desirable programming concepts to

precise category theoretic constructions. As such, it is written from a theoretical

perspective. To make examples more concrete for readers with a more practical

background, we adopt the syntax of a typed first-order reversible functional pro-

gramming language with type classes. We begin with preliminaries on reversible

base categories (in Section 2).

2 Dagger categories and inverse categories

This section introduces the categories we work with to model pure computations:

dagger categories and inverse categories. Each has a clear notion of reversing mor-

phisms. Regard morphisms in these base categories as pure, ineffectful maps.

Definition 2.1 A dagger category is a category equipped with a dagger : a con-

travariant endofunctor C → C satisfying f †† = f for morphisms f and X† = X for

objects X. A morphism f in a dagger category is:

• positive if f = g† ◦ g for some morphism g;

• a partial isometry if f = f ◦ f † ◦ f ;
• unitary if f ◦ f † = id and f † ◦ f = id.

A dagger functor is a functor between dagger categories that preserves the dagger,

i.e. a functor F with F (f †) = F (f)†. A (symmetric) monoidal dagger category is a

monoidal category equipped with a dagger making the coherence isomorphisms

αX,Y,Z : X ⊗ (Y ⊗ Z) → (X ⊗ Y )⊗ Z ρX : X ⊗ I → X

λX : I ⊗X → X (and σX,Y : X ⊗ Y → Y ⊗X in the symmetric case)

unitary and satisfying (f ⊗g)† = f †⊗g† for morphisms f and g. We will sometimes

suppress coherence isomorphisms for readability.

Any groupoid is a dagger category under f † = f−1. Another example of a dagger

category is Rel, whose objects are sets, and whose morphisms X → Y are relations

R ⊆ X ×Y , with composition S ◦R = {(x, z) | ∃y ∈ Y : (x, y) ∈ R, (y, z) ∈ S}. The
dagger is R† = {(y, x) | (x, y) ∈ R}. It is a monoidal dagger category under either

Cartesian product or disjoint union.

Definition 2.2 A (monoidal) inverse category is a (monoidal) dagger category of

partial isometries where positive maps commute: f ◦ f † ◦ f = f and f † ◦ f ◦ g† ◦ g =

g† ◦ g ◦ f † ◦ f for all maps f : X → Y and g : X → Z.

Every groupoid is an inverse category. Another example of an inverse category

is PInj, whose objects are sets, and morphisms X → Y are partial injections:

R ⊆ X×Y such that for each x ∈ X there exists at most one y ∈ Y with (x, y) ∈ R,

and for each y ∈ Y there exists at most one x ∈ X with (x, y) ∈ R. It is a monoidal

inverse category under either Cartesian product or disjoint union.
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Definition 2.3 A dagger category is said to have inverse products [11] if it is

a symmetric monoidal dagger category with a natural transformation ΔX : X →
X ⊗X making the following diagrams commute:

X X ⊗X

X ⊗X
ΔX

ΔX

σX,X

X X ⊗X

X ⊗X X ⊗ (X ⊗X) (X ⊗X)⊗X

ΔX

ΔX

id ⊗ΔX
α

ΔX ⊗ id

X X ⊗X

X
id

ΔX

Δ†
X

X ⊗X X ⊗ (X ⊗X)

X

(X ⊗X)⊗X X ⊗X

Δ⊗ id

id ⊗ΔX

Δ†
X

ΔX

(id ⊗Δ†
X) ◦ α†

(Δ†
X ⊗ id) ◦ α

These diagrams express cocommutativity, coassociativity, speciality and the Frobe-

nius law.

Another useful monoidal product, here on inverse categories, is a disjointness

tensor, defined in the following way (see [11]):

Definition 2.4 An inverse category is said to have a disjointness tensor if it is

equipped with a symmetric monoidal tensor product − ⊕ − such that its unit 0 is

a zero object, and the canonical quasi-injections

	1 = X
ρ−1
X−−→ X ⊕ 0

X⊕00,Y−−−−−→ X ⊕ Y 	2 = Y
λ−1
Y−−→ 0⊕ Y

00,X⊕Y−−−−−→ X ⊕ Y

are jointly epic.

For example, PInj has inverse products ΔX : X → X ⊗X with x 
→ (x, x), and

a disjointness tensor where X ⊕ Y is given by the tagged disjoint union of X and

Y (the unit of which is ∅).
Inverse categories can also be seen as certain instances of restriction categories.

Informally, a restriction category models partially defined morphisms, by assigning

to each f : A → B a morphism f̄ : A → A that is the identity on the domain of

definition of f and undefined otherwise. For more details, see [6].

Definition 2.5 A restriction category is a category equipped with an operation

that assigns to each f : A → B a morphism f̄ : A → A such that:

• f ◦ f̄ = f for every f ;

• f̄ ◦ ḡ = ḡ ◦ f̄ whenever dom f = dom g;

• g ◦ f̄ = ḡ ◦ f̄ whenever dom f = dom g;
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• ḡ ◦ f = f ◦ g ◦ f whenever dom g = cod f .

