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Abstract

Episodic memory is the (re)construction of an experience rather than the retrieval of a
copy; memories involve schema-based predictions, show classic patterns of distortion,
and share neural substrates with imagination. Brains need to make predictions
to survive, and to achieve this must extract statistical structure from experience.
Generative neural networks provide a mechanism for learning this by ‘prediction error’
minimisation. I explore how the brain develops generative models through memory
consolidation, how these models reconstruct experiences during memory ‘retrieval’,

and how they support other cognitive functions.

First I present a computational model in which episodic memories are initially
encoded in the hippocampus (a modern Hopfield network), then replayed to train
a neocortical generative network (variational autoencoder) to (re)create sensory
experiences via latent variable representations. Using images, I simulate how this
generative network supports episodic memory, semantic memory, imagination, and
inference. The network can reconstruct scenes from partial inputs according to learned
schemas (which produces gist-based distortions) and imagine novel scenes consistent
with those schemas. I also show how unique and predictable elements of memories
could be stored and reconstructed by efficiently combining both hippocampal and

neocortical systems, optimising the use of limited hippocampal storage.

I then extend the model to sequential stimuli, with the generative networks trained
not only to reconstruct their own inputs, but to predict the next input during replay.
I apply this model to statistical learning, relational inference, and planning tasks,
consider memory distortions in narratives, and explore ‘retrieval augmented generation’
as a model of hippocampal-neocortical interaction during recall. Finally, I address
the question of continual learning, and suggest that generative replay may stabilise

existing memories as new ones are assimilated into the generative model.

In conclusion, I explore how replayed memories update a generative, or predictive,

model of the world, which supports multiple cognitive functions.



Impact statement

One might assume that our memories accurately record the details of our experiences,
and that remembering is like retrieving a file from a mental ‘filing cabinet’. But in
reality, memories are active reconstructions of what happened, which show classic
patterns of distortion, are influenced by our beliefs about the world, and undergo
many changes after their encoding (through a process known as consolidation). Brains
need to make predictions to survive, e.g. to predict that food can be found in a
certain location, or to predict the presence of a predator from a distant sound. To
learn these complex correlations between different stimuli, biological intelligence needs
a way to extract statistical structure from experience. Generative neural networks,

such as those used in modern machine learning, provide a mechanism for this.

In this thesis, I explore how the brain uses memories to develop generative models
of experience through consolidation, and in turn how these generative models help
to reconstruct experiences during memory ‘retrieval’. After episodic memories are
initially encoded in the hippocampus, they are replayed in fast-forward during rest
and sleep, and I simulate how this process helps a larger neocortical network learn
to make predictions. I then simulate how this large generative network supports
episodic memory (for experiences), semantic memory (for facts), imagination, and

inference.

This research is broadly relevant to the neuroscience of learning, memory, and
imagination, providing a unified view of memory construction and consolidation, in
which consolidation is a process of ‘learning to imagine’, and remembering involves
imagining the past. It also demonstrates how certain recent advances in machine
learning (e.g. large language models) can be applied to questions in cognitive

neuroscience.

In addition, a better understanding of biological learning and memory can inspire
improvements in artificial intelligence. For example, modelling how the brain achieves
lifelong learning may shed light on how machine learning systems can avoid cata-

strophic forgetting. Similarly, understanding how hippocampal and neocortical



memory systems work together may contribute towards more sophisticated memory
in artificial intelligence. This area of research is also relevant to understanding neuro-
logical and psychiatric symptoms and conditions. For example, I model the effects
of damage to different regions of the network, touch on how rumination and other
forms of maladaptive imagination may relate to the proposed model, and discuss the

individual differences that may arise from hypo-priors and hyper-priors.
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Chapter 1
Introduction

Episodic memory involves autobiographical experiences in their spatiotemporal con-
text, whereas semantic memory involves factual knowledge (Tulving, 1985)). The
former is thought to rapidly encode events in the hippocampus, enabling the latter
to learn statistical regularities in the neocortex (Marr, 1970} 1971} McClelland et al.,
1995; Teyler & DiScenna, 1986)). Crucially, episodic memory is constructive; recall is
the (re)construction of a past experience, rather than the retrieval of a copy (Bartlett,
1932; Schacter, 2012)). But the mechanisms behind episodic (re)construction, and the

link to semantic memory, are not well understood.

Old memories can be preserved after hippocampal damage despite amnesia for recent
ones (Scoville & Milner, [1957), suggesting that memories initially encoded in the
hippocampus end up being stored in neocortical areas, an idea known as ‘systems
consolidation’ (Squire & Alvarez, [1995)). The standard model of systems consolidation
involves transfer of information from the hippocampus to neocortex (Alvarez & Squire,
1994; Marr, |1970, 1971; McClelland et al., |1995)), whereas other views suggest that
episodic and semantic information from the same events can exist in parallel (Nadel
& Moscovitch, [1997)). Hippocampal ‘replay’ of patterns of neural activity during
rest (Diba & Buzsédki, 2007; Wilson & McNaughton, 1994) is thought to play a role
in consolidation (Ego-Stengel & Wilson, 2010; Girardeau et al., 2009). However,

16
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consolidation does not just change which brain regions support memory traces; it also
converts them into a more abstract representation (Norman et al., 2021; Winocur &
Moscovitch, [2011)).

Generative models capture the probability distributions underlying data, enabling
the generation of realistic new items by sampling from these distributions. This
thesis proposes that consolidated memory takes the form of a generative network,
trained to capture the statistical structure of stored events by learning to reproduce
them (see also K&li & Dayan, 2000, 2002)). As consolidation proceeds, the generative
network supports both the recall of ‘facts’ (semantic memory), and the reconstruction
of experience from these ‘facts’ (episodic memory) via the hippocampal formation, in
conjunction with additional information from the hippocampal trace that becomes

less necessary as training progresses.

This builds on existing models of spatial cognition in which recall and imagination of
scenes involve the same neural circuits (Becker & Burgess, 2000; Bicanski & Burgess,
2018; Byrne et al., 2007)), and is supported by evidence from neuropsychology that
damage to the hippocampal formation (HF) leads to deficits in imagination (Hassabis
et al., 2007)), episodic future thinking (Schacter et al., 2017)), dreaming (Spano et
al., [2020), and daydreaming (McCormick et al., 2018), as well as by neuroimaging
evidence that recall and imagination involve similar neural processes (Addis et al.,
2007; Hassabis & Maguire, 2007)).

I model consolidation as the training of a generative model by an initial autoassociative
encoding of memory, through ‘teacher-student learning’ (Hinton et al., |[2015|) during
hippocampal replay (see also Sun et al., 2021)). Recall after consolidation has
occurred is a generative process, mediated by schemas representing common structure
across events, as are other forms of scene construction or imagination (Arbib, [2020)).
This model builds on research into the relationship between generative models and
consolidation (Kali & Dayan, 2000, [2002), on the use of variational autoencoders
to model the hippocampal formation (Nagy et al., 2020; Van de Ven et al., 2020
Whittington et al., |2020), and on the view that abstract allocentric latent variables

are learned from egocentric sensory representations in spatial cognition (Bicanski &
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Burgess, 2018).

More generally, this work builds on the idea that the memory system learns schemas
which encode ‘priors’ for the reconstruction of input patterns (Fayyaz et al., 2022;
Hemmer & Steyvers, 2009). Unpredictable aspects of experience need to be stored
in detail for further learning, while fully predicted aspects do not, consistent with
the idea that memory helps to predict the future (Bein et al., [2021; Biderman et al.,
2020; Schacter et al., 2007; Sherman et al., 2022). I suggest that familiar components
are encoded in the autoassociative network as concepts (relying on the generative
network for reconstruction), whilst novel components are encoded in greater sensory
detail. This is efficient in terms of memory storage (Barlow et al., [1961; Barlow,
1989; Benna & Fusi, 2021), and reflects the fact that consolidation can be a gradual
transition, during which the autoassociative network supports aspects of memory not
yet captured by the generative network. In other words, the generative network can
reconstruct predictable aspects of an event from the outset based on existing schemas,
but as consolidation progresses the network updates its schemas to reconstruct the
event more accurately, until the formerly unpredictable details stored in HF are no

longer required.

After presenting the static version of the model in Chapter Two, I extend it to
sequential stimuli in Chapter Three, allowing the simulation of statistical learning,
planning, memory for narratives, and more complex inference tasks. In Chapter
Four, I demonstrate how the proposed system might avoid catastrophic forgetting
by combining the consolidation of recent memories with the stabilisation of old ones
through ‘generative replay’. Beyond continual learning, generative replay can improve
the ability to draw novel inferences, but under some conditions it can lead to a vicious

cycle of model degeneration, in which statistical biases are reinforced over time.

The first section of this introduction outlines findings in neuroscience and psychology
that the subsequent work attempts to explain, in particular the constructive nature of
memory, its neural substrates, and its link to consolidation. The second part reviews

mathematical and computational concepts relevant to these phenomena.
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1.1 Memory construction

I begin by outlining the evidence for the constructive nature of episodic memory.
This comes from two main sources: firstly, many findings from neuroimaging and
neuropsychology support the idea that memory and imagination depend on similar
neural circuits (or to take this a step further, that memory involves imagination to
some extent). Secondly, the memory distortion literature demonstrates how beliefs

shape memories.

1.1.1 Memory and imagination

There is plenty of evidence that recalling and imagining events are similar processes,
as the constructive view of memory argues (Schacter, 2012)), motivating a single

computational model of these functions.

Firstly, evidence from neuropsychology shows that hippocampal damage leads to
deficits in imagination. For example, Hassabis et al. (2007)) found that patients with
bilateral hippocampal damage struggle to imagine new experiences, and attributed
this to difficulty integrating imagined elements into a coherent scene. Daydreaming
is similarly affected; McCormick et al. (2018) found that mind-wandering after
hippocampal damage changes ‘from flexible, episodic, and scene based to abstract,
semanticized, and verbal’ (Discussion). Dreaming is another way in which the brain
generates episodes. In a small study, Spano et al. (2020) found that hippocampal
amnesia patients reported fewer dreams than healthy controls when woken up at
intervals during the night. When dreams were reported, they tended to be less
rich in content. In a neuroimaging meta-analysis, Fox et al. (2013 found that the
hippocampus (along with several other regions) was highly active during REM sleep,
corroborating the findings of Spano et al. (2020)). This evidence implicates the

hippocampus in several types of imagination.

Secondly, there is evidence from neuroimaging that recall and imagination involve
similar neural processes. For example, Addis et al. (2007) scanned participants whilst

they either recalled a past experience or imagined a future one. There were two
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phases to the task: in response to a cue word, participants thought of a recalled or
imagined event, and then produced further details about the event in an elaboration
phase. The researchers found that brain activity was very similar in the remembering

and imagining trials, most notably in the elaboration phase.

Furthermore, Hassabis and Maguire (2009) show that a very similar network is
involved in recalling recent memories, recalling recent imagined experiences, and
generating new imagined experiences (based on a conjunction analysis of fMRI data).
This leads to the question of what common function underlies these three tasks. As
Hassabis and Maguire (2007) discuss, two explanations had been proposed: mental
time-travel and self-projection. However, they argue that scene construction is the

missing link instead.

Contrary to the mental time-travel suggestion, Hassabis and Maguire (2009) note that
the similarity to recall is observed whether the participant is told to imagine a future
event (often referred to as episodic future thinking) or one without temporal context,
such as a fictitious scenario. As a result, they suggest that the same mechanism
underlies generating episodes whether they are in the past, future, or neither. Contrary
to the self-projection suggestion, the researchers show that generating episodes which
do not involve the self activates the common network too. Their view is similar to the
constructive episodic simulation hypothesis put forward by Schacter and Addis (2007)),
but Hassabis and Maguire (2009) extend this to events with no temporal context
or self-projection. This would be compatible with the idea that a single generative

model could generate many types of episode, including recalled events.

Thinking of memory and imagination as functions of the same network builds on
findings in the spatial cognition literature, e.g. in the Bicanski and Burgess (2018)
model recall and imagination of scenes involve the same neural circuits. Specifically,
place and head direction cells act as latent variables in a generative model (Becker
& Burgess, 2000; Bicanski & Burgess, 2018; Byrne et al., 2007), so that a scene
from a specific viewpoint can be generated. In addition to the imagination of novel
scenes, the research shows how egocentric memories could be reconstructed from

stored allocentric latent variables.



CHAPTER 1. INTRODUCTION 21

1.1.2 Memory distortions

Episodic memory in humans is prone to many errors. These distortions are not
random noise, but show clear patterns, which provide support for a constructive view

of memory.

Bartlett (1932) was the first to explore this topic experimentally. Students heard
a story called ‘The War of the Ghosts’, and were asked to recall it after different
time intervals. The story, a Native American myth, was deliberately chosen to be
culturally unfamiliar to the students, making the memory distortions more pronounced.
Bartlett found that the story was recalled in a way that was more consistent with
the students’ background knowledge of the world. For example, the word ‘canoe’
was often replaced by ‘boat’, and details were added to explain unusual elements
of the story (i.e. confabulation and rationalisation were observed). Bergman and
Roediger ((1999) replicated the Bartlett (1932) experiment, as the initial findings were
somewhat anecdotal, and confirmed that memory distortion increases over time after

encoding.

In an experiment by Carmichael et al. (1932), participants were asked to reproduce
ambiguous sketches. A context was established by telling the participants that they
would see images from a certain category. It was found that when they tried to
reproduce the image after a delay, their drawings were distorted to look more like
members of the context class. There are several similar studies in which memories
are distorted to better match their context, for example Ochsner et al. (1997) showed
participants images of faces whilst they listened to a happy or angry voice. They
remembered the voices seen whilst looking at smiling faces as happier, and voices

seen whilst looking at frowning faces as angrier.

The Deese-Roediger-McDermott (DRM) task is a classic way to measure memory
distortion (Deese, 1959; Roediger & McDermott, 1995). In brief, the DRM task
involves showing participants a list of words that are semantically related to a ‘lure
word’, which is not present in the list. There is a robust finding that false recognition

of the lure word occurs, and the lure word is falsely recalled. The DRM results do
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not require anything as elaborate as a generative model to explain them — simpler
associative models of memory will do, as the researchers suggest themselves (Roediger
et al., |1998). However, the type of memory distortions observed in the Carmichael
and Bartlett experiments, especially the confabulation of details to rationalise aspects

of the story in the latter, are harder to explain in this way.

Semantic influences at recall time can also produce episodic memory distortions.
Loftus and Palmer (1974) designed a study in which participants watched a film of a
car accident, and were then asked a series of questions, including how fast the car
was going when it hit the other vehicle. The verb used to describe the collision (e.g.
‘smashed’; ‘collided’, or ‘bumped’) was manipulated and found to affect the recalled
speed. These semantic influences can even produce entirely false memories. Loftus
and Pickrell (1995) presented participants with four stories about their childhood.
Three were true and one was false, but written (with the help of a relative) to contain
plausible details consistent with the participant’s childhood experiences. Participants
were asked to recall as much as they could about each incident. After repeated
interviews, many of the participants remembered the false event as having occurred,

even providing additional details about their experience.

More recently, computational modelling has shed light on potential mechanisms
underlying memory distortions. Nagy et al. (2020)) propose that semantic memory is a
generative latent variable model of experience. They argue that this is consistent with
several types of gist-based distortions: firstly the semantic intrusions observed in the
DRM task (Deese, |1959; Roediger & McDermott, [1995), and secondly the influence
of contextual information on memory as in Carmichael et al. (1932). Specifically,
Nagy et al. (2020) show that a beta-VAE (Higgins et al., 2016)) trained on a class of
images biases recall towards that class (however the authors used a separate model
for each class of images, rather than a single model with context as an input, which

seems more plausible).
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1.2 Memory consolidation

Having outlined the evidence for the constructive view of memory, I provide a brief
summary of the memory consolidation literature, including the role of hippocampal

replay, how memories change over time, and the main theories of consolidation.

1.2.1 What is systems consolidation?

According to the standard view, systems consolidation is the process by which
memories become less dependent on the hippocampus over time as they are transferred
to neocortex for long-term storage (Marr, (1970} [1971; McClelland et al., 1995; Squire et
al., [2015). While synaptic consolidation takes place within hours of learning, systems
consolidation is much more prolonged (Frankland & Bontempi, 2005), although the

timescale can be very variable (Tse et al., 2007).

Complementary learning systems (CLS; McClelland et al., [1995) is a model of con-
solidation consistent with the standard view. This hypothesis proposes that the
hippocampus and neocortex play complementary roles in learning and memory; whilst
the hippocampus is specialised for rapidly learning pattern-separated representations
which minimise interference, the neocortex is specialised for gradually learning over-
lapping representations which support generalisation (Marr, 1970, [1971; McClelland
et al., [1995). CLS proposes that episodic memories in the hippocampus are integrated

into existing knowledge over time. See Figure [L.1.

Retrograde amnesia provided early evidence for the standard view of systems consolid-
ation, with recent memories more vulnerable to forgetting than remote ones following
hippocampal damage (Squire et al., 2015)), but the interpretation of these experiments
remains controversial (Nadel & Moscovitch, |1997)). Neuroimaging evidence has also
been invoked to support this view. Squire et al. (2015) describe a common design
in which participants learn similar information at several points in time prior to
neuroimaging, e.g. learning pairs of associations both 24 hours and 15 minutes
beforehand (Takashima et al., 2009)). In general, hippocampal activity decreases and

neocortical activity increases as a function of time since encoding.
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However, McKenzie and Eichenbaum (2011]) review evidence that ‘the hippocampus
is engaged during any memory processing that involves combinations of detailed
associative and contextual information’ (Consolidation section). This supports mul-
tiple trace theory (MTT; Nadel & Moscovitch, 1997), an alternative account of
systems consolidation in which certain memories remain permanently dependent on
the hippocampus. MTT suggests that the hippocampus and neocortex are specialised
for different types of memory; memory traces bound together by the hippocampus
are detailed, specific, and rich in context, i.e. more episodic in nature, while memory

traces bound together by the cortex are more semantic in nature.

There is also evidence that detailed, rich spatial memory depends on the hippocampus
indefinitely, analogous to the findings described above for episodic memory. Li et al.
(2024) find that ‘neither HPC nor MTL are critical for allocentric gross representations
of large-scale environments’ (Conclusion section), in fitting with the idea that semantic
memory becomes HF-independent. They also found that ‘the HPC appears critical
for representing detailed spatial information ... regardless of the age of the memory’

(Conclusion section), challenging the standard view of consolidation.

There could be two possible explanations for the continued reliance on the hippocampal
formation for detailed, vivid episodic recall (e.g. Li et al., 2024 McKenzie &
Eichenbaum, [2011; Nadel & Moscovitch, [1997)): one is that certain details are stored
in the memory trace in the hippocampus for a long time, and the other is that event
construction as a function stays dependent on HF even without the retention of
a hippocampal ‘trace’. In other words, the hippocampus being required for recall
does not necessarily imply the existence of a particular autoassociative ‘engram’
binding the memory together, but could instead reflect activity in a circuit for event
(re)construction that passes through HF (Bicanski & Burgess, [2018; Hassabis &
Maguire, 2009)).

Episodic memories are in constant flux. McKenzie and Eichenbaum (2011]) observe
that ‘the standard consolidation theories described above characterize consolidation
as a one-time event, after which a memory is impermeable to subsequent disruption’

(Reconsolidation section). But as they describe, this view is undermined by the finding
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that a reminder cue can make a memory vulnerable to interference again, even if it has
been consolidated completely — this is known as reconsolidation (Nader & Hardt, 2009)).
McKenzie and Eichenbaum (2011) make the stronger claim that reconsolidation is
happening constantly; they suggest that consolidation and reconsolidation reflect the
endless modification of schemas by new learning. Kéli and Dayan (2004) also discuss

the fact that representations in the cortex are ‘ceaselessly plastic’ (Introduction).

1.2.2 What is hippocampal replay?

Replay is a phenomenon in which hippocampal neurons reactivate memory traces in
a temporally compressed form (Foster, 2017). It was first observed in rodent brains
replaying the firing of a sequence of place cells during sharp wave ripples (Carr et al.,
2011; Wilson & McNaughton, [1994)), but has more recently been detected in human
neuroimaging studies (e.g. Liu et al., 2019; Schapiro et al., 2018)).

Replay involves synchronised activity in the hippocampus and neocortex (Preston
& Eichenbaum, 2013} Rothschild et al.,|2017)). In particular, sharp wave ripples in
the hippocampus — during which replay occurs most commonly - are synchronised
with spindles in the medial prefrontal cortex (Frankland & Bontempi, 2005). As
O’Neill et al. (2010) describe, this coordinated activity ‘is consistent with the replay
of a memory trace that is distributed across different brain regions, with each area
contributing a component of the trace that reflects its role in waking processing’
(Reactivation section). However there is some debate about whether this synchronized

activity is initiated in the hippocampus or neocortex (Squire et al., [2015)).

Replay of episodic memories during sleep and rest is thought to be a mechanism by
which memory is ‘consolidated’ into neocortex (O’Neill et al., [2010)). Interventions
that interfere with replay, for example electrical stimulation which blocks sharp wave
ripples, lead to increased forgetting (Girardeau et al., |[2009), and replay after learning
a task is correlated with subsequent performance (Peigneux et al., 2004). Note that
replay also has several proposed functions other than consolidation, including retrieval

(Carr et al., 2011), planning (élafsdéttir et al., |2018)), and learning from rewards
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(Michon et al., |2019).

1.2.3 Which memories get replayed?

There is ongoing debate about which memories are replayed, and how this influences

consolidation.

One view is that replay emerges spontaneously from oscillatory activity in the
brain. O’Neill et al. (2010 argue that in the recurrently connected CA3 region
of the hippocampus, ‘previously stored patterns could spontaneously recur when
the coincident activation of some cells ... triggers the completion of an entire
assembly pattern’ (Reactivation section). Similarly, Gonzalez et al. (2020) suggest
that ‘spontaneous activity during sleep combined with unsupervised plasticity can
trigger reactivation of the previously learned memory patterns and modify synaptic

weights reversing damage from the new learning’ (Model Predictions section).

An alternative view is that memories are prioritised for replay by some measure of
saliency. One idea is that rewarding events could be replayed preferentially (Kumaran
et al., [2016), while other research suggests that replay may prioritise the memories
most vulnerable to forgetting (Schapiro et al., [2018). Environmental stimuli can also
have an effect, for example Bendor and Wilson (2012) show that stimuli during sleep

can bias the content of hippocampal replay.

A newer view is that replay may be generative rather than, or as well as, veridical.
In rodents, ‘replayed’ sequences can join together paths that were experienced on
separate occasions (Gupta et al., 2010), traverse regions that have been seen but not
visited (Olafsdéttir et al., [2015; Pfeiffer & Foster, [2015), and even ‘diffuse’ throughout
an open environment (Stella et al., 2019)). In human neuroimaging studies, ‘replayed’
sequences do not always correspond to real memories either; Liu et al. (2019) found
that, when participants learned a pattern according to which certain stimuli could
be unscrambled, sequences experienced in a ‘scrambled’ form were ‘unscrambled’ in
replay. One complexity of these findings is that observing a novel sequence being

(re)activated in the hippocampus does not necessarily imply the sequence is stored
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there, or that the activity is initiated there (as noted earlier in relation to hippocampal
involvement in remote recall). It may be the case that ‘standard’ hippocampal replay
represents a different process from generative replay, which could instead reflect the

‘event construction’ circuit discussed above.

Whilst offline replay occurs during sleep or rest, online replay occurs during an activity,
or brief pauses in activity. Offline replay largely features remote environments, whereas
online replay generally starts in the animal’s current location (Foster, 2017). For
example, ‘preplay’ is a replay-like phenomenon preceding an animal’s behaviour
(Dragoi & Tonegawa, 2011 Olafsdéttir et al., 2018)).

In summary, there are many varieties of replay. Chapters Two and Three focus on
the effect of offline, remote replay of memories (‘standard’ hippocampal replay) on

consolidation, but I return to ‘generative replay’ in Chapter Four.

1.2.4 Consolidation as transformation

Consolidation does not just change which brain regions are involved in an episodic
memory; it also changes its properties. This transformation is sometimes referred to
as semanticisation (Winocur & Moscovitch, 2011)), and seen as a process by which
episodic memories become semantic. But here we are more focused on episodic
memories before and after consolidation than the extraction of semantic from episodic

memory.

Consolidation increases memory distortion (Bartlett, |1932; Payne et al., 2009)), but it
can also improve performance on a range of tasks. This is especially true when the
task involves making inferences based on multiple pieces of information; Ellenbogen
et al. (2007) show that transitive inference performance improves over time following
encoding, with sleep having more of an effect than waking rest. The ability to
distinguish structured from unstructured sequences of tones also improves over time,
suggesting that consolidation supports the extraction of statistical structure (Durrant
et al., 2011)).

More generally, experimental evidence supports the view that consolidation involves
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learning patterns across a set of experiences. Squire et al. (2015) describe a study by
Richards et al. (2014), in which one day after training, mice searched for a reward
in the most recent location. But ‘after 30 days, search was driven less by any single
day’s training, or even by the last day’s training, but rather by the cumulative
statistical distribution of training experience across days’ (Interpreting section). This
suggests that consolidation involves extracting the gist of an experience. (Note that
the literature does not suggest that consolidation is required to perform these kinds of
functions, just that it has a positive impact; clearly it is possibly to generalise, predict,

and infer from episodic memories in real time, before consolidation occurs.)

Consolidation also makes memories more conceptual in nature. Lifanov et al. (2021))
designed a study in which participants learned cue-object pairings, then at a range of
intervals ‘were asked to answer one conceptual and one perceptual question about
the recalled object as fast as possible’ (Introduction). The gap between the time to
answer conceptual and perceptual questions about the cued object increased over
time; after two days the reaction time to answer perceptual questions was significantly
greater than for conceptual questions. They suggest that semantic content may be
strengthened preferentially during the consolidation process relative to perceptual
content. (But they concede that an alternative explanation might be that perceptual
details were forgotten faster.) Lifanov et al. (2021) also compared active retrieval to
the restudying of items, and found that active retrieval led to a greater advantage
for the conceptual content. They hypothesise that each time a memory is recalled
or replayed it is ‘semanticised’ a little more, in agreement with the claim that

reconsolidation is a constant process (McKenzie & Eichenbaum, 2011).

In summary, consolidation extracts patterns and promotes inference, but increases
distortion and the loss of perceptual detail from episodic memory. It at first seems
paradoxical that memories can become more useful even as they become more distorted,
but one might hypothesise that extracting conceptual structure from experience comes

at the cost of detail and accuracy, reconciling these findings.
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1.2.5 Consolidation and continual learning

Catastrophic forgetting refers to the overwriting of old knowledge by new knowledge
when a neural network learns multiple tasks or distributions consecutively. Continual
learning is the ability to learn, or memorise, a series of tasks, or items, sequentially,

without the occurrence of catastrophic forgetting (Hadsell et al., [2020)).

Of course gradual forgetting is expected, but catastrophic forgetting is a more dramatic
interference of new with old knowledge, which is not typically observed in reality.
If hippocampal traces are not retained in the hippocampus forever, as per CLS
(McClelland et al., [1995), this poses a problem for our current understanding of
consolidation: most connectionist models would predict catastrophic forgetting of old

knowledge if there are no reminders of a category.

To clarify, this is a problem for the standard view of consolidation and the Comple-
mentary Learning Systems theory (CLS; McClelland et al., [1995), in which traces do
not stay in the hippocampus forever. It is not a problem for Multiple Trace Theory
(MTT; Nadel & Moscovitch, [1997) and its variants, in which traces, or even multiple
overlapping traces, do. But episodic recall remaining dependent on HF as a function
is not enough to avoid this problem, if traces (i.e. autoassociative engrams) are not

preserved.

One suggestion, which does not require retaining relevant memories indefinitely, is
that replay samples from a generative model (Van de Ven et al., 2020)). However,
this is not the only approach for avoiding catastrophic interference; other suggestions
include expanding the network to capture each new task without interference (Rao
et al., 2019), and freezing or penalising changes to important weights, e.g. elastic
weight consolidation (Kirkpatrick et al., 2017). These questions are discussed further

in Chapter Four.
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1.3 Neural substrates of memory

In this section I review the neural substrates of memory, both its initial hippocampal

encoding and the broader network that may be involved after consolidation.

1.3.1 The hippocampal formation

Situated in the medial temporal lobe, the hippocampal formation (HF) plays a crucial
role in memory and spatial navigation. The hippocampal formation includes the
hippocampus proper (consisting of the dentate gyrus, CA1l, CA2, and CA3) and

surrounding regions like the entorhinal cortex and subiculum.

The trisynaptic loop is a key pathway within the hippocampus, so called because it
describes three sets of connections between different subregions (Andersen, 1975).
Firstly, entorhinal cortex projects to granule cells in dentate gyrus via the perforant
path. Secondly, granule cells in dentate gyrus project to pyramidal cells in CA3 via
mossy fibres. Thirdly, these CA3 cells project to pyramidal cells in CA1 via Schaffer
collaterals. Finally, projections from CA1l back to entorhinal cortex complete the
circuit. The entorhinal cortex is the main route between HF and the rest of the brain;
HF’s extensive connections with other brain areas make it well suited to binding

multimodal information together (Witter et al., |2000)).

The DG and CA3 regions are thought to be specialised for pattern separation and
completion respectively. In the Rolls-Treves model (Treves & Rolls, 1992), the dentate
gyrus (DG) performs pattern separation. This is the process by which similar input
patterns are transformed into more distinct, less overlapping output patterns before
projecting to CA3, reducing interference between similar events. Meanwhile the
CA3 region of the hippocampus, with its extensive recurrent connections, is thought
to function as an autoassociative network, storing memory patterns such that the
retrieval of a memory can be triggered by a partial or noisy version of that memory
(known as pattern completion). In other words, DG and CA3 are thought to work
together to transform representations to a suitable format, then store and retrieve

these ‘attractors’ autoassociatively.
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Neuropsychology is a rich source of evidence about hippocampal function. Individuals
with hippocampal damage display severe impairments in declarative memory, the
ability to consciously recall facts and events. These deficits include both anterograde
amnesia (difficulty in forming new memories) and retrograde amnesia (difficulty in
recalling past memories), although the latter is dependent on the age of the memory
and the extent of the damage. Case studies like that of patient H.M., who had his
medial temporal lobes surgically removed to treat his intractable epilepsy, have been
key to understanding the role of the hippocampus in memory (Scoville & Milner,
1957). Whilst H.M. could remember events from his early life and learn new skills,
he was unable to form new long-term memories of events or remember recent ones.
This temporal gradient to patient H.M.’s retrograde memory deficits is characteristic

of hippocampal amnesia.

Semantic memory is preserved when the hippocampus is lesioned (Manns et al., 2003;
Squire et al., 2015; Vargha-Khadem et al., [1997), and hippocampal amnesics can
describe the factual content of remote (i.e. consolidated) memories more successfully
than recent ones (Scoville & Milner, 1957; Spiers et al., 2001)). However they are often
unable to recall these memories ‘episodically’, i.e. vivid, detailed ‘re-experiencing’ of
events appears to depend on HF (Nadel & Moscovitch, (1997). As described above,
more recent evidence suggests that damage impairs not just episodic memory but
the construction of mental events or scenes more broadly, affecting abilities such as
imagination (Hassabis et al., [2007)), episodic future thinking (Schacter et al., 2017)),
dreaming (Spano et al.,[2020), and daydreaming (McCormick et al.,|2018). Conversely,
hippocampal amnesics often retain their procedural memory, which is the memory
for skills and tasks (e.g. for how to ride a bicycle). Similarly, short-term and working

memory often remain intact in individuals with hippocampal damage.

