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Abstract— Perception is essential for the active interaction of
physical agents with the external environment. The integration
of multiple sensory modalities, such as touch and vision,
enhances this perceptual process, creating a more compre-
hensive and robust understanding of the world. Such fusion
is particularly useful for highly deformable bodies such as
soft robots. Developing a compact, yet comprehensive state
representation from multi-sensory inputs can pave the way for
the development of complex control strategies.

This paper introduces a perception model that harmonizes
data from diverse modalities to build a holistic state represen-
tation and assimilate essential information. The model relies
on the causality between sensory input and robotic actions,
employing a generative model to efficiently compress fused
information and predict the next observation. We present, for
the first time, a study on how touch can be predicted from
vision and proprioception on soft robots, the importance of the
cross-modal generation and why this is essential for soft robotic
interactions in unstructured environments.

Index Terms— Multi-modal Perception, Learning, Generative
Models, Touch, Vision, Soft Robots

I. INTRODUCTION

Being aware of oneself and one’s surroundings requires
information from various sources. Utilizing multiple senses
enables a more comprehensive insight into the real world,
especially when actions depend heavily on the perceptual
input. This heightened state of awareness is imperative for
the development of forthcoming robots that transcend mere
reactivity to stimuli, actively engaging in the perception
of the world through diverse sensory channels [1]. The
integration of multiple sensory modalities not only provides
redundancy but also augments the resilience of the perceptual
process [2]. Such enhancement is achievable through cross-
modal inference [3], wherein information from one modality
is harnessed to derive inferences or draw conclusions across
other modalities. This intricate process entails the amalga-
mation of cues from diverse sensory sources to form a more
complete and coherent world representation.

A perception model can be conceptualized as a cognitive
framework that harmonizes data from diverse sensors and
modalities, to build a compact, holistic, yet complete state
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Fig. 1: The simulated environment where a soft robot inter-
acting in an unstructured environment attempts to combine
visual-proprio feedback for compact state representation and
tactile prediction.

representation of the experience [4]. It is worth noting
that despite the ongoing research into the construction of
such a perception model, the means to do so remain an
open question. Nevertheless, the potential impact of such
a model on robot control has been well-established. During
interactions, robots are reliant on the concurrent and comple-
mentary contributions of their various senses. These include
vision for global inspection, touch for localized sensing, and
proprioception for internal body representation [5]. Several
approaches have been proposed for the fusion of vision with
touch [6]–[8] and proprioception [9], [10].

Highly deformable bodies, such as soft robots, would ben-
efit from a compact yet comprehensive state representation,
especially when combining multi-sensory inputs or single-
modality, distributed sensing along the body. Typically,
modelling of soft or continuum robots often necessitates
approximations, which limit the fidelity of the model when it
comes to physical interactions [11]. Analytical models have
been advanced to address their mathematical representation
[12]–[14]; however, the systems’ complexity constrains their
ease of applicability, particularly to incorporate multi-modal
sensors for feedback control. Data-driven approaches [15],
[16] can offer finite-dimensional models that entail lower
computational costs. Additionally, model-free approaches
have been proposed to discuss how to map sensing informa-
tion to action straightly [17], [18], but in contact-free tasks.
Nevertheless, building useful state representation from multi-
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modal sensory inputs is an open challenge in the field of soft
robotics for both analytical and learning-based methods when
soft robots engage with their surroundings [19]. A compact
multi-modal state representation, which assimilates relevant
information, is vital for control in such environments.

In this paper, we propose a learning architecture aimed at
building a compact and informative state representation, by
employing a predictive model conditioned on the forthcom-
ing actions of the robot. By striving to extract the minimal
amount of information necessary for predicting the evolution
of the robot’s body and its interaction with the environment,
we aim to create a more efficient and streamlined perception
model. These compact representations can then be employed
as state representations for control tasks, significantly re-
ducing the complexity of the control policy — a concept
previously explored in the context of rigid systems [6]. The
influence on soft robots will be even more profound, making
them able to manage not only multi-modal sensing but also
perceive localized information.

Our implementation aims to forecast observations over
time by leveraging the causal relationship between sensory
input and robotic actions. Our fundamental hypothesis sug-
gests that relying on a minimal state representation from
multiple sensing modalities will enhance the predictive ca-
pabilities of the network. To achieve this, we employ a
generative model to reduce sensing dimensionality and en-
able conditioned reconstruction, thereby achieving the most
efficient compression of the fused information. The paper
will additionally contribute to the analysis of cross-modal
sensing generation, offering insights into touch prediction in
relation to vision sensing.