A restriction functor is a functor F between restriction categories with F (f̄) =

F (f). A monoidal restriction category is a restriction category with a monoidal

structure for which ⊗ : C×C → C is a restriction functor.

A morphism f in a restriction category is a partial isomorphism if there is a

morphism g such that g ◦ f = f̄ and f ◦ g = ḡ. Given a restriction category C,

define Inv(C) to be the wide subcategory of C having all partial isomorphisms of

C as its morphisms.

An example of a monoidal restriction category is PFn, whose objects are sets,

and whose morphisms X → Y are partial functions: R ⊆ X × Y such that for each

x ∈ X there is at most one y ∈ Y with (x, y) ∈ R. The restriction R̄ is given by

{(x, x) | ∃y ∈ Y : (x, y) ∈ R}.

Remark 2.6 Inverse categories could equivalently be defined as either categories in

which every morphism f satisfies f = f ◦g◦f and g = g◦f ◦g for a unique morphism

g, or as restriction categories in which all morphisms are partial isomorphisms [6,

Theorem 2.20]. It follows that functors between inverse categories automatically

preserve daggers and that Inv(C) is an inverse category.

It follows, in turn, that an inverse category with inverse products is a monoidal

inverse category: because X⊗− and −⊗Y are endofunctors on an inverse category,

they preserve daggers, so that by bifunctoriality −⊗− does as well:

(f⊗g)† = ((f⊗idY )◦(idX⊗g))† = (idX⊗g)†◦(f⊗idY )
† = (idX⊗g†)◦(f †⊗idY ) = f †⊗g†.

3 Arrows as an interface for reversible effects

Arrows are a standard way to encapsulate computational side-effects in a functional

(irreversible) programming language [16,17]. This section extends the definition to

reversible settings, namely to dagger arrows and inverse arrows. We argue that these

notions are “right”, by exhibiting a large list of fundamental reversible side-effects

that they model. We start by recalling irreversible arrows.

Definition 3.1 An arrow on a symmetric monoidal categoryC is a functorA : Cop×
C → Set with operations

arr : (X → Y ) → A X Y

(>>>) : A X Y → A Y Z → A X Z

firstX,Y,Z : A X Y → A (X ⊗ Z) (Y ⊗ Z)
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that satisfy the following laws:

(a >>> b) >>> c = a >>> (b >>> c) (1)

arr(g ◦ f) = arr f >>> arr g (2)

arr id >>> a = a = a >>> arr id (3)

firstX,Y,I a >>> arr ρY = arr ρX >>> a (4)

firstX,Y,Z a >>> arr(idY ⊗ f) = arr(idX ⊗ f) >>> firstX,Y,Z a (5)

(firstX,Y,Z⊗V a) >>> arrαY,Z,V = arrαX,Z,V >>> first(first a) (6)

first(arr f) = arr(f ⊗ id) (7)

first(a >>> b) = (first a) >>> (first b) (8)

where we use the functional programming convention to write A X Y for A(X,Y )

and X → Y for hom(X,Y ) The multiplicative fragment consists of above data

except first, satisfying all laws except those mentioning first; we call this a weak

arrow.

Define second(a) by arr(σ) >>> first(a) >>> arr(σ), using the symmetry, so

analogs of (4)–(8) are satisfied. Arrows makes sense for (nonsymmetric) monoidal

categories if we add this operation and these laws.

Definition 3.2 A dagger arrow is an arrow on a monoidal dagger category with

an additional operation inv : A X Y → A Y X satisfying the following laws:

inv(inv a) = a (9)

inv a >>> inv b = inv(b >>> a) (10)

arr(f †) = inv(arr f) (11)

inv(first a) = first(inv a) (12)

A inverse arrow is a dagger arrow on a monoidal inverse category such that:

(a >>> inv a) >>> a = a (13)

(a >>> inv a) >>> (b >>> inv b) = (b >>> inv b) >>> (a >>> inv a) (14)

The multiplicative fragment consists of above data except first, satisfying all laws

except those mentioning first.

Remark 3.3 There is some redundancy in the definition of an inverse arrow: (13)

and (14) imply (11) and (12); and (11) implies inv(arr id) = arr id.

Like the arrow laws (1)–(8), in a programming language with inverse arrows,

the burden is on the programmer to guarantee (9)–(14) for their implementation.

If that is done, the language guarantees arrow inversion.

