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Abstract

Formal languages are essential for computer programming and are constructed
to be easily processed by computers. In contrast, natural languages are much more
challenging and instigated the field of Natural Language Processing (NLP). One
major obstacle is the ubiquity of ambiguities. Recent advances in NLP have led
to the development of large language models, which can resolve ambiguities with
high accuracy. At the same time, quantum computers have gained much attention
in recent years as they can solve some computational problems faster than classical
computers. This new computing paradigm has reached the fields of machine learn-
ing and NLP, where hybrid classical-quantum learning algorithms have emerged.
However, more research is needed to identify which NLP tasks could benefit from
a genuine quantum advantage. In this thesis, we applied formalisms arising from
foundational quantum mechanics, such as contextuality and causality, to study am-
biguities arising from linguistics. By doing so, we also reproduced psycholinguistic
results relating to the human disambiguation process. These results were subse-
quently used to predict human behaviour and outperformed current NLP methods.
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Impact Statement

Large Language Models (LLMs) are used in everyday life nowadays, especially
with applications such as ChatGPT. These LLMs are data-hungry, which creates re-
producibility and environmental issues. Furthermore, they act as a “black box”, and
whether they learn the same language features as humans is unclear.

In recent years, research in quantum information theory has led to machine learn-
ing algorithms using near-term quantum computers. These advances offer the pos-
sibility of using quantum computers for NLP purposes. However, results about
quantum advantages in these near-term learning algorithms are yet to be found.

This project aimed to address some of these issues. The impact of this work is
mainly academic, where our contributions spanned multiple fields, including Nat-
ural Language Processing, Quantum Computing, and Linguistics. The project also
has the potential to develop a new generation of more cognitively plausible learning
algorithms.

Human and quantum processes
This project aimed to bring forward similarities between linguistic and physical

phenomena using a shared mathematical language. Drawing a parallel between
linguistic and quantum mechanical concepts may help identify which NLP tasks
could benefit from quantum resources. The non-determinism of natural language
ambiguities notably offered a promising place to start.

Regarding cognitive plausibility issues, we adopted a foundational approach and
looked at human disambiguating strategies. The framework identified essential
structures of the disambiguation process, aligning with psycholinguistic theories.
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We then used the established structure to simulate some disambiguation processes
using near-term quantum computers.

An interdisciplinary project
This project involved elements from various research fields, including psycholin-

guistics, artificial intelligence, and quantum computing, and opened new avenues
for research in each of them.

Natural Language Processing This project provides an alternative, more cogni-
tively plausible, and transparent approach to NLP. By exploiting the structure of the
human disambiguation process and the computational power of quantum systems,
we produced a learning algorithm that delivers results even with a small training
dataset.

Quantum Computing In this work, we provide a strategy for finding applications
of quantum computing in areas that are, on the surface, unrelated to quantum me-
chanics. For instance, this project provided the first instance of quantum(-like) con-
textuality in linguistic data, where contextuality is a fundamental distinction be-
tween classical and quantum statistics.

Linguistics By introducing the mathematical tools from quantum physics, we pro-
vide new tools to study linguistic phenomena and cognitive processes. Using these
mathematical frameworks, we can create new models of cognitive processes that
are, by design, easy to simulate using quantum resources.
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Introduction

In this research program, we investigate some properties of the English language
using mathematical tools from Quantum Mechanics. We created quantum-inspired
models of human disambiguation processes from linguistic data. Using these mod-
els, we provide promising evidence that this method leads to novel quantum com-
puting methods for Natural Language Processing.

Computational Linguistics
Artificial Intelligence (AI), or how to perform intelligent tasks done by humans

algorithmically, is a longstanding challenge in Computer Science. Amongst one of
the most widely studied areas in AI is the field of Natural Language Processing
(NLP), whose goal is to understand natural language. This field is currently widely
dominated by the use of Large Language Models (LLMs), such as BERT or GPT,
which consist of artificial neural networks trained over large corpora. These LLMs
are incredibly successful in various NLP tasks, such as text generation or knowledge
extraction. There are, however, several criticisms of them, including:

• Lack of reproducibility, due to the immense resources needed for training;

• Transparency, i.e. the impossibility of tracing back the decision process of the
neural network;

• Cognitive plausibility, i.e. whether these neural networks reproduce the way
humans learn and process natural language data.

In parallel, computational linguistics aims to use computational tools to study
human cognitive processes and natural languages. Computational linguistics and

1



2 Introduction

NLP are highly related, and their distinction is increasingly blurred.

The aim of this thesis is more in line with computational linguistics since we in-
vestigate features of the natural language using tools from NLP (e.g. LLMs). The
thesis focuses on English, although our approach could be replicated in other lan-
guages.

Quantum Computing
In 1994, Peter Shor published his famous article describing a quantum algorithm

that can factorise an integer in polynomial time [166], thus demonstrating the use
of quantum systems to solve hard computational tasks. The discovery of this algo-
rithm sparked the interest of the computer science research community in quantum
information theory and quantum computing. The idea behind quantum computa-
tions is straightforward. Instead of using bits – as in classical computing – informa-
tion is encoded as qubits. Qubits can not only take values the values |0⟩ or |1⟩ but
can also be expressed as the (complex) linear combination:

α |0⟩+ β |1⟩ such that |α|2 + |β|2 = 1 (1)

Similarly, instead of considering operations between strings of bits as computations,
we use operations between systems of qubits, which are subject to the laws of quan-
tum mechanics.

Since Shor’s algorithms, it has been shown that quantum systems are capable
of achieving speed-ups in various computational tasks in theory, in tasks such as
database search [86], optimisation tasks [60] or simulation of physical systems [24,
16], and more recently in practice, in tasks such as sampling from a random quan-
tum circuit [15] or boson sampling [202, 129]. In addition, although quantum ad-
vantages are more difficult to prove, quantum computations have started to find
applications in various fields of computer science, including optimisation problems
(e.g. [59, 60]) and AI (e.g. [65, 201, 182, 157]).

This project
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Most research on quantum computing applications to AI and NLP consists of cre-
ating a quantum version of existing algorithms. Therefore, these approaches also
suffer from the same issues as the classical approaches, including the need for more
transparency and cognitive plausibility. In addition, the advantage of using quan-
tum computing resources is not always clear and usually relies on heuristics.

In this work, we aim to address these problems for quantum NLP. By studying
linguistic data using the formalisms of quantum mechanics, we create a parallel
between linguistic phenomena and quantum systems, from which we can identify
which features of natural languages would benefit from simulations on quantum
hardware. We also show that, by using the mathematical frameworks developed to
study quantum mechanics, we can uncover properties of the human disambiguation
process.

This thesis uses the mathematics of category theory, in particular the notions of
sheaves and presheaves. The main reason for doing so is the level of abstraction al-
lowed by category theory, allowing us to draw parallels between quantum and lin-
guistic systems. A second motivation is the categorical quantum mechanics research
project which originated from the seminal paper of Samson Abramsky and Bob Co-
ecke [7]. Indeed, the line of research showed that quantum mechanics can very
elegantly be described in categorical terms (see more details in Chapter 1).

On top of that, this description has also been applied to various aspects of lin-
guistics, notably in the Distributional Compositional Categorical models of mean-
ings (also known as DisCoCat), which emanated from [42], or as semantics of Dis-
course Representation Theory [8].

This thesis is an additional example of the application of categorical quantum
mechanics in linguistics to ambiguities in the English language. Ambiguities in En-
glish occur at different levels, from words to discourses. This project investigates
the disambiguation process of two types of ambiguities, namely:

• Lexical ambiguity which happens when a single word has multiple interpre-
tations. For example, the word bank, which could refer to a financial institution
or the bank of a river;

• Syntactic ambiguity which happens when a phrase can have multiple gram-
matical structures. For example, in the sentence She saw a man with binoculars,
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the phrase with binoculars can either attach to the verb saw or to the noun-
phrase a man.

In the case of lexical ambiguity, we have studied the statistics of the meaning
activations of subject-verb and verb-object phrases, where each word is lexically
ambiguous. We then used the mathematical framework arising from the study of
quantum contextuality and causality to study these statistics. We were able to show
that the observed statistics from lexical ambiguity data show are capable to exhibit
quantum-like contextuality. In addition, we were able to rederive some psycholin-
guistics results that were originally based on eye-tracking data (which is not easily
reproducible and expensive to obtain). Using these results, we produced quantum
simulations of the disambiguation process of subject-verb and verb-object phrases,
which could then be applied to NLP tasks.

Regarding syntactic ambiguity, we also used the sheaf-theoretic frameworks orig-
inating from quantum contextuality and causality to create a model of the syntactic
parsing process. This model was then used to make reading time predictions in
special sentences, known as garden-path sentences. These predictions were closer
to the human baseline than the ones obtained from state-of-the-art methods of com-
putational linguistics.

Outline of the thesis
The aim of Part I is to introduce the concept we will use in the rest of the thesis.

• In Chapter 1, we introduce the different branches of categorical quantum me-
chanics that we will use in the subsequent parts.

• In Chapter 2, we introduce the main literature regarding lexical (Section 2.1)
and syntactic (Section 2.2) ambiguities. In particular, we will describe the psy-
cholinguistic theories relating to these ambiguity types and the computational
tools that have been used in the past in NLP and computational linguistics.

Elements of Section 2.1 will be used in Part II, while theories introduced in
Section 2.2 will be used in Part III.

Parts II and III correspond to the original contributions of the thesis. These parts
can be read independently.
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In Part II, we focus on the lexical disambiguation process.

• We start by studying the features of lexically ambiguous phrases in terms of
quantum contextuality and causality in Chapter 3.

• In Chapter 4, we use the conclusions of Chapter 3 to generate a quantum
model of the human disambiguation process using variational quantum cir-
cuits.

In Part III, we study the human parsing process by looking at garden-path sentences.

• Inspired by the psycholinguistic theories described in Section 2.2, we describe
our sheaf-theoretic model of the human parsing process in Chapter 5.

• In Chapter 6, we evaluate the models from Chapter 5 empirically. We then
compare the model’s predictions with those from state-of-the-art computa-
tional linguistics models.

Published contributions
Several original contributions presented in thesis were published before the sub-

mission of this thesis. These are the following:

• Title: On the Quantum-like Contextuality of Ambiguous Phrases
Authors (publication order): D. Wang, M. Sadrzadeh, S. Abramsky and V. H.
Cervantes
Published in: ACL Anthology as part of the Proceedings of the 2021 Workshop on
Semantic Spaces at the Intersection of NLP, Physics, and Cognitive Science (SemSpace)
Publication date: 2021
Material presented in thesis in: Section 3.2

• Title: Analysing Ambiguous Nouns and Verbs with Quantum Contextuality Tools
Authors (publication order): D. Wang, M. Sadrzadeh, S. Abramsky and V. H.
Cervantes
Published in: Journal of Cognitive Science
Publication date: 2021
Material presented in thesis in: Section 3.3
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• Title: Causality and Signalling of Garden-Path Sentences
Authors (publication order): D. Wang and M. Sadrzadeh
Published in: Philosophical Transaction of Royal Society A
Publication date: 2024
Material presented in thesis in: Part III (Chapters 5 & 6)



Part I

Background





Chapter 1

Quantum theory and applications

This chapter introduces the quantum physics formalisms we will use in Parts II
and III. In particular, we will make use of the categorical description of quantum
mechanics. We will, therefore, start by introducing the mathematics of category
theory in Section 1.1. In Section 1.2, we will describe quantum correlations, notably
in terms of sheaf theory, and in Section 1.3, we will give a categorical description of
quantum processes.

1.1 A crash course in Category Theory
Category theory originated in the work of Eilenberg and MacLane for homolog-

ical algebra [57]. The field of category theory then rapidly evolved and reached
other areas of mathematics such as algebraic geometry [85], set theory [115], as well
as computer science [113, 66] and physics [7, 17].

In this section we introduce the basic concepts at the heart of category theory.
This introduction is by no means comprehensive, and we will only present the ele-
ments that will be useful in subsequent chapters.

9
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1.1.1 Basics of Category Theory
In this subsection, we start by defining the main notions of category theory, which

will be subsequently expanded in Section 1.1.2 and Section 1.1.3.

Definition 1.1 (Category). A category C consists of:

1. A collection of objects denoted as ob (C)

2. A set[1] of morphisms for each pair of objects A,B ∈ ob (C), denoted as C(A,B)

equipped with:

(a) Sequential composition: for morphisms f ∈ C(A,B) and g ∈ C(B,C) we
have g ◦ f ∈ C(A,C).

(b) Identity morphism: for each object A ∈ ob (C), there exists a unique mor-
phism idA ∈ C(A,A).

satifsfying the following properties:

(a) For any f ∈ C(A,B), g ∈ C(B,C) and k ∈ C(C,D):

k ◦ (g ◦ f) = (k ◦ g) ◦ f (1.1)

In other words, sequential composition is associative.

(b) For any f ∈ C(A,B) and g ∈ C(C,A):

f ◦ idA = f idA ◦ g = g (1.2)

Example 1.2. Here are standard examples of categories:

a. The category of sets and functions denoted as Sets. The objects of Sets are
sets, and morphisms are functions between sets. Composition is the standard
functional composition, and identity morphisms are identity functions:

idA ∈ Sets(A,A) = a 7→ a (1.3)
[1]We are here only considering locally small categories; in general categories, C(A,B) coulbe be a

proper class.
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b. The category of sets and relations denoted as Rel. The objects are the same
as the ones of Sets, and the morphisms are binary relations, i.e. Rel(A,B) =

P(A × B). The composition of relations u ∈ Rel(A,B) and v ∈ Rel(B,C) is
defined as:

v ◦ u ∈ Rel(A,C) = {(a, c) | ∃b ∈ B. (a, b) ∈ u ∧ (b, c) ∈ v} (1.4)

The identity morphisms in Rel are then defined as:

idA ∈ Rel(A,A) = {(a, a) | a ∈ A} (1.5)

c. The category of vector spaces denoted as Vect. Its objects are vector spaces,
and morphisms between two vector spaces are linear maps. Composition is
the standard composition of (linear) maps. We can also define the subcategory
FdVect of Vect in which the objects are finite-dimensional vector spaces, and
morphisms are defined as in Vect. In FdVect, morphisms can be seen as ma-
trices (by fixing a basis), and composition as matrix multiplication. Similarly,
the identity morphisms become identity matrices.

d. A category is said to be a preorder if there is at most one morphism between two
objects. This notion generalises the notion of order by taking the existence of a
morphism between A and B to represent A ≤ B. The presence of composition
morphisms in a preorder means that the relation ≤ is transitive, i.e. if A ≤ B

andB ≤ C thenA ≤ C. Similarly, the existence of identity morphism indicates
that the relation ≤ is reflexive, i.e. A ≤ A for any object A.

e. A preorder is said to be a partial order (or a poset) iff A ≤ B and B ≤ A implies
that A = B. Furthermore, a partial order is a total order iff for any pair of
distinct objects A and B, either A ≤ B or B ≤ A.

It is often convenient to denote morphisms f ∈ C(A,B) as arrows:

A
f−→ B or equivalently f : A→ B

Then, from associativity equation (1.1), the composition of several morphisms, say
f ∈ C(A,B), g ∈ C(B,C), h ∈ C(C,D) and k ∈ C(D,E) can unambiguously be
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written as:
A

f−→ B
g−→ C

h−→ D
k−→ E

In addition, identity morphisms can be omitted from equation (1.2).

From this, we can define the notion of a diagram in a category C, which corre-
sponds to a (labelled) directed graph such that nodes are objects in C and (labelled)
arrows A f−→ B correspond to the morphism f ∈ C(A,B). Paths, therefore, corre-
spond to the composition of morphisms. We then say that a diagram commutes iff
the paths having the same endpoints are equal. For example, the commutativity of
the following diagram represents the equation g ◦ f = l ◦ k ◦ h :

A B

C DE

f

gh

k l

In addition, it can be seen that given a set of arrows of a category, reversing all
of the arrows still leads to a valid category. This category is known as the opposite
category.

Definition 1.3. Given a category C, its opposite category, denoted as Cop, is defined as
follows:

• The objects of Cop are the same as the objects of C;

• Each morphism f ∈ C(A,B) gives a morphism f̃ ∈ Cop(B,A). The composition
g ◦ f ∈ C(A,C), where f ∈ C(A,B) and g ∈ C(B,C), then gives g̃ ◦ f = f̃ ◦ g̃ ∈
Cop(C,A).

So far, given a category C, the notion of “sameness” of objects is only captured
as the equality of objects. However, equality might be too restrictive in general. For
example, in Sets, the two sets A1 = {0, 1, 2} and A2 = {1, 2, 3} are different, but
they have the same expressive power in the sense that any map f1 : A1 → B can
be translated into a map f2 : A2 → B and conversely. In the category Sets, this
notion is conveyed by the existence of a bijection between the sets A1 and A2, and
this notion extends to an arbitrary category as the notion of isomorphism.
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Definition 1.4. A morphism f : A → B in a category C is an isomorphism if there
exists a morphism f−1 : B → A such that:

f ◦ f−1 = idB and f−1 ◦ f = idA (1.6)

Example 1.5. a. As expected, the isomorphisms in Sets are the bijections.

b. In Vect, the isomorphisms are the isomorphisms of vector spaces.

c. In partial orders, the only isomorphisms are the identity morphisms.

Up to now, we have studied categories individually. We now look at relationships
between categories.

Definition 1.6. A functor F : C → D between two categories C and D is defined as
follows:

• For each object A in the category C gives an object FA in D under the action of
F .

• Similarly, each morphism f ∈ C(A,B) gives a morphism Ff ∈ D(FA,FB)

satisfying:

FidA =idFA (1.7)

F(g ◦ f) =Fg ◦ Ff (1.8)

for every object A in C, and any arrows f, g in C.

Example 1.7. Let us look at some examples of functors.

a. We can define a functor F : Sets → Rel which sends any set A ∈ ob (Sets) to
the same set A ∈ ob (Rel). The action on morphisms in Sets (i.e. functions),
will simply become the equivalent relation on Rel. Namely, for any f : A→ B

in Sets, we get:
Ff = {(a, f(a)) | a ∈ A} : A→ B

in Rel.
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b. We can define a functor DR+ : Sets → Sets which is defined on object as:

DR+ :: U 7→ {d : U → R+ | d is a probability distribution over U}

For any morphism f : U → V , we then define DR+f as:

DR+f :: dU 7→ dV such that dV (v) =
∑

u∈f−1(v)

dU(u)

The functor DR+ is called the distribution monad.

c. For any set A, we can define the free monoid over A, denoted as A⋆ which cor-
respond to the set of lists of elements in A. In other words, A⋆ ∼= ⨿n∈NA

n. This
correspondence can be extended to a functor F : Sets → Mon, where Mon

is the category of monoids and monoid homomorphisms. In this functor, any
function f : A→ B in Sets is mapped to:

Ff : A⋆ → B⋆ :: (a1, a2, . . .) 7→ (f(a1), f(a2), . . .)

We can, moreover, study relationships between functors by looking at natural
transformations.

Definition 1.8. Given two functor F ,G : C → D, a natural transformation η : F ⇒ G
is a family of maps {ηA : FA→ GA}A∈ob(C) such that for any morphism f : A → B

in C the following (naturality) square commutes:

FA FB

GA GB

Ff

Gf

ηA ηB

(1.9)

In addition, a natural transformation is a natural isomorphism if the morphisms ηA
are isomorphisms for all A ∈ ob (C).

Using the natural transformations as “morphisms” between functors also leads
to the notion of functor category.
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Definition 1.9 (Functor category). Given two categories C and D, we define the func-
tor category [C,D] (also written DC) where:

• Objects of [C,D] are functors F : C → D.

• Morphisms are natural transformations, and compositions are defined point-
wise, i.e. µ ◦ η = {µA ◦ ηA | A ∈ ob (C)}.

1.1.2 Sheaf theory
In this project, we will make use of sheaves and presheaves. The general idea

is that presheaves and sheaves define a mathematical notion of consistency. These
concepts will be at the core of description of sheaf-theoretic contextuality described
in Section 1.2.1, and subsequently used in the models developed in Part II and III.
Here, we review the main definitions of sheaf theory.

Definition 1.10. Given a category C, we define a presheaf over C as a functor F :

Cop → Set.

Remark 1.11. The above definition corresponds to the notion of set-valued presheaf.
Depending on the school of thought, the term presheaf may also refer to the more
general abelian presheaves or presheaves of modules, which take values in abelian
groups or modules respectively instead of sets. Here, we will only consider set-
valued sheaves and presheaves.

This work will mainly look at presheaves and sheaves over topological spaces. A
topological space is usually defined as a tuple (X, τ) where X is a set of points and
τ ⊆ P(X) is the set of open sets which contains the empty set and is closed under
arbitrary unions and finite intersections.

Remark 1.12. The class of topological spaces then extends to the category Top where
objects are topological spaces and morphisms are continuous functions between
them.

Given a topological space X = (X, τ), we can define a preorder category T (X )

where ob (T (X )) = τ and morphisms are inclusion relations, i.e. for any two open
subsets U and V of X , there exists a morphism V → U iff V ⊆ U . A presheaf over a
topological space X is then defined as a functor P : T (X )op → Sets. These inclusion
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morphisms V → U are mapped under the presheaf to restriction morphisms resUV :

PU → PV . For each element of s ∈ PU , we will denote the action of the restriction
morphism on s as s|V , i.e.:

resUV : PU → PV

:: s 7→ s|V
(1.10)

Figure 1.1: Illustration of the restriction morphsims of a presheaf.

Given an open subset U , we will define sections of P at U as the elements of the
set PU . The intuition is that sections of a presheaf encode data over the topological
space X . The existence of the restriction morphisms signifies that data of a smaller
subset V can be retrieved from the data of a larger set U (see Fig. 1.1).

Remark 1.13. The notion of section (or cross section) is usually defined in the literature
in terms of a bundle (i.e. map) p : E → X as maps σ : U → E such that U σ−→ E

p−→ X

is the inclusion map U ↪→ X [128, 81]. There is, in fact, a one-to-one correspondence
between elements of PU and sections of a canonical bundle [128] (see Appendix A
for more details).

So far, we have looked at the consistency of data between subsets via restriction
maps. We now describe the notion of consistency “across” different open sets. Given
a presheaf P over a topological space X , we say that there is a gluing between two
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sections sU ∈ PU and sV ∈ PV of the open sets U and V , or equivalent that sU and
sV are locally consistent or compatible, iff:

sU |U∩V = sV |U∩V (1.11)

This gluing condition is illustrated in Fig.1.2. The existence of a gluing represents
consistency of data at a local level.

In terms of global consistency, we want to be able to define a gluing for every pair
of open subsets. The notion of sheaves encodes this global consistent condition.

Figure 1.2: Illustration of the general presheaf structure over intersecting sets. If
there exists a gluing between two sections in PU and PV , then there will be an inter-
section between they will coincide in the two dashed regions PU |U∩V and PV |U∩V .

Definition 1.14. A presheaf P : T (X )op → Sets is a sheaf iff for any covering {Ui}i∈I
of the space X = (X, τ), i.e.

⋃
i∈I Ui = X , for every family of pairwise compatible

sections {si ∈ Ui}i∈I , then there exists a section s ∈ PX such that:

s|Ui
= si (1.12)

for all i ∈ I .

Although many had used concepts similar to sheaves before, the exact notion
originates from the work of Jean Leray [118], who introduced them to study equa-
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tions and transformations from a purely topological perspective – by getting rid of
notions he found unnecessary. Subsequent work of Cartan and Serre then exported
the ideas from sheaf theory to algebraic geometry [35, 163], which was then made
categorical by Grothendieck in the seminal article [85]. The machinery of sheaf the-
ory was then notably used to prove Weil’s conjectures in algebraic geometry [84, 45].

The use of sheaves also arose, somewhat independently, from a logical perspec-
tive, notably from the work of Lawvere and Tierney [116, 176]. In particular, the
category of sheaves (as well as the category of presheaves) forms a topos, which
can be associated with a logic [81, 114, 98]. In foundations of mathematics, topos
theory has provided alternative (and much simpler) proofs of results from set the-
ory, notably the independence of the Continuum Hypothesis [177] and the Axiom of
Choice [70] from the Zermelo-Frænkel axioms. In addition, categories of presheaves
and sheaves were found to provide semantics for intiutionistic logic, usually referred
to as Kripke-Joyal semantics [108].

Sheaf theory has recently been applied to topological data analysis [44] and
quantum mechanics [6]. We will discuss the latter in more detail in Section 1.2.1.

1.1.3 Monoidal categories
We now turn our attention to another type of category which we will use in Chap-

ter 4, namely monoidal categories. As we will see in Section 1.3, these categories are
particularly useful in modeling process theories.

Definition 1.15. A monoidal category is category C which is equipped with the struc-
ture (⊗, I, α, λ, ρ) where:

• The tensor product or monoidal product ⊗ is a bifunctor: ⊗ : C × C → C

• I ∈ ob (C) is the unit object. The morphisms e : I → A, where A ∈ ob (C), will be
called the elements of A

• The associator α is a natural isomorphism with elements αA,B,C : (A⊗B)⊗C →
A⊗ (B ⊗ C) for any A,B,C ∈ ob (C)

• The left unitor λ is an natural isomorphism with elements λA : I ⊗ A→ A

• The right unitor ρ is an natural isomorphism with elements ρA : A⊗ I → A
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such that the following diagrams commute:

(A⊗ I)⊗B A⊗ (I ⊗B)

A⊗B

αA,I,B

ρA ⊗ idB idA ⊗ λB

(1.13)

((A⊗B)⊗ C)⊗D

(A⊗B)⊗ (C ⊗D)

A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)

αA⊗B,C,D αA,B,C⊗D

αA,B,C ⊗ idD

αA,B⊗C,D

idA ⊗ αB,C,D

(1.14)

The equations (1.13) and (1.14) are referred to as the triangle and pentagon equations
respectively.

Example 1.16. Here are some examples of monoidal categories

a. The category Sets is a monoidal category where the tensor product is the stan-
dard cartesian product of sets, and the unit is the singleton set I = {⋆}. Since
for any setsA,B,C, we have (A×B)×C = A×(B×C), the associator consists
of identity morphisms. In addition, we have {⋆} × A ≃ A for any set A and
the the left unitor is defined as:

λA :: (⋆, a) ∈ I × A 7→ a ∈ A λ−1
A :: a ∈ A 7→ (⋆, a) ∈ I × A

The right unitor can be defined similarly. Elements of an object A will corre-
spond to the elements a of the set A.

b. Similarly to the category of Sets, the category of sets and relations Rel is also
monoidal, where the monoidal product is also the cartesian product. The as-
sociator is, as in Sets, simply consisting of identities and the left and right
unitors are defined as:

λA = {((⋆, a) , a)} ⊆ (I × A)× A ρA = {((a, ⋆) , a)} ⊆ (A× I)× A (1.15)

Elements of an object A ∈ ob (Rel) will be isomorphic to subsets of A.
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c. The category of finite dimensional vector spaces FdVect is also a monoidal
category. The standard choice of monoidal product is the tensor product ⊗. For
example, given two vector spaces V andW of dimension n andm respectively,
the vector space V ⊗W will have dimension n×m. Furthermore, for each pair
of linear maps A : U → V and B : W → X which can be seen as matrices:

A =


a11 a12 . . . a1k

a21 a22 . . . a2k
...

... . . . ...
al1 al2 . . . alk

 B =


b11 b12 . . . b1m

b21 b22 . . . b2m
...

... . . . ...
bn1 bn2 . . . bnm


then the matrix corresponding to A⊗B will correspond to:

A⊗B =


a11B a12B . . . a1kB

a21B a22B . . . a2kB
...

... . . . ...
al1B al2B . . . alkB

 =


a11b11 a12b11 . . . a11b1m

a21b21 a22b11 . . . a21b2m
...

... . . . ...
al1bn1 al2bn1 . . . alkbnm



It is very convenient to use string diagrams to represent objects and morphisms
in a monoidal category. Generally speaking, each string diagram corresponds to an
equivalence class of morphisms with respect to certain[2] isomorphisms in C. The ob-
jects of a monoidal category, as well as the identity morphisms, will be represented
by wires:

A

with the exception of the unit object I , which will generally not be represented (i.e.,
corresponds to the empty wire). Morphisms will be represented by boxes, e.g.:

A

f

B

= f : A→ B

[2]In general, equality of string diagrams is defined in terms of strict monoidal categories or strict
symmetric monoidal categories, see [127] and [149] for respective definitions. We also note that this is
reasonable as every (symmetric) monoidal category is monoidally equivalent to a strict (symmetric)
monoidal category [127, 198].
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As we mentioned before, the identity morphisms will be represented by the wires
themselves. Sequential composition of morphisms will be represented by “stack-
ing” boxes, e.g.:

A

f

B

g

C

= A
f−→ B

g−→ C

Remark 1.17. Many conventions can be adopted regarding the direction of composi-
tion in string diagrams. Here, we will assume that sequential composition happens
from top to bottom.

Let us now look at the diagrammatic view of the monoidal structure. We will
represent the tensor product of two objects as stacking wires in parallel:

A B

Similarly, the action of the tensor product on morphisms will also be represented by
concatenating the boxes in parallel, e.g.:

A

f

B

C

g

D

In particular, from the associator being a natural isomorphism coupled with the
pentagon equation (1.14), it is not necessary to specify in which order the objects are
being tensored as they will all lead to isomorphic objects (and therefore the same
string diagram); consequently, we also do not need to represent morphisms αA,B,C .
Similarly, the representation of the unit object I as the empty wire is motivated by
the existence of the left and right unitors, as well as the triangle equation (1.13), i.e.:

A

would represent objects A, I ⊗ A and A⊗ I alike.

In addition, elements e : I → A will be denoted as triangles in string diagrams,
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namely:

e

A
= e : I → A

Monoidal categories can be seen as process theories. Indeed, taking objects of the
category to be systems or entities and morphisms to be processes, we can see the
sequential composition of morphisms as the evolution of the entities through the
sequence of processes. Similarly, the tensor product of morphisms will correspond
to the execution of independent processes in parallel. Then, the string diagrams are
graphical representations of the interactions of different systems under the action of
some processes.

Symmetric monoidal categories So far, the definition of a monoidal category only
describes a very general process theory. In order to describe process theories satisfy-
ing some extra properties, we define more and more specialised monoidal categories
by adding additional structure or axioms.

We start by defining a symmetric monoidal category, which is a monoidal category
C equipped with a natural isomorphism with elements σA,B : A⊗ B → B ⊗ A such
that :

σB,A ◦ σA,B = idA⊗B (1.16)

In terms of string diagrams, we represent the isomorphisms σA,B as follows:

B

B

A

A

In addition, by naturality of σ, this implies that “morphisms slides through the
crossings”, i.e.:

C

C

D

D

f g

A B

=

B

B

A

A

g f

D C

⇐⇒

A⊗B C ⊗D

B ⊗ A C ⊗D

f ⊗ g

σC,DσA,B

g ⊗ f

(1.17)

As these morphisms are isomorphisms, two diagrams are equivalent in a symmetric
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monoidal category if they can be transformed into each other by crossing or uncross-
ing wires.

Dual objects We now introduce another property that monoidal categories can
have which will become very useful in Section 1.3, namely dual objects.

Definition 1.18. (Dual objects) An object R in a monoidal category C has a left-dual
L ∈ ob (C), or equivalently L has the right-dual R iff there exists morphisms η : I →
R ⊗ L, known as the unit, and ϵ : L ⊗ R → I , known as the counit, such that the
following diagrams commute:

L L⊗ I L⊗ (R⊗ L)

(L⊗R)⊗ LI ⊗ LL

ρ−1
R idL ⊗ η

α−1
L,R,L

ϵ⊗ idLλL

idL (1.18)

R I ⊗R (R⊗ L)⊗R

R⊗ (L⊗R)R⊗ IR

λ−1
L η ⊗ idR

αR,L,R

idR ⊗ ϵρR

idR (1.19)

In terms of string diagrams, it is useful to represent dual objects by decorating the
wires with arrows going in the opposite direction, e.g.:

L =
L

R =
R

(1.20)

In addition, by representing the morphisms η and ϵ as:

η =
R L

ϵ = L R (1.21)
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then equations (1.18) and (1.19) become respectively:

L

R

L

=

L

(1.22)

R

L

R

=

R

(1.23)

Example 1.19. The dual of a finite-dimensional vector space V ∈ ob (FdVect) is the
standard dual space of functions to the field V is defined over, i.e. V ∗ = {f : V → I}
or equivalently, looking at V = span ({e ∈ B}) as the span vectors e in an orthonor-
mal basis B, the space V ∗ = span

({
eT | e ∈ B

})
is spanned by the transpose of all

of the vectors in B. This space is both the left- and right-dual of V and is isomorphic
to V . Having fixed the orthonormal basis B = {ei|i ∈ {1, . . . , dimV }}, we can define
the unit and counit as:

η :: x 7→ x
∑
i

ei ⊗ eTi ϵ ::
∑
i,j

αi,je
T
i ⊗ ej 7→

∑
i

αi,i (1.24)

Remark 1.20. If the left- or right-dual of an object A in a monoidal category is iso-
morphic to A itself, we will drop the arrow decoration on the wire corresponding to
A.

If every object in a category has a right-dual, the category is said to be a rigid
or autonomous category. A rigid category C moreover gives rise to a dualising functor
_∗ : C → Cop, such that the action of objectsA ∈ ob (C) gives the right-dualA∗ ∈ ob (C)
of A, and the action on morphisms f : A→ B is defined as:

B∗

f ∗

A∗

=

A

f

B

B∗

A∗

(1.25)



Chapter 1. Quantum theory and applications 25

If a monoidal category C is both symmetric and rigid, it is said to be a compact-
closed category.

Dagger structures The dualising functor is not the only interesting example of a
functor C → Cop. Indeed, the notion of dagger functor † : C → Cop will become useful
in the description of Hilbert spaces to encode the notion of inner products.

Definition 1.21. For any category C, we define a dagger functor as a functor † : C →
Cop such that for any morphim f in C,

(
f †)† = f . A category with a dagger functor is

a dagger category. Respectively, a monoidal category endowed with a dagger functor
is called a dagger monoidal category.

Example 1.22. We finally introduce the category of Hilbert spaces Hilb and its sub-
category FdHilb of finite-dimensional Hilbert spaces. In these categories, the ob-
jects are Hilbert spaces H, i.e. complex vector spaces equipped with an inner prod-
uct ⟨_|_⟩H : H × H → C such that d(x, y) =

√
⟨x− y|x− y⟩H is a metric. The mor-

phisms in Hilb and FdHilb will be taken to be bounded (or equivalently continuous
with respect to the topology induced by the metric) linear maps between Hilbert
spaces. Then, we define the action of † on objects to return the same Hilbert space,
i.e. H† = H for any H ∈ ob (Hilb) (resp. FdHilb) and for any bounded linear map
f : H → K, we take f † : K → H to be the unique map such that:

⟨f(v)|w⟩K =
〈
v
∣∣f †(w)

〉
H (1.26)

for any v ∈ H and w ∈ K. Treating morphisms in FdHilb as complex matrices,
taking the dagger correspond to taking the Hermitian conjugate of the matrix, i.e.
given A : H → K, A† =

(
AT
)∗

= (A∗)T .

A similar definition of a dagger functor can also be obtained for FdVect, but will
then depend on a choice of inner product.

Finally, in monoidal categories coming with both a dualising functor and a dagger
functor, we may require some additional conditions on the interaction between the
two structures.

Definition 1.23. A compact closed category (i.e. symmetric and autonomous) with
a dagger functor is a dagger-compact category whenever the following hold for any
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pair of duals (L,R):

(
L R

)†

=
R L

RL

(
R L

)†

=

L R

LR

(1.27)

Example 1.24. The categories Hilb and FdHilb can be seen to be dagger-compact by
taking the duals to be the same as the ones defined earlier for vector spaces and the
dagger functor defined above.

1.2 Describing Quantum Correlations
The aim of this section is to introduce the concept of quantum contexutality, and

in particular the framework of the sheaf-theoretic contextuality (introduced in de-
tails in Section 1.2.2), which will be a recurrent theme of the work described in
Part II and III. The framework of Contextuality-by-Default is also introduced in Sec-
tion 1.2.3, which will be widely used in Chapter 3.

The inherent probabilistic nature of quantum mechanics has been a longstanding
source of debate. Namely, is nature non-deterministic, or is the apparent random-
ness due to our lack of knowledge about the observed system? This question has led
to the development of theory-agnostic descriptions of observations from quantum
systems. That is, only assuming classical probability theory, is it possible to describe
the observed statistics? Or are the statistical correlations intrinsically non-classical
(i.e. different from probabilistic classical physical systems)? These questions are
answered by studying the contexutality of quantum systems.

We first introduce the standard formalisms of contextuality (Section 1.2.1), and
then describe its categorical equivalent and its various extensions (Section 1.2.2). In
Section 1.2.3, we introduce an alternative framework to the one of Section 1.2.2.

In terms of notation, we will also use the standard Dirac notation where vectors
in a Hilbert space will be denoted as |ψ⟩ ∈ H, their Hermitian conjugate will be
denoted as ⟨ψ|, and the inner product of two vectors |ψ⟩ , |ϕ⟩ ∈ H will be denoted as
⟨ϕ|ψ⟩.
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1.2.1 Contextuality
The initial criticism of Einstein, Podolsky, and Rosen [58] was that the probabilistic

nature of quantum mechanics can only be due to the incompleteness of quantum the-
ory. This is known as the EPR paradox. Hence, by “completing” the description of
the system with additional (unobserved) variables, one could obtain a deterministic
system from which we can recover the observed statistics [58]. The main argument
from [58] is that any physical theory should satisfy realism, i.e. every physical quan-
tity, such as the position or the momentum of a particle, should possess a definite
value at any given time which should not depend on whether it is observed or not.

Non-locality

The first and most widely known counterargument of the EPR paradox is at-
tributed to John Bell [22]. In reality, Bell’s theorem uses an assumption not made
explicit in [58], namely that spatially separated systems cannot influence each other.
This requirement is known as no-signalling.

We here describe an operational view of Bell’s theorem due to Fine [63]. Let’s
consider an experiment such that a party Charlie prepares a bipartite state |Ψ⟩ where
one subsystem is sent to Alice, the other to Bob, such that Alice and Bob are assumed
to be so far away that they cannot influence each other in the time frame of the
experiment (see Fig. 1.3). Then, both Alice and Bob randomly (and independently)
choose to measure a physical quantity on their subsystems, say in the respective sets
{a, a′} and {b, b′}. Finally, each physical quantity will take values in ±1.

From the realism condition, we will require that, given a hidden-variable λ ∈ Λ,
the values of physical quantities a, a′, b, b′ are uniquely (and deterministically) deter-
mined. In addition, from the no-signalling condition, we will require that the out-
comes of a, a′ will not depend on the choice of Bob, and respectively, the outcomes
of b or b′ are independent of Alice’s choice. Therefore, using both of these require-
ments, we can define functions A : {a, a′} × Λ → {±1} and B : {b, b′} × Λ → {±1}
which associate the value of the physical quantities accessible from Alice and Bob’s
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Figure 1.3: Causal diagram of a Bell experiment. Events are represented as dot and
future light-cones are represented as triangles.

measurements given the value of a hidden variable Λ[3].

Using these conditions, it is possible to show that:

|⟨ab⟩+ ⟨ab′⟩+ ⟨a′b⟩ − ⟨a′b′⟩| ≤ 2 (1.28)

The proof of this can be found in Appendix B. This inequality is widely known as the
CHSH inequality (for Clauser-Horne-Shimony-Holt who first proved it) [40]. Gener-
ally speaking, any inequality that provides a sufficient condition for the existence of
a hidden variable model is known as a Bell inequality[4].

However, we know that quantum theory predicts violations of such Bell inequal-
ities, and this has now been verified experimentally [91, 78, 164, 159, 172]. One
example of such violation of (1.28) can be achieved by taking the state:

|Ψ⟩ = 1√
2
(|0⟩ ⊗ |1⟩ − |0⟩ ⊗ |1⟩)

as the state prepared by Charlie, and a, a′, b, b′ being one-qubit measurements along
the respective basis [141]:

[3]Note that we can assume without loss of generality that we only have a single hidden variable
Λ. The case of multiple hidden variables Λ1,Λ2, . . . can be reduced to a single hidden-variable model
by taking the joint distributions over

∏
i Λi.

[4]The original inequality proved by Bell in [22] corresponds to a different experiment in which it
is harder to obtain a violation [40].
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Measurement Outcome −1 Outcome +1

a |0⟩ |1⟩
a′ 1√

2
(|0⟩+ |1⟩) 1√

2
(|0⟩ − |1⟩)

b cos
(−π

8

)
|0⟩+ sin

(−π
8

)
|1⟩ cos

(
3π
8

)
|0⟩+ sin

(
3π
8

)
|1⟩

b′ cos
(
π
8

)
|0⟩+ sin

(
π
8

)
|1⟩ cos

(
5π
8

)
|0⟩+ sin

(
5π
8

)
From these sets of measurements, it can be shown that the observed probability
distributions are given by:

(−1,−1) (−1,+1) (+1,−1) (+1,+1)

(a, b) 1
2
sin2

(
π
8

)
1
2
cos2

(
π
8

)
1
2
cos2

(
π
8

)
1
2
sin2

(
π
8

)
(a, b′) 1

2
sin2

(
π
8

)
1
2
cos2

(
π
8

)
1
2
cos2

(
π
8

)
1
2
sin2

(
π
8

)
(a′, b) 1

4

(
1 + 1√

2

)
1
4

(
1− 1√

2

)
1
4

1
4

(a′, b′) 1
4

(
1− 1√

2

)
1
4

(
1 + 1√

2

)
1
4

1
4

Hence, by some simple calculations, it is possible to obtain the expectation values of
the product variables ab, ab′, a′b, and a′b′ as:

⟨ab⟩ ⟨ab′⟩ ⟨a′b⟩ ⟨a′b′⟩
1√
2

1√
2

1√
2

−1√
2

Which leads to:
|⟨ab⟩+ ⟨ab′⟩+ ⟨a′b⟩ − ⟨a′b′⟩| = 2

√
2 > 2 (1.29)

The implications of the violation of (1.28) is that the statistics of quantum systems
cannot be explained by a model consistent with realism (i.e. all physical quantities
have values in a system at a given time) and locality (i.e. an event can only influence
other events in its future light-cone). Which is the correct assumption to drop, i.e.
realism or locality, is still highly debated in quantum foundations.

A theory without locality would imply that the physical property of a system
(e.g. its position) can instantly and non-locally be altered. The leading example of
such interpretation is known as Bohmian mechanics [27, 28]. We should also note that,
even in non-local theories, information cannot travel faster than light. For example,
in the previously described experiment, Alice cannot infer which measurement Bob
has done from her observed local statistics, and conversely.

On the other hand, non-realistic but local theories can also be formulated. Exam-
ples of such interpretations are the so-called Copenhagen interpretation [29], which
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promotes the idea of the “collapse of the wavefunction” upon measurement, or
QBism [37] in which a quantum state is not the “reality” of the system, but corre-
spond to a more subjective description of it.

Contextuality
The proof of the non-existence of hidden variables in quantum mechanics above

highly depends on the locality or no-signalling condition, which restricts the situa-
tions it can describe. In [107], the so-called Kochen-Specker theorem proposed a more
general criterion for the non-existence of hidden variables. Indeed, instead of re-
lying on spatially separated measurements, we only require that measurements be
done “at the same time”, meaning that we can know the values of the measure-
ments simultaneously. For example, if the value of an observable A is found to be
3, then the value of the operator A2 is automatically known to be 9. In the standard
quantum mechanics formalism, this condition is expressed as having commuting
observables, i.e. A and B as compatible iff AB = BA. If two observables are com-
patible we should be able to observe their joint statistics, whereas it does not make
sense to talk about the joint statistics of observables which are not compatible. A
system will then be said to be non-contextual if we can extend the system to one
where all of the observables are compatible, i.e. a system in which the values of all
the observables can be known at the same time. This extended system can be seen
as a hidden-variable model of the system. The Kochen-Specker theorem [107] then
states that this is not possible for the observables of quantum mechanics. We now
describe their proof, as well as subsequent proofs, of quantum contextuality.

The Kochen-Specker argument was originally abstractly formulated in terms of
partial algebra as follows. We start with a set of observables O endowed with a co-
measurability relation R ⊆ O×O; namely, for two operatorsA,B ∈ O, we haveARB

iff A and B are comaptible. This co-measurability relation is required to be reflexive
(i.e. every observable is co-measurable with itself) and symmetric (i.e. if A is co-
measurable with B, then B is co-measurable with A). In addition, it is also desirable
that, if A and B are both compatible with an observable C, then any function[5] of
A and B will remain compatible with C. Formally, the co-measurability relation
corresponds to a partial algebra defined as follows.

[5]Strictly speaking, we mean a Borel function here.
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Definition 1.25 (Partial algebra). A partial algebra over a field K is a tuple (X,R)

where X is a set endowed with addition, multiplication, and scalar multiplication
over K, and R is a binary relation R ⊆ X ×X such that:

a. R is symmetric and reflexive;

b. There exists an element 1 ∈ X such that A R 1 for all A ∈ X

c. For any A1, A2, A3 ∈ X such that Ai R Aj for all i, j ∈ {1, 2, 3} and α ∈ K:

(A1 + A2) R A3 (1.30)

A1 · A2 R A3 (1.31)

αA1 R A2 (1.32)

d. For any A1, A2, A3 such thatAi RAj for all i, j ∈ {1, 2, 3}, the polynomials over
A1, A2, A3 form a commutative algebra.

In particular, in the case where the field K is the field F2, we talk of partial Boolean
algebras.

In addition, we can define morphisms between partial algebras as follows.

Definition 1.26. A partial algebra homomorphism is a map h : (X,RX) → (Y,RY )

between two partial algebras over the same field K such that:

a RX b =⇒ h(a) RY h(b) (1.33)

h(αa+ βb) =αh(a) + βh(b) ∀α, β ∈ K (1.34)

h(a · b) =h(a) · h(b) (1.35)

h(1) =1 (1.36)

Therefore, if there exists a homomorphism h : (X,RX) → (Y,RY ), then the the-
ory over observables in X can be simulated using observables in Y such that the
functional relations between the observables of X are preserved.

Then, a partial algebra R is said to be non-contextual iff there exists a partial al-
gebra homomorphism h : R → A where A is a total (commutative) algebra. Ac-
cordingly, a partial Boolean algebra is non-contextual iff there is a partial algebra
homomorphism into a Boolean algebra.
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This is indeed the case for classical mechanics where observables are functions
f : Ω → R with Ω being the set of possible states of the system. This indeed forms
a commutative algebra over R, where all of the observables are co-measurable, and
we have the following:

1 : Ω → R ::= ω 7→ 0

f + g : Ω → R ::= ω 7→ f(ω) + g(ω)

f · g : Ω → R ::= ω 7→ f(ω)× g(ω)

αf : Ω → R ::= ω 7→ αf(ω)

On the other hand, the Kochen-Specker theorem states that quantum mechanical
observables are contextual, i.e. that there is no homomorphism to a total commuta-
tive algebra. Indeed, quantum observables are represented as self-adjoint operators
on a Hilbert space H. Addition, multiplication, and scalar multiplication of oper-
ators is defined as the standard matrix operations. As mentioned previously, the
co-measurability R is defined such that A R B iff AB = BA. This structure forms
a partial algebra. The obtained partial algebra is not total, as in general, not all ob-
servables will commute. Therefore, a set of quantum observables O admits a hidden
variable model iff there exists a homomorphism h : (O,R) → (O′,R′) where (O,R′)

is the partial algebra associated with a total (commutative) algebra.

In the original article [107], the proof of contextuality for quantum theory was
achieved by looking at a set of 117 observables in a 3-dimensional Hilbert space
(this could represent the angular momentum of a single particle along 117 differ-
ent directions). Later on, simpler proofs of quantum contextuality have been pro-
posed, using smaller sets of observables, and provided less involved geometric ar-
guments [143, 132, 34].

In addition, a major flaw in the original proof of [107] is that it is not easily
checked experimentally. In [106], Klyachko, Can, Binicioŏlu and Shumovsky (KCBS)
provided a contextuality proof on a 3-dimensional quantum system by deriving a
non-contextual inequality, in the same vein as the CHSH inequality for non-locality,
and showing its violation by fixing a set of 5 projection operators and the state which
is being measured.