We first describe how the predictive model can be realized
through the use of a generative model and delineate the
benchmarking process for the fusion and compression of
the state representation using suitable architectures. Sub-
sequently, we introduce a simulation environment for data
collection, as depicted in Figure 1, in which a passive soft
finger navigates while interacting with plain surfaces and
movable objects. Data encompassing proprioception, touch,
and vision are recorded within this simulated setting. We
explore the fusion of various sensory inputs to construct
a coherent perception and present experimental findings in
simulation that shed light on the advantages and potential
applications of our model within the field of soft robotics,
to implement perceptually-aware soft robots.

II. LEARNING ARCHITECTURE

Multi-modal sensory fusion aims to create a comprehen-
sive perception of the environment or the agent’s internal
state employing a compact state representation, while still
retaining relevant and meaningful information. Indeed, differ-
ent sensory modalities highlight diverse aspects of the same
event, and their combination provides a richer representation.

The objective of our learning architecture is to facilitate
this fusion by capitalizing on the dynamic evolution of
the physical body. At any time-step t, we can observe a
non-minimal variable, denoted as s̄t, from multiple sensory

Fig. 2: Fusion and prediction learning architecture. (a) Pre-
diction of the next sensory observation starting from a current
observation and performed action, after undergoing a fusion
and compression stage. (b) Implementation of the model on
a Conditional Variational Auto-Encoder.

modalities. Given an action at, these sensory modalities can
be combined to predict self or other dependent modalities,
ŝt+1, in a self-supervised way. Careful consideration of
this output sensory information, ŝt+1, forces information
fusion without manual labelling [6]. Observations could be
composed of sensory inputs coming from different sources
of information; in other words, s̄t and ŝt are observations
of the same event at the same time, but involving different
(single, or multiple) sensory modalities. Furthermore, these
observations may depend on individual sensory modalities
while encompassing distributed information, a key feature
that uniquely defines soft robot sensorization. The prediction
process can be repeated over consecutive time steps, and the
evolution of the state can be summarized as follows:

ŝt+1 = h (s̄t, at) (1)

Here, the function h represents the dynamics of the body.
As it is very unlikely that the raw sensory data, s̄t, con-
stitutes a compact state representation, making long-term
predictions is challenging or infeasible. Therefore, there is a
need to identify an encoding function f that, based on the
output sensory information s̄t, can generate a compact task-
independent multi-modal state representation s̄ft as expressed
in the following equation:

s̄ft = f (s̄t) (2)

The combination of Eq. 1 and Eq. 2 results in the following
identity and it is represented in Figure 2(a).

ŝt+1 = h
(
s̄ft , at

)
= h (f (s̄t) , at) (3)

From a learning perspective, the framework can be imple-
mented using a generative model. Among the various solu-
tions available in the literature, the Variational AutoEncoder
(VAE) [20] is capable of learning a probabilistic mapping



Fig. 3: Information reconstruction learning architecture.

from data to a lower-dimensional space. This aligns with the
goals of multi-modal sensory fusion, as it involves encoding
a substantial amount of multi-modal information into a
smaller representation in a latent space while maintaining
completeness and ensuring high compression. However, in
our case, the prediction of the next state representation is
conditioned by the action undertaken by the system, which
helps the decoding stage to better generalize over learning.
To summarize, the Conditional VAE (CVAE) [21] in Figure
2(b) implement both sensory fusion and sensory prediction.

The CVAE comprises an encoding and a decoding stage.
The fusion encoder f takes the input observation and maps it
into a latent probabilistic distribution, assumed to be normal,
with mean µ and standard deviation σ. A point in the latent
space is then sampled stochastically, introducing an element
of randomness. The predictive decoder p gets as input the
sampled point and the conditional input and attempts to
generate data that closely resembles the output data.

From a data usage point of view, the network can receive
inputs and produce outputs that are either entirely distinct in
terms of the modality of information they entail or partially
derived from transformed input data.

The training of such a network involves maximizing a
probabilistic objective function, which consists of two parts:
reconstruction loss, to minimize the discrepancy between
the desired output and generated data, and a regularization
term, that encourages the latent space distribution to be
close to a standard normal distribution. During training, the
model learns the optimal parameters for both the encoder
and decoder networks. The encoder learns to produce the
mean and standard deviation for the latent space distribution,
while the decoder learns to generate data that minimizes the
reconstruction loss.