1.3.2 Hippocampal indexing theory

How exactly does the hippocampus encode memories? Hippocampal indexing theory
(Teyler & DiScenna, 1986) proposes that memory traces bind together neocortical
areas that were active during the original experience (Figure [L.1d). In other words,
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they are ‘pointers’ to the elements that make up a memory, so that activity in the

hippocampal trace spreads to neocortex to reactivate the memory’s components.

There is evidence that the hippocampus can bind both conceptual and sensory
representations into an event. Quiroga (2012) observes that certain neurons in the
hippocampus (‘concept cells’) respond selectively to concepts; in the classic example,
a Jennifer Aniston neuron might fire in response to her picture, voice, and written
name. Meanwhile, Wheeler et al. (2000) show that ‘brain areas in visual and auditory
cortex are transiently active during memories that involve vivid visual and auditory
content, respectively’. Horner et al. (2016)) corroborate the finding that late sensory
areas are reactivated while recollecting a hippocampus-dependent memory of an event.
(However, activity in sensory areas does not imply that the hippocampus connects
directly to these areas, as it could be mediated by schematic representations.) Note
that talking of sensory versus conceptual representations is a simplification, as there
are many levels of abstraction, e.g. ranging from early visual cortex cells that respond
to lines at different orientations to face-selective inferotemporal cortex cells to concept
cells (Quiroga, [2012)).

There is some tentative evidence that the distribution of connectivity between sensory
and conceptual representations changes over time. In their rodent electrophysiology
study, Yu et al. (2018) suggest that as time passes, ‘links that map common features
shared across experiences with specific features of single experiences become enriched
whereas links between representations for specific features in the hippocampus and
cortex diminish’ (Discussion). This may be linked to lateralisation of the hippocampus’
role in memory. Researchers have suggested that the left hippocampus encodes
more schematic representations and the right hippocampus more item-specific ones
(Chiarello & Beeman, |1997)). Maguire and Frith (2003) found that activity in the right
hippocampus was lower for more remote memories, unlike in the left hippocampus.
This would seem to support the idea that schematic representations play a greater

role over time, but the literature on this topic is limited.
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1.3.3 Anterior vs. posterior hippocampus

The posterior hippocampus (pHPC) may encode more fine-grained and perceptual
aspects of episodic memories, and the anterior hippocampus (aHPC) may encode

more coarse-grained and conceptual aspects (Moscovitch et al., 2016)).

The differences between the aHPC and pHPC are most established in spatial cognition.
As Zeidman and Maguire (2016) explain, place cells in the aHPC (or the ventral
hippocampus in rodents) have ‘firing fields that cover a larger area of space than
posterior (dorsal) place fields’ (Representing The Environment section). It has been
proposed that these differences reflect a gradient in detail, with the pHPC encoding
more detailed representations. However, the authors note that recent findings may
suggest a more complex picture. Keinath et al. (2014]) found that the location of an
animal can be decoded as precisely from the population of place cells in aHPC as the
population in pHPC, despite each cell representing a larger area in the former. In other
words, this suggests the anterior hippocampus may implement a more distributed
representation that still has the same spatial resolution, rather than a representation
with lower spatial resolution. In any case, there is general agreement that the aHPC
supports ‘a spatially large-scale or generalisable representation of the environment’

(Zeidman & Maguire, 2016, Representing The Environment section).

More recently, there is also evidence of functional specialisation along the hippocampus
when it comes to episodic memory. As Moscovitch et al. (2016) describe, the pHPC
and connected posterior neocortical regions may represent ‘the local, spatio-perceptual
aspects of the experience’, whereas the aHPC and several connected regions (especially
the anterior temporal lobe, prefrontal cortex, and amygdala) may ‘represent conceptual
and emotional aspects’ (Component Processes section). Robin and Moscovitch (2017))
propose that the aHPC may encode more coarse-grained global representations which
support processing of gist. However, there are dissenting views (Bonnici et al., 2013;
Dandolo & Schwabe, 2018)).

Zeidman and Maguire (2016) propose that the aHPC supports scene construction,

both offline to recall or imagine scenes and online during perception. In a related study,
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McCormick et al. (2021)) measured hippocampal activity in participants comparing
the layout of scenes, and comparing colours in those scenes. They found that the
layout condition, which they linked to scene construction, was associated with more
aHPC activity, and the colour condition, which they linked to scene perception,
was associated with more pHPC activity. This is potentially consistent with the
Moscovitch et al. (2016) view, as the mental model of a scene could be understood as

its conceptual representation.

1.3.4 Latent variable representations in the brain

The entorhinal cortex (EC) is the main route into and out of the hippocampus. It is
also where grid cells, which display a distinctive grid-like firing pattern as an animal
moves through a space, are most often observed (Moser et al., 2008). Grid cells may
be a mechanism behind path integration and vector navigation (Bush et al., 2015)).
The EC has also been linked to structural inference - which could be seen as the
non-spatial equivalent of path integration - and prior models suggest it encodes latent

structures underlying spatial and non-spatial tasks (Whittington et al., 2020)).

Other recent studies have also explored the role of EC in conceptual knowledge.
Constantinescu et al. (2016)) found that the navigation of a conceptual space produced
grid-like activity in EC (and elsewhere), as observed in spatial navigation. In this
human fMRI study, participants learnt an abstract space defined by two axes, the
leg length and neck length of cartoon birds. A grid-like signal was observed as
participants imagined an item’s trajectory in abstract space. The authors conclude
that ‘conceptual knowledge may also be organized by grid-like codes’ (Introduction),
supporting the hypothesis that conceptual knowledge may be encoded spatially as a

cognitive map.

There is ongoing debate about the purpose of lateral EC. Tsao et al. (2013)) explore
the activity of two types of neuron in lateral entorhinal cortex as a rodent explores
an environment: object cells fire when an object is present, whereas object trace cells

fire when a previously encountered object has been removed (and could therefore be
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seen as representing prediction error). An alternative suggestion is that ‘populations
of lateral entorhinal cortex neurons represent time ... [which] may be integrated
with spatial inputs from the medial entorhinal cortex in the hippocampus’ (Tsao
et al., 2018|, Abstract).

In addition, the ventromedial prefrontal cortex (vimPFC) is highly connected to
the hippocampal formation and plays a crucial role in episodic memory processing
(Gilboa & Marlatte, 2017)). Recall-related activity in the vmPFC increases over time
(Takashima et al., 2006]), and interaction between the hippocampus and vinPFC is
observed following the encoding of episodic memories (Gais et al.,[2007). This interplay
is thought to be a mechanism behind consolidation and the resulting transformation
of memory into a more semanticised form (Winocur & Moscovitch, 2011)). In an
MEG study, McCormick et al. (2020) observed the hippocampus and vimPFC while
participants recalled autobiographical memories from a verbal cue (controlling for
the level of detail, and varying the remoteness). They found that vmPFC activity
preceded hippocampal activity, for all but the most recent memories; they conclude
that the vimPFC is not required to direct recall for memories that are very recently
encoded, and therefore still intact in the hippocampus, but for all other memories it
is.

The vimnPFC is also thought to encode schemas (Ghosh et al., [2014)). Although
definitions of this term vary, schemas can be seen as templates for scenes and
episodes. For example, one’s schema for ‘a birthday party’ might bind together
concepts such as ‘a birthday cake’, ‘presents’, and ‘balloons’ in a certain relation.
Other findings implicate the vimPFC in transitive inference (Koscik & Tranel, [2012)
and the integration of memories (Spalding et al., 2018). Common to all these
capabilities is the extraction of underlying structure from experience. Mack et al.
(2020) suggest the vimPFC performs dimensionality reduction on incoming data,

compressing representations to remove irrelevant features as learning progresses.

Other candidate regions for latent variable representations of memory include anterior
and lateral (anterolateral) temporal cortices. These regions, which are associated with

semantic memory (Chan et al., [2001; Lambon Ralph & Patterson, 2008; Patterson et
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al., 2007), might be hypothesised to contain latent variable representations capturing

semantic structure.

1.4 Computational models of memory

In this section I briefly review existing computational models of memory, beginning
with models of associative memory in the hippocampal formation, and moving on to

models of systems consolidation.

1.4.1 Computational models of associative memory

Whilst the fate of memories after encoding is debated, there is a general consensus
that memories are first stored in autoassociative networks that bind together memory
elements into a trace (Marr, 1971; McNaughton & Morris, |1987)). Each trace is
thought to ‘index’ neocortical elements of the memory (Teyler & DiScenna, |1986), so
that pattern completion of a partial input can reactivate (some approximation to)

the original experience.

Many computational models of associative memory stem from the Hopfield network
(Hopfield, [1982). This was not specifically designed as a model of the hippocampus,
but as a more general model of how pattern completion, or ‘content-addressable’
memory, could be implemented in neural networks. A Hopfield network uses a simple
Hebbian learning rule to memorise patterns after a single exposure. As a result, it
is often considered more biologically plausible at a neural level than networks using

backpropagation.

Consider a set of fully connected nodes, i.e. each node is connected to every other
node. Let us assume that each node can take either 1 or -1 as its value. Whilst a
Hopfield network can memorise many types of data, we will consider the memorisation
of black and white images, where each pixel is represented by a node; black pixels are
represented by 1 and white pixels by -1. The task is to memorise a set of images, such

that the network can recall the most similar image when presented with a noisy or
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Figure 1.1: Relevant computational models. a) Figure 1 from Millidge et al. , showing the
Hopfield network and its successors as a series of three operations: the calculation of similarity,
separation of the vector of similarities, and projection. b) Figure 2 from Krotov and Hopfield ,
showing the formulation of Hopfield network variants as a two-layer network, with one layer of
memory neurons and one layer of feature neurons. ¢) An adapted version of Figure 1 from Kumaran
et al. (2016)), summarising the CLS view. d) An adapted version of Figure 1 from Teyler and Rudy
, showing memory encoding and retrieval according to hippocampal indexing theory. Forming
a memory trace involves the hippocampus ‘binding’ together neocortical features. A partial input
reactivates the hippocampal trace, and thus ‘pattern completes’ the full memory.
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incomplete input. The nodes are connected with symmetric weights. How is activation
propagated through a Hopfield network? Similarly to other neural networks, the
activation of a node is calculated from the weighted sum of its inputs. In a Hopfield
network we simply take the sign of this weighted sum, i.e. it is rounded to whichever
of -1 or 1 is closest. So as activation spreads through a Hopfield network, nodes
change to the sign of the weighted sum of their inputs, until a stable state is reached
in which nodes stop changing value. In more mathematical terms, this is a procedure
for minimising an ‘energy’ function. The activations can be propagated synchronously
— the activations of all the nodes are updated at once - or asynchronously. How are
these weights learned? The change to a weight is the product of the activations at the
nodes it connects. So if both nodes have the same activation, the weight increases. If
the nodes have different activations, the weight decreases. To put this another way, if
each pattern to be memorised is a vector with elements of 1 or -1, the weight update
for that pattern is the outer product of the vector with itself (a matrix). The final

set of weights is the sum of these matrices.

In this way Hopfield networks can memorise and retrieve patterns after a single
exposure (Hopfield, 1982)). However one issue is their limited capacity; a Hopfield
network can only recall approximately 0.14d states, where d is the dimension of the
input data (Ramsauer et al., [2020). It therefore seems unlikely that classical Hopfield
networks are a good model of hippocampal memory encoding — even if we assume
that only a temporary store is required until consolidation occurs. In addition, they
frequently recall incorrect memories, as the energy function can get ‘stuck’ in a local

minimum.

However, recent research has shown that the storage capacity of a Hopfield network
can be increased by making the energy function more complex (Krotov & Hopfield,
2016)). Demircigil et al. (2017) develop this idea further, increasing the capacity from
approximately 0.14d to 2%/2 with the use of an exponential energy function. Ramsauer
et al. (2020) further amend the energy function and enable the storage of patterns of
continuous variables, allowing the recall of much more complex data. (For example,

whilst classical Hopfield networks can only recall black and white images, the modern
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variant can recall greyscale ones.)

However, understanding these new variants of Hopfield networks in terms of neural
networks is less straightforward. The equations below (from Krotov & Hopfield, 2016))
give the energy of a standard Hopfield Network in a state o. To recap, a node’s value
is updated to the sign of the weighted sum of its inputs during recall; in other words,
a node’s value is flipped if it decreases the energy. The matrix T gives the weights of

the network, and the calculation of T is simply Hebbian learning:
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The equation below from Krotov and Hopfield (2020) gives the energy of a dense
Hopfield network; in this example F(x) is 23, but it can be any polynomial function.
As above, at recall time a node’s value flips if it decreases the energy. When F(x) is
22, the equation reduces to the one above for a standard Hopfield network. In any
other case, the tensor T has more than two indices, and can no longer be thought
of a matrix produced by Hebbian learning. This means the energy is no longer a
function of weights and activations in a neural network. Modern Hopfield networks
(Krotov & Hopfield, [2020)) suffer from the same problem.
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Krotov and Hopfield (2020) suggest a way to overcome this problem by using hidden
units (which they call ‘memory units’) in addition to the ‘feature units’ which represent
the input. With this change, the energy is again a function of weights and activations
in a neural network, and so is the update rule that minimises it. In simple terms, with
the addition of memory units, feature units can interact in more complex ways whilst
remaining consistent with the constraints of standard neural networks (i.e. two-body
synapses). As a result, a modern Hopfield network can be understood as a neural
network, like its predecessor (see Figure ) Note that under certain conditions,
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the Krotov and Hopfield (2020) formulation simplifies to dense associative memory
(Krotov & Hopfield, 2016)) rather than modern Hopfield networks (Ramsauer et al.,
2020).

An important question is how the memories get encoded as the weights of a bipartite
graph in the Krotov and Hopfield (2020)) formulation of a modern Hopfield network.
Each memory is bound together by a single node, which connects the features that
comprise that memory. The weights between a given memory node and the feature
nodes are simply the values of the features for that memory; these weights can be
learned by Hebbian learning. Therefore encoding in a modern Hopfield network
can be thought of as similar to previous models of the hippocampus as ‘indexing’,
or binding together, a set of memory components (Teyler & DiScenna, |1986); the
innovative aspect is the update rule, which is cleverly designed to guarantee the
desired properties. The key point is that the Krotov and Hopfield (2020) formulation
of a modern Hopfield network does not require a separate matrix of stored patterns —
the patterns are encoded in the weights, and the energy is a function of weights and

activations as explained above.

Millidge et al. (2022)) give a unifying account of this family of models, building on
the Krotov and Hopfield (2016) formulation to describe such networks as a sequence
of similarity, separation, and projection operations. As Figure [1.1j shows, retrieval
involves calculating the similarity between the query and stored patterns, passing the
similarities through another function to separate them, and producing an output given
the transformed similarities. This may repeat for multiple iterations. The Millidge
et al. (2022)) framework can help us to interpret the equation below, which gives the
new state pattern £"** in a modern Hopfield network in terms of the previous state

¢, stored patterns X7, and inverse temperature 3:

gnew — Xsoftmal'(BXTg)

Firstly, the vector of similarities between the query ¢ and memories X7 is obtained.

Secondly, the softmax function transforms these so they add up to one, with
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determining whether the vector of similarities is ‘flattened’ (low ) or ‘sharpened’
(high ). Thirdly, £"¢" is calculated as the sum of stored patterns weighted by
the transformed similarities. Low [ makes it more likely that a superposition of
stored attractors is retrieved, whereas high S makes it more likely that an individual

attractor is.

1.4.2 Computational models of the hippocampal formation

There are several more detailed computational models of the hippocampal formation,
building on the circuits described by Marr (1971)) and Treves and Rolls (1992).

Some of these models focus on spatial cognition. For example, Bicanski and Burgess
(2018)) propose a model of visuospatial memory and imagination in which viewpoint-
dependent imagery is (re)constructed from viewpoint-independent latent variables.
To encode an event, parietal areas support an egocentric representation from the
animal’s point of view. Given the parietal inputs and the head direction of the
animal, retrosplenial cortex then deduces an allocentric (viewpoint-independent)
representation. The resulting allocentric representation involves boundary vector,
object vector, and place cells, which can be thought of as latent variables for the
scene (Becker & Burgess, 2000; Bicanski & Burgess, 2018; Byrne et al., 2007). These
latent variables are then stored in the hippocampus. To recall a scene, egocentric
representations are reconstructed from stored allocentric ones, while to imagine a

scene, egocentric representations are constructed from novel allocentric ones.

Other models address more general functions. Gluck and Myers (1993) propose
that the ‘function of the hippocampal region is the recoding of internal stimulus
representations to facilitate learning’ (Discussion). These special representations
are learned in the bottleneck layer of a ‘predictive autoencoder’ (which outputs
a classification as well as the reconstructed input) in the hippocampal formation,
and then used by other brain regions. The recoded representations have two key
advantages compared to the original stimuli: improved ability to partition the data

by predicted class, and compression of information that is irrelevant to prediction.
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When the representations are visualised, stimuli from the same class are clustered

while stimuli from different classes are separated.

Models exploring the role of different pathways within the hippocampal formation
have been proposed in recent years. For example, C-HORSE (Schapiro et al., |2017)
suggests how the hippocampal formation can learn both specific events and statistical
regularities in ‘complementary’ pathways. The authors propose that a ‘monosynaptic’
pathway directly from EC to CA1 can rapidly learn patterns, whereas the trisynaptic
loop via DG and CA3 encodes individual events (Treves & Rolls, [1992)), and argue

that this accounts for experimental findings which challenge CLS.

Several recent studies have proposed that the hippocampal formation is a generative
model, with bottom-up connections to infer latent representations, and top-down
connections to reconstruct sensory inputs. These studies focus on modelling spatial
cognition at the neural level, as opposed to the cognitive level, so cover different

ground to the work in this thesis.

Whittington et al. (2020) present the Tolman-Eichenbaum Machine (TEM) as a
model of the hippocampal formation as a generative network supporting structural
inference in both spatial and non-spatial tasks; this cognitive ability enables inference
in new environments and tasks based on knowledge of a common underlying structure.
A spatial example of structural inference is the finding of shortcuts (as this relies
on the common structure of space), and a non-spatial example is inferring that A
is the grandfather of C from the knowledge that A is the father of B, and B is the
father of C (as this relies on the common structure of family trees). More simply, all
transitive inference falls into this category. The relations in these tasks can be seen as
edges in graphs. The TEM is a recurrent graph variational autoencoder that learns
the hidden structure of input graphs, supporting structural inference. Grid cells are
latent representations enabling the prediction of the next state. Place cells are the
output of the variational autoencoder, which are then associated with sensory data
via Hebbian learning. In other words, Whittington et al. (2020) propose that ‘medial
entorhinal cells form a basis describing structural knowledge, and hippocampal cells

link this basis with sensory representations’ (Summary section). They show that the
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TEM is consistent with observed firing patterns of grid cells and place cells. See also

Whittington et al. (2021)), a more recent extension of the model.

Stoianov et al. (2022]) suggest that the hippocampal formation is a hierarchical
generative model supporting spatial cognition, and that as it learns new environments
it generates samples of previous environments to enable continual learning. They point
to the non-veridical sequences observed in the hippocampus (Dragoi & Tonegawa,
2011; Gupta et al., 2010; Liu et al., 2019; Olafsdéttir et al., 2018; Stella et al., 2019)
as evidence for this. Items, sequences, and maps correspond to different levels of
abstraction in the hierarchy. The ability to infer which environment the agent is in, as
represented by the final ‘map’ layer, is used to assess continual learning. The authors
compare generative replay against experience replay as a baseline, and find that in
some cases the former surpasses the latter. (See Chapter 4 for further discussion.)
Similarly, George et al. (2023) simulate the hippocampal formation as a Helmholtz

machine applied to a sequence of sensory inputs.

1.4.3 Computational models of systems consolidation

As described above, the complementary learning systems theory (CLS; Marr, 1970,
1971; McClelland et al., [1995) is consistent with the standard view of systems consol-
idation. It proposes that episodic memories are integrated into existing knowledge
over time, with the hippocampus specialised for one-shot learning of episodic memory,

and the neocortex for gradual learning of semantic memory.

Rival theories include Multiple Trace Theory (MTT; Nadel & Moscovitch, [1997)
and Trace Transformation Theory (TTT; Winocur et al., [2010). In both MTT
and TTT, episodic memory stays reliant on the hippocampus, while neocortical
representations support semantic memory. MTT suggests that every time an episodic
memory is retrieved, a new, slightly modified trace of that memory is created in
the hippocampus (which also captures the context of the retrieval). This results in
multiple overlapping traces for the same memory, such that older memories are more

robust to partial hippocampal damage (an alternative explanation of the gradient
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of retrograde amnesia). TTT agrees with MTT that hippocampal and neocortical
traces exist in parallel, but focuses on the idea that memory traces are transformed
as they are consolidated from the hippocampus to the neocortex. According to TTT,
the initial episodic memories stored in the hippocampus are gradually abstracted into
semantic memories in the neocortex, resulting in the loss of perceptual detail and
context-specific information. In TTT either the episodic or semantic trace may be

recalled depending on the situation, or the two traces may interact.

Extensive computational modelling has explored the implications of CLS. One recent
development to the CLS framework (McClelland et al., |1995) focuses on the interplay
between predictability and systems consolidation. The Go-CLS model (Sun et al.,
2021) suggests that unpredictable experiences are less likely to be consolidated than
predictable ones, as attempting to consolidate outliers might impair generalization.
In other words, Sun et al. (2021) suggest that the brain regulates the amount of

systems consolidation based on the predictability of experiences.

Previous work tends to focus on the extraction of semantic memory from episodic
memory, but has less to say about the transformation of the episodic memories over
time. For example, semantic memory is often simulated as the neocortex learning to
classify samples replayed by the hippocampus, leaving the issue of post-consolidation

episodic memory relatively unaddressed.

1.5 The Bayesian brain

1.5.1 Memory, novelty and prediction error

Novelty is thought to promote encoding within HF (Hasselmo et al., [1996)), while more
predictable events consistent with existing schemas are consolidated more rapidly
(Tse et al., |2007). Furthermore, activity in the hippocampus can reflect prediction

error or mismatch novelty (Chen et al., 2011; Kumaran & Maguire, 20006)).

Previous computational modelling has explored how predictable and unpredict-

able memory elements might be processed differently. For example, the Tolman-
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Eichenbaum Machine (Whittington et al., 2020)) factorises shared structure (e.g. the
structure of a family tree, or the common properties of Euclidean space) from specifics
(e.g. the names of members of a particular family, or a reward being at a particular

arbitrary location).

Other models share the intuition that the hippocampus encodes arbitrary specifics.
Benna and Fusi (2021]) propose that hippocampal storage capacity could be greatly
increased if only the uncorrelated elements of memories are encoded in a Hopfield
network. A set of realistic memories can be imagined as a set of dense, correlated
vectors, and the capacity of a Hopfield network for such memories is fairly low. But
if one makes each memory the sum of a sparse, uncorrelated vector per memory
(capturing the arbitrary specifics), and a shared dense vector (capturing the common
aspects), the capacity is much greater. The authors show that this can be modelled as
the encoder component of an autoencoder, which projects the memories into a vector
space that captures only the uncorrelated aspects, chained to a Hopfield network.
(However this intriguing result may work less well if the system enters a completely
novel environment. For one-shot encoding to take place, the stimuli must be encoded
by an encoder that is unfamiliar with the environment, and therefore may perform
poorly.) Other models also suggest that novel elements of memory should be encoded
preferentially, e.g. Hedayati et al. (2022)) propose a model in which novelty affects

the degree of compression of representations in working memory.

Novelty has also been investigated as a factor affecting the duration of systems
consolidation. Tse et al. (2007) describe evidence that ‘systems consolidation can
occur extremely quickly if an associative schema into which new information is
incorporated has previously been created’ (Abstract). In their study, rats were
trained to learn multiple flavour-place associations, such that ‘when cued with a
specific flavor in start boxes at the side of the arena, the animals would be rewarded
for going to the correct location by receiving more of that same food’ (Experiments
section). Once the rats were familiar with the task, they found that rats could
consolidate a new flavour-place association after a single trial, suggesting that ‘the

rate at which systems consolidation occurs in the neocortex can be influenced by
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what is already known’ (Discussion). This challenges idea that the neocortex can

only learn slowly, as CLS arguably implies (Kumaran et al., 2016).

But there is some debate about this in the literature. Whilst Tse et al. (2007) find
that having a matching schema speeds up consolidation, Preston and Eichenbaum
(2013)) suggest that having fewer, simpler schemas related to the new information
may do this instead; whilst humans take a long time to integrate new information
into multiple complex schemas, rodents’ schemas ‘may be limited and relatively
simplistic ... resulting in a decreased tendency to process new events in relation to
existing memories and more rapid consolidation relative to other species’ (Discussion).
Perhaps what matters is the degree of inconsistency between the new memory and
existing schemas. If so, both the lack of a relevant schema or a schema consistent with
the new memory could lead to rapid systems consolidation. In contrast, consolidating
a memory into a schema that is inconsistent would take longer. See also Van
Kesteren et al. (2012) for a model of the relationship between schema congruency

and consolidation.

The concept of mismatch between representations of a memory, and replay as a
mechanism for resolving this mismatch, has been explored in the context of spatial
cognition. Evans and Burgess (2019) propose a model in which information from the
associative spatial system (i.e. hippocampal place cells) updates the metric spatial
system (i.e. entorhinal grid cells) during replay, triggered by prediction error between

the systems.

1.5.2 Bayesian accounts of perception and memory

Perception is now widely understood as a process of probabilistic inference of the state
of the world from ambiguous sensory information, with important implications for
memory. As Fiser et al. (2010)) describe, perception was historically thought of as ‘a
series of classical signal processing operations, by which each sensory stimulus should
give rise to a single perceptual interpretation’ (Probabilistic Perception section). But

this is challenged by the fact that sensory input may be consistent with multiple
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interpretations, e.g. a two-dimensional view may be consistent with multiple three-
dimensional objects (Kornmeier & Bach, [2005)). Prior knowledge must therefore be
drawn on in perception to deal with the noisy, partial, and ambiguous nature of

sensory inputs.

More formally, it can be argued that this process approximates Bayesian inference.
Cognition is thought to involve estimating the probability of certain hypotheses about
the world based on observed data (Fiser et al., |2010). This can be achieved by
combining a prior belief about the probability of the hypothesis with the likelihood
of observed data given that hypothesis, and applying Bayes’ theorem to obtain the
posterior probability. For example, given an ambiguous silhouette moving in the dis-
tance, the posterior probability that the silhouette is that of a certain animal depends
on a prior (i.e. the baseline probability of seeing the animal in the environment) and

a likelihood (i.e. how well the silhouette matches the hypothesised animal).

There are a number of related findings about attribute estimation from memory.
When people are shown a stimulus (e.g. an image of an object) then asked to
remember its properties after a short delay, they tend to remember stimuli as being
closer to the average than they actually were; this is known as the central tendency
effect (Hollingworth, 1910)). Petzschner et al. (2015]) present a Bayesian analysis of
magnitude estimation, in which the central tendency effect is ‘the natural consequence
of general principles underlying perceptual inference’ (Theories section), arising from a
predictive model of the world. In a Bayesian framework, the mean magnitude is a prior,
which influences the judgements of magnitude, and a ‘statistically optimal combination
of prior knowledge and sensory input produces biased magnitude judgments whenever
the prior differs from the current physical stimulus magnitude’ (A Bayesian Framework

section).

More generally, Lin et al. (2022) argue that memories of scenes are biased towards high-
probability perspectives. This reflects the central tendency effect and is compatible
with the Bayesian account. Similarly, in experiments where participants recall the
location of an item in a circle, recalled stimuli are distorted towards a prototype, due

to ‘estimation processes that combine the remembered stimulus value with category
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information’ (Huttenlocher et al., 1991, Abstract).

Hemmer and Steyvers (2009) build on Huttenlocher et al. (1991) to give a broader
account of reconstructive memory as Bayesian inference, in which the ‘posterior
probability p(l|y) gives the likely stimulus values 1 given the noisy memory contents
y’ (Introduction). They note that in tasks like that of Huttenlocher et al. (1991)),
their model predicts a bias towards the mean of the category when the memory
is reconstructed. These are just some of the studies giving a Bayesian perspective
on memory, however it is unclear how these normative models might actually be

implemented in the brain.

1.5.3 Early models of predictive coding

Predictive coding, a prominent account of perception as a Bayesian process, has its
origins in information theory. As Millidge et al. (2021) describe, ‘information theory
tells us that information is inseparable from a lack of predictability. If something is
predictable before observing it, it cannot give us much information’ (Introduction).
In contrast, if something is less predictable it is richer in information, so converting

data to a ‘minimally predictable’ form maximises information transfer.

Predictive coding was originally applied to reduce redundancy in signal processing,
thereby reducing the bandwidth required for data transmission (Millidge et al., 2021)).
Early techniques for video transmission involved subtracting each frame from the
preceding one, or in other words predicting that consecutive frames would be identical
and calculating the prediction error or ‘residual’ (this is especially effective when
objects are moving on a static background, as only the moving objects need to be
transmitted). More sophisticated techniques developed from this, such as linear
predictive coding, where the prediction for each new frame is a linear combination of
previous frames weighted by coefficients. When these coefficients are communicated
at the start of the transmission, the receiver can reconstruct the compressed signals
from the transmitted prediction errors. Barlow et al. (1961) and Barlow (1989)

related this concept to signal processing in the nervous system, suggesting that
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given the high energy consumption of neurons, evolutionary pressures encourage
efficiency. Specifically, the minimum redundancy principle (Barlow et al., |1961
Barlow, [1989)) proposes that the nervous system is optimised to reduce redundancy
in sensory information, leading to sparse representations that transfer information

efficiently.

Traditional views of sensory processing assumed information flow from low-level
sensory to high-level conceptual representations. As Millidge et al. (2021) describe,
the classical view of the visual system involved feature detectors arranged in a
hierarchy, with more complex features consisting of combinations of simpler features.
But several phenomena were observed that challenged this view. In particular, some
low-level cells’ responses depended on contextual information outside of their receptive
field (for example, ‘endstopping’ refers to the reduction in certain neurons’ responses
when a stimulus extends beyond the receptive field). This is clearly consistent with
‘top-down’ as well as ‘bottom-up’ flow of information. (Centre-surround cells on
the retina, which fire in response to either a light spot on a dark background or a
dark spot on a light background, are another related example in the visual system.
Srinivasan et al. (1982) suggest that they help minimise redundancy by indicating
prediction error, relative to the prediction that nearby points in space are the same

shade.)