To see this, we start with the derivation of the classical bound. Suppose that we
have 5 observables {Ak}k=1,...,4 such that Ak and Ak⊕51 are co-measurable for all k
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(where ⊕5 denotes the addition modulo 5). Now, suppose that all of the Ak’s take
value in ±1, therefore, the products AkAk⊕51 test whether their values are correlated
(i.e. AkAk⊕51 = 1) or anticorrelated (i.e. AkAk⊕51 = −1). Then, if there exists a
hidden-variable model, all of the Ak gets assigned a value, regardless of which pair
of observables is measured (see Table 1.1). Moreover, since there is an odd number
of pairs (Ak, Ak⊕51), then the number of anticorrelated pairs has to be even in a global
assignment of values, and is at most 4. Hence, this gives the KCBS inequality:

5∑
k=1

⟨AkAk⊕51⟩ ≥ −3 (1.37)

It turns out that the assignment of Table 1.1 (seen as a deterministic hidden-
variable model) saturates this inequality.

A1 A2 A3 A4 A5

Value +1 −1 +1 +1 −1

Table 1.1: Example of a total assignment of values to the observables Ak in the KCBS
experiment.

Now, we will describe a specific instance of such an experiment demonstrating
contextuality in 3-dimensional quantum systems, which is taken from [33, 10]. Start-
ing from the 5 states (up to normalisation factors):

|v1⟩ ∝ |0⟩+
√

cos
(π
5

)
|2⟩ (1.38)

|v2⟩ ∝ cos

(
4π

5

)
|0⟩+ sin

(
4π

5

)
|1⟩+

√
cos
(π
5

)
|2⟩ (1.39)

|v3⟩ ∝ cos

(
2π

5

)
|0⟩ − sin

(
2π

5

)
|1⟩+

√
cos
(π
5

)
|2⟩ (1.40)

|v4⟩ ∝ cos

(
2π

5

)
|0⟩+ sin

(
2π

5

)
|1⟩+

√
cos
(π
5

)
|2⟩ (1.41)

|v5⟩ ∝ cos

(
4π

5

)
|0⟩ − sin

(
4π

5

)
|1⟩+

√
cos
(π
5

)
|2⟩ (1.42)

It can be checked that these states are pairwise orthogonal, i.e. they satisfy ⟨vk|vk⊕51⟩ =
0 for each k. These states give a set of projections operators with eigenvalues (i.e.
outcomes) ±1, namely:

Pk = 2 |vk⟩ ⟨vk| − I (1.43)
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where I is the identity. We can then check that the pairs of projectors Pk and Pk⊕51

commute since:

PkPk⊕51 = Pk⊕51Pk = −2 |vk⟩ ⟨vk| − 2 |vk⊕51⟩ ⟨vk⊕51|+ I

using the fact that the pairs |vk⟩ and |vk⊕51⟩ are orthogonal. We recall that this means
that changing the order of the projections will not change the values of the individ-
ual observables. Now, taking the state to be measured to be the state |ψ⟩ = |2⟩, it can
be shown that the expectation value ⟨PkPk⊕51⟩ is:

⟨PkPk⊕51⟩ =
1− 3 cos

(
π
5

)
2 cos2

(
π
10

) (1.44)

for each k = 1, . . . , 5. Therefore leading to the violation of the KCBS inequality (1.37):

5∑
k=1

⟨AkAk⊕51⟩ = 5
1− 3 cos

(
π
5

)
2 cos2

(
π
10

) ≃ −3.944 < −3 (1.45)

The advantages of this proof is that it provides clear experiments which needs to
be performed for showing contextuality of quantum mechanics, and the inequality
derived is minimal in terms of number of observables and dimension of the quan-
tum system [106]. In addition, we should emphasize that this proof of contextuality
does not depend on locality assumptions, as measurements are done on a single system.
This then shows that contextuality is strictly more general than non-locality.

The KCBS inequality was generalised for n-dimensional quantum systems with
n ≥ 3, by considering n observables {Pi}i=1,...,n, where the only compatible mea-
surements are Pi, Pi⊕n1, where ⊕n is the addition modulo n [13]. Then, the KCBS
inequality arises as the special case n = 3, whilst the CHSH inequality corresponds
to the case n = 4.

Contextuality and quantum computations

Contextuality provides a fundamental distinction between classical and quantum
theories and has also been shown to be an essential resource in quantum comput-
ing. It has famously been demonstrated that quantum systems can solve compu-
tational problems exponentially faster than any known classical algorithm, such as
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factoring [166] or simulation of physical systems [16]. Where the advantage comes
from has historically been unclear. Recent studies have shown that contextuality
is a crucial ingredient for obtaining a quantum advantage, more so than superpo-
sition or entanglement, which can be efficiently simulated using classical comput-
ers [169, 140].

One of the first demonstrations of the role of contextuality in computation relates
to fault-tolerant stabiliser quantum computing.

Fault tolerance is vital to achieve reliable computation on real quantum com-
puters. One of the promising avenues to achieve quantum fault tolerance relies
on stabiliser codes, where a specific set of measurements (usually generalisations of
the Pauli gates) is used to correct noise introduced in a quantum circuit. However,
these gates or measurements are part of the Clifford group, which can only generate
circuits that are simulable on classical computers [82]. The full power of quantum
computations can be achieved from magic state distillation.

For magic state distillation, we start from an input state ρ, which can be noisy,
and aim at distilling it into a target “magic state” |m⟩ using stabiliser measurements
on some subsystem. This target state is defined so that non-Clifford gates can be
performed using it.

Now, not all initial states ρ can be distilled into a magic state |m⟩. In [94], the au-
thors showed that the set of states that can be distilled into magic states are precisely
the ones that can exhibit contextuality. Since quantum circuits using only Clifford
gates are efficiently simulable using classical resources, this result shows that con-
textuality is essential to obtain a quantum advantage.

Contextuality has also been studied from a resource theoretical point of view. One
result is that the amount of contextuality of a system cannot increase with classical
operations such that classical pre- and post-processing, classical control over mea-
surements or probabilistic mixing of experiments [3, 48, 12, 190]. This result implies
that any computational advantage coming from contextuality, e.g. in magic state
distillation, cannot be created from classical operations. Using quantum systems is,
therefore, necessary to obtain a quantum advantage.
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1.2.2 The sheaf-theoretic view of contextuality
In [6], the authors showed that contextuality corresponds to the impossibility of

finding a global section given a consistent family of local sections of a presheaf.
In this framework, the possible local measurements form a set X , which will be-

come the base space of our presheaves (with suitable topology). We then impose
a compatibility relation on X , which, in turn, gives us a cover of this space. This
compatibility relation corresponds to the co-measurability relation described in Sec-
tion 1.2.1.

Example 1.27. Let’s consider the standard (2,2,2)-Bell scenario consisting of 2 parties,
each choosing between 2 measurements, and each measurement having two possi-
ble outcomes. The set of possible measurements is X = {a1, a2, b1, b2} and we will
denote as IA = {ai}i=1,2 the set of measurements available to Alice, and IB = {bi}i=1,2

the set of measurements available to Bob. Alice’s measurements in IA are compati-
ble with all of Bob’s in IB. However, the measurements a1 and a2 are incompatible,
as they cannot be performed simultaneously, and similarly for Bob’s measurements.

Each of these measurements comes with a set of possible outcomes O[6]. Then,
given a set of compatible measurements U , an event associates outcomes with the
measurements selected in U . An event is, therefore, modelled as a function:

s : U → O

Example 1.28. In the (2,2,2)-Bell scenario, if Alice chooses to perform the measure-
ment a1 and obtains outcome x ∈ O, and Bob the measurement b2 and obtains the
outcome y ∈ O, then the event could be represented as the function:

s : U → O :: a1 7→ x; b2 7→ y

Presheaves and empirical models
Formally speaking, these functions are modelled as the presheaf of events. The

presheaf of events is defined as E : P(X)op → Sets, where the morphisms in P(X)

are inclusion relations. In other words, we are taking a presheaf over the set of
measurements X endowed with the discrete topology.

[6]Without loss of generality, we can assume that O is the same for any choice of measurement.
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The action of this presheaf on objects U gives the set of all possible assignments or
functions s : U → O. The action on morphisms U ⊆−→ V in C, gives us the restrictions
of these assignments, namely:

E(U ⊆ V ) : E(V ) → E(U)
s : V → O 7→ s|U : U → O

v ∈ V 7→ ov ∈ O v ∈ U 7→ ov ∈ O

(1.46)

In quantum mechanics, however, the outcomes of measurements are not gener-
ally deterministic, so instead of looking at events, it is more relevant to look at the
probability distributions over all of the possible events. Therefore, we post-compose
the event presheaf E with the distribution monad DR+ : Sets → Sets as defined in
Section 1.1. The obtained functor is once again a presheaf.

In a given experiment, we will not observe all of the possible probability distri-
butions for each set of co-measurable measurements, but instead, we will see only
a single probability distribution per global measurement choice, which will corre-
spond to the observed probability distribution. Hence, in terms of the presheaf DR+E ,
this means that, when selecting a set of measurements U ⊆ X to perform, we will
only observe a single section eU ∈ DR+E(U).

Similarly, we can only access the probability distributions of specific combina-
tions of compatible measurements in a given quantum experiment. For example,
suppose Alice can either measure a1 or a2. In that case, we cannot observe the joint
statistics of a1 and a2 as these measurements cannot be performed simultaneously.
So, instead of looking at sections of DR+E(U) for each of the subsets U ⊆ X , we
will instead consider a collection U = {Ui}i∈I , such that for each of the collections
of U ∈ U , the elements of U correspond to compatible measurements. Without loss
of generality, we will moreover assume that the set U is a cover of the space X , i.e.⋃

U∈U = X , so that all of the measurements are possible. This gives rise to the notion
of measurement scenario.

Definition 1.29 (Measurement scenario). A measurement scenario will consist on a
tuple (X ,U), where X is a topological space and U is an (open) cover of X .

We then define the data of an experiment as follows.
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(0, 0) (0, 1) (1, 0) (1, 1)
(a1, b1) 1/2 0 0 1/2
(a1, b2) 3/8 1/8 1/8 3/8
(a2, b1) 3/8 1/8 1/8 3/8
(a2, b2) 1/8 3/8 3/8 1/8

Table 1.2: An empirical model for the (2,2,2)-Bell scenario

Definition 1.30 (Empirical model). Given measurement scenario (X ,U), we define
an empirical model as a set of sections e =

{
eU ∈ DR+E(U)

∣∣U ∈ U
}

of the presheaf
DR+E(U) : T (X )op → Sets, where E can be any presheaf of events.

Example 1.31. In a (2,2,2)-Bell scenario as described previously, we would have X =

{a1, a2, b1, b2}, with associated cover U = {{a1, b1} , {a1, b2} , {a2, b1} , {a2, b2}}. Then,
an empirical model could be represented as in Table 1.2 where each of the rows is
labelled by the choice of measurementsU ∈ U and correspond to the selected section
of DR+E(U). More specifically, the cell at the intersection of the row labelled by
{ai, bj} and column labelled by (ok, ol) ∈ O2 corresponds to the probability e{ai,bj}(s ::
ai 7→ ok; bj 7→ ol).

Remark 1.32. To simplify the notation, we will denote the probabilities:

e{ai,...,ak}(s :: aj 7→ oj) ≡ e(ai,...ak)(oi, . . . , ok) (1.47)

Sheaf-theoretic contextuality
In the standard contextuality experiments, we are interested in studying the source

of the correlations between contexts, i.e. choices of measurements and their ob-
served statistics. In order to isolate the source of potential correlations between the
contexts and the outcomes, the standard practice is to limit the overall number of
possible sources of such correlations. One type of correlation which can be elimi-
nated in quantum experiments is communication, i.e. the signalling between Alice
and Bob in the above example. In practice, we can achieve this by spatially isolating
these parties.

The consequence of such isolation, or lack of signalling, is that the marginal prob-
ability distributions do not depend on the choice of measurements of the other par-
ties. In other words, for any set of inputs U , and any two sets of measurements V, V ′
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compatible with all elements of U , we should have:

eU∪V |U(oU) = eU∪V ′ |U(oU) (1.48)

for all joint outcomes oU over the measurements of U , where eW corresponds to the
joint probability distribution corresponding with the choices of inputs W for any set
W .

Example 1.33. The (2,2,2)-Bell scenario depicted in Table 1.2 indeed satisfies this so-
called no-signalling condition, since, for instance:

e(a1,b1)|a1(0) = e(a1,b2)|a1(0) =
1

2
(1.49)

We then define the notion of (non-)contextuality as follows.

Definition 1.34. A system is said to be non-contextual iff there exists a joint probabil-
ity distribution over X which correctly restricts to all of the eU ’s, i.e., if there exists a
global section e ∈ P (X) such that e|U = e for all U ∈ P(X).

We note that this condition is reminiscent of the definition of a sheaf described
in Section 1.1.2 (Definition 1.14). If an empirical model is non-contextual, the global
section acts as a hidden-variable model for the observed statistics.

Example 1.35. The example of Fig. 1.2 is contextual, i.e. a global probability distribu-
tion cannot be defined.

Remark 1.36. This notion of contexutality can be shown to be equivalent to the notion
of contextuality defined in terms of non-existence of a homomorphism from a partial
Boolean algebras to the Boolean algebra 2 [2].

On the no-signalling property
In realistic experiments, the no-signalling condition does not usually hold; this

can be due to the unsharpness of the instruments [183] or simply the finiteness of
the measurements [183, 52]. As a result, different frameworks have been devel-
oped to study contextuality in the presence of signalling. Examples of these are the
Contextuality-by-Default framework [52] and the corrected Bell inequalities of the
sheaf-theoretic model [183], both of which create a measure of the signalling prop-
erty of the system. We will describe the Contextality-by-Default framework in the
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subsequent subsection, but first, let’s look at way of dealing with signalling in the
sheaf-theoretic framework [183].

The intuition is that a signalling system is said to be contextual if the amount
of signalling is not enough to make the system “classically explainable”. In sheaf-
theoretic terminology, the empirical model is said to be no-signalling or consistent if
every pair of sections in an empirical model satisfies the compatibility condition of
(1.48). Given an empirical model e, which is not necessarily compatible, we define
the no-signalling fraction NSF ∈ [0, 1] as the maximal possible value of λ across all of
the decompositions of e:

e = λ · eNS + (1− λ) · e′ (1.50)

where eNS is a no-signalling empirical model (the multiplication is here point-wise
multiplication), and e′ can be any empirical model. We then define the signalling
fraction as:

SF = 1− NSF (1.51)

The signalling fraction can be seen as the degree of incompatibility of an em-
pirical model, as it measures the departure from a no-signalling, locally compatible
model.

Similarly, for any arbitrary empirical model e, we can define the non-contextual
fraction NCF [183, 4, 12] as the maximal λ ∈ [0, 1] such that:

e = λ · eNC + (1− λ) · e′ (1.52)

where, this time, eNC is a non-contextual (and no-signalling) empirical model. In
addition, we will also define the contextual fraction CF as:

CF = 1− NCF (1.53)

Then, a possibly signalling empirical model is said to be contextual iff:

CF > SF (1.54)

Remark 1.37. The contextual fraction CF can also quantify a resource from which a
quantum advantage can be obtained [3].
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Extending to causality
In [130, 79, 80, 5], this formulation of contextuality has been extended to scenar-

ios where structured signalling is allowed, first by allowing sequential operations
in [130], then by allowing definitite causal orders [79, 5] and even indefinite causal struc-
tures [79, 80].

Here, we will focus on the case of definite causal order and use the formulation
of [79], although the one of [5] is equivalent on the situations of interest in Part II
and III[7]. We start by defining the notion of party corresponding to a point in space
and time. For example, it could represent a lab, as in the contextuality scenarios, or
a sequence of operations done in the same lab.

Each party A will be associated with a set of possible inputs or measurements
IA. The measurements of IA are assumed to be pairwise incompatible. X = ⨿AIA

will denote the set of all possible measurements. And as in contextuality scenarios,
each of the inputs x ∈ IA will have an associated set of outcomes O, which we will
take to be the same for all possible measurements.

Given a set of parties Ω, we define a causal order over Ω as a partial order Σ =

(Ω,⪯) over Ω. This partial order should be interpreted as follows: for any two par-
ties A,B ∈ Ω, if A ⪯ B, then the input of A can influence outputs of any measure-
ment chosen by B, but not the other way around. A causal scenario is therefore taken
to be (Σ = (Ω,⪯) , X = ⨿A∈ΩIA, O).

Given a set of parties ω ⊆ Ω, we define its causal past as the downward-closed set
(with respect to ⪯):

ω↓ = {B ∈ Ω | ∃A ∈ ω. B ⪯ A} (1.55)

Then, we define the set of all lowersets ΛΣ as:

ΛΣ = {ω↓ | ω ∈ P(Ω)} (1.56)

Roughly speaking, each set λ ∈ ΛΣ corresponds to a set of parties for which a com-
plete history, i.e. sets of inputs and outcomes, can be defined.

We now recall that in contextuality scenarios, for any set of measurements U ⊆
X , each measurement x ∈ U is assumed to be made independently. However, in
the case of causal scenarios, the measurements are allowed to depend on the inputs

[7]Although, the formulation of [5] is applicable to strictly more scenarios than the one of [79].



42 1.2. Describing Quantum Correlations

and outcomes of the preceding events. The approach of [79] is to encode this causal
structure within the topology of the base space of the presheaf. Given a causal or-
der Σ, we will then define the topological space LΣ as having open sets abstractly
defined as:

U ∈ LΣ =
(
λ ∈ ΛΣ, (UA ⊆ IA)A∈λ

)
(1.57)

where we also require that UA ̸= ∅ for all A ∈ λ.

The idea is that each of these sets U gives rise to a well-defined sub-scenario
((λ,⪯),⨿A∈λUA, O) of the full causal scenario. The condition that UA ̸= ∅ for all A
states that every party in the sub-scenario can “do something” so that every party
in its future can use their local experiment.

In addition, we can order these sub-scenarios as follows:

U =
(
λU ∈ ΛΣ, (UA ⊆ IA)A∈λU

)
⊆ V =

(
λV ∈ ΛΣ, (VA ⊆ IA)A∈λV

)
⇐⇒ λU ⊆ λV ∧ ∀ω ∈ λU . Uω ⊆ Vω

(1.58)

This means that if U ⊆ V , then everything that can happen in U is also possible in
V . We can moreover define the union and intersection of sub-scenarios U and V as
follows:

U ∩ V =(λ = {A ∈ λU ∩ λV | UA ∩ VA ̸= ∅} , (UA ∩ VA)A∈λ) (1.59)

U ∪ V =
(
λU ∪ λV , (UA ∪ VA)A∈λU∪λV

)
(1.60)

Remark 1.38. These definitions are directly taken from [79]. However, although they
are well-motivated from a physical point of view, the intersection defined in (1.59) is
not always defined. For instance, let us look at the causality scenario (Σ, X,O) where
Σ = ({A,B,C} ,⪯) is the total order:

A ⪯ B ⪯ C (1.61)

and where:
IA = IB = IC = {0, 1} (1.62)
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Then, taking:

U =({A,B,C} , (IA, {0} , IC)) (1.63)

V =({A,B,C} , (IA, {1} , IC)) (1.64)

Then:
{A ∈ λU ∩ λV | UA ∩ VA ̸= ∅} = {A,C} /∈ ΛΣ (1.65)

which is not a lowerset, so U ∩V /∈ LΣ. However, this issue is not easily fixable, and
we will leave the task of formulating a better framework as future work.

It is then claimed that LΣ forms a locale [79, Proposition 5] (and hence a topolog-
ical space)[8].

We say that a function s :
∏

A∈λ UA → O|λ| over a lower set λ respects the causal
order Σ iff for all (iA)A∈λ , (i

′
A)A∈λ ∈

∏
A∈λ UA:

(iA)A∈λ

∣∣
B↓

= (i′A)A∈λ

∣∣
B↓

=⇒ s
(
(iA)A∈λ

)∣∣
{B} = s

(
(i′A)A∈λ

)∣∣
{B} (1.66)

where we write the (strict) past of B as B↓ ≡ {B}↓ − {B}. This condition states that
the past of B is unchanged by its future.

Example 1.39. Let’s consider the simple causal scenario Σ = ({A,B} ,⪯) where the
only non-trivial causal relation is A ⪯ B, and the causal scenario:

(Σ, {(A, IA = {a1, a2}) , (B, IB = {b1, b2})} , O = {0, 1})

In addition, let’s consider the open subset U = ({A,B} (IA, IB)). Then, the function
s : IA × IB → O2 ∈ EΣ defined as:

s Outcomes

(a1, b1) (0, 0)

(a1, b2) (0, 1)

(a2, b1) (1, 1)

(a2, b2) (1, 0)

[8]Note that this does not follow from the definitions of [79] as, from the above remark, LΣ does
not define a meet. This could still lead to a locale, but with a different choice of meet.
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is a causal function with respect to Σ, since:

s (a1, b1)|{A} = s (a1, b2)|{A} = 0 (1.67)

s (a2, b1)|{A} = s (a2, b2)|{A} = 1 (1.68)

We then define the (pre-)sheaf of causal events EΣ : Lop
Σ → Sets as:

EΣ : Lop
Σ → Sets(

λ, (UA)A∈λ
)

7→ {s | s respects the causal order Σ}
U ⊆ V 7→ (s :: (iA)A 7→ (oA)A) 7→

(
s|U :: (iA)A 7→ (oA)A

) (1.69)

Each section s of EΣ(U) therefore corresponds to a set of consistent histories over the
sub-scenario associated with U . In this case, the consistency condition expresses the
consistency with respect to the causal order Σ.

As in the contextuality case, we then want to consider a probabilistic mixture
of possible histories, and hence consider sections of the presheaf DR+EΣ : Lop

Σ →
Sets. Similarly, we will define a causal empirical model as a family of sections e =

{eU | U ∈ M}, where M is a cover of LΣ, i.e.
⋃

U∈M U =
(
Ω, (IA)A∈Ω

)
.

A standard choice of cover is the following:

Mlocal =
{
(λ, ({iA})A∈λ)

∣∣ λ ∈ ΛΣ, iA ∈ IA
}

(1.70)

This cover will record the statistics of observing the outputs at each stage for any
choice of inputs. We will, for instance, use this cover in Chapter 5 when looking at
the grammatical parsing process. For this cover, an empirical model is said to be
causal or consistent with Σ if the restriction of a section to an earlier stage corre-
spond to the choice of section at this earlier stage, i.e.:

U ⊆ V ∧ U, V ∈ Mlocal =⇒ eV |U = eU (1.71)

Another choice of cover, which we will adopt in Section 3.4, is the following:

Mglobal =
{(

Ω, ({iA})A∈Ω
) ∣∣ iA ∈ IA

}
(1.72)

In these empirical models, we can only access the final probability distributions
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given a global choice of inputs.

Example 1.40. Let’s consider once again a causal scenario defined over the causal
order ({A,B} ,⪯), where the only non-trivial causal relation is A ⪯ B, and where
IA = {a1, a2}, IB = {b1, b2} andO = {0, 1}. Let’s moreover consider the global cover:

M = {({A,B}, ({ai} , {bj})) | i, j = 1, 2} (1.73)

Then, Table 1.3 depicts an example of an empirical model, where each of the rows
corresponds to a probability distribution associated with the global choice of input
(ai, bj), and the columns are labelled with respect to the observed outcome. This
model can moreover be found to be causal with respect to Σ as (removing the curly
brackets around singletons and the index Ω for the sake of clarity):

e(a1,b1)
∣∣
a1
(0) = e(a1,b2)

∣∣
a1
(0) = 6/13

e(a2,b1)
∣∣
a2
(0) = e(a2,b2)

∣∣
a2
(0) = 23/65

(0, 0) (0, 1) (1, 0) (1, 1)
(a1, b1) 0 6/13 0 7/13
(a1, b2) 24/65 6/65 7/13 0
(a2, b1) 23/65 0 14/65 28/65
(a2, b2) 23/260 69/260 42/65 0

Table 1.3: Example of an empirical model causal with respect to to the causal order
A ⪯ B.

Remark 1.41. The notation can quickly become very complex in causal empirical
models. Hence, as done in the previous example, any redundant information will
be removed in the subsequent chapters whenever it is clear from the context what
each of the quantities refers to.

The causal fraction As for the no-signalling property in contextuality scenarios,
a generic empirical model will not necessarily be consistent with a given causal
order, notably when the probability distributions are obtained empirically. Hence,
we will define the notion of the causal fraction CausFΣ with respect to to a causal
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order Σ which will quantify how much of the observed statistics is compatible with
the causal order Σ. This fraction will be defined as the maximal λ ∈ [0, 1] such that:

e = λ · eΣ + (1− λ) · e′ (1.74)

where eΣ is consistent with the causal order Σ.

1.2.3 The Contextuality-by-Default framework
We have previously seen that the no-signalling condition imposed on the proba-

bility distributions is often too restrictive in practice. Solutions on the sheaf-theoretic
side included allowing a small enough amount of signalling into the system or
studying systems with a well-defined causal structure. Here, we will describe an
alternative way of doing the former, i.e. taking signalling into account, using the
framework of Contextuality-by-Default (CbD).

One of the ideas behind the Contextuality-by-Default approach is to extend the
notion of contextuality by allowing direct influence of the context on the results of
measurements. However, for every system in which changing the context results
in a change of probability distribution, there is some contextual influence. Therefore,
one question is to distinguish what counts as “direct influence”, and what is “truly
contextual influence”.

In CbD, non-contextual systems are the ones for which one can find a “global ex-
planation” of the system which maximises the probability that distributions corre-
sponding to the same contents coincide. We refer to this minimal amount of contex-
tual influence allowed by the observed probability distributions as direct influence,
while contextual influences will designate any influence due to the context. A system
will be contextual if the direct influences are not enough to describe the observed
system.

We now introduce the standard formalism of Contextuality-by-Default (CbD) (see
also [52] for a more general introduction). In this setting, a content is a measurement,
or more generally, a question with a known set of answers. The context gathers all
the conditions under which one or several of these questions are asked.

Formally, we start with the concept of a probability space (Ω,Σ, µ), where Ω is
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called the sample space, and will correspond to the set of possible outcomes (e.g. set
of possible answers to a question), Σ is a σ-algebra over Ω (i.e. set of subsets closed
under complementation, countable unions and countable intersections), which we
will usually take to be Σ = P (Ω), and µ : Σ → R+ is a probability distribution.
Now, the sample space Ω consists of an abstract collection of objects from which we
cannot, for example, calculate expecation value. We then define a random variable[9]

over a probability space (Ω,Σ, µ) as a (measurable) functionX : Ω → R, whereX(ω)

can be seen as the (real-)value of the outcome ω. Then, for any v ∈ R, we define the
probability:

P [X = v] = µ ({ω ∈ Ω | X(ω) = v}) (1.75)

Similarly, for any I ⊆ R, we define:

P [X ∈ I] = µ ({ω ∈ Ω | X(ω) ∈ I}) (1.76)

Every content qi in a context cj gives rise to a random variable Rj
i that takes

values from the possible answers to qi and gives the probability of each answer in the
context cj . So, to make the parallel with the sheaf-theoretic frameowrk introduced
in the previous section, for a given measurement scenario we would have:

P
[
Rj

i = v
]
= ecj |qi (v) (1.77)

All random variables in a given context are jointly distributed, i.e. they are de-
fined over the same probability space. However, random variables from different
contexts are not: they are stochasitically unrelated. This is the main difference with
the sheaf-theoretic framework of contextuality, since here, it does not make sense
to question the equality or inequality of marginal probability distributions arising
from different contexts, since they are not defined over the same probability space.
To talk about random variables that are not jointly distributed, we introduce the
concept of probabilistic coupling.

Definition 1.42. A probabilistic coupling of random variables X1, . . . , Xn is a set of
random variables Y1, . . . , Yn which are jointly distributed, and for which the proba-
bility distribution of each Yi agrees with the probability distributions of Xi.

Example 1.43. Here is an example taken from [52]. Consider two unrelated random

[9]Here we only consider real-valued random variables
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variables X1 and X2 taking values in {1, 2, 3} and {1, 2} respectively with the prob-
ability distributions are given by:

X1 = 1 X1 = 2 X1 = 3

P 0.3 0.3 0.4

and :

X2 = 1 X2 = 2

P 0.7 0.3

Then, we could create a probabilistic coupling Y1, Y2 such that the joint probability
distribution of Y1 and Y2 is given by:

P Y1 = 1 Y1 = 2 Y1 = 3

Y2 = 1 0.3 0.2 0.2

Y2 = 2 0 0.1 0.2

It can be checked that the marginals of the above joint probability distribution do
indeed reduce to the probability distributions of X1 and X2.

Then, given a set of random variables Rj
i , a probabilistic coupling over them will

correspond to a hidden variable model of the observed statistics. Note, however,
that it is not an analogue of a global section in the sheaf-theoretic framework of
contextuality, since the probabilities do not only depend on the content (observable)
but also the context it is measured in.

Now, given any set of random variables Rj
i , it is always possible to define (in-

finitely many) couplings Sj
i [52]. Hence, instead of requiring the existence of a cou-

pling compatible with the observed distributions, we require a “classical-like sys-
tem” to be a coupling that satisfies certain properties.

In particular, let’s consider a probabilistic coupling Sj
i associated with the ob-

served statistics of a system recorded inRj
i . Then, since the Sj

i are jointly distributed,
the following probability is well-defined for any fixed content qi and pairs of con-
texts cj, cj′ :

P
[
Sj
i = Sj′

i

]
=
∑
v∈V

P
[
Sj
i = v, Sj′

i = v
]

(1.78)

where V is the set of values the content qi can take. It can be shown that the above
probability is bounded above for any choice of coupling, as:

P
[
Sj
i = Sj′

i

]
≤
∑
v∈V

min
(
P
[
Rj

i = v
]
, P
[
Rj′

i = v
])

(1.79)
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This inequality is, in fact, saturated, i.e. for any pair of random variables Rj
i and Rj′

i ,
there exists a coupling

{
Sj
i

}
cj ,qi

such that:

P
[
Sj
i = Sj′

i

]
=
∑
v∈V

min
(
P
[
Rj

i = v
]
, P
[
Rj′

i = v
])

(1.80)

A system
{
Rj

i

}
cj ,qi

is then said to be contextual in the CbD framework iff there

exits a coupling
{
Si
j

}
cj ,qi

such that for any pair of random variables Rj
i , R

j′

i , (1.80) is
satisfied. If a system is said to be consistently connected, i.e. if:

P
[
Rj

i = v
]
= P

[
Rj′

i = v
]

(1.81)

for any pair of variables Rj
i , R

j′

i . In most widely studied scenarios[10], this notion of
contextuality collapses to the standard definition of contextuality in no-signalling
systems [52, 53].

For a generic system, it is computationally hard to prove the existence or the non-
existence of such a coupling, as it requires solving many linear inequalities. We will
now focus on a specific type of context-content system, namely cyclic systems, for
which contextuality can be checked more easily.

In a cyclic system, each context has exactly two contents, and every content is ex-
actly in 2 contexts. The number of contents (or equivalently, the number of contexts)
is the rank n of the system. Moreover, again following normal practice in CbD, we
will assume that all random variables take values in {±1}[11].

A cyclic system is known to be contextual in CbD iff [109, 52]:

sodd

({〈
Rj

ij
Rj

i′j

〉}
j=1,...,n

)
> n− 2 + ∆ (1.82)

where ij ̸= i′j for all j and when Rj
ij
, Rj

i′j
are well-defined for all j. The sodd function

and the quantity ∆ are defined below.

[10]See Remark 1.45 for a discussion about the scenarios in which consistent connectedness and
no-signalling are the same notion.

[11]Every general system can be rewritten as a system with binary variables only [52]; however,
in the general case, by making such transformation on a system, it will cease to be cyclic, and the
following inequality will no longer apply. There are, however, ways to study the contextuality of
such a system [52].



50 1.2. Describing Quantum Correlations

• sodd : Rn → R is defined as:

sodd (x) = max
σ∈{±1}n
p(σ)=−1

σ · x (1.83)

where both σ and x are n-dimensional (real) vectors and where p(σ) =
∏n

i=1 σi

(p can be seen as the parity function of σ). In other words, sodd returns the
maximal sum of all its arguments weighted with ±1 coefficients under the
condition that an odd number of negative coefficients are attributed.

• ∆ ∈ R is defined as:

∆ =
n∑

i=1

∣∣∣〈Rji
i

〉
−
〈
R

j′i
i

〉∣∣∣ (1.84)

where once again ji ̸= j′i ∀i and Rji
i , R

j′i
i should be well-defined. The quantity

∆ measures a system’s “degree of signalling”, and a system is consistently
connected iff ∆ = 0.

We note that equation (1.82) is a generalisation of the inequalities derived in [13]
for no-signalling cyclic systems (although they were both proven independently).

Quantifying contextuality

Similarly to the contextual fraction CF defined in the previous subsection, we can
define a quantification of the contextuality from the CbD framework. In fact, several
measures have been proposed [110], including the non-contextual measure denoted
as NCNT2 for a given set of probability distributions

{
Rj

i

}
, defined as:

NCNT2 = min

(
∆− sodd

({〈
Rj

ij
Rj

i′j

〉}
j=1,...,n

)
,m

)
(1.85)

In the above equation, the quantity m is defined as:

m = min
j

min
(〈
Rj

ij
Rj

i′j

〉
− 2

∣∣pj1 + pj2 − 1
∣∣+ 1, 1−

∣∣pj1 − pj2
∣∣− 〈Rj

ij
Rj

i′j

〉)
(1.86)



Chapter 1. Quantum theory and applications 51

where pj1 and pj2 are shorthands for respectively:

pj1 = P
[
Rj

ij
= +1

]
(1.87)

pj2 = P
[
Rj

i′j
= +1

]
(1.88)

(1.89)

The advantage of this measure is that we can compare the contextuality of empir-
ical models which are not contextual as the measure can be positive or negative. A
negative NCNT2 implies that the model is CbD-contextual, whereas a positive value
implies non-contextuality. This measure will be used in Chapter 3.

Quatifying direct influences
As interesting as it is to have criteria for contextuality, we will see in the follow-

ing Chapters that the amount of signalling in empirical models will be of interest
for studying natural language data. We have introduced the signalling fraction
from [183] in Section 1.1.2, as well as the “degree of signalling” ∆ defined above,
but only for cyclic systems.

To obtain a more generic quantification of direct influence within the CbD frame-
work, we introduce another related framework known as M-contextuality (model-
contextuality), first introduced in [99]. This framework was inspired by the causal
analysis of contextuality of Cavalcanti [36] and the (classical) theory of causality of
Pearl [142].

In [99], the author showed that every system of random variables observed in
the different contexts can be expressed as a Bayesian network in the form of Fig. 1.4.
Here, we treat the contexts as a single randomC, and the contents are each modelled
by a random variable Fq which is deterministically determined by the context variable
C and some other latent variable Λ, which corresponds to background knowledge
of the system. Such a Bayesian network is called a canonical model in [99]. Note
that it is important that the latent variable Λ is independent of the context variable
C (otherwise, any part of the variable Λ correlated with C can be without loss of
generality encompassed by C).

Now, given a canonical model successfully describing a set of observed proba-
bilities, we quantify the direct influence of the context variable C on a given content
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q as:
∆c,c′ (Fq) = P [Λ ∈ {λ|Fq(λ, c) ̸= Fq(λ, c

′)}] (1.90)

In turn, a system is said to be M-contextual if these direct influences cannot attain
their respective minima in a single canonical model compatible with the empirical
model. The main result of [99] was to show that this notion of contextuality is, in
fact, equivalent to the CbD definition of contextuality.

C

Λ

Fq
1

. . .Fq
2

Fq
n

Figure 1.4: Bayesian Network representation of a canonical causal model.

M-contextuality and degree of signalling We now have two ways of quantifying
the “direct influence” of a system, namely using the “degree of signalling” ∆ from
CbD or by using the minimum amount of contextual direct influence ∆c,c′(Fq) al-
lowed for each content q. As it turns out, these quantities are intrinsically related,
and the following is true:

Proposition 1.44. For a cyclic system with binary random variables taking values in {±1},
we have:

∆ = 2
∑
q

∆∗
cq ,c′q

(Fq) (1.91)

where ∆∗
cq ,c′q

is the minimum direct influence of the contexts cq, c′q associated with content q
across all canonical models compatible with the observed distributions.

The proof of this proposition can be found in Appendix C.1.

We note that ∆ is only defined for a small class of systems, while the RHS of
(1.91) applies to more general systems.
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Direct influences and the signalling fraction The notion of direct influence stems
from similar motivations as the signalling fraction SF defined in Section 1.1.2, namely,
what is the minimal “part” of the observed statistics which can be explained by
a no-signalling system. We here show that the signalling fraction gives an upper
bound of the degree of signalling ∆ in some particular circumstances (including in
cyclic systems) and that in the general case, the signalling fraction gives us an upper
bound for all of the degree of direct influences in a system[12]. First, we start with an
important remark.

Remark 1.45 (No-signalling and consistent-connectedness). Somewhat surprisingly,
although the notion of consistent-connectedness, as defined in [52], is claimed to be
equivalent to no-signalling, this is not generally the case. Indeed, a system is said to
be consistently-connected iff, for any contentX in contexts C,C ′, the marginals over
X of the probability distributions associated with C and C ′ are the same. However,
in general, the notion of no-signalling is stated as, for any subset {Xi}i∈I of contents
such that Xi ∈ C and Xi ∈ C ′ for all i ∈ I , then the marginal distribution restricted
to all of the Xi coincides. Hence, this distinction only applies if there exist contexts
C,C ′ such that |C ∩ C ′| > 1.

Here is an example of an empirical model which is consistently-connected but
signalling.

(0,0) (0,1) (1,0) (1,1)

a b 1/2 0 0 1/2
a b 0 1/2 1/2 0

Having cleared up this distinction, we then state the following results.

Proposition 1.46 (Signalling fraction and degrees of direct influences). Given statis-
tics of a system for the contexts {Ci ⊆ X}i∈I for individual measurements (i.e. contents)X ,
we have:

a. For any system, we have:
max
x∈X

∆∗
C,C′(x) ≤ SF (1.92)

b. If the choices of contexts satisfies |Ci ∩ Cj| ≤ 1 for all i, j ∈ I and i ̸= j, then:

max
x∈X

∆∗
C,C′(x) = SF (1.93)

[12]The results represented here are original at the time of submission of the thesis.
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The proof of these claims can be found in Appendix C.2. Moreover, since we
already had a relationship between the degrees of direct influence ∆∗

C,C′(x) and the
overall degree of signalling ∆ (Proposition 1.44), the next results follows.

Corollary 1.47. In a cyclic system of rank n, we have:

∆ ≤ 2 SF (1.94)

From Contextuality-by-Default to sheaf-theoretic contextuality
In [50], the author proposed a way of describing signalling empirical models in

terms of no-signalling ones within the sheaf-theoretic framework, such that the no-
tion of contextuality in these generated empirical models is equivalent to the notion
of contextuality within the Contextality-by-Default framework. This mechanism for
creating no-signalling models was coined as consistentification. We here briefly de-
scribe this procedure.

Recall that in CbD, a cyclic system is contextual is non-contextual whenever it is
possible to impose a global probability distribution on the system such that the prob-
abilities P

[
Si
q = Si′

q

]
are simultaneously maximised. This condition can expressed

as the possibility of imposing a joint probability distribution on pairs of variables
of different contexts that share a content, such thatP

[
Si
q = v, Si′

q = v
]

are minimal
for every outcome v, and for which marginals coincides with the marginals of the
observed variables.

Hence, the process of consistentification consists of creating a new system for
which both the contexts and contents of the original system are measurement con-
texts. The set of observable X is therefore defined asX = {(qi, cj)|qi ∈ cj}, and CbD-
contexts and CbD-content correspond to the following set of measurement contexts:

Mc =
{{(

qi, c
j
)
∈ X

}∣∣cj is a CbD-context
}

(1.95)

Mq =
{{(

qi, c
j
)
∈ X

}∣∣qi is a CbD-content
}

(1.96)

The probability distributions over the measurement contexts of Mc are defined as
before, i.e. correspond to observed probability distributions. On the other hand, the
probability distributions over the measurement contexts of Mq will be obtained by
imposing minimal direct influences on each of the individual contents. This corre-
spondance is illustrated in Fig 1.5. By definition of the Si

q from above, this system is
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no-signalling, i.e., consistently connected.

consistentification

Figure 1.5: Correspondance between the original measurement scenario (left), and
the consistentified one (right). On the latter, the solid measurement contexts are the
ones inherited from the left-hand measurement scenario, whilst the dashed ones are
the ones created from the minimal direct influence condition.

Moreover, the criterion of CbD-contextuality in the original system is, by design,
the same as the sheaf-theoretic criterion of contextuality in the generated one.

1.3 Quantum Mechanics as a Process The-
ory

The goal of this section is to motivate and introduce the notation of Chapter 4. Un-
like the previous section, we will now assume the standard Hilbert space formalism
of quantum mechanics and provide a categorical description of quantum states and
operations.

1.3.1 Features of quantum processes
In Section 1.1.3, we have seen that monoidal categories are very useful in de-

scribing processes that can be composed sequentially (modelled using the sequen-
tial composition of morphisms) and in parallel (using the monoidal product ⊗). In
particular, in the case of quantum processes, we will mainly focus on the category of
Hilbert spaces Hilb. Moreover, in the case of quantum computing, we can restrict
ourselves to the category of finite-dimensional Hilbert spaces FdHilb, which also
has some additional “nice” properties, such as the existence of orthonormal bases
for all objects of FdHilb.
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We start by describing the intepretation of objects of FdHilb in terms of quantum
mechanics. A Hilbert space H ∈ ob (FdHilb) will correspond to a quantum system,
and the dimension of H will correspond to the dimension of the quantum system in
question. For example, a qubit will live in the 2-dimensional Hilbert space C2.

A (pure) quantum state living in the Hilbert space H will then be represented as
a vector |ψ⟩ : I → H (where we recall that the monoidal unit for Hilbert spaces is
I = C), while their duals will be represented as ⟨ψ| : H → I . The latter corresponds
to the outcome of some measurement.

These states are not necessarily normalised, as they should in standard quantum
mechanics. Therefore, the set of physical states will consists of states |ψ⟩ : I → H
such that: ∣∣∣∣∣∣∣∣

ψ

ψ

∣∣∣∣∣∣∣∣
2

= 1 (1.97)

Intuitively, we would then want morphisms in FdHilb to represent quantum op-
erations. This is not quite the case as, physically, the valid operations of (pure)
quantum states will only be unitary operations, whereas the morphisms of FdHilb

are in general bounded linear maps. The unitarity condition ensures that the opera-
tions preserve the normalisation of states (1.97). Hence, the set of physical operations
on a system H ∈ ob (FdHilb) will consists on the morphisms U : H → H such that:

U

U †

H

H

=
U

U †

H

H

=

H

(1.98)

Example 1.48. a The following are standard examples of one-qubit gates:

X =

(
0 1

1 0

)
Y =

(
0 −i
i 0

)

Z =

(
1 0

0 −1

)
Y =

1√
2

(
1 1

1 −1

)

b For any unitary U over H, we can also define the controlled unitary cU acting
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on C2 ⊗H as follows:

U =

1 0 0

0 1 0

0 0 U

 (1.99)

The intuition is that if the control qubit is in the state |0⟩, the identity on H is
applied, whereas if the control qubit is in the state |1⟩, the unitary U is applied
to the target space H.

Using the monoidal structure, we can also compose morphisms in parallel using
the monoidal product ⊗. If two operations U and V are composed in parallel as
U⊗V , then it is understood that they are done independently. Now, we have already
seen some special (non-unitary) morphisms |ψ⟩ : I → H which represent quantum
states. Two states |ψ⟩ : I → H1 and |ϕ⟩ : I → H2 can also be composed in parallel
as |ψ⟩ ⊗ |ϕ⟩ : I ⊗ I → H1 ⊗ H2. As with processes, these states are considered
independent and known as product states. However, given the compound system
H = H1 ⊗ H2, not all of the states in H will be product states. For instance, taking
H1 = H2 = C2, the Bell state |Ψ⟩ = 1√

2
(|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩) cannot be decomposed

as |Ψ⟩ = |ψ⟩ ⊗ |ϕ⟩. States that cannot be decomposed as a product state are called
entangled states.

In addition, we have seen in Section 1.1.3 that the category FdHilb also satisfies
some extra properties. For instance FdHilb is a symmetric monoidal cateogry, i.e.
for any two HA,HB ∈ ob (FdHilb), we have HA⊗HB

∼= HB⊗HA. The interpretation
of this property in terms of quantum systems is quite natural, namely that swapping
quantum systems leads to an “essentially equivalent” system in the sense that both
swapped and unswapped compound systems share the same physical properties.

Furthermore, the category FdHilb is compact-closed, and the duality structure
proved very useful. In particular, it is widely known in the quantum mechanics
literature that the set of operations U : HA → HB is isomorphic to a set of states |Ψ⟩ :
I → HA⊗HB; this correspondence is known as the Choi-Jamiołkowsky isomorphism[13].
This equivalence can easily be seen in terms of string diagrams, using the units of

[13]Here, the isomorphism is understood at the level of sets, i.e. there exists a bijection between the
set of quantum states, and the set of quantum operations.
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the duality as:
HA

U

HB

≃−→

HA

U

HB

(1.100)

If U is a unitary map, the obtained state under this isomorphism is a maximally
entangled state, as they can maximally violate the Bell inequalities introduced in Sec-
tion 1.2.

Example 1.49 (Bell states). In two-qubit systems, certain maximally entangled states
are important in quantum protocols such as quantum teleportation. These are known
as Bell states and are defined as:

|Φ+⟩ = |Φ−⟩ = Z

|Ψ+⟩ = X |Ψ−⟩ = Y

(up to normalisation and global phase factors).

1.3.2 Mixed states and density matrices
So far, we have only considered pure quantum states subject to unitary transfor-

mation. In realistic systems, however, the quantum states will sometimes interact
with their environment in a manner that is not always known or controlled. To deal
with this situation, we use density matrices and quantum channels instead of pure
states and unitaries. These are obtained by “forgetting” about the subsystem corre-
sponding to the environment. This construction leads to quantum states which are
a probabilistic mixture of pure states. We will here describe the categorical way of
defining these states and operations.

Before looking at density matrices, we introduce the categorical notion of trace of
a morphism.

Definition 1.50. In a compact closed category C, the trace of a morphism f : A→ A,
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with A ∈ ob (C), is given by:

Tr(f) = f (1.101)

Using the unit and counit definitions from Section 1.1.3 for vector spaces, it can
easily be verified that the trace corresponds to the standard trace of square matrices.
Given a morphism on a compound space f : A ⊗ B → A ⊗ B, we can also take the
partial trace of f w.r.t to a subsystem, i.e. A or B. This is defined categorically as:

TrA(f) = f

BA

(1.102)

TrB(f) = f

A B

(1.103)

The intuition is that taking the partial trace of a subsystem corresponds to averaging
out the behaviour of the traced-out subsystem.