The CVAE illustrated in Figure 2(b) can then be utilized
to forecast the next sensory observation. This predictive
capability serves as a metric for evaluating the network’s
performance in anticipation. Furthermore, in Figure 3, the
reconstruction decoder r will be utilized to evaluate the in-
formativeness and completeness of the trained state represen-
tation in reconstructing the original data after compression.
The network’s performance will predominantly vary based on
the size of the variational latent space. The fusion encoder
will not undergo training, but it will be used to map the input
observation into the latent space. The reconstruction decoder
will learn how to build again original data from the latent
representation through self-supervision.

Fig. 4: Robotic platform simulation setup. The passive finger
is mounted at the distal end of a cylindrical rigid robot and
interacts with the ground, or eventually movable objects. The
finger presents 20 DoFs and it makes flexion/extension and
adduction/abduction movements.

III. SOFT BODY SIMULATION

The simulation is realized using the SoMo library [22],
which is built upon the PyBullet [23] physics simulator. This
environment facilitates the emulation of soft-bodied robots,
approximated by rigid links interconnected through spring-
loaded joints, while effectively handling interactions between
the robot’s body and the surrounding environment.

A. Simulation Environment

The soft passive finger, shown in Figure 4, comprises a
total of 20 links and joints. Each joint possesses an identical
spring constant, and all the links share the same mass. The
joints are arranged with alternating axes from the base to
the tip, enabling the finger to flex in two primary directions:
forward and backward, as well as laterally. These movements
closely mimic the flexion/extension and adduction/abduction
motions observed in the biological finger.

The finger is mounted at the distal end of a cylindrical rigid
robot, featuring a rotary joint q1 at its base and two prismatic
joints q2, q3 to connect its links. This design provides the
robot with a cylindrical-shaped workspace, achieved through
a rotating shaft and an extendable arm that moves vertically
and in a sliding motion.

Extra objects are introduced into the simulation, as in
Figure 1. Multiple box-shaped objects can be randomly
positioned in proximity to the robot, enabling the finger to
make additional contact with its surroundings.

B. Data collection

Two distinct types of simulations are conducted to cre-
ate the training datasets, differentiating between empty and
cluttered scenarios. The distinction lies in the presence of
additional objects within the simulation environment. The
process initiates with a predetermined initial configuration
of the rigid robot. Subsequently, random actuations are
generated over a defined number of time steps. This action
is intended to cover the entire workspace of the robot arm,



thereby enabling flexible finger movements and interactions.
The simulation operates at a frequency of 1 KHz to mitigate
potential numerical instabilities.

At each time-step t, for both simulation scenarios, a variety
of data modalities is recorded, encompassing proprioceptive,
contact, and visual information. These data streams provide
comprehensive insights into the behaviour and interaction of
the system. The sampling time for data acquisition is set to
10 Hz; it ensures a quasi-static motion of the finger.

In the case of proprioceptive data, the angles of the
finger joints qft = {qffe,t, q

f
aa,t} ∈ ℜ20×1 are logged to

capture the finger configuration. This information is crucial
for representing the finger’s shape. The joint angles of the
rigid arm qrt ∈ ℜ3×1 are also recorded.

Throughout interactions within the simulation, the finger
can undergo deformation at either a local or global level. At
the local level, PyBullet monitors the interactions occurring
between the finger and external objects, and the ground.
Specifically, it tracks the normal forces ft ∈ ℜ20×1 acting
on each link of the finger. Alternatively, global deformations
are captured through visual information. Such visual data vt,
with shape 64× 64× 3, is obtained by recording the simu-
lation with a virtual camera, assessing the system’s overall
deformations and interactions from a broader perspective.

IV. RESULTS

The training datasets have been generated within the
simulation environment. It allows for testing our learning
architectures on sensing information devoid of issues typical
in actual physical systems, such as noise and drift-prone
sensing technologies, or the segregation of sensory readout
from external force and deformation provided by the actua-
tion system [24]. Future works will explore employing pre-
existing datasets or simplified physical robots to benchmark
the model on real-world scenarios.

In our experiments, we focus on fine-tuning the hyper-
parameters of the learning algorithm through trial and error.
A particular focus is placed on the sensory modalities of the
input and output data, as well as the dimension of the latent
space. Such evaluation takes into account both prediction and
reconstruction capabilities.