To address these issues with the classical account, Mumford (1992) proposed an
alternative account of the interaction of lower-level sensory and higher-level conceptual
regions inspired by the minimum redundancy principle (Barlow et al., [1961; Barlow,
1989). In his view, ‘the higher area attempts to fit its abstractions to the data it
receives from lower areas by sending back to them ... a template reconstruction
best fitting the lower-level view’, while ‘the lower area attempts to reconcile the
reconstruction of its view that it receives from higher areas with what it knows,
sending back ... the features in its data which are not predicted by the higher area’
(Abstract). Inspired by Mumford (1992), Rao and Ballard (1999)) introduced the
initial predictive coding network, showing that extra-classical receptive field effects

are consistent with this model.
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1.5.4 Predictive coding networks

In recent years the ideas described above have evolved into modern predictive coding
networks. Predictive coding networks are a potential implementation of the free-
energy principle, one version of the Bayesian brain view. Friston (2010]) relates
surprise to a mathematical quantity called free energy, and suggests that ‘agents
minimize free energy by changing their predictions (perception) or by changing the
predicted sensory inputs (action)’ (Key Points section). I now outline how predictive
coding networks model perception. As Millidge et al. (2021) describe, the approach
in Friston (2010) ‘reformulates the mostly heuristic Rao and Ballard model in the
language of variational Bayesian inference ... tying it the broader project of the

Bayesian Brain’ (Predictive Coding section).

The basic idea of predictive coding is that the brain involves representations at
many different levels of abstraction, arranged in a hierarchy from lower-level sensory
to higher-level conceptual features. Each layer in the hierarchy makes predictions
about the layer below it, which are compared with the ‘real” activity in the layer
to calculate a prediction error. The prediction errors are then propagated upwards.
During perception, the representations (i.e. patterns of activity across the nodes) are
adjusted iteratively to minimise prediction error. During learning, the parameters

(i.e. weights of the network) are adjusted to minimise prediction error.

Predictive coding networks are not unique in aiming to minimise prediction error —
more established types of neural network such as autoencoders are also trained in this
way. Furthermore, autoencoders and predictive coding networks can both be thought
of as involving a hierarchy from lower-level sensory features to higher-level latent
features, which then project back to sensory features. Both learn compressed repres-

entations through self-supervised learning, but there are several key differences.

Firstly, in a predictive coding network, prediction errors are transmitted upwards
through the hierarchy, and predictions transmitted downwards. The fact that only
errors or residuals are transmitted from lower to high levels distinguishes predictive

coding networks from autoencoders, in which data is transmitted upwards. Secondly, a



CHAPTER 1. INTRODUCTION 51

predictive coding network uses only local learning rules, whereas autoencoders require
backpropagation, which involves derivatives of the error being propagated to remote
regions of the network to update the weights through gradient descent. As a result, in
a predictive coding network the inference and generative weights are adjusted locally,

whereas in an autoencoder they are trained from a single reconstruction loss.

See Section of the Appendix for more detail on predictive coding networks with
the help of a simple toy example (Bogacz, |2017)).

1.6 Generative models

Generative models are models which represent probability distributions across many
variables, enabling them to generate outputs that resemble the data they were trained
on. Generative models can be explicit or implicit density models: explicit density
models provide a probability estimate for any data item, whereas implicit density

models provide a procedure for generating data but not a probability estimate.

There is evidence that generative processing is central to many cognitive functions,
including top-down processing, predicting future stimuli, imagination, and memory.
These ideas are connected to the predictive brain hypothesis more broadly (Friston &
Kiebel, [2009). This section describes some of the main varieties of generative model

in more detail.

1.6.1 Generative models and cognition

Generative models have long been implicated in top-down processing, i.e. the effect of
prior knowledge and contextual information on perception. Classic examples of top-
down processing include pareidolia (Liu et al., [2014), the perception of phantom limbs
(Ramachandran & Hirstein, 1998), and the McGurk effect (McGurk & MacDonald,
1976)).

In one illustrative example, Leonard et al. (2016]) used electrocorticography to explore

neural activity when listening to ambiguous stimuli. Words were played to the
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participants with some phonemes replaced by noise, in a sentence that provided
context. The study found that when participants reported hearing the incomplete
sound as a given word, the activity was very similar to the response to the unaltered
word. That is, when a word was heard due to phonemic restoration, the cortical
activity was very similar to that for the unaltered version, and occurred at the same
time as for the unaltered word. Furthermore, stimulus spectrogram reconstruction
of the brain activity showed that the spectrograms of the restored words closely
matched the spectrogram of the perceived unaltered words. They indicate that when
phonemic restoration occurs, the brain generates the missing sound in auditory cortex
in real time. This illustrates why top-down processing is hard to explain as inference
occurring after perception, but is instead an indication of generative models in the

brain.

There are many other reasons why generative models might be useful for cognition.
Firstly, generative models underlie the phenomenon of learning through imagination,
e.g. in model-based reinforcement learning (Sutton, 1991)). In a more recent example,
Ha and Schmidhuber (2018)) generate recurrent neural network ‘world models’ of
several video game environments, and show that training a reinforcement learning

agent in these generated environments gives good results.

Another advantage is that sampling from a generative model during category learning
can result in better ability to generalise, as a result of exposing the classifier to more
varied data (Barry & Love, 2021)). For example, a generative model could extrapolate
from a few images of an unfamiliar animal to imagine variants from the same category
(e.g. views of the animal from different angles), and a classifier trained on both the
original stimuli and generated variants might be more robust. Augmenting classifiers’
training data with synthetic examples from generative models is now often used in the
machine learning literature, and is especially beneficial if there is little real training
data (Trabucco et al., [2023]).
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1.6.2 Early generative networks

Early generative networks include Boltzmann machines, Helmholtz machines, and
deep belief networks. These predecessors of modern generative networks originated
in neuroscience, have biologically plausible learning algorithms, and continue to be
relevant today (e.g. George et al., [2023)), so here I briefly review the main families of

model.

Boltzmann machines

The Boltzmann machine, a simpler predecessor to the Helmholtz machine, consists of
a set of hidden and a set of visible units (Ackley et al.,|1985)). These are binary and
stochastic, as opposed to the continuous and deterministic activities in a standard
feedforward network. Training consists of two phases: in the positive phase, the
visible units are ‘clamped’ to a particular example from the training data. In the
negative phase, this example data point is provided to the visible units but activity
then propagates freely within the network, until it settles into a stable state. The
probability that two units are both ‘on’ in the positive phase is compared to this
probability in the negative phase, with the weight between the two units reduced
proportionally to this difference (intuitively, one wants the probabilities to be the

same).

In a restricted Boltzmann machine (RBM), visible units are only connected to hidden
units and hidden units are only connected to visible units. In others words, an RBM
is a fully-connected bipartite graph (or equivalently a network with one hidden layer,
and no intra-layer connections). RBMs also compare activity in positive and negative
phases, but their reduced connectivity allows the simpler contrastive divergence

algorithm to be used (Hinton, [2012)). Contrastive divergence works as follows:

1. Start with an example v from the training data and obtain the corresponding

hidden layer activity h.

2. Calculate the positive gradient as the outer product of v and h.
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3. Reconstruct the visible layer activity v’ from the hidden layer activity h, and

then obtain a new hidden layer activity h’ from this reconstructed input.

4. Calculate the negative gradient as the outer product of v’ and the new hidden

layer activation h’.

5. Update the weights of the model proportionally to the positive gradient minus

the negative gradient.

Deep belief networks (Hinton, 2009)) essentially stack together multiple RBMs, allowing

more complex data to be captured in a hierarchy of hidden representations.

Helmholtz machines

Helmholtz machines build on Boltzmann machines, and are often thought of as an

ancestor of variational autoencoders.

Dayan et al. (1995) ‘view the human perceptual system as a statistical inference engine
whose function is to infer the probable causes of sensory input’ (Introduction). They
propose the Helmholtz machine, consisting of a recognition and a generative model
that train each other via an unsupervised learning algorithm called the wake-sleep
algorithm (Hinton et al.,|1995). A recognition model allows the system to infer the
causes of sensory data, and a generative model allows the system to infer sensory

data from underlying causes, i.e. latent variables.

The Helmholtz machine works by minimising the Helmholtz free energy in the system
(Dayan et al., 1995). In brief, we want to maximise the log probability of the observed
data given some latent variables. With Bayes’ theorem and variational inference, the
problem is reformulated as minimising the Helmholtz free energy. (This quantity
from statistical physics can very loosely be thought of a measure of ‘surprise’.) The

Helmholtz machine is designed to do this.

So how is this implemented? A Helmholtz machine has two sets of connections
between each pair of layers: top-down connections form a generative model going

from latent variables to observations, and bottom-up connections form a recognition
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model going from observations to latent variables. The bottom layer of the network
represents raw sensory data, but Helmholtz machines can have multiple hidden
layers above this (capturing latent variables at increasing levels of abstraction). The
recognition and generative models are used to train each other via the wake-sleep
learning algorithm, with training using an entirely local delta rule. (As above, this is
an advantage from a computational neuroscience perspective, as non-local learning

rules have been criticised as being biologically implausible.)

One notable difference compared to a ‘standard’ neural network is that the neurons
in a Helmholtz machine (as in a Boltzmann machine) are stochastic rather than
deterministic, and have binary rather than continuous outputs. A binary stochastic
neuron outputs one with a probability p and zero with a probability 7-p. This gives

the network the right properties to minimise the Helmholtz free energy.

During the wake phase, sensory data is passed up through the recognition network.
Next, activations are propagated down through the generative network, and the
generative weights are adjusted while the recognition weights stay fixed. During
the sleep phase, a hidden representation is passed down through the generative
network. Next, activations are propagated up through the recognition network,
and the recognition weights are adjusted while the generative weights stay fixed.
In summary, in the wake phase the generative weights ‘are adapted to increase
the probability that they would reconstruct the correct activity vector in the layer
below’, while in the sleep phase, the recognition weights ‘are adapted to increase the
probability that they would produce the correct activity vector in the layer above’
(Hinton et al., (1995, Abstract).

1.6.3 Variational autoencoders

An autoencoder is a neural network which encodes an input into a more compressed
representation (in a ‘bottleneck’ layer with fewer neurons than the input and output
layers), and then decodes this back to the original. It learns by minimising the

difference between the inputs and outputs. There is no guarantee that decoding
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an arbitrary compressed representation produces a sensible output, so standard
autoencoders do not perform well as generative models. In other words, there are
many ‘gaps’ in the vector space of the compressed representations which do not
correspond to anything meaningful. However, one can train an autoencoder with
special properties, such that each latent variable is normally distributed for a given
input, allowing one to sample realistic items. The result is called a variational
autoencoder (Kingma & Welling, 2013} 2019).

The following description provides the intuition behind the model, rather than the
underlying mathematics. Making the latent variables for a given input normally
distributed requires the network to have an unusual architecture. Suppose we want
our compressed representation to be of dimension n, i.e. we want n latent variables
in our variational autoencoder. For these to be normally distributed, we need to
produce a mean and standard deviation for each of the n variables for a given input.
(Note that the mean and standard deviation vectors are a function of the input, not
fixed values for the whole dataset.) Therefore two vectors constitute the compressed
representation: one for the means and one for the standard deviations. A sampling
step then samples a value for each of the n latent variables. This sampling gives us
the desired properties locally. In other words, an input is encoded as a probability
distribution, rather than a single vector of latent variables. This means that the model

learns to decode not just a single encoding, but a region of the latent space.

As a result, the latent space has the properties we want in the vicinity of each data
point. However, if we want to be able to randomly select a point from anywhere in the
latent space and generate a realistic output, we need something else too. In addition
to the usual reconstruction loss for autoencoders, a special loss function called the
Kullback-Leibler divergence is used. The Kullback-Leibler divergence measures how
different two probability distributions are; in this case, it measures how much the
distribution of each latent variable differs from a normal distribution with a mean of
zero and standard deviation of one. In other words, the Kullback-Leibler loss is at
a minimum when each latent variable’s mean is zero and standard deviation is one.

Using this loss moves the distributions towards each other, so that the means are as
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nearby as possible whilst still capturing the variation in the data. This means that
there are fewer ‘gaps’ in the latent space, ensuring that variational autoencoders are

able to generate realistic outputs.

To describe variational autoencoders more mathematically, their loss function can be
derived through variational inference (as exact Bayesian inference is intractable). As
Odaibo (2019)) describes, let us consider a VAE with input vector x and latent variable
vector z. The encoder of the VAE learns to infer latent variables from observed data,
i.e. it implements a function gs(z|x), parameterised by the weights 6. The decoder
of the VAE learns to infer observed data from latent variables, i.e. it implements a

function ps(x|2), parameterised by the weights ¢.

We start with the first equation below, giving the Kullback-Leibler (KL) divergence
(a measure of the difference between two probability distributions) between the
approximate and true posteriors. Crucially, the KL divergence is always greater than
or equal to zero. By expanding this expression according to the definition of the KL
divergence, applying Bayes’ theorem, and rearranging the result, we end up with the

second equation below, where the right hand side gives the ‘evidence lower bound’
(ELBO):

Dy (go(2|zi)||p(2|zi)) > 0

log p(z:) > Egy(zfe) [log pe(2i|2)] — Dxr(ge(z]7:i)||p(2))

The ELBO can be maximised in order to maximise the left hand side by proxy.
Minimising its negative produces the following loss function, in which the first
term (the reconstruction loss) promotes accurate reconstruction of input data, and
the second term (the KL loss) makes the latent variables approximately normally
distributed:

L(0,0;7) = By (el [log ps(2]2)] + Drcr.(gs(2]2) || p(2))
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One appeal of variational autoencoders is that it is straightforward to control what is
generated. Applications in machine learning include altering the age of a face, by
calculating the direction in the latent space that corresponds to age, and moving
the latent variables of the input in this direction (Yan et al., 2016). See Figure
[C.1] adapted from Hou et al. (2017), for an example of this. It is also possible to
interpolate between examples by picking a point in the latent space between them,

e.g. to blend two songs into a single song (Roberts et al., 2018)).

There are a number of applications of variational autoencoders in the computational
neuroscience literature. In Van de Ven et al. (2020)), replayed events are sampled from
a variational autoencoder, and this helps to avoid catastrophic interference. Nagy
et al. (2020) propose that semantic memory provides a statistical model of the world,
modelled as a variational autoencoder, and argue that this is consistent with gist-
based memory distortions. Whittington et al. (2020) present the Tolman-Eichenbaum
machine as a model of generalisation in the hippocampal-entorhinal system, in both
spatial and non-spatial tasks in which inferences can be made based on structural
regularities. As part of their model, the authors use a recurrent graph variational

autoencoder.

1.6.4 Generative adversarial networks

The basic concept of generative adversarial networks (Goodfellow et al., 2014)) is
simple: one trains a generator and discriminator in parallel. The discriminator
learns to tell real from generated examples, and the generator learns to generate
items that trick the discriminator (given a random input in the first layer). As both
models learn, these items become increasingly realistic. This is reminiscent of other
machine learning approaches in which the verdict of one model trains another, such

as actor-critic methods in reinforcement learning (Sutton, Barto et al., |1998).

This technique has been used to generate images with particular success. Deep
convolutional GANs, using a deconvolutional generator combined with a convolutional

discriminator, were state of the art for image generation prior to diffusion models
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(Radford et al., 2015)).

There are several ways to control the output of a GAN. One intuitive method is to do
vector arithmetic with the latent vectors, as Radford et al. (2015) show. The authors
demonstrate that in the latent vector space, ‘man with glasses’ minus ‘man without
glasses’ plus ‘woman without glasses’ gives ‘woman with glasses’. This is similar
to the vector arithmetic with word vectors demonstrated by Mikolov et al. (2013).
Another option for controlling the output is conditional GANs (Mirza & Osindero,
2014).

Gershman (2019) suggests that generative activity in the brain might work like a GAN;
with the discriminator corresponding to the ‘reality testing’ function of the prefrontal
cortex (although he describes this theory as speculative). He motivates this in several
ways. Firstly, he notes that previous research has generally assumed that the brain
learns to estimate specific probabilities for states, much like an explicit density model.
But implicit models such as GANs, which provide a sampling method but do not
estimate the probability of the resulting items, are easier to learn. Secondly, he
suggests that the GAN view accounts better than alternatives for ‘the phenomenology
of illusion’ (Introduction). Thirdly, he proposes that the GAN view might shed
light on ‘the origins of delusions, hallucinations, and confabulations that arise in
certain mental disorders’ (Introduction). Gershman (2019) identifies several empirical
predictions this model would make, for example that an impaired discriminator would
lead to systematic problems with statistical learning. He suggests that patients with
schizophrenia or prefrontal damage impairing the proposed discriminator could be

studied to see if this is true.

Some types of model have fused the idea of GANs and VAEs. Like VAEs, adversarial
autoencoders (AAEs) try to make the latent variables match a desired distribution
(Makhzani et al., 2015). The effect is much like a VAE but achieved in a different way.
Rather than the VAE’s approach of a special sampling architecture combined with a
KL loss, the AEA takes inspiration from GANs. A discriminator learns to tell the
difference between latent vectors produced by the current AAE, and samples drawn

from a normal distribution for each latent variable. The encoder then learns to trick
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the discriminator, by making its latent space more like the desired distribution.

1.6.5 Autoregressive sequence models

Another area in which generative models have been very successful is text generation.
For example, GPT-2, an autoregressive model trained on the task of predicting the
next item in a sequence, surpassed previous benchmarks by a long way (Radford
et al., 2019). GPT-2 and subsequent models of this family are explicit density
models, in which the probability of a generated sentence is a product of conditional
probabilities for each token (chunk of characters) given all the preceding tokens in

the sentence.

As an aside, this differs from the other main way that modern language models
are trained, masked language modelling. Masked language modelling works by
training the model to ‘fill in the blanks’ (Devlin et al., 2018). The training data
is prepared by replacing some fraction of the words with ‘mask’ tokens, and the
model learns to replace these mask tokens with the right words. (This design is more
akin to a noise-reducing autoencoder than a generative model.) As a result, each
sequence is not assigned a probability like in causal language modelling. The causal
language modelling objective means that the prediction is unidirectional, rather than
bidirectional like in masked language modelling, i.e. the model learns to predict the

next word, rather than missing words based on the surrounding context.

Most modern language models involve transformers (Vaswani et al., [2017)), a type of
neural network architecture that relies on the attention mechanism to capture complex
interdependencies between elements of the input. In recent years transformer-based
networks have replaced recurrent and convolutional networks as an approach to this

problem.

Autoregressive sequence models are central to the sequential model presented in

Chapter Three, so are discussed in more detail there.
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1.6.6 Diffusion models

The intuition behind diffusion models is to define a process for iteratively adding noise
to an image (the forward diffusion process), then learn to reverse this step by step
(the reverse diffusion process) (Ho et al., [2020). The forward diffusion process adds
Gaussian noise at each step, and is designed to guarantee that the final result is an
approximately isotropic Gaussian distribution. (Furthermore it provides an equation
to predict the image at time step t of the diffusion process, without needing to perform
forward diffusion at every intervening step.) At each step the reverse diffusion process
predicts the noise with a U-Net architecture, in which a sequence of downsampling
then upsampling layers are applied, then deduces the corresponding image. (In
simple terms a U-Net can be thought of as an autoencoder with special features, as
it compresses then decompresses the image data.) Note that some approaches predict

the denoised image directly instead (Ramesh et al., 2022).

The training algorithm works as follows. Firstly, a time step t (between 0 and T) is
randomly chosen, and a sample is taken from the normal distribution N(0,1). Using
these inputs, the forward diffusion process is applied, producing the noisy image at
time step t. The U-Net takes the noisy image and time step as inputs, and outputs
the predicted noise. The loss function is then the difference between the predicted
noise at time t and the true noise (the sample from N(0,1)). The U-Net’s weights

are adjusted using this loss.

The sampling algorithm works as follows. Starting with pure Gaussian noise, an
image is generated by reversing the forward diffusion process from time step T (the
last step of the process) to 0. At each time step the trained U-Net is used to predict
the noise given the image x; and the time step. In addition, a new sample from the
normal distribution is taken. Using these components (x;, the predicted noise, the
sample from N(0, 1), and scheduling information), an equation predicts the image

Z¢_1, which is then the input for the next step of reverse diffusion.
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1.6.7 Generating images from text

Advances in machine learning models for image generation from text may shed light
on the interactions between semantic memory and event construction. DALL-E 2
(Ramesh et al., |2022)) builds on two key components: diffusion models, which learn to

reverse the process of adding noise to an image as described above, and CLIP.

CLIP (Radford et al., 2021) is a multimodal embedding model. Radford et al. (2021)
present a network which learns to represent both language and imagery in the same
vector space, through the process of ‘Contrastive Language-Image Pretraining’. As
with most embedding models, the training process gradually moves matching pairs
closer and non-matching pairs further apart in the space. For CLIP, ‘matching pairs’
are text-image pairs which occurred together in a large dataset of web content, for
example an image and its caption. The result is a multimodal model which supports

text-to-image searching, amongst other things.

To generate an image from a text input with DALL-E 2 (Ramesh et al., 2022)), a
CLIP text embedding is first obtained for the caption, and is then converted into
a CLIP image embedding with a ‘prior model’. (This is necessary because CLIP’s
training objective encourages matching text to be closer to a given image than any
non-matching text, but the image and text representations still differ, and require
another model to ‘translate’ between them. This makes sense as there may be many

equally valid images for one text input.)

A diffusion model, unCLIP, based on its predecessor GLIDE (Nichol et al., 2021)),
then generates an image conditioned on the CLIP image embedding. During training,
unCLIP is provided with both a degraded form of the target image and the CLIP
image embedding of the original, and its weights are adjusted to reconstruct the
original as well as possible. Specifically, a lower-dimensional projection of the CLIP
image embedding is added to the timestep embedding (this is used in unconditional
diffusion models to tell the U-Net the current timestep, which indicates how much
noise there is in the input image). Finally, another diffusion model increases the

resolution of the image.
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DALL-E 2 (Ramesh et al., 2022) was designed to allow unconditional image generation
too, i.e. image generation from scratch without a text input. This was achieved by
removing a subset of text inputs in the training data. Random regions of images were

also removed to enable ‘inpainting’, i.e. filling in missing regions in an image.



Chapter 2

A generative model of memory

construction and consolidation

2.1 Introduction

The model presented in this chapter draws together existing ideas in machine learning
to suggest an explanation for the following key features of memory, only subsets of

which are captured by previous models:

1. The initial encoding of memory requires only a single exposure to an event,
and depends on the hippocampal formation (HF), while the consolidated form
of memory is acquired more gradually (Alvarez & Squire, [1994; Marr, 1970,
1971)), as in the complementary learning systems model (CLS; McClelland et al.,
1995).

2. The semantic content of memories becomes independent of HF over time (Manns
et al., [2003; Squire et al., [2015; Vargha-Khadem et al., [1997)), consistent with
CLS.

3. Vivid, detailed episodic memory remains dependent on HF (McKenzie & Eichen-
baum, [2011), consistent with multiple trace theory (Nadel & Moscovitch, 1997))

64
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(but not CLS).

4. Similar neural circuits are involved in recall, imagination, and episodic future
thinking (Addis et al., 2007; Hassabis & Maguire, 2007), suggesting a common
mechanism for event generation, as modelled in spatial cognition (Bicanski &
Burgess, 2018)).

5. Consolidation extracts statistical regularities from episodic memories to inform
behaviour (Durrant et al., 2011 Richards et al., 2014]), and supports relational
inference and generalisation (Ellenbogen et al., [2007). The Tolman-Eichenbaum
machine (TEM; Whittington et al., 2020) simulates this in the domain of
multiple tasks with common transition structures (see also Kumaran et al.,
2016), while Schapiro et al. (2017)) model how both individual examples and

statistical regularities could be learned within HF.

6. Post-consolidation episodic memories are more prone to schema-based distor-
tions, in which semantic or contextual knowledge influences recall (Bartlett,
1932; Payne et al., 2009), consistent with the behaviour of generative models
(Nagy et al., 2020).

7. Neural representations in entorhinal cortex (EC) such as grid cells (Hafting
et al., 2005)) are thought to encode latent structures underlying experiences
(Constantinescu et al., [2016; Whittington et al., 2020)), and other regions of
association cortex, such as medial prefrontal cortex (mPFC), may compress

stimuli to a minimal representation (Mack et al., 2020).

8. Novelty is thought to promote encoding within HF' (Hasselmo et al., |[1996)), while
more predictable events consistent with existing schemas are consolidated more
rapidly (Tse et al., 2007). Activity in the hippocampus can reflect prediction
error or mismatch novelty (Chen et al., 2011; Kumaran & Maguire, 2006)), and
novelty is believed to affect the degree of compression of representations in
memory (Hedayati et al., |2022)) to make efficient use of limited HF capacity
(Benna & Fusi, 2021).
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9. Memory traces in hippocampus appear to involve a mixture of sensory and
conceptual features, with the latter encoded by concept cells (Quiroga, [2012)),
potentially bound together by episode-specific neurons (Kolibius et al., |[2021)).

Few models explore how this could happen.

2.1.1 Consolidation as the training of a generative model

This chapter proposes that the initial representation of memories can be used to
train a generative network, which learns to reconstruct memories by capturing the
statistical structure of experienced events (or ‘schemas’). First, the hippocampus
rapidly encodes an event, then generative networks gradually take over, after being
trained on replayed representations from the hippocampus. This makes the memory
more abstracted, more supportive of generalisation and relational inference, but
also more prone to gist-based distortion. The generative networks can be used to
reconstruct (for memory) or construct (for imagination) sensory experience, or to
support semantic memory and relational inference directly from their latent variable
representations (see Figure [2.1)).

Before consolidation, the hippocampal autoassociative network encodes the memory.
A modern Hopfield network (Ramsauer et al., |2020)) is used, which can be interpreted
such that the feature units activated by an event are bound together by a memory
unit (Krotov & Hopfield, 2020)). Teacher-student learning (Hinton et al., [2015) allows
transfer of memories from one neural network to another during consolidation (Sun
et al., [2021)). Accordingly, outputs from the autoassociative network are used to train
the generative network: random inputs to the hippocampus result in the reactivation
of memories, and this reactivation results in consolidation. After consolidation,
generative networks encode the information contained in memories. Reliance on the
generative networks increases over time as they learn to reconstruct a particular

event.

Specifically, the generative networks are implemented as variational autoencoders

(VAEs), which are autoencoders with special properties such that the most compressed
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layer represents a set of latent variables, which can be sampled from to generate
realistic new examples corresponding to the training dataset (Kingma & Welling,
2013} [2019). Latent variables can be thought of as hidden factors behind the observed
data, and directions in the latent space can correspond to meaningful transformations.
The VAE’s encoder encodes sensory experience as latent variables, while its decoder
decodes latent variables back to sensory experience. In psychological terms, after
training on a class of stimuli VAEs can reconstruct such stimuli from a partial input,
according to the schema for that class, and generate novel stimuli consistent with
the schema. The use of VAEs is illustrative, and one would expect a range of other
generative latent variable models, such as predictive coding networks (Dayan et al.,
1995; Friston, 2010; Rao & Ballard, |1999), to show similar behaviour.

Generative networks capture probability distributions underlying events, or ‘schemas’.
In other words, here ‘schemas’ are rules or priors (expected probability distributions)
for reconstructing a certain type of stimulus (e.g. the schema for an office predicts the
presence of co-occurring objects like desks and chairs, facilitating episode generation),
whereas concepts represent categories but not necessarily how to reconstruct them.
However, schemas and concepts are closely related, and their meanings can overlap,
with conflicting definitions in the psychology literature (Ghosh & Gilboa, 2014; Gilboa
& Marlatte, 2017).

During perception, the generative model provides an ongoing estimate of novelty
from its reconstruction error (a.k.a. ‘prediction error’, the difference between input
and output representations). Aspects of an event that are consistent with previous
experience (i.e. with low reconstruction error) do not need to be encoded in detail in
the autoassociative ‘teacher’ network (Bein et al., 2021} Biderman et al.,[2020; Schacter
et al., 2007; Sherman et al., 2022). Once the generative network’s reconstruction
error is sufficiently low, the hippocampal trace is unnecessary, freeing up capacity for
new encodings. However, I have not simulated decay, deletion or capacity constraints

in the autoassociative memory part of the model.
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2.1.2 Combining conceptual and sensory features in episodic

memory

Consolidation is often considered in terms of fine-grained sensory representations
updating coarse-grained conceptual representations, e.g. the sight of a particular dog
updating the concept of a dog. Modelling hippocampal representations as sensory-
like is a reasonable simplification, which I make in simulations of the ‘basic’ model
in Figure 2.1l However, memories probably bind together representations along
a spectrum from coarse-grained and conceptual to fine-grained and sensory. For
example, the hippocampal encoding of a day at the beach is likely to bind together
coarse-grained concepts like ‘beach’ and ‘sea’ along with sensory representations like
the melody of an unfamiliar song, or sight of a particular sandcastle, consistent with
the evidence for concept cells in hippocampus (Quiroga, [2012)). (This also fits with
the observation that ambiguous images ‘flip’ between interpretations in perception,
but are stable when held in memory (Chambers & Reisberg, 1985), reflecting how

the conceptual content of memories constrains recall.)

Furthermore, encoding every sensory detail in the hippocampus would be inefficient
(elements already predicted by conceptual representations being redundant); an
efficient system should take advantage of shared structure across memories to encode
only what is necessary (Barlow et al., 1961} Barlow, 1989)). Accordingly, I suggest
that predictable elements are encoded as conceptual features linked to the generative
latent variable representation, while unpredictable elements are encoded in a more

detailed and veridical form as sensory features.

Suppose someone sees an unfamiliar animal in the forest (Figure [2.2b). Much of
the event might be consistent with an existing forest schema, but the unfamiliar
animal would be novel. In the extended model (Figure [2.2] Section the
reconstruction error per element of the experience is calculated by the generative
model during perception, and elements with high reconstruction error are encoded
in the autoassociative network as sensory features, along with conceptual features

linked to the generative model’s latent variable representation. In other words, each
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pattern is split into a predictable component (approximating the generative network’s
prediction for the pattern), plus an unpredictable component (elements with high
prediction error). This produces a sparser vector than storing every element in detail,

increasing the capacity of the network (Benna & Fusi, |2021)).

2.1.3 Neural substrates of the model

Which brain regions do the components of this model represent? The autoassociative
network involves the hippocampus binding together the constituents of a memory in
the neocortex, whereas the generative network involves neocortical inputs projecting
to latent variable representations in higher association cortex, which then project
back to neocortex via the HF. The entorhinal cortex (EC), medial prefrontal cortex
(mPFC), and anterolateral temporal lobe (alTL) are all prime candidates for the site

of latent variable representations.