Now, for a pure state |ψ⟩ : I → H, we define its associated density matrix as
ρ = |ψ⟩ ⟨ψ|. In string diagrammatic notation, this gives us:

ψ

ψ†

≃−→
ψ∗ ψ

(1.104)

(where the isomorphism is the Choi-Jamiołkowsky isomorphism). Then, if a state in
H is entangled (i.e. correlated) to an environment modelled as a system HE , then the
global quantum state is represented by a (possible entangled) state |Ψ⟩ : I → HE⊗H.
If the details of the interaction with the environment are not known, then the state
will be represented as a density matrix where the environment subsystem is traced
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out, i.e.:

ρ =

Ψ

HE H

Ψ†

HE H

≃−→ Ψ

HE H
Ψ∗

HEH
(1.105)

Any state of this form will be known as a density matrix. In particular, the analogue
of the normalisation condition of (1.97) becomes:

Tr(ρ) =

Ψ

HE H

Ψ†

HE H

= 1 (1.106)

As for operations on pure states, we will also restrict permissible operations on den-
sity matrices. In particular, we would want these operations to send density matri-
ces to density matrices. Moreover, if an operation is only applied to a subsystem of
a larger quantum state, we would also like the resulting state to remain a density
matrix. The operators satisfying these conditions are known as completely positive
operators. From a well-known theorem known as Stinespring dilation theorem [171],
every completely positive map V : HA ⊗HA → HB ⊗HB can be decomposed as:

U∗ U

HA HA

HBHB

K
(1.107)

where U is a unitary transformation, and K is a Hilbert space. In addition, in order
to preserve the normalisation condition of (1.106), we will say that a quantum channel
is a complete positive map which is trace preserving.
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The above construction of density matrices and completely positive operators can
be generalised to any dagger compact closed categories, using the so-called CPM

construction [162]. This construction works as follows. Given a compact closed
category C, we create a new (also dagger compact-closed) category CPM(C) such
that:

• Objects of CPM(C) are the same as the ones of C

• Morphisms f : A → B in CPM(C) are morphisms f̃ : A∗ ⊗ A → B∗ → B in C
such that there exists C ∈ ob (C) and g : A⊗ C → B such that:

A∗ A

BB∗

f = g∗ g

A∗ A

BB∗

CC∗

(1.108)

The categorical, monoidal, dagger, and compact closed structure of CPM(C) will be
inherited from C.

To emphasize the distinction between the string diagrams in the two categories
FdHilb and CPM (FdHilb), we will denote the wires in CPM (FdHilb) as thicker
than the ones of FdHilb, e.g.:

A
∈ ob (FdHilb)

A
∈ ob (CPM (FdHilb))

Therefore, the following will represent density matrices and quantum channels re-
spectively:

ρ
U

Finally, the unit and counit from duality in FdHilb will be denoted in CPM (FdHilb)

as:

H
=

H
H

=
H (1.109)

Notably, the map H will be referred to as the discard map, as we have seen that

taking the (partial) trace corresponds to forgetting about the exact behaviour of the
traced-out subsystem. We will investigate this property in more detail in the follow-
ing subsection.
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1.3.3 Causality in quantum processes
So far, we have not described any notion of temporal order, as the roles of in-

puts and outputs in any diagram can be reversed employing the duality and dagger
structures. We here want to further restrict the set of physical diagrams by impos-
ing a principle of causality. It turns out that this can be done using the discarding
process described above.

We start with a relatively simple intuition. If discarding the entire output of a pro-
cess would correspond to physically ignoring the outcome of a process, this should
be equivalent to ignoring the process in question [104, 105]. In terms of string dia-
grams, this translates as:

A

f

B

= A (1.110)

Processes that satisfy this property will be called causal processes.

It has been shown that restricting to causal processes is enough to be able to en-
code the notion of causal relations as described in Section 1.2.1 [104]. First, we will
describe the analogues of a party as a pair of input and output systems Ain, Aout.
Then, choosing an input will correspond to selecting an input state in |ψin⟩ : I → Ain,
and similarly, observing an outcome will correspond to ⟨ψout| : Aout → I . Now,
given two parties A = (Ain, Aout) and B = (Bin, Bout), the interaction between A and
B (regardless of a potential causal order) will be modelled as a causal morphism
f : Ain ⊗Bin → Aout ⊗Bout.

Then, we will say that a process f is compatible with A ⪯ B iff:

f

Ain

Aout

Bin

Bout

= f̃

Ain

Aout

Bin

(1.111)

Intuitively, the above equation means that ignoring the subsystemB does not change
what happens in the party A. The generic form of such processes is given by [104,
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123, 97]:

fA

Ain

Aout

Bin

Bout

fB

(1.112)

where fA and fB are causal processes. When considering the statistics of the mea-
surements of such processes, this notion of causality is indeed equivalent to the
notion of compatibility with the causal order A ⪯ B as defined in Section 1.2.1 (see
Appendix C.3 for more details).

Similarly, we can also say that a process is compatible with B ⪯ A iff:

f

Ain

Aout

Bin

Bout

= f̃

Ain Bin

Bout

(1.113)

And the generic structure of such processes will be given by:

fB

Bin

Bout

Ain

Aout

fA

(1.114)

for causal processes fA and fB. These measurement statistics of these processes
are also compatible with B ⪯ A with respect to the causal relation defintion from
Section 1.2.1 (see Appendix C.3).

Finally, a process will be said to be no-signalling iff it is compatible with both
A ⪯ B and B ⪯ A. The generic structure of no-signalling processes consists of the
(monoidal) product of two processes:

fB

Bin

Bout

Ain

Aout

fA (1.115)

We will use these process structures in Chapter 4.
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Chapter 2
Ambiguities in Natural Languages

The English language is ambiguous in several different ways. Examples of the
different types of ambiguities are:

• Lexical ambiguity
A word is lexically ambiguous whenever we can interpret it in at least two
ways. For example, the word bank can either mean a financial institution or
the side of a body of water in (1).

(1) The bank is far away.

• Syntactic ambiguity
A phrase or a sentence is syntactically ambiguous iff it has at least two possible
grammatical structures. An example of a syntactically ambiguous sentence is
as follows:

(2) She saw a man with binoculars.

In (2), all of the words have definite meanings, but the phrase with binoculars
can be attached to either She, i.e. there is a woman who used binoculars to see
a man, or a man, i.e. what the woman saw is a man who was using binoculars.

65
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• Coreference ambiguity
Texts usually include references to previously mentioned elements. For exam-
ple, every pronoun such as he, she, it or they refers to entities defined from the
context. These references can also lead to ambiguous utterances, such as the
following sentence:

(3) I put the CD in the computer before it broke.

In (3), the pronoun it can equally refer to either the CD or the computer.

The existence of these ambiguities poses some challenges in NLP, as many of
them require knowledge of the world to be disambiguated. For instance, co-reference
ambiguities have led to the Winograd Schema challenge, which consists of sentences
such as:

(4a) The trophy didn’t fit in the suitcase because it was too big.

(4b) The trophy didn’t fit in the suitcase because it was too small.

The challenge is then to identify which of the trophy or the suitcase is referred to by
the pronoun it in each sentence.

In this work, we will focus on studying lexical and syntactic ambiguity. How-
ever, similar work has been done regarding co-reference ambiguity (see [120, 121]).

In Section 2.1, we describe how computers and humans process lexically ambigu-
ous words (Sections 2.1.1 and 2.1.2 respectively). We focus on syntactic ambiguities
in Section 2.2. In particular, we will introduce the theories of human parsing and the
significance of garden-path sentences in Section 2.2.1, and in Section 2.2.2, we look
at computational approaches to model human behaviour regarding the parsing of
garden-path sentences.

2.1 Lexical ambiguity in linguistics
It is common for words to have several interpretations or multiple entries in a

dictionary. When this is the case, the word is lexically ambiguous. For example, the
word charge can be a verb or a noun. As a noun, it has, according to the Oxford
Dictionary, the following main possible meanings:
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1. A material load; that which can be borne, taken, or received.

2. A load of trouble, expense, responsibility, blame, etc.

3. An impetuous attack

Similarly, as a verb, the word charge has the following possible meanings:

1. To load; to cause to bear, hold, or receive.

2. To load heavily; to burden, put anything onerous, troublesome, hateful upon.

3. To attach weight to.

4. To attack impetuously: and senses leading up to it.

Each of these meanings could be further fine-grained, e.g. charge in electrical charge
and in heavy charge would both be included in the first definition of the noun charge
as above, but refer to different things.

Most words commonly used in English are ambiguous, and 99.6% of the words
in the British National Corpus [43] are ambiguous. However, this does not create
a considerable obstacle for humans to understand English. On the other hand, this
problem constitutes a significant obstacle for machines in Natural Language Pro-
cessing.

In this section, we start by reviewing approaches to automatically disambiguate
lexically ambiguous words in NLP (Section 2.1.1) and then compare it with the pro-
cess of human disambiguation as theorised in psycholinguistics (Section 2.1.2).

2.1.1 The challenge of word-sense disambiguation
Word Sense Disambiguation (WSD) is an NLP task that identifies which meaning

of an ambiguous word is activated in a given context. WSD was one of the first chal-
lenges of NLP as it was crucial in Machine Translation [197]. To see this, consider
a word that is ambiguous in the source language but not the target language, then
it needs to be disambiguated before one can translate it, e.g. spring the season is
printemps in French, but spring the coil is translated as ressort. Furthermore, it was
shown that lexical disambiguation improves the accuracies of other NLP tasks such
as Information Retrieval [203, 31] and Question Answering [154].
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WSD can be defined as follows. Given a text T containing the target word w,
the aim is to associate w with its intended interpretation, usually taken from a set
of definitions or labels of the different possible meanings of w. This task is particu-
larly hard due to the apparent amount of knowledge required and the difficulty of
obtaining annotated data.

We will now describe the main approaches in NLP aimed at the WSD task.

Historic approaches
In [161], Schütze divides the task of WSD into two subtasks:

1. Word-sense discrimination which aims to classify the contexts in which the
intended interpretations are the same;

2. Word-sense labelling which aims to label the different classes with a defini-
tion.

In [161], the author proposes a completely unsupervised algorithm for solving the
problem of word-sense discrimination. The idea behind the approach is similar to
the one behind distributional vectors.

Indeed, the distributional hypothesis [64, 100, 90] dictates that similar words are
found in similar contexts. From there, we can obtain vectorial representations of
words, known as distributional vectors, by recording how often a target word w

co-occurs with other words in a corpus. These figures correspond to first-order co-
occurences [161]. Similarly, we can obtain a representation of a context c by collecting
the vector representations of the words in the context c. These vectors correspond
to a second-order co-occurences. For first-order occurrences, it has been widely veri-
fied that semantically close words are associated with distributional vectors that are
close in the vector space [102]. Similarly, we will expect second-order co-occurrence
vectors to be close whenever the contexts they represent are semantically close.

The idea of [161] is to identify clusters of context-vectors containing w with dif-
ferent senses. Each sense will then be represented abstractly as the centroid of the
associated cluster, i.e. by the average vector of all of the points in the cluster. Then,
given a test context c′, we start by creating its context embedding and then select the
sense associated with the cluster it is closest to. We, therefore, select the appropriate
sense by calculating the distance with all of the centroids. This method resulted in
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fairly high accuracies (77.9%) [161], but the obtained clusters do not align with the
classifications made by humans, e.g. in dictionaries, and the results are therefore
hard to interpret.

Figure 2.1: Clustering of the contexts for two senses of the word suit (adapted
from [161]).

Most of the word-sense labelling approaches rely on supervised methods, i.e. de-
pendent on human input or human annotations.

Amongst the most successful supervised settings are Support Vector Machines
(SVMs) [117, 203, 96], which were first introduced in [30]. SVMs are trained to dis-
criminate positive and negative data points on a vector space by learning the linear
hyperplane equation separating positively-labeled and negatively-labelled points.

In the case of the WSD task, we generally want to classify the data points be-
tween more than two classes (as a word may have more than two possible mean-
ings). Hence, if a wordw has k different senses, the disambiguating task is separated
into k binary classification tasks, where the ith task aims to identify whether the in-
tended meaning of w is its ith sense or not. The algorithm gives a confidence score
for each sense of w, and the sense with the highest confidence score is then selected.

The dimensions of the vector space correspond to features, e.g. the n-nearest
neighbours of w can be encoded in a 5-dimensional vector space. In particular, it
has been shown that using features of different nature (e.g. neighbours w, part-of-
speech of the neighbours, etc.) is beneficial in WSD tasks [117, 203], see Fig. 2.3 for
an example.
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Figure 2.2: Illustration of Support Vector Machines. The two classes of data points
(e.g. positive and negative) are depicted in different shapes (e.g. stars and circles).
The aim of the SVM is to learn the equation of the dashed line.

The SVMs are then trained using annotated corpora, such as the SemCor cor-
pus [136], a subset of the Brown corpus where each word is annotated by its WordNet
sense. WordNet [134] is a database that contains definitions and examples of the dif-
ferent senses of a word, as well as semantic relations such as hypernymy/hyponymy
or word similarity (see Fig. 2.4).

Many WSD systems were evaluated over the SensEval benchmark. Four dif-
ferent versions of the SensEval tasks have been published, namely SensEval [54],
SensEval-2 [55], SensEval-3 [1] and SensEval-2007 [9], each consisting of three dif-
ferent tasks:

1. All-words in which (almost) all words of a text have to be disambiguated;

2. Lexical sample in which only select words have to be disambiguated;

3. Translation which is similar to the lexical sample task, but for which, instead
of selecting a sense, the WSD system needs to select its translation into a dif-
ferent language, e.g. Japanese.

Each SensEval version also provided a target lexicon (i.e. a list of words and their
senses), a sense-annotated corpus, and a coarse-graining or fine-graining of senses.
Several SVM-based algorithms have been evaluated on the SensEval tasks and have
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achieved up to 75.2% in SensEval-3 and up to 89.4% in the coarse-grained version
of the SensEval-2007 [96].

Part-of-Speech of neighbours Surrounding words
values: {PRON = 0,V = 1,PREP = 2,ADV = 3} basis: {account, economy, rate, take}
w−2 w−1 w+1 w+2 account economy rate take

Vector 3 1 2 0 0 0 0 1

Figure 2.3: Example of the vector corresponding to the word interest in the context
My brother has always taken interest in my work. (simplified from [203]).

Although they achieve very high accuracies, the supervised approaches are not
easily extended to large-scale applications as they require a large amount of man-
ually annotated data. Alternative methods make use of knowledge bases such as
(computer-readable) dictionaries, thesauri, or the WordNet databse [134].

One of the prominent approaches within this category is the class of Lesk algo-
rithms [119, 103, 18, 21]. The idea is that given a target word w in context c, the
overlap of the context c with the gloss of a sense (i.e. definition and possibly exam-
ples) is higher if the sense does correspond to the intended one. Here, the overlap
corresponds to the intersections of the set of words in the context and the glosses.
For example, given the different glosses of the word bank[1]:

1. a financial institution that accepts deposits and channels the money into lend-
ing activities
Examples: he cashed a cheque at the bank, that bank holds the mortgage on
my home

2. sloping land (especially the slope beside a body of water)
Examples: they pulled the canoe up on the bank, he sat on the bank of the river
and watched the currents

And given the following target context (taken from the BNC):

Cash includes cheque payments, bank transfers and credit card pay-
ments .

Then, the algorithm will return the correct intended sense, namely its financial insti-
tution meaning; the overlap between the gloss and the target context is underlined

[1]Example taken from [102]
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above. This description is known as the simplified Lesk algorithm [103]. In contrast,
the original Lesk algorithm of [119] intends to compare the glosses of all of the words
in the phrase, which increases the algorithm complexity.

As one may expect, only using the overlap of the glosses with the context is a bit
crude. Many extensions of this approach have been proposed, for example by also
considering the words in glosses of related words (obtained from WordNet) [18] or
by using distributional or neural representations of contexts and glosses [21] and
taking the cosine of vectors as the measure of overlap.

Figure 2.4: Illustration of the WordNet knowledge base. (taken from [135])

Neural approaches
The state-of-the-art approaches in NLP differ from the previously described meth-

ods as they vastly rely on artificial neural networks. As for distributional approaches
and SVMs, the meanings of words and sentences are stored as vectors known as
embeddings. The entries of these vectors are learned from input/output pairs from
a training set, where the input goes through a network of nodes (or artificial neu-
rons) with tunable activation strength – the details of this process depend on the
architecture of the neural network.

One of the first instances of successful neural network architecture is the Recurrent
Neural Network (RNN), in which a sequence of tokens is input and processed from
left to right (see Fig. 2.5a). Hence, at any stage, the network can retain informa-
tion from all previous words. RNNs were a way to escape the sparsity of n-grams



Chapter 2. Ambiguities in Natural Languages 73

co-occurrences in corpora [23, 133] and were soon found to give meaningful rep-
resentations of words. For instance, the word2vec vectors were found to predict
semantic relations between words accurately [133].

However, in “standard” RNNs, the contribution of a given token to the gradient
can either tend to 0 or ∞ as training time increases, which makes them impracti-
cal for dealing with large texts. The Long-Short Term Memory (LSTM) architecture
aims to solve this problem by learning to “forget” information that is no longer rel-
evant [92].

In addition, by restricting the processing of words strictly from left to right, some
of the long-distance dependencies may be lost from this forgetting mechanism. For
this reason, bidirectional LSTMs (biLSTMs) were proposed as an alternative, where
two LSTMs, one going from left to right and the other from right to left, are com-
bined.

In [131], the authors proposed an extension of the word2vec word-embeddings
from [133] by creating embeddings of contexts, referred to as context2vec context-
embeddings. These context-vectors were then used in WSD as follows. Given a
target word w, we can collect all of the context-embeddings associated with each of
the occurrences of each sense s of w from a sense-annotated corpus such as Sem-
Cor [136]. Similarly, we can create a context-vector for the target context. We then
compare this target context-vector to all of the relevant context-vectors obtained
from the annotated corpus, and we select the sense associated with the context-
vector closest to the target context-vector.

In [145], the authors used a similar algorithm, but using the ELMo (Embeddings
from Language Models) contextualised embeddings (which represents words in con-
texts) instead of the context-embeddings (which represent the context assuming
all words are context-independent). The approach of [145] also differed from the
one of [131] as sense-embeddings of a target word w were obtained by averaging
the contextualised word-embeddings of occurrences of w in SemCor which corre-
sponded to the same sense.

The above approach has the major flaw that only a 16.11% of WordNet senses are
found in SemCor [124]. The solution of [145] was always to select the most common
sense for each unseen word. To obtain a representation of an unseen WordNet sense,
the authors of [124] make use of the structure of the WordNet lexical database. In-
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deed, each of the senses (corresponding to a lemma, its part of speech, and its gloss)
is organised in synsets, which include synonymous senses. Each synset has a set of
hypernyms, e.g. dog1n is a hypernym of pug1n, which is, in turn, part of a larger lexname,
e.g. dog1n is part of noun.animal. We can obtain the representation of each of these
abstraction levels by averaging the context-embeddings associated with all of the
senses included in them and are present in the annotated corpus. The representa-
tions of the missing sense would then be abstracted by the representation of its first
hypernym or lexname for which a representation exists.

Furthermore, motivated by the intuition behind the Lesk algorithms, some neu-
ral approaches have also used glosses as a knowledge source. It was shown that in-
cluding the gloss embeddings on top of the context-embeddings using co-attention
mechanisms [125, 126] or by simple concatenation [124] improves the performance
of WSD algorithms.

In 2017, Vaswani et al. introduced a novel neural network architecture known as
the transformer [187]. In particular, this new architecture allowed parallelisation of
the training process by allowing all-to-all connectivity of the artificial neurons (see
Fig. 2.5b). The parallelisation of the training process opened the opportunity to train
the neural network using a substantial amount of data. For example, the Google
language model BERT (Bidirectional Encoder Representations from Transformers)
was trained over 3.3 billion tokens, while the largest version of GPT to date was
trained over 449 billion tokens. The pre-training process conducted by Google or

(a) RNN (b) Transformers

Figure 2.5: Schematics of the differences between recurrent and transformers neural
networks architectures.

OpenAI is done by tuning the neural network’s attention weights (i.e. the strength
of the connection between two nodes) to solve a generic task.
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For example, BERT was trained simultaneously on mask prediction and next-
sentence prediction tasks. The mask prediction task is as follows: the neural net-
work is presented with a sentence where one or several words[2] are masked, and its
goal is to predict the values of these masks. For example, the language model could
be presented the input:

Paris is the [MASK] of France.

and will attempt to predict the word capital. In the next sentence prediction task, the
language model is shown two sentences S1 and S1 and needs to decide whether S2
follows S1. For example, if:

S1 =The man went to the store.

S2 =He bought a gallon of milk.

the neural network should output True, i.e. S2 indeed follows S1; but in the case of:

S1 =The man went to the store.

S2 =Penguins are flightless birds.

the output should be False.

From the pre-trained language models, two main ways exist to solve the WSD
problem. First, as for the LSTMs described earlier, given a text input, the trans-
former neural network will return a contextualised word-embedding. Hence, we
can use these embeddings as in the previously described algorithms. For exam-
ple, the same Nearest Neighbour algorithm described above for LSTMs performed
better using BERT embeddings than using context2vec [131] or ELMo [145] em-
beddings [124].

Another possibility is to fine-tune the pre-trained models by training the lan-
guage model for a more specific task, such as WSD, using a much smaller training

[2]To be more accurate, the masks are tokens and not words; the distinction is not important for the
rest of this work.
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dataset than the one required for pre-training. In [200], this approach was taken on
the language model BERT, where the fine-tuning process was as follows. The train-
ing set consisted of tuples (c, d, l) where c is a context containing a target word w, d
is a definition of a sense of w, and l is the label in {yes, no} corresponding to whether
the intended meaning of w in c corresponds to the definition d. The target context c
and definition d are then fed into the neural network, which will then be trained to
predict the correct labels l. This approach achieved an accuracy of 72.3%, which is
comparable to the performance of SVMs, but does not use annotated corpora.

2.1.2 The human disambiguation process
In this section, we review the psycholinguistic theories on the lexical disambigua-

tion process of humans. In particular, we will focus on the differences in the process-
ing of ambiguous nouns and verbs and words with different “levels of ambiguity”.
Indeed, two interpretations of an ambiguous word could be completely unrelated,
such as bank in bank account and in river bank, or somewhat related, for example, book
in interesting book and in hardback book. In the case of book, both expressions refer
to the same entity, but the former relates to information content, whereas the latter
interpretation relates to the properties of the physical object.

When the interpretations of an ambiguous word are unrelated, the word is said
to be homonymous. In contrast, if its interpretations are related, it is said to be pol-
ysemous. We will, for the rest of the thesis, adopt the terminology of the literature
where meanings will refer to unrelated interpretations, senses will refer to related
interpretations, and interpretations can refer to both meanings or senses.

Psycholinguists study the disambiguation process of lexically ambiguous words
using eye-tracking data. In such settings, the participants are presented with a text
on a screen and asked to read it. The eye-tracker will then record the movements
of the participant’s eyes and the lengths (and order) of the eye fixations on different
zones of the screen (which usually coincide with each of the words of the text).

The prominent figures of interest will be a target word’s first-pass and second-
pass fixation times. The former corresponds to the time spent on a word reading
from left to right, and the latter corresponds to any additional fixation on the target
region (i.e. when the reader has to go “back” to the target word).
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Homonymous nouns
Most studies on lexical ambiguity in psycholinguistics focus on the processing of

homonymous nouns, i.e., nouns that have unrelated meanings.

The main effect detected from eye-tracking experiments over homonymous nouns
relates to the frequencies at which each meaning occurs. In particular, we observe a
slowdown whenever the interpretation that has to be selected is uncommon [69, 47].
For example, in the following (taken from [69]), the sentence in (1a) was read faster
than it (1b).

(1a) Playing so loudly, the wedding band upset the groom.

(1b) Looking so tarnished, the wedding band upset the groom.

This suggests that a homonymous noun’s most common meaning is activated more
easily than uncommon ones. We will emphasise here that this bias in meaning se-
lection is independent of the context and only depends on the reader’s experience, i.e.
how often they have seen each of the different meanings in their lives.

Moreover, a slowdown also occurs whenever the meanings of the target word
were balanced, i.e. when the meanings are roughly as common as each other, for
example palm the type of tree or palm the part of the hand [156]. In fact, in [156],
the authors showed that if the meanings were balanced, the slowdown occurs when
the reader encounters the ambiguous word. In contrast, in the case of non-balanced
words, a slowdown only occurs in the disambiguating region whenever the subordi-
nate (i.e. the less common) meaning has to be activated. This result has also been
replicated in [47].

This finding suggests multiple interpretations of a homonymous noun can be
activated simultaneously. However, the activation levels will not be the same for
all meanings, and a reader will give the most common meaning a higher “rating”.
If multiple meanings are equally probable, they will compete, and this competition
will create difficulty when reading the ambiguous word. This describes a parallel
ranked process of disambiguation. Moreover, when the context suggests that a sub-
ordinate meaning has to be selected, the reader encounters difficulty when seeing
the disambiguating context, as they will have to readjust the activation levels. On
the other hand, if the intended meaning is the dominant one, i.e. the most common
one, no difficulty should occur.
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Finally, the position of the disambiguating context also plays a role in the disam-
biguation process. In particular, if the disambiguating context is before the target
word, the fixation times are higher on the target word (but low on the disambiguat-
ing region) than when the disambiguating region is after the target word [69, 47].
However, the reading time of the whole sentence was higher whenever the disam-
biguating context is after the target word [69, 47].

This would suggest that the disambiguation process is incremental, i.e. the
reader will readjust the activation weights of each possible meaning as more in-
formation is known.

Polysemous nouns and underspecification
We now look at the disambiguation process of polysemous nouns, which, some-

what surprisingly, carries some stark differences from the disambiguation process
of homonymous nouns.

In particular, no difference in reading times has been observed between com-
mon and uncommon senses [69], nor any difference between concrete and abstract
senses [69], well-known senses and senses created through rules [72]. In all of these
cases, the reading times observed are comparable with the reading times of unam-
biguous words [69, 72].

This suggests that, instead of having a parallel-ranked representation of the dif-
ferent senses of a polysemous word, the reader will always start by selecting an
underspecified interpretation of the word, which includes all of its possible senses. In
the theory of underspecification, the context then shapes the salient interpretation
of a polysemous word.

Although the interpretation is underspecified within a sentence, if the sentential
context of a polysemous word is not enough to select a sense, the possible senses
behave like meanings in the following sentence, i.e. relative frequencies start to have
an impact on the reading times [71]. This phenomenon is referred to as a homing-in
stage.

This observation suggests that, even though polysemous words are processed
faster, commitment to an interpretation, i.e. selecting the most appropriate sense, is
only done at the end of the sentence, whereas we recall that this is meaning selection
occurs almost instantly in homonymous nouns.
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Remark 2.1. Parallel unranked models of the disambiguation of polysemous words
have also been proposed. However, they suffer from several drawbacks. In partic-
ular, there is no obvious way to select the most appropriate meaning from them. In
addition, parallel unranked models would predict that the more possible senses a
word has, the more difficult it should be to read. However, this prediction was not
in line with eye-tracking data [71].

Disambiguating verbs
Most of the psycholinguistics literature on lexical ambiguity focuses on ambigu-

ous nouns, and seldom research looked at the disambiguation process of more com-
plex ambiguous types such as verbs and adjectives. In [174], the authors investi-
gated words with multiple possible grammatical types (e.g. wacth could be a noun
or a verb), and the authors of [139] looked at the process of disambiguating adjec-
tives. Here, we will mostly focus on the disambiguation of ambiguous verbs, which
was studied in [146].

In particular, in [146], the authors showed that the processing of ambiguous verbs
(both polysemous and homonymous) differed from the processing of ambiguous
nouns. Indeed, we observe a general slowdown in reading time of ambiguous verbs,
compared to ambiguous nouns, which shows that ambiguous verbs are more com-
plex to disambiguate.

The effect of frequency was much smaller for homonymous verbs than it was for
homonymous nouns. Indeed, no significant difference in first-pass reading times
of the target verb between common and uncommon meanings was observed. In
second-pass reading, only a mild frequency effect was detected, where less back-
tracking is observed when the intended meaning is the dominant one. In addition,
the main difficulty did not occur in the verb region but was slightly delayed until
the object of the verb was encountered. This finding suggests that the disambigua-
tion of homonymous verbs is not immediate, contrary to homonymous nouns, but
the reader waits until the arguments of the verbs are known. In particular, since
meaning selection is delayed, both the dominant and subordinate meanings “have
the time” to be activated, which diminishes the frequency effects.

For polysemous verbs, the disambiguation was delayed even further, and the
slowdown in first-pass mainly occurred at the end of the phrase or the sentence. In
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addition, similarly to polysemous nouns, no significant frequency effect could be
observed during the initial analysis. This delay suggests once again that polyse-
mous verbs will initially activate an underspecified meaning, which is then made
more and more specific as information from the context emerges. Some minor fre-
quency effects occurred on second-pass, which suggests that the reader will home-in
on a chosen sense at the end of the sentence, which consequently behaves more like
a homonymous verb on reanalysis.

Many hypotheses can be advanced to explain the relative difficulty of processing
verbs compared to nouns. First, this general increase in difficulty is not restricted to
ambiguous cases. When reading a sentence, readers will generally spend longer on
the main verb of the sentence than any other words [155]. In addition, many stud-
ies suggest that the meaning of verbs is highly dependent on their arguments [76],
making its interpretation much more variable [76, 75, 74]. For instance, in the case
of a mismatch between the arguments of a verb and its standard interpretation, e.g.
in (2b) as opposed to (2a), it is the verb that tends to acquire a metaphorical inter-
pretation.

(2a) The mule shivered

(2b) The car shivered

This apparent complexity might be deeply rooted in language acquisition. Indeed,
it is well-established that children will learn nouns before verbs [74, 26] and have
more difficulty using verbs [178]. This factor could explain the overall difficulty of
disambiguating verbs.

2.2 Humanparsing&garden-path sentences
In this section, we will describe another type of ambiguity, namely syntactic ambi-

guity. This ambiguity arises whenever several gramamtical structures are simultane-
ously possible. An example of a syntactically ambiguous sentence is:

(1) She saw a man with binoculars

This sentence either means:
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(1a) She used binoculars and saw a man

(1b) She saw a man, and he was using binoculars

In addition, syntactic ambiguity does not always occur at the sentence level. Some-
times, a sentence can also be locally ambiguous. For example, consider the sentence
fragment:

(2) The artist painted [...]

The verb painted can either be transitive, i.e. take an object such as a portrait, intran-
sitive, i.e. does not take any object, or even be in the passive voice, e.g. the artist is
the thing that is painted.

Certain types of sentences, known as garden-path sentences, have been used in psy-
chological research to unmask the processes behind grammatical parsing. These are
sentences for which humans initially parsed a locally ambiguous fragment incor-
rectly.

For example, in the following sentence, the phrase the contract is initially parsed
as the object of the verb understood and is eventually found to be the subject of the
verb phrase would change.

(3) The employees understood the contract would change

In this section, we review the existing literature on garden-path sentences. In
Section 2.2.1, we introduce the different human parsing theories and the evidence
supporting them. These theories will motivate our models described in Part III. In
Section 2.2.2, we describe a popular framework of computational linguistics, namely
surprisal theory, which has been applied to predict reading times of garden-path
sentences. We give some history and motivation for this framework and its draw-
backs.

2.2.1 Psycholinguistics theories of parsing
In [25], Thomas Bever exposed an overview of his theories of perceptual strate-

gies, which are mechanisms that allow humans to convert (external) linguistic struc-
tures to (internal) perceptual representations of meaning. He believed these per-
ceptual mechanisms are more fundamental than linguistic structures like grammar
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and are the first to be acquired by children. Therefore, language acquisition would
correspond to learning labels and rules corresponding to these perceptual strate-
gies. Among these strategies, he explains that one of the first steps of language
understanding is parsing a sequence of words and sounds (external structures) into
groups associated with a fundamental role, such as actor, action, object, or modifier
(internal structures). A subsequent rule is to associate a “N...V...(N)” sequence with
the “actor-action-object” roles as soon as possible unless markers suggest that the
passive voice is used or that the first phrase modifies the main clause. To illustrate
his claim, Bever describes a series of linguistic behaviour and experiments testing
them. Among these behaviours, he describes the difficulty of parsing sentences such
as:

(1) The horse raced past the barn fell

The difficulty of parsing would be due to non-conformity with respect to those per-
ceptual strategies. These sentences were later referred to as garden-path sentences.

Generally speaking, a garden-path sentence is a syntactically unambiguous sen-
tence for which the reader is “led down a garden-path”, i.e. they are forced to
adopt the wrong syntactic structure at some initial stage. After Bever’s original
work, these sentences have been widely used in psycholinguistics to uncover mech-
anisms at the heart of human parsing by studying what induces errors for read-
ers [68, 152, 93, 138, 181, 147, 73, 173].

Some specific types of garden-path sentences are widely studied in psycholin-
guistics. These are exemplified as follows.

• NP/S sentences

(2) The employees understood the contract would change.

Here, the main verb understood either takes a noun-phrase (NP), such as the
contract, as an object, or a sentential (S) object, such as the contract would change.

• NP/Z sentence

(3) As the woman read the magazine amused the editors.



Chapter 2. Ambiguities in Natural Languages 83

In this case, the main verb read, either takes an NP as an object, e.g. the maga-
zine, or no object at all – this is denoted by (Z) for “zero”.

• MV/RR sentences

(4) The soldiers warned about the dangers conducted the raid.

In this case, the underlined verb warned is either the main verb (MV) or part of
a relative clause (RR). The example (1) is also an MV/RR sentence.

In this thesis, we will mostly focus on sentences of type NP/S and NP/Z.

What has been shown unambiguously in several studies is that these different
types of garden-path sentences are read with different levels of difficulty. In partic-
ular, NP/S sentences were read faster than NP/Z sentences, so NP/S sentences are
more straightforward to parse than NP/Z ones [173, 83]. What is more debated in
the literature is why this is the case. One hypothesis is that it is due to the nature of
the changes needed to obtain the correct parse [173].

An underlying problem is to identify why a garden-path effect occurs in the first
place.

The first thing to mention is that local ambiguity is not the main cause of dif-
ficulty. In fact, the presence of syntactic ambiguity can make a sentence faster to
read than its unambiguous variants [179]. This feature distinguishes syntactic dis-
ambiguation from lexical ambiguity resolution (see Section 2.1.2). The intuition is as
follows. Let’s assume that a given fragment has two equally likely possible syntac-
tic structures. If the sentence is only locally ambiguous but globally unambiguous,
then half of the time, the reader will initially select the “wrong parse”. Hence, re-
analysis is triggered half of the time. On the other hand, if the sentence remains
globally ambiguous, then no analysis is ever required. The sentence is then read
faster on average.

However, several contributing factors to the existence of garden-path effects
have been identified, among which lexical [68, 93, 138, 181, 73], plausibility [147, 73]
and discourse biases [68, 180]. The main quoted factor is the frequency bias of its
main verb [68, 93, 138, 181, 73]. For instance, the verb hear would have a higher bias
towards taking an NP as an object than the verb claim. Hence, sentences with the
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main verb hear would be more likely to create an NP/S or NP/Z garden-path sen-
tence than sentences with the main verb claim. This phenomenon is exemplified in
the following, where (5a) does not create considerable difficulty, whereas (5b) does.

(5a) The officer claimed the alarm was a surprise.

(5b) The officer heard the alarm was a surprise.

Similarly, the difficulty of selecting the correct parse in garden-path sentences in-
creases if the object of the NP reading is deemed plausible [147, 73]. For exam-
ple, (6a) is harder to read than (6b).

(6a) As the woman read the magazine amused the editors.

(6b) As the woman sailed the magazine amused the editors.

With regards to how do humans resolve the garden-path effects, two main cat-
egories of procedures have been proposed, namely serial processing [68, 152] and
parallel processing [101, 184]. Advocates of the serial strategy argue that, at any given
stage, the reader will create a single parse which can be completed [68, 152], and that
certain conditions can be imposed on the partial structure (e.g. minimal attachment
states readers never add unnecessary nodes to the structure under construction).

In the case of parallel processing, when syntactic ambiguity occurs, at least two
or more parses are constructed in parallel. However, since we do observe a garden-
path effect in sentences such as (1)- (4), this implies that these structures have to be
ranked. Otherwise, the less likely parse having been constructed already, it should
not be hard to extend the “correct” parse. The difficulty then comes from some
“reranking mechanism”, weights have to be transferred from the previously likely
but incorrect parse to the correct parse.

It is quite difficult to distinguish between probabilistic serial sentence processing
(i.e. if two or more parses are possible, they are chosen with their respective degree
of likelihood) or ranked-parallel processing (i.e. all of the possible parses are cre-
ated at the same time, but with different accessibility levels) [77][3]. In our model
described in Chapter 5, we take an approach compatible with both interpretations.

[3]This is similar to the fact that for a single quantum state, a superposition of basis state is in-
distinguishable from a probabilistic mixture of the same basis states if only basis measurements are
available.
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Finally, there is also the question of how the reader obtains the correct parse.
In [83], the authors compare two different hypotheses, namely repair, where the
reader will amend a given parse to obtain the correct one, or reanalysis, where the
reader will reparse a sentence fragment in the view of incoming information. The
authors of [83] presented evidence supporting the reanalysis hypothesis. The study
uses a locality bias (i.e. it is easier to attach clauses that are close together), such that,
by adding some extra words between the start of clause marker As in (3) and the
ambiguous NP the magazine, the garden-path effect decreased in NP/Z sentences,
whereas no such effect occurs in NP/S sentences.

2.2.2 Surprisal predictions for garden-path sentences
Psycholinguistic studies have shown that one of the main factors influencing read-

ing time is predictability of a word in a context [56]. Indeed, words are read faster
if found in a context that makes them predictable than in contexts where they are
not [56]. For example, the word shark is read faster in (7a) than in (7b).

(7a) The coast guard had warned that someone had seen a . . .

(7b) The zoo keeper explained that the lifespan of a . . .

In [168], the relation between predictability and reading time was logarithmic.
This result was obtained by looking at eye-tracking times of a subset of the Dundee
dataset (containing newspapers) and self-paced reading times for subsets of the
Brown corpus (containing texts of various genres). The reading times correlated
with the conditional probabilities of encountering a word wn+1 in the context c =

w1 . . . wn. This then motivates the use of the suprisal, defined as:

S(wn+1|w1 . . . wn) = − log2 P [wn+1 | w1 . . . wn]

as a predictor for reading time. The authors from [168] demonstrated that:

S(wn+1|w1 . . . wn) ∝ RT (wn+1|w1 . . . wn)

Surprisal, also known as self-information, originates in Shannon’s theory of in-
formation [165]. In this theory, surprisal is defined as the quantity of information
entailed by knowing the value X = w, where X is defined as a random variable
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selecting the following word in the context w1 . . . wn. The intuition is that a very
predictable word is not surprising and, therefore, does not carry out a lot of in-
formation. On the other hand, if a word is not predictable, it should significantly
increase the amount of information available to the reader.

Predictability has historically been estimated from cloze tasks [175], where human
participants are asked to complete a sentence or a piece of text. However, cloze tasks
fail to estimate the predictability of highly improbable (probability < 5% − 10%)
words and constructions [168]. Therefore, data from such tasks are not reliable for
studying garden-path sentences.

In [168], the authors instead decided to collect statistics (trigram probabilities
with a bigram cache) from text corpora (e.g. BNC) to obtain word predictability.
These probabilities, however, only take local context into account and do not neces-
sarily mirror the way humans assign probabilities [168].

With the advent of neural language modelling, computational linguistics soon
realised that they could use predictions from language models instead of collecting
predictability from cloze tasks.

Hale [87] was the first to suggest using surprisal for predicting the slowdown in
garden-path sentences. To do so, the author used the probabilities coming from
a probabilistic Earley parser. However, the correlation between the magnitude of
surprisal and reading time was not investigated [87].

In [185, 186, 95, 14], the authors studied the empirical correlations between sur-
prisal from language models and self-paced reading times of garden-path sentences.
Although surprisal calculated from language models can predict the existence of a
garden-path effect (i.e. a higher reading time in the critical region in garden-path
sentences compared to their unambiguous version), it consistently underestimates
its magnitude [185, 186, 95, 14]. In addition, although predictions are mostly lower
for NP/S than for NP/Z [185, 95], no statistical difference has been found between
the predicted garden-path effects of NP/S and NP/Z sentences. In fact, in the study
presented in [186], the average garden-path effect for NP/S sentences was lower
than that for NP/Z sentences.

Many possible reasons for the discrepancies between surprisal and reading times
have been advanced:
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1. Surprisal is not the main predictor for reading times [186];

2. The human parsing process is not strictly incremental and reanalysis or back-
tracking is necessary [185, 186, 95, 14];

3. The statistics used to calculate surprisal are not adequate representations of
how humans assign predictions [14].

In [186], authors have compared the predictions from surprisal with predictions
from alternative incremental measures of dissonance that have been proposed in
the past, such as entropy and entropy reduction [88, 89, 67]. The idea is that read-
ing time is also modulated by how much uncertainty is removed by adding an ex-
tra word to a sentence fragment [88, 67]; the higher this differential of uncertainty,
the higher the reading time. What they found is that surprisal outperformed the
entropy-based models by quite a distance, as the entropy-based measures did not
predict a garden-path effect at all [186]. This shows that if the disambiguation pro-
cess is truly incremental, surprisal would be the best-known prediction factor.

One other factor that authors of [186] have explored is whether the predictions
from large language models suffer from the same drawbacks as the cloze tasks,
namely that low probabilities predictions are effectively not predicted – and there-
fore, LLM predictions are not reliable for rare or complex constructions. Indeed, no
ceiling effect was observed [186], therefore confirming that this was not the main
source of error in the surprisal calculations.

Finally, in [14], the influence of the syntactic surprisal, as opposed to the lexical
surprisal defined above, on the garden-path effect predictions was investigated. To
do so, the authors defined a surprisal measure based on the probability of obtaining
a given Combinatory Categorial Grammar (CCG) supertag for the last word of a
sentence fragment, conditioned on having the usual (lexical) context consisting of
the previous words. In other words, the syntactic surprisal is defined from a new
probability distribution:

P [cn+1 | w1 . . . wn] =
∑
wn+1

P [t(wn+1) = cn+1 | w1 . . . wn+1]× P [wn+1 | w1 . . . wn] (2.1)

where, as before, w’s runs over the vocabulary V , c’s runs over the set of CCG su-
pertags C, and the map t : V → C associates a word with a CCG type. In addition,
since the CCG supertag of a word is not necessarily unique, all possible supertags
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were considered in the syntactic surprisal calculations. Therefore, the syntactic sur-
prisal is overall defined as:

Ssynt (wn+1|w1 . . . wn) = − log2
∑
cn+1

P [cn+1 | w1 . . . wn]

× P [t(wn+1) = cn+1 | w1 . . . wn+1] (2.2)

The syntactic surprisal provided more accurate predictions than the lexical sur-
prisal alone, and combining both lexical and syntactic surprisal improved the pre-
dictions [14]. However, even with these improvements, the garden-path effect was
still widely underestimated [14], and thus, including syntactic surprisal did not fully
resolve the previous issues. In Chapter III, we will give an alternative model based
on sheaf-theory which achieves better predictions.



Part II

Lexical Ambiguity





Chapter 3
Aspects of the lexical

disambiguation process

In this chapter, we want to create a model of the human lexical disambiguation
process. Moreover, our goal is to make this model quantum native, so that we can
explore the potential of quantum simulations in the next chapter. Here, we study
natural language data using mathematical frameworks arising from quantum me-
chanics (Sections 3.2 to 3.4). By doing so, we create a parallel description of linguistic
features in terms of quantum ones.

Moreover, we recall from Section 2.1.2 that humans do not disambiguate words
of different grammatical types, or different levels of ambiguity in the same way.
However, the mainstream NLP approaches to word-sense disambiguation intro-
duced in Section 2.1.1, disambiguate all words in the same way, regardless of their
part-of-speech, and whether the interpretations are related or unrelated. With our
approach, we study the linguistic data for words of different parts-of-speech (i.e.
nouns and verbs) and different levels fo ambiguity (i.e. polysemous and homony-
mous words). We then compare our results with the theories of psycholinguistics
presented in Section 2.1.2.

More specifically, we start by looking at the potential contextuality of lexical am-
biguity data (Section 3.2). In Section 3.3, we observe that the signalling property of
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the collected data is a quantity of interest and study it further. In Section 3.4, this
analysis is extended by studying the structure of the observed signalling, via its
causal structure.

3.1 Methodology
In all of the different studies carried out in this chapter, we will use a common

interpretation of the analogue of quantum measurements. The idea is to take parties
to represent grammatical roles (e.g. subject, object, main verb, etc.) or grammatical
types (e.g. noun, verb, adjective, etc.) of words. In most of the following studies, we
focused on subject-verb (SV) and verb-object (VO) scenarios, i.e. when we have two
parties, either S and V or V and O corresponding respectively to subject and verb
or verb and object.

We then give each party a choice of inputs, corresponding to a choice of word to
fill in their corresponding part-of-speech. In analogy to the Bell scenario described
in Section 1.2, these choices of inputs can also be seen as local measurements. Let us
look at an example and consider the lexicon:

L = {tap, pitcher, box, cabinet} (3.1)

and two parties S and V such that S can choose a subject for a verb chosen by V .
Then, V is allowed to choose between the words of L which are verbs, in this case,
tap or box. Similarly, in the general case, S can choose between the set of words
in L which can be nouns, i.e. the whole of L. However, for the empirical models
described in the following sections, we will decide to manually restrict each party’s
input choices, e.g., by letting S choose between pitcher or cabinet.

Finally, each measurement outcome will correspond to possible interpretations
of the input words. For instance, the word pitcher can have two possible interpreta-
tions:

a. A large jug

b. The position in batting sports (mostly baseball) in which the player delivers
the ball to the batter

If all of the words in the lexicon are lexically ambiguous, the set of outcomes
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(a) A jug (b) A baseball pitcher

Figure 3.1: The two interpretations of the word pitcher
.

for each measurement is not the singleton, and each interpretation will come with
probabilities. Furthermore, these probability distributions will be dependent on their
context, meaning that the probability distributions are defined when all parties have
made their choices of inputs (i.e. words). These probability distributions combined
in different ways form empirical models that we will study in the next sections.

Quantum mechanics Linguistics
Parties Grammatical roles/types

Inputs/Measurements Words
Outputs/Outcomes Interpretations

Table 3.1: Analogy between quantum and linguistics scenarios.

To estimate those probability distributions, we created two datasets that we will
refer to as the corpus dataset and the human judgment dataset. For both datasets, we
started with a list of homonymous and polysemous nouns from [174, 156], and a list
of homonymous and polysemous verbs from [146, 167]. The list of these ambiguous
words can be found in Appendix D.1. To simplify calculations, we also restricted
the choice of meanings (resp. senses) to two distinct meanings (resp. senses) per
word. For example, even though the verb tap has multiple interpretations as a verb
(e.g. touching something, secretly recording conversations, tap dancing, using up a
resource, etc.), we decided to restrict to the following two meanings:

a. Hit something gently, e.g. tapping someone on the shoulder

b. Secretly listen or record what someone is saying using a device, e.g. tapping
phones
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3.1.1 The corpus dataset

Our first approach was to approximate these probability distributions using fre-
quencies obtained from large corpora. To do so, we made use of two corpora,
namely the British National Corpus (BNC) [43] containing 100 million words from
a variety of sources and the ukWaC corpus [62] which contains more than 2 billion
words obtained by crawling .uk web domains. Both corpora are part-of-speech
annotated, but the semantic annotations had to be done by hand. Obtaining proba-
bilities was then done as follows:

1. As we are interested in SV and VO phrases, we recorded every occurrence in
the corpus where one of the ambiguous nouns (from our list in Appendix D.1)
was the subject or object of one of the ambiguous verb (also in the list in Ap-
pendix D.1).

2. For each of these occurrences, we annotated the intended interpretation xv, xn
of the verb v ∈ L and the noun n ∈ L. For instance, if we found the SV phrase
the pitcher tapped (i.e. n = pitcher and v = tap) in the full sentence The pitcher
tapped his glove and glanced over at the runner on first base, then we would have
annotated it as:

xpitcher = baseball player

xtap = hit something gently

3. For SV phrases, we then estimated the probability of the joint occurrence of
the interpretations xv, xn in the context “n is the subject of v” as:

P [xv, xn | n subject of v] =
N ((n, v) 7→ (xn, xv) ∧ n subject of v)

N (n subject of v)
(3.2)

where N records the number of occurrences of each of the events, and (n, v) 7→
(xn, xv) correspond to the event where the noun n and verb v are interpreted as
xn and xv respectively. Similarly, in VO phrases, we calculated the probability
distributions of measuring the joint occurrence of the interpretations xv and xn
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in the context “n is the object of v” as:

P [xv, xn | n object of v] =
N ((n, v) 7→ (xn, xv) ∧ n object of v)

N (n object of v)
(3.3)

The obtained dataset is available at [191].

Limitations of the dataset

This approach for collecting probabilities is intuitive, and the obtained probabili-
ties are easily interpretable. In addition, large corpora are widely used in NLP and
are easily (and freely) accessible. However, this approach also comes with some
non-negligible drawbacks.