Remark 3.4 Now follows a long list of examples of inverse arrows, described in

a typed first-order reversible functional pseudocode with type classes, inspired by

Theseus [20,19], the revised version of Rfun (briefly described in [22]), and Haskell.
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Type classes are a form of interface polymorphism: A type class is defined by a class

specification containing the signatures of functions that a given type must imple-

ment in order to be a member of that type class (often, type class membership also

informally requires the programmer to ensure that certain equations are required of

their implementations). For example, the Functor type class (in Haskell) is given

by the class specification

class Functor f where

fmap : (a → b) → f a → f b

with the additional informal requirements that fmap id= id and fmap (g ◦ f )=(fmap g)◦(fmap f )

must be satisfied for all instances. For example, lists in Haskell satisfy these equa-

tions when defining fmap as the usual map function, i.e.:

instance Functor List where

fmap : (a → b) → List a → List b

fmap f [] = []

fmap f (x ::xs) = (f x )::(fmap f xs)

While higher-order reversible functional programming is fraught, aspects of this

can be mimicked by means of parametrized functions. A parametrized function is

a function that takes parts of its input statically (i.e., no later than at compile

time), in turn lifting the first-order requirement on these inputs. To separate static

and dynamic inputs from one another, two distinct function types are used: a → b

denotes that a must be given statically, and a ↔ b (where a and b are first-order

types) denotes that a is passed dynamically. As the notation suggests, functions of

type a ↔ b are reversible. For example, a parametrized variant of the reversible

map function can be defined as a function map : (a ↔ b) → ([a] ↔ [b]). Thus,

map itself is not a reversible function, but given statically any reversible function

f : a ↔ b, the parametrized map f : ([a] ↔ [b]) is.

Given this distinction between static and dynamic inputs, the signature of arr

becomes (X ↔ Y ) → A X Y . We will see later that Arrows on C can be modelled

categorically as monoids in the functor category [Cop ×C,Set] [18]. Definition 3.1

uses the original signature, because this distinction is not present in the irreversible

case. Fortunately, the semantics of arrows remain the same whether or not this

distinction is made.

Example 3.5 (Pure functions) A trivial example of an arrow is the identity arrow

hom(−,+) which adds no computational side-effects at all. This arrow is not as

boring as it may look at first. If the identity arrow is an inverse arrow, then

the programming language in question is both invertible and closed under program

inversion: any program p has a semantic inverse �p�† (satisfying certain equations),

and the semantic inverse coincides with the semantics �inv(p)� of another program

inv(p). As such, inv must be a sound and complete program inverter (see also [23])

on pure functions; not a trivial matter at all.
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Example 3.6 (Information effects) James and Sabry’s information effects [19] ex-

plicitly expose creation and erasure of information as effects. This type-and-effect

system captures irreversible computation inside a pure reversible setting.

We describe the languages from [19] categorically, as there is no space for syntac-

tic details. Start with the free dagger category (C,×, 1) with finite products (and

hence coproducts), where products distribute over coproducts by a unitary map.

Objects interpret types of the reversible language Π of bijections, and morphisms

interpret terms. The category C is a monoidal inverse category.

The categoryC carries an arrow, where A(X,Y ) is the disjoint union of hom(X×
H,Y × G) where G and H range over all objects, and morphisms X × H → Y ×
G and X × H ′ → Y × G′ are identified when they are equal up to coherence

isomorphisms. This is an inverse arrow, where inv(a) is simply a†. It supports the
following additional operations:

erase = [ πH : X × H → H ]� ∈ A(X , 1),

createX = [ π†
H : H → X × H ]� ∈ A(1,X ).

James and Sabry show how a simply-typed first order functional irreversible lan-

guage translates into a reversible one by using this inverse arrow to build implicit

communication with a global heap H and garbage dump G.

Example 3.7 (Reversible state) Perhaps the prototypical example of an effect

is computation with a mutable store of type S. In the irreversible case, such

computations are performed using the state monad State S X = S � (X ⊗ S ),

where S � − is the right adjoint to − ⊗ S, and can be thought of as a function

type. Morphisms in the corresponding Kleisli category are morphisms of the form

X → S � (Y ⊗S) in the ambient monoidal closed category. In this formulation, the

current state is fetched by get : State S S defined as get s = (s, s), while the state

is (destructively) updated by put : S → State S 1 defined as put x s = ((), x ).

Such arrows can not be used as-is in inverse categories, however, as canonical

examples (such as PInj) fail to be monoidal closed. To get around this, note that

it follows from monoidal closure that hom(X,S � (Y ⊗ S))  hom(X ⊗ S, Y ⊗ S),

so that hom(−⊗ S,−⊗ S) is an equivalent arrow that does not depend on closure.

With this is mind, we define the reversible state arrow with a store of type S:

type RState S X Y = X ⊗ S ↔ Y ⊗ S

instanceArrow (RState S )where

arr f (x , s) = (f x , s)

(a >>> b) (x , s) = b (a (x , s))

first a ((x , z ), s) = let (x ′, s ′) = a (x , s) in ((x ′, z ), s ′)

instance InverseArrow (RState S )where

inv a (y , s) = a† (y , s)

This satisfies the inverse arrow laws. To access the state, we use reversible duplica-

tion of values (categorically, this requires the monoidal product to have a natural
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diagonal ΔX : X → X⊗X, as inverse products do). Syntactically, this corresponds

to the following arrow:

get : RState S X (X ⊗ S )

get (x , s) = ((x , s), s)

The inverse to this arrow is assert : RState S (X ⊗ S ) X , which asserts that the

current state is precisely what is given in its second input component; if this fails, the

result is undefined. For changing the state, while we cannot destructively update it

reversibly, we can reversibly update it by a given reversible function with signature

S ↔ S. This gives:

update : (S ↔ S ) → RState S X X

update f (x , s) = (x , f s)

This is analogous to how variable assignment works in the reversible programming

language Janus [35]: Since destructive updating is not permitted, state is updated

by means of built-in reversible update operators, e.g., updating a variable by adding

a constant or the contents of another variable to it, etc.