Firstly, EC is the main route between the hippocampus and neocortex, and where
grid cells are most often observed (Moser et al., 2008), which are thought to be a
latent variable representation of spatial or relational structure (Constantinescu et al.,
2016; Whittington et al., 2020)). Secondly, mPFC and its connections to HF play a
crucial role in episodic memory processing (Benchenane et al., 2010; Frankland &
Bontempi, 2005; Gais et al., 2007; Gilboa & Marlatte, 2017; Takashima et al., 2006}
Van Kesteren et al., [2010), are thought to encode schemas (Ghosh & Gilboa, 2014; Tse
et al., 2007), are implicated in transitive inference (Koscik & Tranel, 2012) and the
integration of memories (Spalding et al., 2018)), and perform dimensionality reduction
by compressing irrelevant features (Mack et al., [2020). Thirdly, the anterior and
lateral temporal cortices associated with semantic memory (Chan et al., 2001 and
retrograde amnesia (Bright et al., [2006)) likely contain latent variable representations
capturing semantic structure. This might correspond to the ‘anterior temporal
network’ associated with semantic dementia (Ranganath & Ritchey, [2012), while
the first network (between sensory and entorhinal cortices) might correspond to the
‘posterior medial network’ (Ranganath & Ritchey, 2012)), and to the network mapping

between visual scenes and allocentric spatial representations (Becker & Burgess, [2000;
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Figure 2.1: Architecture of the basic model. a) First the hippocampus rapidly encodes an event,
modelled as one-shot memorisation in an autoassociative network (a modern Hopfield network).
Then generative networks are trained on replayed representations from the autoassociative network,
learning to reconstruct memories by capturing the statistical structure of experienced events. b) A
more detailed schematic of the generative network to indicate the multiple layers of, and overlap
between, the encoder and decoder (where layers closer to sensory neocortex overlap more). The
generation of a sensory experience, e.g. visual imagery, requires the decoder to sensory neocortex via
HF. ¢) Random noise inputs to the modern Hopfield network (upper row) reactivate its memories
(lower row) after 10,000 items from the Shapes3D dataset are encoded, with five examples shown. d)
The generative model (a variational autoencoder) can recall images (lower row) from a partial input
(upper row), following training on 10,000 replayed memories sampled from the modern Hopfield
network. e) Episodic memory after consolidation: a partial input is mapped to latent variables whose
return projections to sensory neocortex via HF then decode these back into a sensory experience.
f) Imagination: latent variables are decoded into an experience via HF and return projections to
neocortex. g) Semantic memory: a partial input is mapped to latent variables, which capture the
‘key facts’ of the scene. The bottom rows of parts e-g) illustrate these functions in a model that has
encoded the Shapes3D dataset into latent variables [v1, ve, v3 ... v,]. (Diagrams were created using
BioRender.com.)
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Figure 2.2: Architecture of the extended model. a) Each scene is initially encoded as a combination
of predictable conceptual features related to the latent variables of the generative network and
unpredictable sensory features that were poorly predicted by the generative network. A modern
Hopfield network (in red) encodes both sensory and conceptual features (with connections to
sensory neocortex and latent variables in EC respectively), binding them together via memory units.
Memories may eventually be learned by the generative model (in blue), but consolidation can be a
prolonged process, during which time the generative network provides schemas for reconstruction
and the autoassociative network supports new or detailed information not yet captured by these
schemas. Multiple generative networks can be trained concurrently, with different networks optimised
for different tasks. This includes networks with latent variables in EC, medial prefrontal cortex
(mPFC), and anterolateral temporal lobe (alTL), each with their own semantic projections. But in
all cases, return projections to sensory neocortex are via HF. b) An illustration of encoding in the
extended model. ¢) Encoding ‘scenes’ from the Shapes3D dataset, with each ‘scene’ decomposed
into unpredicted sensory features (above) and conceptual features linked to the generative network’s
latent variables (below). d) Recalling ‘scenes’ from the Shapes3D dataset. First the input is
decomposed, then the modern Hopfield network performs pattern completion on both sensory and
conceptual features. The conceptual features (which in these simulations are simply the generative
network’s latent variables) are then decoded into a schema-based prediction, onto which any stored
sensory features are overwritten. (Diagrams were created using BioRender.com.)
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Bicanski & Burgess, |2018; Byrne et al., 2007)).

Which regions constitute the generative network’s decoder? The decoder converts
latent variable representations in higher association cortex back to sensory neocortical
representations via HF. Patients with damage to the hippocampus proper but not
EC can generate simple scenes (or fragments thereof), but an intact hippocampus is
required for more coherent imagery of complex ones (Hassabis et al., 2007)). One might
hypothesise that conceptual units in the hippocampus proper help to generate complex,
conceptually coherent scenes (perhaps through a recurrent ‘clean up’ mechanism),
but that an intact EC and its return pathway to sensory neocortex (the ventral
visual stream for images) can still decode representations to some extent in their

absence.

Multiple generative networks can be trained concurrently from a single autoassociative
network through consolidation, with different networks optimised for different tasks. In
other words, multiple networks could update their parameters to minimise prediction
error based on the same replayed memories. This could consist of a primary generative
network with latent variables in EC, plus additional parallel pathways from higher
sensory cortex to EC via latent variables in medial prefrontal cortex (mPFC) or
anterolateral temporal lobe (alTL). (Computationally, the shared connections could
be fixed as the alternative pathways are trained.) Note that in all cases, return
projections to sensory neocortex via HF are required to decode latent variables into

sensory experiences.

2.2 Methods

2.2.1 Data

In the simulations, images represent events, with the exception of the Deese-Roediger-
McDermott (Deese, 1959; Roediger & McDermott, [1995) task stimuli. The Shapes3D
dataset (Burgess & Kim, 2018)) is used throughout, except for the use of MNIST
(LeCun et al., 2010]) to explore certain distortions. Note that one modern Hopfield
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network was used per dataset, and one generative model was trained per dataset from

the corresponding modern Hopfield network’s outputs.

2.2.2 Basic model

In this model, the hippocampus rapidly encodes an event, modelled as one-shot
memorisation in an autoassociative network (a modern Hopfield network). Then
generative networks are trained on replayed representations from the autoassociative
network, learning to reconstruct memories by capturing the statistical structure of

experienced events.

The generative networks used are variational autoencoders (VAEs). As described
above, a VAE is a type of autoencoder designed in such a way that randomly sampling
values for the latent variables in the model’s ‘bottleneck’ layer generates valid stimuli
(Kingma & Welling, [2013)). Figure [C.1] adapted from Hou et al. (2017), shows how
directions in the latent space can correspond to meaningful transformations. Whilst
most diagrams show the VAE’s input and output layers in sensory neocortex as
separated (in line with conventions for visualising neural networks), it is important to
note that the input and output layers are in fact the same, as shown in Figure [2.1pb.
There may be considerable overlap between the encoder and decoder, especially closer
to sensory neocortex, but this is not modelled explicitly. The autoassociative model
is a modern Hopfield network, with the property that even random input values will
retrieve one of the stored patterns via pattern completion. Specifically, I consider
the biological interpretation of the modern Hopfield network as feature units and

memory units suggested by Krotov and Hopfield (2020)).

Consolidation is modelled as teacher-student learning, where the autoassociative
network is the ‘teacher’ and the generative network is the ‘student’, trained on
replayed representations from the ‘teacher’. Random noise (consisting of uniformly
sampled values in each channel for each pixel) is given as an input to the modern
Hopfield network, then the outputs of the network are used to train the VAE. (These

outputs represent the high-level sensory representations activated by hippocampal



CHAPTER 2. A GENERATIVE MODEL OF MEMORY 74

pattern completion, via return projections to sensory cortex.) The noise input to the
autoassociative network could potentially represent random activation during sleep
(Gonzdlez et al., 2020; Pezzulo et al., |2021; Stella et al., [2019). Attributes such as
reward salience may also influence which memories are replayed, but are not modelled
here (Igata et al., 2021)).

During the encoding state in the simulations, images are stored in a continuous
modern Hopfield network with a high inverse temperature, 3, set to 20 (higher values
of B produce attractor states corresponding to individual memories, while lower
values of 5 make metastable states more likely). Ramsauer et al. (2020) provide a
Python implementation of modern Hopfield networks that I use in my code. During
the ‘rest’ state, random noise is given as an input N times to the modern Hopfield
network, retrieving N attractor states from the network. (The distribution of retrieved
attractor states was not tested, but was approximately random, and very few spurious
attractors were observed with sufficiently high inverse temperature). In the main
simulations, 10,000 items from the Shapes3D dataset are encoded in the modern
Hopfield network, and 10,000 replayed states are used to train the VAE (i.e. N is
10,000). Rather than replaying new samples from the MHN at each epoch of the

VAE’s training, a single set of samples is used for efficiency and simplicity.

A VAE is then trained on the ‘replayed’ images from the modern Hopfield network,
using the Keras API for TensorFlow (Abadi et al., 2016)). The loss function (i.e.
the error minimised through training) is the sum of two terms, the reconstruction
error and the Kullback-Leibler divergence (Kingma & Welling, 2013)); the former
encourages accurate reconstruction, while the latter (which measures the divergence
between the latent variables and a Gaussian distribution) encourages a latent space
one can sample from. Specifically, the reconstruction loss in the model is a mean
absolute error loss. (Note that the terms reconstruction error and prediction error

are used interchangeably throughout this chapter.)

The stochastic gradient descent method used is the AMSGrad variant of the Adam
optimiser, with early stopping enabled, for a maximum of 50 epochs (where an epoch

is a complete pass through the training set). A latent variable vector length of 20,
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learning rate of 0.001 and Kullback-Leibler weighting of 1 were used in the main
results. The VAEs were not optimised for performance, as their purpose is illustrative
(more data and hyperparameter tuning would be likely to improve reconstruction
accuracy). Architectural choices within the VAE are not principled, but are based on
successful architectures for similar stimuli in the literature. See Section of the
Appendix for details of the VAE’s architecture. The VAEs are trained using gradient

descent and back-propagation as usual.

Whilst this is not modelled explicitly, once the generative network’s reconstruction
error is sufficiently low, the hippocampal trace is unnecessary. As a result it could
be ‘marked for deletion’ or overwritten in some way, freeing up capacity for new
encodings. However, I have not simulated decay, deletion or capacity constraints in
the autoassociative memory part of the model. In these simulations, the main cause

of forgetting would be interference from new memories in the generative model.

Note that throughout the simulations, the input to recall is a noisy version of the
encoded stimulus image. Specifically, noise is added by replacing a random fraction

(0.1 unless stated otherwise) of values in the image array by zero.

Whilst I use only one modality at a time (imagery for the majority of simulations, text
for the DRM task), the model is compatible with the multimodal nature of experience,
as multimodal inputs to VAEs are possible, which result in a multimodal latent space
(Khattar et al., |2019). This could reflect the multimodal nature of concept cells in
the hippocampus (Quiroga, 2012).

2.2.3 Modelling semantic memory

Semantic memory is modelled as the ability to decode latent variables into semantic

information, without the need to reconstruct the event episodically.

Decoding accuracy is measured by training a support vector machine to classify the
central object’s shape from the network’s latent variables, using 200 examples at the

end of each epoch, and measuring classification accuracy on a held-out test set.
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2.2.4 Modelling imagination and inference

In the generative network, new items can either be generated from externally specified
(or randomly sampled) latent variables (imagination), or by transforming the latent

variable representations of specific events (relational inference).

Imagination is simulated by sampling from categories in the latent space then decoding
the results. In Figure [2.3d, examples of the four different object shapes are generated
by Monte Carlo sampling for simplicity, i.e. samples from the latent space are classified
by the semantic decoding classifier, and examples that activate each category are
displayed. (Note that there are many alternative ways to do this, e.g. by extracting the
decision boundaries from the classifier and sampling within the region corresponding
to each class.) Generating imagined scenes from more naturalistic inputs, e.g. natural
language descriptions, would require a much more sophisticated text to latent space
model, but recent machine learning advances suggest this is possible (Ramesh et al.,
2022; Ramesh et al., 2021).

Inference is simulated by interpolating between the latent representations of events
(Figure 2.3¢), or by doing vector arithmetic in the latent space (Figure [2.3p). To
demonstrate interpolation, each row of Figure [2.3c shows items generated from
latent variables along a line in the latent space between two real items from the
training data. To demonstrate vector arithmetic, each equation in Figure shows
result = vector + (vectorp — vectore) (reflecting relational inference problems of
the form ‘what is to A as B is to C?’), where the result is produced by taking the
relation between vectorg and vectore, applying that to vector,, and decoding the
result. In other words, the three items on the right of each equation in Figure are
real items from the training data. Their latent variable representations are combined
as vectors according to the equation shown, giving the latent variable representation
from which the first item is generated. Thus the pair in brackets describes a relation
which is applied to the first item on the right to produce the new item on the left of

the equation.
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2.2.5 Modelling schema-based distortions

The hypothesis that items recalled by the generative network become more prototypical
can be tested with the basic model, but in this simulation the MNIST digits dataset
(LeCun et al., 2010)) is used to exemplify ten clearly defined classes of items (see
Figure ) To measure this distortion quantitatively in Figure , I calculated
the intra-class variation, defined as the median variance per pixel within each MNIST
class, before and after recall, for 5000 images from the test set. (See Section of
the Appendix for details of the model architecture.)

To visualise the explanation for this, the pixel and latent spaces before and after
recall (of 2000 images from the MNIST test set) were projected into 2D with UMAP

(Mclnnes et al., [2018)), a dimensionality reduction method, and colour-coded by class

(see Figure [2.4c-d).

2.2.6 Modelling boundary extension and contraction

Boundary extension is the tendency to remember a wider field of view than was
observed for certain stimuli (Intraub & Richardson, |1989), while boundary contraction
is the tendency to remember a narrower one (Bainbridge & Baker, 2020a). Whether
boundaries are extended or contracted seems to depend on the perceived distance
of the central object, with unusually close-up (i.e. ‘object-oriented’) views causing
boundary extension, and unusually far away (i.e. ‘scene-oriented’) views causing

boundary contraction (Bainbridge & Baker, [2020a)).

Boundary extension and contraction were tested in the basic model by giving it a
range of artificially ‘zoomed in’ or ‘zoomed out’ images, adapted from Shapes3D
scenes not seen during training, and observing the outputs. The ‘zoomed in’ view is
produced by removing n pixels from the margin. The ‘zoomed out’ view is produced
by extrapolating the pixels at the margin outwards by n additional pixels. (In both
cases the new images were then resized to the standard size.) The zoom level is the
ratio of the central object size in the output image to the size in the original image,

given as a percentage, e.g. an image with a zoom level of 80%, or a ratio of 0.8, is
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produced by adding a margin so that the object size is 80% of the original size. As
the Shapes3D images are of width and height 64, the number of pixels to add or

remove is given by margin = (32/ratio) — 32.

In Figure 2.5k, the change in object size between the noisy input and output is
estimated as follows: first the image is converted to a few colours by k-means
clustering of pixels. Then the colour of the central object is determined by finding
the predominant colour in a particular central region of the image. A 1D array of
pixels corresponding to a vertical line at the horizontal midpoint of the image is
processed to identify the fraction of pixels of the central object colour. This enables
the change in object size to be calculated, which is plotted against the degree of
‘zoom’. (For this object size estimation approach to work, I filter the Shapes3D
dataset to images where the object colour is different from both the wall and floor

colour, and additionally to cubes to minimise shadow.)

Note that the measure of boundary extension vs. contraction displayed in Figure [2.5c,
reproduced from Park et al. (2021)), is not based on the degree of distortion, but is
produced by averaging ‘closer’ vs. ‘further’ judgements of an identical stimulus image
in comparison to the remembered image. This differs from the measure in Figure [2.5c,
which instead corresponds to the drawing-based measure in Bainbridge and Baker
(2020a)), however these measures have been shown to be correlated (Bainbridge &
Baker, 2020a).

2.2.7 Extended model

The extended model is designed to capture the fact that memory traces in hippocampus
bind together a mixture of sensory and conceptual elements, with the latter encoded
by concept cells (Quiroga, |2012), and the fact that schemas shape the reconstruction
of memories even prior to consolidation, as shown by the rapid onset of schema-based
distortions (Deese, [1959; Roediger & McDermott, 1995)).

In the extended model, each scene is initially encoded as the combination of a

predictable and an unpredictable component. The predictable component consists
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of concepts captured by the latent variables of the generative network, and the
unpredictable component consists of parts of the stimuli that were poorly predicted by
the generative network. Thus the Modern Hopfield Network model has both conceptual
and sensory feature units which store the predictable and unpredictable aspects of
memory respectively. Whilst memories may eventually become fully dependent
on the generative model, consolidation can be a prolonged process, during which
the generative network provides schemas for reconstruction and the autoassociative
network supports new or detailed information not yet captured by schemas. (The VAE
trained in the basic model simulations was used in the extended model simulations
described below.)

How does encoding work in the simulations? For a new image, the prediction error of
each pixel is calculated by the VAE (simply the magnitude of the difference between
the VAE’s input and output). Those pixels with a reconstruction error above the
threshold constitute the unpredictable component, while the VAE’s latent variables
constitute the predictable component, and these components are combined into a
single vector and encoded in the modern Hopfield network. Note that when the
threshold is zero, the reconstruction is guaranteed to be perfect, but as the threshold

increases, the reconstruction decreases in accuracy.

How does recall work prior to full consolidation? After decomposing the input into
its predictable (conceptual) and unpredictable (sensory) components, as described
above, the autoassociative network can retrieve a memory. The image corresponding
to the conceptual component must then be obtained by decoding the stored latent
variables. Next, the predictable and unpredictable elements are recombined, simply by
overwriting the initial schematic reconstruction in sensory neocortex with any stored
(i.e. non-zero) sensory features in hippocampus. Figure [2.6h-b shows this process.
The lower the error threshold for encoding sensory details, the more information is

stored in the autoassociative network, reducing the reconstruction error of recall (see

also Section [2.3.4)).

How does replay work?” When the autoassociative network is given random noise,

both the unpredictable elements and the corresponding latent variables are retrieved.
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In Figure 2.6{d, the square images show the unpredictable elements of MNIST images
and the rectangles below these display the vector of latent variables. As the generative
model improves, the presence of hippocampal sensory features that no longer differ
from the initial reconstruction indicates that the hippocampal representation is no

longer needed.

Note that the latent variable representation is not stable as the generative network
learns. If some latent variables are stored in the autoassociative network while the
VAE continues to change, the quality of the VAE’s reconstruction will gradually
worsen; this is also a feature of previous models (Benna & Fusi, 2021)). Some degree
of degradation may reflect forgetting, but consolidation can be a prolonged process,
and hippocampal representations can persist in this time. Therefore it seems more
likely that concepts derived from latent variables are stored than the latent variables
themselves, promoting the stability of hippocampal representations. (For example, in
humans language provides a set of relatively persistent concepts, stabilised by the
need to communicate.) Projections from the latent variables can classify attributes
with only a small amount of training data (see Section [2.3.2)); there could be a two-
way mapping between latent variables and concepts, which supports categorisation
of incoming experience as well as semantic memory. However, for simplicity the
conceptual features are simply a one-to-one copy of latent variable representations in

these simulations.

It may also be possible to stabilise the latent variable representations by reducing
catastrophic forgetting in the generative network, e.g. by using generative as well as
hippocampal replay (Kali & Dayan, 2004; Van de Ven et al.,[2020; Van de Ven & Tolias,
2018), with the generative network trained on its own self-generated representations
in addition to new memories. Chapter Four explores this idea further. This builds on
previous research suggesting certain stages of sleep are optimised to preserve remote
memories, while other consolidate new ones (Singh et al., [2022). This could reduce
interference of new learning with remote memories in the generative network as well

as making hippocampal representations in the extended model more stable.



CHAPTER 2. A GENERATIVE MODEL OF MEMORY 81

2.2.8 Modelling schema-based distortions in the extended

model

I simulate the contextual modulation of memory as in Carmichael et al. (1932) in the
extended model by manipulating the conceptual component of an ‘event’. To model
an external conceptual context being encoded, the original image is stored in the
autoassociative network along with activation of a given concept, represented as the
latent variables for that class. Whilst in most simulations the latent variables stored
in the modern Hopfield network are simply the output of the VAE’s encoder, here an
external context activates the conceptual representation, consistent with activity in
EC, mPFC, or alTL driven by extrinsic factors.

During recall, a noisy input is processed by the generative network to produce a
predicted conceptual feature and the sensory features not predicted by the prototype
for that concept, for input to the autoassociative MHN. Pattern completion in the
MHN produces the originally encoded sensory and conceptual features, and these are

recombined to produce the final output.

The Deese-Roediger-McDermott (DRM) task is a classic way to measure gist-based
memory distortion (Deese, [1959; Roediger & McDermott, 1995). Next I demonstrate
the rapid onset of semantic intrusions in this task in the extended model, coming
about as a consequence of learning the co-occurrence statistics of words in a text
dataset representing ‘background knowledge’. This follows on from previous work

showing that VAEs produce semantic intrusions (Nagy et al., 2020)).

In brief, the DRM task involves showing participants a list of words that are semantic-
ally related to a ‘lure word’, which is not present in the list. There is a tendency
for both false recognition and false recall of the lure word. I focus on modelling the
recall task, but the same model could be extended to recognition (with recognition

memory measured by the reconstruction error of the network).

The generative network was pre-trained on a set of word lists extracted from simple

stories (Mostafazadeh et al., 2016), representing learning from replayed memories
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prior to the DRM stimuli (although replay was not simulated explicitly). Words
occurring in fewer than 0.05% or more than 10% of documents were discarded, in
order to keep the vocabulary to a manageable size of 4206 words (this meant that
some rarer words in the DRM lists were removed). The word lists were converted to
vectors of word counts of length 4206, in which the value at index ¢ of the vector for
a given list indicated the count of word ¢ in the document. As these representations
ignore word order, a sequential model is not required (however this prevents exploring

the effect of list position on recall).

Specifically, the variational autoencoder used for this simulation consists of an input
layer followed by a dropout layer projecting to 300 latent variables (sampled from
representations of the mean and log variance vectors as usual), which then project
to an output layer with a sigmoid activation, so that predictions are between zero
and one, and L1 regularisation to promote sparsity in this layer. As above, this was
implemented using the Keras API for the TensorFlow library (Abadi et al., [2016;
Chollet et al., |2015), with the VAE trained to reconstruct input vectors in the usual

way.

Following pre-training of the generative network, the system encodes the DRM stimuli,
with each of the 20 word lists represented as vectors of word counts. One important
detail was the addition of a term, given by ‘id_n’ for the nth document in the corpus,
representing the unique spatiotemporal context of each word list. Note that this is a
highly simplified representation of the spatiotemporal context (Howard & Kahana,
2002) for illustration. This enabled recall to be modelled by presenting the network

with the ‘id_.n’ term, and seeing which terms were retrieved.

In the extended model, the latent representation of the word list is encoded in
the MHN as the conceptual component, while the unique ‘id_n’ terms are encoded
veridically (as vectors of word counts of length 4226 - the original vocabulary size
plus the 20 new ‘idn’ terms - with one at ‘id_n’ and zero elsewhere). The sparse
vector representing the unexpected ‘id_n’ term is analogous to the sparse arrays of

poorly predicted pixels in the main simulations of the extended model.
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When the MHN is given ‘id.n’ as an input, it retrieves the hippocampal trace,
consisting of ‘id_n’ together with the latent representation of the word list. The latent
representation is then decoded to produce the outputs shown in Figure (a dotted
line shows a threshold for recall, interpreting the output as a probability so that

words with an output greater than 0.5 are recalled).

To test the effect of varying the number of associates, as in Robinson and Roediger
(1997), subsets of the DRM lists were encoded in the way described above. Specifically,
to test the probability of lure recall with n associates studied, n items from each
DRM list were encoded. For each list, this was repeated for 20 randomly sampled
combinations of n items. Once again recall was tested by giving the system ‘id_n’ as

an input.

2.3 Results

2.3.1 Modelling encoding and recall

Each new event is encoded as an autoassociative trace in the hippocampus, modelled
as a modern Hopfield network. Two properties of this network are particularly
important: memorisation occurs with only one exposure, and random inputs to the

network retrieve stored memories sampled from the whole set of memories (modelling
replay).

Recall is modelled as (re)constructing a scene from a partial input. Firstly, I simulate
encoding, recall, and replay in the autoassociative network. The network memorises
a set of scenes, representing events, as described above. When the network is given a
partial input, it recalls the closest stored memory. When the network is given random
noise, it retrieves stored memories, corresponding to hippocampal replay (Figure
). Secondly, I simulate recall in the generative network, following training on
reactivated memories from the autoassociative network. As Figure shows, the
generative network is able to reconstruct the original image when presented with a

partial version of an item from the training data.
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In the basic model (Figure [2.1j), the prediction error could be calculated for each
event, so that only the unpredictable events are stored in the hippocampus, as the
predictable ones can already be retrieved by the generative network (however this is
not simulated explicitly). In the extended model (Figure Section , prediction
error is calculated for each element of an event, determining which sensory details

are stored.

2.3.2 Modelling semantic memory

Existing semantic memory survives when the hippocampus is lesioned (Manns et al.,
2003; Squire et al., 2015; Vargha-Khadem et al., |1997)), and hippocampal amnesics
can describe remote memories more successfully than recent ones (Scoville & Milner,
1957 Spiers et al., |2001), even if they might not recall them ‘episodically’ (Nadel &
Moscovitch, [1997). This temporal gradient indicates that the semantic component
of memories becomes HF-independent. In the model, EC lesions impair all truly
episodic recollection, since the return projections from HF are required for generation
of sensory experiences, but here I describe how remote memories could be retrieved

in semantic form despite lesions including hippocampus and EC.

The latent variable representation of an event in the generative network encodes
the key facts about the event, and can drive semantic memory directly, without
decoding the representation back into a sensory experience (Figure ) The output
route via HF is necessary for turning latent variable representations in mPFC or
alTL into a sensory experience, but the latent variables themselves could support
semantic retrieval. Thus, when the HF (including EC) is removed, the model can
still support retrieval of semantic information (see Section for details). To
show this, I trained models to predict attributes of each image from its latent vector.
Figure shows that semantic ‘decoding accuracy’ increases as training progresses,
reflecting the learning of semantic structure as a byproduct of learning to reconstruct
the sensory input patterns. Whilst semantic memory is much more complex than
simple classification, richer ‘semantic’ outputs such as verbal descriptions can also be

decoded from latent variable representations of images (Mokady et al., 2021; Vinyals
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et al., 2015).

Notably, there is good performance with only a small amount of training data when
decoding the latent variables, compared to decoding alternative representations such
as the sensory input or intermediate layer activations, i.e. few-shot learning is possible

by making use of compressed ‘semantic’ representations. See Figure [B.2]

2.3.3 Imagination, episodic future thinking, and relational

inference

Next let us consider the generation of events that have not been experienced from
the generative network’s latent variables. Events can either be generated by external
specification of latent variables (imagination), or by transforming the latent variable
representations of other events (relational inference). The former is simulated by
sampling from categories in the latent space then decoding the results; Figure [2.3(d
shows that the generative network can ‘imagine’ new instances of each shape category
following consolidation. The latter is simulated by interpolating between the latent
representations of events (Figure [2.3f), or by doing vector arithmetic in the latent
space (Figure 2.3p). Figure shows that a spectrum of variants between two items
can be inferred, while Figure [2.3p shows that the model can infer a variant of an input
stimulus by applying a given transformation in the latent space. This demonstrates
that the model has learnt some conceptual structure to the data, supporting reasoning
tasks of the form ‘what is to A as B is to C?’; and provides a model for the flexible
recombination of memories thought to underlie episodic future thinking (Schacter

et al., 2017).

2.3.4 Modelling schema-based distortions

The schema-based distortions observed in human episodic memory increase over
time (Bartlett, |1932)) and with sleep (Payne et al., [2009), suggesting an association
with consolidation. Recall by the generative network distorts memories towards
prototypical representations. Figure -d shows that MNIST digits (LeCun et
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Figure 2.3: Learning, relational inference and imagination in the generative model. a) Recon-
struction error (red) and decoding accuracy (blue) improve during training of the generative model.
Decoding accuracy refers to performance of a support vector classifier trained to output the central
object’s shape from the latent variables, using 200 examples at the end of each epoch of generative
model training. An epoch is one presentation of the training set of 10,000 samples from the hippo-
campus. b) Relational inference as vector arithmetic in the latent space. The three items on the
right of each equation are items from the training data. Their latent variable representations are
combined as vectors according to the equation, giving the latent variable representation from which
the first item is generated. The pair in brackets describes a relation which is applied to the second
item to produce the first. In the top row, the object shape changes from cylinder to sphere. In the
second, the object shape changes from a cylinder to a cube, and the object colour from red to blue.
In the third and fourth, more complex transitions change the object colour and shape, wall colour,
and angle. ¢) Imagining new items via interpolation in latent space. Each row shows points along
a line in the latent space between two items from the training data, decoded into images by the
generative network’s decoder. d) Imagining new items from a category. Samples from each of the
shape categories of the support vector classifier in part a) are shown.
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al., 2010) ‘recalled” by a VAE become more prototypical (MNIST is used for this
because each image has a single category). Recalled pairs from the same class become
more similar, i.e. intra-class variation decreases (¢(7839) = 60.523,p < 0.001,d =
—0.684,95%CT = [0.021,0.022]). The pixel space of MNIST digits before and after
recall, and the latent space of their encodings, also show this effect. In summary, recall
with a generative network distorts stimuli towards more prototypical representations,
even when no class information is given during training. As reliance on the generative

model increases, so does the level of distortion.

Boundary extension and contraction exemplify this phenomenon. Boundary extension
is the tendency to remember a wider field of view than was observed (Intraub &
Richardson, 1989), while boundary contraction is the opposite (Bainbridge & Baker,
2020a). Unusually close-up views appear to cause boundary extension, and unusually
far away ones boundary contraction (Bainbridge & Baker, 2020a)), although this
is debated (Bainbridge & Baker, 2020bj; Intraub, [2020). I modelled this by giving
the generative network a range of new scenes which were artificially ‘zoomed in’ or
‘zoomed out’ compared to those in its training set; its reconstructions are distorted
towards the ‘typical view’ (Figure ), as in human data. Figure shows change
to the object size in memory quantitatively, mirroring the findings in Park et al.
(2021) (Figure [2.5p). Note that the measure of boundary extension vs. contraction
used by Park et al. (2021)) is produced by averaging ‘closer’ vs. ‘further’ judgements of
an identical stimulus image in comparison to the remembered image, rather than the

drawing-based measure used here, but the two measures are significantly correlated
(Bainbridge & Baker, [2020a)).

2.3.5 Combining conceptual and unpredictable sensory fea-

tures

In the extended model, memories stored in the hippocampal autoassociative network
combine conceptual features (derived from the generative network’s latent variables)
and unpredictable sensory features (those with a high reconstruction error during

encoding), see Figure . In these simulations, the conceptual features are simply
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Figure 2.4: Generative network shows schema-based distortions. a) MNIST digits (above) and the
VAE’s output for each (below). Recalled pairs from the same class become more similar. 10,000
items from the MNIST dataset were encoded in the modern Hopfield network, and 10,000 replayed
samples were used to train the VAE. b) The variation within each MNIST class is smaller for the
recalled items than for the original inputs. For each of the ten classes, the variance per pixel is
calculated across 500 images, and the 784 pixel variances are then plotted for each class, before and
after recall. In each box plot, the box gives the interquartile range, its central line gives the median,
and its whiskers extend to the 10" and 90" percentiles of the data. c-d) The pixel space of MNIST
digits (lower row) and the latent space of their encodings (upper row) show more compact clusters
for the generative network’s outputs (d) than for its inputs (c). Pixel and latent spaces are shown
projected into 2D with UMAP (McInnes et al., 2018) and colour-coded by class.
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Figure 2.5: Boundary extension and contraction. a) Examples of boundary extension and
contraction. The upper row shows the noisy input images (from a held-out test set), with an
atypically ‘zoomed out’ or ‘zoomed in’ view (by 80% and 120% on the left and right respectively)
for three original images. The lower row shows the predicted images for each input image, which
are distorted towards the ‘typical view’ in each case. b) Adapted figure from Park et al. ,
showing the distribution of boundary extension vs. contraction as a function of the viewpoint of an
image (with 900 trials per position). Example stimuli are shown below. ¢) In the model the VAE
increases the estimated size of the central object in atypically ‘zoomed out’ views compared to the
training data, and decreases it in atypically ‘zoomed in’ views, as in Park et al. . 200 images
are used at each ‘zoom level’. See Figure @o for a description of box plot elements.
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a one-to-one copy of latent variable representations. (Since latent variable repres-
entations are not stable as the generative network learns, it seems more likely that
concepts derived from latent variables are stored than the latent variables themselves,
so this is a simplification - see Section for further details.)