The most important one is the number of joint occurences of two ambiguous words
in a sentence, regardless of the grammatical relations imposed. These numbers were
scarce, implying that the frequency obtained was not approaching the large number
approximation of actual probabilities.

In addition, due to this small number of occurrences, not all possible combina-
tions appeared in the corpora, and if they occurred, implausible interpretations in
practice never appeared. For instance, we could easily imagine circumstances un-
der which the phone conversations of a baseball pitcher would be recorded (e.g. if
they were involved in a police inquiry). However, this meaning combination did
not occur in either corpus.

An explanation for this phenomenon is that written texts and conversations are
meant to be understood as efficiently as possible. Combining ambiguous words in a
single sentence may increase the sentence’s overall ambiguity, making it unreadable.

A probabilistic argument could also explain this. Namely, the probability of oc-
currence of a di-gram is smaller than the probability of occurrence of either word
in the di-gram. Given that some of the words on the list in Appendix D.1 did not
occur very often to start with, e.g. the noun pitcher and the verb to pen only occurred
108 and 215 times respectively in the BNC, it would be unreasonable to expect the
number SV or VO containing them to be high. Indeed, the phrase the pitcher pens,
although meaningful, never occurred.
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3.1.2 The human judgment dataset
To bypass the corpus dataset issues, we decided to ask humans to rate the plau-

sibility of the ambiguous phrases. In particular, this allowed us to choose which
phrases we wanted to study, and even highly unlikely meanings of phrases would
be able to obtain a non-zero probability. In addition, fewer data points are neces-
sary to get a reasonable estimate of the “real” probability distribution. Indeed, the
judgment ratings of a single person are already approximations of the probability,
whereas frequencies from corpora are dependent on the law of large numbers.

The data collection proceeded as follows:

1. We started with the same list of ambiguous nouns and verbs as per the corpus
dataset (see Appendix D.1) and manually selected:

• 50 (noun, verb) pairs consisting of both homonymous nouns and verbs;

• 50 (noun, verb) pairs consisting of a homonymous noun and a polyse-
mous verb;

• 50 (noun, verb) pairs consisting of a polysemous noun is polysemous and
a homonymous verb;

• 50 (noun, verb) pairs consisting of both polysemous nouns and verbs.

The pairs selected were also checked to give a well-defined probability distri-
bution for both SV and VO phrases, i.e. at least one of the meaning combi-
nations will come with non-zero probability. These pairs can be found in the
Appendix D.3.

2. We then split the 400 phrases into batches of 8 randomly chosen phrases con-
taining only SV or VO phrases. We submitted the batches on the Amazon
Mechanical Turk platform, where they were sent to workers to annotate.

3. 25 independent workers annotated each batch, and each worker was only al-
lowed to annotate either an SV or a VO batch.

We then presented the workers with the following task:

4. A phrase (e.g. the pitcher taps) was shown to the annotator, who rated the
plausibility of each of the meaning combinations as either:



Chapter 3. Aspects of the lexical disambiguation process 97

• Impossible (score: 0)

• Extremely unlikely (score: 1)

• Very unlikely (score: 2)

• Somewhat unlikely (score: 3)

• Neutral (score: 4)

• Somewhat likely (score: 5)

• Very likely (score: 6)

• Extremely likely (score: 7)

5. For each phrase, we obtain a probability distribution from an annotator by
normalising their score as follows:

P [(n, v) 7→ (xn, xv)] =
S(xn, xv)∑

x̃n,x̃v
S (x̃n, x̃v)

(3.4)

Here, S : In×Iv → {0, . . . , 7} is the function associating a score of an interpre-
tation (xn, xv) ∈ In × Iv. For instance, the set of scores corresponding to the
SV phrase the pitcher taps:

Interpretation
pitcher 7→ jug pitcher 7→ jug pitcher 7→ player pitcher 7→ player

tap 7→ hit tap 7→ record tap 7→ hit tap 7→ record

Score 5 1 7 3

would have led to the probability distribution:

Interpretation
pitcher 7→ jug pitcher 7→ jug pitcher 7→ player pitcher 7→ player

tap 7→ hit tap 7→ record tap 7→ hit tap 7→ record

Probability 5
16

1
16

7
16

3
16

6. The probability distributions of all of the workers who annotated the same
phrase were then averaged[1].

An example of the task, as presented to the annotators, is illustrated in Fig. 3.2.

[1]Note that that is the same as averaging the score and then normalising them
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Figure 3.2: Example of a task seen by the Amazon Mechanical Turk workers.
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3.2 On the quantum-like contextuality of am-
biguous phrases

It is often said that natural language is “contextual”, notably in the context of lex-
ical ambiguity. What is meant by that is that even though a single word, such as
pitcher, can have multiple interpretations (see Section 3.1), it may have a single ac-
curate interpretation given a context. For example, consider the following sentences
(taken from [69]):

(1a) Being so elegantly designed, the pitcher pleased Mary.

(1b) Throwing so many curve balls, the pitcher pleased Mary.

In the context (1a), the only appropriate meaning of pitcher is large jug, whereas
in (1b), the only appropriate meaning is baseball player.

However, the meaning of contextuality in quantum mechanics is different. Al-
though, as in the linguistic sense, statistics of a system depend on their measure-
ment contexts, the notion of contextuality is more complex than that. In quantum
terminology, a system is said to be contextual iff the dependence of the statistics on
the contexts is “essential” in the sense that it cannot be attributed to other factors
(see Section 1.2). For instance, in the special case of non-locality, contextuality is
observed if the statistics for the global measurement contexts cannot be explained
entirely by its local behaviour. We are therefore interested in seeing whether the
dependence of interpretation on (linguistic) context is also “essential” and whether
we can witness quantum-like correlations between word interpretations.

Historically, contextuality in quantum mechanics has been proven via inequali-
ties, usually referred to as Bell inequalities. These inequalities, however, depend on a
crucial assumption of the system, namely that it is no-signalling.

We recall from Section 1.2, that a system is no-signalling iff the probability dis-
tributions agree on the intersections of their contexts, i.e. if all local sections are
compatible. This condition is well motivated in the case of Bell-type experiments
in Quantum Mechanics as the no-signalling property states that information cannot
be transmitted faster than light (i.e. non-locally). However, obtaining perfectly no-
signalling empirical models is, in practice, unfeasible due to the finite nature of ex-
perimental results and the imperfections of the experimental apparatus.
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In addition, there is no fundamental reason why no-signalling should even apply
in the case of ambiguities in natural language. In fact, the psycholinguistics litera-
ture would suggest that probability distributions arising from lexically ambiguous
phrases should be signalling. For example, the probabilities associated with the differ-
ent meanings of pitcher should be different in the phrase ceramic pitcher to the ones
in the phrase baseball pitcher.

Several extensions of the notion of quantum contextuality have been proposed
to account for signalling systems, including the Contextuality-by-Default (CbD)
framework [52] (see Section 1.2.3), and the corrected Bell-inequalities approach [183]
based on the sheaf-theoretic framework of contextuality [6] (see Section 1.2.2). In
this section, we propose to apply these generalised frameworks to investigate the
contextuality of lexically ambiguous phrases.

3.2.1 Cyclic models of rank 2
We start by discussing the simplest possible models, which only contain two

words, a noun n and a verb v, and two different ways to combine them, in our
case, as a subject-verb or verb-object phrase. In our previous analogy (see Table 3.1),
this means that we have two parties, corresponding to grammatical types noun (N )
and verb (V ), each of them having a unique choice of input, but for which we can
obtain two different probability distributions (one corresponding to SV and one cor-
responding to VO). These models are called cyclic systems of rank 2 in the CbD liter-
ature [52, 111, 51].

Example 3.1. Consider the case where n = pitcher and v = tap, taking the interpre-
tations from Section 3.1. This choice of words leads to a valid SV phrase, namely the
pitcher taps ..., and a VO phrase, namely ... taps the pitcher. We can then associate the
probability distributions with these two phrases[2]:

(N, V ) (a., a.) (a., b.) (b., a.) (b., b.)

(pitcher, tap)SV 5/16 1/16 7/16 3/16

(pitcher, tap)V O 17/22 0 15/22 0

This pair of probability distributions will be our empirical model for these contexts.
[2]This is not an empirical model obtained from the corpus or human judgment dataset. The prob-

ability distribution for the SV phrase is taken from an example in Section 3.1, and the probability
distribution for the VO phrase is taken from the corpus dataset.
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Remark 3.2. This situation is similar to the question-order effect investigated by
Wang et al. [196]. The work of [196] consisted of a series of behavioural experi-
ments where participants were asked the same set of questions in different orders,
and it was shown that the answers appeared to depend on the order of the ques-
tions that were asked. In [196], the authors argued that such experiments exhibit
quantum-like contextuality. However, the authors of [49] demonstrated that the ap-
parent contextuality was due to signalling.

We note here that these models are trivially non-contextual within the generalisa-
tion of the sheaf-theoretic framework of contextuality. This can be seen as follows.
Let us start with a decomposition of a given (signalling) empirical model e:

e = λ · eNS + (1− λ)e′ (3.5)

In the case of the models described above, in any no-signalling model eNS satisfying
(3.5), the probability distributions of both the SV phrase and the VO phrase collapse
to a single probability distribution. Therefore, any of the no-signalling empirical
models eNS are trivially non-contextual (i.e. a global probability distribution exists
and corresponds to the unique probability distribution in the empirical model).

However, these models can exhibit contextuality within the CbD framework. We
will therefore focus on the CbD analysis of such cyclic systems of rank 2.

As first demonstrated in [194], it is indeed possible to find instances of linguistic
empirical models of this form that exhibit CbD-contextuality. First, we found two
contextual examples in the corpus dataset: empirical models where n = boxer and
v = adopt, and n = pitcher and v = throw. These empirical models are depicted
in Fig. 3.3. The degree of non-contextuality of both of these models can also be
calculated to be respectively:

NCNT2(e(boxer,adopt)) =− 1

30
(3.6)

NCNT2(e(pitcher,throw)) =− 7

30
(3.7)

We recall from Section 1.2.3 that the fact that these numbers are negative shows that
these models are contextual.
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(N, V ) (0, 0) (0, 0) (0, 0) (0, 0)
(boxer, adopt)SV 1/4 0 0 3/4
(boxer, adopt)V O 0 29/30 1/30 0

(N, V ) (0, 0) (0, 0) (0, 0) (0, 0)
(pitcher, throw)SV 0 2/3 1/3 0
(pitcher, throw)V O 2/5 0 1/10 1/2

Figure 3.3: Empirical models of cyclic systems of rank 2 which were found to be
CbD-contextual within the corpus dataset.

Remark 3.3. The study described in [194] provided the first instances of quantum-like
contextuality in linguistic scenarios, which takes signalling into account. Previous
work existing in the literature [32] have claimed to have violated Bell inequalities in
natural language data. However, these did not assume the no-signalling condition
and were later found to be non-contextual within the CbD framework [49].

Other contextual cyclic systems of rank 2 emerged from the human judgment
dataset. These are found in Fig. 3.4b with their degree of contextuality.

(n, v) −NCTN2

(pitcher, throw) 0.233
(boxer, adopt) 0.033

(a) Corpus dataset

(n, v) −NCTN2

(file, admit) 0.232
(cabinet, reflect) 0.199

(volume, conduct) 0.111
(perch, file) 0.073
(plant, trap) 0.052
(press, file) 0.042

(swallow, admit) 0.021
(press, conduct) 0.011

(port, bill) 0.008
(organ, bill) 0.001

(b) Human judgment dataset

Figure 3.4: All of the found examples of CbD-contextual cyclic systems of rank 2
(sorted by degree of contextuality).

The presence of contextuality in quantum systems has some important conse-
quences. From a foundational point of view, contextuality distinguishes between
classical and quantum behaviours [22, 107]. From a computational point of view, it
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is a resource that allows quantum advantages to arise [94, 3, 48]. The reader should
refer back to Section 1.2.1 for a more detailed discussion.

In the case of the CbD-contextuality, this interpretation could be clearer. The
witnesses of CbD-contextual in linguistics imply that the influence of the context
over meaning selection is highly non-trivial and consists of a “truly contextual in-
fluence”. This finding concurs with the intuition that the context is the main factor
in the interpretation of lexically ambiguous words.

Degrees of contextuality
In addition to finding out whether a given empirical model is contextual, it is also

possible to calculate how contextual (or equivalently how non-contextual) a given
empirical model is within the CbD framework[3]. In this work, we will make use
of NCNT2 defined in Section 1.2.3 to see how the levels of ambiguity of words can
influence the degree of contextuality.

Results We calculated the degree of non-contextuality for the empirical models
and classified them in terms of the ambiguity of their nouns and verbs (see Fig. 3.5).

We found that the contextuality mostly depends on the ambiguity of the verb.
Specifically, the degree of non-contextuality is higher if the verb is polysemous.
Equivalently, a rank 2 system will be more contextual whenever the verb is homony-
mous. Although we observed this trend in both the corpus and human judgment
datasets, it was only statistically significant[4] in the latter. The t-test comparing the
data concerning homonymous and polysemous had p-value p = 0.006 in the human
judgment dataset, as opposed to p = 0.314 in the corpus dataset.

In addition, we found no dependence on the levels of ambiguity of the nouns
and the degree of (non-)contextuality in either dataset. The p-values were p = 0.38

and p = 0.15 for the corpus and the human judgment dataset, respectively.

Discussion The conclusions one can draw from the degree of (non-)contextuality
are hindered by the need for a more operational interpretation of CbD-contextuality.

[3]It is also possible to calculate some measures of contextuality in the sheaf-theoretic framework,
the contextual fraction CF being the most prominently used [3, 4]. We are, however, not making use
of them in this thesis.

[4]The definition of statistical significance is standardly defined as follows. A feature is said to be
statistically significant iff the associated p-value is less than 0.05.



104 3.2. On the quantum-like contextuality of ambiguous phrases

(a) Corpus dataset (b) Human judgement dataset

Figure 3.5: Mean NCNT2 depending on whether the noun and verb were polyse-
mous or homonymous. The errors quoted are the standard errors of the means.

Therefore, the interpretation of the result is not completely clear.
A possible interpretation of finding contextual witnesses is the following. Recall

that, in the case of cyclic systems of rank 2, the choices of contexts are whether the
pair of words is found in an SV or VO phrase. This result suggests that a verb would
use its context more whenever its possible interpretations are unrelated.

This conclusion is consistent with the fact that homonymous verbs use the knowl-
edge of both their subject and object in their first disambiguation stage. In contrast,
polysemous verbs will use information from a broader context (if available) to be
disambiguated.

3.2.2 Cyclic models of rank 4
We have also studied a larger type of empirical model: cyclic systems of rank 4.

These models are analogues of the (2,2,2)-Bell scenarios, i.e. scenarios that consist
of 2 parties, each of these parties having 2 choices of inputs, and each local mea-
surement having at 2 possible outcomes. In these models, we take the parties to
represent specific dependency relations, e.g. main verb, subject, or object. In par-
ticular, we will focus on SV models (with parties S and V ) and VO models (with
parties V and O). In each model, the parties will choose between two words of the
correct grammatical type (i.e. nouns for parties S and O and verbs for V parties).
Each word will then have two different possible interpretations.

Example 3.4. Let’s consider an example of a VO model where V is allowed to choose
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between the verbs in {tap, box} and O is allowed to choose the object of these verbs
in the set {pitcher, cabinet}. The interpretations of tap and pitcher are taken to be
the ones from Section 3.1. In addition, the interpretations of box and cabinet are
respectively:

a. To put something in a box, e.g. boxing up clothes and books

b. To practice the sport of boxing, e.g. He boxed professionally for years

and:

a. A small group of the most important people in government, e.g. a cabinet
minister

b. A piece of furniture with shelves, cupboards, or drawers, e.g. a glass-fronted
cabinet

Then, from the corpus dataset, we obtained the following empirical model:

(V,O) (a., a.) (a., b.) (b., a.) (b., b.)

(tap, pitcher) 17/22 15/22 0 0

(tap, cabinet) 1/21 3/7 11/21 0

(box, pitcher) 3/4 1/4 0 0

(box, cabinet) 3/7 10/21 2/21 0

These types of models have the potential to exhibit contextuality in both the
Contextuality-by-Default framework and the extension of the sheaf-theoretic frame-
work for corrected Bell inequalities. However, none of the empirical models ob-
tained in the corpus or human judgment dataset were contextual (in either frame-
work).

Regarding the CbD framework, this could be explained as the probability of ob-
taining a contextual model decreases as the systems get bigger. We can estimate
these probabilities by random sampling from a uniform distribution, and the likeli-
hood of obtaining a CbD-contextual cyclic system of rank 2 is about 17% and drops
to about 0.01% for cyclic systems of rank 4. In addition, violations of the corrected
Bell inequalities of [183] is a stronger condition than the CbD notion of contextuality
(see Section 1.2.3). Therefore, obtaining a contextual model within this framework
is also quite unlikely.



106 3.2. On the quantum-like contextuality of ambiguous phrases

Even though we haven’t found any contextual cyclic system of rank 4, this does
not mean that no such system is contextual. A larger scale experiment will be needed
to obtain witnesses of contextuality in these types of models – we leave this to future
work.

Degrees of contextuality
Although we have not been able to find contextual witnesses in cyclic systems of

rank 4, we can study the degrees of (non-)contextuality of the obtained empirical
models, as we did for cyclic systems of rank 2.

Methods We want to know how the levels of ambiguity of words of different syn-
tactic roles (i.e. subject, verb, or object) influence the degree of contextuality of the
respective empirical models. In addition, each empirical model can have:

• 0 polysemous verbs & 2 homonymous verbs;

• 1 polysemous verb & 1 homonymous verb;

• 2 polysemous verb & 0 homonymous verbs;

and similarly for subjects and objects. Therefore, we will classify the SV and VO
models in terms of their numbers of homonymous verbs, subjects, and objects[5].
We will mostly focus this analysis on the human judgment dataset since the corpus
dataset did not have empirical in all categories. For example, the instances recorded
did not lead to any SV cyclic system of rank 4 with two polysemous subjects and
two homonymous verbs.

In addition, we are interested in the monotonic relations between the number
of homonymous words (of each type) and the degree of contextuality, i.e. whether
contextuality increases or decreases as the number of homonymous verbs, subjects,
or objects increases. On the other hand, the existence of non-monotonic relations
between these quantities does not lead to easily interpretable results. For example,
it is unclear what it would mean for the contextuality to be higher whenever we can
choose between a polysemous and a homonymous verb. Hence, we will make use

[5]We could have equivalently chosen to classify them in terms of their number of polysemous
verbs, subjects, and objects. However, the adopted convention fits our intuition that homonymous
words are, to some extent, “more ambiguous” than polysemous ones.
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of Spearman’s rank correlation coefficient ρ, which will assess whether a monotonic
relation exists between two random variables, one being the number of homony-
mous verbs, subjects, or objects and the other being the degree of non-contextuality
NCNT2.

Results The values of the degrees of non-contextuality for each class of empirical
models can be found in Fig. 3.6. An ANalysis Of Variance (ANOVA) first shows
that the degrees of non-contextuality are statistically different across the different
categories (p < 10−4 for SV models and p = 0.005 for VO models).

In addition, we observe that in SV models, the degree of non-contextuality in-
creases as the number of polysemous verbs and subjects increases. This can be ver-
ified using Spearman’s correlation coefficient ρ, which was ρ = −0.27 with associ-
ated p-value p < 10−6 for the correlation with respect to the number of homonymous
verbs, and ρ = −0.20 with p = 0.0002 for the correlation with respect to the number
of homonymous subjects. In both cases, the negativity of the ρ’s shows that NCNT2
decreases as the number of homonymous verbs and subjects increases. In addition,
the fact that p-values are both < 0.05 shows that we are more than 95% confident
that these coefficients are different from 0 (i.e. a correlation exists with a 95% confi-
dence).

In VO models, these trends are much milder and, in fact, not statistically sig-
nificant. We can see that the degree of direct influence decreases as the number
of homonymous verbs decreases (ρ = −0.11, p = 0.053). However, no monotonic
correlation is found with respect to the number of homonymous objects (ρ = 0.03,
p = 0.52).

Discussion As in cyclic systems of rank 2, the main factor influencing the (non-
)contextuality of the systems is the levels of ambiguity of the verbs. Indeed, we have
already shown that the degree of contextuality increases as the number of homony-
mous verbs increases. This reinforces the intuition that homonymous verbs use their
arguments (here, the context) more intrinsically than their polysemous analogues.

In addition, the same applies to homonymous nouns in SV phrases. Namely,
homonymous nouns would lead to a higher amount of “true” contextuality in the
obtained probability distributions.

The fact that this occurs in SV models only (and not in VO models) suggests that
this finding relates to the position of the disambiguating context of homonymous
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(a) SV models (b) VO models

Figure 3.6: Averages of the NCNT2 as a function of the number of homonymous
verbs, subjects, and objects.

nouns. In particular, a slowdown in the reading time of homonymous nouns has
been observed when the disambiguating context is found after the target noun [69],
but this slowdown was lesser for polysemous nouns. Hence, in the case of SV
phrases, where the disambiguating context can only be the verb (situated after the
noun), the observed high degree of contextuality suggests that homonymous nouns
use their context in a less trivial way when the disambiguating context is found after
it.

3.3 Degrees of signalling and the levels of
ambiguity

In the previous section, we saw that signalling is the main obstacle to studying
contextuality in natural language data. However, the presence of signalling is not
in itself a weakness of natural language data. In fact, in most linguistic studies of
lexical ambiguity, the fact that the interpretation of ambiguous words changes with
the context, i.e. signalling, is the focus point. Here, we propose to study the amount
of signalling present in the different empirical models and see what conclusions can
be drawn.

Two ways of quantifying signalling are available to us, namely SF coming from
the sheaf-theoretic framework of contextuality, and ∆ from the CbD framework. In
addition, the latter can be split with respect to the individual input choices. There-
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fore, we can study the amount of signalling coming from a specific choice of word
or, equivalently, how different the probability distributions of a given word are in
the different contexts it is found in. We will then study the correlations between
these different quantities and the levels of ambiguity of words in cyclic systems of
rank 2 and 4.

Remark 3.5. Although the sheaf-theoretic and Context-by-Default frameworks are
essential in the definition of the signalling fraction and the degrees of direct influ-
ence respectively, the mathematical machinery they employ are only used implicitly
in this Section.

Remark 3.6. The results of this section may appear challenging to interpret and rea-
son about, most of all because some results were verified in one dataset but not
the other. In addition, it is not common in the linguistic literature to study phrases
where more than one word is clearly (lexically) ambiguous. In particular, not much
is known about what happens if the context of an ambiguous word is itself ambigu-
ous.

3.3.1 Cyclic systems of rank 2
We start with the cyclic systems of rank 2, which we recall contains a noun/verb

pair and two different contexts, SV and VO.

Overall degrees of signalling
We start by looking at the total degree of direct influence ∆, as well as the sig-

nalling fraction SF, both of which measure how signalling the whole system is (we
also recall from Section 1.2.3 that these two quantities are not unrelated). Then, as
we did in the analysis of the degree of contextuality in the previous section, we
partition both our datasets in terms of the levels of ambiguity of the nouns and the
verbs.

Results The overall degrees of signalling for all of the different classes of empirical
models are shown in Fig. 3.7. We observe the same trend in both of these datasets,
namely that the overall signalling of the system increases as the number of polyse-
mous words increases. An ANOVA reveals a statistical difference between SF or ∆
and the different classes of models in the human judgment dataset only. The p-values
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were p = 0.015 for ∆ and p < 10−9 for SF in the human judgment dataset, as opposed
to p = 0.98 and p = 0.70 for ∆ and SF respectively in the corpus dataset.

In the human judgment dataset, we can verify using a t-test that ∆ and SF are
higher for nouns with multiple senses (p = 0.04 and p = 0.02 respectively). Similarly,
∆ and SF are also higher for verbs with multiple senses (p = 0.02 and p = 0.03 resp.).
No statistically significant trend could be found in the corpus dataset.

(a) Corpus dataset

(b) Human judgement dataset

Figure 3.7: Averaged ∆ and SF of the cyclic systems of rank 2, depending on whether
the noun and verb were polysemous or homonymous. The errors quoted are the
standard errors of the means.

Discussion This phenomenon could be explained using the theory of underspeci-
fication, in which the interpretation of polysemous words is essentially created from
its context, whereas meanings of homonymous words are selected using contextual
information [71] (see also Section 2.1.2). Hence, assuming that the SV and VO con-
texts are unrelated, this would imply that there is potential for having different in-
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terpretations of the same polysemous word. On the other hand, one may argue that
its context window is too small for homonymous words to swing widely from one
meaning to the other.

Individual degrees of signalling
Given the above interpretation of the results, we also expect the individual de-

grees of direct influence to follow the same tendency.

Results This is, however, not quite verified at the level of individual degrees of
direct influence. In particular, in the human judgment dataset, the degree of direct
influence from the verb was higher whenever the verb was polysemous, which is
consistent with our hypothesis. On the other hand, the degree of direct influence
from the noun was higher whenever the noun was homonymous. In both cases, the
observed effect was relatively small, and the difference in individual direct influence
was 0.06 for verbs of different levels of ambiguity and 0.08 for nouns of different
levels of ambiguity. In both cases, these differences, however small, were still found
to be statistically significant (with respective p-values p = 0.006 and p < 10−4).

In the corpus dataset, the reverse trend is observed (i.e. homonymous verbs and
polysemous nouns had, on average, higher degrees of direct influence). However,
none of the differences were statistically significant (p = 0.27 for verbs and p = 0.78

for nouns).

Discussion Due to the size of the effect and the fact that datasets did not agree
on the findings, we could conclude that such a difference may be due to statistical
fluctuations. However, if these effects were in fact “true”, this would imply that
some more complex mechanism occurs in the disambiguation process of both nouns
and verbs.

On the disambiguation windows of ambiguous verbs
The corpus dataset In [195], we showed that the proportion of the direct influence
coming from the verb was statistically significantly higher for homonymous verbs
than for polysemous verbs (see Fig. 3.8) in the corpus dataset. This fact was at-
tributed to the difference in disambiguation windows in homonymous and polyse-
mous verbs.
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Indeed, we recall that the first disambiguation stage for homonymous verbs hap-
pens as soon as all of its arguments are known. In contrast, the reader only selects
the senses of polysemous verbs at the end of the phrase or sentence.

Now, as in cyclic systems of rank 2, we are studying the difference in distribu-
tions between subject-verb and verb-object contexts. We can expect differences in
the distributions of the interpretations of homonymous verbs, as we are precisely
within this first disambiguation stage.

The fact that we did not observe any such effect for nouns was explained by the
fact that the changes of contexts studied remain within the same disambiguation
window for both polysemous and homonymous nouns.

Figure 3.8: Relative contributions of the verb content to the overall direct influence
given different levels of ambiguity for the verb or the noun. The left-hand figures
correspond to the contributions of the verb; averages for each level of ambiguity
are shown with dotted lines. The right-hand figures correspond to the distributions
of these data points. The hatched area depicts the 66%-confidence intervals for the
means. The fitted normal distributions are also plotted.

The human judgment dataset In the human judgment dataset, this relation was
not verified. In fact, we observed the opposite, namely that the proportion of direct
influence from polysemous verbs was greater than the one for homonymous verbs,
but this was not statistically significant (p = 0.22).

On the other hand, the degree of direct influence from the verb was, on average,
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higher than the degree of direct influence from the noun (p = 0.003 for a related
t-test). This observation is consistent with the fact that verbs need their arguments
to be disambiguated, whereas nouns do not. Hence, the variations in the interpre-
tations are greater between the two contexts (SV or VO) compared to the variations
in the interpretations of the nouns. However, we would have expected from the
previous discussion that homonymous verbs would have higher degrees of direct
influence, which is not the case in the human judgment dataset (see above).

In addition, we should also note that this is not at all observed in the corpus
dataset (p = 0.51). This lessens the findings of [195], but, on the other hand, of-
fers alternative evidence that readers do not disambiguate verbs and nouns in the
same way and that the presence of the arguments of the verb is essential in their
disambiguation process.

On the ambiguity of the context

Lastly, some cross-effect between the ambiguity of one word and the degree of
direct influence of the other has been observed in both datasets.

Results In the human judgment dataset, ∆v was higher whenever the verb was
combined with a polysemous noun (with an average difference of 0.13 and p <

10−9). We also observed a similar effect in the corpus dataset, but the effect size is
much smaller (average difference of 0.014) and not statistically significant (p = 0.95).

In addition, ∆n was slightly higher whenever the noun in the empirical model
was combined with a polysemous verb (average difference of 0.004 in the human
judgment dataset and 0.27 in the corpus dataset). However, in this case, none of the
observed differences were statistically significant (p = 0.82 in the human judgment
dataset and p = 0.21 in the corpus dataset, respectively).

Discussion The interpretation of this fact would be related to something that has
yet to be studied in the psycholinguistic literature, namely, what happens if the
context itself is ambiguous? This result suggests that if the context is polysemous
or underspecified, the interpretation of a target word becomes more variable. In
contrast, if the context can have several unrelated interpretations, then the interpre-
tation of the target word is also more defined. This will be made more transparent



114 3.3. Degrees of signalling and the levels of ambiguity

and intuitive in Section 3.4 when studying the causality of the systems instead of its
signalling.

3.3.2 Cyclic systems of rank 4
We now look at the degrees of signalling of the cyclic systems of rank 4. As in

Section 3.2.2, we do not have enough data in the corpus dataset to cover all possible
combinations of the number of polysemous and homonymous subjects, verbs, and
objects. Hence, we will shift our focus to the human judgment dataset only.

Remark 3.7. In terms of notation, we will denote as ∆A, A ∈ {S, V,O} for the total
amount of direct influence coming from the two subjects, verbs, or objects (i.e. the
different parties), and ∆a for a ∈ {s, v, o} for the individual direct influence coming
from a particular choice of subject, verb or object (i.e. the individual choices of in-
puts). For instance, in the SV empirical model with inputs {s1, s2, v1, v2}, we would
have:

∆S =∆s1 +∆s2

∆V =∆v1 +∆v2

and:
∆ = ∆S +∆V =

∑
w∈{s1,s2,v1,v2}

∆w

Subject-Verb vs. Verb-Object
We start by looking at the difference in signalling between SV and VO models.

Results The degree of signalling, measured by both the signalling fraction SF and
CbD measure ∆ are (statistically) significantly higher for SV models compared to the
VO models (the average difference was 0.38 for ∆ and 0.08 for SF, with respective
p-values p < 10−52 and p < 10−40).

Discussion This suggests that the interpretations of VO phrases are easier to ob-
tain, and their interpretations are more well-defined than those of SV phrases. This
concurs with the usual grouping of VO compounds as VPs, whereas subject-verb
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does not generally correspond to anything special, for example, in context-free gram-
mars [76].

SV

VO

(a) SF and ∆ as a function of the number of homonymous subjects, verbs, and objects. The
errors quoted are the standard errors of the mean.

R p

∆
Subject 0.0170 0.7607

Verb 0.0329 0.5568

SF
Subject 0.0466 0.4045

Verb 0.05353 0.3383

(b) SV

R p

∆
Verb 0.13755 0.01349

Object -0.1560 0.005

SF
Verb 0.0650 0.2444

Object -0.1289 0.0207

(c) VO

Table 3.2: Analysis of the monotonicity of the amount of signalling and the number
of homonymous words in SV and VO empirical models.

Verbs vs. Nouns

As in the cyclic system of rank 2, the degree of direct influence from the verb,
∆V , was found to be higher than the direct influence from both the subject (∆S) and
the object (∆O); in SV models, the average difference was 0.1961 with associated p-
value p < 10−20, and in VO, the average difference was 0.08 with associated p-value
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p < 10−13. As before, we justify this finding as the verbs are, in general, not fully
disambiguated at these stages, and therefore, their interpretation is more variable.

Degrees of signalling for homonymous and polysemous words
Ambiguity of the objects We observe that in VO models, the degrees of signalling
(both SF and ∆) increase as the number of polysemous objects increases. The ob-
tained Spearman’s correlation coefficients are ρ = 0.16 for ∆ and ρ = 0.13 for SF,
and the respective p-values are p = 0.005 and p = 0.02.

This finding is consistent through all of the fine-grained measures of direct influ-
ence. Indeed, ∆O was increasing the more polysemous objects were in the empirical
models (ρ = 0.14, p = 0.01), and the individual degrees of direct influence ∆o were
also higher for polysemous than homonymous objects (average difference of 0.02,
and associated p-value p = 0.03).

This resonates with the theory of underspecification which happens in polyse-
mous words. In other words, since noun senses are more dependent on their context
than noun meanings, it makes sense that the interpretation of a polysemous word
would vary more than the interpretation of a homonymous word.

Ambiguity of other dependencies The effect described above is only observed in
objects in VO models. In the other cases, the different degrees of signalling did not
appear to be (monotonically) related to the numbers of polysemous/homonymous
subjects or verbs (see Table 3.2), or if they “exist”, their size is very small.

We will attribute this lack of relations between the ambiguity of the different
words and their degrees of direct influence to other deciding factors in the process
of their disambiguation. For instance, the disambiguation of the verbs in both SV
and VO models will be affected not only by their own levels of ambiguity but also
by the ambiguity of their arguments (i.e., their subject or objects). Similarly, the
subject could also be affected by their context, either by the position or ambiguity of
the context.

On the ambiguity of the context
As for cyclic systems of rank 2, it is possible to find some relations between the

degree of ambiguity of the context and the degree of direct influence of a given
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target word, although these correlations were very moderate.

Results In both SV and VO models, the degree of direct influence of the verbs
∆V increased as the number of polysemous arguments (subject or object) increased.
Spearman’s correlation was ρ = 0.08 in VO systems and ρ = 0.005 in SV systems,
and neither were statistically significant (p = 0.17 and p = 90.3 respectively). On the
other hand, ∆S and ∆O increased as the number of homonymous verbs increased
(ρ = 0.15 and p = 0.006 in the case of ∆S and ρ = 0.17 and p = 0.002 in the case of
∆O).

Discussion At first sight, this appears contradictory to the findings in rank 2 sys-
tems, where we recall that ∆n increased as the number of polysemous verbs in-
creased. However, one crucial difference here is that context is more “fixed” in SV
and VO models, whereas it is not in cyclic systems of rank 2 previously described.
For instance, consider an SV model. Taking the subject to be the target word, the
context _ v is fixed in the two contexts s1 v and s2 v. In contrast, in cyclic systems of
rank 2, the two contexts of a noun would be _ v and v _, which are fundamentally
different.

Moreover, the influence of the ambiguity of the verb of their subject and object
could be understood as follows. The disambiguation of homonymous verbs first
starts when the arguments are established. Hence, the reader will begin disam-
biguating both the verb and the noun, which creates some interaction between the
choice of meaning of the verb and the subject/object. This makes the interpretation
of the subject/object more uncertain. On the other hand, if the verb is polysemous,
the meaning of the nouns will be more well-defined, as the disambiguation of the
verb itself will be delayed to the end of the sentence (and hence beyond the scope of
our experiments).

3.3.3 Discussion of the results
The signalling property of empirical models provides insight into the mechanisms

at the heart of the disambiguation process. However, our analysis is made difficult
and not easily interpretable from how empirical models are formed. Indeed, to have
non-trivial empirical models, all of the inputs must be ambiguous. Yet, this adds
complexity to the study as the distinction between (linguistic) context and target
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word is symmetric, i.e. a word can be both a target-word and a context-word. In
addition, the notion of signalling is also bidirectional, i.e. we can only see whether
a dependence exists between two variables A and B, not whether A influences B
or the other way around. In the next section, we will remedy these problems by
examining the causal influences between the different parts-of-speech.

3.4 The causality of the disambiguation pro-
cess

In the previous section, we have seen that the signalling property of natural lan-
guage systems is not necessarily a hindrance but can give us some insight into hu-
man behaviour when disambiguating lexically ambiguous words and phrases. In
this section, we go one step further and study the structure of the signalling present
in natural language data. To do so, we make use of the extensions of the sheaf-
theoretic framework of contextuality to account for causality [79, 80, 5] (see Sec-
tion 1.2.2). In this line of research, we are interested in the direction of signalling.
For instance, does the disambiguation order follow the reading order, i.e. is disam-
biguation purely incremental, or is backtracking necessary?

Remark 3.8. In this perspective, we can see the event of choosing the input as read-
ing a new word, associating an outcome to a choice of measurement will then corre-
spond to the disambiguation step. Hence, having a causal order that does not follow
the linear ordering of the words in a given sentence does not mean that the reader
reads the words in a different order, but rather that the understanding process is not
instant (i.e. does not follow the reading order).

As for the no-signalling property, obtaining statistics that are fully compatible
with a given causal order is not feasible in practice. Therefore, instead of calculating
the no-signalling fraction NSF = 1 − SF (i.e. the amount of the empirical model
which is compatible with a perfectly no-signalling system), we can calculate the
causal fraction introduced in Section 1.2.2 which measure the amount of the empirical
model which is consistent with a given causal order [79]. In addition, similar to the
previous sections, we will focus on the simplest non-trivial scenarios to minimise the
calculations. Here, the smallest non-trivial system we can consider is similar to the
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(2,2,2)-Bell scenarios (or cyclic systems of rank 4). Indeed, in the case where only 1
party is present, there is a unique compatible causal order: the partyA can influence
itself, and every such system would be trivially consistent with it. Similarly, if we
have 2 parties, but at least one party has a unique choice of input, then this scenario
reduces, without loss of generality, to the one-party case. Finally, if only 1 outcome is
possible for all of the measurements, then all of the measurements are deterministic,
and the analysis becomes once again trivial.

Remark 3.9. This work does not assume that parties are spacelike separated entities.
Instead, the notion of party corresponds to entities isolated in time or space. For
instance, we could consider a single person in a lab performing a sequence of 3
sequential measurements to count as 3 different parties.

The systems that we will consider are, as in Sections 3.3 and 3.2, SV and VO sys-
tems, where the two parties are either S and V or V and O and the interpretations
of input and outcomes are left unchanged. In particular, we here focus on definite
causal orders, i.e. causal orders represented by direct acyclic graphs [142]. In such
graphs, the nodes correspond to random variables, which can have inputs and out-
puts. The directions of the arrows represent the causal relations, e.g. if A→ B, then
this means that the input of A can influence the output of B, and the absence of ar-
rows shows the independence of random variables. Finally, the acyclicity condition
ensures that a given event cannot influence its past.

In a two-party system like ours, say with parties A and B, there are only three
possible definite causal orders, namely:

1. A B

2. A B

3. A B

The situation of 1 corresponds to our familiar no-signalling scenarios. The cases 2
and 3 respectively represent situations where the partyA can influenceB and where
the party B can influence A. We will denote the causal fractions associated with
causal orders 1, 2 and 3 as respectively CausFNS = NSF, CausFA→B and CausFB→A.

Remark 3.10. The causal orders A → B and B → A are not mutually exclusive.
Therefore, we could have a model which is highly consistent with both causal orders
separately.
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Remark 3.11 (On the no-signalling causal order). A system with partiesA,B is said to
be no-signalling iff it is compatible with both causal models of the form A→ B and
B → A. Therefore, it is stronger than causal orders A → B and B → A. Therefore,
in terms of the causal fractions, this means that:

NSF ≤ min (CausFA→B,CausFB→A) (3.8)

We are investigating which of these causal orders is the most relevant, i.e., ex-
plains most of the system’s statistics. We do so by comparing the different causal
fractions obtained for the different causal order, notably 2- 3.

Calculating the causal fraction of an arbitrary model is not straightforward, as
it requires solving an optimisation problem. However, given the specific form of
the models we are considering, the causal fractions for each causal order can be
calculated efficiently.

Proposition 3.12. In a (2,2,2)-Bell-type scenario with parties A and B, the causal fraction
is given by:

CausFA→B = min
a∈{a1,a2},o∈{0,1}

1−
∣∣e(a,b1)∣∣A (o)− e(a,b2)

∣∣
A
(o)
∣∣ (3.9)

The causal fraction for the B → A causal order can be obtained by applying the formula to
a relabelled empirical model.

This proposition’s proof can be found in Appendix C.4.

Through initial calculations, we have found that the empirical models obtained
in the corpus dataset were too sparse, and therefore did not lead to any conclusive
result. In the rest of this work, we will focus on the causal analysis of the human
judgment dataset, as their probability distributions are, on the whole, of better qual-
ity.

3.4.1 The direction of signalling in SV and VO models
We start by looking at the compatibility of our data with the different causal or-

ders described above.



Chapter 3. Aspects of the lexical disambiguation process 121

Results The causal fractions obtained for the SV and VO models are shown in
Fig. 3.9a and 3.9b, respectively.

The data reveals that SV phrases are predominantly compatible with the S → V

causal order. Indeed, all of the models have a causal fraction CausFS→V > 0.7 (the
causal fractions CausFS→V is on average 0.89), and both the V → S and the no-
signalling fractions achieve lower causal fraction values where the causal fractions
are on average 0.83 and 0.19 respectively, see also Fig. 3.9c.

Similarly, the VO models achieve a causal fraction with the O → V order higher
than 76% (and 0.93 on average), and the other causal fractions reach significantly
lower scores (CausFV→O ∼ 0.91 and SF ∼ 0.11), see Fig. 3.9d. We note that in the
case of the VO models, this suggests that the disambiguation order in these phrases
is opposite to the reading order (assuming the standard active voice SVO structure of
English).

Discussion These results show that the interpretation of ambiguous verbs is more
affected by the choices of arguments (i.e. subject or object) rather than the other
way around. This result is also validated by the research in psycholinguistics, which
has indeed shown that the reader delays the disambiguation process until the argu-
ments of the verb are known in the case of a homonymous verb and until the end of
the phrase or sentence in the case of polysemous verbs [146].

In addition, the causal fractions of VO models are generally higher and less vari-
able (i.e. smaller standard deviation) than those obtained in SV models, see Fig. 3.10.
This may suggest that the disambiguation process for VO ambiguous phrases is
more straightforward than for SV ones.

3.4.2 Models with different levels of ambiguity
We now investigate whether we can observe a difference in behaviour between

homonymous and polysemous words. We first recall that eye-tracking data sug-
gests that readers tend to disambiguate polysemous words much later than their
homonymous counterparts by selecting an underspecified interpretation instead of
committing to a single sense. In SV models, this should result in having a higher
causal fraction associated with S → V whenever the verbs are polysemous and the
nouns are homonymous, as this case would delay the disambiguation of the verbs
(compared to average), and make the disambiguation of the homonymous noun
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(a) Scatter plot of the different causal frac-
tions for SV empirical models

(b) Scatter plot of the different causal
fractions for VO empirical models

(c) Histogram of the recorded causal frac-
tions for SV empirical models

(d) Histogram of the recorded causal
fractions for VO empirical models

Figure 3.9: Distributions of the causal fractions
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Figure 3.10: Comparison of the distributions of the S → V abd O → V causal
fractions.

faster than the average scenario. Similarly, in VO models, we expect the causal frac-
tion associated with O → V to be larger whenever the verbs are polysemous and
the nouns are homonymous. To verify this hypothesis, we study the correlation be-
tween the causal fractions and the number of homonymous/polysemous verbs and
nouns in the different models.

Results & Discussion We started by looking at the effect of the ratio of homony-
mous/polysemous words in the empirical models to the causal fractions. From the
above description, this ratio shouldn’t have a significant effect. To check this, we
calculated the Spearman ρ coefficients of the causal fractions and the number of
homonymous words. We did not observe any apparent correlation in VO models
(ρ = 0.009, p > 87%). In SV models, we only observed a mild (but statistically sig-
nificant) effect. In that case, we observed that the more polysemous the words in a
model, the higher the S → V causal fraction (ρ = 0.15, p < 0.7%). These results are
depicted in Fig. 3.11 and are overall consistent with our hypothesis.

We then sort our empirical models in terms of their number of homonymous and
polysemous nouns, and subsequently in terms of their number of homonymous and
polysemous verbs. The observed distributions of the causal fractions are depicted in
Fig. 3.12. In both SV and VO phrases, the S → V and O → V causal fractions were
higher whenever the verb was polysemous. The Spearman coefficients and p-values
were ρ = 0.17, p < 0.2% for SV phrases and ρ = 0.16, p < 0.4% for VO phrases. In ad-
dition, the causal fraction associated withO → V was higher whenever objects were
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(a) CausFS→V (b) CausFO→V

Figure 3.11: Boxplots of the distributions of causal fractions CausFS→V and CausFO→V

as a function of the number of homonymous words of the empirical models.

homonymous (ρ = 0.14, p < 2%). These observations confirm our initial hypothesis
that homonymous nouns are disambiguated faster than polysemous words.

The exception is the case of the ambiguity of the subjects in SV phrases (ρ = 0.04,
p > 50%). One way to interpret this difference would be to consider the relative po-
sition of the disambiguating context. It was shown in [69] that homonymous nouns
were disambiguated much faster than polysemous nouns when the disambiguat-
ing context occurred before the target words. However, a significant slowdown has
been observed if the disambiguating context is found after the target word. This
slowdown was even exacerbated when the target word was homonymous. This
nicely explains the difference between VO and SV phrases. Indeed, the only possi-
ble disambiguation context for nouns in VO phrases is the verb, which is positioned
before the object (once again assuming active voice). In the case of the disambiguat-
ing context for subjects, the only disambiguating context, which is once again the
verb, is found after the subject. Therefore, the lack of correlation between the sub-
jects’ ambiguity and the causal fraction is likely caused by the balancing of the effect
of the ambiguity and the added difficulty induced by a following disambiguating
context.

The Spearman coefficients found above are relatively low (ρ < 0.2), which sug-
gests that the correlations observed are quite mild. However, the p-values showed
that the correlations claimed in the above paragraph are statistically significant, i.e.
it is highly unlikely that no correlation exists between the causal fraction and levels
of ambiguity.
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(a) Averaged CausFS→V as the number of
homonymous subjects and verbs are var-
ied.

(b) Averaged CausFO→V as the number of
homonymous verbs and objects are var-
ied.

(c) Distributions of CausFS→V as the
number of homonymous subjects is var-
ied.

(d) Distributions of CausFO→V as the
number of homonymous object is varied.

(e) Distributions of CausFS→V as the
number of homonymous verb is varied.

(f) Distributions of CausFO→V as the
number of homonymous verb is varied.

Figure 3.12: Causal fractions as the number of homonymous/polysemous nouns
and verbs are varied
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Summary of the Chapter
In this Chapter, we have investigated the properties of lexical ambiguity data,

using the mathematics arising from the causality and contextuality quantum me-
chanics. We have observed:

• Contextuality-by-Default witnesses can be observed in cyclic systems of rank
2 (see Section 3.2 and [194]). However, the operational interpretation of CbD
is not very clear;

• Causal analysis of the data confirms that verbs are mostly disambiguated after
their subject and object (see Section 3.4)



Chapter 4
Quantum simulations of the
disambiguation process

In the previous chapter, we found that about 90% of the probability distributions
obtained from human judgments are compatible with the S → V and O → V causal
orders. Since this dataset is noisy and uses finite approximations of actual probabil-
ities, we can be confident that these causal orders represent a good approximation
of the process that occurs in humans. Here, we start from this observation and in-
vestigate whether quantum computers can simulate the disambiguation process of
SV and VO phrases.

In Section 4.1 we describe how we obtained quantum circuits associated with the
lexical disambiguation process of SV and VO phrases. In Section 4.2, we investigate
whether the obtained circuits can predict probability distribution instead of repro-
ducing them. In Section 4.3, we describe a method for obtaining quantum word-
embeddings of ambiguous words. This section also aims to examine whether we
could use the obtained embeddings in NLP. Finally, in Section 4.4 we investigate the
entanglement generated by the obtained circuits.

127
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4.1 Methodology
We start from the causal orders obtained in the previous section, i.e. S → V and

O → V for SV and VO phrases. Then, these causal orders naturally lead to a basic
structure of the process which we need to approximate (see Section 1.3.3), namely:

S → V ⇝
S

V

O → V ⇝
O

V

(4.1)

These processes should be interpreted as before, i.e. the choice of inputs corresponds
to a choice of word, and the outcomes will represent interpretations of these words.
In addition, the parties are also defined as in quantum scenarios as “labs” which are
allowed to do some local operations (e.g. S, V or O) on the system, and causality,
for example, S → V , is achieved by having a subsystem of the party S being used
by the party V .