Example 3.8 (Computation in context) Related to computation with a mutable

store is computation with an immutable one; that is, computation within a larger

context that remains invariant across execution. In an irreversible setting, this

job is typically handled by the reader monad (with context of type C), defined as

Reader C X = C ⇒ X . This approach is fundamentally irreversible, however, as

the context is “forgotten” whenever a value is computed by supplying it with a

context. Even further, it relies on the reversibly problematic notion of monoidal

closure.

A reversible version of this idea is one that remembers the context, giving us

the reversible Reader arrow:

type Reader C X Y = X ⊗ C ↔ Y ⊗ C

This is precisely the same as the state arrow – indeed, the instance declarations for

arr , (>>>), first , and inv are the same – save for the fact that we additionally require

all Reader arrows r to satisfy c = c′ whenever r (x , c) = (y , c′). We notice that

arr f satisfies this property for all f , whereas (>>>), first , and inv all preserve it.

This resembles the “slice” construction on inverse categories with inverse products;

see [11, Sec. 4.4].

As such, while we can provide access to the context via a function defined exactly

as get for the reversible state arrow, we cannot provide an update function without

(potentially) breaking this property – as intended. In practice, the property that the

context is invariant across execution can be aided by appropriate interface hiding,

i.e. exposing the Reader type and appropriate instance declarations and helpers

(such as get and assert) but leaving the constructor for Reader arrows hidden.
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Example 3.9 (Rewriter) A particularly useful special case of the reversible state

arrow is when the store S forms a group. While group multiplication if seen as a

function G ⊗G ↔ G is invertible only in degenerate cases, we can use parametriza-

tion to fix the first argument of the multiplication, giving it a much more reasonable

signature of G → (G ↔ G). In this way, groups can be expressed as instances of

the type class

classGroup G where

gunit : G

gmul : G → (G ↔ G)

ginv : G ↔ G

subject to the usual group axioms. This gives us an arrow of the form

type Rewriter G X Y = X ⊗G ↔ Y ⊗G

with instance declarations identical to that of RState G , save that we require G to

be an instance of the Group type class. With this, adding or removing elements

from state of type G can then be performed by

rewrite : G → Rewriter G X X

rewrite a (x , b) = (x , gmul a b)

which “rewrites” the state by the value a of type G. Note that while the name of

this arrow was chosen to be evocative of the Writer monad known from irreversible

functional programming, as it may be used for similar practical purposes, its con-

struction is substantially different (i.e., irreversible Writer arrows are maps of the

form X → Y ×M where M is a monoid).

Example 3.10 (Vector transformation) Vector transformations, that is, functions

on lists that preserve the length of the list, form another example of inverse arrows.

The Vector arrow is defined as follows:

typeVector X Y = [X ] ↔ [Y ]

instanceArrow (Vector)where

arr f xs = map f xs

(a >>> b) xs = b (a xs)

first a ps = let (xs, zs) = zip† ps in zip (a xs, zs)

instance InverseArrow (Vector)where

inv a ys = a† ys

The definition of first relies on the usual map and zip functions, which are defined

as follows:
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map : (a ↔ b) → ([a] ↔ [b])

map f [] = []

map f (x ::xs) = (f x )::(map f xs)

zip : ([a], [b]) ↔ [(a, b)]

zip ([], []) = []

zip (x ::xs, y ::ys) = (x , y)::(zip (xs, ys))

Notice that preservation of length is required for first to work: if the arrow a does

not preserve the length of xs, then zip (a xs, zs) is undefined. However, since arr

lifts a pure function f to a map (which preserves length), and (>>>) and inv are

given by the usual composition and inversion, the interface maintains this property.

Example 3.11 (Reversible error handling) An inverse weak arrow comes from re-

versible computation with a possibility for failure. The weak Error arrow is defined

using disjointness tensors as follows:

type Error E X Y = X ⊕ E ↔ Y ⊕ E

instanceWeakArrow (Error E )where

arr f (InL x ) = InL (f x )

arr f (InR e) = InR e

(a >>> b) x = b (a x )

instance InverseWeakArrow (Error E )where

inv a y = a† y

In this definition, we think of the type E as the type of errors that could occur during

computation. As such, a pure function f lifts to a weak arrow which always succeeds

with value f(x) when given a nonerroneous input of x, and always propagates errors

that may have occured previously.

Raising an error reversibly requires more work than in the irreversible case, as

the effectful program that produces an error must be able to recover from it in

the converse direction. In this way, a reversible raise requires two pieces of data: a

function of type X ↔ E that transforms problematic inputs into appropriate errors;

and a choice function of type E ↔ E ⊕ E that decides if the error came from this

site, injecting it to the left if it did, and to the right if it did not. The latter choice

function is critical, as in the converse direction it decides whether the error should

be handled immediately or later. Thus we define raise as follows:

raise : (X ↔ E ) → (E ↔ E ⊕ E ) → Error E X Y

raise f p x = InR (p† (arr f x )))

The converse of raise is handle, an (unconditional) error handler that maps match-

ing errors back to succesful output values. Since unconditional error handling is

seldom required, this can be combined with control flow (see Example 3.15) to

perform conditional error handling, i.e. to only handle errors if they occur.