A. Datasets and training algorithms

Two distinct simulations are conducted to assess the
performance of the robot in both empty and cluttered envi-
ronments. In each simulation, we generated a set of 4k joint
actuations for position control, starting from the rigid robot’s
rest configuration. Rigid robot joints have been randomly
moved in these ranges: qr1 ∈ [3π/4, 5π/4] [rad], qr2 ∈ [−1, 0]
[m], qr3 ∈ [0, 1.5] [m]. To ensure smooth transitions between
consecutive actuation commands and reduce abrupt changes,
we employed a smooth step. We recorded a total of 40k
samples for each scenario; each sample contains information
about the executed action, the finger’s joints configuration,
the forces applied to the finger at the link level, and a camera
recording capturing the scene.

Fig. 5: Contact forces in simulation.

We conducted a detailed analysis of forces, paying special
attention to their distribution over the finger’s length. This
analysis is illustrated in Figure 5. In all scenarios, contact
forces primarily affect the distal part of the finger. The
presence of objects in the cluttered scenario results in larger
forces, applied also to joints proximal to the base.

Prediction and reconstruction learning architectures share
a common implementation, differing primarily in the inclu-
sion of a conditional input during the decoding stage and
variations in the input and output cardinality. In the context
of single-to-multi-modality prediction, both the encoder and
decoder employ two fully connected layers with ReLU
activation functions. In the case of multi-to-multi prediction,
the encoder begins with a convolutional layer featuring a
4-unit kernel and a 2-unit stride, followed by two fully
connected layers, all using ReLU activation functions. A
symmetrical structure applies to the decoding stage. The size
of the latent layer is selected from a set of options: 2, 4,
and 16 variables for the first architecture, and 16, 64, and
128 variables for the second architecture, catering to varying
degrees of data compression, from very high to medium and
low compression.

Hyper-parameters for the training of the architectures are
set to a learning rate of 1e-3, a batch size of 1024, and a
maximum number of epochs set to 200. Notably, the loss
function for the fusion and prediction architecture depicted
in Figure 2 is the sum of Mean Square Error (MSE) and Kull-
back–Leibler divergence (KLdiv), which serves to evaluate
both reconstruction accuracy and regularization. In contrast,
the reconstruction learning architecture solely employs MSE
to facilitate input and output matching.

In the context of multi-modal sensory inputs, we combined
both vision and proprioception data to serve as feed to the
learning architecture. The camera’s perspective significantly
influences the information conveyed to the perception model.
Choosing between egocentric and exocentric viewpoints, we
have selected the latter. This entails utilizing a single external
camera to oversee the entirety of the rigid arm’s workspace
and observe interactions between the soft fingers and either
the ground or objects. Future works will explore incorporat-
ing visual data from the robot’s internal perspective, akin to
biological systems. This approach introduces challenges such



as compensating for self-motion and coordinating visual and
proprioceptive information. Additionally, it involves working
with incomplete visual data and active vision.

B. Single-to-Multi modality Prediction

The predictive architecture is first employed to build a
model to map the finger configuration at time t to the
configuration and force at time t+1. More formally, we will
employ an input s̄t = qft and an output ŝt+1 = {qft+1, ft+1}.
It is worth noting that the network has to demonstrate
predictive capabilities with cross-modal inference, to map the
information from the proprioceptive to the contact domain.

For proprioception forecasting, we employ the Symmet-
ric Mean Absolute Percentage Error (SMAPE) metrics for
its evaluation. It provides an estimation of the percentage
difference between predicted and actual values in a sym-
metric way, meaning it doesn’t favour overestimations or
underestimations. A lower SMAPE indicates a more accurate
forecasting by the model. Considering n samples, and for
each sample a prediction ˜̂st of the observation ŝt:

SMAPE =
100

n

n∑
t=1

|ŝt − ˜̂st|
|ŝt|+ |˜̂st|

Proprioception prediction over a variable latent space
dimension is presented in Figure 6(a). In both scenarios,
lateral movement is more accurately predicted than for-
ward/backward motion. In the empty case, a smaller latent
space provides sufficient information for accurate sensory
predictions. The limitation in achieving higher dimensions
is attributed to the challenge of prediction to converge
when dealing with more sparse information. Conversely, in
the cluttered scenario, effective forecasting of both degrees
of freedom requires less compressed input sensing due to
the presence of random obstacles, demanding a higher-
dimensional latent space representation.