Remark 4.1. The diagrams of (4.1) are agnostic to which process theory they live
on. In particular, we choose quantum circuits in this work, but these would also
be applicable in a classical or probabilistic setting as well. Experiments involving
classical systems, an hence investigation any potential quantum advantage, is left to
future work.

Using this basic structure, we propose a parametric quantum circuit where we
can train parameters to approximate the probability distributions obtained from hu-
man data. The details of the ansatz of the parametric circuits will be described
shortly. We then optimise the parameters of our ansatz using a fairly standard hy-
brid quantum-classical method [122, 61, 137, 160, 204].

4.1.1 The ansatz
We start by describing the choice of ansatz. For simplicity, we take the input and

output systems to be qubits. This will be enough as we only require two choices of
inputs, which will be taken to be |0⟩ and |1⟩, and two choices of outcomes, which
we will once again choose to be |0⟩ and |1⟩.
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Causal order

S V

Process

S

V

Quantum Circuit

S

V

0

S

R (θ1)

R (θ2)

R (θn)

...
=

Individual unitaries

R (θ) =

Parametric rounds

RX (θ1) RX (θ4)

RZ (θ2) RZ (θ5)

RX (θ3) RX (θ6)

Z

The circuit structure
The Ansatz

(a)

(b)
(c)

(d)(e)

Figure 4.1: Summary of the approach

In addition, we require a subsystem of the output of the noun (subject or ob-
ject) operations to be fed into the input of the verb operation. We will also take this
subsystem to live on C2. Then, to satisfy the unitary condition on the different op-
erations, we will also require that the input system of the noun circuit is a 2-qubit
system, where we choose to initialise the ancilla qubit as |0⟩. Similarly, there will be
an extra qubit in the output of the verb-circuit, which we will discard. The form of
these circuits is illustrated in Fig. 4.1(c).

Then, each of the individual operations will be encoded as a parametric quantum
circuit itself. These circuits will be divided into rounds of single-qubit unitaries
followed by entangling gates; see Fig. 4.1(d-e). Increasing the number of rounds
(and therefore the number of parameters) is expected to increase the accuracy of the
circuit but is also expected to take longer to be trained. We will also choose to have
the same number of rounds for both parties.

We then choose to define each of the rounds to be as in Fig. 4.1(e). Each qubit
is subject to a (parametrised) X-rotation, a (parametrised) Z-rotation, and then an-
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other (parametrised) X-rotation, where X- and Z-rotations are defined as follows:

RX(θ) =

(
cos
(
θ
2

)
−i sin

(
θ
2

)
i sin

(
θ
2

)
cos
(
θ
2

) ) RZ(θ) =

(
1 0

0 eiθ

)

This general form allows us to encode any single-qubit unitary, as this corresponds
to Euler’s decomposition of a generic unitary. We then apply a controlled-Z gate
between the two qubits to generate entanglement, defined as[1]:

Z =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


Each round then needs 2× 3 = 6 parameters to be trained. Hence, for n rounds,

each gate (S, V or O) needs 6n parameters, giving a total of 12n parameters to be
trained for the full circuit.

Remark 4.2. In most work using variational quantum circuits, the ansatz is less
generic and minimises the number of parameters for each round (for example, the
IQP ansatz only has 1 parameter per round). However, we decided on this ansatz
as it allowed us to access a wide range of probability distributions, and because it did
converge with respect to our choice of cost function (more details below).

4.1.2 The training process
To train the parameters, we apply a classical gradient descent algorithm. At each

iteration of the algorithm, we update parameters θ as follows:

θn → θn+1 = θn − γ∇L (θn) (4.2)

for a given cost function L, and descent parameter γ, which we take to be fixed
at 10−2. In addition, as the expression of L may not be known, we employ the
following finite approximation:

(∇L (θ))i =
L (θ + δei)− L (θ − δei)

2δ
(4.3)

[1]Also see Example 1.48 for the defintion of general controlled gates.
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where δ is chosen to be 10−2. We obtain the cost expression by simulating the quan-
tum circuits using the Qiskit Aer platform [153].

In this task, we are interested in reproducing the probability distributions ob-
tained from human judgments. We, therefore, adopt as the cost function a distance
between the obtained probability distribution (estimated from the counts obtained
from Qiskit) and the probability distribution obtained from the human judgment
dataset. In this work, we adopted the total variation between the human and simu-
lated probability distributions as our cost function. It is defined as:

L (θ) =
1

2
max
C

∑
o

|e (θ)C (o)− eC(o)| (4.4)

Remark 4.3. Another choice of cost function would be the Kullback–Leibler (KL) di-
vergence, denoted DKL(µ||ν), which measures the excepted surprisal induced from
using a probability distribution ν to approximate another distribution µ. It is for-
mally defined as:

DKL(µ||ν) =
∑
x

µ(x) log

(
µ(x)

ν(x)

)
(4.5)

However, this measure is a directional measure, i.e. DKL(µ||ν) ̸= DKL(ν||µ), and
therefore not a metric. More importantly, it is not defined whenever there is an
outcome x such that ν(x) = 0 but µ(x) ̸= 0. For these reasons, we chose to use the
total variation instead. We will leave the investigation of the circuits obtained using
the KL-divergence to future work.

4.1.3 Convergence
We now look at the performance of the described ansatz subject to the proposed

training process. We first note that there are some limits to how close the probability
distributions obtained from the described circuits can be to the human ones. We will
first specify these constraints before introducing the obtained results.

Limitations of the approach
We recall from Section 3.4.1 that, although very high, the causal fractions associ-

ated with S → V and O → V causal order were not exactly 1. As argued before,
this is not necessarily because indefiniteness is necessary, in particular when the
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causal fraction approaches 1, but can also be due to the finiteness of the probability
distribution. Hence, the probability distributions obtained by the variational cir-
cuits cannot exactly match the probability distributions from the human judgment
dataset. In other words, the minimal cost possible will be strictly greater than 0. On
the other hand, we can fix a bound on the achievable cost from the causal fraction
of a given model.

Proposition 4.4. Given an empirical model e with parties A and B, with associated causal
fraction CausF (with respect to causal order A→ B), for any empirical model eCaus compat-
ible with the causal order A→ B, we have:

1− CausF

CausF
m(e) ≤ 1

2
max
C

∑
o

|eC(o)− eCaus,C(o)| (4.6)

where:
m(e) = min

{
e(a,b1)

∣∣
A
(1), e(a,b2)

∣∣
A
(0)
}

(4.7)

and a ∈ {a1, a2} such that:

CausF = 1−
∣∣e(a,b1)∣∣A (0)− e(a,b2)

∣∣
A
(0)
∣∣

The quantity 1−CausF
CausF

m(e) will be refered to as the mininal cost of an empirical model e.

The proof of this proposition can be found in Appendix C.5.

Outcome of the training process

We trained variational circuits using the above ansatz for numbers of rounds vary-
ing from 1 to 5 and set the initial set of parameters randomly. We found that all of
the models converged with respect to the cost function (4.4) (see Fig. 4.2a). In ad-
dition, the converged cost appears to get closer and closer to the minimal possible
cost, dictated by (4.6), as the number of rounds increases (see Fig. 4.2b). This shows
that the accuracy of the quantum circuits does indeed increase as the number of
parameters increases.

For the rest of this chapter, we assume that models with more parameters are
more accurate and, therefore, more representative of the process under investiga-
tion.
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(a) Cost function as a function of number
of steps for the SV model with subjects
taken from {press, volume} and verbs
taken from {conduct, file}, and number
of rounds ranging from 1 to 5.

(b) Average optimised cost (offset by
their respective minimal costs).

Figure 4.2: Convergence of the variational circuits

On the variability of the optimised parameters We note that, even though the
variational circuits converge to similar costs for different choices of initial parame-
ters, the values of the optimised parameters are quite variable for different choices
of initial parameters (see Fig. 4.3). The average distance between the parameters for
different randomly sampled initial parameters was 1.57±0.91, which is precisely the
expected distance between randomly chosen parameters (which can be calculated
to be π

2
± π

2
√
3
).

This is to some extent expected as, although we know that there exists a minimal
possible cost we can achieve, namely (4.6), there is an infinite number of (causal)
empirical models eCaus which achieves this minimal cost. This is not necessarily a
problem if one is only interested in obtaining (independent) models of the disam-
biguations of the phrases in a given empirical model. However, in the following
discussions, we will be interested in using these circuits for predictions of probabil-
ity distributions, as well as investigating the use of the obtained quantum states as
(quantum) word embeddings.

Hence, from now on, we will fix the choice of initial parameters (for each number
of rounds) to reduce the final parameters’ variability.
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(a) Distances between optimised parame-
ters for different choices of initial param-
eters.

(b) Optimised cost functions for different
choices of initial parameters.

Figure 4.3: Comparison of the accuracies and obtained parameters for the SV model
{press, volume}×{conduct, file} where the training was done using different initial
parameters.

4.2 The prediction power of the variational
circuits

We now investigate whether the obtained circuits can predict the activation pat-
tern of the meanings of unseen phrases. We then suggest the task of predicting the
probability distribution of the different activation patterns for phrases that have not
been explicitly trained.

4.2.1 Methods
Here, we propose to obtain predictions by splitting individual operations (i.e.

subject, verb, and object) from trained circuits and combining them with operations
from different models (see Fig. 4.4). For example, given two optimised SV circuits
corresponding to the empirical models with measurements M1 = {paper, plant} ×
{bore, tap} and M2 = {press, volume} × {conduct, file}, we can create a new circuit
which would correspond to an empirical model with the subjects taken from M1,
and the verbs taken from M2, i.e. M′ = {paper, plant} × {conduct, file}.
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press/volume

conduct/file

i

paper/plant

bore/tap

i

paper/plant

conduct/file

i

Figure 4.4: Procedure for obtaining new (untrained) circuits from trained ones.

We then constitute a set of 81 SV and 81 VO empirical models, which we will train
using the procedure described in Section 4.1. These empirical models will constitute
our training set. We then test the predictions obtained from recombining the subject,
object, and verb circuits (as in Fig. 4.4) to predict the probability distributions of 84
new SV and 84 VO empirical models for which we have the corresponding human
data; these new empirical models will constitute our testing set. The empirical in
the training and testing sets can be found in Appendix D.4.

Remark 4.5. Regarding the consistitution of the traning and testing set, we were re-
straint by the set of randomly chosen phrases for which we collected the human
plausibility judgments. Hence, not all of the possible empirical models arising from
the process described above and on Fig. 4.4 could have been evaluated against a
ground truth distribution (as we may not have collected it), which in turns restricts
our choice of testing set. The training set on the other hand is dictated by which
empirical models were needed to obtain predictions for all of the empirical models
in the testing set.

4.2.2 Results
We observe that the predicted circuits achieve a reasonably low cost (see Fig. 4.5).

The average cost of the unseen models was ⟨L(θ)⟩ = 0.24 (i.e. accuracy of 0.76) for
the SV models and ⟨L(θ)⟩ = 0.14 (i.e. accuracy of 0.86) for the VO models. This
procedure resulted in an average cost of 0.19 (i.e. accuracy of 0.81) for both types of
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models. These cost values are unsurprisingly still higher than the cost that can be
achieved by training the models themselves, which were respectively 0.07± 0.04 for
SV and 0.06± 0.04 for VO models.

Figure 4.5: Cost values obtained for the predicted probability distributions.

However, these predictions do not improve as the number of rounds increases.
Indeed, the Pearson’s ρ coefficients between the number rounds and the prediction
accuracies are of |ρ| < 0.01 (with p-value p = 0.84) for the SV models and |ρ| = 0.06

and p = 0.22 for the VO models; such low values for ρ and higher p-values shows
that there likely no correlation between the number of rounds and the accuracy of the
predictions. On the other hand, the obtained accuracies are significantly better than
the ones obtained by taking the uniform probability distributions empirical model
(see Table 4.1), which corresponds to the probability distributions obtained by sim-
ply guessing outcomes without any knowledge of the system. The differences be-
tween the uniform distribution baseline and predicted accuracies were statistically
different from 0 with p-values p < 10−10 for each number of rounds.

(A,B) (0, 0) (0, 1) (1, 0) (1, 1)
(a1, b1) 1/4 1/4 1/4 1/4
(a1, b2) 1/4 1/4 1/4 1/4
(a2, b1) 1/4 1/4 1/4 1/4
(a2, b2) 1/4 1/4 1/4 1/4

Table 4.1: Empirical model containing only uniform probability distributions
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4.3 Obtaining quantum word embeddings

Our next step is to see whether the circuits we have trained can be used to give
a meaningful representation of words. If this is the case, this would give us a way
of obtaining quantum word embedding, which could be used in NLP tasks such
as word-sense disambiguation. Testing the performance of such word-state in NLP
tasks is beyond the scope of this work and is left to future work.

4.3.1 Methods

Each word-state is trained for a fairly specific empirical model and is not com-
positional by default. Hence, we first want to check that the states which should
correspond to the same word are indeed similar. If this were not the case, these
word-states would not be useful anyway as a single word would have multiple
representations. Here, we will assume that each word’s dependency constitutes an
inherent part of the word. For example, the noun pitcher used as a subject will be
considered distinct from the same word used as an object. Similarly, the verb tap
taking a subject will be considered distinct from the same verb taking an object in-
stead.

As we did for the prediction task, we first fixed the initial parameters for all
of the variational circuits (otherwise, we would expect the different word-states to
share little features). Then, using the optimised circuits, we can obtain a quantum
state representation of a subject or object by fixing the input of the S or O individual
circuits. For example, given the circuit representation of {press, volume}:

S = press/volume (4.8)

(obtained from, say, training for the empirical model corresponding to the SV model
{press, volume} × {conduct, file}),we can obtain a quantum state representation of
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the word volume (as a subject) as:

volumeS
= press/volume

1 0

Input Ancilla

(4.9)

(recall that, in the case of SV circuits, the right-hand ancilla state is always set to |0⟩
for SV circuits). Similarly, given the verb-object model associate with {conduct, file}×
{press, volume}, given an optimised object circuit:

O = press/volume (4.10)

the quantum state representation of the word volume (as an object) is:

volumeO
= press/volume

0 1

InputAncilla

(4.11)

(recall that, in the case of VO circuits, the right-hand ancilla state is always set to |0⟩).
Also note that the RHS of (4.8) and (4.10) do not have to be related, so in general,
(4.9) will be different from (4.11).

For verbs, the process is a little more complicated as the representation of the
verb not only depends on the choice of the verb but is also taking some information
from the S orO circuit as well (see Fig. 4.1). Hence, to obtain the verb representation,
we first fix its input and then take the partial trace over the subsystem dependent on
the S or O output. This procedure will give us a density matrix instead of a pure
quantum state. For example, given the verb circuit form the SV circuits obtained for
the empirical model {press, volume} × {conduct, file}:

V = conduct/file (4.12)
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we can obtain the representation of the verb conduct as:

conduct
= conduct/file

0

conduct/file∗

0

= conduct/file

0

Forget memory Input

Part of the ansatz
(4.13)

In order to quantify “how similar” two word-vectors are, we decide to calculate
the inner products between them. Here, we will be interested in the inner-product
between states representing the same word (and dependency) but have been trained
to approximate different empirical models. For example, given two SV circuits for
the empirical models associated with M1 = {press, volume} × {conduct, file} and
M2 = {line, volume} × {box, reflect}, we would like to compare the word-states
associated with volume in the two optimised circuits.

In the case of nouns (i.e. subjects or objects), we recall that these are pure quan-
tum states, so we calculate their inner product using the Born rule:

|⟨ψn|ϕn⟩|2 =

∣∣∣∣∣∣∣∣∣
ϕn

ψn

∣∣∣∣∣∣∣∣∣
2

(4.14)

where |ψn⟩ and |ϕn⟩ are both representation of the noun n. For example, given the
circuits optimised for the empirical models associated with M1 and M2 as defined
above in the paragraph, we define the inner products of the two word-states associ-
ated with the word volume as: ∣∣∣∣∣∣∣∣∣∣∣∣∣

press/volume

1 0

line/volume†

1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

(4.15)

For verbs, which we recall are density matrices, we apply the generalised Born
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rule instead to calculate the inner product:

Tr(ρvϱv) =

ρv

ϱv

(4.16)

where ρv and ϱv are both representation of a verb v. For example, given two SV
circuits optimised to approximate the empirical models associated with :

M1 = {press, volume} × {conduct, file}

M3 = {letter, paper} × {conduct, grasp}

we can define the inner-product between the two word-states of the verb conduct as:

conduct/file

0

conduct/grasp†

0

=

conduct/file

0

conduct/grasp†

0

conduct/file∗

0

conduct/graspT

0

(4.17)

In both cases, an inner-product of 1 will mean that the two states are equivalent,
and an inner-product of 0 will mean that the two states share no feature.

4.3.2 Results
We found out that the pure states corresponding to nouns have a larger overlap

between different models, where the average inner product was of 0.64 for noun-
states, compared to mixed verb-states where the average inner product was 0.37.

In addition, we observed stark differences between these inner products depend-
ing on whether the word states were associated within the same or different input
state, where we only consider the input state which identifies the word of interest
(as opposed to the ancilla input, which is always the same). For example, the word
press in the model (press, volume)× (conduct, file) is associated with the input state
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|0⟩, whereas the same word in the model (line, press)×(admit, wipe) will correspond
to the input state |1⟩.

In particular, we observed that the word states associated with words corre-
sponding to the same input states (e.g. press in (press, volume)× (conduct, file) and
(press, television) × (box, label)) have an inner product close to 1. The average of
these inner-product was 0.94 for pure noun-states and 0.48 for mixed verb-states.

By contrast, the word states corresponding to different input states (e.g. press in
(press, volume)×(conduct, file) and (line, press)×(admit, wipe)) had a small overlap
(on average the inner-product between them was 0.03 for noun states and 0.02 for
verb states).

This is expected as we have previously seen that the output of the training pro-
cess is highly dependent on the choice of initial parameters. Hence, when words
are associated with different input states, they will not necessarily correspond to the
same optimised circuits.

Overall, this means that the quantum word embeddings that we obtain from these
variational circuits have the potential to be useful in NLP tasks as long as one fixes
the input state it corresponds to.

4.4 Entanglement of phrases and words
We now investigate how much entanglement has been created using the opti-

mised variational circuits. Entanglement is often considered the primary source
of quantum correlation [150, 188]. A quantum state is said to be entangled (or non-
separable) iff it cannot be prepared using Local Operations and Classical Correlations
(LOCC) alone [144]. If this amount of entanglement is high, in particular for the
more accurate models, this suggests that training using quantum resources may be
beneficial (as opposed to simply using classical probabilistic methods).

4.4.1 Entanglement measures
Due to its importance in quantum information theory, entanglement needs to be

quantified. Many measures of entanglement have been proposed for bipartite and
multipartite states, for pure and mixed states. Here, we will focus on the bipartite
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measures and introduce an entanglement measure pure state and one for mixed
states.

For pure state, the standard measure of entanglement is the entanglement entropy,
defined as:

E(|ψ⟩ ∈ HA ⊗HB) = −Tr (ρA log2 ρA) = −Tr (ρB log2 ρB) (4.18)

where ρA,B = TrA,B |ψ⟩ ⟨ψ|.
Many (non-equivalent) measures of entanglement have been proposed for mixed

states. Among which is the entanglement of formation, formally defined as:

EF (ρ) = inf

{∑
k

pkE (|ψk⟩)

∣∣∣∣∣ ρ =∑
k

pk |ψk⟩ ⟨ψk|

}
(4.19)

Using the above definition alone, it is very hard to calculate the entanglement of
formation for an arbitrary density matrix, as it involves finding all of the possible
decompositions of the matrix ρ in terms of density matrices of pure states. Fortu-
nately, in the case of qubit systems, a closed formula has been found to calculate the
entanglement of formation [199], namely:

EF (ρ) = s

(
1 +

√
1− C2(ρ)

2

)
(4.20)

where C(ρ) is defined as:

C(ρ) = max {0, λ1 − λ2 − λ3 − λ4} (4.21)

where (λ1, λ2, λ3, λ4) is the ordered set of eigenvalues of ρσY ⊗σY ρ
∗σY ⊗σY , and s is

defined as:
s(x) = − (x log2 x)− ((1− x) log2(1− x)) (4.22)

4.4.2 Entanglement of the optimised circuits
We start by looking at the amount of entanglement created by the whole paramet-

ric circuits.
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These parametric circuits are bipartite by design, and only make use of qubits.
However, we discard a qubit system in each of the circuits. Hence, we will need to
quantify entanglement for mixed states.

Results & Discussion The amount of entanglement of formation for the trained
parametric circuits is depicted in Fig. 4.6. As we can see, the amount of quantum
correlations seems to increase as the circuit’s accuracy increases, particularly for VO
models.

This would suggest that the process of disambiguation is “truly parallel” instead
of having probabilistic mixtures of combinations of interpretations that can be se-
lected, particularly in VO phrases.

Figure 4.6: Entanglement of formation of the optimised parametric circuits, as the
number of rounds increase.

4.4.3 Entanglement of the noun-embeddings
We now want to study the amount of entanglement created for each word individ-

ually. However, since only one qubit in the output of verb-circuits is not discarded,
any meaningful representation of verb vectors would be simply monopartite, and
the notion of entanglement does not apply. We then primarily focus on the degrees
of entanglement of nouns. In addition, since subject and object word-states are pure
states by design, we can use entanglement entropy (4.18) to measure the amount of
quantum correlations created.



144 4.4. Entanglement of phrases and words

The evolution of the entanglement entropy of noun states as the number of rounds
in the ansatz increases is shown in Fig. 4.7. The entanglement entropy of subjects
is high for smaller numbers of rounds (⟨E⟩ = 0.95 ± 0.03 for n = 1 rounds) but
decreases as the number of rounds increases (⟨E⟩ = 0.25 ± 0.18 for n = 5 rounds).
The opposite happens for objects, that is, the amount of entanglement of noun states
increases as the approximations get better and better (from ⟨E⟩ = 0.55 ± 0.04 for
n = 1 round to ⟨E⟩ = 0.83± 0.10 for n = 5 rounds).

This observation suggests that the correlations between the subject and the verb
are not as strong as the correlations between the object and the verb, or that SV
phrases are disambiguated more locally than VO phrases where more interaction
between the two words would be needed. As before, this would require further
experiments to confirm this trend.

Figure 4.7: Evolution of the entanglement generated by the subject and object cir-
cuits, as the number of rounds increases.

In addition, the entanglement entropy of the nouns (subject or object) does not
appear to depend on whether it is homonymous or polysemous. All of the p-values
were p > 0.05 for subjects and p > 0.19 for objects.

However, this is by design, as nouns are represented by pure states. Hence, the
only way to obtain correlations between the nouns and the verb is through entan-
glement. It would be interesting to train density matrices in future work and check
whether the ambiguity of the nouns affects the entanglement of its quantum state
representation.
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Summary of the Chapter
• Using the observations of Chapter 3, we proposed a quantum model of the

disambiguation of subject-verb and verb-object phrases.

• This model was successfully implemented by variational circuits.

• The optimised quantum circuits were used to predict the meaning of unseen
phrases.

• Preliminary evidence suggest that these circuits could be used as embeddings
in NLP tasks.

• The optimised circuits generated a non-negligible amount of entanglement.
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Part III

Syntactic ambiguity





Chapter 5
Modeling the human parsing

process

In this chapter, we introduce our models of the human parsing process using
sheaf theory. We adopt a model in which all possible parses are available at any
given stage of a sentence with some probabilities (which we estimate empirically in
Chapter 6). This description is compatible with parallel-ranked processing, where
the reader constructs parses in parallel and associates each parse with a weight,
and probabilistic serial strategies, where the reader creates each parse with a given
probability.

This model leads to empirical models similar to the ones described in the pre-
vious part and the ones of quantum mechanics [6, 79, 80, 5]. Our empirical models
only consider syntactic parses and no lexical or discourse information. Therefore,
this is a preliminary model, and our results suggest that such models can indeed be
used to represent human processes.

In Section 5.1, we present the structure of our models and how empirical statistics
are collected. In Section 5.2, we formally analyse the empirical models regarding
quantum contextuality and causality. This section also includes intuitions about
interpreting the signalling and causality in the models.

149
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These models, as well as the predictions described in the next chapter can also
be found in [193].

5.1 A sheaf-theoretic model of the syntax of
sentences

We start by describing a sheaf-theoretic model of human parsing based on the
following key points:

1. Incrementality. We want to study the evolution of the reader’s mental rep-
resentation as they encounter more information. The literature shows that
human understanding is highly incremental. Therefore, we want to create a
model that follows the linear order of the words in the sentence, i.e. how in-
formation is presented to the reader.

2. Grammatical structure. This is our main object of interest. We want to capture
what the reader thinks of the grammatical structure of a sentence or part of a
sentence. In this work, only the grammatical structure is taken into account.
In future work, we plan to include other factors such as plausibility, thematics,
etc.

3. Statistics. We follow the psycholinguistic hypothesis that the reader may keep
in mind all of the possible grammatical structures at each stage, but with dif-
ferent ratings (see Section 2.2.1). This implies that we need a way of “rating”
different grammatical structures. In the following sections, we opt for proba-
bilities over partial parses. This will give a parallel-ranked model of the pars-
ing process.

Sheaves are a promising way of combining these concepts in a single framework.
The intuition is that the statistics are defined over the set of possible grammatical
structures. In turn, the grammatical structures are only defined over a set of words
that are presented to the reader, and evolve in a linear fashion. Let us describe this
idea in more detail.
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5.1.1 Incrementality
As described above, we take our contexts to be words as appearing in a sentence

or a phrase. The combination of these words forms sentence fragments by concate-
nation. Now, for a given sentence, e.g. The employees understood the contract, we can
define many different sentence fragments, for example, The employees, The employees
understood, employees understood, etc. We define a prefix order over this set of sentence
fragments as follows:

Definition 5.1. A fragment s1 of a sentence is included in another fragment s2 iff s1
is a prefix of s2. We write:

s1 ≤p s2 (5.1)

The set of fragments of a sentence S equipped with the prefix order forms a (pre-
order) category CS.

Example 5.2. In the sentence The employees understood the contract, we have:

The employees ≤p The employees understood (5.2)

However, the two fragments The employees and employees understood are not compa-
rable.

Remark 5.3. We could have chosen morphism to be the simple inclusion of sub-
phrases, e.g. taking: employees ⊆ The employees. However, in the case of a purely
incremental model of parsing, the prefix order appears to be the most relevant, as it
models the order of information available to the reader.

In order to study the incremental evolution of the probability distributions, we
consider a sequence of empirical models. Each empirical model will consist of two
consecutive stages. For example, if we want to study the behaviour at the word level
(e.g. the difficulty of reading a word), we would take stages to be words and subse-
quently consider sequences of empirical models containing a pair of contexts, where
the contexts only differ by one word. In this case, the sentence The employees under-
stood the contract would change would lead to the sequence of empirical models with



152 5.1. A sheaf-theoretic model of the syntax of sentences

contexts:

M1 = {The,The employees}

M2 = {The employees,The employees understood}

M3 = {The employees understood,The employees understood the}
...

M6 = {The employees understood the contract would,

The employees understood the contract would change}

Similarly, we could take stages to correspond to regions or phrases of the sentence,
in which case we would consider sequences of empirical models in which the con-
texts differ by a region. An example of such a sequence of empirical models would
consider the following contexts:

M1 = {The employees,The employees understood the contract}

M2 = {The employees understood the contract,

The employees understood the contract would change}

We could also consider a more fine-grained analysis and take tokens or morphemes
to be the incremental unit. In this chapter, we will study word-by-word parsing
behaviour.

5.1.2 Grammatical structures

For each phrase or context, we want to be able to associate a grammatical struc-
ture. The grammatical structure will then be the outcomes of our models. There
are different ways to represent the grammatical structure of natural language input,
including constituency trees [39], dependency grammars [158], and categorial gram-
mars [11, 19, 112, 170].In this work, we decide to work with dependency grammars.
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Depedency grammar
In dependency grammar, each word of the sentence is associated with a head and

a dependency or syntactic function. The main dependency structures are as follows:

• The main verb of a sentence, or the main noun of a noun-phrase, is its own
head and is associated with the dependency ROOT;

• The head of the subject of a verb is the verb, and its dependency is nsubj
(nominal subject);

• The head of the object of a transitive verb is once again the verb, and its de-
pendency is dobj (direct object);

• The head of a determiner is its head noun and comes with dependency det;

• The head of an adjective is the noun it is modifying, and its dependency is
amod (adjective modifier);

• . . .

These dependency structures are usually represented as graphs, where we use
labelled directed arrows word depdency−−−−−→ head(word) to represent them (see Fig. 5.1 for
example of such graphs).

The employees understood the contract would change

det nsubj root
det

nsubj

aux

ccomp

Figure 5.1: Depedency relations in the sentence The employees understood the contract
would change.

The presheaf of events
Events The main reason for adopting dependency grammar instead of a different
paradigm is its minimality. In particular, it is easy to convert a dependency graph
to a function s : U → N × D, where U corresponds to the ordered set of words in a
sentence, and D is the set of dependency relations.
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To do so, we start by labelling the words of the sentence (or sentence fragment)
by their position in the sentence (resp. sentence fragment) – then each word has a
label in N. Then, each element of U can be seen as an element of V × N, where V is
the vocabulary. We want a pair (w, n) ∈ V × N to represent a word w being found
in position n in a sentence fragment. Hence, we would also require that for each
element of U :

(w, k), (w′, k) ∈ U =⇒ w = w′ (5.3)

This last condition states that we can only have one word at position k. We can then
see that the objects of CS, can be expressed in this fashion as:

w1 . . . wn := {(w1, 1) , . . . , (wn, n)} (5.4)

Example 5.4. Consider the sentence S =The employees understood the contract would
change. Here, we have:

The = {(The, 1)}

The employees = {(The, 1), (employees, 2)}

The employees understood = {(The, 1), (employees, 2), (understood, 3)}
...

S = {(The, 1), (employees, 2), (understood, 3), (the, 4),

(contract, 5), (would, 5), (change, 6)}

We are now ready to define the dependency structure of a sentence fragment U
as a function s : U → N ×D, such that (w, k) 7→ (k′, d) signifies that the word w (at
position k) has a head at position k′ with dependency d. So, for instance:

The employees understood

det nsubj root

≡


(The, 1) 7→ (2, det)

(employees, 2) 7→ (3, nsubj)

(understood, 3) 7→ (3, ROOT)

(5.5)
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Presheaf structure Using the correspondance (5.4) between the defined sets U and
objects of CS, we can define the functor:

Ẽ : Cop
S → Sets

U 7→ {s̃ : U → N×D}
U ≤p V 7→ s̃V 7→ s̃V |U

(5.6)

where the restriction morphisms are defined sV 7→ sV |U as:

s̃V |U((w, k) ∈ U) = s̃V ((w, k) ∈ V ) (5.7)

Note that this is well-defined since U ≤p V implies that U and V are of the form:

U = {(w1, 1) . . . (wn, n)}

V = {(w1, 1) . . . (wk, k)}

where n ≤ k.

Example 5.5. Let us again take the sentence S = The employees understood the contract
would change. For U = The employees and V = The employees understood, we would
have:

The employees understood

det nsubj root
∣∣∣∣∣∣∣
The employees

= The employees [. . . ]

det nsubj

(5.8)

Remark 5.6. Since we are dealing with sentence fragments as well as sentences, the
head of a word in a fragment may be undefined or at least underspecified. This feature
is quite useful from a cognitive plausibility point of view, as it is hypothesised that
humans tend to make predictions about the completion of sentences. Therefore,
dependencies may not be known in advance.

To simplify calculations, we restrict our data by only considering unlabelled at-
tachments, i.e., to only consider the head of each word as a grammatical structure.
One can see that this is enough to distinguish between the different syntactic struc-
tures of NP/S and NP/Z garden-path sentences (see Fig. 5.2). Hence, we will take
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The employees understood the contract would change

(a) NP/S sentence

Because the employees negotiated the contract would change

(b) NP/Z sentence

Figure 5.2: Examples of unlabelled dependency parses for NP/S and NP/Z sen-
tences. The discarded parse is also shown (bottom/upside-down parse).

our presheaf of events to be the functor:

E : Cop
S → Sets

U 7→ {s : U → N}
U ≤p V 7→ sV 7→ sV |U

(5.9)

where the parses s : U → N ∈ E(U) can be obtained from the parses s̃ : U → N×D ∈
Ẽ(U) as:

s = π1 ◦ s̃ (5.10)

Example 5.7. Taking a labelled parse to be:

s̃ = The employees [. . . ]

det nsubj

the associated unlabelled parse is given as:

s = The employees [. . . ]

5.1.3 Probability distributions
We now associate probability scores with possible parses. As in previous chapters,

this is done by selecting sections of the presheaf of events post-composed with the
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distribution monad DR+ : Sets → Sets.

We recall that the functor DR+ associate with each set A, the set of probability
distributions over A. Hence, for each U ∈ ob (CS), the set DR+E(U) corresponds to
the set of all probability distributions over the set of possible (dependency) parses
of U . Now, we are only interested in one probability distribution in the set DR+E(U),
namely, the probability distribution over parses corresponding the mental represen-
tation of the syntactic structure of the fragment U .

Example 5.8. For U = The employees understood, we could single out the following
probability distribution eThe employees understood ∈ DR+E(U):

eThe employees understood

(
The employees understood [. . . ] [. . . ] [. . . ] [. . . ]

)
= 0.95

eThe employees understood

(
The employees understood [. . . ] [. . . ] [. . . ] [. . . ]

)
= 0.02

eThe employees understood (other syntactic structures) < 0.01

(5.11)

Recall that we consider a sequence of empirical models such that in each empir-
ical model, the measurement scenario consists of a pair of contexts differing by a
single word. Consequently, an empirical model will consist of a pair of probability
distributions.

Example 5.9. An empirical model corresponding to M3 of the sentence The employees
understoond the contract would change could consist of the probability distribution of
(5.11) and :

eThe employees understood the

(
The employees understood the [. . . ] [. . . ] [. . . ]

)
= 0.37

eThe employees understood the

(
The employees understood the [. . . ] [. . . ] [. . . ]

)
= 0.35

eThe employees understood the

(
The employees understood the [. . . ] [. . . ] [. . . ]

)
= 0.26

eThe employees understood the

 The employees understood the [. . . ] [. . . ] [. . . ]

 = 0.01

eThe employees understood the ( other syntactic structures) < 0.01

(5.12)
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5.2 Contextuality, causality and signalling of
the models

We now investigate the properties of the created empirical models. In particular,
we are going to focus on the properties of the signalling fraction SF, which was first
defined in [183] and Section 1.2.2, and is going to be our main reading time predictor
in Chapter 6. First, we start with the impossibility of observing contextuality in this
type of scenario.

5.2.1 Contextuality
Not all of the measurement scenarios are capable of hosting contextuality. This

can be determined by looking at the structure of M. In particular, it is known from
Vorob’ev’s theorem [189, 20] that if the set M = {M1, . . . ,Mn} satisfies[1]:

M1 ⊆M2 ⊆ . . .Mn (5.13)

then, any compatible family {eM |M ∈ M} of probability distribution over M ad-
mits a global distribution over

⋃
M∈MM , which can in fact be shown to be the max-

imal distribution eMn using the compatibility assumption. In other words, the em-
pirical models described in Section 5.1 cannot exhibit contextuality.

5.2.2 Causality and signalling
Here, we argue that the linguistic models correspond to both a contextuality and

a causality scenario. To see this, we first note that for each empirical model, one
context includes exactly one less word than the other. As a result, we can without
loss of generality see empirical models as an {m,mw} scenario. For example, in
the empirical model M2, we have m =The employees and w = understood. We can,
therefore, express the compatibility relation of this model as:

1. A symmetric relation analogous to measurements that can be simultaneously
measured. In this case, we interpret m and w as compatible, meaning they are

[1]Topologically speaking, this means that M forms a simplex.
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somewhat parsed independently. In this interpretation, we have a situation
similar to contextuality scenarios;

2. An asymmetric relation analogous to causal scenarios. In this case, the com-
patibility relation ⪯ is read m ⪯ w.

Both interpretations are possible and very much related. However, the meanings
of the quantity SF are subtly different.

In the symmetric interpretation, SF quantifies how consistent the two probability
distributions are. On the other hand, in the causal interpretation, the signalling
fraction is also a measure of the departure from a causal model following the linear
reading order. In other words, a high signalling fraction is evidence that parsing
a particular subphrase is not incremental[2] but instead should require information
coming from words situated after the phrase under consideration.

In either case, if we observe that an empirical model has a higher signalling frac-
tion, this should signify that some reanalysis has to occur. According to psycholin-
guistic parsing theories, this should trigger a slowdown in reading time.

Hence, we hypothesise that the signalling fraction SF, equivalently the non-
causal fraction NCausF, should correlate with human reading times. We investigated
this in Section 6.2. For uniformity purposes, we will focus on the models’ signaling
in the rest of this part.

5.2.3 Computing SF

Computing the signalling/causal fractions in a generic empirical model is not a
trivial task, as it requires finding a solution to a linear optimisation problem [183]
(see also the discussion in Section 3.4). However, given the specific structure of our
empirical models, it is possible to find an expression of the signalling fraction SF,
which can be calculated efficiently.

Proposition 5.10. The signalling fraction can be computed via the following equation

SF = 1−
∑
o

min (emw|m (o), em(o)) (5.14)

[2]In the linguistic sense, i.e. following the left-to-right reading order.
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The proof of this proposition can be found in Appendix C.6.

We argue that the signalling fraction measures parsing difficulty. This claim is
motivated by the fact that SF can be seen as a measure of distance between probabil-
ity distributions observed at different stages of the sentence. Therefore, the higher
the signalling fraction, the more readers will have to readjust their mental repre-
sentation of the grammatical structure. We can even say that since the contexts
mi,mi+1 ∈ Mi only differ by a single word, the signalling fraction of the empirical
model ei becomes related to the difficulty of understanding the extra word.

Example 5.11. For the empirical corresponding to:

M3 = {The employees understood,The employees understood the}

defined above in (5.11) and (5.12), we obtain a signalling fraction of SF3 = 0.05,
hence showing that the word the at the end of the fragment The employees understood
the is not difficult to parse. On the other hand, if we calculate the signalling fraction
for the empirical model:

M5 = {The employees understood the contract,

The employees understood the contract would}

(see Fig. 5.3), the signalling fraction can be found to be SF5 = 0.79, which reflects the
fact the parsing the word would is quite difficult.

Summary of the chapter
We consider a sequence of empirical models such that:

• Each empirical model contains a pair of contexts differing by a single word;

• For each context, we select a probability distribution over possible parses
corresponding to the mental representation of the syntactic structure of a sen-
tence fragment. The details of the computation of the probability distribution
will be discussed in the next Chapter.
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Parse Probability

The employees understood the contract [. . . ] [. . . ]
0.44

The employees understood the contract [. . . ] [. . . ] 0.14

The employees understood the contract [. . . ] [. . . ] 0.12

The employees understood the contract [. . . ] [. . . ] 0.10

The employees understood the contract [. . . ] [. . . ]
0.04

Other parses < 0.01

(a) Probability distribution for the context The employees understood the contract
Parse Probability

The employees understood the contract would [. . . ]
0.96

The employees understood the contract would [. . . ]
0.02

Other parses < 0.01

(b) Probability distribution for the context The employees understood the contract would

Figure 5.3: Example of an empirical model corresponding to M5 in the sentence The
employees understood the contract would change (adapted from the empirical model
obtained for The faithful employees understood the technical contract would be changed,
which can be found in [192]).

Although we cannot observe contextuality in these empirical models, we can use
the signalling fraction SF to quantify the difficulty of parsing incoming information.
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Chapter 6

Predicting garden-path effects

In the previous chapter, we introduce our model of the human parsing process.
This chapter aims to test the predictions arising from the model using empirical
data.

We start by describing the procedure for computing the reading time predictions
in Section 6.1. In Section 6.2, we describe the predictions from empirical models,
and in Section 6.3, we compare these results with the ones obtained from surprisal
theory.

6.1 Methods
In this section, we describe the procedure employed to predict reading times. We

start by describing the computational tools used. Subsequently, we explain how we
used these tools to collect probabilities. Finally, we describe the datasets from which
the garden-path sentences and reading times are taken.

163
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6.1.1 Tools
In this work, we approximate this probability distribution using the large lan-

guage model BERT and the state-of-the-art dependency parser spaCy.

BERT [46] is one of the first language models to adopt the transformer architecture.
The transformer was first introduced in [187] in 2017 and offered an alternative to
Recurrent Neural Networks (RNNs). This architecture improved both the trainabil-
ity of neural networks and their performance and is still considered state-of-the-art.
See Section 2.1.1 for a more detailed description of BERT.

spaCy is an open-source Python library developed by the company Explosion.
It is widely used in NLP, in particular for linguistic annotations. Its functionalities
include tokenization, lemmatization, part-of-speech tagging, sentence boundary de-
tection, and dependency parsing. In this work, we mostly made use of the latter. The
dependency parser has been evaluated independently in [38] over the OntoNotes5
corpus containing 2.9M tokens. It was shown that the spaCy dependency parser
predicted the head of a word (Unlabelled Attachment Score) with a 89.61% accuracy
and the head and label of a word (Labelled Attachment Score) with an accuracy of
87.92% [38].

We also worked with different variations of BERT and spaCy to see how the ac-
curacies of the predictions would vary.

For BERT, we used the following flavours:

• distilBERT: a light version of BERT. It only has 40% of the parameters of the
original bert-base model, but runs 60% faster while preserving 95% of its
performance accuracies in language understanding tasks;

• bert-base-cased: the most commonly used version of BERT. It has 110 mil-
lion parameters and was trained on the Toronto Book Corpus and the English
Wikipedia, both of which distinguish between lower and upper case letters.
Uncased versions of the same algorithm exist and were developed for pur-
poses of cross-lingual learning;

• bert-large-cased: a larger version of bert-base-case which has 340
million parameters.
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For spaCy, we also worked with different models, namely:

• en_core_web_sm: its standard version. It was trained using convolutional
neural networks on web text consisting of blogs, news, and comments;

• en_core_web_lg: its larger version. Its training procedure is similar to the
en_core_web_sm version, but also contains a word vector table with 500k
unique 300-dimensional vectors;

• en_core_web_trf: its newer version. It has no word vectors but is trained
using state-of-the-art transformer-based neural networks.

6.1.2 Method
To obtain a probability distribution over parses, we implement the following pro-

cedure:

1. Given a fragment of a sentence S, we turn it into a complete sentence by mask-
ing all of the remaining words of the S, see Fig. 6.1 for an example.

Remark 6.1. Since the task we are interested in is closely related to the task
BERT was trained on, we did not need to fine-tune the pre-trained BERT mod-
els.

2. BERT then provides a list of predictions of the completion of the subphrases
and a logit score σ for each of these predictions, which is meant to rate the like-
lihood of each prediction. The common practice in NLP is to use the logistic
function to turn these scores into probabilities, namely:

p =
eσ

1 + eσ
(6.1)

Remark 6.2. We could have equally used a softmax function to convert those
scores into probabilities. We leave the investigation of results using softmax as
future work.

Now, these predictions are not always words and may include punctuations.
We only include the text predictions to avoid complications by dropping the
punctuation and renormalising the probability distribution.
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Context BERT input
The The [MASK] [MASK] [MASK] [MASK] [MASK] [MASK]
The employees The employees [MASK] [MASK] [MASK] [MASK] [MASK]
The employees understood The employees understood [MASK] [MASK] [MASK] [MASK]
The employees understood the The employees understood the [MASK] [MASK] [MASK]
The employees understood the contract The employees understood the contract [MASK] [MASK]
The employees understood the contract would The employees understood the contract would [MASK]

Figure 6.1: BERT inputs for the sentence The employees understood the contract would
change.

3. We then use spaCy to parse each of the predictions provided by BERT. To
obtain the syntactic structure of the specific subphrase we are working with,
we restrict the full parse to the words included in that subphrase using the
restriction maps from the presheaf E (see eq. (5.7)).

4. The probability of each such partial parse is obtained by summing up all the
BERT-prediction probabilities that restrict to the same parse. For example, the
predictions for the continuations of The employees understood:

The employees understood that their salaries varied

The employees understood the risks in advance

The employees understood they also had freedom

will lead to the same partial parse when restricted to the context The employees
understood, namely:

The employees understood [. . . ] [. . . ] [. . . ] [. . . ]

Their probabilities will, therefore, be summed up in the corresponding empir-
ical model.
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6.1.3 Description of the datasets
In this work, we make use of two reading time datasets that have been collected

in psychology, namely the one of Sturt et al. [173] and the one of Grodner et al. [83].
In both of the studies presented in [173] and [83], the authors investigated the slow-
downs of garden-path sentences of types NP/S and NP/Z, and both collected (non-
cumulative) self-paced reading times.

Self-paced reading In self-paced reading experiments, the participants are pre-
sented with a sentence or text, where most words are hidden, apart from a text
window (usually consisting of a word or several words). Then, upon interaction
with a computer (e.g. pressing the space bar), the window is allowed to move from
left to right, revealing more text to the participant. In a non-cumulative setting, the

Display
Step 1 The faithful employees_____________________________________________________________
Step 2 _______________________understood the technical contract___________________________
Step 3 _________________________________________________________would be changed__________
Step 3 _________________________________________________________would be changed__________
Step 4 __________________________________________________________________________very soon
Step 4 __________________________________________________________________________very soon

Figure 6.2: Evolution of the display presented to participants in a (region-by-region)
self-paced reading experiment, with input sentence The faithful employees understood
the technical contract would be changed very soon

participant cannot access previous text once the window has moved.
Self-paced reading experiments provide less information than eye-tracking ex-

periments do. For example, backtracking is not an option for participants, and they
are arguably less natural than the eye-tracking setting. However, they are much
more interpretable since they produce fewer variables to keep track of. In addition,
they are less expensive to set up since all that is required is a computer, and online
crowdsourcing is also possible.

The Sturt et al. dataset
The Sturt et al. [173] dataset consists of 32 pairs of sentences such as:

(1a) The faithful employees understood the technical contract would be changed
very soon.
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(1b) Because the faithful employees negotiated the technical contract would be
changed very soon.

Each of these pairs contains an NP/S sentence, such as (1a), and an NP/Z sentence,
such as (1b), and both the sentences in a pair share overlap in vocabulary.

In addition, each of these garden-path sentences is also associated with unam-
biguous version, which is easier to parse. For NP/S sentences, this is done by adding
the connective that after the main verb. In NP/Z sentences, this is achieved by
adding a comma after the main verb. For example, the following are the unambigu-
ous versions of the sentences (1a) and (1b) respectively:

(1c) The faithful employees understood that the technical contract would be changed
very soon.

(1d) Because the faithful employees negotiated, the technical contract would be
changed very soon.

Remark 6.3. In the following discussion, we sometimes use the term “ambiguous
sentences” to describe the garden-path sentences. This is an abus de langage since
these sentences are not actually (globally) ambiguous. Similarly, the “unambiguous
sentences” are not fully (locally) unambiguous. This terminology helps distinguish
the sentences that cause difficulty parsing and those that don’t.

This gives a total of 128 sentences.

Each of these sentences is, in turn, divided into 4 regions. For instance, the sen-
tences (1a) and (1b) are respectively divided as:

(1e) The faithful employees / understood the technical contract / would be changed
/ very soon.

(1f) Because the faithful employees / negotiated the technical contract / would
be changed / very soon.

and similarly for the unambiguous sentences. The critical regions are the ones un-
derlined.

The experiment described in [173] recorded the region-by-region reading times,
i.e. the participants were presented with one of these regions at a time and allowed
to move one region forward at each event. The numbers reported in the study were
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average region reading times, averaged across sentences of the same type (i.e. NP/S
ambiguous, NP/S unambiguous, NP/Z ambiguous, or NP/Z unambiguous), and
across participants. These numbers can also be found in Table 6.1.

Regions
1 2 3 4

NP/S (ambiguous) 990 1183 877 771
NP/S (unambiguous) 981 1282 790 768

NP/Z (ambiguous) 914 1269 1335 848
NP/Z (unambiguous) 998 1384 935 832

Table 6.1: Region-by-region self-paced reading times of garden-path sentences and
their unambiguous variants (in ms). These numbers were taken from [173]

The Grodner et al. dataset
The Grodner et al. dataset [83] was created in a different way. As for the Sturt et

al. dataset, it contains both NP/S and NP/Z sentences such as :

(2a) The employees understood the contract would be changed to accommodate
all parties.