Example 3.12 (Serialization) When restricting our attention, as we do here, to

only first-order reversible functional programming languages, another example of
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inverse arrows arises in the form of serializers. A serializer is a function that trans-

forms an internal data representation into one more suitable for storage, or for

transmission to other running processes. To transform serialized data back into an

internal representation, a suitable deserializer is used.

When restricting ourselves to the first-order case, it seems reasonable to assume

that all types are serializable, as we thus avoid the problematic case of how to

serialize data of function type. As such, assuming that all types X admit a function

serialize : X ↔ Serialized X (where Serialized X is the type of serializations of

data of type X), we define the Serializer arrow as follows:

type Serializer X Y = X ↔ Serialized Y

instanceArrow (Serializer)where

arr f x = serialize (f x )

(a >>> b) x = b (serialize† (a x ))

first a (x , z ) = serialize (serialize† (a x ), z )

instance InverseArrow (Serializer)where

inv a y = serialize (a† (serialize y))

Notice how serialize† : Serialized X ↔ X takes the role of a (partial) deserializer,

able to recover the internal representation from serialized data as produced by the

serializer. A deserializer of the form serialize† will often only be partially defined,

since many serialization methods allow many different serialized representations

of the same data (for example, many textual serialization formats are whitespace

insensitive). In spite of this shortcoming, partial deserializers produced by inverting

serializers are sufficient for the above definition to satisfy the inverse arrow laws.

Example 3.13 (Dagger Frobenius monads) Monads are also often used to capture

computational side-effects. Arrows are more general. If T is a strong monad, then

A = hom(−, T (+)) is an arrow: arr is given by the unit, >>> is given by Kleisli

composition, and first is given by the strength maps. What happens when the base

category is a dagger or inverse category modelling reversible pure functions?

A monad T on a dagger category is a dagger Frobenius monad when it satisfies

T (f †) = T (f)† and T (μX) ◦ μ†
T (X) = μT (X) ◦ T (μ†

X). The Kleisli category of such

a monad is again a dagger category [15, Lemma 6.1], giving rise to an operation

inv satisfying (9)–(10). A dagger Frobenius monad is strong when the strength

maps are unitary. In this case (11)–(12) also follow. If the underlying category is

an inverse category, then μ ◦ μ† ◦ μ = μ, whence μ ◦ μ† = id, and (13)–(14) follow.

Thus, if T is a strong dagger Frobenius monad on a dagger/inverse category, then A

is a dagger/inverse arrow. The Frobenius monad T (X) = X⊗C
2 on the category of

Hilbert spaces captures measurement in quantum computation [14], giving a good

example of capturing an irreversible effect in a reversible setting. For more examples

see [15].

Example 3.14 (Restriction monads) There is a notion in between the dagger and

inverse arrows of the previous example. A (strong) restriction monad is a (strong)
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monad on a (monoidal) restriction category whose underlying endofunctor is a re-

striction functor. The Kleisli-category of a restriction monad T has a natural re-

striction structure: just define the restriction of f : X → T (Y ) to be ηX ◦ f̄ . The

functors between the base category and the Kleisli category then become restriction

functors. If T is a strong restriction monad on a monoidal restriction category C,

then Inv(C) has an inverse arrow (X,Y ) 
→ (Inv(K�(T )))(X,Y ).

Example 3.15 (Control flow) While only trivial inverse categories have coprod-

ucts [11], less structure suffices for reversible control structures. When the do-

main and codomain of an inverse arrow both have disjointness tensors (see Defi-

nition 2.4), it can often be used to implement ArrowChoice. For a simple exam-

ple, the pure arrow on an inverse category with disjointness tensors implements

left : AX Y → A (X ⊕ Z ) (Y ⊕ Z ) as

left f (x , z ) = (f x , z )

The laws of ArrowChoice [16] simply reduce to −⊕− being a bifunctor with natural

quasi-injections. More generally, the laws amount to preservation of the disjointness

tensor. For the reversible state arrow (Example 3.7), this hinges on ⊗ distributing

over ⊕.

The splitting combinator (+++) is unproblematic for reversiblity, but the fan-

in combinator (|||) cannot be defined reversibly, as it explicitly deletes information

about which branch was chosen. Reversible conditionals thus require two predicates:

one determining the branch to take, and one asserted to join the branches after

execution. The branch-joining predicate must be chosen carefully to ensure that

it is always true after the then-branch, and false after the else-branch. This is a

standard way of handling branch joining reversibly [35,34,12].