Figure 2.6p-b shows the stages of recall in the extended model, after encoding with
a lower or higher prediction error threshold. After decomposing the input into its
predictable (conceptual) and unpredictable (sensory) features, the autoassociative
network performs pattern completion on the combined representation. The prototyp-
ical (i.e. predicted) image corresponding to the retrieved conceptual features must
then be obtained by decoding the associated latent variable representation into an
experience, via the return projections to sensory neocortex. Next, the predictable
and unpredictable elements are recombined, simply by overwriting the prototypical
prediction with any unpredictable elements, via the connections from sensory features
to sensory neocortex. The extended model is therefore able to exploit the generative
network to reconstruct the predictable aspects of the event from its latent variables,
storing only those sensory details that were poorly predicted in the autoassociative
network. Equally, as the generative network improves, sensory features stored in hip-
pocampus may no longer differ significantly from the initial schematic reconstruction
in sensory neocortex, signalling that the hippocampal representation is no longer

needed.

2.3.6 Schema-based distortions in the extended model

The schema-based distortions shown in the basic model result from the generative
network and increase with dependence on it, but memory distortions can also have
a rapid onset (Deese, 1959; Roediger & McDermott, 1995). In the extended model,
even immediate recall involves a combination of conceptual and sensory features, and
the presence of conceptual features induces distortions prior to consolidation of that

specific memory.

In general, recall is biased towards the ‘mean’ of the class soon after encoding, due
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Figure 2.6: Retrieval dependence on reconstruction error threshold, and replay in the extended
model. a) The stages of recall are shown from left to right in each row (see Figure 2.21). Each
scene consists of a standard Shapes3D image with the addition of novel features (several white
squares overlaid on the image with varying opacity). b) Repeating this process with a higher error
threshold for encoding (with the same events and partial inputs) means fewer poorly predicted
sensory features are stored in the autoassociative modern Hopfield network (MHN), leading to more
prototypical recall with increased reconstruction error. ¢) Average reconstruction error and number
of sensory features (i.e. pixels) stored in the autoassociative MHN against the error threshold for
encoding. 100 images are tested and error bars give the standard error of the mean. d) Replay in
the extended model. The autoassociative network retrieves memories when random noise is given as
input. As above, the square images show the poorly predicted sensory features and the rectangles
below these display the latent variable representations.
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to the influence of the conceptual representations (Figure —b). This is more
pronounced when the error threshold for encoding is high, as there is more reliance
on the ‘prototypical” representations, resulting in the recall of fewer novel features.
At a lower error threshold, more sensory detail is encoded, i.e. the dimension of the
memory trace is higher. This results in a lower reconstruction error, indicating lower

distortion, but at the expense of efficiency.

External context further distorts memory. Carmichael et al. (1932)) asked participants
to reproduce ambiguous sketches. A context was established by telling the participants
that they would see images from a certain category. After a delay, drawings from
memory were distorted to look more like members of the context category. Figure
shows the result of encoding the same ambiguous image with two different externally
provided concepts (a cube in the upper row, a sphere in the lower row), represented by
the latent variables for each concept, as opposed to the latent variables predicted by
the image itself as in Figures [2.6p-b. During recall, the encoded concept is retrieved
in the autoassociative network, determining the prototypical scene reconstructed by

the generative network. This biases recall towards the class provided as context,
mirroring Figure 2.7h.

I also simulate the Deese-Roediger-McDermott (DRM) task (Deese, [1959; Roediger
& McDermott, (1995) in the extended model to demonstrate its applicability to
non-image stimuli. In the DRM task participants are shown lists of words that are
semantically related to ‘lure words’ not present in the list; there is a robust finding
that false recognition and recall of the lure words occur (Deese, [1959; Roediger
& McDermott, 1995). In the extended model, gist-based semantic intrusions arise
as a consequence of learning the co-occurrence statistics of words. First the VAE
is trained to reconstruct the sets of words in simple stories (Mostafazadeh et al.,
2016)) converted to vectors of word counts, representing background knowledge. The
system then encodes the experimental lists as the combination of an ‘id_n’ term
capturing unique spatiotemporal context, and the VAE’s latent representation of
each word list (respectively analogous to the stimulus-unique pixels and the VAE’s

latent representation of each image in Figure [2.6). As in the human data, lure
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words are often but not always recalled when the system is presented with ‘id_n’
(Figure [2.8p), since the latent variable representations which generate the words in
the list also tend to generate the lure word. The system also forgets some words,
and produces additional semantic intrusions, e.g. ‘vet’ in the case of the ‘doctor’
list. In addition the chance of recalling the lure word is higher for longer lists
(rs(10) = 0.998, p < 0.001, 95%CT = [0.982,1.000]), as in human data from Robinson

and Roediger (1997)), as more related words provide a stronger ‘prior’ for the lure

(Figure 2.8p).

2.3.7 Modelling brain damage

Recent episodic memory is impaired following damage to the hippocampal formation
(HF), whereas semantic memory — including the semantic content of remote episodes
- appears relatively spared. In the model the semantic form of a consolidated memory
survives damage to HF thanks to latent variable representations in mPFC or alTL
(even if those in EC are lesioned); Figure demonstrates how semantic recall
performance improves with the age of a memory over the course of consolidation,
reflecting the temporal gradient of retrograde amnesia (see Section . However
these semantic ‘facts’ cannot be used to generate an experience episodically without
the generative network’s decoder, in agreement with multiple trace theory (Nadel &
Moscovitch, [1997)).

The extent of retrograde amnesia can vary greatly depending, in part, on which
regions of the HF are damaged (Cipolotti et al., |2001; Zola-Morgan et al., [1986)).
The dissociation of retrograde and anterograde amnesia in some cases suggests
that the circuits for encoding memories and the circuits for recalling them via
the HF only overlap partially (Zola-Morgan et al., |1986)). For example, if the
autoassociative network is damaged but not the generative network’s decoder, the
generative network can still perform reconstruction of fully consolidated memories.
This could explain varying reports of the gradient of retrograde amnesia when assessing
episodic recollection (as opposed to semantic memory), if the generative network’s

decoder is intact in patients showing spared episodic recollection of early memories
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Figure 2.7: Schema-based distortions: effects of conceptual context in the extended model. a)
Adapted figure from Carmichael et al. showing that recall of an ambiguous item (Stimulus
figure, centre) depends on its context at encoding (Word from list 1, left; or list 2, right), as shown
by drawing from memory (Reproduced figure, far left and far right). b) Memory distortions in
the extended model, when the original scene (containing an ambiguous blurred shape) is encoded
with a given concept (cube, above; sphere, below), represented by the latent variables for that
class. Then a partial input is processed by the generative network to produce predicted conceptual
features and the sensory features not predicted by the prototype for that concept (in this case a
white square), for input to the autoassociative modern Hopfield network (MHN). However, pattern
completion in the MHN reproduces the originally encoded sensory and conceptual features (cube,
above; sphere, below), and these are recombined to produce the final output, which is distorted
towards the encoded conceptual context.
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Figure 2.8: Modelling the Deese-Roediger-McDermott task. a) First the VAE is trained to recon-
struct simple stories (Mostafazadeh et al., converted to vectors of word counts, representing
background knowledge. The system then encodes the lists as the combination of an ‘id_n’ term
capturing unique spatiotemporal context, and the VAE’s latent variable representation of the word
list. In each plot, recalled stimuli when the system is presented with ‘id_n’ are shown, with output
scores treated as probabilities so that words with a score of above 0.5 are recalled. Words from
the stimulus list are shown in blue, and lures in red. See Figure for results for the remaining
DRM lists. b) The chance of recalling the lure word is higher when longer lists are encoded (blue).
Each measurement is averaged across 400 trials (20 random subsets of each of the 20 DRM lists),
and error bars give the standard error of the mean. This qualitatively resembles human data from

Robinson and Roediger (1997) (grey).
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(Squire et al., [2015). Note that the location of damage within the generative network’s
decoder also affects the resulting deficit in the model. In particular, patients with
damage restricted to the hippocampus proper can (re)construct simple scenes but

not more complex ones (Hassabis et al., 2007)).

The model also shows the characteristic anterograde amnesia after hippocampal
damage, as the hippocampus is required to initially bind features together and
support off-line training of the generative model. Anterograde semantic learning
would also be impaired by hippocampal damage (as the generative network is trained
by hippocampal replay). Whilst hippocampal replay need not be the only mechanism
for schema acquisition, it would likely be much slower without the benefit of replay.
However, semantic learning over short timescales may be relatively unimpaired, as it

is less dependent on extracting regularities from long-term memory (Knowlton et al.,
1994).

In semantic dementia, semantic memory is impaired, and remote episodic memory is
impaired more than recent episodic memory (Hodges & Graham, [2001). This would
be consistent with lesions to the generative network, as recent memories can rely more
on the hippocampal autoassociative network. However the exact effects would depend
on the distribution of damage across the various potential generative networks in EC,
mPFC and alTL. Of these, the alTL network is associated with semantic dementia,
and the posterior medial network (corresponding to the generative network between
sensory areas and EC) with Alzheimer’s disease (Ranganath & Ritchey, 2012).

Finally, neuropsychological evidence suggests a distinction between familiarity and
recollection, and furthermore a partial dissociation between different tests of famili-
arity; patients with selective hippocampal damage can exhibit recognition memory
deficits in a simple ‘yes/no’ task with similar foils, but not in a ‘forced choice’ variant
involving choosing the more familiar stimulus from a set (Migo et al., 2009)). This
is consistent with the idea that lower prediction error in the neocortical generative
network indicates familiarity, but retrieval of unique details from the hippocampus is

required for more definitive recognition memory.
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2.4 Discussion

This chapter proposes a model of systems consolidation as the training of a generative
neural network, which learns to support episodic memory, and also imagination,
semantic memory and inference. This occurs through teacher-student learning. The
hippocampal ‘teacher’ rapidly encodes an event, which may combine unpredictable
sensory elements (with connections to and from sensory cortex) and predictable
conceptual elements (with connections to and from latent variable representations in
the generative network). After exposure to replayed representations from the ‘teacher’,
the generative ‘student’ network supports reconstruction of events (in conjunction

with stored hippocampal details until memories are fully consolidated).

In contrast to the relatively veridical initial encoding, the generative model learns
to capture the probability distributions underlying experiences, or ‘schemas’. This
enables not just efficient recall, reconstructing memories without the need to store them
individually, but also imagination (by sampling from the latent variable distributions)
and inference (by using the learned statistics of experience to predict the values of
unseen variables). In addition, semantic memory, i.e. factual knowledge, develops as a
byproduct of learning to predict sensory experience. As the generative model becomes
more accurate, the need to store and retrieve unpredicted details in hippocampus
reduces (producing a gradient of retrograde amnesia in cases of hippocampal damage).
However, the generative network necessarily introduces distortion compared to the
initial memory system. Multiple generative networks can be trained in parallel, and
this may include networks with latent variables in EC, mPFC, and alTL.

We can now compare the model’s performance to the list of key findings from the

introduction:

1. Gradual consolidation follows one-shot encoding: A memory is encoded in the
hippocampal ‘teacher’ network after a single exposure, and transferred to the

generative ‘student’ network after being replayed repeatedly (see Figure [2.1-d).

2. Semantic memory becomes hippocampus-independent: The latent variable rep-
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resentations learned by the generative networks constitute the ‘key facts’ of an

episode, supporting semantic memory (see Figure [2.3h).

3. Episodic memory remains hippocampus-dependent: Return projections via HF
to sensory neocortex are required to decode the latent variable representations
into a sensory experience (see Figure 2.1). (EC is required for even simple
(re)construction, while the hippocampus proper helps to generate complex,
conceptually coherent scenes, and retrieves unpredictable details which are not
yet consolidated into the generative network - see Section M)

4. Shared substrate for episode generation: Generative models are a common
mechanism for episode generation. Familiar scenes can be reconstructed and
new ones can be generated by sampling or transforming existing latent vari-
able representations (Figure [2.3p-d), providing a model for imagination, scene

construction and episodic future thinking.

5. Consolidation promotes inference and generalisation: Relational inference cor-

responds to vector arithmetic applied to the generative network’s latent variables
(Figure 2.3p).
6. Episodic memories are distorted: 1 show how memory distortions arise from

the generative network (Figures , , and . This extends the model

of Nagy et al. (2020) to relate memory distortion to consolidation.

7. Association cortex encodes latent structure: Latent variable representations in
EC, mPFC, and alTL provide schemas for episodic recollection and imagination

(via HF) and for semantic retrieval and inference.

8. Prediction error affects memory processing: The generative network is constantly
calculating the reconstruction error of experiences (Chen et al., [2011; Kumaran
& Maguire, [2006)). Events that are consistent with the existing generative model

require less encoding in the autoassociative hippocampal network (see Figure
73).

9. Episodic memories include conceptual features: When an experience combines a
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mixture of familiar and unfamiliar elements, both concepts and poorly-predicted
sensory elements are stored in hippocampus via association to a specific memory

unit.

This model can be seen as an update to the complementary learning systems (CLS;
McClelland et al., 1995) framework to better account for points 3-9 above, reconciling
the development of semantic representations in neocortex (as per CLS) with the
continued dependence on the hippocampal formation for episodic recall (as per
multiple trace theory; Nadel & Moscovitch, [1997). Furthermore, it provides a unified
view of episode generation, of how episodic memories change over time and exhibit
distortions, and of how semantic and episodic information are combined in memory.
I build on previous work exploring the role of generative networks in consolidation
(Kéli & Dayan, 2000} 2002)), as models of the hippocampal formation (Nagy et al.,
2020; Van de Ven et al., [2020; Whittington et al., [2020)), as priors for episodic
memory (Fayyaz et al., 2022), and as models of spatial cognition (Bicanski & Burgess,
2018).

A key aspect of the model is that multiple generative networks can be trained con-
currently from a single autoassociative network (Figure ), and may be optimised
for different tasks. Thus, the latent representations in mPFC and alTL may be more
closely linked to value or language than those in EC (Lin et al., 2016; Moscovitch &
Melo, 1997). These differences may arise from differences in network structure (e.g.
the degree of compression), or from additional training objectives that shape their
representations (Gluck & Myers, [1993)). (For instance, the generative network with
latent variables in mPFC might be trained to predict task-relevant value in addition
to the EC representations.) The generative networks might be expected to overlap
more closer to their sensory inputs/outputs, where general-purpose features are more
useful, and diverge as the representations become more abstract, or task-specific if
there are additional training objectives (Yosinski et al., |2015). This may involve
a primary VAE with latent variables in EC, with additional pathways from higher

sensory cortex to EC routed via latent variables in mPFC or alTL.

This model raises some fundamental questions: Does true episodic memory require
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event-unique detail, and does this require the hippocampus? Or can prototypical
predictions qualify as memory rather than imagination? In the model, event-unique
details are initially provided by the hippocampus, but can also be provided by the
generative network. For example, if you know that someone attended your 8th
birthday party and gave you a particular gift, these personal semantic facts need not
be hippocampal-dependent, but could generate a scene with the right event-specific
details, which would seem like episodic memory. The increasingly sophisticated
generation of images from text using generative models (Ramesh et al., 2022) suggests

that episode construction from semantic facts is computationally plausible.

Episodic memories are defined by their unique spatiotemporal context (Tulving, [1985)).
In the model, spatial and temporal context correspond to conceptual features captured
by place (Ekstrom et al., 2005; O’Keefe & Dostrovsky, [1971)) or time (Eichenbaum,
2014; Umbach et al., [2020) cells in hippocampus and might be linked to latent variable
representations formed in EC, such as grid cells in medial EC, which form an efficient
basis for locations in real (Dordek et al., 2016, Stachenfeld et al., 2017; Whittington
et al., 2020) or cognitive spaces (Constantinescu et al., 2016; Whittington et al.,
2020)), or temporal context representations in lateral EC (Bright et al., [2020; Tsao
et al., |2018)). Events with specific spatial and temporal context can be generated
from these latent variable representations, as has been modelled in detail for space
(Becker & Burgess, [2000; Bicanski & Burgess, 2018; Byrne et al., 2007).

More generally, this work builds on the spatial cognition literature, in which place and
head direction cells act as latent variables in a generative model (Becker & Burgess,
2000; Bicanski & Burgess, 2018; Byrne et al., |2007), allowing the generation of a
scene from a specific viewpoint. Becker and Burgess (2000)), Bicanski and Burgess
(2018) and Byrne et al. (2007) explore how egocentric sensory representations could be
transformed into allocentric latent variables prior to storage in the medial temporal
lobe, and conversely how egocentric representations could be reconstructed from
allocentric ones to support imagery. The latent representations learned through
consolidation in the model correspond loosely to the allocentric representations, and

the sensory representations produced by HF to the egocentric ones; only egocentric and
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sensory representations are directly experienced, whereas allocentric and semantic
representations are useful abstractions which can also be exploited for efficient

hippocampal encoding.

The model simplifies the true nature of mnemonic processing in several ways. Firstly,
episodic memories contain important sequential structure, not modelled by the encod-
ing and reconstruction of simple scenes. Chapter Three expands the model’s scope
from ‘snapshots’ to ‘sequences’ of experience. Secondly, considering consolidation
as a continual lifelong process, rather than during encoding of a single dataset, in-
troduces new complexities, in particular the prevention of catastrophic forgetting of
already consolidated memories as new memories are assimilated into the generative
network. Chapter Four extends the model to address this. Thirdly, the interaction of
sensory and conceptual features in hippocampus and latent variables in EC during
retrieval could be more complex, with each type of representation contributing to
pattern completion of the other as per interactions between items and contextual
representations in the Temporal Context Model (Howard & Kahana, |2002), and might
iterate over retrievals from both hippocampal and generative networks (Kumaran
et al., 2016). Fourthly, the model distinguishes between ‘sensory’ and ‘conceptual’
representations in hippocampus, respectively linked to the sensory neocortex at the
input /output of the generative network and to the latent variable layer in the middle.
In reality a gradient of levels of representation in hippocampus is more likely, from
detailed sensory representations to coarse-grained conceptual ones, respectively linked
to lower or higher neocortical areas (Moscovitch et al., 2016]), and might map onto the
observed functional gradients along the longitudinal axis of the hippocampus (Strange
et al., 2014). Fifthly, the generative network uses back-propagation of the prediction
error between output and input patterns to learn. Generative networks with more
plausible (if less efficient) learning rules exist (Dayan et al., 1995; Friston, 2010; Rao
& Ballard, [1999), which have the advantage of producing a prediction error signal
at each layer (between top-down prediction and bottom-up recognition), potentially
allowing learning of concepts and exceptions at all levels of description. Finally, I

model semantic memory as prediction of categorical information for an ‘event’, but
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future work should model more complex semantic knowledge, e.g. by decoding lan-
guage from latent representations of multimodal stimuli (Mokady et al., 2021; Vinyals
et al., 2015). In particular the relationship between semantic memory for specific

‘events’ and the broader ‘web’ of general knowledge should be considered.

This model makes testable predictions. Firstly, if participants learn stimuli generated
from known latent variables, it predicts that these specific latent variable represent-
ations should develop in association cortex over time (and that this representation
would support, e.g., vector arithmetic and interpolation). This could be tested by
representational similarity analysis, which should reveal a more conceptual similarity
structure developing in association cortex through consolidation, as opposed to a
similarity structure reflecting the sensory stimuli in earlier sensory cortices. If the
stimuli also contained slight variation, i.e. they were not entirely described by the
latent variables, the development of a latent variable representation should be correl-
ated with gist-based distortions in memory, and anti-correlated with hippocampal

processing of unpredictable elements.

Secondly, the model makes multiple predictions about the effects of brain damage.
Just as boundary extension is reduced in patients with damage to HF (Mullally et al.,
2012)) or vmPFC (De Luca et al., 2018)), the model predicts that other biases towards
the ‘canonical view” would be attenuated in such patients; for example, healthy
controls would distort images with an atypical viewing angle towards a more typical
angle in memory, but this would be reduced in, e.g., hippocampal patients. Similarly,
ambiguous images such as the duck/rabbit drawing ‘flip’ between interpretations
in perception, but are stable when held in imagery (Chambers & Reisberg, [1985)),
presumably due to maintained hippocampal conceptual representations. The model
predicts that this conceptual stability in imagery would also be reduced in such
patients. This could also extend to non-scene stimuli: if the Carmichael et al. (1932)
task were tested with both healthy controls and patients with damage to the generative
decoder, one would expect reduced contextual distortion in the latter. Furthermore,
patients with an inaccurate generative model, e.g. due to semantic dementia, might

rely more on sensory features to compensate. (Note that the pattern of deficits would
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depend on both the nature of the priors encoded in the generative network and
the error threshold for encoding. In some cases damage to the generative network
could produce atypical ‘priors’ rather than suppressing them. Thus, if the generative
network is inaccurate but the error threshold for encoding is high, atypical distortions

will be observed, rather than a reduction in conceptual distortions.)

Thirdly, the model suggests that the error threshold for encoding could vary depending
on the importance of the stimuli, or the amount of attentional resource available.
For example, emotional salience could lower this threshold, with traumatic memories
being encoded in greater sensory detail and with less contextual coherence (Bisby
et al., 2020; Van Der Kolk et al., [1997)). Equally, conditions such as autism spectrum
disorder, which are potentially attributable to hypo-priors (Pellicano & Burr, 2012),
might be associated with a lower prediction error threshold for veridical storage
(and thus reduced conceptual influence on memory, and increased sensory detail).
In addition, reality monitoring deficits would change the perceived prediction error
relative to reality, leading to atypical memory storage (e.g. a reduced ability to

compensate for prediction errors by storing sensory details).

Fourthly, biological intelligence excels at generalising from only a small number of
examples. The model predicts that learning to generalise rapidly benefits from having
a generative model that can create new examples, e.g. by inferring variants as in
Figure (see also Barry & Love, [2021). Finally, the model suggests a link between
latent spaces and cognitive maps (Behrens et al., 2018). For example, one might
predict that the position of a memory in latent space is reflected in place and grid
cell firing, as observed for other conceptual representations (Behrens et al., [2018;
Constantinescu et al., 2016; Nieh et al., 2021]).

In summary, the proposed model takes inspiration from recent advances in machine
learning to capture many of the intriguing phenomena associated with episodic
memory, its (re)constructive nature, its relationship to schemas, and consolidation,

as well as aspects of imagination, inference and semantic memory.



Chapter 3

Learning to construct sequential

events

3.1 Introduction

Memories are not instantaneous snapshots, but are sequential in nature. Here I extend
the account of consolidation as teacher-student training of generative networks to
sequential stimuli. As in the ‘static model” discussed so far, the hippocampal network
is the ‘teacher’ training neocortical generative ‘students’ through replay. But here
the generative networks are trained not only to reconstruct their own inputs, but to

predict the next input in a sequence (Radford et al., 2019)).

The ‘sequential model” allows us to explore a broader range of phenomena than
the static model. Whilst simple inference (inferring novel combinations of learned
concepts) was demonstrated with the static model, more sophisticated structural
inference involves sequences of relationships. In addition, planning involves sequences
of states, actions, and rewards, and navigation involves spatiotemporal sequences.
The sequential model therefore allows us to investigate how generative networks
trained through consolidation might support structural inference, planning, and

navigation.

104
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Furthermore, in humans language and memory are inextricably linked, with many
studies of memory involving narratives (Bartlett, 1932; Raykov et al., [2023; Zwaan
& Radvansky, 1998). Until recently, the tools to simulate memory for narratives
have not been mature enough to explore these experimental data computationally.
However the arrival of transformer-based neural networks like GPT-2 (Radford et al.,
2019), which is used to represent the neocortical generative network, enables the

sequential model to be applied to text.

By representing a range of stimuli as sequences, I show that the sequential model
is capable of classic statistical learning (Durrant et al., 2011) and spatial / rela-
tional inference (Whittington et al., 2020) tasks, displays similar gist-based memory
distortions to those observed in human data (Bartlett, 1932; Raykov et al., [2023),
and learns to support model-based planning over time (as in Vikbladh et al., 2024)).
Finally, I sketch out how the hippocampal ‘memory bank’ and neocortical generative
network could work together to enable problem-solving from memory, inspired by the
‘retrieval augmented generation’ approach for combining large language models with

non-parametric memory (Lewis et al., |2020)).

3.1.1 Generative models for sequences

I begin by describing the generative network component of the sequential model.
GPT-2 (Radford et al., 2019) is a deep neural network which can be trained on
arbitrary linguistic or non-linguistic sequences; the objective is simply to predict the
next item in sequences drawn from the training data. As with the VAEs in Chapter
Two, training therefore involves learning to reconstruct inputs in a self-supervised

manner.

GPT-2 is built on the transformer architecture, which uses the attention mechanism
to weight the importance of items in a sequence relative to a given item, allowing
the model to capture complex interdependencies (Vaswani et al., [2017). In short, the
attention mechanism works as follows: a query, a key, and a value vector are produced

for each element in the sequence by learned weights. For a given element, the model
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computes a set of attention scores which determine how much attention should be
paid to each element of the input sequence when representing this element. This is
achieved by taking the dot products of the given element’s query vector with the key
vectors for each element. The final output is the sum of the value vectors for each
element weighted by the corresponding attention scores (with some normalisation),
allowing the model to aggregate information from the most relevant parts of the
input. This describes a single ‘attention head’, but GPT-2’s architecture features
multiple attention blocks, each with multiple attention heads, which tend to develop
different ‘specialisms’ through training. See Section of the Appendix for further

mathematical details on attention.

The primary goal during training is to adjust the model’s parameters through max-
imum likelihood estimation, so that the probability it predicts for the true next item
in each sequence, based on the items so far, is as high as possible. In other words, the
network’s weights are updated to predict the probability distribution of the next item
as accurately as possible. The training data for the original GPT-2 model is WebText,
a dataset of online content scraped from outbound Reddit links and further processed

to ensure quality. See Section for more detail on the training procedure.

Once the model is trained, it can continue from an input sequence, or generate a new
sequence from scratch, by iteratively predicting the next item from the items so far.
(The input sequence on which the output is conditioned is known as a ‘prompt’.)
That is, it predicts the probability distribution across all items given the items so far,
and one can either sample from this distribution or simply take the most probable
item at each step. The equation below gives the probability of a sequence x as a

product of conditional probabilities of its items:

n

p(z) = Hp(sn|51, ey Sn1)

i=1

When sampling from the learned probability distribution, a key determinant of

the model’s behaviour is the temperature. The temperature parameter modifies
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the probability distribution for the next token: a lower temperature makes the
model behave more like greedy decoding, favouring high probability items, while a
higher temperature encourages more diverse outputs by flattening the probability
distribution. This gives lower probability items a better chance of being selected,
producing more ‘imaginative’ outputs, while for models trained on language a high
enough temperature produces nonsensical text. (See Section for discussion of

more complex approaches to generating sequences from a trained model.)

To be more precise, the equation below describes the ‘softmax with temperature’

function that is applied to the vector of scores for each token. The softmax function
transforms this vector of scores into a vector of probabilities. As the numerator is
an exponential, a large temperature T flattens the distribution, whereas T close to
zero approximates a ‘one-hot’ vector, with a probability of one for the most likely
token. The denominator normalises each element in the vector by the sum of all the
exponentials, ensuring the probabilities add up to one:
o(s1) = —
Z?:l er
An obvious question is whether models like GPT-2 can really capture specifics as well
as generalities. A great deal of research (predominantly looking at this question from
the perspective of information security) has demonstrated the tendency of language
models to memorise their training data. Carlini et al. (2022) shown that the more
parameters a model has, the more likely it is to memorise sequences it was trained
on. The likelihood of memorisation also increases with the number of occurrences
of the sequence in the training dataset, and the amount of training. In addition,
memorised data can be retrieved more easily when the model is ‘prompted’ with
(i.e. conditioned on) a longer cue. The propensity of these models to memorise their
training data hints that they may be able to capture episodic specifics as well as

semantic generalities.
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3.1.2 Modelling sequence memory in the hippocampus

The mechanisms by which sequences are stored as traces in the initial hippocampal
network are not the focus of this chapter, and the hippocampus is not simulated
explicitly in the subsequent results. However, I now outline how the hippocampus
might store sequences autoassociatively (or heteroassociatively) in the sequential

model, in a way that supports replay and recall prior to consolidation.

In the static model, a modern Hopfield network (MHN; Ramsauer et al., 2020)
represents the hippocampus, interpreted such that the feature units activated by
an event are bound together by a memory unit (Krotov & Hopfield, 2020). In the
sequential model, this could be adapted to store sequences as follows. Let us consider
sequences represented as strings of characters or symbols, which can capture language,
spatial trajectories, transitions in a graph, stimuli in sequential learning tasks, and

more.

As discussed in Chapter One, Millidge et al. (2022) give a unifying account of
how neural network models of associative memory such as MHNs operate, which
helps to explain the extension to sequences. They develop the biologically plausible
modern Hopfield network (Krotov & Hopfield, [2016)) into ‘a general framework for
understanding the operation of ... memory networks as a sequence of three operations:
similarity, separation, and projection’, which they term ‘universal Hopfield networks’
(Millidge et al., [2022, Abstract). They observe that any of these models can be made
asymmetric or heteroassociative rather than autoassociative, if the projections from
feature units to memory units capture the current state, but the projections from
memory units back to feature units are different (for sequences, these projection
weights would correspond to the ‘next state’). Then one state retrieves the next,

rather than each state retrieving a pattern-completed version of itself.

The modern continuous asymmetric Hopfield network (MCAHN) converts the MHN
to work for sequences, consistent with the framework above (Chaudhry et al., |[2023).
However there is a problem when you try to apply this naively to certain sequences,
as the MCAHN is by default a ‘Markov chain” model of sequential memory. Whilst it
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works for sequences in which items are unique, it doesn’t work for, e.g., sentences
without modification, as it cannot accurately remember sequences with repeated
items; see Figure 5a of Tang et al. (2023). When an item is repeated in a sequence,
Tang et al. (2023) show that a MCAHN has trouble recalling the next item, instead

producing a composite.

Tang et al. (2023)) introduce the temporal predictive coding network (tPC), a more
complex network learnt by gradient descent, based on the intuition that higher layers
minimize prediction error at lower layers (Salvatori et al., 2021)). (A drawback of
the tPC is that the model must be ‘presented with the sequence for multiple epochs’
until convergence, so it is no longer capable of one-shot learning, which arguably
undermines its plausibility as a model of hippocampal encoding.) They show that
the one-layer tPC also has the MCAHN’s issue with repeated items, but suggest the
two-layer tPC to resolve this. As Tang et al. (2023)) show in Figure 5d of their paper,
the hidden layer represents an item’s position in the sequence so the next item can

be recalled correctly.