(2b) Even though the band left the party went on for at least another two hours.

In addition, each of the NP/S and NP/Z sentences also come with a modified
variant, where a descriptive noun-phrase is added to the subject of the main verb.
For example:

(2c) The employees who initiated the strike understood the contract would be
changed to accommodate all parties.

(2d) Even though the band which played funk music left the party went on for at
least another two hours.

Remark 6.4. The reason for having modified and unmodified versions of the same
garden-path sentence was to identify whether human parsing strategies were more
consistent with repair-based or reanalysis-based models (see Section 2.2.1). How-
ever, since we are not interested in this particular aspect of the parsing process, we
ignored their distinction when analysing the garden-path effects. However, when
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creating a linear regression model, having a multiplicity of data points allows us to
obtain a better model and reduces errors due to averaging.

The dataset taken from [83] contains 20 pairs of modified/unmodified NP/S garden-
path sentences and 20 pairs of modified/unmodified NP/Z sentences.

In addition, as for the Sturt et al. dataset, each sentence comes with an unam-
biguous version. For instance, for the unmodified versions (2a) and (2b), these are:

(2a) The employees understood that the contract would be changed to accommo-
date all parties.

(2b) Even though the band left the party, went on for at least another two hours.

Similarly, for the modified version (2c) and (2d), the unambiguous variants are:

(2a) The employees who initiated the strike understood that the contract would be
changed to accommodate all parties.

(2b) Even though the band which played funk music left the party, went on for at
least another two hours.

This gives us a total of 160 sentences.

Each of these sentences is also divided into regions, but contrary to the dataset
of [173], the number of regions is different for every type of sentence, and the length
of regions is highly variable within a given sentence. These regions are depicted in
Table 6.2a.

In the corresponding study, the authors collected word-by-word self-paced read-
ing times and reported the average word reading time for each region (aside from
the last one for which numbers are omitted), averaged across sentences of the same
type and across participants. The obtained averages are shown in Table 6.2b.

Remark 6.5. In addition, since the numbers quoted in the Sturt et al. dataset are
region-by-region reading times, we decided to make region-by-region predictions
over this dataset. Similarly, since the Grodner et al. dataset used word-by-word
reading times, we decided to make word-by-word predictions over this dataset.
This is at odds with the study of [185] where, for uniformity purposes, the region-
by-region reading times were averaged to produce word-by-word reading times.
However, doing so would increase the amount of systematic error. For instance,
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Regions
1 2 3 4 5 6

NP/S (unmod., amb.) The employees understood the contract would be changed
NP/S (unmod., unamb.) The employees understood that the contract would be changed

NP/S (mod., amb.) The employees who initiated the strike understood the contract would be changed
NP/S (mod., unamb.) The employees who initiated the strike understood that the contract would be changed
NP/Z (unmod., amb.) Even though the band left the party went on for[...]

NP/Z (unmod., unamb.) Even though the band left, the party went on for[...]
NP/Z (mod., amb.) Even though the band which played funk music left the party went on for[...]

NP/Z (mod., unamb.) Even though the band which played funk music left, the party went on for[...]

(a) Regions of the different sentence types in the Grodner et al. dataset. The critical regions
are underlined. (Note that the last region is omitted)

Regions
1 2 3 4 5 6

NP/S (unmod., amb.) 397 467 412 424
NP/S (unmod., unamb.) 393 460 431 396 410

NP/S (mod., amb.) 392 415 449 401 419
NP/S (mod., unamb.) 398 413 471 393 388 391
NP/Z (unmod., amb.) 452 402 382 452

NP/Z (unmod., unamb.) 400 452 402 383
NP/Z (mod., amb.) 433 407 464 415 432

NP/Z (mod., unamb.) 405 400 494 448 395

(b) Average word-by-word self-paced reading times of garden-path sentences and their un-
ambiguous variants (in ms). (numbers taken from [83])

Table 6.2: Description of the Grodner et al. dataset

assuming that our signalling fraction SF is indeed related to reading times and as-
suming that the buffering time associated with the change of stimulus of the screen
is constant, this extra time (unrelated to the reading difficulty) is only added once
per region in the region-by-region setting, but multiple times per region in the word-
by-word setting. Hence, this buffering time is constant in the former but dependent
on the length region in the latter. Due to these differences in the reading time collec-
tion process in the two datasets, we decided to present the predictions obtained for
the Sturt et al. dataset and the ones for the Grodner et al. dataset separately.

6.2 Analysis of the predictions
In this section, we investigate the prediction power of the signalling fraction SF.

We start by looking at the empirical correlation between SF and reading times. Then,
we create linear regression models of reading times from the signalling fraction. Us-
ing this model to produce prediction, we then investigate whether we can observe
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a garden-path effect and whether we can see a difference in this garden-path effect
between NP/S and NP/Z sentences. In the following section, we will compare our
results with the existing ones in the literature that use surprisal.

Remark 6.6. For the remainder of this chapter, we will study the linear correlations
between SF and reading times. We made this choice for simplicity and not according
to any heuristic. Investigating other types of relations between these quantities is
left to future work.

6.2.1 The Sturt et al. dataset

The linear regression model

Starting from the assumption that the signalling fraction SF of an empirical model
with contexts M = {m,mw} correlates with the amount of difficulty induced by
reading the word w (see Section 5.2). From this, we expect that region reading time
correlates with the sum of the signalling fractions, summed over all the words in
the region. Now, given that we are studying linear relations between the signalling
fractions and reading times, we expect this relation to be of the form:

RT (r) = α
∑
w∈r

SF(w) + β (6.2)

for any region r and w in that region. In the above equation, we denote by SF(w),
the signalling fraction associated with the empirical model with contexts M =

{m,mw}.

Moreover, since [173] presented the average reading time over sentences of the
same type, we thus can check whether the following holds:

〈
RT
(
r(S)

)〉
S
= α

〈 ∑
w∈r(S)

SF(w)

〉
S

+ β (6.3)

where this time, the region r(S) denotes a particular region of a given sentence S.
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(a) Pearson’s ρ coefficients.

(b) p-values associated with the Pearson’s
ρ coefficients.

(c) Linear correlation between SF and
self-paced reading times.

(d) Coefficients of the linear regressions obtained for different BERT and spaCy variants.
The standard error on these coefficients is depicted as error bars.

Figure 6.3: Analysis of of the linear correlations between SF and reading times in
the Sturt et al. dataset.
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Correlation with reading times
To test the above hypotheses, we calculate Pearson’s ρ coefficients associated with

SF and reading times. The obtained ρ coefficients and their associated p-values (test-
ing the confidence level at which we have ρ ̸= 0) are shown in Fig. 6.3a and 6.3b
respectively.

As we can see, these correlation coefficients are generally high (all of them > 0.63)
and, importantly, all positive. Furthermore, the p-values associated with the correla-
tion coefficients are statistically significant (p < 9× 10−3 for any choice of BERT and
spaCy variants). These results are evidence of a robust monotonic relation between
SF and reading times. I.e. when SF increases, so does the reading time.

Impact of the different BERT and spaCy variants In addition, these coefficients
are higher (ρ ≃ 0.78) for any empirical model obtained from the larger BERT-base
or BERT-large as compared to the empirical models obtained from the lighter
version distilBERT. Similarly, the p-values appear to be larger for models using
distilBERT (of the order of magnitude of p ∼ 10−3) as opposed to ones obtained
from the other BERT variants (p ∼ 10−4). This suggests that reducing the parameters
of BERT may impact our performance accuracies.

There is, however, no sign of the influence of the spaCymodels by solely looking
at the ρ coefficients.

Regression models From the existence of a linear correlation, the use of the linear
model of (6.3) is justified. The coefficients α and β calculated for empirical models
calculated from different BERT and spaCy variants are shown in Fig. 6.3d. We can
then see that the obtained coefficients are comparable for all of the BERT and spaCy

models, which overall give a linear regression model around:

〈
RT
(
r(S)

)〉
S
≃ 295

〈 ∑
w∈r(S)

SF(w)

〉
S

+ 664 (6.4)

For the rest of this work, however, we will take the individual regression models
obtained for each of the BERT and spaCy variants. This will then ensure that we get
the best possible predictions.
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Predicting garden-path effects
Using these regression models, we can make predictions of reading times from

SF. In turn, we can evaluate these predictions’ accuracy by looking at what effect
they can and cannot predict.

Methods We start by investigating whether SF can predict garden-path effects, i.e.
whether the reading times of garden-path sentences are higher than the reading
times for the equivalent unambiguous sentences (over their critical region).

To do so, we calculate the so-called garden-path effect of a garden-path sentence by
simply taking the difference in reading time of the critical region in the ambiguous
and unambiguous versions, i.e.:

GPE(S) = RT (rcritical(S))−RT (rcritical(unambiguous(S))) (6.5)

where rcritical(S) isolates the critical region of S, and unambiguous(S) gives the un-
ambiguous version of a sentence S.

Results The average garden-path effect obtained for empirical models using the
different variants of BERT and spaCy are shown in Fig. 6.4a. We can observe that,
on average, these predicted garden-path effects are indeed positive, therefore show-
ing that SF predicts higher reading times for garden-path sentences than their un-
ambiguous versions.

To strengthen this result, we also conducted 1-sample t-tests testing the null hy-
pothesis that this average is 0 (i.e. that the reading time predictions are the same
for ambiguous and unambiguous sentences). The resulting p-values are depicted in
Fig. 6.4b. We can see all of the p-values are indeed statistically significant, except
for the empirical models using distilBERT and the en_core_web_lg pipeline of
spaCy (where even the p-value is relatively low and is p = 0.07).

These results overall show that SF can confidently detect the existence of a garden-
path effect.

NP/S and NP/Z predictions
We now want to analyse the prediction for garden-path effects for NP/S and

NP/Z sentences separately.
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(a) Average predicted garden-path effect. (b) p-values associated with the 1-sample
t-tests evaluating whether the average
garden-path effect is 0.

Figure 6.4: Analysis of the predicted garden-path effect over the Sturt et al. dataset.

The distributions of the obtained garden-path effects for NP/S and NP/Z sen-
tences are shown in Fig. 6.5. As we can see, SF overall underestimates the garden-
path effects, particularly for NP/Z sentences. This suggests that SF alone does not
entirely explain the full difficulty of garden-paths. However, we can also observe
that increasing the number of parameters of both the BERT and spaCy models im-
proves the predictions.

Figure 6.5: Boxplots of the garden-path effects predicted over the Sturt et al. dataset.
The human baseline is also quoted.
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Finally, we are also interested to see whether SF can detect different levels of dif-
ficulty, namely between the NP/S and NP/Z sentences. By comparing the aver-
age predicted garden-path effects of NP/S and NP/Z sentences shown in Figs. 6.6a
and 6.6b, one can see that the garden-path effects are generally higher for NP/S than
for NP/Z sentences.

We then tested this hypothesis by conducting t-test comparing them and found
that this difference is statistically significant for most BERT and spaCy variants.
Surprisingly, the empirical models using BERT-large did not perform well under
these t-tests. This negative result could still be due to the noisiness of human data
or the several averaging steps that have occurred to obtain data in the first place.

On the whole, this gives us evidence that SF can identify different levels of pars-
ing difficulty.

6.2.2 The Grodner et al. dataset

The linear regression models
We now analyse the Grodner et al. dataset predictions. We first recall that the

figures quoted in [83] are not region-by-region but word-by-word reading times,
averaged for each region across different sentences. Hence, instead of finding a
linear regression model of (6.3), we will be interested in models of the form:

⟨RT (w)⟩w∈r(S),S = α ⟨SF(w)⟩w∈r(S),S + β (6.6)

Correlation with reading times
As we did for the Sturt et al. dataset, we test this hypothesis by first computing

the associated Pearson’s ρ coefficients and associated p-values. These can be found
in Fig. 6.7a and 6.7b respectively.

The obtained correlation coefficients are found to be smaller than the ones ob-
tained for the Sturt et al. dataset (here, ρ > 0.35 for all BERT and spaCy) variant.
The correlation is still positive, and we achieve correlations up to ρ = 0.56. Similarly,
the p-values are generally higher than the ones of Fig. 6.3b, but still statistically sig-
nificant (all of the p < 0.04).
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(a) Average predicted garden-effects for
NP/S sentences.

(b) Average predicted garden-effects for
NP/Z sentences.

(c) p-values associated with the t-test
with the null hypothesis that garden-
path effects from NP/S and NP/Z sen-
tences are sampled from the same distri-
bution.

Figure 6.6: Comparison of the predicted garden-path effects between NP/S and
NP/Z sentences.

Impact of the BERT and spaCy variants Similarly to the other dataset, we ob-
serve that the coefficients ρ seem to be more affected by the choice of BERT model
than the choice of spaCy variant. However, contrary to the previous results, we
observe that it is the BERT-base model that led to the worse correlations and that
the distilBERT empirical models lead to fairly high correlations (ρ ∼ 0.53).

Overall, the positive correlations and the low p-values strengthen our previous
findings that SF are correlated with reading times.

Linear regression As before, we can use linear regression equations to predict
reading times from signalling fractions. The different α and β coefficients obtained
for different choices of BERT and spaCy variants are shown in Fig. 6.7d.
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(a) Pearson’s ρ coefficients.

(b) p-values associated with the Pearson’s
ρ coefficients.

(c) Linear correlation between SF and
self-paced reading times.

(d) Coefficients of the linear regressions obtained for different BERT and spaCy variants.
The standard error on these coefficients is depicted as error bars.

Figure 6.7: Analysis of of the linear correlations between SF and reading times in
the Grodner et al. dataset.
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These coefficients are also highly similar and revolve around the following model:

⟨RT (w)⟩w∈r(S),S = 77 ⟨SF(w)⟩w∈r(S),S + 381 (6.7)

As done previously, we use each linear regression model for the rest of the anal-
ysis to reduce the number of errors due to averaging.

Predicting garden-path effects
We then compute the predictions of the garden-path effect. Similarly to (6.5), we

calculate this garden-path effect as:

GPE(S) = ⟨RT (w)⟩w∈rcritical(S) − ⟨RT (w)⟩w∈rcritical(unambiguous(S)) (6.8)

Results As before, we want this garden-path effect to be greater than 0. This is
indeed the case (see Fig. 6.8a).

We furthermore conducted 1-sample t-tests to quantify the confidence of this
finding and found that these garden-path effects are indeed statistically signifi-
cantly non-zero, aside from the empirical models using distilBERT along with
the spaCy models en_core_web_sm and en_core_web_lg.

We therefore conclude that SF can also detect a garden-path effect in this dataset.

(a) Average predicted garden-path effect. (b) p-values associated with the 1-sample
t-tests evaluating whether the average
garden-path effect is 0.

Figure 6.8: Analysis of the predicted garden-path effect over the Sturt et al. dataset.
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NP/S and NP/Z sentences
Now focusing on the difference in predictions between NP/S and NP/Z sen-

tences, we depict the distributions of predicted garden-path effect for the two cate-
gories of garden-path sentences in Fig. 6.9.

We observe that, as before, SF underestimates the garden-path effect of both NP/S
and NP/Z sentences. In addition, in some NP/S empirical models, the predicted
garden-path effect is negative. The models showing a negative garden-path effect
are, however, restricted to the small BERT (distilBERT or BERT-base), and spaCy
(en_core_web_sm or en_core_web_lg) models. In the larger models, the pre-
dicted garden-path effects become positive.

Figure 6.9: Boxplots of the garden-path effects predicted over the Sturt et al. dataset.
The human baseline is also quoted.

It also appears that, as in the Sturt et al. dataset, the average garden-path effects
are higher for NP/Z sentences than for NP/S sentences. This effect is shown empir-
ically (see Figs. 6.10a and 6.10b).

Moreover, we can estimate the confidence levels of the claim that SF distin-
guishes between NP/S and NP/Z sentences using t-tests. The obtained p-values are
depicted in Fig. 6.10c. These t-test are all statistically significant aside from the em-
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pirical models using BERT-base in conjunction with en_core_web_lg pipeline
of spaCy (and even then, the p-value is found to be p < 0.1).

Contrary to the ongoing trend, these p-values are more statistically significant
than the ones obtained for the Sturt et al. dataset, therefore showing that the differ-
ence between garden-path effect predictions of NP/S and NP/Z sentences is more
marked in the Grodner et al. dataset.

(a) Average predicted garden-effects for
NP/S sentences.

(b) Average predicted garden-effects for
NP/Z sentences.

(c) p-values associated with the t-test
with the null hypothesis that garden-
path effects from NP/S and NP/Z sen-
tences are sampled from the same distri-
bution.

Figure 6.10: Comparison of the predicted garden-path effects between NP/S and
NP/Z sentences.

6.2.3 General discussion
By quantifying the amount of signalling in certain empirical models, we have ob-

tained an alternative measure of the difficulty of parsing. We have seen that the
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signalling fraction SF does have a strong positive correlation with human reading
times. Using a linear regression model lets us obtain predictions for reading times
and garden-path effects. We have also found that this predicted garden-path effect
is (statistically significantly) higher for NP/Z sentences than for NP/S sentences.
Finding such differences has yet to be shown to be possible to identify using sur-
prisal theory only [185, 186, 95].

Although SF correctly identifies the relative difficulty levels of different garden-
path sentences, the overall magnitude of the predicted effect is systematically un-
derestimated. This is similar to the findings from surprisal theory [185, 186, 95, 14],
and we therefore have similar hypotheses to explain why this is the case.

For instance, this could be evidence that the human parsing process is purely
forward-looking. Many psycholinguistic theories suggest that backtracking or re-
processing is necessary to make sense of garden-path sentences, both of which are
backward-looking processes. However, there is no clear evidence that this is indeed
the case. The field of research is globally more interested in the cause of difficulty
(e.g. vocabulary biases, plausibility, . . . ) and the nature of the parsing strategies
(e.g. presence or absence of backtracking, parrallel or sequential parsing, . . . ), not
the algorithmic parsing procedure (i.e. the specific steps the reader carry out when
parsing a sentence), which is not even guaranteed to be the same for all individuals.

In addition, part of the difficulty also comes from the nature of the datasets used
in this experiment. Indeed, only a few averaged data points were available to com-
pute the linear regression models. Hence, taking those averages would have con-
siderably increased the amount of error even before any computation was done.
In particular, we have observed that the predictions obtained from the Grodner et
al. dataset were almost consistently worse than those obtained from the Sturt et al.
dataset. From these considerations, this could be because one more round of aver-
aging was done in this dataset (i.e. averaging of the reading times for each region).

Other explanations for this discrepancy could be due to the unevenness of the
dataset. For instance, the number of characters per region, the number of words
per region, and the vocabulary were not specifically controlled. To remedy this, the
authors of [83] decided to use a linear regression model tailored to each participant
to normalise the reading times and determine whether a word is read slower or
faster than expected. These normalised reading times were referred to as residual
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reading times. However, the parameters of these linear regressions are not available,
and it was still more convenient to use raw reading times in our study rather than
residual reading times.

To deal with those issues, we plan to use more detailed datasets in future works,
such as self-paced reading time datasets collected in [151, 95], which contain word-
by-word reading times. Using a more detailed dataset also comes with its draw-
backs. For instance, spillover (i.e. delay in the observed difficulty) has to be ac-
counted for. However, workarounds exist in the literature [186, 95]. Our first steps
will then use them.

In addition, although surprisal is not by default capable of studying backward-
looking processes, only a few modifications to the procedure described in Section 5.1
are necessary to be able to account for more complex parsing strategies. We expand
this in more detail in the conclusion.

6.3 Comparison with surprisal
We now want to put our results in perspective and compare them with the state-

of-the-art methods from computational linguistics, which use surprisal theory. To
simplify this comparison, the work presented in [185] used the same datasets as we
did to produce garden-path effect predictions from surprisal.

Remark 6.7 (On the fairness of the comparison). There are several reasons why the
comparison between the predictions of [185] and the ones presented in Section 6.2
may not be fair. Firstly, the calculations were not using the same language models.
The authors of [185] trained their own LSTM from the Wikipedia (2 million and
90 million tokens versions) and Wall Street Journal corpora. In contrast, we used
the transformer model BERT (which did not exist when [185] was published). The
LSTMs trained in [185] are not openly available. Therefore, it wasn’t easy to obtain
a fair comparison, and using pre-trained models was by far the most convenient
solution for us.

Magnitude of the garden-path effects
We start by comparing the magnitude of the garden-path effect predictions from

surprisal and SF.
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The best predictions from Section 6.2, as well as the best predictions from [185] is
presented in Table 6.3.

We observe that SF outperforms surprisal considerably better in the Sturt et al.
dataset, where the predictions are up to 40% more accurate than the ones of [185]
for NP/S sentences and about 20% more accurate for NP/Z sentences.

On the other hand, the surprisal predictions over the Grodner et al. dataset ap-
pear to be more accurate than the ones obtained using SF. However, this accuracy
decrease is only 20% for NP/S sentences and 3% for NP/Z sentences.

What is quite interesting is that the study of van Schijndel and Linzen in [185] re-
ported that surprisal performed much better over the Grodner et al. dataset. In con-
trast, our investigation led to more accurate predictions over the Sturt et al. dataset.
This discrepancy could explain why our results are better in the Sturt et al. dataset,
whereas surprisal outperforms SF over the Grodner et al. dataset.

However, the cause of such discrepancy in accuracies is not clear. This suggests
that surprisal and SF do not give the same weights to the same features.

Prediction (ms) Observed (ms)
SF S

Sturt et. al NP/S 62.6 24∗ 87
NP/Z 110 30∗ 400

Grodner et. al NP/S 2.73 7 21
NP/Z 8.52 10 53.5

Table 6.3: Comparison of the garden-path effects obtained using surprisal (numbers
taken from [185]) and SF. ∗These numbers have been converted to be a region read-
ing time from the word-by-word reading times quoted in [185].

NP/S and NP/Z predictions
Our more clear-cut results were regarding the difference in garden-path effect

predictions for sentences with different levels of difficulty.
Indeed, even though p-values were not quoted in the various studies using sur-

prisal for predicting garden-path effects [185, 186, 95, 14], the authors identify the
main issue with surprisal as not being able to distinguish between NP/S and NP/Z
sentences. In fact, the trend observed in a follow-up study was that NP/S garden-
path effects were, on average, higher than the predictions for NP/Z sentences [186].
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In conjunction with consistent underestimation of the slowdown prediction, this is
their primary motivation for advocating backward-looking mechanisms in parsing
strategies.

The fact that we can find such statistical differences using a forward-looking
model does not invalidate this hypothesis. After all, our predictions are still widely
underestimating the slowdowns as well. However, this may show that there might
be some features that surprisal cannot detect, which opens up the question of what
other quantities (even apart from SF) could contribute to the reading difficulty of
garden-path sentences.

Linking SF and surprisal
Even though our usage of SF stemmed from similar motivations to those for sur-

prisal, it is unclear whether they are mathematically related. The reason for the
better performance of SF is that surprisal, as used in this [185], mostly focuses on
lexical items. In contrast, syntactic structures are first-class citizens for the SF quan-
tity described here.

Only very recently, the role of syntactic structure in conjunction with surprisal
has come into light: in [14], it was shown that syntactic surprisal performs slightly
better than pure lexical surprisal but still falls short when distinguishing NP/S from
NP/Z and the differences in garden-path effects.

The results of [14] and the ones presented here motivate the hypothesis that syn-
tactic structures are the main deciding factor in the difficulty of garden-path sen-
tences.

Another aspect of our work, which may have led to more accurate results, is that
our model can take long-distance dependencies into account, whereas surprisal is
not.

Summary of the chapter
This Chapter used our sheaf-theoretic models to predict reading times and garden-
path effects. Using two datasets from the psycholinguistic literature, we obtained
the following results:
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• The correlation between SF and reading times was positive and statistically
significant;

• Using a linear regression model, we successfully predicted the existence of
garden-path effects. However, we consistently underestimated the magnitude
of the effect.

• We accurately predicted that the garden-path effects were higher for NP/Z
than for NP/S sentences.

The signalling fraction clearly outperforms the surprisal predictions of the Sturt
et al. dataset, both by the magnitude and by distinguishing the NP/S and NP/Z
sentences. Over the Grodner et al. dataset, surprisal achieves more accurate predic-
tions than SF, but does not distinguish between NP/S and NP/Z sentences.
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Conclusion

In this thesis, we studied natural language data from the perspective of founda-
tional quantum mechanics.

We observed how contextuality arises in natural language data and found uses
for various quantities in psycholinguistics. To this end, we used the causal and
signalling fractions, which were so far only used to describe quantum systems.
Our results demonstrated that the sheaf-theoretic framework of contextuality and
causality does uncover some linguistic phenomena relating to lexical and syntactic
ambiguity arising from human behaviour.

Lexical Ambiguity We started by looking at lexical ambiguities, where the anal-
ogy between words and quantum systems appeared more natural. Our detailed
analysis showed that although contextuality is hard to obtain in the statistics of lexi-
cally ambiguous phrases, it is still possible to find witnesses of quantum-like contex-
tuality, as defined under the Contextuality-by-Default framework. This is evidence
of the essential role of the context in the disambiguation process of lexically ambigu-
ous items. In addition, we also saw that the causal fractions of SV and VO empirical
models confirmed that the observed probability distributions were primarily con-
sistent with verb after subject and verb after object disambiguation orders. This
finding showed that verbs tend to be disambiguated after their arguments, which is
consistent with the psycholinguistic theories of the disambiguation of lexically am-
biguous words. Using this finding, we simulated the lexical disambiguation process
using variational quantum circuits. We also demonstrated that these circuits could,
in turn, predict the different interpretation probability distributions associated with
unseen phrases. This last result is exciting as it only required a small training set;
in theory, only knowledge of 8 probability distributions should be able to predict

189
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the probability distributions of 8 new ones, and each of these probability distribu-
tions only required annotations of 25 participants, which is much lower than the
resources needed to train a large language model.

To our knowledge, this project is the first to study the disambiguation process
of phrases containing two target words of different grammatical roles and with ex-
plicit syntactic relations between them. Moreover, the proof-of-principle that vari-
ational quantum circuits can simulate the (human) lexical disambiguation process
opens several questions regarding their performance in standard NLP tasks, includ-
ing word-sense disambiguation. In addition, although we have only focused on
two possible interpretations of each word, the approach can easily be extended to
an arbitrary number of possible interpretations.

Syntactic ambiguity We then turned our attention to syntactic ambiguities and
notably focused on particular sentences, namely garden-path sentences, that are im-
portant for studying the human syntactic parsing process.

We first observed high correlations between the signalling fraction and reading
times of garden-path sentences. This result showed that the signalling fraction cor-
relates with the difficulty of parsing a given sentence fragment. We then use such
correlation to produce a linear model of reading times in terms of the signalling frac-
tion. This linear regression model allowed us to predict reading times and garden-
path effects associated with different sentences. These predictions outperformed the
current state-of-the-art predictions of computational linguistics using surprisal the-
ory. Among these, the most crucial improvement from SF was to find statistically
significant differences in NP/S and NP/Z sentences, where the former is signifi-
cantly easier to parse than the latter. This may be evidence that our (significantly
simplified) parsing model may be closer to the actual human parsing process than
surprisal theory.

We believe this project paves the way for better quantum-based NLP algorithms,
as it sheds some light on how different aspects of natural language ambiguities
would benefit from quantum advantages. The mathematical frameworks we used
led to meaningful results and provided proof of concept that they can be used to
talk about linguistic phenomena.



Future Work 191

Future work
This approach adopted in this project offers more possible research lines. We here

describe a few of the possible extensions of this project.

General improvements
The first and most obvious way to extend our approach is to loosen some simpli-

fications imposed on the different empirical models. For instance, it will be worth
expanding our lexical ambiguity empirical models to include all of the possible in-
terpretations of each word, e.g. using its different WordNet senses. Similarly, it
would be interesting to see whether adding the labels of the dependencies in syn-
tactic empirical models would impact the accuracy of the reading time predictions.
Furthermore, we could also consider expanding from having two possible choices
of words for subjects, verbs, and objects to having the full vocabulary in lexical am-
biguity models. In the case of the syntactic models, we could consider all possible
ways a sentence fragment can be completed instead of restricting ourselves to the
observed continuation. By doing so, we may have a closer link with surprisal theory.

In addition, it will be interesting to combine the syntax and semantics models,
which were described independently in Parts II and III. At the moment, we can en-
visage two ways of doing so. The first would consist of concatenating syntactic and
semantic empirical models and possibly adding an ad-hoc notion of interaction be-
tween the two. On the other hand, the psychology literature suggests that syntactic
information has more influence on the semantic level than the other way around.
Hence, another (more complex) possibility would be to have a higher-order causal
order in which syntactic empirical models could influence any semantic process (but
not necessarily the other way around). We could extend this further by considering
other knowledge sources, such as pragmatic information and plausibility.

Lexical Ambiguity
Proof of quantum advantage Regarding lexical ambiguity empirical models, even
though we demonstrated the existence of contextual witnesses in lexical ambiguity
data, it is still not clear that quantum systems are necessary or would even provide
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a computational advantage, in simulating the disambiguation process – further in-
vestigation will be needed in this regard.

Besides, the simulations conducted as part of the project were merely proof of
principle, and the obtained results have yet to be compared with their classical ana-
logues.

Investigating other parts-of-speech The next step should be to investigate the be-
haviour of other grammatical types (e.g. adjective, adverbs, . . . ) and more compex
phrases and sentences, e.g. subject-verb-object sentences. However, the need for
more psycholinguistics research may be a hindrance.

By doing so, we expect to provide a new compositional way of processing nat-
ural language data, which, although it comes from a different motivation, may be
highly related to the approach of DisCoCat [42] or DisCoCirc [41] formalisms.

Improving the variational circuits In addition, even though we observe differ-
ences in data from words of different levels of ambiguity or different grammatical
types, they are, in the empirical models, treated in the same way. This may particu-
larly affect Chapter 4 simulations.

Examples of possible improvement may be allowing words to be represented as
mixed states (i.e. probabilistic mixture of pure states) or pure states (i.e. superposi-
tion of states) – note that at the moment, nouns are only represented as pure states.
Using the intuition of [148], we would expect homonymous nouns to be represented
as mixed states and polysemous nouns as pure states.

Furthermore, the accuracy of the predictions and simulations may also increase
by having an extra ancilla for verbs, thus allowing the verb to take in information
from both the subject and object, even though one argument is not known. We
could then represent underspecification by taking the partial trace over the system
for which no information is provided. This representation for verbs would then be
similar to the DisCoCat representation of a transitive verb, and by adopting this
structure, we can train verb-states compatible with the DisCoCat formalism.

Including indefinite causal orders It is also quite clear that the process of dis-
ambiguating, even SV or VO phrases, is not entirely one-way (i.e., the probability
distributions associated with the activation of subject and objects depend on the
choice of verbs, as the verb provides context for the ambiguous nouns). Therefore,
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to fully describe the disambiguation process, we must introduce the notion of indef-
inite causal order.

Indefinite causal orders have benefited from an increasing amount of research
interest in the quantum foundations community, notably since a causal order can
not only be probabilistic but also in superposition in (higher-order) processes such as
the quantum switch.

The first question on the linguistic side is whether the disambiguation process
is causally separable (i.e. correspond to the probabilistic mixture of causal orders) or
causally inseparable (i.e. correspond to the superposition of causal orders). In the
latter’s case, this would provide an additional (and possibly more interpretable)
advantage in using quantum resources. We could study this by calculating the so-
called causal separability fraction introduced in [80].

Syntactic ambiguity
Further investigate the properties of our model Regarding our syntactic model,
our line of research offers excellent promises relating to modelling cognitive pro-
cesses using sheaves and presheaves. There are still many avenues to explore, e.g.,
the nature of the correlations between SF and difficulty or the model’s applicabil-
ity to a broader class of sentences. In addition, our model still underestimates the
garden-path effects of both NP/S and NP/Z sentences. It is, therefore, imperative
to identify the reason for this discrepancy, i.e. whether it be because of the choice
of regression or due to a more fundamental factor such as backtracking. Finally, the
uncertainity introduced from averaging data in the psycholinguistic datasets used
widely hindered our preliminary results. Using different and more detailed datasets
is a way to address this point.

Introducing an edit distance One possible criticism of our framework is that the
different parses are treated as completely unrelated. In reality, this is not the case, as
transformations between certain parses may be easy or hard. For instance, moving
the head of a determiner by one place should be easier than changing the head of the
whole sentence. These transformations between parses can also occur at different
levels, for instance, within the same sentence fragment or across different fragments.
Defining a measure of discrepancy between probability distributions over parses
that considers this “transformation difficulty” is left as future work.
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Studying reanalysis In addition, the main hypothesis behind garden-path effect
underestimation, in surprisal theory at least, corresponds to backtracking or other
related non-incremental processes. Contrary to surprisal, however, it would be
fairly easy to alter our current parsing model to study non-incremental processes. In
particular, this could be done by extending the morphisms from prefix order to stan-
dard inclusions and changing the choice of cover. This would amount to changing
the causal order of interest. By comparing the causal fractions associated with dif-
ferent causal orders, we expect that the one(s) with the highest causal fraction would
show up in eye-tracking data as the trajectories adopted by the different readers. In
addition, it is not clear that only one causal order would be more advantageous as
compared to others; in fact, we would expect multiple causal orders to have com-
parably high causal fractions. Hence, we would expect that the different causal
fractions might predict which reanalysis patterns could be employed by readers and
at which frequency each of the possible patterns is adopted.
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Part IV

Appendix





Chapter A
Sections of a presheaf and the
sheafication of a presheaf

Bundles A bundle is an alternative presentation of families of sets {Xi}i∈I as a map
p : E → I , where E =

⊔
i∈I Xi = {(i, x)|x ∈ Xi, i ∈ I}, and each of the Xi is a set.

The map p in this case is simply defined as:

p :: (i, x) 7→ i (A.1)

The space E is refered to as the espace étalé or the total space, while I is refered to
as the base space of the bundle. The equivalence of between families of sets and the
bundle can be seen as each of the Xi can be retrieved from the map p as:

Xi = p−1(i) (A.2)

It is usually said that the set Xi “sits on top” of the point i in the base space. The sets
Xi are called the stalks or fibres of p at i ∈ I and each of the elements of a given Xi

are called the germs for the stalk Xi. This terminology comes from a vegetal analogy
where, stalks of a plant, e.g. say wheat, grows up from the soil (here the base space),
each each of the stalk consists germs (see Fig. A.1). We will also define a section of
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the bundle p as a map s : I → E s.t. p ◦ s = idI ; the idea is that sections will select a
single germ in each of the fibres of p.

Base spaceI

Espace étalé

i j

k

l

A
i

A
j

A
k

A
l

stalk

germ

p

section

Figure A.1: Illustration of a bundle.

Furthermore, for every function p : E → I (for any sets E and I) defines a family
of sets {Xi}i∈I where the Xi’s are obtained exactly as Xi = p−1(i).

So far, no structure is assumed on the base and étalé space, and notably all of the
points of I are considered as unrelated. Let us now consider the case when E and I

are topological spaces. Then, if p : E → I is a continuous map, then the associated
bundle will have some nice properties as well. In particular, the continuity condi-
tion (with respect to the topology of E) implies that stalks are “glued together” in
the sense that any two open neighbourhoods of a point x ∈ E will be mapped to
(open) sets in I which contains the point p(x).The notion of section is then extend
as follows. Given a continuous map p : E → I , we define a section of the open set
U ⊆ I as a continuous map s : U → E s.t. the following pullback square commutes
in Top.

p−1U E

IU

⌟
ppU

s

(A.3)

In turn, these sections give rise to the sheaf of sections associated each any contin-
uous bundle p : E → I , as the functor:

Γp : T (I)op → Sets

U 7→
{
s : U → E

∣∣∣U s−→ E
p−→ I = U ↪→ X

} (A.4)
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And the morphisms are defined as restriction morhpisms as described in Section 1.1.2.
By continuity of p, this will indeed satisfy the sheaf condition. In addition, given a
continuous bundle p, the sections over U are indeed the elements of Γp.

Sheafication We have seen that the sections of a bundle indeed correspond to the
elements of the images of a certain (pre)sheaf associated with the bundle. We now
try to go in the reverse direction, namely, the elements of PU for an arbitrary P :

T (X)op → Sets will corresponds to the sections of a bundle p : E → X . As a
bonus, the construction of p also gives us a construction of a sheaf from an arbitrary
presheaf, which satisfy a universal property; this construction is therefore known as
sheafication.

We start by defining the germs at a point x ∈ U of an element s ∈ PU as the
following set:

germxs = {t ∈ PV |V open neighbourhood of x

∧∃W open neighbourhood of x. s|W = t|W} (A.5)

We can then define the stalks of a presheaf P at x ∈ X as:

Px = {germxs|∃U open neighbourhood of x.s ∈ PU} (A.6)

Then, by defining the set:
ΛP =

⊔
x∈X

Px (A.7)

we can define the following bundle:

p : ΛP → X

(x, germxs) 7→ x
(A.8)

Furthermore, for any s ∈ PU , we can define the following map:

s̃ : U → ΛP

x 7→ (x, germxs)
(A.9)

and it is not hard to verify that this is indeed a section of the bundle p. This bundle
will, in turn, give rise to a sheaf of sections. This completes the sheafication process.
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Chapter B

Proof of the CHSH inequality

In order to prove (1.28), we start by obtaining a bound for the quantity |⟨a′b⟩ − ⟨a′b′⟩|.
Since the hidden variable model should give back the observed probability distri-
butions we have:

⟨a′b⟩ =
∫
Λ

dλp(λ)A(a′, λ)B(b, λ) (B.1)

where A : {a, a′} × Λ → {±1} and B : {b, b′} × Λ → {±1} are function associating a
pair of input and hidden-variable with the deterministic outcome this environment
gives out. Similarly, we have:

⟨a′b′⟩ =
∫
Λ

dλp(λ)A(a′, λ)B(b′, λ) (B.2)

and:
|⟨a′b⟩ − ⟨a′b′⟩| =

∣∣∣∣∫
Λ

dλp(λ) (A(a′, λ)B(b, λ)− A(a′, λ)B(b′, λ))

∣∣∣∣ (B.3)
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Now, since the hidden variables determine the values of a, a′, b, b′ simultaneously,
there is nothing stopping us from writing:

|⟨a′b⟩ − ⟨a′b′⟩| =
∣∣∣∣ ∫

Λ

dλp(λ) (A(a′, λ)B(b, λ)− A(a′, λ)B(b′, λ)

A(a, λ)B(b, λ)A(a′, λ)B(b′, λ)− A(a, λ)B(b, λ)A(a′, λ)B(b′, λ))

∣∣∣∣
(B.4)

=

∣∣∣∣ ∫
Λ

dλp(λ)A(a′, λ)B(b, λ) (1 + A(a, λ)B(b′, λ))

−
∫
Λ

dλp(λ)A(a′, λ)B(b′, λ) (1 + A(a, λ)B(b, λ))

∣∣∣∣ (B.5)

=

∣∣∣∣ ∫
Λ

dλp(λ)A(a′, λ)B(b, λ) (1− A(a, λ)B(b′, λ))

−
∫
Λ

dλp(λ)A(a′, λ)B(b′, λ) (1− A(a, λ)B(b, λ))

∣∣∣∣ (B.6)

Focusing on (B.5), for now, we can apply the triangle inequality (twice) to obtain:

|⟨a′b⟩ − ⟨a′b′⟩| ≤
∣∣∣∣ ∫

Λ

dλp(λ)A(a′, λ)B(b, λ) (1 + A(a, λ)B(b′, λ))

∣∣∣∣
+

∣∣∣∣ ∫
Λ

dλp(λ)A(a′, λ)B(b′, λ) (1 + A(a, λ)B(b, λ))

∣∣∣∣ (B.7)

≤
∫
Λ

dλ

∣∣∣∣p(λ)A(a′, λ)B(b, λ) (1 + A(a, λ)B(b′, λ))

∣∣∣∣
+

∫
Λ

dλ

∣∣∣∣p(λ)A(a′, λ)B(b′, λ) (1 + A(a, λ)B(b, λ))

∣∣∣∣ (B.8)

Now, since A(a, λ), A(a′, λ), B(b, λ), B(b′, λ) ∈ {±1} for all λ ∈ Λ, then:

|A(a′, λ)B(b, λ)| = |A(a′, λ)B(b′, λ)| = 1 (B.9)

And:

p(λ) ≥0 (B.10)

1± A(a, λ)B(b,Λ), 1± A(a, λ)B(b′,Λ) ≥0 (B.11)
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So, (B.8) becomes:

|⟨a′b⟩ − ⟨a′b′⟩| ≤
∫
Λ

dλp(λ) (1 + A(a, λ)B(b′, λ)) +

∫
Λ

dλp(λ) (1 + A(a, λ)B(b, λ))

(B.12)
Now, using: ∫

Λ

dλp(λ) = 1 (B.13)

we get:

|⟨a′b⟩ − ⟨a′b′⟩| ≤ 2+

∫
Λ

dλp(λ)A(a, λ)B(b′, λ)+

∫
Λ

dλp(λ)A(a, λ)B(b, λ) = 2+⟨ab′⟩+⟨ab⟩

(B.14)
Similarly, starting from (B.6), we can adopt a similar reasoning to get:

|⟨a′b⟩ − ⟨a′b′⟩| ≤ 2− (⟨ab′⟩+ ⟨ab⟩) (B.15)

Now, using both (B.14) and (B.15), this gives:

|⟨a′b⟩ − ⟨a′b′⟩| ≤ 2− |⟨ab′⟩+ ⟨ab⟩| (B.16)

which by rearraging gives the CHSH equation:

|⟨ab′⟩+ ⟨ab⟩+ ⟨a′b⟩ − ⟨a′b′⟩| ≤ 2 (B.17)
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Chapter C
Original proofs

C.1 Proof of proposition 1.44
In order to prove Proposition 1.44 we need some results from CbD and M-contextuality.

In the CbD framework, given a cyclic system, or more generally a system for which
every content is part of exactly 2 contexts, we want to minimise the probability
P
[
Sc
q = Sc′

q

]
=
∑

o∈O P
[
Sc
q = Sc′

q = o
]

(where O is the set of possible outcomes) for
a globally imposed joint distribution S across all contexts (coupling), which agrees
with the observed distributions.

Lemma C.1. Given a content q and contexts c, c′ containing q and outcome o, the maximum
of P

[
Sc
q = Sc′

q = o
]

for any coupling of the system is given by :

min
(
P
[
Rc

q = o
]
, P
[
Rc′

q = o
])

(C.1)

Proof. We need a coupling to be compatible with the observed probability distri-
butions, i.e. that the marginals of S coincide with the original distributions. This
condition means that: ∑

o′∈O

P
[
Sc
q = o, Sc′

q = o′
]
= P

[
Rc

q = o
]

(C.2)
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226 C.1. Proof of proposition 1.44

for each context c, c′ sharing the content q, and for every value o ∈ O. In particular,
this implies both of the following inequalities:

P
[
Sc
q = o, Sc′

q = o
]
≤P

[
Rc

q = o
]

(C.3)

P
[
Sc
q = o, Sc′

q = o
]
≤P

[
Rc′

q = o
]

(C.4)

and so:
P
[
Sc
q = o, Sc′

q = o
]
≤ min

(
P
[
Rc

q = o
]
, P
[
Rc′

q = o
])

(C.5)

In addition, given any system with content q, it is always possible to construct a
coupling for which P

[
Sc
q = Sc′

q

]
does attain its maximum (Theorem 3.3 of [52]). The

above bound is therefore saturated.

One consequence of this is that:

minP
[
Sc
q ̸= Sc′

q

]
= 1−maxP

[
Sc
q = Sc′

q

]
(C.6)

We now use one of the main results about the correspondence between CbD and
M-contextuality.

Proposition C.2 (Proposition 8.4 of [99]). Given a measurement system (i.e. context-
content system with associated probability distributions), for each compatible canonical
model M, there exists a coupling S such that:

∆c,c′ (Fq) = P
[
Sc
q ̸= Sc′

q

]
(C.7)

for every content q. Conversely, for every coupling S, there exists a canonical model M such
that (C.7) is satisfied.

Corollary C.3. The minimum of direct influence given a content q and pair of contexts c, c′,
coincides with the minimum for P

[
Sc
q ̸= Sc′

q

]
.

We can now prove Proposition 1.

Proof of Proposition 1.44. By definition, we have:

∆ =
∑
q

∣∣∣〈Rcq
q

〉
−
〈
R

c′q
q

〉∣∣∣ (C.8)
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Since only binary variables are considered for this definition to make sense, each
individual term of the sum is given by:∣∣∣〈Rcq

q

〉
−
〈
R

c′q
q

〉∣∣∣ = ∣∣∣P [Rcq
q = +1

]
− P

[
Rcq

q = −1
]
− P

[
R

c′q
q = +1

]
+ P

[
R

c′q
q = −1

]∣∣∣
=2
∣∣∣P [Rcq

q = +1
]
− P

[
R

c′q
q = +1

]∣∣∣ (C.9)

Now, let
mq− = min

(
P
[
Rcq

q = −1
]
, P
[
R

c′q
q = −1

])
and respectively

mq+ = min
(
P
[
Rcq

q = +1
]
, P
[
R

c′q
q = +1

])
Then, each of the above terms reduces to:∣∣∣〈Rcq

q

〉
−
〈
R

c′q
q

〉∣∣∣ = 2 (1− (mq+ +mq−)) (C.10)

Hence, following our previous corollary, the result follows.

C.2 Proof of proposition 1.46
What we want to prove is that for most empirical models we have:

max
X

∆∗
C,C′(X) = σ (C.11)

Definitions
First, we need to define all the terms in (C.11), and unify the notation used.

We start from a list of contexts C (we want a rather definition of “context”, so
a context will include the list of measurements + potential dependence to variables
that depends on each individual context; that means that two identical lists of mea-
surements can refer to two different contexts) from which we define the empirical
model e =

(
eC
)
C∈C

• Each of the eC are probability distribution over possible outcomes in context
C
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• We will denote OC the set of possible outcomes in context C

• Given an observable X in the measurement context of C (write X ∈ C), we
write eCX = eC

∣∣
X

the marginal distribution corresponding to the observable X
in the contextC. Similarly, we define the set OX as the set of possible outcomes
of the observable X .

A hidden variable model (HVM) of an empirical model e is here defined as Ω =(
h =

(
hλ
)
λ∈Λ , pΛ

)
where:

• Λ is the set of hidden/latent variables in the HVM

• For all hidden variable λ and context C, hλ,C is a probability distribution over
OC ; therefore

(
hλ,C

)
C∈C forms an empirical model.

• pΛ is a probability distribution over Λ

• For every context C we have:

eC =
∑
λ∈Λ

pΛ(λ)h
λ,C (C.12)

For all hidden variable λ in a HVM, we can decompose hλ as:

hλ = cλNSh
λ
NS +

(
1− cλNS

)
h′λ (C.13)

where hλNS is no-signalling, and h′λ can be any empirical model.

We then define the signalling fraction σ as:

σ = min
HVM

max
λ∈Λ

1− cλNS (C.14)

In the M-contextuality framework (framework fundamentally related to the CbD
framework), we are interested in canonical causal models M in which each of the in-
dividual observable X is associated with a random variable; the (different choices
of) contexts are also modelled as a single random variable which can influence (all
of the different) observable variables. In addition, we also define a latent variable Λ

which is independent of the context variable but can also influence all of the observ-
able variables. These models can themselves be viewed as hidden variable models
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in the sense described above by setting:

hλ,C(o) = PrM [o | C, λ] (C.15)

and from where we can also recover (C.12). When obvious we will drop the M
subscript.