Example 3.16 (Superoperators) Quantum information theory has to deal with en-

vironments. The basic category FHilb is that of finite-dimensional Hilbert spaces

and linear maps. But because a system may be entangled with its environment, the

only morphisms that preserve states are the so-called superoperators, or completely

positive maps [31,7]: they are not just positive, but stay positive when tensored

with an arbitrary ancillary object. In a sense, information about the system may

be stored in the environment without breaking the (reversible) laws of nature. This

leads to the so-called CPM construction. It is infamously known not to be a monad.

But it is a dagger arrow on FHilb, where A X Y is the set of completely positive

maps X∗ ⊗X → Y ∗ ⊗ Y , arr f = f∗ ⊗ f , a >>> b = b ◦ a, firstX,Y,Z a = a⊗ idZ∗⊗Z ,

and inv a = a†.

Aside from these, other examples do fit the interface of inverse arrows, though

they are less syntactically interesting as they must essentially be “built in” to a

particular programming language. These include reversible IO, which functions

very similarly to irreversible IO, and reversible recursion, which could be used to

give a type-level separation between terminating and potentially non-terminating

functions, by only allowing fixed points of parametrized functions between arrows

rather than between (pure) functions.
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4 Inverse arrows, categorically

This section explicates the categorical structure of inverse arrows. Arrows on C can

be modelled categorically as monoids in the functor category [Cop × C,Set] [18].

They also correspond to certain identity-on-objects functors J : C → D. The cate-

gory D for an arrow A is built by D(X,Y ) = A X Y , and arr provides the functor

J . We will only consider the multiplicative fragment. The operation first can be

incorporated in a standard way using strength [18,3], and poses no added difficulty

in the reversible setting.

Clearly, dagger arrows correspond to D being a dagger category and J a dagger

functor, whereas inverse arrows correspond to both C and D being inverse cate-

gories and J a (dagger) functor. This section takes the first point of view: which

monoids correspond to dagger arrows and inverse arrows? In the dagger case, the

answer is quite simple: the dagger makes [Cop×C,Set] into an involutive monoidal

category, and then dagger arrows correspond to involutive monoids. Inverse arrows

furthermore require certain diagrams to commute.

Definition 4.1 An involutive monoidal category is a monoidal categoryC equipped

with an involution: a functor ( ) : C → C satisfying f = f for all morphisms

f , together with a natural isomorphism χX,Y : X ⊗ Y → Y ⊗X that makes the

following diagrams commute 4 :

X ⊗ (Y ⊗ Z) (X ⊗ Y )⊗ Z

X ⊗ Z ⊗ Y Y ⊗X ⊗ Z

(Z ⊗ Y )⊗X Z ⊗ (Y ⊗X)

id ⊗ χ

α

χ⊗ id

χ

α

α

X ⊗ Y Y ⊗X

X ⊗ Y X ⊗ Y

id

χ

χ

id

Just like monoidal categories are the natural setting for monoids, involutive

monoidal categories are the natural setting for involutive monoids. Any involutive

monoidal category has a canonical isomorphism φ : I → I [9, Lemma 2.3]:

I = I I ⊗ I I ⊗ I = I ⊗ I I
ρI

−1 χ−1
I,I ρI

Moreover, any monoid M with multiplication m and unit u induces a monoid on M

with multiplication m ◦ χM,M and unit u ◦ φ. This monoid structure on M allows

us to define involutive monoids.

Definition 4.2 An involutive monoid is a monoid (M,m, u) together with a monoid

homomorphism i : M → M satisfying i ◦ i = id. A morphism of involutive monoids

4 There is a more general definition allowing a natural isomorphism X → X (see [9] for details), but we
only need the strict case.
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is a monoid homomorphism f : M → N making the following diagram commute:

M N

M N

iM

f

iN

f

Our next result lifts the dagger on C to an involution on the category [Cop ×
C,Set] of profunctors. First we recall the monoidal structure on that category. It

categorifies the dagger monoidal category Rel of relations of Section 2 [5].

Definition 4.3 If C is small, then [Cop ×C,Set] has a monoidal structure

F ⊗G(X,Z) =

∫ Y

F (X,Y )×G(Y, Z);

concretely, F ⊗ G(X,Z) =
∐

Y ∈C F (X,Y ) × G(Y, Z)/ ≈, where ≈ is the equiv-

alence relation generated by (y, F (f, id)(x)) ≈ (G(id, f)(y), x), and the action on

morphisms is given by F ⊗ G(f, g) := [y, x]≈ 
→ [F (f, id)x,G(id, g)y]. The unit of

the tensor product is homC.

Proposition 4.4 If C is a dagger category, then [Cop × C,Set] is an involutive

monoidal category when one defines the involution on objects F by F (X,Y ) =

F (Y,X), F (f, g) = F (g†, f †) and on morphisms τ : F → G by τX,Y = τY,X .