Alternatively, one could combine the concept of the modern asymmetric Hopfield
network (with return projections from memory to feature units representing the
next state) with a state representation that captures the history. This is based on
previous work involving the role of temporal context in memory (Burgess & Hitch,
1999; Howard & Kahana, 2002)). Consider the example of encoding sentences, i.e.
sequences of characters. Suppose each state is a vector of length equal to the number
of symbols, consisting of one at the index of the current symbol, plus the previous
state multiplied by some decay factor. Then if we want to remember the string
‘abc’, the letter ‘a’ is represented as (1, 0,0 ...), ‘b’ as (0.5, 1,0 ...), ‘¢’ as (0.25,
0.5, 1...), and so on (with a decay factor of 0.5, and ignoring normalisation). See
Figure for further details. This has the benefit of still being compatible with
one-shot learning, although the memory capacity may not scale as well as the more
complex predictive coding model approach. Initial testing suggests that this model
can encode and retrieve sentences (although retrieval performance goes down with
sentence length). See Section of the Appendix for further details.
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This simple model clearly has some limitations. For example, it suggests that when a
state from a certain point in an encoded sequence triggers recall, states preceding that
point cannot be recalled (only the subsequent states). This is clearly not the case, so
a model of sequence memory that can only retrieve states in one temporal direction
is unsatisfactory. Also, if states involve vectors of continuous rather than binary
variables, the decaying activity from previous states could be hard to distinguish

from the current state, so a more complex solution could be required.

In addition, the sequences consist of a single symbol at any moment in time, but other
sequences like frames in a video consist of complex representations at each time step.
The Hopfield network variant could perhaps have a combination of autoassociative and
heteroassociative connectivity to account for this, with autoassociative connections
reconstructing the current time step, and heteroassociative connections activating
the next (see Sompolinsky & Kanter, |1986]).

3.1.3 Event perception and segmentation

Whilst time is continuous, humans experience it as discretised into events (Newtson,
1973; Newtson & Engquist, [1976), a process known as event segmentation. Event
segmentation occurs at multiple levels of granularity, with coarser-grained segments
made up of finer-grained ones in a hierarchical structure (Zacks, Tversky et al., 2001)).
Distinctive neural activity is observed at event boundaries, which is predictive of
subsequent memory performance (Baldassano et al., 2017; Ben-Yakov & Dudai, 2011).
In an fMRI study involving videos of everyday activities, Zacks, Braver et al. (2001)
observed cortical activity at event boundaries even in passive viewing, suggesting
that event segmentation is an automatic aspect of perception. Activity began to
‘ramp up’ some time before the boundary, and was stronger for more coarse-grained

boundaries.

Zacks et al. (2007) propose a theory of how event segmentation occurs, in which event
models in working memory represent the current situation, based on both bottom-up

inputs from sensory data and top-down inputs from schemas. These event models
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Figure 3.1: Using asymmetric modern Hopfield networks to model the hippocampus. a) In
asymmetric versions of modern Hopfield networks, the weights between feature and memory units
differ, as visualised from the perspective of Krotov and Hopfield . b) A sequence of arbitrary
symbols, e.g. ‘abc’, is represented as a sequence of vectors over the feature units, where each vector
is the sum of the current state plus the decay rate (here set to 0.9) times the previous state. For
each state, the return connections from memory units to feature units encode the next state.
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‘bias processing in the perceptual stream’ and are ‘robust to transient variability
in the sensory input’. According to this theory, ‘an error detection mechanism ...
compares the perceptual processing stream’s predictions to what actually happens
in the world’ (Architecture and Principles section). The event model is updated
when the prediction error is above some threshold. Importantly, high prediction error
leads to the flow of sensory inputs into the event model, while low prediction error
suppresses sensory inputs (i.e. an ‘error-based gating’ mechanism). Zacks et al. (2007)
suggest that event segmentation occurs ‘simultaneously on a range of timescales,
spanning from a few seconds to tens of minutes’ (Multiple Timescales section). The
Structured Event Memory model (Franklin et al., 2020) agrees on the importance of

prediction error for segmenting sequences of scenes into events.

Event segmentation affects memory, with the order of items within an event (or
context) remembered better than items spanning multiple events (DuBrow & Davachi,
2013)). In addition, it has been shown that passing through a doorway can cause
forgetting (the ‘doorway effect’), even in virtual environments (Horner et al., 2016}
Radvansky & Copeland, 2006). One explanation is that crossing spatial boundaries
triggers a shift in the event / situation model, causing people to forget information
associated with a previous spatial context (Radvansky & Copeland, 2006). In
other words, this phenomenon suggests that spatial boundaries can serve as event

boundaries.

Whilst the sequences used in the subsequent simulations are ‘pre-segmented’ for
simplicity, the role of prediction error in event segmentation theory is potentially
consistent with the sequential model. The generative network can provide an ongoing
measure of ‘surprise’ during perception (Franklin et al., 2020), e.g. as quantified by
perplexity (Radford et al., [2019).

3.1.4 Planning and memory

I also explore how the generative network trained on memories can simulate future

events to support behaviour, such as when planning how to achieve a goal.
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Planning involves coming up with a goal-oriented sequence of actions, e.g. planning a
route to a certain location. As achieving a goal can be described in terms of maximising
some reward, the study of planning overlaps with the study of reinforcement learning, a
subfield of machine learning concerned with how agents take actions in an environment
to maximise cumulative reward. Planning requires modelling of states, actions, and
rewards as sequences, so the sequential model allows us to consider how the generative

network might support planning.

Two concepts from reinforcement learning (RL) commonly applied to the study of
planning are ‘model-free’ and ‘model-based’ learning (Daw et al., 2011)). As the name
suggests, model-free RL involves learning how to act without constructing a model of
the task or environment. Rather than learning the ‘transition structure’ of the world,
i.e. the probabilities of states given preceding states / actions, it learns associations
between actions and rewards more directly. Q-learning (Watkins & Dayan, 1992) is
one example of model-free RL; after learning a ‘table’ of Q-values for combinations of
states and actions, one simply picks the next action with the highest Q-value for that

state.

In contrast, model-based RL involves creating a model of the environment, allowing
the simulation of events to guide decision-making. In a neuroscience context, the
model of transition structure learned through model-based RL is often described
in terms of a ‘cognitive map’ (Tolman, |1948). This enables greater behavioural
flexibility, particularly when extrapolating behaviour to new situations, but comes at
the expense of efficiency, as model-based planning requires a new ‘rollout’ of states

each time.

There are alternative algorithms, e.g. the successor representation (SR) approach
involves a compromise between model-based and model-free learning which is fast but
also semi-flexible (Dayan, [1993)). Specifically the SR approach caches the expected
future occupancy of states, i.e. rather than storing a state / action and the eventual
reward, the SR approach stores a state / action and the states that follow it. Model-
based planning can deal with changes to rewards or transition statistics by simulating

what might happen, whereas the SR approach can deal with changes to rewards but
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not transition statistics.

The hippocampal formation is implicated in planning, particularly of the model-based
variety, with impairments observed in hippocampal patients (Vikbladh et al., 2019).
This is unsurprising given the evidence that HF is required to generate events, as
simulations of future events fall into this category. Recent research suggests that
planning becomes more model-based through consolidation (Vikbladh et al., 2024)).
Generative sequence models trained through consolidation could correspond to the
model in model-based planning, and I explore this further in Section [3.3.3]

3.1.5 Combining parametric and non-parametric memory

When considering how hippocampal and neocortical networks interact in memory,
one can draw inspiration from how ‘parametric’ and ‘non-parametric’ memory are
combined when using large language models (LLMs) in the recent machine learning
literature. Retrieval augmented generation (Lewis et al., 2020) refers to an approach
for combining LLMs with a dataset of other information. To perform a task, relevant
data is retrieved from the dataset (often based on the similarity of feature representa-
tions), and used to prompt the LLM. That is, the LLM’s generation is conditioned

on data from the dataset.

Lewis et al. (2020) introduce the concept of retrieval augmented generation (RAG),
combining a retrieval algorithm with a sequence-to-sequence model to perform an
abstractive question answering task. Their system retrieves documents relevant to
a query and then generates a response based on the content of both the query and
the retrieved documents, improving the factual accuracy of the answers. More recent
papers extend this to large language models (LLMs). This mitigates the well-known
issue of LLMs ‘hallucinating’ facts, and enables outputs to be generated based on

information that was not in the LLM’s training data.

To briefly illustrate this with an example, a typical task for RAG might be question
answering based on a set of documents, e.g. neuroscience papers (as in Luo et al.,

2024)). If the papers are recent, they may not be in the training data for the chosen
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LLM, and even if they are the LLM’s memory for specific details of the papers
may be poor (see Kandpal et al., 2023). Luckily RAG can improve the quality of
generated answers by combining parametric memory (in the LLM’s weights) with
non-parametric memory (in an external store). Firstly, the background information
is split into ‘chunks’ and then a text embedding model is used to produce a vector
representation of each ‘chunk’. These are typically transformer-based models that
learn to embed texts with similar meanings nearby in a vector space (e.g. Karpukhin
et al., 2020). As a result, vectors nearby to a query, e.g. ‘What are grid cells for?’
are typically the most relevant ‘chunks’ of text to that query, e.g. papers about grid
cells. These vectors are stored, often in some way that supports approximate nearest
neighbour algorithms for efficiency (e.g. Malkov & Yashunin, 2018). To ask the
system a question, first a vector representation of the question is obtained, and then
the nearest vectors are found in the external memory. A ‘prompt’ (the text input
from which the LLM continues) is then constructed, in which the retrieved documents
are given to the LLM together with the question (and any other instructions for how

to answer it).

One might hypothesise that neocortical generative models and more veridical hip-
pocampal representations could be combined in a similar way, with neocortical
generations conditioned on hippocampal representations. (Of course hippocampal
memory is parametric too, if parameters correspond to synaptic weights, so it would
perhaps be more accurate to refer to ‘learned’ vs. ‘encoded’” memory, but I use the
parametric vs. non-parametric terminology to correspond to the machine learning

literature.)

3.2 Methods

3.2.1 Modelling sequence learning

The following simulations use autoregressive sequence models to represent the gen-
erative networks trained through hippocampal replay. Specifically GPT-2 (Radford

et al., 2019), a transformer-based deep neural network for text generation, is used
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(see Section [3.1.1]).

The first stage of using GPT-2 (and similar models) is to prepare the inputs with
tokenisation. A tokeniser maps commonly occurring chunks of characters to IDs (in
order to look up the right token embedding in a learned embedding matrix); in the
case of language tokens are often words or parts of words. In some simulations, a
custom tokeniser is fitted to the dataset, and thus segments sequences into tokens
based on the statistics of that dataset, whereas in others the default GPT-2 tokeniser
is used. The concept of tokenisation is applicable to arbitrary sequences, but for
simplicity and consistency across the simulations all stimuli are converted to strings

of characters (if they are not already text-based).

As described in Section the objective for training is causal language modelling,
the task of predicting the next token (‘chunk’ of characters) in sequences from the

training data. This is achieved with the Transformers Python library (Wolf et al.,
2019).

What exactly does causal language modelling with a custom dataset involve? First
the training data is split into blocks, and then for every block the cross-entropy loss
is aggregated across all the next token prediction tasks within the block. For GPT-2,
the block size (which is also the context size of the trained model) is 1024 tokens.
This means that the model is trained to consider up to 1024 tokens of context when
predicting the next token in a sequence. So for each block the model tries to predict
the second token based on the first token, then the third token based on the first two,
and so on, until it predicts the final token based on the preceding 1023.

The loss measures the difference between two probability distributions: the distribution
predicted by the model and the actual distribution in the data. For each token
prediction task, the actual distribution is a ‘one-hot’ vector with a one for the real
next token and zeros elsewhere. Specifically, the cross-entropy loss for a single
prediction task is calculated as the negative log probability assigned by the model
to the actual next token. For a block of tokens, the total loss is the sum of the

cross-entropy losses for each token prediction task within the block, and the weights
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of the model are updated based on this total loss. This procedure is the same whether

the model is fine-tuned or trained from scratch.

3.2.2 Sampling options

There are many ways to generate sequences given a trained sequence model like
GPT-2. As a reminder, a token is a group of commonly co-occurring characters.
Except for the simulation in Section [3.3.1 the same tokeniser is used as in the
pre-trained GPT-2 model (Radford et al., 2019).

Greedy decoding, where the model selects the token with the highest probability as the
next token in the sequence, is the simplest way to generate sequences. However this
can lead to repetitive and predictable sequences, as greedy decoding always opts for the
most likely option without exploring potential alternatives. Sampling from the learned
probability distribution with a given temperature introduces randomness into the
selection of the next item, and provides a way to control the model’s ‘imaginativeness’.
As described in Section [3.1.1] the temperature parameter determines the ‘sharpness’
of the distribution from which output tokens are selected, so that sequences at a

higher temperature are more ‘imaginative’, but more likely to be nonsensical.

Top-K sampling limits the model’s choice to the K most likely next words and
samples from this subset according to their probability distribution. This prevents
the model from picking highly improbable words, reducing the risk of generating
nonsensical text. Unlike top-K sampling, top-p (nucleus) sampling uses a cumulative
probability threshold (p) and then selects from the smallest set of items whose
combined probability is below this threshold. This method allows the model to
consider a broader or narrower set of options depending on the certainty of its

predictions, which can lead to more coherent outputs.

Beam search is not a sampling method but a search strategy that expands on greedy
decoding by considering multiple potential paths through the model’s probability
‘landscape’. At each step, it keeps a fixed number (the beam width) of the most

probable sequences generated so far and extends them, eventually choosing the
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sequence with the highest overall probability. Beam search is particularly useful for
tasks requiring high-quality outputs, such as translation or summarisation, but it can

be computationally intensive.

Unless stated otherwise, sequences generated below are sampled from the probability
distribution of tokens with a given temperature. However some of the variations

described above are also used.

3.2.3 Training procedure

The hippocampus is not modelled explicitly in the subsequent simulations. However,
the training data for the generative networks is intended to represent replayed

sequences from the hippocampus, as in Chapter Two.

In some simulations, existing GPT-2 weights (Radford et al., 2019) are used as the
starting point for further training, and in others the GPT-2 architecture is trained
from scratch with randomly initialised weights. The ‘further training’ option is used
for the simulations involving language and the model-based planning simulation
because of the complexity of the stimuli. The ‘from scratch’ option is used for
the statistical learning and structural inference simulations because the stimuli are

relatively simple.

Two different sized variants of GPT-2 are used. The ‘small” GPT-2 model has 117
million parameters, including 12 transformer blocks. The ‘medium’ GPT-2 model
has 345 million parameters, including 24 transformer blocks. For both variants, the
training data used by Radford et al. (2019) is WebText, a dataset of online content
scraped from outbound Reddit links and further processed to ensure quality. (The
default tokeniser for GPT-2 is also fitted to this dataset.)

The small variant of GPT-2 (Radford et al.,|[2019) was used in the statistical learning
task because of its simplicity, and in the model-based planning task because many
iterations of training were required, so the smaller model minimised cost. The

other simulations (structural inference on spatial and family tree graphs, gist-based
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distortions, and event extension / contraction) used the medium variant of GPT-

2.

The simulations in Section [3.3.3] and in Chapter Four involve tasks where the stimuli
are limited, but where it is reasonable to assume that the model has relevant ‘back-
ground knowledge’. In these cases, the model is first ‘pre-trained’ before the task
itself begins, typically on sequences which mirror the structure but not the content
of the task stimuli. (For example, in the Vikbladh et al. (2024) task, the model
after pre-training corresponds to the neocortical network at the point the participant

passes a ‘rules quiz’ but before exposure to the task stimuli.)

Simulation Section Training Model Training data
method size
Statistical 3.3.1 From scratch Small Sequences of tones from Dur-
learning rant et al. (2011)) represented
by ‘2,2,3,1,...°
Structural 3.3.2 From scratch Medium Walks on a graph of form ‘mv
inference (spa- SOUTH sz WEST li EAST sz
tial) ’
Structural in- | [3.3.2 From scratch Medium Walks on a graph of form
ference (family ‘yu GRANDPARENT_OF mi
trees) SIBLING_OF vb ...’
Model-based 3.3.3 Further train- | Small Tasks from Vikbladh et
planning ing al. (2024) represented by
‘START:  yellow  vehicle,
STOP: green, REWARD:
animal, SEQUENCE: red
animal (2), green vehicle (-1)’
Gist-based dis- | [3.3.4 Further train- | Medium English language text
tortions ing
Event ex- | 13.3.5 Further train- | Medium English language text
tension  and ing
contraction

Table 3.1: Summary of simulations and their training details. See Section for further details
of the training methods and model sizes, and Section [3.3| for further details of the tasks and training
data.
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3.3 Results

3.3.1 Statistical learning

I model the learning of sequential structure by training GPT-2 on sequences of
arbitrary symbols with a statistical pattern, as in Durrant et al. (2011)). To explore
the effect of sleep on statistical learning, Durrant et al. (2011)) constructed two types
of sequence, both made up of regular tones at differing frequencies. One type had a
structure in which the preceding two tones determined the next - i.e. each sequence
was a second order Markov chain - except for 10% of transitions which were random to
avoid repetition. The other type was unstructured, with random transitions between
tones. After listening to a structured sequence for several minutes, participants were
tested on their ability to distinguish short structured and unstructured sequences.
Delayed recall was then tested, after a night’s sleep for one group, and after a waking
rest for the other. The authors found that sleep improved performance more than
waking rest, suggesting that consolidation during sleep promotes learning of sequential

structure.

This simulation aims to test the hypothesis that statistical learning of sequential
structure through consolidation in Durrant et al. (2011) is consistent with the sequen-
tial model. T produced a set of sequences of ‘tones’ using the transition structure
in Durrant et al. (2011), and represented them as comma-separated strings (e.g.
2,2,3,1,...7)). These are intended to mimic the stimuli encoded in the hippocampus
and replayed during rest. After fitting a tokeniser with a vocabulary of ten tokens to
the data, the small GPT-2 architecture was trained from scratch for three epochs on

2000 such sequences, each made up of 50 ‘tones’.

At the end of each epoch of the training, the perplexity was calculated for test
sets of 100 structured and 100 unstructured sequences. Perplexity represents the
unexpectedness or schema incongruency of a sequence given the learned statistical
structure; the greater the perplexity of the unstructured compared to structured
test sequences, the greater the ability to distinguish them. As Figure [3.2c shows,

the difference in perplexity between structured and unstructured sequences increases
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over time as the generative model is trained, in agreement with the finding that
consolidation improves ability to distinguish between structured and unstructured

sequemnces.

At the end of training, the model generated sequences (with a temperature of 0.1),
conditioned on a single instance of each of the five tones to ensure some variation.
The average transition probabilities given the preceding two tones were calculated,
and the resulting transition structure plotted. As Figure shows, training the
generative network on sequences from the Durrant et al. (2011) task leads to the
network learning the transition structure of the stimuli, so that it can predict the

next item in structured sequences.

3.3.2 Relational inference

Consolidation not only extracts statistical regularities from episodic memories (Dur-
rant et al., [2011)), but also supports relational inference (Ellenbogen et al., [2007;
Kumaran, 2012). A spatial example of relational inference is the finding of shortcuts,
as this relies on the common structure of space, and a non-spatial example is inferring
that A is the grandfather of C from the knowledge that A is the father of B, and B is
the father of C, as this relies on the common structure of family trees. The relations in
these tasks can be seen as edges in graphs, as simulated by the Tolman-Eichenbaum
machine (TEM; Whittington et al., 2020) in the domain of multiple tasks with

common transition structures.

This simulation aims to test the hypothesis that consolidation enables relational
inference in the sequential model. As in Whittington et al. (2020)), this type of
inference is framed in terms of graph transitions. I consider inference in two types of
graph: a spatial graph and a simple family tree graph. In the spatial graph, a three-
by-three grid represents a simple 2D environment, where the nine nodes are locations
and the edges between them (‘NORTH’, ‘EAST’, ‘SOUTH’ and ‘WEST”) are possible
transitions (Figure[3.3h). Whilst each graph’s structure is the same, nodes are labelled

with names to represent arbitrary features at a particular location (random pairs
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Figure 3.2: Statistical learning of sequential structure. a) Figure One from Durrant et al. (2011)),
showing the transition structure for structured sequences of tones in the task. In these sequences,
the preceding two tones determine the next according to this matrix, except for 10% of transitions
which are random to avoid repetition. That is, white squares indicate a 90% probability of a certain
tone coming next in the sequence. b) The learned transition structure when GPT-2 is trained
from scratch on data from Durrant et al. (2011)), with transition probabilities extracted from data
generated by the trained model (with a temperature of 0.1). c¢) Perplexity over time for structured
vs. unstructured sequences, for a model trained on structured sequences. The ability to distinguish
the two types based on their perplexity increases over time. Error bars give the SEM.
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of letters are used to increase the possible number of names). Trajectories through
the environment are walks on the resulting directed graph, which are represented as
strings such as ‘ab EAST wd SOUTH ea WEST hn’. (Note that Figure represents
the grid as a graph for consistency with the family tree model, but this is equivalent

to the grids used in Chapter Four.)

The family tree graph has a simple structure for illustrative purposes, consisting of
two children, their parents, and two sets of grandparents. See Figure [3.3p. T model
this as a directed graph with edges ‘PARENT_OF’, ‘CHILD_OF’, ‘SPOUSE_OF’,
‘SIBLING_OF’, ‘GRANDPARENT_OF’, and ‘GRANDCHILD_OF’. As in the spatial
graph case, all graphs have the same structure, but each graph has different names

assigned to its nodes, with each name representing a particular individual. Walks

on the graph are represented by strings such as ‘lk PARENT_OF nd SIBLING_OF

b

re .

GPT-2 models were then trained in order to explore how training generative ‘world
models’ through consolidation might give rise to structural inference abilities. In each
case, I created 100,000 graphs with the same structure but randomly chosen values
(pairs of letters) for the nodes. A random walk of 50 transitions was sampled from
each graph to create the training data. This was intended to represent - in a very
abstract way - sequences of observations that might be experienced, encoded in the
hippocampus, then replayed offline. GPT-2’s medium-sized architecture was then

trained from scratch for five epochs.

After training the models, I simulated the spatial task of predicting the next location
in a sequence as the prediction of the next node in a graph, and the non-spatial task
of inferring relationships between family members the same way. To test inference, I
defined a set of cycles in the graph for which the final destination could be inferred
given the sequence so far. For example, the next item after ‘uqg NORTH sx EAST tp
SOUTH ec WEST’ can be inferred to be ‘uq’ given the structure of spatial graphs,
and the next item after ‘gqk PARENT_OF xm PARENT_OF vw GRANDCHILD _OF
zq SPOUSE_OF’ can be inferred to be ‘qk’ given the structure of family tree graphs.

(Only a subset of these tasks were tested as there are a very large number of possible
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loops, particularly for the family tree task.) These templates were then populated
with random pairs of letters, so that none of the sequences used for testing featured
in the training data. Beam search with five beams was used to generate predictions.
On some of the family tree inference problems there are multiple possible answers
which are consistent with, but cannot be inferred from, the sequence so far (such as
the imagined family member ‘ef” in ‘ab CHILD_OF c¢d PARENT_OF ef’), and these

are counted as incorrect, therefore this is quite a harsh performance metric.

Figure and b show the ‘loss’ (aggregated error on the training data) of the
spatial model and family tree model respectively. In both cases the loss gradually
decreases, indicating improved ability to predict the next node on the set of graphs
used for training, which corresponds to the consolidation of previously experienced

environments.

Figure [3.4c shows good performance on a range of novel structural inference tasks.
Simpler inferences include inferring that going one step west then east takes one
back to the original location, e.g. the correct continuation of ‘ab EAST c¢d WEST’
is ‘ab’. Similarly, a correct continuation of ‘ab PARENT_OF c¢d CHILD_OF’ is
‘ab’. (As mentioned above, any other ‘name’ would be potentially correct too, but
cannot be inferred given the information given, so is treated as incorrect in this
task.) But surprisingly complex inferences are also possible, e.g. that ‘kh CHILD_OF
oi SPOUSE_OF tv CHILD_OF th SPOUSE_OF xr GRANDPARENT _OF gq SIB-
LING_OF" is followed by ‘kh’. Table gives the average score for each ‘template’,
while Figure aggregates these results by the number of graph transitions (or

‘hops’) in the sequence.

The results are consistent with the claim that consolidation supports relational
inference and generalisation. Furthermore they suggest that models trained on
a simple prediction error minimisation objective can learn an abstract transition
structure. Unlike in TEM (Whittington et al., [2020), in which structural regularities
and arbitrary specifics are factorised by design, the model learns to separate structure

and content (i.e. roles in the graph and the entities that fill them).
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Many inference problems can be framed in terms of graphs or transition structures,

so this approach could be more generally applicable.

3.3.3 Model-based planning

Vikbladh et al. (2024) design a task to assess the contribution of different strategies
(i.e. model-based, model-free, or successor representation approaches) to planning,
and explore how this changes with consolidation. As Figure [3.5 reproduced from
Vikbladh et al. (2024)), summarises, the task is as follows: nine items (‘red animal’,
‘green animal’, ‘yellow animal’, ‘red vehicle’, ‘green vehicle’, ‘yellow vehicle’, red
fruit’, ‘green fruit’, and ‘yellow fruit’) are arranged in a loop. The participants
observe clockwise subsequences from the loop, determined by start, stop, and reward
conditions. The start condition gives the item the sequence starts at. The stop
condition gives the colour the sequence terminates at, e.g. if this is ‘green’ the
sequence would stop upon reaching the first green object. The reward condition

determines the object that receives a reward of 2 (while other objects receive -1).

Participants first learn the rules of the task, proceeding to the next stage after passing
a quiz. They then experience sequences made up of the stimuli above in a random
order, with one sequence per start state, and a random stop and reward condition.
Crucially, each participant sees only one stop and one reward condition during training,
requiring them to do ‘revaluation” when deciding whether to accept or reject a trial
with a new stop or reward condition in the subsequent testing. Performance is tested
before and after a seven day delay to assess the effect of consolidation. (Note that
participants only get feedback as to the sequence of states and reward values during
the training phase. Thus there is no externally-driven learning during or between the

two revaluation phases.)

The task allows model-based, model-free and successor representation strategies to
be disentangled, since only model-based planning allows revaluation of both reward
and transition statistics, whereas the successor representation allows only reward

revaluation, and model-free planning allows neither. Vikbladh et al. (2024) found
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Figure 3.3: Learning structural regularities in graphs. a) The spatial graph task. Spatial trajectories
are modelled as walks on the graph, and represented as strings as shown. b) The family tree graph
task. Relationships between family members are modelled as walks on the graph, and represented as
strings as shown. ¢) Testing structural inference, modelled as the ability to complete sequences on
unseen graphs based on structural regularities, in the spatial graph. For example, it is possible to

infer that the next location in the sequence shown is ‘j’

, given the structural regularities of spatial

graphs. d) Testing structural inference in the family tree graph. For example, it is possible to infer
that the next person in the sequence shown is ‘0’, given the structural regularities of family tree

graphs.
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Figure 3.4: Structural inference in spatial and family tree graphs. a) The loss of GPT-2 trained
for five epochs on sequences from spatial graphs. b) The loss of GPT-2 trained for five epochs on
sequences from family tree graphs. ¢) Loop completion performance for the spatial and family tree
models, grouped by the number of edges (‘hops’) in the template. Error bars give the SEM. See
Table for the accuracies for each template.
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(a) Spatial task inference performance

128

Inference template

Mean accuracy

{} EAST {} WEST {}

0.87

{} WEST {} EAST {} 0.82
{} NORTH {} SOUTH {} 0.81
{} SOUTH {} NORTH {} 0.87
{} EAST {} SOUTH {} WEST {} NORTH {} 0.71
{} SOUTH {} WEST {} NORTH {} EAST {} 0.78
{} WEST {} NORTH {} EAST {} SOUTH {} 0.8

{} NORTH {} EAST {} SOUTH {} WEST {} 0.81
{} EAST {} EAST {} NORTH {} WEST {} WEST {} SOUTH {} 0.79
{} NORTH {} NORTH {} WEST {} SOUTH {} SOUTH {} EAST {} | 0.74

(b) Family tree task inference performance

Inference template

Mean accuracy

{} CHILD_OF {} PARENT_OF {}

0.81

SPOUSE_OF {} CHILD_OF {} SPOUSE_OF {}

{} PARENT_OF {} CHILD_OF {} 0.76
{} GRANDCHILD_OF {} GRANDPARENT_OF {} 0.8
{} GRANDPARENT_OF {} GRANDCHILD_OF {} 0.62
{} CHILD_OF {} CHILD_OF {} GRANDPARENT_OF {} SIBLING_OF | 0.7
{}

{} CHILD_OF {} SPOUSE_OF {} PARENT_OF {} SIBLING_OF {} | 0.75
{} PARENT_OF {} SIBLING_OF {} CHILD_OF {} SPOUSE.OF {} | 0.79
{} PARENT.OF {} PARENT.OF {} GRANDCHILD.OF {} | 0.77
SPOUSE_OF {}

{} CHILD_OF {} SPOUSE.OF {} CHILD_OF {} SPOUSE.OF {} | 0.75
GRANDPARENT_OF {} SIBLING_OF {}

{}  GRANDPARENT.OF {} SIBLING.OF {} CHILD.OF {} | 0.72

Table 3.2: Relational inference performance
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that there was a mixture of successor representation and model-based strategies, with
the model-based approach increasing with consolidation between day one and day
seven. MEG decoding and analysis of response times indicated that model-based
planning was associated with sequential ‘rollouts’ involving the medial temporal lobe

on both days and prefrontal cortex on day seven.

The aim of this simulation is to test the hypothesis that model-based planning, based
on the ‘rollout’ of sequences by the generative network, increases with consolidation
in the sequential model. The stimuli for Vikbladh et al. (2024) can be represented
as sequences of the form ‘START: yellow fruit, STOP: red, REWARD: animal,
SEQUENCE: green fruit (-1), red animal (2)’, which makes it straightforward to
train the small GPT-2 model. The task is simulated as follows: i) pre-train the
model so that it learns the rules of the task, ii) train on stimuli for a particular
task, representing consolidation through hippocampal replay, and iii) compare the
generative model’s accept / reject predictions to the true values over the course of

consolidation.

To describe this in more detail, first I pre-train the model on arbitrary stimuli, to
simulate learning the rules of the task. The pre-training data consists of the 81
possible start / stop / reward combinations for each of 1000 sets of nine items, giving
a total of 81,000 sequences. Each item is a random pairing of one of three random
adjectives and one of three random nouns; the start condition is one of the nine items,
the reward condition is one of the three nouns, and the stop condition is one of the
three adjectives. For example, one sequence might be ‘START: stripy gerbil, STOP:
angry, REWARD: cloud, SEQUENCE: busy cloud (2), angry plate (-1)’.