Without loss of generality, it is also enough to restrict ourselves to canonical mod-
els M such that for all λ ∈ Λ, C ∈ C, X ∈ C and x ∈ OX , we have hλ,CX (x) ∈ {0, 1}.
As each of the hλ,CX are probability distributions over OX , we can therefore define
for each pair (λ,C) and observable X ∈ C a function FX : Λ× C → OX such that:

FX(λ,C) = x ⇐⇒ hλ,CX (x) = 1 (C.16)

Given a canonical model M, we can define the degree of direct influence from
the (change of) context C ↔ C ′ on the observable variable X ∈ C ∪ C ′ as:

∆C,C′(X) = Pr [{λ | FX(λ,C) ̸= FX(λ,C
′}] (C.17)

We now introduce a couple of results from CbD and M-contextuality:

• For all observables X , we define:

Pr
[
eCX = eC

′

X

]
=
∑
o∈OX

min
C̃∈{C,C′}

eC̃X(o) (C.18)

• The above equation can also be extended to the situation where more than two
contexts intersect at the observable X as follows:

Pr
[
eC1
X = eC2

X = . . . = eCn
X

]
= min

(i,j)∈{1,2,...n}2,i ̸=j
Pr
[
eCi
X = e

Cj

X

]
(C.19)

• For all canonical models M, we always have:

∆C,C′(X) ≤ Pr
[
eCX ̸= eC

′

X

]
= 1− Pr

[
eCX = eC

′

X

]
(C.20)

• For any empirical model, for any observable X , there exist a canonical model
such that:

∆C,C′(X) = Pr
[
eCX ̸= eC

′

X

]
(C.21)
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i.e. the maximum in (C.20) can always be attained in a canonical model. We
will also write:

∆∗
C,C′(X) = Pr

[
eCX ̸= eC

′

X

]
= max

M
∆C,C′(X) (C.22)

Inequality 1 (the general case)
We first prove that for an empirical model:

max
X

∆∗
C,C′(X) ≤ σ (C.23)

Proof. Suppose that there exists an observable X in an empirical model for which:

∆∗
C,C′(X) > σ = max

λ
1− cλNS (C.24)

From M-contextuality, there exists a canonical model M in which:

∆C,C′(X) = ∆∗
C,C′(X) = 1−

∑
x∈OX

min
C̃∈{C,C′}

eC̃X(x) (C.25)

Now, using the HVM corresponding to this canonical model, we have:

eC̃X(x) =
∑
λ∈Λ

pλ(λ)h
λ,C̃
X (x) (C.26)

so:

∆C,C′(X) = 1−
∑
x∈OX

min
C̃∈{C,C′}

∑
λ∈Λ

pλ(λ)h
λ,C̃
X (x) > max

λ
1− cλNS = 1−min

λ
cλNS (C.27)

In turns that implies that:∑
x∈OX

min
C̃∈{C,C′}

∑
λ∈Λ

pλ(λ)h
λ,C̃
X (x) < min

λ
cλNS (C.28)

We then decompose hλ as the convex sum of a no-signalling and a signalling part:∑
x∈OX

min
C̃∈{C,C′}

∑
λ∈Λ

pλ(λ)
[
cλNSh

λ,C̃
NS,X(x) +

(
1− cλNS

)
h

′λ,C
X (x)

]
< min

λ
cλNS (C.29)
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Now, since
(
1− cλNS

)
h

′λ,C
X (x) > 0, this implies that:∑

x∈OX

min
C̃∈{C,C′}

∑
λ∈Λ

pλ(λ)c
λ
NSh

λ,C̃
NS,X(x) < min

λ
cλNS (C.30)

We then use the fact that hλNS is no-signalling, and therefore:

hλ,CNS,X(x) = hλ,C
′

NS,X(x) (C.31)

So (C.30) simplifies to:∑
x∈OX

∑
λ∈Λ

pλ(λ)c
λ
NSh

λ,C
NS,X(x) =

∑
λ∈Λ

pλ(λ)c
λ
NS

∑
x∈OX

hλ,CNS,X(x) < min
λ
cλNS (C.32)

Now, hλ,CNS,X is a probability distribution over OX , so
∑

x h
λ,C
NS,X(x) = 1, and:∑

λ∈Λ

pλ(λ)c
λ
NS < min

λ
cλNS (C.33)

In addition, for all λ, we have minλ c
λ
NS ≤ cλNS , so:∑

λ∈Λ

pλ(λ)min
λ′

cλ
′

NS ≤
∑
λ∈Λ

pλ(λ)c
λ
NS < min

λ
cλNS (C.34)

and: ∑
λ∈Λ

pλ(λ)min
λ′

cλ
′

NS = min
λ′

cλ
′

NS

∑
λ∈Λ

pλ(λ) = min
λ′

cλ
′

NS (C.35)

So we then obtain the contradiction:

min
λ′

cλ
′

NS < min
λ
cλNS (C.36)

Inequality 2
The second inequality, i.e.:

max
X

∆∗
C,C′(X) ≥ σ (C.37)
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only holds in cases when the notion of consistent connectedness and no-signalling
coincides.

Proof. We want to construct an HVM such that:

max
λ

cλNS = max
X

∆∗
C,C′(X) (C.38)

We isolate the observable X such that maxX̃ ∆∗
C,C′(X̃) = ∆∗

C,C′(X), and will de-
note for simplicity ∆ = ∆∗

C,C′(X). Then, from M-contextuality, we know that there
exist a canonical model M such that ∆C,C′(X) = ∆. We will use this canonical
model to create a HVM with a single hidden variable λ where:

hλ,DNS,Y (y) = hλ,DNS,Y (y) =
1

1−∆D,D′(Y )
PrM [{λ | FY (λ,D) = FY (λ,D

′) = y}] (C.39)

Note: if the observable Y is part of more than 2 contexts D1, D2, D3 . . ., we will
replace ∆D,D′(Y ) by mini,j ∆Di,Dj

(Y ), and PrM [{λ | FY (λ,D) = FY (λ,D
′) = y}] by:

PrM [{λ | FY (λ,D1) = FY (λ,D2) = FY (λ,D3) = . . . = y}]

.
Since we are only working with a single hidden variable, we will also drop the λ

superscript.
We then show that this actually leads to a valid HVM.

Claim C.4. 1. hNS,Y is a probability distribution over OY

2. For all y ∈ OY :
(1−∆)hNS,Y (y) ≤ eDY (y), e

D′

Y (y) (C.40)

Proof. 1. By definition:

∆D,D′(Y ) =1− PrM [{λ | FY (λ,D) = FY (λ,D
′)}] (C.41)

=1−
∑
y∈OY

PrM [{λ | FY (λ,D) = FY (λ,D
′) = y}] (C.42)

Then

∑
y∈OY

hNS,Y (y) =
1−

∑
y PrM [{λ | FY (λ,D) = FY (λ,D

′) = y}]
1−

∑
y′ PrM [{λ | FY (λ,D) = FY (λ,D′) = y′}]

= 1 (C.43)
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2. First recall that in the HVM
((
gλ
)
λ∈Λ , qΛ

)
we have:

eDY (y) =
∑
λ

qΛ(λ)g
λ,D
Y (y) (C.44)

where gλ,DY (y) = 1 iff FY (λ,D) = y and gλ,DY (y) = 0 otherwise. So, in fact:

eDY (y) = PrM [{λ | FY (λ,D) = y}] (C.45)

In addition, we have:
∆ = max

Y
max
M

∆D,D′(Y ) (C.46)

So:

∆ ≥ ∆D,D′(Y ) =⇒ 1−∆ ≤ 1−∆D,D′(Y ) (C.47)

=⇒ 1−∆

1−∆D,D′(Y )
≤ 1 (C.48)

Now:

(1−∆)hNS,Y (y) =
1−∆

1−∆D,D′(Y )
PrM [{λ | FY (λ,D) = FY (λ,D

′) = y}] (C.49)

≤PrM [{λ | FY (λ,D) = FY (λ,D
′) = y}] (C.50)

≤PrM [{λ | FY (λ,D) = y}] = eDY (y) (C.51)

since FY (λ,D) = FY (λ,D
′) = y =⇒ FY (λ,D) = y.

A similar proof can be done for D′.

Claim C.5. We can define hDNS,Y , hD′
NS,Y distributions over OD and OD′ respectively such

that:

1. hDNS,Y (o|Y ) = hD
′

NS,Y (o|Y ) = hNS,Y (o|Y )

2. For all o ∈ OD:
(1−∆)hDNS(o) ≤ eD(o) (C.52)

(and similarly for D′).

Proof. We’ll only show this for the context D (but the same applies for D′).
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We define:

hDNS(o) =
eD(o)

eDY (o|Y )
hNS,Y (o|Y ) (C.53)

This defines a probability distribution since:

∑
o∈OD

hDNS(o) =
∑
o∈OD

eD(o)

eDY (o|Y )
hNS,Y (o|Y ) (C.54)

=
∑
y∈OY

∑
o∈OD|o|Y =y

eD(o)

eDY (y)
hNS,Y (y) (C.55)

=
∑
y∈OY

hNS,Y (y)

eDY (y)

∑
o∈OD|o|Y =y

eD(o) =
∑
y∈OY

hNS,Y (y)

eDY (y)
eD (y) (C.56)

=
∑
y∈OY

hNS,Y (y) = 1 (C.57)

1. We can just check that:

hDNS

∣∣
Y
(y) =

∑
o∈OD|o|Y =y

eD(o)

eDY (y)
hNS,Y (y) = hNS,Y (y) (C.58)

2. Similarly, we just check that:

(1−∆)hDNS,Y (o) =
1−∆

1−∆D,D′(Y )

eD(o)

eDY (o|Y )
PrM [{λ | FY (λ,D) = FY (λ,D

′) = y}]

(C.59)

≤eD(o)PrM [{λ | FY (λ,D) = FY (λ,D
′) = y}]

eDY (o|Y )
(C.60)

≤eD(o) (C.61)

Corollary C.6. There is some empirical model h′ such that:

e = (1−∆)hNS +∆h′ (C.62)

Proof. We have already shown that (1−∆)hNS ≤ e. We then define:

h′ =
1

∆
(e− (1−∆)hNS) ≥ 0 (C.63)
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This is an empirical mode since for all contexts D, we have:

∑
o∈OD

h′D(o) =
1

∆

[∑
o∈OD

eD(o)− (1−∆)
∑
o∈OD

hDNS(o)

]
=

1

∆
[1− (1−∆)] = 1 (C.64)

Why it doesn’t work when |C ∩ C ′| > 1

The proof of (C.37) relies on the fact that there is for each observable X a function
FX(λ,C) : Λ × C → X which defines the probability distribution of the hidden-
variable distributions hλ. Now, if we were in a situation when |C ∩ C ′| ≥ 2, then we
would not only (in the sheaf-theoretic framework) check the no-signalling condition
on each of the X ∈ C ∩ C ′ but also for each S ⊆ C ∩ C ′.

The above reasoning could easily be extended if there was a function FS : Λ×C →∏
X∈S OX , which restrict to FX by post-composing with a projection operator (recall

that we want all restrictions to be well-defined). But then, we would also have:

1−∆C,C′ ({X, Y }) = Pr
[{
λ|F{X,Y }(λ,C) = F{X,Y }(λ,C

′)
}]

(C.65)

≤ Pr
[{
λ|πX ◦ F{X,Y }(λ,C) = πX ◦ F{X,Y }(λ,C

′)
}]

= ∆C,C′(X) (C.66)

And therefore, if X denotes the set of observables:

min
S∈P(X )

∆C,C′(S) ≥ min
X∈X

∆C,C′(X) (C.67)

in every canonical model. Hence, there could exist a model such that:

max
M

max
S⊆X

∆C,C′(S) ≥ max
λ

1− cλNS > max
M

max
X∈X

∆C,C′(X) (C.68)

C.3 Equivalence between causality notions
We start by discussing the equivalence between distributions of causal functions

and causality as defined in terms of causal processes for bipartite systems, and we
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will (without loss of generality) consider the causal order A ⪯ B. We will then
extend this to arbitrary causal orders.

First, we need to state that distributions of causal functions in DR+ (LA⪯B({A,B}))
live in classical probability spaces while the output of quantum processes such as
the ones in (1.111) or (1.113) are quantum states. Hence, we will here show an equiv-
alence between causality as described in Section 1.2 and the measurement statistics of
causal processes. Namely, for a quantum circuit:

f

Ain

Aout

Bin

Bout

and the interpretation of input a, b and outputs oa, ob as quantum states |a⟩ , |b⟩ , |oa⟩ , |ob⟩,
we define the conditional probability:

P [oa, ob | a, b] = f

oa ob

a b

Ain

Aout

Bin

Bout

(C.69)

Moreover, assuming that the set {|oB⟩} spans the entire space Bout, i.e. that:

∑
ob ob

= (C.70)

This is reasonable as we expect that, at each run, some outcome is detected. Fur-
thermore, it should also be the case that:

b
= 1 (C.71)

i.e. discarding a state is deterministic.
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Using the above assumptions, the operational condition of equation (1.111) for
the causal order A ⪯ B implies that:

f

oa

a b

Ain

Aout

Bin

Bout

=
∑
ob

f

oa ob

a b

Ain

Aout

Bin

Bout

= f̃

oa

a b

Ain

Aout

Bin

(C.72)

which, in terms of conditional probabilities translate as:∑
ob

P [oa, ob | a, b] = P [oa |a] (C.73)

Now, let F being a set of functions f : A×B → OA×OB corresponding to events
then, for any section µ ∈ DR+ (F ), we have:

P [oa, ob | a, b] =
∑

f s.t. f(a,b)=(oa,ob)

µ(f) (C.74)

and:
P [oa | a] =

∑
f s.t. f |A(a)=(oa)

µ(f) (C.75)

Therefore, we have µ compatible with the causal order A ⪯ B with respect to the
operational definition of equation (1.111) iff:∑

ob

∑
f s.t. f(a,b)=(oa,ob)

µ(f) =
∑

f s.t. f |A(a)=(oa)

µ(f) (C.76)

Now, since the LHS of equation (C.76) is marginalising ob, the free variables on the
LHS are a, b, oa, whereas the free variables in the RHS are a, oA. Therefore, the above
equation is satisfied iff the values of f |A do not depend on the value of b, which
is exactly the condition for causality of functions with respect to the causal order
A ⪯ B.

In order to extend this result to arbitrary causal order, we employ a trick from
[104], namely to split any given causal order (Σ,⪯) as a coarse-grained causal order
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A ⪯ B, where A consists on the parties Σ {B}, and B is a maximal box, i.e. a party
which does not influence any other one. Then, we know from the above result that
a circuit is compatible with the causal order A ⪯ B iff the statistics of the measure-
ments correspond to a section µ ∈ DR+ (F ), where F is a set of causal functions with
respect to A ⪯ B. Therefore, we need to check that µ|A is still compatible with the
causal order Σ. We then proceed to isolate a new B′ ∈ A such that B′ is maximal in
the reduced causal order Σ{B}. We then keep going until the reduced scenario only
consist of 2 parties.

C.4 Proof of proposition 3.12
In order to prove the formula for the causal fraction in (2,2,2)-Bell scenarios, we start
by proving a more general equation that the causal fraction needs to satisfy, in any
empirical model.

Proposition C.7. For a family of probability distributions where the causal order is not
known, an upper bound of the causal fraction can be calculated as follows[1]:

γ ≤ min
U,V

1−
∣∣ ei|U ∣∣U∩V (o)− ei|V

∣∣
U∩V (o)

∣∣ (C.77)

where ei|U
∣∣
U∩V corresponds to the restriction of ei to first U and then from U to U ∩V (and

similarly for ei|V
∣∣
U∩V ).

Proof. For every causal empirical causal model eΩ with respect to a causal scenario
Σ = (Ω, I, O), if we have γ · eΩ ⪯ e, then both:

γ · eΩi
∣∣
U∩V (o) ≤ ei|U

∣∣
U∩V (o) (C.78)

and
γ · eΩi

∣∣
U∩V (o) ≤ ei|V

∣∣
U∩V (o) (C.79)

So:
γ · eΩi

∣∣
U∩V (o) ≤ min

X∈{U,V }
ei|X

∣∣
U∩V (o) (C.80)

[1]Note: the order of the restrictions is from left to right.
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Now, since ei are probability distributions:

1− ei|X
∣∣
U∩V (o) =

∑
o′ ̸=o

ei|X
∣∣
U∩V (o′) (C.81)

and similarly for eΩ. Therefore, using γeΩ ⪯ e once again:

γ
(
1− eΩi

∣∣
X

∣∣∣
U∩V

(o)
)
≤ min

X∈{U,V }
1− ei|X

∣∣
U∩V (o) = 1− max

X∈{U,V }
ei|X

∣∣
U∩V (o) (C.82)

Then, writing m− = minX∈{U,V } ei|X
∣∣
U∩V (o) and m+ = maxX∈{U,V } ei|X

∣∣
U∩V (o) for

simplicity, we use (C.80) and (C.82) to get:

γ ≤ 1−m+ +m− (C.83)

Now, using binary minima and maxima this reduces to:

γ ≤ 1−
∣∣ ei|U ∣∣U∩V (o)− ei|V

∣∣
U∩V (o)

∣∣ (C.84)

And since this has to be the case for all U, V ∈ L, the claimed inequality has to
hold.

Let’s now describe a construction of a causal empirical model eΩ which satisfies
γ · eΩ ⪯ e, for any given (2,2,2) Bell-type model e, where γ is given as in (3.9). This
would therefore give proof that the above inequality can be saturated, and therefore
that the causal fraction of such models can be known with certainty.

We start by constructing a probability distribution for the eventA as follows. For
any a ∈ IA, we select o∗A ∈ O such that:

min
b∈IB

e(a,b)
∣∣
A
(o∗A) = min

o∈O
min
b∈IB

e(a,b)
∣∣
A
(o) (C.85)

and set:

eΩ(a,b)
∣∣
A
(o∗A) =

minb∈IB e(a,b)
∣∣
A
(o∗A)

γ
(C.86)

and eΩ(a,b)

∣∣∣
A
(¬o∗A) = 1− eΩ(a,b)

∣∣∣
A
(o∗A). Then we have:

γ · eΩ(a,b)
∣∣
A
(o) ≤ e(a,b)

∣∣
A
(o) (C.87)



240 C.5. Proof of proposition 4.4

for all (a, b) ∈ IA × IB, and for all possible outcome o ∈ O.
One can then extend this distribution to the lowerset A → B = Ω by setting, for

example:

eΩ(a,b) (oA, oB) =
eΩ(a,b) (oA, oB)

e(a,b)
∣∣
A
(oA)

eΩ(a,b)
∣∣
A
(oA) (C.88)

It is routine to check that this construction leads to a valid empirical model eΩ,
which does indeed satisfy γ · eΩ ⪯ e.

C.5 Proof of proposition 4.4
Without loss of generality, let us assume that:

γ = 1− e(a1,b1)
∣∣
A
(0) + e(a1,b2)

∣∣
A
(0) (C.89)

(If this is not the case, it is possible to form a new empirical model by relabelling in-
puts of A and B such that the above equation is valid). We then write for simplicity:

α2iA+iB−3 = e(aiA ,biB )

∣∣∣
A
(0) (C.90)

Let us also write:
e(aiA ,biB )(oA, oB) = α2iA+iB−3,2oA+oB (C.91)

We are then looking for a target empirical eΣ of the form:

(0,0) (0,1) (1,0) (1,1)

a1, b1 p1x1 (1− p1)x1 p2(1− x1) (1− p2)(1− x1)

a1, b2 q1x1 (1− q1)x1 q2(1− x1) (1− q2)(1− x1)

a2, b1 r1x2 (1− r1)x2 r2(1− x2) (1− r2)(1− x2)

a2, b2 s1x2 (1− s1)x2 s2(1− x2) (1− s2)(1− x2)

such that:
γ · eΣ ≤ e (C.92)

Some intermediate results about the target empirical model eΣ are:

1. x1 =
α0−(1−γ)

γ
= α1

γ

2. p2 = 1− α0,3

γ(1−x1)
= α0,2

γ(1−x1)
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3. q1 = 1− α1,1

γx1
= α1,0

γx1

Proof. 1. Since γ = 1− α0 + α1, and γ ≥ 0 then we have:

α0 ≥ α1 (C.93)

Now, from (C.92), we have have both of:

γ · x1 ≤ α1 ⇐⇒ x1 ≤
α1

γ
(C.94)

γ · (1− x1) ≤ 1− α0 ⇐⇒ γ − 1 + α0

γ
≤ x1 (C.95)

Using (C.92) again, we have α1 = γ − 1 + α0 so in fact:

x1 =
α1

γ
=
α0 − (1− γ)

γ
(C.96)

2. From (C.92), we know that:

γ · p2(1− x1) ≤α0,2 (C.97)

γ · (1− p2)(1− x1) ≤α0, 3 (C.98)

(C.99)

iff:
1− α0,3

γ(1− x1)
≤ p2 ≤

α0,2

γ(1− x1)
(C.100)

Now, if (C.96) holds, then we have:

γ · (1− x1) = 1− α0 (C.101)

and from the definition of α0, we get:

1− α0 = α0,2 + α0,3 (C.102)

So:
1− α0,3

γ(1− x1)
=

α0,2

1− α0

(C.103)
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and therefore:
p2 =

α0,2

γ(1− x1)
= 1− α0,3

γ(1− x1)
(C.104)

3. Similarly, given (C.92), we have:

γq1x1 ≤α1,0 (C.105)

γ(1− q1)x1 ≤α1,1 (C.106)

iff:
1− α1,1

γx1
≤ q1 ≤

α1,0

γ
(C.107)

and using (C.96), we have:
γx1 = α1 (C.108)

and from the definition of α1:

α1 = α1,0 + α1,1 (C.109)

So:
1− α1,1

γx1
=
α1,0

γx1
(C.110)

Therefore:
q1 = 1− α1,1

γx1
=
α1,0

γx1
(C.111)

We then write:
Vak,bj =

1

2

∑
o

∣∣eΣ,(ak,bj)(o)− e(ak,bj)(o)
∣∣ (C.112)

so:
min
eΣ

TV (eΣ, e) = min
(pi,qi,ri,si)i∈{1,2}

max
(k,l)∈{1,2}2

Vak,bl (C.113)

Then, using (C.104) and (C.111), we get:

Va1,b1 =
1

2

[
(1− α0)

1− γ

γ
+ f (p1)

]
(C.114)

Va1,b2 =
1

2

[
α1

1− γ

γ
+ g (q2)

]
(C.115)
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where:

f (p1) =


α0,0 − α0,1 − 2p1x1 + x1 if p1 ∈

[
1− α0,1

γx1
, 1− α0,1

x1

]
α0 − x1 if p1 ∈

[
1− α0,1

x1
, α0,0

x1

]
α0,1 − α0,0 + 2p1x1 − x1 if p1 ∈

[
α0,0

x1
, α0,0

γx1

] (C.116)

and:

g (q2) =


α1,2 − α1,3 − 2 (1− x1) q2 + 1− x1 if q2 ∈

[
1− α1,3

γ(1−x1)
, 1− α1,3

1−x1

]
x1 − α1 if q2 ∈

[
1− α1,3

1−x1
, α1,2

1−x1

]
α1,3 − α1,2 + 2 (1− x1) q2 − 1 + x1 if q2 ∈

[
α1,2

1−x1
, α1,2

γ(1−x1)

] (C.117)

which are both continuous functions with minima:

min
p1

f(p1) =α0 − x1 =
1− γ

γ
(1− α0) (C.118)

min
q2

g(q2) =x1 − α1 =
1− γ

γ
α1 (C.119)

For a2, b1, we consider the case where:

1. r1x2 = α2,0

2. (1− r1)x2 = α2,1

3. r1(1− x2) = α2,2

4. (1− r1)(1− x2) = α2,3

Therefore:
Va2,b1 = 0 (C.120)

Note that this is possible since this would imply that:

x2 = α2 (C.121)

and:
γα2 ≤ min

k∈{2,3}
αk (C.122)
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from (C.92) and similarly:

γ (1− α2) ≤ 1− max
k∈{2,3}

αk (C.123)

And for r1, we have:
α2,0

α2

≤ α2,0

γα2

(C.124)

and:
α2,0

α2

= 1− 1− α2,1

α2

≥ 1− 1− α2,1

γα2

(C.125)

(and similarly for r2).

Now, for a2, b2, we have:

α2 = x2 ≥ α3 ⇐⇒ a2 − α2,1

x2
≥ α2,0

x2
(C.126)

so
[
1− α2,1

α2
, α2,0

α2

]
is a non-empty interval iff α2 ≤ α3 and in which case:

s1 ∈
[
1− α2,1

α2

,
α2,0

α2

]
=⇒ s1x2 ≥ α2,0 ∧ (1− s1)x2 ≥ α2,1 (C.127)

So in this case:

Va2,b2 =
1

2
[α2 − α3 + |s2(1− α2)− α2,2|+ |(1− s2)(1− α2)− α2,3|] (C.128)

=
1

2
[α2 − α3 + h(s2)] (C.129)

where:

h(s2) =


(1− 2s2)(1− α2) + α2,3 − α2,2 if s2 ∈

[
1− α2,3

γ(1−x2)
, 1− α2,3

1−x2

]
α2 − α3 if s2 ∈

[
1− α2,3

1−x2
, α2,2

1−x2

]
(2s2 − 1)(1− α2) + α2,2 − α2,3 if s2 ∈

[
α2,2

1−x2
, α2,2

γ(1−x2)

] (C.130)

Now, since:
γ = min {1− α0 + α1, 1− α2 + α3} (C.131)

then:
α2 − α3 ≤

1− γ

γ
min{1− α0, α1} (C.132)
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Hence:
max

(k,l)∈{1,2}2
Vak,bl =

1− γ

γ
min{1− α0, α1} (C.133)

(and similar reasoning can be made in the case α3 ≤ α2).
Thus, we then obtain the bound:

min
eΣ

TV (eΣ, e) ≤
1− γ

γ
min{1− α0, α1} (C.134)

C.6 Proof of proposition 5.10
Each of our contexts includes exactly one less word as the next one. As a result
given a pair of successive contexts, we can without loss of generality consider the
2-context scenario as an {m,mw} scenario. The no-signalling condition of the model
is then as follows:

emw|m = em (C.135)

Given an arbitrary 2-context empirical model as above, we want to find the follow-
ing decomposition:

e = NSF · eNS + SF · e′ (C.136)

where eNS is the maximum possible across all such decompositions. Let us as-
sume, as above, that m is a single “observable” with possible outcomes in Om ={
0, . . . , n|m| − 1

}
, where |m| is the number of words in the context m. Our first goal

is to find a distribution for m in eNS , which satisfies the following for all oi ∈ Om:

NSFeNS,m(oi) ≤ min (emw|m (oi) , em (oi)) (C.137)

From the above it follows that∑
oi

NSFeNS,m(oi) = NSF ≤
∑
oi

min (emw|m (oi) , em (oi)) (C.138)

One can always construct an empirical model eNS such that:∑
oi

min (emw|m (oi) , em (oi)) eNS ≤ e (C.139)

In order to see this, first observe that the probability distribution of eNS,m can be



246 C.6. Proof of proposition 5.10

constructed by first relabeling the outcomes to oik for 0 ≤ k ≤ n|m| − 1 such that for
N = n|m| − 1, the following holds:

min (emw|m (oi0) , em (oi0)) ≤min (emw|m (oi1) , em (oi1))

≤ ...

≤ min (emw|m (oiN ) , em (oiN )) (C.140)

Then, we take σ to be
∑

oi
min (emw|m (oi) , em (oi)) and set:

eNS,m(oi0) =
min (emw|m (oi0) , em (oi0))

σ
(C.141)

We can then inductively define:

eNS,m (oik) = min

(
min (emw|m (oi0) , em (oi0))

σ
, 1−

k−1∑
j=0

eNS,m(oij)

)
(C.142)

From this definition, we know that for all k, we have the following:

σeNS,m (oik) ≤ emw|m (oik) , em (oik) (C.143)

In addition, the above forms a valid probability distribution as, if there exists a k
such that eNS,m (oik) = 1 −

∑k−1
j=0 eNS,m

(
oij
)
, then eNS,m

(
oi′k
)
= 0 for all k′ > k and

therefore: ∑
k

eNS,m (oik) = 1 (C.144)

Similarly, if for all k, eNS,m (oik) =
min( emw|m(oi0),em(oi0))

σ
, then by definition of σ, we

also have (C.144). We extend this probability distribution to an empirical model
over {m,mw}, by defining:

eNS,mw (om, ow) = emw(om, ow)
eNS,m(om)

emw|m (om)
(C.145)

It is now easy to show that eNS,mw|m = eNS,m, and in addition, we have:

σeNS,mw (om, ow) = emw(om, ow)
σeNS,m(om)

emw|m (om)
≤ emw(om, ow) (C.146)
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As a result of the above calculations, the signalling fraction can be computed as
follows:

SF = 1−
∑
o

min (emw|m (o), em(o)) (C.147)
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Chapter D
Lexical ambiguity dataset

D.1 List of ambiguous words

Ambiguous nouns
Noun Ambiguity Definitions Examples

Atmosphere Polysemous
Layer of gas around the Earth/a
planet (literal only)

pollution of the atmo-
sphere

Feeling/Mood of a place or situ-
ation (figurative only)

a relaxing atmosphere

Band Homonymous
Group of musicians playing to-
gether

a rock or blues band

A thin flat piece of material or a
range of values

an elastic band, the 18-
25 age band

Bank Homonymous
A financial institution bank accounts
Sloping raised land, especially
along the sides of a river

the bank of a river

Bark Homonymous
The hard outer covering of a tree tree bark, red bark
Loud, rough noise (usually that
dogs and animals make)

a loud bark

249
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Noun Ambiguity Definitions Examples

Beam Homonymous
Line of light/radiation that
shines from an object

beam of a torch, an
electron beam

Long, thick piece of wood, metal,
or concrete, especially used to
support weight in a building or
other structure

wooden beams

Book Polysemous
Set of pages fastened together in-
side a cover (physical object)

a hardback book, a
heavy book

(Usually the content of) a writ-
ten text that can be published in
printed or electronic form

an interesting book,
reading a book

Boxer Homonymous
An athlete practising boxing a heavyweight boxer
A specific breed of dog the boxer is a hunting

mastiff

Cabinet Homonymous
A small group of the most impor-
tant people in government

a cabinet minister, a
cabinet reshuffle

A piece of furniture with shelves,
cupboards, or drawers

a filing cabinet, a
glass-fronted cabinet

Chicken Polysemous
Type of bird, usually kept in
farms

a male/female chicken

The meat of the bird of the same
name

roast chicken, fried
chicken

Coach Homonymous
Someone whose job is to teach
people

a sport coach

A motor vehicle like a bus a coach trip

Coat Polysemous
Piece of clothing, usually used for
warmth

a fur coat

A layer of a substance a coat of paint

Cotton Polysemous
Plants that produces flowers
from which fabric can be made

cotton fields, cotton
plants

Material used in textile or cos-
metic industry

a cotton shirt, cotton
pads
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Noun Ambiguity Definitions Examples

Fall Homonymous
The fact of the size, amount,
or strength of something getting
lower

the fall in prices, the
rise and fall

In American English, the season
between summer and winter (in
British English: autumn)

fall colours, a fall day

Film Polysemous
A movie watching a film, a hor-

ror film
A thin layer of material (physical
object)

a plastic film, a film of
oil

Glasses Polysemous
Container for drinks a wine glass, a glass of

water
Devices which are used to im-
prove eyesight

a pair of glasses, read-
ing glasses

Iron Polysemous
Metal that rusts / chemical ele-
ment

an iron chain, an iron
deficiency

Device used to flatten / smooth
clothes

a steam iron, a travel
iron

Letter Polysemous
A written message sent to some-
one

a love letter

Symbol used in written language the letter F

Library Polysemous
A building that has a collections
of books for people to borrow

a university library

A collection of films, music or
computer programs

a music library, a soft-
ware library

Line Polysemous
A long and thin mark on a sur-
face

a straight line, a dotted
line

Row of words which are part of a
bigger text

lines in a play, charac-
ters per line

Lunch Polysemous
Meal eaten in the middle of the
day (i.e. the actual food)

a healthy lunch, eating
lunch

Time period in which lunch is
eaten

a long lunch, an event-
ful lunch
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Noun Ambiguity Definitions Examples

Message Polysemous
Short piece of information that
you give to a person when you
cannot speak to them directly

leave a message, send a
message

The most important idea in a
book, film, or play, or an idea that
you want to tell people about

the movie’s message,
getting the message
across

Notice Polysemous
A board or piece of paper con-
taining information or instruc-
tions (physical object)

a large notice, a notice
in the papers

Information or a warning given
about something that is going to
happen in the future

a month’s notice, until
further notice

Organ Homonymous
Part of the body of an animal or
plant

internal organs, organ
transplants

Musical instrument with a key-
board

playing the organ, pipe
organ

Palm Homonymous
The inside part of your hand sweaty palms, palm

reading
A type of tropical tree date palms, palm

fronds

Paper Polysemous
Material used for writing, draw-
ing or printing

a sheet of paper, wrap-
ping paper, recycled
paper

Document such as a newspaper
or piece of writing...

the local papers, a sci-
entific paper

Pen Homonymous
Device used for writing a fountain pen, a ball-

point pen
Small area surrounded by a fence a sheep pen

Perch Homonymous
A type of fish perch recipes, fishing

perch
A seat or other place high up birds perch, watching

from a perch

Pitcher Homonymous
Type of jug a ceramic pitcher, a

pitcher of water
Baseball player that throws the
ball to the batter

the pitcher threw a lot
of curve balls
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Noun Ambiguity Definitions Examples

Plant Homonymous
Living organism growing in
earth

a potato plant

Factory or industrial process power plants, water
treatment plants

Port Homonymous
A harbour or the town that has a
harbour

a fishing port

A strong and sweet wine port wine, a glass of
port

Press Homonymous
Newspapers and magazines, and
those parts of television and ra-
dio that broadcast news, or re-
porters and photographers who
work for them

press reports, national
press

Piece of equipment that is used to
put weight on something in order
to crush it, remove liquid from it
or to make it flat

a printing press, a gar-
lic press

Punch Homonymous
A forceful hit with a fist a punch on the nose
A drink made from fruit juices a coconut punch

Shower Polysemous
Device releasing water that is
used to wash oneself

a broken shower, a ceil-
ing shower

Act of washing (using a shower) a daily shower, a quick
shower

Sign Polysemous
A notice giving information, di-
rections, a warning, etc.

a road sign, a neon
sign

Something showing that some-
thing else exists or might happen
or exist in the future

signs of improvement,
no sign of life

Straw Homonymous
Dried stems of crops a bale of straw, a straw

hat
Thin tube used for drinking drinking milk through

a straw, a paper straw

Swallow Homonymous
A type of small bird swallow migration
Act of swallowing a swallow of beer
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Noun Ambiguity Definitions Examples

Television Polysemous
A device with a screen (physical
object)

a HD television, a new
television

Broadcasting companies or their
programs

live television, watch-
ing television, on tele-
vision

Tin Polysemous
Silver coloured metal / Chemical
element

tin mining, tin candle-
stick

Closed metal container in which
food is sold

tin of beans, soup tins

Trip Homonymous
Journey in which you go some-
where

a round trip, a trip to
Paris

Occasion when you knock your
foot against something and fall or
lose your balance

a nasty trip on the
stairs

Volume Polysemous
A book or a book within a series
of related books

volumes of an encyclo-
pedia

The number or amount of some-
thing

the volume of traffic,
the volume of the mu-
sic

Wheat Polysemous
Crop that is used for making
flour

wheat fields, common
wheat

Food ingredient which has nutri-
tional value

wheat allergy, wheat
products

Yarn Homonymous
Thread used for making cloth or
for knitting

knitting yarn

A story, usually a long one with a
lot of excitement or interest

a boys’ adventure yarn



Appendix D. Lexical ambiguity dataset 255

Ambiguous Verbs

Verb Ambiguity Definitions Examples

Admit Homonymous
To acknowledge that something
is true (literal or figurative)

admitting guilt, ad-
miting a mistake

Allow someone to enter a place
(literal or figurative)

admitting new stu-
dents, admitting to
hospital

Adopt Polysemous
Take a child or a pet into your
home (literal only)

Adopt a child, adopt-
ing a dog

To choose something/someone
as your own, take up a new fea-
ture (figurative only)

adopt an new strategy,
adopt a new attitude

Bill Homonymous
To request payment for a product
or service (literal or figurative)

bill the company for
your expenses

to advertise something with a
particular description (literal or
figurative)

bill the movie as a ro-
mantic comedy

Bore Homonymous
To talk or act in a way that makes
someone lose interest (literal or
figurative)

boring an audience

To make a hole in something (lit-
eral or figurative)

boring a hole in the
wall

Box Homonymous
To put something in a box (literal
or figurative)

boxing up clothes and
books

To practice the sport of boxing
(literal or figurative)

He boxed profession-
ally for years

Bury Polysemous
Put something in the ground (lit-
eral only)

bury a body, bury a
treasure

To hide something (figurative
only)

bury your face in your
hands, bury the truth
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Verb Ambiguity Definitions Examples

Capture Polysemous
Take something into your posses-
sion (literal only)

capturing prisonners,
capturing a ball

Represent or describe something
acurately (figurative only)

capturing an idea, cap-
turing a picture

Cast Homonymous
To choose actors for a part in a
play or show (literal or figura-
tive)

he was cast as the vil-
lain

To send something in a particular
direction (literal or figurative)

casting light, casting
shadows

Catch Polysemous
Take hold of something with
your hands (literal only)

catching a ball

Engage a person’s interest or
imagination (figurative only)

catching a movie,
catching what they
said

Charge Homonymous
To accuse somebody of doing
something (usually criminal) (lit-
eral or figurative)

charging someone with
murder

To put electricity into a device
(literal or figurative)

charging your phone

Clean Polysemous
Remove dirt or stains (literal
only)

cleaning the table

Remove or eradicate something
(figurative only)

clean your thoughts,
clean up their be-
haviour

Climb Polysemous
Go up towards something (literal
only)

climbing a mountain

Increase in scale/value or power
(figurative only)

climb the social ladder,
prices climbed

Conduct Homonymous
Organise or perform an activity
(literal or figurative)

conduct an exper-
iment, conduct a
survey

Allow something through (literal
or figurative)

conduct electricity,
conduct heat

Copy Polysemous
Produce something so that is the
same as an original piece (literal
only)

copy documents or
data, copy someone’s
homework

Behave the same way as some-
one/something else (figurative
only)

copying a role model
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Verb Ambiguity Definitions Examples

Dice Homonymous
To cut in small cubes (literal or
figurative)

dicing carrots and
potatoes

Gamble / Take risks with (literal
or figurative)

dicing with death

Disarm Polysemous
Take weapons away from some-
body/give up weapons (literal
only)

disarming rebels, dis-
arming a country

To make somebody less angry or
critical (figurative only)

disarming critics

File Homonymous
To store information (literal or
figurative)

filing a document, fil-
ing a report

Make an object/surface smooth
using a tool (literal or figurative)

filing nails

Follow Polysemous
To move behind someone or
something (literal only)

the cat followed the
string

To happen as a result (figurative
only)

following order, the re-
sult followed

Grasp Polysemous
Grab something firmly in your
hands (literal only)

grasping a bottle

Understand something (figura-
tive only)

grasping a concept

Inherit Polysemous
To receive money or property
from a dead relative (literal only)

inheriting a house,
inheriting the family
business

To receive/be left with some-
thing a predecessor (figurative
only)

inherit issues from the
previous government

Label Polysemous
Stick or fasten a piece of pa-
per/fabric containing some infor-
mation about a product (literal
only)

labelling parcels, la-
belling jars

Classify something or someone
(figurative only)

labelling groups of peo-
ple
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Verb Ambiguity Definitions Examples

Lap Homonymous
(Usually for animals) Take up
(liquid) with quick movements of
the tongue (literal or figurative)

the dog lapped the wa-
ter, waves lapped the
shore

Complete a full trip around a
track or overtake someone in a
race by completing one more lap
(literal or figurative)

lapping a competitor,
lapping the track

Launch Polysemous
Send something out in the air (lit-
eral only)

launch a projectile,
launch a spaceship

Begin something new or launch a
new product (figurative only)

launch a new brand,
launch a programme

Leak Polysemous
To escape from a hole or crack; al-
lowing liquid or gas to escape (lit-
eral only)

water leaked out of the
pipe, the bottle leaked

Intentionally disclosing (private
or secret) information (figurative
only)

leaking documents

Milk Polysemous
To get milk from an animal (lit-
eral only)

milking a cow or a goat

Exploit information, money, etc,
from something or someone (fig-
urative only)

milking a resource, the
media milked the story

Mount Polysemous
Get on something (literal only) mounting a horse
To gradually increase (figurative
only)

Tension was mounting

Patronise Homonymous
Speak or behave in a way that
bettrays a feeling a superiority
(literal or figurative)

patronising kids

Be a regular customer in a place
(literal or figurative)

patronising a bar or a
restaurant

Pen Homonymous
To write something (literal or fig-
urative)

pen a note

Enclose in a restricted space (lit-
eral or figurative)

the farmer penned
their sheep



Appendix D. Lexical ambiguity dataset 259

Verb Ambiguity Definitions Examples

Plug Homonymous
Fill a hole with a piece suitable
material (literal or figurative)

plugging a charger,
plugging a gap

Advertise/Praising something
(literal or figurative)

plugging a book or a
show

Reach Polysemous
To arrive at a place (literal only) reaching a destination,

reaching for the phone
To get to a particular level (figu-
rative only)

reaching old age

Reflect Polysemous
Throw something back without
absorbing it (literal only)

reflecting light, reflect-
ing waves

Think or be representative of
something (figurative only)

reflecting about for-
eign politics, reflecting
statistics

Ruin Polysemous
To cause someone to no longer
have moeny (literal only)

ruining businesses

Spoil or destroy something (figu-
rative only)

ruining someone’s
chances, ruining a
movie

Rule Homonymous
Draw a straight line (literal or fig-
urative)

ruling the paper hori-
zontally

Have authority or control over
something (literal or figurative)

ruling a country, rul-
ing the current market

Seize Polysemous
To take something and
keep/hold it (literal only)

seizing one’s arm

To take hold of something (figu-
rative only)

seizing an opportunity

Sketch Polysemous
Draw something (literal only) the artist sketched the

model
To describe something (figurative
only)

sketching a proof

Stir Polysemous
To mix a liquid (literal only) stirring a soup
Make someone feel a strong emo-
tion (figurative only)

the speech stirred the
crowd
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Verb Ambiguity Definitions Examples

Tackle Polysemous
(Sport) Try to take the ball from
an opponent; take hold of an-
other player (literal only)

The player tackled
their opponent

To deal with something (figura-
tive only)

tackle a problem

Tap Homonymous
Hit something gently (literal or
figurative)

tap someone on the
shoulder

Secretly listen or record what
someone is saying using a device
(literal or figurative)

tapping phones

Throw Polysemous
Send something in the air (literal
only)

throwing a ball

Send something to into a differ-
ent state (figurative only)

throwing a party,
throwing away some-
thing, throwing a
shadow

Tip Homonymous
To give an extra amount of
money for a service (literal or fig-
urative)

tip the waiter or taxi
driver

To move an object such that one
side is higher than the other (lit-
eral or figurative)

tipping the table, tip
the content of the con-
tainer

Wipe Polysemous
Clean a surface by rubbing it with
a cloth (literal only)

wiping the table

Remove or eliminate compltetly
(figurative only)

wiping a hard drive,
wiping out an idea
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D.2 The corpus dataset

Rank 2 models
Verb Noun

admit band
admit letter
admit press
adopt band
adopt bank
adopt boxer
adopt coach

bill band
bury boxer
bury letter

capture band
capture bank
capture fall
capture organ
capture palm
capture plant
capture port
capture press

cast band
cast bank
cast beam
cast coach
cast letter
cast yarn

catch letter
clean organ
climb boxer
climb palm
climb plant
copy band
copy letter
file cabinet
file plant

Verb Noun

file volume
follow band
follow bank
follow press
follow trip
grasp band
grasp palm
inherit bank
inherit boxer
inherit plant
label press

launch band
launch coach
launch letter
launch port

leak pen
mount band
mount cabinet
mount coach
mount volume
mount watch

pen letter
plug band
reach band
reach bank
reach coach
reach pitcher
reach plant
reach port
reflect band
reflect bank
reflect beam
reflect coach

Verb Noun

reflect letter
reflect trip
reflect volume
ruin plant
saw cabinet
saw volume
scent plant
seize bank
seize press

sketch organ
stir plant

tackle bank
tap cabinet
tap pen

throw band
throw bank
throw letter
throw pen
throw pitcher
throw punch
throw volume
wipe bank
wipe pen
wipe plant
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Rank 4 models - Subject-Verb models
Subjects Verbs

band, bank admit, adopt
band, bank admit, capture
band, bank admit, cast
band, bank admit, follow
band, bank admit, launch
band, bank admit, reach
band, bank admit, reflect
band, bank admit, seize
band, bank admit, tackle
band, bank admit, throw
band, bank adopt, capture
band, bank adopt, cast
band, bank adopt, follow
band, bank adopt, launch
band, bank adopt, reach
band, bank adopt, reflect
band, bank adopt, seize
band, bank adopt, tackle
band, bank adopt, throw
band, bank capture, cast
band, bank capture, follow
band, bank capture, launch
band, bank capture, reach
band, bank capture, reflect
band, bank capture, seize
band, bank capture, tackle
band, bank capture, throw
band, bank cast, follow
band, bank cast, launch
band, bank cast, reach
band, bank cast, reflect
band, bank cast, seize
band, bank cast, tackle
band, bank cast, throw
band, bank follow, launch
band, bank follow, reach

Subjects Verbs

band, bank follow, reflect
band, bank follow, seize
band, bank follow, tackle
band, bank follow, throw
band, bank launch, reach
band, bank launch, reflect
band, bank launch, seize
band, bank launch, tackle
band, bank launch, throw
band, bank reach, reflect
band, bank reach, seize
band, bank reach, tackle
band, bank reach, throw
band, bank reflect, seize
band, bank reflect, tackle
band, bank reflect, throw
band, bank seize, tackle
band, bank seize, throw
band, bank tackle, throw
band, beam cast, reach
band, beam cast, reflect
band, beam reach, reflect

band, cabinet adopt, cast
band, cabinet adopt, mount
band, cabinet adopt, tap
band, cabinet cast, mount
band, cabinet cast, tap
band, cabinet mount, tap
band, coach admit, adopt
band, coach admit, cast
band, coach admit, copy
band, coach admit, launch
band, coach admit, mount
band, coach admit, reach
band, coach admit, reflect
band, coach admit, tackle
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Subjects Verbs

band, coach admit, tap
band, coach admit, throw
band, coach adopt, cast
band, coach adopt, copy
band, coach adopt, launch
band, coach adopt, mount
band, coach adopt, reach
band, coach adopt, reflect
band, coach adopt, tackle
band, coach adopt, tap
band, coach adopt, throw
band, coach cast, copy
band, coach cast, launch
band, coach cast, mount
band, coach cast, reach
band, coach cast, reflect
band, coach cast, tackle
band, coach cast, tap
band, coach cast, throw
band, coach copy, launch
band, coach copy, mount
band, coach copy, reach
band, coach copy, reflect
band, coach copy, tackle
band, coach copy, tap
band, coach copy, throw
band, coach launch, mount
band, coach launch, reach
band, coach launch, reflect
band, coach launch, tackle
band, coach launch, tap
band, coach launch, throw
band, coach mount, reach
band, coach mount, reflect
band, coach mount, tackle
band, coach mount, tap

Subjects Verbs

band, coach mount, throw
band, coach reach, reflect
band, coach reach, tackle
band, coach reach, tap
band, coach reach, throw
band, coach reflect, tackle
band, coach reflect, tap
band, coach reflect, throw
band, coach tackle, tap
band, coach tackle, throw
band, coach tap, throw
band, letter admit, capture
band, letter admit, cast
band, letter admit, copy
band, letter admit, launch
band, letter admit, pen
band, letter admit, reach
band, letter admit, reflect
band, letter admit, stir
band, letter admit, throw
band, letter capture, cast
band, letter capture, copy
band, letter capture, launch
band, letter capture, pen
band, letter capture, reach
band, letter capture, reflect
band, letter capture, stir
band, letter capture, throw
band, letter cast, copy
band, letter cast, launch
band, letter cast, pen
band, letter cast, reach
band, letter cast, reflect
band, letter cast, stir
band, letter cast, throw
band, letter copy, launch
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Subjects Verbs

band, letter copy, pen
band, letter copy, reach
band, letter copy, reflect
band, letter copy, stir
band, letter copy, throw
band, letter launch, pen
band, letter launch, reach
band, letter launch, reflect
band, letter launch, stir
band, letter launch, throw
band, letter pen, reach
band, letter pen, reflect
band, letter pen, stir
band, letter pen, throw
band, letter reach, reflect
band, letter reach, stir
band, letter reach, throw
band, letter reflect, stir
band, letter reflect, throw
band, letter stir, throw
band, palm capture, grasp
band, palm capture, throw
band, palm grasp, throw
band, pen mount, plug
band, pen mount, reach
band, pen mount, tap
band, pen mount, throw
band, pen plug, reach
band, pen plug, tap
band, pen plug, throw
band, pen reach, tap
band, pen reach, throw
band, pen tap, throw

band, plant capture, cast
band, plant capture, plug
band, plant capture, reach
band, plant capture, reflect