Proof. First observe that ( ) is well-defined: For any natural transformation of

profunctors τ , τ is natural, and τ 
→ τ is functorial. Define χF,G by the following

composite of natural isomorphisms:

F ⊗G(X,Z) ∼= ∫ Y
F (X,Y )×G(Y, Z) by definition of ⊗

=
∫ Y

F (Y,X)×G(Z, Y ) by definition of ( )

∼= ∫ Y
G(Z, Y )× F (Y,X) by symmetry of ×

∼= G⊗ F (Z,X) by definition of ⊗
= G⊗ F (X,Z) by definition of ( )

Checking that χ make the relevant diagrams commute is routine. �

Theorem 4.5 If C is a dagger category, the multiplicative fragments of dagger

arrows on C correspond exactly to involutive monoids in [Cop ×C,Set].

Proof. It suffices to show that the dagger on an arrow corresponds to an involution

on the corresponding monoid F . But this is easy: an involution on F corresponds

to giving, for each X,Y a map F (X,Y ) → F (Y,X) subject to some axioms. That

this involution is a monoid homomorphism amounts to it being a contravariant

identity-on-objects-functor, and the other axiom amounts to it being involutive. �
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Remark 4.6 If the operation first is modeled categorically as (internal) strength,

axiom (12) for dagger arrows can be phrased in [Cop ×C,Set] as follows: for each

object Z of C, and each dagger arrow M , the profunctor MZ = M((−)⊗Z, (+)⊗Z)

is also a dagger arrow, and first−,+,Z is a natural transformation M ⇒ MZ . The

arrow laws (7) and (8) imply that it is a monoid homomorphism, and the new

axiom just states that it is in fact a homomorphism of involutive monoids. For

inverse arrows this law is not needed, as any functor between inverse categories

is automatically a dagger functor and thus every monoid homomorphism between

monoids corresponding to inverse arrows preserves the involution.

Next we set out to characterize which involutive monoids correspond to inverse

arrows. Given an involutive monoid M , the obvious approach would be to just

state that the map M → M defined by a 
→ a ◦ a† ◦ a is the identity. However,

there is a catch: for an arbitrary involutive monoid, the map a 
→ a ◦ a† ◦ a is

not natural transformation and therefore not a morphism in [Cop × C,Set]. To

circumvent this, we first require some conditions guaranteeing naturality. These

conditions concern endomorphisms, and to discuss them we introduce an auxiliary

operation on [Cop ×C,Set].

Definition 4.7 Let C be a dagger category. Given a profunctor M : Cop × C →
Set, define LM : Cop ×C → Set by

LM(X,Y ) = M(X,X),

LM(f, g) = f † ◦ (−) ◦ f .

If M is an involutive monoid in [Cop ×C,Set], define a subprofunctor of LM :

L+M(X,Y ) = {a† ◦ a ∈ M(X,X) | a ∈ M(X,Z) for some Z}.
Remark 4.8 The construction L is a functor [Cop × C,Set] → [Cop × C,Set].

There is an analogous construction RM(X,Y ) = M(Y, Y ) and R+M , and further-

more RM = LM . For any monoid M in [Cop ×C,Set], LM is a right M -module

(and RM a left M -module). Compare Example 3.16.

For the rest of this section, assume the base category C to be an inverse cate-

gory. This lets us multiply positive arrows by positive pure morphisms. If M is an

involutive monoid in [Cop×C,Set], then the map LM ×L+(homC) → LM defined

by (a, g† ◦ g) 
→ a ◦ g† ◦ g is natural:

LM × L+(hom)(f, idY )(a, g
† ◦ g)

= (f † ◦ a ◦ f, f † ◦ g† ◦ g ◦ f)

→ f † ◦ a ◦ f ◦ f † ◦ g† ◦ g ◦ f
= f † ◦ a ◦ g† ◦ g ◦ f ◦ f † ◦ f because C is an inverse category

= f † ◦ a ◦ g† ◦ g ◦ f because C is an inverse category

= LM(f, idY )(a ◦ g† ◦ g)
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Similarly there is a map L+(hom)×LM → LM defined by (g†◦g, a) 
→ g†◦g◦a.
Now the category corresponding to M satisfies a† ◦ a ◦ g† ◦ g = g† ◦ g ◦ a† ◦ a for all

a and pure g if and only if the following diagram commutes:

L+M × L+(hom) LM × L+(hom)

L+(hom)× L+M L+(hom)× LM LM

σ (15)

If this is satisfied for an involutive monoid M in [Cop×C,Set], then positive arrows

multiply. In other words, the map L+M ×L+M → LM defined by (a† ◦a, b† ◦ b) 
→
a† ◦ a ◦ b† ◦ b is natural:

DM (f, g)(a, a†, a)
= (g ◦ a ◦ f, f † ◦ a† ◦ g†, g ◦ a ◦ f)

→ g ◦ a ◦ f ◦ f † ◦ a† ◦ g† ◦ g ◦ a ◦ f
= g ◦ a ◦ a† ◦ g† ◦ g ◦ a ◦ f ◦ f † ◦ f by (15)

= g ◦ a ◦ a† ◦ g† ◦ g ◦ a ◦ f because C is an inverse category

= g ◦ g† ◦ g ◦ a ◦ a† ◦ a ◦ f by (15)

= g ◦ a ◦ a† ◦ a ◦ f because C is an inverse category

= M(f, g)(a ◦ a† ◦ a)

This multiplication is commutative iff the following diagram commutes:

L+M × L+M L+M × L+M

LM

σ

(16)

Finally, let DM ↪→ M ×M ×M be the diagonal DM (X,Y ) = {(a, a†, a) | a ∈
M(X,Y )}.