The GPT-2 model is fine-tuned on this shuffled dataset for three epochs. After this
stage of training, the model can be given a prompt with randomly chosen stimuli
/ conditions, e.g. ‘START: blue chair, STOP: sad, REWARD: bug, SEQUENCE.’,
and generate a sequence consistent with the rules, e.g. ‘blue table (-1), sad bug (2)’.
But the model knows nothing about the task stimuli or their order, i.e. none of
the stimuli from the Vikbladh et al. (2024)) task were used in fine-tuning. This is
supposed to be equivalent to the participant at the point they pass the rules quiz,
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prior to experiencing the task stimuli.

To simulate the task, the stimuli from Vikbladh et al. (2024) are used (‘red animal’,
‘green animal’; ‘yellow animal’, ‘red vehicle’, ‘green vehicle’, ‘yellow vehicle’, red fruit’,
‘green fruit’, and ‘yellow fruit’), shuffled into a random order. A single random stop
and reward condition are selected and combined with each start state, as for the
human participants. The training stimuli are then just nine sequences with these stop
and reward criteria (one per start position). These nine sequences are oversampled to
1000 items (i.e. 1000 ‘replayed’ samples are taken, so that 9 sequences are presented
1000 times in random order) to prevent overfitting to the order of the sequences. The
model is further fine-tuned for 20 epochs on this dataset (i.e. there are 20 iterations
of training on the dataset of 1000 samples). This simulation is rerun five times,
with a random ordering of the stimuli, reward condition, and stop condition in each

trial.

For each trial, three test sets are created: one for sequences requiring transition
revaluation (i.e. with a new stop condition), one for sequences requiring reward
revaluation (i.e. with a new reward condition), and one for sequences requiring both
kinds of revaluation (i.e. with a new stop and reward condition). Performance on

the accept / reject decision-making task is tested as follows:

1. Obtain the predicted sequence from the model given an input of the form
‘START: yellow animal, STOP: red, REWARD: animal, SEQUENCE:". Greedy

decoding, i.e. simply taking the most probable next token, is used.

2. Extract the predicted rewards (any numbers in round brackets) from the

sequence.

3. If the sum of the predicted rewards is greater than zero, the decision is to
‘accept’ the trial, and if the sum of the predicted rewards is less than or equal
to zero, the decision is to ‘reject’ it. (This involves a slight simplification, as
a trial with a predicted reward of zero could be accepted or rejected with the

same result for the participant.)
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4. Calculate the accuracy of the accept / reject decisions by comparing the
predictions with the true values. As above, the true value is ‘accept’ if the sum
of rewards extracted from the sequence is greater than zero, and is otherwise

‘reject’.

Figure shows that the performance on all three types of task (those requiring
reward revaluation, those requiring transition revaluation, and those requiring both)
improves over time. This suggests that the generative model learns the order of
the items through ‘consolidation’ such that it can predict the sequence of items and

rewards given novel reward and/or stop conditions.

In order to explore whether planning becomes more model-based, Figure [3.7| compares
the network’s decisions to the decisions that would be made given four strategies:
model-free (taking the accept / reject decision for the same start item from the
training data), reward revaluation (the decision given the ability to perform reward
revaluation but not transition revaluation), transition revaluation (the decision given
the ability to perform transition revaluation but not reward revaluation), and model-
based (the correct decision, as would be deduced from a mental model of transition

statistics).

Two statistical approaches are used to the compare the observed decisions to the
decisions for a given strategy. Firstly, linear regression is used to predict the observed
accept / reject decisions, with accept / reject decisions given each strategy as the
regressors. The regression coefficients then indicate to what extent the decisions
depend on each strategy. Secondly, the Pearson correlation coefficients between
observed accept / reject decisions and the accept / reject decisions given each strategy

are calculated.

The results in Figure show that the trained network’s behaviour is most consistent
with model-based planning, and that the generative network becomes more ‘model-
based’” over the course of ‘consolidation’. This is a potential explanation of the effect
of consolidation in Vikbladh et al. (2024)), as the generative model can learn from

hippocampal replay without any externally-driven learning.
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Figure 3.5: Figure reproduced from Vikbladh et al. , showing the task design. a) Training
takes place on day one, with tests of reward and transition revaluation on days one and seven. b)
The stimuli are nine items arranged in a clockwise ‘loop’. ¢) The task is to decide whether to accept
or reject a trial given a start item and reward and stop conditions, based on the expected rewards
obtained from the sequence. d) The participant sees only a single reward and stop condition during
training, and revaluation tests performance when the reward and/or stop conditions change. e)
Model-based planning (left) and the successor representation approach (right) allow different kinds
of revaluation.
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Figure 3.6: Planning over time. Accuracy of accept vs. reject choices over the course of training
on a particular trial, for three types of problem. In each case the model pre-trained on the rules of
the task was further trained on just nine sequences for 20 epochs. Reward revaluation problems
are those where a new reward condition is used at test time which was not included in the training
data, transition revaluation problems are those where a new stop condition is used at test time, and
reward and transition revaluation problems are those where both the reward and stop conditions
are new. The mean across five trials is taken. Errors bars give the SEM.
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Figure 3.7: Heatmaps showing regression coefficients (left) and Pearson correlation coefficients
(right), capturing which ‘strategy’ best explains the results over the course of training. The network’s
decisions after simulating ‘consolidation’ of the nine sequences are compared to the decisions that
would be made given four strategies: model-free (taking the accept / reject decision for the same start
item from the training data), reward revaluation (the decision given the ability to perform reward
revaluation but not transition revaluation), transition revaluation (the decision given the ability to
perform transition revaluation but not reward revaluation), and model-based (the correct decision,
as deduced from a learned model of transition statistics for the task). Left: linear regression is used
to predict the observed accept / reject decisions, with accept / reject decisions given each strategy as
the regressors. The corresponding regression coefficients are shown. Right: the Pearson correlation
coefficients between observed accept / reject decisions and the accept / reject decisions given each
strategy are shown. The results show that the generative network becomes more ‘model-based’ over
the course of ‘consolidation’.
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3.3.4 Gist-based distortions for sequences

In the Bartlett (1932)) experiment, students heard a story called ‘The War of the
Ghosts’ and were asked to recall it after different time intervals. The story, a Native
American myth, was chosen to be culturally unfamiliar, making memory distortions
more pronounced. Bartlett found that the story was recalled in a way that was
consistent with the students’ background knowledge of the world, and details were
added to explain unusual elements of the story (i.e. confabulation and rationalisation
were observed). As replicated by Bergman and Roediger (1999), memory distortion
increased over time after encoding. This simulation aims to test the hypothesis that
recalled narratives are distorted based on background semantic knowledge (Bartlett,
1932).

To simulate consolidation, I fine-tuned the existing medium-sized GPT-2 model on
the Bartlett (1932) story in addition to ‘background data’. Recall of the story was
explored by giving the network the first few words of the story (‘One night two young

men from Egulac’), and inspecting the predicted continuation.

To explore the effect of the model’s ‘priors’ on recall of narratives, the background data
distribution was varied. The ‘Shakespeare model” used 5000 lines from Shakespeare
plays as the background data, the ‘News model’ used 5000 short news stories from
the ‘AG’s News’ dataset (Zhang et al., 2015), and the ‘Scientific papers’ model used
5000 abstracts scraped from PubMed (Cohan et al., |2018).

Between 2 and 10 repetitions of the Bartlett story were then shuffled together with
these 5000 items, and the model was trained for 5 epochs on the combined dataset.
Note that the number of replays variable in the figures below refers to the total
number of repetitions of the Bartlett story, so varies from 10 to 50. The temperature

for generating continuations was also varied.

Word clouds are used to visualise semantic intrusions. They show terms in the
recalled Bartlett stories which do not occur in the original (with common words,
i.e. ‘stopwords’ like ‘the’, excluded). The ‘wordcloud’ Python package was used to

produce all subsequent word clouds.
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When the Bartlett story is ‘consolidated’ into the generative network memory distor-
tions are observed, as in the human data (see Table[3.3). Distortions in recalled stories
reflect the ‘priors’ of the generative network. The word clouds in Figure show
that new words added to the story (i.e. ‘semantic intrusions’) are representative of the
background dataset used. Consistent with this, Figure shows that the recalled
stories move closer towards the background dataset in text embedding space, with
the model ‘all-MiniLM-L12-v2’ from Reimers and Gurevych (2019) used to generate
the embeddings. Specifically, the cosine distance between the mean embedding for
each category and the original story is compared to the cosine distance between the
mean embedding for each category and the recalled stories. See also Table for

selected examples of semantic intrusions from the three models.

More ‘semantic intrusions’ are observed at higher temperatures, as Figure and ¢
and Table 3.3 show. However if the original Bartlett story is replayed enough times,
the level of distortion reduces (Figure and b). This is consistent with the view
that memories are replayed to neocortex until they are remembered ‘well enough’,
rather than indefinitely until recall is perfect. (Note that the increase in gist-based
distortion over time reflects the increasing dependence of recall on the generative
network as consolidation progresses, as opposed to the initial hippocampal trace, so

is not inconsistent with this finding.)

3.3.5 Event extension and contraction

The brain segments experience into discrete events (Newtson, 1973; Newtson &
Engquist, (1976), with distinctive neural activity at event boundaries (Baldassano
et al., 2017; Ben-Yakov & Dudai, 2011). Event extension is the tendency to extend
certain events in memory, while event contraction is the tendency to curtail them
(Raykov et al., 2023). Event extension is typically observed when an event stops
before its natural end, while event contraction is typically observed when an event

continues beyond this point, mirroring the findings about which image stimuli produce
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Type

Recalled story

Original

One night two young men from Egulac went down to the river to hunt
seals and while they were there it became foggy and calm. Then they
heard war-cries, and they thought: “Maybe this is a war-party”. They
escaped to the shore, and hid behind a log. Now canoes came up, and

they heard the noise of paddles, and saw one canoe coming up to them.

There were five men in the canoe, and they said: ...

No sampling

One night two young men from Egulac went to the river to hunt seals.

They came upon a party of warriors, and they began to fight. But
the young man escaped, and hid behind a log. Now the warriors came
up to him, and said, “What do you think? You have escaped. Come
along.” So the young man went along, and the warriors went on up
the river to a town on the other side of Kalama. The people ...

Temperature
of 0.25

One night two young men from Egulac went to the river to hunt seals.

The sun rose and the fog rose, and they heard war-cries and saw one
canoe coming up to them. There were five men in the canoe, and they
said: “What do you think? We wish to take you along. We are going
up the river to make war on the people.” One of the young men said,”I
have no arrows.” “Arrows are in the canoe,” they said. “I ...

Temperature
of 0.5

One night two young men from Egulac went to the river to hunt seals.
They came upon a party of warriors, and one of the young men said:

“Quick, let us go home. We are going up the river to fight. They are
coming up the river to cut us down.” One of the warriors said, “I will
not go along. I might be killed. My master will not let me go.” So the
other returned home. The young man went back to Egulac ...

Temperature
of 0.75

One night two young men from Egulac went to the river to hunt seals.

One of them was a boy and the other was a girl. The boy was well
armed, and his arrows were well-carved. The boy said he would go
with them, and the girl said she would not go with him. Now is the
season for the hunt: the water is calm, and the sun is up. But the
young man said he would not go, and they heard war-cries, and ...

137

Table 3.3: Recalled stories for different temperatures, for a model trained on 30 replays of the
Bartlett story with Shakespeare plays as the background data distribution.
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Figure 3.8: The effect of the background data distribution on narrative distortions. The
‘Shakespeare’ model is trained on lines from Shakespeare plays, the ‘News’ model is trained on
the ‘AG’s News’ dataset (Zhang et al., [2015)), and the ‘Scientific papers’ model is trained on ab-
stracts of papers scraped from PubMed (Cohan et al. m ) The cosine distance between the
mean embedding for each category and either the orlgmal story (red) or the recalled story (blue).
The embeddings of the training data plus the recalled story for each model are obtained using
‘all-MiniLM-L12-v2’ from Reimers and Gurevych . Recalled stories become more similar to
the background dataset. b) The word clouds show terms in the recalled Bartlett stories which do
not occur in the original (with common words, i.e. ‘stopwords’, excluded) for the three models. The
‘semantic intrusions’ at a temperature of 0.75, after ten replays of the Bartlett story, reflect the
background data distribution.
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Figure 3.9: Effect of temperature and replay quantity on narrative distortions. a) The effect of
temperature on narrative distortions is explored using the model with Shakespeare lines as the
background data distribution. The plot shows the number of new words against temperature, for
differing amounts of replay. More ‘semantic intrusions’ are observed at higher temperatures. The
more times the story is replayed, the more accurate the recall. b) The number of new words in
the recalled story that did not feature in the original story, for different numbers of replays of

the Bartlett story (i.e. occurrences in the training data).

There are fewer semantic intrusions

with more repetitions. Results are averaged across models trained on three different ‘background’
datasets. Errors bars give the SEM. ¢) The word clouds show terms in the recalled Bartlett stories

which do not occur in the original (with common words, i.e.

temperatures, with ten replays of the Bartlett story.

‘stopwords’, excluded) for a range of
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Model Recalled story

“Behold I accompanied the canoes to make war on the people. He

Shakespeare who does this will pay for it in blood.”
He was dead. The gods have mercy on thee!
“I have killed many of your fellows, and I have many arrows in my
hand. T would fain have killed you.”
So Egulac became a war-zone.
News

But the young man escaped and went to the police station

Now Egulac is a city on the western coast of Lake Superior

Nowhere do we find this statement in the traditional accounts of the

Scientific papers war-party, but it is clearly there in the oral tradition of the warriors.

The young man received intravenous medication

So we have a case of two young men who went down to the river to
hunt seals.

b

Table 3.4: Recalled stories for different models, showing how semantic intrusions reflect the ‘priors
of the generative network. Examples are selected from a range of replay counts and temperatures.

boundary extension vs. contraction.

Raykov et al. (2023)) explore the recall of three types of video, at the end of the
encoding session and after a week’s delay: complete videos end at a natural event
boundary, incomplete videos are curtailed before this point, and updated videos are
extended beyond it. The authors find that in the incomplete condition, ‘participants
often falsely recalled additional details going beyond the last interrupted action’,
known as extension errors, whereas in the updated condition ‘participants often
omitted the entirety of the new scene from their recall’, known as omission errors
(Raykov et al., 2023| Discussion). The authors compared the incomplete vs. updated
conditions at a long vs. short retention intervals, finding a significant interaction
between condition and delay for the frequency of both extension and omission errors.
The increase in the event extension and contraction effects over time indicates that
the errors cannot be attributed solely to processes at encoding time, suggesting that
consolidation promotes these distortions. (See Figure [3.10h.)
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This simulation aims to test the hypothesis that the sequential model captures the
effect of consolidation in Raykov et al. (2023)) (see Section [3.3.6]for how the immediate
effects could be explained). Event extension and contraction are modelled with simple
stories in text form, each only a few lines long (Rashkin et al.,2018). Three types
of narrative are used. Firstly, a large majority are typical stories, unmodified from
the Rashkin et al. (2018) dataset. Secondly, an atypically shortened (or ‘incomplete’)
story has 100 characters removed. Thirdly, an atypically lengthened (or ‘updated’)
story has 100 characters appended from another, randomly selected story. See Table
for examples. Note that this is a challenging task as some stories could be
interpreted as either atypically shortened or lengthened. 1 did not control for the
story length in characters, so one cannot easily separate the effect of the content from
the effect of length alone, however the stories did vary in length. Complete stories
had a mean of 264.30 characters (SD = 36.21), incomplete stories had a mean of
132.89 characters (SD = 39.11), and updated stories had a mean of 346.90 characters
(SD = 59.12).

Training data consisted of 100 complete stories, 10 incomplete stories, and 10 updated
stories, with more complete examples used than incomplete or updated ones to
establish a ‘prior’ for typical stories. The experiment was repeated five times, with a

different sample of stories used in each trial.

The medium-sized GPT-2 model (Radford et al., [2019) was fine-tuned on this set of
stories for five epochs and then recall was tested by giving the model the first few
words and observing the output. The highest probability token was taken at each
step (i.e. ‘greedy decoding’), rather than sampling from the distribution.

Before training on the stories, neither the typical nor atypical stories are memorised,
and only generic continuations are generated. But after some training, the atypical
stories are remembered with characteristic extension and omission errors: on average
the incomplete (atypically shortened) stories are lengthened, and the updated (atypic-
ally lengthened) stories are shortened, while complete stories stay approximately the
same length (Figure . By bringing the story to a more natural conclusion or by

removing an incongruous ending, the stories are made more similar to the complete
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stories. See Table for examples. (Note that even for the complete stories, some

distortion is observed.)

One interpretation of these results is that these event boundary distortions are a
special case of the Bartlett (1932) findings, in which confabulation, omission, and
substitution are observed in memory for narratives; memories of atypically shortened
events display confabulation, and memories of atypically lengthened events display
omission or substitution. That is, confabulation, omission, and substitution reflect

the behaviour of generative models more broadly.

There is also a clear link between the boundary extension and contraction results
in Chapter Two (see Figure and the event extension and contraction results
here, despite the differing types of neural network used. In both cases, memories
are distorted towards a prior encoded in the network by its previous ‘experience’,

consistent with Bayesian views of memory (Hemmer & Steyvers, 2009).

3.3.6 Retrieval augmented generation

Memories can be used to support problem solving immediately after encoding, not just
after consolidation. This simulation aims to test the hypothesis that the generative
network and hippocampal network could work together to achieve this in a way
resembling ‘retrieval augmented generation’ (RAG). Inference from recent memories is
modelled as a process whereby relevant sequences from the hippocampus are retrieved

and used to condition the generative model.

I create a ‘toy example’ of retrieval augmented generation using the two models
from the structural inference results above (one model trained on spatial graphs,
and one trained on family tree graphs). 100 graphs were constructed, each missing
one edge, so that inference from memory could be tested. A walk on each of these
graphs was stored in the ‘hippocampus’ (simply a list of strings in this example).
For each missing edge, a query of the form ‘ab EAST’ or ‘cd PARENT_OF’ was

constructed for the spatial and family tree graphs respectively. In other words, if
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Figure 3.10: a) Figure reproduced from (Raykov et al., . b) Comparison of the video task in
(Raykov et al., and the text narrative analogue. ¢) The mean difference between the length
of the recalled and encoded stories, in the incomplete, complete, and updated conditions. The
incomplete stories are recalled as longer than the original text, whereas the updated stories are
recalled as shorter.
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the ‘cd PARENT_OF ef’ edge was omitted from the graph, the test would be the
model’s continuation from ‘cd PARENT_OF’. (Beam search with five beams was used

to generate predictions.)

Testing involves two stages, retrieval followed by generation: first the hippocampus
is queried for relevant traces, simply by finding sequences containing the node in
the query. Then the generative network produces an output conditioned on the
retrieved sequence concatenated with the sequence for the task (see Figure for

examples).

The results show that this supports structural inference immediately after encoding
sequences in the hippocampus, whereas relying on either the hippocampal network or

generative network alone gives worse results (Figure [3.11]).

This is not quite the same as the extended model for sequences, as it is still assumed
that hippocampal sequences are stored veridically. However see the Discussion for how
these ideas could be developed to store ‘conceptual gists’ (together with unexpected
details) in the hippocampus and use retrieval augmented generation to reconstruct

memory based on these gists.

3.4 Discussion

In this chapter I have extended the model of memory construction and consolidation
in Chapter Two to sequential stimuli by changing the generative network to an
autoregressive sequence model (Radford et al., [2019), allowing a wider range of
phenomena to be explored. However the idea of consolidation as self-supervised
learning (i.e. learning to reconstruct patterns) during replay from a hippocampal

‘teacher’ is the same.

The resulting generative network exhibits a number of capabilities in addition to
the memorisation of ‘replayed’ sequences. In particular, the generative network
supports statistical learning of transition probabilities (Section [3.3.1)), inferring new

relationships from limited observations by learning an implicit structure (Section
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Figure 3.11: Retrieval augmented generation and inference. a) The procedure for the simulations,
repeated for the spatial and family tree tasks. In each case, the system encounters 100 new graphs
(with a simplified structure), each missing a single edge. A sequence of observations from each
graph is then encoded in the hippocampus (so that 100 sequences are stored). The task is then
for the system to infer the missing edge, e.g. predict the next location after ‘ab NORTH’ or ‘cd
SIBLING_OF’ as shown, prior to any consolidation of the new graph. First the system retrieves
relevant sequences, and then uses these to condition the generative network. The models trained
in Section are used. b) Results and a ‘hippocampus only’ and ‘neocortex only’ baseline for
comparison. The ‘hippocampus only’ baseline randomly selects one of the locations / people in the
retrieved sequence. The ‘neocortex only’ baseline conditions the generative network on the task
alone, without retrieving sequences from the hippocampus.
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3.3.2), and model-based planning (Section [3.3.3). The computational approach taken
is applicable to any sequence of symbols, meaning that linguistic and non-linguistic
sequences can be modelled in a consistent way: I also demonstrated how distortions

arise in narratives, and how these reflect priors in the generative model derived from

previous experience (Sections [3.3.4] and [3.3.5)). Gist-based distortions in narratives

arguably reflect the claim of Zwaan and Radvansky (1998)) that a story is ‘a set of
processing instructions on how to construct a mental representation of the described
situation’, and it is this situation model that is remembered rather than the text
itself.

The static extended model suggests how memories are encoded as a combination of
sensory and conceptual features, and how the generative model contributes to recall
from encoding onwards. The results so far are the sequential equivalent of the ‘basic’
model in Chapter 2, i.e. the simplifying assumption is made that sequences in the
hippocampus are encoded ‘in full” even if they are well predicted. This raises the
question of what constitutes the extended model for sequences. As with the static
extended model, this is required i) because storing veridical sequences is inefficient,
ii) to explain why we observe distortions immediately after encoding (rather than
only after some consolidation has occurred), and iii) to account for the presence of

abstract conceptual representations in the hippocampus (Quiroga, 2012).

The simple demonstration of retrieval augmented generation in Section shed
some light on this question, showing how hippocampal and generative networks could
jointly draw novel inferences, with the generative network conditioned on retrieved
hippocampal sequences. This could also explain gist-based distortions to sequences
that are observed even prior to consolidation (Bartlett, [1932; Raykov et al., [2023)).
But this is only one aspect of the extended sequential model, as it is still assumed
hippocampal sequences are stored veridically. Further work could explore ways to store
a compact vector representation of each experienced sequence in the hippocampus
together with unexpected elements. However intermediate layer representations in
GPT-2 are not directly comparable to the latent variable representations in a VAE,

since they are less compact, as there is no ‘bottleneck’ in GPT-2, and do not support
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sampling.

The principle of the extended sequential model can also be demonstrated with
narratives by using the generative network to generate a ‘gist’ for each ‘experience’,
and then storing the gist with unexpected elements in the model hippocampus. The
‘full’ memories could then be reconstructed from the gist through retrieval augmented
generation, i.e. by conditioning the generation of the output on the gist retrieved from
the hippocampus. (See Figure for a summary of this proposal, and Section of
the Appendix for further details and examples.) However what a non-linguistic gist or
summary would involve is unclear. In addition, further thought is required regarding
the connection between ‘gists’ and compact vector representations of sequences, and
which of these options best reflects the conceptual component of sequential memory

in the hippocampus.

There are several other directions for future research. Firstly, I treat the stimuli
in the simulations as though they are already segmented, and do not address how
continuous experience is discretized into events (Newtson, [1973; Newtson & Engquist,
1976)). The relationship between event segmentation theory (Zacks et al., 2007), the
Structured Event Memory (Franklin et al., 2020) account, and this model should be
explored, as prediction error according to the generative network could be used to
segment the sequence. One complexity is that event segmentation occurs at multiple
levels of granularity; this could potentially involve rolling means of prediction error
over different time periods, or alternatively variable error thresholds (so that more
fine-grained segmentation occurs when the error exceeds a lower threshold, and more
coarse-grained segmentation a higher threshold). However how these segments of

varying lengths would be stored is unclear.

A more fundamental issue is how to learn cross-boundary transition probabilities at
all. Whilst cross-boundary transitions are remembered less well (DuBrow & Davachi,
2013)), they are not forgotten completely, which is what would happen if no sequence
in the hippocampal network captured the transition. The hippocampal network is
thought to preferentially encode unfamiliar (i.e. high prediction error) experiences

(Hasselmo et al., |1996), such as an unexpected transition to a new context, and
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reconciling this with the mechanism for event segmentation is a challenge.

Secondly, much more could be done to explore the connections between language,
memory, and imagination. As demonstrated in this chapter, advances in generative
models allow certain psychological phenomena involving language to be modelled
more fully than was previously possible. A number of mental health symptoms and
conditions are thought to relate to narratives, e.g. rumination (Nejad et al., 2013)),
delusion (Coltheart et al., [2011), and confabulation (Kopelman, 2010), so this may
be fruitful from a computational psychiatry perspective. (I revisit rumination in
Chapter Four.)

Thirdly, this is primarily a model of psychological, rather than neural, data. Much
more work could be done to bridge the gap between the ideas in this chapter and the
growing understanding of sequence representations at a neural level. In particular,
the sequential model allows the consideration of navigation, which is associated with
distinctive cell types such as grid cells, so the connection between these different

levels of explanation should be explored.
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Figure 3.12: A simplified model of hippocampal-neocortical interactions as retrieval augmented
generation with stories. a) The neocortex generates a gist for the narrative, which is encoded in
the hippocampus together with unpredictable details (not simulated here). b) Given a query as
the input to recall, the neocortex searches the hippocampus for relevant traces, e.g. by finding
nearby embeddings in this simulation. ¢) The generative network in neocortex produces an ‘answer’
conditioned on the retrieved hippocampal trace(s). See Section of the Appendix for further

details and examples.
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Type

Original

Recalled

Incomplete

I first learned to ride my bike with
my mom. I was so excited to ride to
school an

I first learned to ride my bike with
my mom. [ was so excited to ride
to school. My mom was so proud of
me.

Jean had a job interview for a pos-
ition she really wanted. The inter-
viewer said the company would call
the next day. That day, Jean dis-
covered her phone had no dial tone.
She frantically searched and f

Jean had a job interview for a pos-
ition she really wanted. The inter-
viewer said the company would call
the next day. That day, Anna was
at work. She got the call and was so
excited. The interviewer had no idea
Anna was so excited!

Complete

Tom had a very short temper. One
day a guest made him very angry.
He punched a hole in the wall of his
house. Tom’s guest became afraid
and left quickly. Tom sat on his
couch filled with regret about his ac-
tions.

Tom had a very short temper. One
day a guest made him very angry.
He punched a hole in the wall of his
house. The guest got scared and left
quickly. Tom regretted it very much
that night.

Jim got a tattoo when he was
younger. It was an impulsive de-
cision. After a while Jim really didn’t
like it. He decided to get it removed.
It was costly but worthwhile.

Jim got a tattoo when he was
younger. It was an impulsive de-
cision. After a while, Jeff really
didn’t like it. He decided to get it
removed. Jeff was very embarrassed
by the decision.

Updated

Max’s car was old. It needed new
tires desperately. He bought a set
from the discount tire store. They
worked very well for a month. Then
the rubber came apart and they went
flat! Rita was so excited she couldn’t
sleep. That night her Mom took
her camping. They had a wonder-
ful time.

Max’s car was old. It needed new
tires desperately. He bought a set
from the discount tire store. They
worked very well for a month. Then
the rubber came apart and they went
flat!

Sarah was tired of seeing spiders in
her room. So she decided to use
special bug spray. But later, she
read that birds are a better solu-
tion. So she built a birdhouse to
attract birds to her backyard. And
she didn’t see spiders in her room
anymore. The performer was ready
to go! She walked out on stage and
heard the applause and cheers. The
stage

Sarah was tired of seeing spiders in
her room. So she decided to use spe-
cial bug spray. But later, she read
that birds are a better solution. So
she built a birdhouse to attract birds
to her backyard. And she didn’t see
spiders in her room anymore.

Table 3.5: Event extension and contraction examples.
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Chapter 4

Consolidation and continual

learning

4.1 Introduction

Catastrophic forgetting or interference occurs when newly learned information over-
writes previously learned information in a neural network, leading to poor performance
on the previously learned tasks (McCloskey & Cohen, |1989)). Continual learning is
the ability to learn, or memorise, a series of tasks, or items, sequentially without the
occurrence of catastrophic forgetting (Hadsell et al., [2020)). During consolidation, it
is thought that hippocampal memory traces ‘teach’ predictive models of the world
new information (Chapter Two), but how this process avoids destroying previous

learning is not fully understood.

Beyond memory consolidation, this is a general problem for connectionist models
of the brain (French, 1999)). The training data for machine learning problems is
carefully curated, e.g. to balance the number of examples of different categories,
and shuffled before training. Reality is far messier, so biological learning must be
robust to changing distributions over time. For example, it might be important for

survival for a single highly salient event to be remembered, even in the absence of
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reminders and the presence of conflicting data. The field of lifelong learning tries to
make machine learning capable of continual learning over long timescales in more

naturalistic contexts.

This problem is closely linked to the stability-plasticity dilemma (Carpenter &
Grossberg, 1987). Networks in the brain must be plastic enough to learn from a
single event, but stable enough for existing knowledge to be preserved. Whilst the
complementary learning systems account (CLS; McClelland et al., 1995 made progress
on this problem, explaining how a single event can be gradually assimilated into
neocortex, there is still the issue of how old knowledge can be retained in the absence
of hippocampal traces (in CLS all memories are retained to train the neocortical

network).

Building on the account of memory consolidation and construction presented so far,

this chapter discusses the following points:

1. How the brain avoids catastrophic forgetting - i.e. achieves only gradual
forgetting - in memory consolidation is unclear. If the neocortical ‘world model’
is trained only on new memories, old memories degrade faster in neural network
simulations than observed in reality. This is a general issue for all accounts of
memory consolidation, including classic views like CLS, which is only solved
in machine learning through the careful interleaving of training data (Norman
et al., 2005).

2. Learning from self-generated data (‘generative replay’) during the integration
of new knowledge into a generative model alleviates catastrophic forgetting.
Whilst generative replay can be used to reduce catastrophic forgetting in a
separate classifier (Shin et al., 2017)), it can also enable continual learning in the
generative model itself (Sun et al., |[2019; Van de Ven & Tolias, [2018]). However
too much generative replay may lead to model degradation (Alemohammad
et al., 2023).

3. Many variables affect the results of this approach; I demonstrate a few of

these factors with causal language models trained on paths in consecutive
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environments. In particular, I explore different ways of sampling from the
generative model, and show that a small number of self-generated examples can

suffice to stabilise old knowledge.

4. Learning from self-generated experience can aid inference and generalisation,
preventing overfitting to real experience as well as catastrophic forgetting (Hoel,
2021; Kurth-Nelson et al., [2023). This gives clues to how generative models
contribute to offline learning. However, the model can also degrade as a result
of self-generated learning (Alemohammad et al., 2023; Shumailov et al., [2023)),

with the pathological effects of rumination simulated as one example of this.

5. The stages of sleep may be optimised to interleave new and old knowledge,
enabling continual learning (Hoel, [2021; Norman et al., 2005; Singh et al., [2022)).
Although this is more speculative, I explore the effect of variables such as the
number of sleep cycles and ratio of NREM to REM ‘sleep’.

I focus on exploring these issues in a simplified spatial task, because much of the
literature in this area relates to rodent spatial cognition. This makes use of the

sequential model proposed in Chapter Three.