Subjects Verbs

band, plant capture, stir
band, plant capture, tap
band, plant cast, plug
band, plant cast, reach
band, plant cast, reflect
band, plant cast, stir
band, plant cast, tap
band, plant plug, reach
band, plant plug, reflect
band, plant plug, stir
band, plant plug, tap
band, plant reach, reflect
band, plant reach, stir
band, plant reach, tap
band, plant reflect, stir
band, plant reflect, tap
band, plant stir, tap
band, port capture, grasp
band, port capture, launch
band, port capture, reach
band, port grasp, launch
band, port grasp, reach
band, port launch, reach
band, press admit, capture
band, press admit, cast
band, press admit, follow
band, press admit, grasp
band, press admit, reflect
band, press admit, seize
band, press admit, stir
band, press capture, cast
band, press capture, follow
band, press capture, grasp
band, press capture, reflect
band, press capture, seize
band, press capture, stir
band, press cast, follow
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Subjects Verbs

band, press cast, grasp
band, press cast, reflect
band, press cast, seize
band, press cast, stir
band, press follow, grasp
band, press follow, reflect
band, press follow, seize
band, press follow, stir
band, press grasp, reflect
band, press grasp, seize
band, press grasp, stir
band, press reflect, seize
band, press reflect, stir
band, press seize, stir
band, trip bore, follow
band, trip bore, reflect
band, trip bore, throw
band, trip follow, reflect
band, trip follow, throw
band, trip reflect, throw

band, volume capture, mount
band, volume capture, plug
band, volume capture, reach
band, volume capture, reflect
band, volume capture, throw
band, volume mount, plug
band, volume mount, reach
band, volume mount, reflect
band, volume mount, throw
band, volume plug, reach
band, volume plug, reflect
band, volume plug, throw
band, volume reach, reflect
band, volume reach, throw
band, volume reflect, throw

bank, beam cast, reach
bank, beam cast, reflect

Subjects Verbs

bank, beam reach, reflect
bank, boxer adopt, cast
bank, boxer adopt, inherit
bank, boxer cast, inherit

bank, cabinet adopt, cast
bank, cabinet adopt, file
bank, cabinet cast, file
bank, coach admit, adopt
bank, coach admit, cast
bank, coach admit, launch
bank, coach admit, reach
bank, coach admit, reflect
bank, coach admit, tackle
bank, coach admit, throw
bank, coach adopt, cast
bank, coach adopt, launch
bank, coach adopt, reach
bank, coach adopt, reflect
bank, coach adopt, tackle
bank, coach adopt, throw
bank, coach cast, launch
bank, coach cast, reach
bank, coach cast, reflect
bank, coach cast, tackle
bank, coach cast, throw
bank, coach launch, reach
bank, coach launch, reflect
bank, coach launch, tackle
bank, coach launch, throw
bank, coach reach, reflect
bank, coach reach, tackle
bank, coach reach, throw
bank, coach reflect, tackle
bank, coach reflect, throw
bank, coach tackle, throw
bank, letter admit, capture
bank, letter admit, cast
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Subjects Verbs

bank, letter admit, launch
bank, letter admit, reach
bank, letter admit, reflect
bank, letter admit, throw
bank, letter capture, cast
bank, letter capture, launch
bank, letter capture, reach
bank, letter capture, reflect
bank, letter capture, throw
bank, letter cast, launch
bank, letter cast, reach
bank, letter cast, reflect
bank, letter cast, throw
bank, letter launch, reach
bank, letter launch, reflect
bank, letter launch, throw
bank, letter reach, reflect
bank, letter reach, throw
bank, letter reflect, throw
bank, pen leak, reach
bank, pen leak, throw
bank, pen leak, wipe
bank, pen reach, throw
bank, pen reach, wipe
bank, pen throw, wipe

bank, plant capture, cast
bank, plant capture, file
bank, plant capture, inherit
bank, plant capture, leak
bank, plant capture, reach
bank, plant capture, reflect
bank, plant capture, wipe
bank, plant cast, file
bank, plant cast, inherit
bank, plant cast, leak
bank, plant cast, reach
bank, plant cast, reflect

Subjects Verbs

bank, plant cast, wipe
bank, plant file, inherit
bank, plant file, leak
bank, plant file, reach
bank, plant file, reflect
bank, plant file, wipe
bank, plant inherit, leak
bank, plant inherit, reach
bank, plant inherit, reflect
bank, plant inherit, wipe
bank, plant leak, reach
bank, plant leak, reflect
bank, plant leak, wipe
bank, plant reach, reflect
bank, plant reach, wipe
bank, plant reflect, wipe
bank, port capture, launch
bank, port capture, reach
bank, port launch, reach
bank, press admit, capture
bank, press admit, cast
bank, press admit, follow
bank, press admit, lap
bank, press admit, leak
bank, press admit, reflect
bank, press admit, seize
bank, press capture, cast
bank, press capture, follow
bank, press capture, lap
bank, press capture, leak
bank, press capture, reflect
bank, press capture, seize
bank, press cast, follow
bank, press cast, lap
bank, press cast, leak
bank, press cast, reflect
bank, press cast, seize
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Subjects Verbs

bank, press follow, lap
bank, press follow, leak
bank, press follow, reflect
bank, press follow, seize
bank, press lap, leak
bank, press lap, reflect
bank, press lap, seize
bank, press leak, reflect
bank, press leak, seize
bank, press reflect, seize
bank, trip follow, reflect
bank, trip follow, throw
bank, trip follow, wipe
bank, trip reflect, throw
bank, trip reflect, wipe
bank, trip throw, wipe

bank, volume capture, file
bank, volume capture, reach
bank, volume capture, reflect
bank, volume capture, throw
bank, volume file, reach
bank, volume file, reflect
bank, volume file, throw
bank, volume reach, reflect
bank, volume reach, throw
bank, volume reflect, throw

bark, plant catch, climb
beam, coach cast, reach
beam, coach cast, reflect
beam, coach reach, reflect
beam, letter cast, catch
beam, letter cast, reach
beam, letter cast, reflect
beam, letter catch, reach
beam, letter catch, reflect
beam, letter reach, reflect
beam, plant cast, catch

Subjects Verbs

beam, plant cast, reach
beam, plant cast, reflect
beam, plant catch, reach
beam, plant catch, reflect
beam, plant reach, reflect
beam, press cast, catch
beam, press cast, reflect
beam, press catch, reflect
boxer, letter box, bury
boxer, letter box, cast
boxer, letter bury, cast
boxer, plant box, cast
boxer, plant box, climb
boxer, plant box, inherit
boxer, plant cast, climb
boxer, plant cast, inherit
boxer, plant climb, inherit

cabinet, coach adopt, cast
cabinet, coach adopt, mount
cabinet, coach adopt, tap
cabinet, coach cast, mount
cabinet, coach cast, tap
cabinet, coach mount, tap
cabinet, plant cast, file
cabinet, plant cast, tap
cabinet, plant file, tap

cabinet, volume file, mount
coach, letter admit, cast
coach, letter admit, copy
coach, letter admit, launch
coach, letter admit, reach
coach, letter admit, reflect
coach, letter admit, throw
coach, letter cast, copy
coach, letter cast, launch
coach, letter cast, reach
coach, letter cast, reflect
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Subjects Verbs

coach, letter cast, throw
coach, letter copy, launch
coach, letter copy, reach
coach, letter copy, reflect
coach, letter copy, throw
coach, letter launch, reach
coach, letter launch, reflect
coach, letter launch, throw
coach, letter reach, reflect
coach, letter reach, throw
coach, letter reflect, throw
coach, pen mount, reach
coach, pen mount, rule
coach, pen mount, tap
coach, pen mount, throw
coach, pen reach, rule
coach, pen reach, tap
coach, pen reach, throw
coach, pen rule, tap
coach, pen rule, throw
coach, pen tap, throw

coach, plant cast, reach
coach, plant cast, reflect
coach, plant cast, tap
coach, plant reach, reflect
coach, plant reach, tap
coach, plant reflect, tap
coach, press admit, cast
coach, press admit, reflect
coach, press cast, reflect

coach, volume mount, reach
coach, volume mount, reflect
coach, volume mount, throw
coach, volume reach, reflect
coach, volume reach, throw
coach, volume reflect, throw

letter, plant box, capture

Subjects Verbs

letter, plant box, cast
letter, plant box, catch
letter, plant box, reach
letter, plant box, reflect
letter, plant box, stir
letter, plant capture, cast
letter, plant capture, catch
letter, plant capture, reach
letter, plant capture, reflect
letter, plant capture, stir
letter, plant cast, catch
letter, plant cast, reach
letter, plant cast, reflect
letter, plant cast, stir
letter, plant catch, reach
letter, plant catch, reflect
letter, plant catch, stir
letter, plant reach, reflect
letter, plant reach, stir
letter, plant reflect, stir
letter, port capture, launch
letter, port capture, reach
letter, port launch, reach
letter, press admit, capture
letter, press admit, cast
letter, press admit, catch
letter, press admit, reflect
letter, press admit, stir
letter, press capture, cast
letter, press capture, catch
letter, press capture, reflect
letter, press capture, stir
letter, press cast, catch
letter, press cast, reflect
letter, press cast, stir
letter, press catch, reflect
letter, press catch, stir
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Subjects Verbs

letter, press reflect, stir
letter, volume capture, reach
letter, volume capture, reflect
letter, volume capture, throw
letter, volume reach, reflect
letter, volume reach, throw
letter, volume reflect, throw

pen, plant leak, plug
pen, plant leak, reach
pen, plant leak, tap
pen, plant leak, wipe
pen, plant plug, reach
pen, plant plug, tap
pen, plant plug, wipe
pen, plant reach, tap
pen, plant reach, wipe
pen, plant tap, wipe

pen, volume mount, plug
pen, volume mount, reach
pen, volume mount, throw
pen, volume plug, reach
pen, volume plug, throw
pen, volume reach, throw
plant, press capture, cast
plant, press capture, catch
plant, press capture, leak
plant, press capture, reflect
plant, press capture, stir
plant, press cast, catch
plant, press cast, leak
plant, press cast, reflect
plant, press cast, stir
plant, press catch, leak
plant, press catch, reflect
plant, press catch, stir
plant, press leak, reflect
plant, press leak, stir

Subjects Verbs

plant, press reflect, stir
plant, volume capture, file
plant, volume capture, plug
plant, volume capture, reach
plant, volume capture, reflect
plant, volume file, plug
plant, volume file, reach
plant, volume file, reflect
plant, volume plug, reach
plant, volume plug, reflect
plant, volume reach, reflect
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Rank 4 models - Verb-Object models
Verbs Objects

admit, clean band, letter
admit, clean band, volume
admit, clean letter, volume

admit, follow band, letter
admit, follow band, press
admit, follow band, volume
admit, follow letter, press
admit, follow letter, volume
admit, follow press, volume
admit, label band, letter
admit, label band, press
admit, label letter, press

admit, launch band, letter
admit, launch band, volume
admit, launch letter, volume
admit, mount band, letter
admit, mount band, press
admit, mount band, volume
admit, mount letter, press
admit, mount letter, volume
admit, mount press, volume
admit, reflect band, letter
admit, reflect band, volume
admit, reflect letter, volume
admit, seize letter, press
admit, seize letter, volume
admit, seize press, volume
admit, throw band, letter
admit, throw band, volume
admit, throw letter, volume

adopt, capture band, bank
adopt, capture band, plant
adopt, capture bank, plant

adopt, cast band, bank
adopt, cast band, coach
adopt, cast bank, coach

Verbs Objects

adopt, climb bank, boxer
adopt, climb bank, plant
adopt, climb boxer, plant
adopt, grasp band, bank
adopt, grasp band, plant
adopt, grasp bank, plant
adopt, inherit bank, boxer
adopt, inherit bank, plant
adopt, inherit boxer, plant
adopt, launch band, coach
adopt, launch band, plant
adopt, launch coach, plant
adopt, mount band, bank
adopt, mount band, coach
adopt, mount band, plant
adopt, mount bank, coach
adopt, mount bank, plant
adopt, mount coach, plant
adopt, reach band, bank
adopt, reach band, coach
adopt, reach band, plant
adopt, reach bank, coach
adopt, reach bank, plant
adopt, reach coach, plant
adopt, reflect band, bank
adopt, reflect band, coach
adopt, reflect bank, coach
adopt, throw band, bank
adopt, throw band, boxer
adopt, throw band, plant
adopt, throw bank, boxer
adopt, throw bank, plant
adopt, throw boxer, plant
adopt, wipe band, bank
adopt, wipe band, plant
adopt, wipe bank, plant
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Verbs Objects

bury, clean letter, organ
bury, clean letter, plant
bury, clean organ, plant
bury, tap boxer, letter
bury, tap boxer, organ
bury, tap letter, organ

bury, throw boxer, letter
bury, throw boxer, plant
bury, throw letter, plant

capture, clean band, organ
capture, clean band, plant
capture, clean organ, plant
capture, climb bank, palm
capture, climb bank, plant
capture, climb palm, plant
capture, follow band, bank
capture, follow band, press
capture, follow band, trip
capture, follow bank, press
capture, follow bank, trip
capture, follow press, trip
capture, grasp band, bank
capture, grasp band, palm
capture, grasp band, plant
capture, grasp bank, palm
capture, grasp bank, plant
capture, grasp palm, plant
capture, label band, plant
capture, label band, press
capture, label plant, press

capture, launch band, plant
capture, launch band, port
capture, launch plant, port
capture, mount band, bank
capture, mount band, plant
capture, mount band, press

Verbs Objects

capture, mount bank, plant
capture, mount bank, press
capture, mount plant, press
capture, reach band, bank
capture, reach band, plant
capture, reach band, port
capture, reach bank, plant
capture, reach bank, port
capture, reach plant, port
capture, reflect band, bank
capture, reflect band, trip
capture, reflect bank, trip
capture, rule band, bank
capture, rule band, port
capture, rule band, trip
capture, rule bank, port
capture, rule bank, trip
capture, rule port, trip
capture, seize bank, plant
capture, seize bank, port
capture, seize bank, press
capture, seize plant, port
capture, seize plant, press
capture, seize port, press
capture, stir bank, palm
capture, stir bank, plant
capture, stir bank, port
capture, stir bank, trip
capture, stir palm, plant
capture, stir palm, port
capture, stir palm, trip
capture, stir plant, port
capture, stir plant, trip
capture, stir port, trip

capture, tackle bank, plant
capture, tackle bank, trip
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Verbs Objects

capture, tackle plant, trip
capture, throw band, bank
capture, throw band, plant
capture, throw bank, plant
capture, wipe band, bank
capture, wipe band, organ
capture, wipe band, palm
capture, wipe band, plant
capture, wipe bank, organ
capture, wipe bank, palm
capture, wipe bank, plant
capture, wipe organ, palm
capture, wipe organ, plant
capture, wipe palm, plant

cast, catch band, coach
cast, catch band, letter
cast, catch coach, letter
cast, clean band, beam
cast, clean band, letter
cast, clean band, straw
cast, clean beam, letter
cast, clean beam, straw
cast, clean letter, straw

cast, follow band, bank
cast, follow band, letter
cast, follow bank, letter
cast, grasp band, bank
cast, grasp band, straw
cast, grasp bank, straw

cast, launch band, coach
cast, launch band, letter
cast, launch coach, letter
cast, mount band, bank
cast, mount band, beam
cast, mount band, coach
cast, mount band, letter

Verbs Objects

cast, mount bank, beam
cast, mount bank, coach
cast, mount bank, letter
cast, mount beam, coach
cast, mount beam, letter
cast, mount coach, letter
cast, reach band, bank
cast, reach band, coach
cast, reach bank, coach
cast, reflect band, bank
cast, reflect band, beam
cast, reflect band, coach
cast, reflect band, letter
cast, reflect bank, beam
cast, reflect bank, coach
cast, reflect bank, letter
cast, reflect beam, coach
cast, reflect beam, letter
cast, reflect coach, letter
cast, throw band, bank
cast, throw band, beam
cast, throw band, letter
cast, throw bank, beam
cast, throw bank, letter
cast, throw beam, letter

catch, follow band, letter
catch, follow band, trip
catch, follow letter, trip
catch, launch band, coach
catch, launch band, letter
catch, launch coach, letter
catch, mount band, coach
catch, mount band, letter
catch, mount coach, letter
catch, reach band, coach
catch, reach band, perch
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Verbs Objects

catch, reach coach, perch
catch, reflect band, coach
catch, reflect band, letter
catch, reflect band, trip
catch, reflect coach, letter
catch, reflect coach, trip
catch, reflect letter, trip
clean, copy band, letter
clean, copy band, pen
clean, copy letter, pen
clean, file cabinet, letter
clean, file cabinet, plant
clean, file cabinet, volume
clean, file letter, plant
clean, file letter, volume
clean, file plant, volume

clean, follow band, letter
clean, follow band, volume
clean, follow letter, volume
clean, grasp band, pen
clean, grasp band, plant
clean, grasp band, straw
clean, grasp pen, plant
clean, grasp pen, straw
clean, grasp plant, straw
clean, label band, cabinet
clean, label band, letter
clean, label band, pen
clean, label band, plant
clean, label cabinet, letter
clean, label cabinet, pen
clean, label cabinet, plant
clean, label letter, pen
clean, label letter, plant
clean, label pen, plant

clean, launch band, letter

Verbs Objects

clean, launch band, pen
clean, launch band, plant
clean, launch band, volume
clean, launch letter, pen
clean, launch letter, plant
clean, launch letter, volume
clean, launch pen, plant
clean, launch pen, volume
clean, launch plant, volume
clean, mount band, beam
clean, mount band, cabinet
clean, mount band, letter
clean, mount band, plant
clean, mount band, volume
clean, mount beam, cabinet
clean, mount beam, letter
clean, mount beam, plant
clean, mount beam, volume
clean, mount cabinet, letter
clean, mount cabinet, plant
clean, mount cabinet, volume
clean, mount letter, plant
clean, mount letter, volume
clean, mount plant, volume
clean, reflect band, beam
clean, reflect band, letter
clean, reflect band, volume
clean, reflect beam, letter
clean, reflect beam, volume
clean, reflect letter, volume
clean, seize letter, plant
clean, seize letter, volume
clean, seize plant, volume

clean, sketch organ, plant
clean, sketch organ, volume
clean, sketch plant, volume
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Verbs Objects

clean, tackle letter, plant
clean, tackle letter, volume
clean, tackle plant, volume

clean, tap beam, cabinet
clean, tap beam, letter
clean, tap beam, organ
clean, tap beam, pen
clean, tap beam, volume
clean, tap cabinet, letter
clean, tap cabinet, organ
clean, tap cabinet, pen
clean, tap cabinet, volume
clean, tap letter, organ
clean, tap letter, pen
clean, tap letter, volume
clean, tap organ, pen
clean, tap organ, volume
clean, tap pen, volume

clean, throw band, beam
clean, throw band, cabinet
clean, throw band, letter
clean, throw band, pen
clean, throw band, plant
clean, throw band, volume
clean, throw beam, cabinet
clean, throw beam, letter
clean, throw beam, pen
clean, throw beam, plant
clean, throw beam, volume
clean, throw cabinet, letter
clean, throw cabinet, pen
clean, throw cabinet, plant
clean, throw cabinet, volume
clean, throw letter, pen
clean, throw letter, plant
clean, throw letter, volume

Verbs Objects

clean, throw pen, plant
clean, throw pen, volume
clean, throw plant, volume
clean, wipe band, organ
clean, wipe band, pen
clean, wipe band, plant
clean, wipe band, volume
clean, wipe organ, pen
clean, wipe organ, plant
clean, wipe organ, volume
clean, wipe pen, plant
clean, wipe pen, volume
clean, wipe plant, volume
climb, grasp bank, palm
climb, grasp bank, plant
climb, grasp palm, plant
climb, inherit bank, boxer
climb, inherit bank, plant
climb, inherit boxer, plant

climb, stir bank, palm
climb, stir bank, plant
climb, stir palm, plant

climb, throw bank, boxer
climb, throw bank, plant
climb, throw boxer, plant
climb, wipe bank, palm
climb, wipe bank, plant
climb, wipe palm, plant
copy, label band, letter
copy, label band, pen
copy, label letter, pen

copy, launch band, letter
copy, launch band, pen
copy, launch letter, pen
copy, throw band, letter
copy, throw band, pen
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Verbs Objects

copy, throw letter, pen
file, label cabinet, letter
file, label cabinet, plant
file, label letter, plant

file, launch letter, plant
file, launch letter, volume
file, launch plant, volume
file, mount cabinet, letter
file, mount cabinet, plant
file, mount cabinet, volume
file, mount letter, plant
file, mount letter, volume
file, mount plant, volume
file, seize letter, plant
file, seize letter, volume
file, seize plant, volume
file, tackle letter, plant
file, tackle letter, volume
file, tackle plant, volume

file, tap cabinet, letter
file, tap cabinet, volume
file, tap letter, volume

file, throw cabinet, letter
file, throw cabinet, plant
file, throw cabinet, volume
file, throw letter, plant
file, throw letter, volume
file, throw plant, volume

follow, label band, letter
follow, label band, press
follow, label letter, press

follow, launch band, letter
follow, launch band, volume
follow, launch letter, volume
follow, mount band, bank
follow, mount band, letter

Verbs Objects

follow, mount band, press
follow, mount band, volume
follow, mount bank, letter
follow, mount bank, press
follow, mount bank, volume
follow, mount letter, press
follow, mount letter, volume
follow, mount press, volume
follow, reflect band, bank
follow, reflect band, letter
follow, reflect band, trip
follow, reflect band, volume
follow, reflect bank, letter
follow, reflect bank, trip
follow, reflect bank, volume
follow, reflect letter, trip
follow, reflect letter, volume
follow, reflect trip, volume
follow, rule band, bank
follow, rule band, trip
follow, rule bank, trip
follow, seize bank, letter
follow, seize bank, press
follow, seize bank, volume
follow, seize letter, press
follow, seize letter, volume
follow, seize press, volume
follow, tackle bank, letter
follow, tackle bank, trip
follow, tackle bank, volume
follow, tackle letter, trip
follow, tackle letter, volume
follow, tackle trip, volume
follow, throw band, bank
follow, throw band, letter
follow, throw band, volume
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Verbs Objects

follow, throw bank, letter
follow, throw bank, volume
follow, throw letter, volume
follow, wipe band, bank
follow, wipe band, volume
follow, wipe bank, volume
grasp, label band, pen
grasp, label band, plant
grasp, label pen, plant

grasp, launch band, pen
grasp, launch band, plant
grasp, launch pen, plant
grasp, mount band, bank
grasp, mount band, plant
grasp, mount bank, plant
grasp, reach band, bank
grasp, reach band, plant
grasp, reach bank, plant
grasp, stir bank, palm
grasp, stir bank, plant
grasp, stir palm, plant

grasp, throw band, bank
grasp, throw band, pen
grasp, throw band, plant
grasp, throw bank, pen
grasp, throw bank, plant
grasp, throw pen, plant
grasp, wipe band, bank
grasp, wipe band, palm
grasp, wipe band, pen
grasp, wipe band, plant
grasp, wipe bank, palm
grasp, wipe bank, pen
grasp, wipe bank, plant
grasp, wipe palm, pen
grasp, wipe palm, plant

Verbs Objects

grasp, wipe pen, plant
inherit, mount bank, cabinet
inherit, mount bank, plant
inherit, mount cabinet, plant
inherit, throw bank, boxer
inherit, throw bank, cabinet
inherit, throw bank, plant
inherit, throw boxer, cabinet
inherit, throw boxer, plant
inherit, throw cabinet, plant
label, launch band, letter
label, launch band, pen
label, launch band, plant
label, launch letter, pen
label, launch letter, plant
label, launch pen, plant
label, mount band, cabinet
label, mount band, letter
label, mount band, plant
label, mount band, press
label, mount cabinet, letter
label, mount cabinet, plant
label, mount cabinet, press
label, mount letter, plant
label, mount letter, press
label, mount plant, press
label, seize letter, plant
label, seize letter, press
label, seize plant, press
label, tap cabinet, letter
label, tap cabinet, pen
label, tap letter, pen

label, throw band, cabinet
label, throw band, letter
label, throw band, pen
label, throw band, plant
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Verbs Objects

label, throw cabinet, letter
label, throw cabinet, pen
label, throw cabinet, plant
label, throw letter, pen
label, throw letter, plant
label, throw pen, plant
label, wipe band, pen
label, wipe band, plant
label, wipe pen, plant

launch, mount band, coach
launch, mount band, letter
launch, mount band, plant
launch, mount band, volume
launch, mount coach, letter
launch, mount coach, plant
launch, mount coach, volume
launch, mount letter, plant
launch, mount letter, volume
launch, mount plant, volume
launch, reach band, coach
launch, reach band, plant
launch, reach band, port
launch, reach coach, plant
launch, reach coach, port
launch, reach plant, port
launch, reflect band, coach
launch, reflect band, letter
launch, reflect band, volume
launch, reflect coach, letter
launch, reflect coach, volume
launch, reflect letter, volume
launch, seize letter, plant
launch, seize letter, port
launch, seize letter, volume
launch, seize plant, port
launch, seize plant, volume

Verbs Objects

launch, seize port, volume
launch, tackle letter, plant
launch, tackle letter, volume
launch, tackle plant, volume

launch, tap letter, pen
launch, tap letter, volume
launch, tap pen, volume

launch, throw band, letter
launch, throw band, pen
launch, throw band, plant
launch, throw band, volume
launch, throw letter, pen
launch, throw letter, plant
launch, throw letter, volume
launch, throw pen, plant
launch, throw pen, volume
launch, throw plant, volume
launch, wipe band, pen
launch, wipe band, plant
launch, wipe band, volume
launch, wipe pen, plant
launch, wipe pen, volume
launch, wipe plant, volume
mount, reach band, bank
mount, reach band, coach
mount, reach band, plant
mount, reach bank, coach
mount, reach bank, plant
mount, reach coach, plant
mount, reflect band, bank
mount, reflect band, beam
mount, reflect band, coach
mount, reflect band, letter
mount, reflect band, volume
mount, reflect bank, beam
mount, reflect bank, coach
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Verbs Objects

mount, reflect bank, letter
mount, reflect bank, volume
mount, reflect beam, coach
mount, reflect beam, letter
mount, reflect beam, volume
mount, reflect coach, letter
mount, reflect coach, volume
mount, reflect letter, volume
mount, seize bank, letter
mount, seize bank, plant
mount, seize bank, press
mount, seize bank, volume
mount, seize letter, plant
mount, seize letter, press
mount, seize letter, volume
mount, seize plant, press
mount, seize plant, volume
mount, seize press, volume
mount, tackle bank, letter
mount, tackle bank, plant
mount, tackle bank, volume
mount, tackle letter, plant
mount, tackle letter, volume
mount, tackle plant, volume

mount, tap beam, cabinet
mount, tap beam, letter
mount, tap beam, volume
mount, tap cabinet, letter
mount, tap cabinet, volume
mount, tap letter, volume

mount, throw band, bank
mount, throw band, beam
mount, throw band, cabinet
mount, throw band, letter
mount, throw band, plant
mount, throw band, volume

Verbs Objects

mount, throw band, watch
mount, throw bank, beam
mount, throw bank, cabinet
mount, throw bank, letter
mount, throw bank, plant
mount, throw bank, volume
mount, throw bank, watch
mount, throw beam, cabinet
mount, throw beam, letter
mount, throw beam, plant
mount, throw beam, volume
mount, throw beam, watch
mount, throw cabinet, letter
mount, throw cabinet, plant
mount, throw cabinet, volume
mount, throw cabinet, watch
mount, throw letter, plant
mount, throw letter, volume
mount, throw letter, watch
mount, throw plant, volume
mount, throw plant, watch
mount, throw volume, watch
mount, wipe band, bank
mount, wipe band, plant
mount, wipe band, volume
mount, wipe bank, plant
mount, wipe bank, volume
mount, wipe plant, volume
reach, reflect band, bank
reach, reflect band, coach
reach, reflect bank, coach
reach, rule band, bank
reach, rule band, port
reach, rule bank, port
reach, seize bank, plant
reach, seize bank, port
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Verbs Objects

reach, seize plant, port
reach, stir bank, plant
reach, stir bank, port
reach, stir plant, port

reach, throw band, bank
reach, throw band, pitcher
reach, throw band, plant
reach, throw bank, pitcher
reach, throw bank, plant
reach, throw pitcher, plant
reach, wipe band, bank
reach, wipe band, plant
reach, wipe bank, plant
reflect, rule band, bank
reflect, rule band, trip
reflect, rule bank, trip
reflect, seize bank, letter
reflect, seize bank, volume
reflect, seize letter, volume
reflect, tackle bank, letter
reflect, tackle bank, trip
reflect, tackle bank, volume
reflect, tackle letter, trip
reflect, tackle letter, volume
reflect, tackle trip, volume

reflect, tap beam, letter
reflect, tap beam, volume
reflect, tap letter, volume

reflect, throw band, bank
reflect, throw band, beam
reflect, throw band, letter
reflect, throw band, volume
reflect, throw bank, beam
reflect, throw bank, letter
reflect, throw bank, volume
reflect, throw beam, letter

Verbs Objects

reflect, throw beam, volume
reflect, throw letter, volume
reflect, wipe band, bank
reflect, wipe band, volume
reflect, wipe bank, volume

rule, stir bank, port
rule, stir bank, trip
rule, stir port, trip
seize, stir bank, plant
seize, stir bank, port
seize, stir plant, port

seize, tackle bank, letter
seize, tackle bank, plant
seize, tackle bank, volume
seize, tackle letter, plant
seize, tackle letter, volume
seize, tackle plant, volume
seize, throw bank, letter
seize, throw bank, plant
seize, throw bank, volume
seize, throw letter, plant
seize, throw letter, volume
seize, throw plant, volume
seize, wipe bank, plant
seize, wipe bank, volume
seize, wipe plant, volume

sketch, wipe organ, plant
sketch, wipe organ, volume
sketch, wipe plant, volume

stir, tackle bank, plant
stir, tackle bank, trip
stir, tackle plant, trip
stir, wipe bank, palm
stir, wipe bank, plant
stir, wipe palm, plant

tackle, throw bank, letter



Appendix D. Lexical ambiguity dataset 281

Verbs Objects

tackle, throw bank, plant
tackle, throw bank, volume
tackle, throw letter, plant
tackle, throw letter, volume
tackle, throw plant, volume
tackle, wipe bank, plant
tackle, wipe bank, volume
tackle, wipe plant, volume
tap, throw beam, boxer
tap, throw beam, cabinet
tap, throw beam, letter
tap, throw beam, pen
tap, throw beam, punch
tap, throw beam, volume
tap, throw boxer, cabinet
tap, throw boxer, letter
tap, throw boxer, pen
tap, throw boxer, punch
tap, throw boxer, volume
tap, throw cabinet, letter
tap, throw cabinet, pen
tap, throw cabinet, punch
tap, throw cabinet, volume
tap, throw letter, pen
tap, throw letter, punch
tap, throw letter, volume
tap, throw pen, punch
tap, throw pen, volume
tap, throw punch, volume
tap, wipe organ, palm
tap, wipe organ, pen
tap, wipe organ, volume
tap, wipe palm, pen
tap, wipe palm, volume
tap, wipe pen, volume

throw, wipe band, bank

Verbs Objects

throw, wipe band, pen
throw, wipe band, plant
throw, wipe band, volume
throw, wipe bank, pen
throw, wipe bank, plant
throw, wipe bank, volume
throw, wipe pen, plant
throw, wipe pen, volume
throw, wipe plant, volume
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D.3 The human judgment dataset

Rank 2 models
Verb Noun

admit atmosphere
bore atmosphere

climb atmosphere
conduct atmosphere
adopt band
bore band

charge band
copy band
dice band
label band

launch band
milk band
pen band
rule band

tackle band
wipe band
bore bank
label bank

reflect bark
bury beam

inherit beam
throw beam

file book
inherit book
launch book

bore boxer
box boxer

capture boxer
catch boxer
dice boxer

disarm boxer
launch boxer

pen boxer
reflect boxer
throw boxer

tip boxer

Verb Noun

bore cabinet
capture cabinet
reflect cabinet

box chicken
bury chicken
cast chicken

charge chicken
leak chicken

admit coach
bill coach

catch coach
charge coach
clean coach
file coach

throw coach
admit coat
bury coat

throw coat
charge cotton
climb cotton
inherit cotton

lap cotton
throw cotton
admit fall

conduct fall
admit film

bill film
bore film
cast film

launch film
rule film

reflect glasses
admit iron
charge iron
clean iron
copy iron

Verb Noun

label iron
launch iron

leak iron
admit letter
bury letter

conduct letter
dice letter

grasp letter
throw letter
admit library
bury library
pen library
rule library
tap library

admit line
box line
bury line
cast line

clean line
conduct line
reflect line
wipe line
bore lunch
dice lunch
label lunch

throw lunch
charge message
clean message
grasp message

file notice
admit organ

bill organ
box organ
cast organ

grasp organ
lap organ



284 D.3. The human judgment dataset

Verb Noun

pen organ
reflect organ
rule organ

capture palm
catch palm
lap palm

launch palm
pen palm
bill paper

bore paper
capture paper
charge paper

conduct paper
disarm paper

file paper
grasp paper

launch paper
rule paper
tap paper

bore pen
bury pen
clean pen
climb pen

launch pen
rule pen
tap pen

capture perch
dice perch
file perch

label perch
pen perch
rule perch
bury pitcher
catch pitcher
admit plant
adopt plant

Verb Noun

bore plant
conduct plant

file plant
launch plant

pen plant
tap plant
bill port

clean port
lap port
pen port

admit press
box press
bury press

capture press
conduct press

file press
label press
wipe press
clean punch
leak punch
bury shower
label shower

capture sign
inherit sign
launch sign

dice straw
inherit straw
wipe straw
admit swallow
bury swallow
catch swallow
admit television

bill television
box television

climb television
label television

Verb Noun

wipe television
bury tin
clean tin
dice tin

launch tin
plug tin

throw tin
capture trip
conduct trip

box volume
cast volume

conduct volume
file volume

grasp volume
patronise volume

reflect volume
tap volume

catch wheat
label wheat

throw wheat
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Rank 4 models
Subjects Verbs

atmosphere, fall admit, conduct
atmosphere, film admit, bore

atmosphere, letter admit, conduct
atmosphere, line admit, conduct

atmosphere, paper bore, conduct
atmosphere, pen bore, climb

atmosphere, plant admit, bore
atmosphere, plant admit, conduct
atmosphere, plant bore, conduct
atmosphere, press admit, conduct

atmosphere, television admit, climb
band, bank bore, label
band, boxer bore, dice
band, boxer bore, launch
band, boxer bore, pen
band, boxer dice, launch
band, boxer dice, pen
band, boxer launch, pen
band, film bore, launch
band, film bore, rule
band, film launch, rule
band, iron charge, copy
band, iron charge, label
band, iron charge, launch
band, iron copy, label
band, iron copy, launch
band, iron label, launch

band, library pen, rule
band, lunch bore, dice
band, lunch bore, label
band, lunch dice, label
band, organ pen, rule
band, palm launch, pen
band, paper bore, charge
band, paper bore, launch
band, paper bore, rule

Subjects Verbs

band, paper charge, launch
band, paper charge, rule
band, paper launch, rule
band, pen bore, launch
band, pen bore, rule
band, pen launch, rule

band, perch dice, label
band, perch dice, pen
band, perch dice, rule
band, perch label, pen
band, perch label, rule
band, perch pen, rule
band, plant adopt, bore
band, plant adopt, launch
band, plant adopt, pen
band, plant bore, launch
band, plant bore, pen
band, plant launch, pen
band, press label, wipe
band, straw dice, wipe

band, television label, wipe
band, tin dice, launch

bank, lunch bore, label
beam, coat bury, throw

beam, cotton inherit, throw
beam, letter bury, throw

beam, tin bury, throw
book, paper file, launch
book, plant file, launch
book, sign inherit, launch

boxer, cabinet bore, capture
boxer, cabinet bore, reflect
boxer, cabinet capture, reflect
boxer, coach catch, throw
boxer, film bore, launch

boxer, letter dice, throw
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Subjects Verbs

boxer, line box, reflect
boxer, lunch bore, dice
boxer, lunch bore, throw
boxer, lunch dice, throw
boxer, organ box, pen
boxer, organ box, reflect
boxer, organ pen, reflect
boxer, palm capture, catch
boxer, palm capture, launch
boxer, palm capture, pen
boxer, palm catch, launch
boxer, palm catch, pen
boxer, palm launch, pen
boxer, paper bore, capture
boxer, paper bore, disarm
boxer, paper bore, launch
boxer, paper capture, disarm
boxer, paper capture, launch
boxer, paper disarm, launch
boxer, pen bore, launch

boxer, perch capture, dice
boxer, perch capture, pen
boxer, perch dice, pen
boxer, plant bore, launch
boxer, plant bore, pen
boxer, plant launch, pen
boxer, press box, capture
boxer, sign capture, launch
boxer, tin dice, launch
boxer, tin dice, throw
boxer, tin launch, throw

boxer, volume box, reflect
boxer, wheat catch, throw

cabinet, paper bore, capture
chicken, iron charge, leak
chicken, line box, bury

Subjects Verbs

chicken, line box, cast
chicken, line bury, cast

chicken, organ box, cast
chicken, press box, bury

chicken, volume box, cast
coach, coat admit, throw

coach, cotton charge, throw
coach, film admit, bill
coach, iron admit, charge
coach, iron admit, clean
coach, iron charge, clean
coach, letter admit, throw
coach, line admit, clean

coach, message charge, clean
coach, organ admit, bill
coach, paper bill, charge
coach, paper bill, file
coach, paper charge, file
coach, plant admit, file
coach, port bill, clean
coach, press admit, file

coach, swallow admit, catch
coach, television admit, bill

coach, tin clean, throw
coach, wheat catch, throw

coat, letter admit, bury
coat, letter admit, throw
coat, letter bury, throw

coat, library admit, bury
coat, line admit, bury

coat, press admit, bury
coat, swallow admit, bury

coat, tin bury, throw
fall, letter admit, conduct
fall, line admit, conduct

fall, plant admit, conduct
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Subjects Verbs

fall, press admit, conduct
film, iron admit, launch

film, library admit, rule
film, line admit, cast

film, organ admit, bill
film, organ admit, cast
film, organ admit, rule
film, organ bill, cast
film, organ bill, rule
film, organ cast, rule
film, paper bill, bore
film, paper bill, launch
film, paper bill, rule
film, paper bore, launch
film, paper bore, rule
film, paper launch, rule
film, pen bore, launch
film, pen bore, rule
film, pen launch, rule

film, plant admit, bore
film, plant admit, launch
film, plant bore, launch

film, television admit, bill
iron, line admit, clean

iron, message charge, clean
iron, paper charge, launch
iron, pen clean, launch

iron, plant admit, launch
iron, press admit, label

iron, punch clean, leak
iron, television admit, label

iron, tin clean, launch
letter, library admit, bury

letter, line admit, bury
letter, line admit, conduct
letter, line bury, conduct

Subjects Verbs

letter, lunch dice, throw
letter, organ admit, grasp
letter, paper conduct, grasp
letter, plant admit, conduct
letter, press admit, bury
letter, press admit, conduct
letter, press bury, conduct

letter, swallow admit, bury
letter, tin bury, dice
letter, tin bury, throw
letter, tin dice, throw

letter, volume conduct, grasp
library, line admit, bury

library, organ admit, pen
library, organ admit, rule
library, organ pen, rule
library, paper rule, tap
library, pen bury, rule
library, pen bury, tap
library, pen rule, tap

library, perch pen, rule
library, plant admit, pen
library, plant admit, tap
library, plant pen, tap
library, press admit, bury

library, swallow admit, bury
line, organ admit, box
line, organ admit, cast
line, organ admit, reflect
line, organ box, cast
line, organ box, reflect
line, organ cast, reflect
line, pen bury, clean

line, plant admit, conduct
line, press admit, box
line, press admit, bury
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Subjects Verbs

line, press admit, conduct
line, press admit, wipe
line, press box, bury
line, press box, conduct
line, press box, wipe
line, press bury, conduct
line, press bury, wipe
line, press conduct, wipe

line, swallow admit, bury
line, television admit, box
line, television admit, wipe
line, television box, wipe

line, tin bury, clean
line, volume box, cast
line, volume box, conduct
line, volume box, reflect
line, volume cast, conduct
line, volume cast, reflect
line, volume conduct, reflect
lunch, perch dice, label

lunch, tin dice, throw
lunch, wheat label, throw

message, paper charge, grasp
organ, palm lap, pen
organ, paper bill, grasp
organ, paper bill, rule
organ, paper grasp, rule
organ, perch pen, rule
organ, plant admit, pen
organ, port bill, lap
organ, port bill, pen
organ, port lap, pen
organ, press admit, box

organ, television admit, bill
organ, television admit, box
organ, television bill, box

Subjects Verbs

organ, volume box, cast
organ, volume box, grasp
organ, volume box, reflect
organ, volume cast, grasp
organ, volume cast, reflect
organ, volume grasp, reflect

palm, paper capture, launch
palm, perch capture, pen
palm, plant launch, pen
palm, port lap, pen
palm, sign capture, launch
paper, pen bore, launch
paper, pen bore, rule
paper, pen bore, tap
paper, pen launch, rule
paper, pen launch, tap
paper, pen rule, tap

paper, perch capture, file
paper, perch capture, rule
paper, perch file, rule
paper, plant bore, conduct
paper, plant bore, file
paper, plant bore, launch
paper, plant bore, tap
paper, plant conduct, file
paper, plant conduct, launch
paper, plant conduct, tap
paper, plant file, launch
paper, plant file, tap
paper, plant launch, tap
paper, press capture, conduct
paper, press capture, file
paper, press conduct, file
paper, sign capture, launch
paper, trip capture, conduct

paper, volume conduct, file



Appendix D. Lexical ambiguity dataset 289

Subjects Verbs

paper, volume conduct, grasp
paper, volume conduct, tap
paper, volume file, grasp
paper, volume file, tap
paper, volume grasp, tap

pen, plant bore, launch
pen, plant bore, tap
pen, plant launch, tap

pen, tin bury, clean
pen, tin bury, launch
pen, tin clean, launch

perch, plant file, pen
perch, press capture, file
perch, press capture, label
perch, press file, label

pitcher, swallow bury, catch
plant, press admit, conduct
plant, press admit, file
plant, press conduct, file

plant, volume conduct, file
plant, volume conduct, tap
plant, volume file, tap
press, shower bury, label
press, swallow admit, bury

press, television admit, box
press, television admit, label
press, television admit, wipe
press, television box, label
press, television box, wipe
press, television label, wipe

press, trip capture, conduct
press, volume box, conduct
press, volume box, file
press, volume conduct, file

We here only listed the SV mod-
els. The VO models can be ob-
tained by taking the same verbs,
and switching the role of the sub-
jects to objects.
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D.4 Prediction dataset

As for the human judgment dataset, we only quote the SV empirical models; the
analogue VO models can be obtained by switching the subject to object roles.

Training dataset

Subjects Verbs

atmosphere, plant admit, conduct
atmosphere, plant bore, conduct

band, boxer launch, pen
band, film bore, rule
band, iron copy, label

band, lunch bore, label
band, paper bore, rule
band, paper charge, launch
band, paper launch, rule
band, pen bore, launch

band, perch dice, label
band, plant adopt, launch
band, plant bore, pen
band, press label, wipe
beam, tin bury, throw

book, paper file, launch
boxer, lunch bore, dice
boxer, organ pen, reflect
boxer, palm capture, launch
boxer, palm catch, pen
boxer, paper bore, disarm

Subjects Verbs

boxer, perch capture, pen
boxer, perch dice, pen
boxer, plant bore, launch
boxer, plant launch, pen

boxer, tin dice, launch
boxer, tin launch, throw

cabinet, paper bore, capture
chicken, line box, bury
coach, coat admit, throw
coach, iron admit, clean

coach, message charge, clean
coach, plant admit, file

coach, television admit, bill
coat, letter admit, bury
film, organ admit, cast
film, paper bore, launch
film, pen launch, rule

film, plant admit, bore
film, plant admit, launch

iron, tin clean, launch
letter, line admit, bury
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Subjects Verbs

letter, plant admit, conduct
letter, press bury, conduct

letter, tin bury, dice
library, organ admit, rule
library, organ pen, rule
library, pen bury, tap
line, organ admit, box
line, organ box, cast
line, press box, wipe
line, press bury, conduct

line, television box, wipe
line, volume box, cast
line, volume box, conduct
line, volume cast, reflect
lunch, perch dice, label

lunch, tin dice, throw
organ, paper bill, rule
organ, port bill, lap

organ, television bill, box
organ, volume box, cast
organ, volume box, reflect

Subjects Verbs

palm, port lap, pen
paper, pen bore, tap
paper, pen launch, tap
paper, pen rule, tap

paper, perch capture, file
paper, plant conduct, launch
paper, press capture, conduct

paper, volume conduct, tap
paper, volume file, grasp
paper, volume file, tap

pen, plant bore, launch
pen, tin bury, clean

perch, press capture, label
plant, press admit, conduct

plant, volume conduct, file
plant, volume file, tap

press, television admit, wipe
press, volume box, conduct
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Testing dataset

Subjects Verbs

organ, television admit, bill
letter, line admit, conduct

pen, tin clean, launch
line, press admit, wipe
line, press admit, bury

band, lunch dice, label
boxer, tin dice, throw
line, press admit, conduct
line, organ box, reflect
line, press admit, box

band, lunch bore, dice
line, television admit, wipe

organ, television admit, box
organ, port lap, pen

paper, volume conduct, file
paper, press capture, file
boxer, paper bore, launch
boxer, organ box, reflect
boxer, paper bore, capture
boxer, lunch dice, throw
boxer, palm capture, pen

Subjects Verbs

plant, press conduct, file
line, television admit, box
line, volume box, reflect
boxer, palm launch, pen
plant, press admit, file
film, paper bore, rule

press, television admit, box
paper, plant file, tap
paper, plant file, launch
line, organ cast, reflect
film, organ admit, bill

organ, volume cast, reflect
perch, press capture, file
pen, plant launch, tap

paper, plant conduct, tap
band, plant bore, launch
paper, press conduct, file
letter, line bury, conduct

band, perch dice, pen
band, plant launch, pen
line, press box, conduct



Appendix D. Lexical ambiguity dataset 293

Subjects Verbs

paper, pen bore, launch
line, press box, bury
paper, pen launch, rule

paper, plant bore, launch
pen, plant bore, tap

paper, plant bore, tap
film, organ bill, rule
coach, iron charge, clean

boxer, paper capture, launch
press, volume conduct, file
band, boxer bore, launch
band, iron charge, launch
film, paper bill, rule
paper, pen bore, rule

plant, volume conduct, tap
paper, plant launch, tap

press, television label, wipe
band, boxer bore, pen
band, boxer bore, dice
film, organ admit, rule
paper, plant conduct, file

Subjects Verbs

band, boxer dice, launch
paper, plant bore, conduct
boxer, plant bore, pen
film, paper launch, rule
library, pen rule, tap
band, boxer dice, pen

atmosphere, plant admit, bore
coat, letter admit, throw
letter, tin dice, throw

film, plant bore, launch
letter, tin bury, throw

letter, press admit, bury
letter, press admit, conduct
band, pen bore, rule
band, pen launch, rule
coat, letter bury, throw

band, perch pen, rule
film, pen bore, launch
film, pen bore, rule

band, film bore, launch
band, film launch, rule
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