If M satisfies (15), then the map DM → M defined by (a, a†, a) 
→ a ◦ a† ◦ a is

natural:
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DM (f, g)(a, a†, a)
= (g ◦ a ◦ f, f † ◦ a† ◦ g†, g ◦ a ◦ f)

→ g ◦ a ◦ f ◦ f † ◦ a† ◦ g† ◦ g ◦ a ◦ f
= g ◦ a ◦ a† ◦ g† ◦ g ◦ a ◦ f ◦ f † ◦ f by (15)

= g ◦ a ◦ a† ◦ g† ◦ g ◦ a ◦ f because C is an inverse category

= g ◦ g† ◦ g ◦ a ◦ a† ◦ a ◦ f by (15)

= g ◦ a ◦ a† ◦ a ◦ f because C is an inverse category

= M(f, g)(a ◦ a† ◦ a)

Thus M satisfies a ◦ a† ◦ a = a if and only if the following diagram commutes:

M DM

M
id

(17)

Hence we have established the following theorem.

Theorem 4.9 Let C be an inverse category. Then the multiplicative fragments of

inverse arrows on C correspond exactly to involutive monoids in [Cop × C,Set]

making the diagrams (15)–(17) commute. �

5 Applications and related work

As we have seen, inverse arrows capture a variety of fundamental reversible effects.

An immediate application of our results would be to retrofit existing typed re-

versible functional programming languages (e.g., Theseus [20]) with inverse arrows

to accommodate reversible effects while maintaining a type-level separation between

pure and effectful programs. Another approach could be to design entirely new such

programming languages, taking inverse arrows as the fundamental representation

of reversible effects. While the Haskell approach to arrows uses typeclasses [16],

these are not a priori necessary to reap the benefits of inverse arrows. For example,

special syntax for defining inverse arrows could also be used, either explicitly, or

implicitly by means of an effect system that uses inverse arrows “under the hood”.

To aid programming with ordinary arrows, a handy notation due to Pater-

son [27,28] may be used. The simplest form of this notation is based on process

combinators, the central one being

p → e1 ≺ e2 =

⎧⎨
⎩

arr(λp.e2) >>> e1 if p is fresh for e1,

arr(λp.(e1, e2)) >>> app otherwise.
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Note that if the second branch is used, the arrow must additionally be an instance

of ArrowApply (so that it is, in fact, a monad). Though we only know of degen-

erate examples where inverse arrows are instances of ArrowApply , this definition is

conceptually unproblematic (from the point of view of guaranteeing reversibility)

so long as the pure function λp.e2 is first-order and reversible. A more advanced

style of this notation is the do-notation for arrows, which additionally relies on the

arrow combinator

bind : A X Y → A (X ⊗ Y ) Z → A X Z

f ′bind ′ g = (arr(id) &&& f ) >>> g .

If the underlying monoidal dagger category has natural coassociative diagonals,

for example when it has inverse products, this combinator does exist: the arrow

combinator (&&&) can be defined as

(&&&) : A X Y → A X Z → A X (Y ⊗ Z )

f &&& g = arr(copy) >>> first(f ) >>> second(g)

where copy : X →X ⊗X is the natural diagonal (given in pseudocode by copy x = (x , x )),

and the combinator second is derived from first in the usual way, i.e., as

second : A X Y → A (Z ⊗ X ) (Z ⊗ Y )

second f = arr(swap) >>> first(f ) >>> arr(swap)

with swap : X ⊗ Y ↔ Y ⊗ X given by swap (x , y) = (y , x ). This allows do-notation

of the form

do {p ← c ; A} ≡ c ′bind ′ (κp. do {A}),

so soon as the κ-calculus [13] expression κp. do {A} is reversible. Note, however,

that do-expressions of the form do {c ; A} (i.e., where the output of c is dis-

carded entirely) will fail to be reversible in all but the most trivial cases. Since

do {p ← c ; A} produces a value of an inverse arrow type, closure under program

inversion provides a program we might call

undo {p ← c ; A} ≡ inv(do {p ← c ; A}) .

Inverse arrow law (13) then guarantees that doing, then undoing, and then doing

the same operation is the same as doing it once.

A pleasant consequence of the semantics of inverse arrows is that inverse arrows

are safe: as long as the inverse arrow laws are satisfied, fundamental properties

guaranteed by reversible functional programming languages (such as invertibility

and closure under program inversion) are preserved. In this way, inverse arrows

provide reversible effects as a conservative extension to pure reversible functional

programming.
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A similar approach to invertibility using arrows is given by bidirectional ar-

rows [2]. However, while the goal of inverse arrows is to add effects to already

invertible languages, bidirectional arrows arise as a means to add invertibility to an

otherwise uninvertible language. As such, bidirectional arrows have different con-

cerns than inverse arrows, and notably do not guarantee invertibility in the general

case.
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