Forces values tend to be large, as shown in Figure 5, in
which case SMAPE is a poor performance index. Hence,
Weighted Mean Absolute Percentage Error (WMAPE) is in-
troduced, which follows the same considerations as SMAPE.

WMAPE =
100∑n
t=1 |ŝt|

n∑
t=1

|ŝt − ˜̂st|

The findings from Figure 6(b) clearly indicate that pro-
prioception alone does not provide sufficient information for
accurate force prediction. In both scenarios, errors remain
consistently high across all latent space dimensions, demon-
strating the inability to create a model capable of mapping
proprioception to future force, even when conditioned on the
specific action employed.

From a learning perspective, the latent space dimension
has a significant impact on the necessary training resources.
Generally, a larger latent size corresponds to a greater
demand for spatial resources. In an empty scenario, the pre-
dictive architecture converges in half the number of epochs
when using a medium compact representation compared to
other options. Conversely, in a cluttered scenario, a higher
dimension results in faster training convergence.

C. Multi-sensory Fusion and Multi-sensory Prediction

Proprioception can be paired with vision sensing to im-
plement input multi-modality, moving towards our main
objective. In this case, from an input s̄t = {qft , vt} we aim
to predict the optical flow dvt+1 = vt+1−vt as well as next
proprioception and force: ŝt+1 = {qft+1, ft+1, dvt+1}.

When it comes to proprioception, multi-modal predic-
tion surpasses single-modality prediction in both flex-
ion/extension and adduction/abduction. As illustrated in Fig-
ure 6(c), it becomes evident that a moderate latent layer size
yields the best performance in both scenarios. The extremely
compressed data fails to retain the essential information,
while the least compression does not offer a sufficiently
compact state representation for effective prediction. In all
scenarios, the greatest errors have been observed at the
fingertip level, primarily due to its lack of constraints and
the inherently less predictable nature of its behaviour. In
essence, this suggests that the integration of vision and
proprioception is important for the perception model, even
enhancing predictive proprioception itself.

Furthermore, the utilization of multi-modal input enables a
substantially higher level of accuracy in predicting the force
compared to the single-modality case. The fusion of vision
and proprioception offers a wealth of information necessary
for this mapping, which can later be leveraged for contact-
rich tasks. As depicted in Figure 6(d), in the empty sce-
nario, a moderately compact representation offers the most
accurate predictions, aligning with the observations made in
the proprioception case. Conversely, a larger latent space
is necessary in the cluttered scenario due to the challenge
involved in contact forecasting with movable objects.

Similar considerations apply to training resources as they
do to single-modality models: a larger latent space results in
greater spatial resource demands, but simultaneously reduc-
ing the time required for the predictive model to converge.

Regarding visual forecasting, Figure 7 displays the predic-
tions made across various latent space dimensions, specifi-
cally in the cluttered scenario. The most accurately predicted
section across all architectures pertains to the motion of
the rigid arm, as it is prominently evident in the generated
images. Additionally, in trial #2, it can be observed that
the network respects the absence or minimal motion by
generating a plain optical flow prediction. However, the most
challenging part to predict involves the motion of the soft
finger, which is either partially reconstructed (with low-
dimensional latent space) or absent. One potential limitation
contributing to the network’s inability to make accurate
predictions could be attributed to the limited depth of the
decoder stage, which restricts its ability to retain significant
prior scene knowledge, or the sampling frequency of the data.

D. Information reconstruction

The fusion and predictive architecture implements a
methodology to gather a condensed state representation that
must be enough informative to predict a future observation
given the performed action. The amount of compression,
given by the dimension of the bottleneck layer, should be



Fig. 6: Performance of the Fusion and Prediction learning architecture in both empty and cluttered scenarios, while
changing the latent space dimension. (a) Proprioception forecasting over itself. (b) Force forecasting from proprioception.
(c) Proprioception forecasting over itself and vision. (d) Force forecasting from the fusion of proprioception and vision.

Fig. 7: Visual prediction in the cluttered scenario while
changing the latent space dimension. Reference optical flow
prediction is reported for comparison.

large enough to generate a minimal state representation, yet
low enough to entail the complete information. While the
former bound has been discussed with the employment of
the predictive architecture, the latter is assessed through
a process of input reconstruction. Using the architecture
depicted in Figure 3, we perform a reconstruction of ŝt while
varying the dimension of the latent layer.

Regarding the single modality input, Figure 8(a) illustrates
that a medium-sized bottleneck layer offers the best level of
compression to facilitate further reconstruction. While it is
possible to achieve higher levels of compression, they often
result in diminished performance, particularly in reconstruct-
ing the forward/backward finger movement. Conversely,
lower levels of compression do not offer significant advan-
tages over the higher ones, thereby introducing variability in
error without substantial performance improvement.

Turning our attention to the multi-modal input, the task
of input reconstruction becomes notably more challenging.
This is because the state representation involves not only
compression but also fusion of information from multiple
modalities. As depicted in Figure 8(b), the reconstruction
performance is, in fact, superior to the single-modality
case. This outcome underscores the significant advantage



Fig. 8: Performance of the Information Reconstruction architecture in both empty and cluttered scenarios, while changing
the latent space dimension. (a) Proprioception reconstruction after compression with single-to-multi modality prediction. (b)
Proprioception reconstruction after compression with multi-modality prediction.

Fig. 9: Prediction of (a) proprioception and (b) force at the fingertip compared with reference values, while employing
single- or multi-modal inputs and different dimensions of the latent space. The coefficient of determination R2 for both the
DoFs has been reported.

of integrating both proprioception and vision, as it yields
a state representation that not only enhances predictions of
future observations but also faithfully reconstructs the input.
Remarkably, in both scenarios, the most effective recon-
struction performance is achieved with less compressed data,
even though higher compression levels do not substantially
increase the reconstruction error.

E. Summary

Results have shown how to implement the choice for
a proper data compression that enables fusion, prediction
and reconstruction capabilities through a generative model.
These findings are particularly relevant in scenarios involving
interactions with movable objects, which further challenge
prediction accuracy.

Regarding proprioception, different insights have emerged.

In self-prediction scenarios, a higher compression level is
acceptable when dealing with empty environments, but it
comes at the cost of poorer reconstruction, necessitating
a more moderate compression for efficiency. The presence
of objects, on the other hand, introduces the complex-
ity of contact-induced shape changes, demanding a less
compressed representation to account for various potential
variations. Fusion with vision significantly influences the
performance, requiring a less compressed data representation
for accurate predictions of future observations and faithful
reconstruction across all scenarios. The challenge of select-
ing the appropriate latent dimension becomes more apparent
when we consider the ability to predict the proprioceptive
value of the fingertip, which is particularly difficult due
to the absence of constraints and its early interaction with
the environment. In Figure 9(a), the regression performance



of the predictive architecture is illustrated when using or
omitting visual information in a cluttered scenario. Sensory
fusion enhances the regression of proprioceptive prediction
as reported by the coefficient of determination R2 for both
DoFs, reinforcing the validity of the considerations above.

One of the most noteworthy results pertains to touch pre-
diction. Solely relying on proprioception proves insufficient
for accurately estimating forces, and forces experienced on
the lateral side of the finger are generally less accurately
predicted than those in the other direction. However, when
combined with vision, it offers enough information for robust
force estimation in both empty and cluttered scenarios, albeit
with a medium to low compression requirement. Figure 9(b)
visually represents the concept we just discussed through
regression analysis. The deficiency in prediction for single-
modality input is starkly evident in the top row, but when
vision is incorporated, the regression becomes substantially
more effective, as it can be observed by R2 improvement,
and exhibits improved precision as the latent space dimension
increases.

V. CONCLUSION

We present a perception model designed for soft-bodied
robots to construct a concise representation of their sensory
experiences. This achievement hinges on the development
of a predictive model that operates across various sen-
sory modalities, offering insights into the upper bound of
information compression. Simultaneously, we employ an
information reconstruction model to establish a lower bound.
These boundaries inform the selection of a compact yet
comprehensive internal model, enabling the implementation
of more advanced control strategies.

Our model demonstrates its adaptability by effectively
managing diverse sensory modalities, including their fusion
and prediction. Future work will delve into exploring the
impact of early and late fusion, as well as early and late pre-
diction, on the model’s performance. We will also investigate
the optimal prediction window size to achieve the highest
accuracy when transitioning from output to input, ensuring
long-term network stability. Additionally, we will consider
recurrent models for both input and output to address the
inherent hysteresis in soft-bodied robots.

To enhance the scope of the model, we will expand its
applicability to include actuated soft robots and evaluate
the effects of such inclusions on the perception model. We
intend to deploy the network on a real-world soft robot for
further in-depth analysis and experimentation. Ultimately,
we aim to use this compact and task-independent state
representation for developing task-specific control policies
using reinforcement learning methods.
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