4.1.1 The problem of catastrophic forgetting

Most research on catastrophic forgetting focuses on classification tasks, where in
each phase the distribution of the training data changes in some way. Suppose a
classifier learns to categorise an input as one of four classes. First it is trained on
classes A and B (phase one), distinguishing between them with high accuracy. If
it is then trained on classes C and D only (phase two), the performance on classes
A and B is likely to deteriorate. This is an example of catastrophic forgetting in a
class-incremental learning task (Van de Ven & Tolias, [2018), but this issue can be

found in many settings.

Continual learning also has clear relevance to generative models. The previous
chapters propose that consolidation involves training a generative model of experience

on replayed hippocampal memories. This model needs to retain its ability to represent
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a certain type of event even when it has not been experienced for months or years.
Without this, the ability to recall or imagine remote events would be lost over

time.

Computational models of memory ought to display gradual forgetting, but catastrophic
forgetting is a more dramatic decline which is not observed in healthy adult human
memory. (However, Darby and Sloutsky (2015]) suggest that in young children
retroactive interference effects appear similar to catastrophic interference.) Gradual
forgetting could reflect degradation of the memory trace due to either ‘intrinsic’
causes, or ‘extrinsic’ interference from new memories, whereas catastrophic forgetting

is due to interference.

One might expect catastrophic forgetting to be alleviated if unexpected memories are
stored preferentially, as in the model presented so far - when a category of memory
begins to decay, the generative network’s prediction error for that category increases,
meaning that examples are stored. With consolidation these memories refresh the
category’s representation in the generative network. However this does not fully solve

the problem, as some memories are of rare or unique categories, for which ‘reminders

are experienced rarely or not at all.

Note that we are less concerned with the problem of catastrophic forgetting in
classification tasks in this chapter. In Chapter Two I suggest that semantic memory
could be supported by projections from latent variable representations, and show that
lightweight models can be trained on relatively few examples to decode latents into
categories. Learning multi-purpose representations arguably makes continual learning
more feasible; if only a few parameters are task-dependent, it is more reasonable to
assume that the brain could learn new ‘classifiers’ for new categories. (For example,
logistic regression classifiers on top of CLIP image embeddings are highly competitive
with deep neural networks trained on particular tasks (Radford et al., 2021), making
it possible to have many task-specific classifiers without adding many parameters.)
Catastrophic forgetting in category learning is therefore a more tractable problem

than catastrophic forgetting in the ‘world model’ itself.
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4.1.2 Catastrophic forgetting and consolidation

CLS makes progress on the stability-plasticity dilemma with two networks that learn
at different rates, the more stable cortex learning gradually from repeated replay,
following one-shot encoding in the more plastic hippocampus. If the environment
is mostly stationary with occasional surprises, CLS works very well, preserving
knowledge of the environment in the cortex and also integrating the rare events. As
Norman et al. (2005) put it, the hippocampus serves as a ‘training trial multiplier’.
However, as the authors point out, CLS and subsequent models run into problems
when the statistics of the environment change so that there are no longer hippocampal

‘reminders’.

Norman et al. (2005) illustrate this by considering the effect on the concept of birds
when a person moves to Antarctica, if CLS were true with respect to this issue.
Initially, memory of typical birds, and facts such as ‘most birds can fly’, would
persist thanks to hippocampal replay of typical bird memories. But over time, the
likelihood of typical bird memories being replayed relative to penguin memories would
become lower and lower, if only penguins were observed in waking life (ignoring other
Antarctic bird species for the sake of argument). Eventually the cortex would only be
exposed to penguins, whether awake or asleep, and knowledge of typical birds would

suffer catastrophic forgetting.

Norman et al. (2005) argue that ‘the CLS model can be supplemented by a new
kind of off-line learning where cortex and hippocampus separately rehearse stored
memories, thereby repairing damage to these memories’ (Introduction), and that this
occurs during REM sleep. Singh et al. (2022)) develop this proposal further; in their
model, during NREM sleep the hippocampal network replays its attractor states to
the cortex, whereas during REM sleep the cortex autonomously activates its own

attractors due to network oscillations.

To support this view Norman et al. (2005) review evidence that ‘SWS may support
hippocampal replay of new memories to cortex, and REM may support tuning of

pre-existing cortical and hippocampal representations’ (Data section). This includes
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findings that hippocampus and neocortex are highly synchronised during NREM
but not REM sleep, suggesting that REM sleep involves hippocampus-independent
processes. (But on the other hand, hippocampal damage leads to dreams in REM
sleep lacking in vividness and detail (Spano et al., |2020), in line with the many

findings discussed in Chapter One implicating HF in all ‘event generation’.)

A few other papers in the neuroscience literature connect consolidation and/or
hippocampal replay with continual learning. For example, Gonzalez et al. (2020)
propose that sleep may be a mechanism for reducing catastrophic forgetting of
old memories due to interference from new memories, specifically by ‘combining
consolidation of new memory traces with reconsolidation of old memory traces to

minimize interference’ (Abstract).

Kali and Dayan (2004)) show that experience replay is required to avoid catastrophic
forgetting in their model of consolidation. They find that without reactivating
memories stored in the hippocampus, consolidated episodic memories are easily
forgotten due to cortical plasticity. Replay ‘allows access to episodes stored in the
hippocampus to be maintained, by keeping them in appropriate register with changing

neocortical representations’ (Kali & Dayan, 2004, Abstract).

Their model is a restricted Boltzmann machine (RBM; see Section [1.6.2)). The input
layer of the RBM represents the sensory neocortex (SNC), and the hidden layer
represents the medial temporal neocortex (MTNC). The hippocampus (HPC) is
connected to MTNC, and stores patterns of MTNC activity. In recall, partial or
corrupted activity in SNC propagates to MTNC, activating the most similar stored
memory in HPC, with MTNC activity then propagating back to a complete version
of the memory in SNC.

The data used in the simulations are binary patterns, with 8,000 possible patterns
overall. During semantic pre-training, the RBM is trained on a large number of
random patterns to learn their statistics (but none are encoded in HPC at this
stage). Next, the network encodes a smaller number of patterns sequentially, this
time adjusting the weights of the RBM but also storing the resulting MTNC pattern
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in the HPC. Ka&li and Dayan (2004) alternate these experience-initiated events with

replay-initiated events to achieve successful ‘consolidation’.

Experience-initiated learning works as follows: Activity in SNC first spreads to MTNC.
As the signal bounces back and forth, the weights are adjusted using the contrastive
divergence algorithm (see Section . To encode an episode, the pattern in MTNC
is written to HPC. Replay-initiated learning works as follows: A stored pattern in
HPC is randomly activated, producing activity in MTNC which spreads to SNC. As
the signal bounces back and forth, the weights are again adjusted using the contrastive
divergence algorithm, but with the layers ‘flipped’. In other words, the simulation
involves the training of an RBM as usual, but with an extra stage (offline learning

from replay) that keeps the ‘meaning’ of the hidden variables more stable.

Kali and Dayan (2004)) consider what happens when replay is inactivated: they find
that even if an episode ‘remained perfectly stored in the hippocampus throughout ...
neocortical learning came to erase the route to recall’, because ‘continued semantic
learning after the storage of the episode caused its MTNC representation to move away
from the version with which the stored hippocampal trace was associated’ (Index
Maintenance section). In other words, the authors show that without memories
being replayed, the network’s representations drift away from their initial ‘meaning’
at the time of encoding. The stored memories become out of sync with MTNC
representations, leading to rapid forgetting. Crucially, this applies to consolidated

memories too.

My approach to this problem differs in several ways. Firstly, I do not assume that
events can be stored indefinitely in the hippocampus. Secondly, Kali and Dayan
(2004)) model hippocampal traces as latent representations, whereas I model them as
sensory features (in the basic model) or a combination of latent representations and
sensory features elements (in the extended model). This avoids representation drift
to the same extent. Thirdly, I explore continual learning in the neocortical model,

rather than how the ability to retrieve hippocampal traces is maintained.
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4.1.3 Continual learning techniques

An obvious strategy to avoid catastrophic forgetting is to interleave examples from
the different classes in the training data, e.g. by shuffling together a balanced dataset
of examples. But this requires retaining all the training data, which is not biologically
plausible. In the machine learning literature, and especially in reinforcement learning,
the hippocampus is often thought of as a ‘memory buffer’ to reduce catastrophic
forgetting (e.g. Roscow et al., 2021). As described above, whilst this may be true over
short timescales, it does not solve the lifelong learning problem, since the hippocampus
does not store all its memory traces indefinitely (even if it is always required for

episodic recall).

However, multiple approaches have been suggested for how to avoid catastrophic forget-
ting without keeping a copy of all training data. These mainly fall into ‘regularisation-
based’, ‘expansion-based’ and ‘rehearsal-based’ categories (Van de Ven & Tolias,
2018)). Elastic weight consolidation (Kirkpatrick et al., 2017)) is the most well-known
regularisation-based approach. It aims to prevent the subset of weights that are most
important for a task from changing too much in subsequent learning. Another way to
get, different weights to ‘specialise’ in different tasks is by adding new weights during
learning; this is the expansion-based category. For example, Rao et al. (2019) propose
a ‘dynamic expansion approach in which capacity is added as needed’ for new tasks.

However this may not be scalable as the number of tasks grows.

Early approaches that attempt to ‘remind’ the network of the original data fall into
the rehearsal-based category. The ‘pseudo-rehearsal’ strategy (Robins, |1995) involves
giving a classifier random inputs at the end of a phase, recording its outputs, and
then interleaving these examples during the next phase. These approaches use a form
of teacher-student learning, as they train the ‘student’ model in phase two on inputs
labelled by the ‘teacher’ model in phase one, in order to maintain the behaviour in
phase one. Unfortunately this becomes less successful as tasks get more complex, as
the random inputs are not representative enough to capture the model’s behaviour in

their outputs.
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4.1.4 Generative replay in machine learning

Generative replay (Shin et al.,2017; Van de Ven et al., |2020; Van de Ven & Tolias,
2018)) is a more recent variant of the rehearsal-based category. When this approach is
applied to classification tasks, a generative model learns to generate representative
examples of the classifier’s training data, including those from previous phases of
training. These are then labelled by the classifier at the end of a phase, and mixed into
the training data in the next phase. If the generative model suffers from catastrophic
forgetting, generative replay just moves the problem elsewhere, so how might continual
learning in the generative model itself be achieved? The generative model can be
trained on its own self-generated data, as Shin et al. (2017) propose. Note that this
is connected to the concept of self-distillation (Furlanello et al., 2018)), which I revisit

later.

The following example provides some intuition for the effect of generative replay
on the generative model itself: consider a generative model trained on images of
different animals consecutively. If in phase one the model was trained on cats, and
then in phase two on dogs, it would lose the ability to (re)construct cats. But if
self-generated cats were mixed in with dogs in phase two, memory of both classes

would be preserved.

Van de Ven and Tolias (2018) combine a classifier and generative model in a single
network, thus avoiding the training of two separate models, in order to make generative
replay more efficient. Specifically they use a VAE with an additional classification
layer in the middle, trained on the sum of a classification loss and the usual VAE
loss. It learns from both experience and replay, the latter initiated by sampling
from the latent variables then decoding them into generated examples. (The authors
observe that generative replay with distillation - where the classifier is trained not
just on the predicted labels of the previous model for generated inputs, but the
predicted scores - performs better than plain generative replay. So for the replayed
data, the classification loss is replaced by a distillation loss.) Van de Ven et al. (2020))
develop this model further with various refinements, such as the use of a different

prior in the VAE to enable class-conditional generation. They contrast their approach
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with both the ‘standard’ view of the hippocampus as a ‘memory buffer’ replaying
veridical memories to neocortex, and the view of the hippocampus as a standalone

generator.

I build on the idea of training generative models on self-generated data (Shin et al.,
2017; Van de Ven et al., 2020; Van de Ven & Tolias, 2018)), but there are several
differences from previous work. Firstly, consolidation is not a primary focus in these
existing studies, so they do not explore how ‘standard’ hippocampal replay of new
memories could be combined with generative replay. Shin et al. (2017) and Van
de Ven et al. (2020) imply all replay is generative and new knowledge is instead
acquired with online learning from direct experience, which is arguably implausible
for the reasons McClelland et al. (1995) explain, whereas I suggest recent memories
are intermixed, or interleaved, with generated events. Secondly, Van de Ven et al.
(2020) and Van de Ven and Tolias (2018) use a specific VAE variant architecture
and test continual learning performance on an image classification task, whereas |
explore continual learning primarily in autoregressive sequence models, and test tasks
performed by the generative model itself. These tasks capture the ability to remember

an environment and the ability to draw novel inferences about it.

More recent work shows that generative replay can be applied to many types of
generative model. LAMOL (Sun et al., 2019) — ‘LAnguage MOdeling for Lifelong
language learning’ - is an approach to continual learning for large language models
(LLMs). The authors show that replaying ‘pseudo-samples’ of old tasks whilst a new
task is learned reduces catastrophic forgetting, outperforming rival continual learning
techniques. It does even better when samples are conditioned on a task-specific token,
ensuring that there are sufficient reminders for each previously learned task; without
this, the authors note that samples of more remote tasks become infrequent over
time. More recent research explores other ways to control the sample generation of
LLMs to optimise continual learning; for example, Maekawa et al. (2023)) use a model
‘hippocampus’ that stores the beginning of a subset of items from the training data.
The LLM produces the generated samples conditioned on these hippocampal inputs,

fusing the rehearsal-based and generative replay approaches.
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4.1.5 Self-generated training data in machine learning

Generative models can be trained on their own generated data as they learn new
tasks, reducing catastrophic forgetting in the generative model, but this can come

with drawbacks.

Alemohammad et al. (2023) argue that generative models trained on their own data, in
what the authors call an ‘autophagous (“self-consuming”) loop’, can degenerate over
time. They show that with fully synthetic data ‘the quality (precision) or the diversity
(recall) of the generative models decreases over generations’, however ‘with enough
fresh real data, the quality and diversity of the generative models do not degrade’
(Contributions section). Similarly, Shumailov et al. (2023) find that ‘model collapse
is universal among generative models that recursively train on data generated by
previous generations’ (Theoretical Intuition section), where model collapse is a process

whereby a generative model produces an increasingly limited set of outputs.

In other words, with insufficient real data, training on self-generated data reinforces the
generative model’s statistical biases, leading to forgetting of the true data distribution.
If the quality is too low, errors compound over time, e.g. Alemohammad et al. (2023)
show that image generation artefacts become more pronounced in an ‘autophagous’
generative adversarial network. But if the diversity is too low, the model ‘collapses’
to just a few examples. This concept of ‘model collapse’ is related to the concept
of ‘runaway consolidation’ (Norman et al., 2005), where rehearsal of the strongest

memories leads to a vicious circle of forgetting.

Such research might lead to scepticism about generative replay improving generalisa-
tion, even if it can support continual learning. On the other hand, offline learning
from a model of the environment has been used extensively in reinforcement learning
with great success. For example, the DYNA architecture (Sutton, 1991)) is a model-
based reinforcement learning (RL) algorithm in which an agent learns a model of the
environment through experience, which captures the transition probabilities between
states. As in conventional RL, the agent learns a value function or policy directly

from real interactions with the environment; Q-learning is used in Sutton (1991) but
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the same approach can be applied more broadly. However, in addition, the DYNA
agent uses its learned model of the environment to simulate experiences. During the
planning phase, the agent ‘imagines’ taking actions in various states and observes the
predicted outcomes according to its model. These simulated experiences are used to
update the agent’s value function or policy. The DYNA architecture is particularly
powerful when actual interactions with the environment are limited. See also Ha and
Schmidhuber (2018)) for more recent work that implements the world model as a VAE

trained on video game footage.

Similarly, data augmentation is widely used in training classification models, partic-
ularly for images; whilst augmentations were previously rules-based (e.g. resizing
existing images) they now often involve the creation of variant images with diffusion
models (Trabucco et al., 2023). Examples from reinforcement learning and classi-
fication tasks demonstrate that generative models can improve the generalisation
abilities of other models. But the success of augmenting a separate model’s training
data with ‘imagined’ examples from a generative model does not necessarily imply

that a generative model can learn from its own outputs.

Also relevant are ‘Born-Again Networks’ (Furlanello et al., 2018), in which self-
distillation is used to train a student with an identical architecture to the teacher on
the teacher’s outputs. Distillation traditionally involves a larger teacher model training
a smaller student, but Furlanello et al. (2018) use a succession of identical models.
The process starts by training a ‘first-generation” model on a given classification
task. This model’s outputs (the distributions of scores rather than the final labels)
are used to train a ‘second-generation’ model. This process can be repeated for
multiple generations, with each student becoming the teacher for the next generation.
Furlanello et al. (2018) show that student models can outperform their teachers,

displaying better generalisation despite having access to no additional ‘real’ data.
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4.1.6 Generative replay in the brain

In neuroscience, the term generative replay is sometimes used in a broad sense to refer
to training on self-generated data (Van de Ven et al., 2020)), which is the definition
adopted here, and sometimes used in a narrow sense to refer to certain kinds of novel
sequence in the hippocampus (Schwartenbeck et al., |[2021). It is worth expanding on

the connection between these concepts.

As Kurth-Nelson et al. (2023) summarise, there is plenty of evidence that the sequences
of place cells firing in hippocampal replay do not always reflect real trajectories, but
can join together separate subsequences (Gupta et al., 2010), ‘diffuse’ throughout
an open environment (Stella et al., 2019), or traverse regions that have never been
visited in reality (Olafsdéttir et al., 2015; Pfeiffer & Foster, 2015). For example,
Gupta et al. (2010) showed that after rats explored a T-shaped maze, the horizontal
corridor of the maze was replayed as a single sequence, despite the left and right sides
only ever being experienced separately, whilst Olafsdéttir et al. (2015) showed that

rats replayed paths within regions of a maze that they could view but not visit.

There is also evidence from human neuroimaging that sequences (re)played by the hip-
pocampus do not always correspond to real memories (Liu et al., 2019). Participants
experienced stimuli in a scrambled order, after learning a pattern according to which
the stimuli could be unscrambled. The replayed sequences were unscrambled rather
than in the scrambled order experienced by the participants. This has added further
support the idea of generative replay as sampling from a model of the world. The
‘world model” implied by these findings could be the type of generative model learned
through consolidation, as suggested in this thesis, or a more ‘neurosymbolic’ model
where entities are bound to roles to implement compositional reasoning (Kurth-Nelson
et al., 2023).

The description of these imagined sequences as generative replay (e.g. Schwartenbeck
et al., 2021) suggests that this phenomenon is a variant of ‘standard’ hippocampal
replay. ‘Preplay’, in which a trajectory is played out by the hippocampus preceding

its experience, is another recent addition to this category (Dragoi & Tonegawa, 2011;
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Olafsdéttir et al., [2018), thought to depend on latent codes for space in entorhinal
cortex (Bicanski & Burgess, [2018). It is worth noting that observing a novel sequence
being (re)activated in the hippocampus does not necessarily imply the sequence is
stored there, or that the activity is initiated there. According to the account presented
so far, the hippocampal formation is required for many kinds of ‘event generation’, so
arguably the ‘generative replay’ of novel sequences is more like neocortex-initiated
imagination than the reactivation of hippocampal traces in ‘standard’ hippocampal
replay. (However generative replay is a commonly used term in both the machine

learning and neuroscience literature, so I use it throughout this chapter.)

Stoianov et al. (2022)) propose a computational model of how the hippocampus gives
rise to non-veridical sequences (Dragoi & Tonegawa, [2011; Gupta et al., 2010; Liu
et al., [2019; Olafsdéttir et al., [2018; Stella et al., 2019)), and of how these contribute
to continual learning of spatial environments. They argue that the hippocampal
formation is a hierarchical generative model supporting spatial cognition, with items,
sequences, and maps corresponding to different levels in the hierarchy. The ability to
infer which environment the agent is in, as represented by the final ‘map’ layer, is
used to assess continual learning. As the model learns new environments, it generates
samples of previous environments to avoid catastrophic forgetting. This differs from
the work in this chapter as it focuses specifically on a hierarchical model of spatial

environments, rather than a more general transition model for sequences.

4.1.7 Dreams and continual learning

Whilst most hippocampal replay events occur in NREM sleep, implicating it in
memory consolidation (Ego-Stengel & Wilson, 2010; Girardeau et al., [2009), there
is less consensus regarding the role of REM sleep. REM sleep is associated with
dreaming, which makes it natural to ask whether it could be a mechanism by which

self-generated stimuli stabilise the current model of the world.

As described above, Norman et al. (2005)) and Singh et al. (2022) argue that REM sleep
supports ‘stabilisation’ of remote memories. Similarly, Walker and Stickgold (2010)
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propose that while NREM sleep consolidates new memories, REM sleep ‘supports the
integration of these and older memories into rich associative networks’ (Assimilation
section). Furthermore McDevitt et al. (2015 provide experimental evidence that ‘the
brain can rescue and consolidate memories damaged by interference, and that this

process requires REM sleep’ (Abstract).

Other models share the view that spontaneous activity during sleep could reactivate
weak connections then strengthen them with Hebbian plasticity, saving previous
learning or memory from catastrophic forgetting (Gonzalez et al., |2020; Tadros
et al., [2022). As Tadros et al. (2022) describe, ‘information about old tasks is not
completely lost even when catastrophic forgetting is observed from the performance-
level perspective’, since traces of information relevant to the old task remain in the
synaptic weights, and ‘can be resurrected by offline processing’ (SRC Algorithm

section).

However the connection between REM sleep and declarative memory is controversial.
The ‘dual process hypothesis’ (Marshall & Born, 2007; Smith, 2001) suggests NREM
sleep supports the consolidation of declarative memories, whereas REM sleep supports
the consolidation of non-declarative memories (such as procedural memory for skills).
Meanwhile some research disputes the idea that REM sleep is related to memory
at all, e.g. Vertes and Eastman (2000) note that several common antidepressants
dramatically suppress REM sleep but memory deficits are not observed. They argue
that REM deprivation techniques in experiments linking REM to memory processing

often induce stress, which is a confounding factor. See also Siegel (2001]).

But more recently, stronger evidence has emerged of the link between REM sleep and
consolidation. Noting the limitations of previous studies based on correlation alone,
Boyce et al. (2016) used optogenetics to suppress the theta rhythm during REM
sleep in mice, without disrupting other aspects of sleep, and found this impaired

consolidation.

Other work has also explored the potential functions of dreams. Hoel (2021)) suggests

that dreams are simulated ‘out-of-distribution’ events that help the brain avoid
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overfitting to real experiences. Hoel (2021) argues that ‘the most effective way
to trigger dreams about something is to have subjects perform a novel task like
Tetris repetitiously ... because the visual system has become overfitted to the task’

(Discussion).

Whilst some dreaming does occur in NREM sleep, dreams during REM are thought to
be more frequent, longer, richer in detail, and more bizarre (Hobson et al., 2000). In-
triguingly, Cavallero et al. (1992) observe that ‘semantic knowledge is more frequently
mentioned as a dream source’ for REM than NREM dreams (Abstract). In addition,
(Blagrove et al., |2011) find there is a lag of 5-7 days between experience and REM
dreams, but no such lag for NREM dreams, consistent with the idea that dreams
originate from consolidated memory. However, some studies dispute the extent of
these differences (Oudiette et al., 2012)). (As an aside, dreams are reported to become
richer and more complex over the course of development (Foulkes, [2009), in fitting
with the fact that a generative model trained on more data would generate more

varied outputs.)

Deperrois et al. (2022)) present an alternative view of the functions of sleep. In their
computational model, the authors refer to NREM sleep as ‘perturbed dreaming’,
and REM sleep as ‘adversarial dreaming’. In NREM sleep, the hippocampus replays
encoded memories (modelled as images), which are then perturbed by the addition
of occlusions. The network’s weights are adjusted to make the latent codes for the
perturbed images more similar to the latent codes of the originals (a common strategy
for learning robust representations, as in a noise-reducing autoencoder). REM sleep
involves adversarial training: the generator learns to trick the discriminator, while

the discriminator learns to distinguish dreams from reality.

It is clear that the brain can generate novel events, and it seems highly likely that
these imagined stimuli contribute to learning. But the evidence that REM sleep
specifically contributes to learning is weaker. The relationship between generative
replay and sleep in the subsequent results is therefore more speculative than the
basic idea that generative replay enables continual learning, but I explore it as an

interesting hypothesis.
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4.1.8 Maladaptive learning from imagination

Learning from imagination, i.e. updating beliefs based on self-generated data, can also
have adverse effects. Arguably rumination, delusion, hallucination, and confabulation
all involve maladaptive imagination of some kind. Rumination refers to repetitive
thinking, often involving episodic recall with a negative emotional bias (Nejad et
al., 2013), delusion refers to false beliefs (Coltheart et al., 2011, and hallucination
to false perception (Beck & Rector, 2003). Confabulation refers to distortions in
episodic memory beyond the typical gist-based distortions discussed in Chapter Three
(Kopelman, 2010). These phenomena are thought to be linked, e.g. rumination
increases the likelihood of hallucination (Jones & Fernyhough, |2009) and delusion
(Carse & Langdon, 2013).

Rumination is particularly relevant to the questions in this chapter. As mentioned
above, this term refers to repetitive negative thinking and is associated with multiple
mental health conditions including depression and anxiety (Nejad et al., 2013). Ru-
mination is often focused on the past, distinguishing it from more future-oriented
‘worry’ (Ehring & Watkins, |2008). Specifically rumination involves recalling autobio-
graphical memories with a negative bias, in such a way that negative biases in the
memory are further reinforced. (The term ‘maladaptive rumination’ is sometimes
used to distinguish these behaviours from typical rumination on memories and beliefs,

which can be adaptive.)

Neuroimaging evidence links rumination to regions in the proposed generative network;
this is to be expected given that rumination often involves remembered and imagined
autobiographical events, which are known to activate the hippocampal formation
as well as association cortex. In an fMRI study, Hamilton et al. (2011) compared
activity in the default mode network — the network associated with passive mind
wandering in the absence of a specific task — with task-specific activity to quantify
‘default mode dominance’. An ‘overactive’ default mode network, which overlaps with
the proposed network for generating autobiographical events, was associated with

higher levels of maladaptive rumination in patients with depression.
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Recall of autobiographical memories after rumination is negatively biased compared to
recall after a distractor task (Lyubomirsky et al., |1998). This is evident in free recall,
with more negative memories recalled after rumination, but furthermore distorts
judgements. For example, participants recalled the frequency of negative events in
their life as higher, and the frequency of positive events as lower, following rumination.
Lyubomirsky et al. (1998) note a feedback loop in which ‘negative memories may
further exacerbate depressed mood through their effects on negative thinking and
poor problem solving ... thus feeding a vicious cycle between rumination, mood,

and negative thinking’ (Introduction).

Mechanistic accounts of rumination are limited, partly because the tools to model
narratives computationally are so recent, but there are a handful of relevant studies.
Van Vugt et al. (2018) model the ‘habits of thought’ account of rumination, in which
‘patterns of memory associations that are frequently rehearsed can become something
like an attractor ... and therefore will be replayed any moment there is time for
mind-wandering’ (Introduction). (However, this work does not model memories’
contents but just their association structure.) In addition, Berg et al. (2022) discuss
rumination from the perspective of the active inference framework, and propose that

it involves sampling possible policies in a maladaptive manner.

4.2 Methods

4.2.1 Continual learning with sequences

The sequence simulations described here investigate the impact of generative replay
on continual learning, focusing on spatial navigation tasks within simple grid en-
vironments. I simulate the consolidation of a succession of environments, and test
the effect of generative replay on continual learning. Each environment consists
of a 3x3 grid, with 9 locations represented by randomly generated nouns, and the
trajectories the model is trained on are the shortest paths between points within the

environment.
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In the pre-training phase, a base model is trained on many such environments,
not including the new environments used in the subsequent tasks. This represents
the background knowledge in the generative model of the world. In the task, a
model is trained on five consecutive environments, with and without generative
or experience replay. The experiments are repeated across multiple trials, testing
different combinations of training sizes, sample sizes, and temperature parameters to

explore their effects on model performance.

Data preparation

As described above, each environment is represented as a grid in which each location
(i.e. square) is labelled by a random noun. Routes in the environment can then be
represented as sequences of form ‘apple EAST pancake NORTH material EAST chair’.
(As before, sequences are represented as strings of characters because this makes
it straightforward to train GPT-2.) More specifically, the shortest path between
two locations can be represented as ‘FROM: apple, TO: chair, PATH: apple EAST
pancake NORTH material EAST chair’. This enables us to test the ability to infer

the shortest path based on a few examples of a new environment.

The paths for each environment are split into training and testing datasets. The code
supports three ways of doing this. Firstly, by default a random subset are used for
testing and the rest are used for training. Secondly, paths can be sorted by length (in
characters), so that shorter paths are used to train the model. This makes the tasks
more challenging, as the paths in the testing dataset are less likely to be subsequences
of the paths in the training dataset. Thirdly, the twelve horizontal and vertical paths
within the grid can be used for training. This provides a small set of paths that are
guaranteed to provide sufficient information to solve any problem, if the model is can

learn the structure of the tasks adequately.

Simulation procedure

A single generative model is used, which is updated after exposure to each new

environment (i.e. it is fine-tuned - the neural network’s weights are adjusted from the
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existing weights, not initialised from zero). As in the previous chapter, the generative
model uses the GPT-2 architecture, an autoregressive sequence model that learns to

predict the next item in the sequence.

The starting point is the small (117 million parameter) version of GPT-2, trained
by OpenAl on large amounts of text data from the internet (Radford et al., 2019)).
Whilst the sequences in the task are not human language, they feature words, so the
rationale for fine-tuning rather than starting from scratch is that this might accelerate

the learning of the task.

In the following experiments the model is first pre-trained, using the approach
described in the previous chapter. The pre-trained generative network represents
the neocortex, with its existing knowledge of spatial environments, prior to the task.
Specifically, 1000 random three-by-three grids are created, and for each ‘environment’
all shortest paths between all pairs of points are calculated (including multiple paths
of equal length where applicable). This gives 140 sequences per grid, so a total of
140,000 sequences for pre-training. The model was trained for five epochs (iterations
through the full dataset). However the pre-trained model was not trained on any of
the environments used in the subsequent simulations, i.e. new environments were
created for the task itself.

Task procedure
The steps of the simulation when using generative replay are as follows:

1. Create five new three-by-three grids of random nouns to represent environments
1 to 5.

2. Fine-tune the base generative model on environment 1 for 10 epochs, using a

learning rate of 5e-05 and a batch size of 1.
3. Then for each environment z (where z is from 2 to 5):

(a) Generate n sequences from the updated generative model with temperature

T, as per Section m (The model continues generating sequences up to



CHAPTER 4. CONSOLIDATION AND CONTINUAL LEARNING 171

a certain number of tokens, but only the first sequence is taken from the

output.)

(b) Mix together the generated sequences with 100 real sequences from envir-

onment z.

(c¢) Fine-tune the generative model on this combined dataset (randomly over-
sampled to 1000 sequences to keep the total amount of training data

constant), using a learning rate of 5e-05 and a batch size of 1 for 10 epochs.

(d) Generate the metrics described below for the test data for each of the five

environments.

The number of generated samples (n) and the sampling temperature (7') are varied
in Figures [£.2] and [4.4] respectively.

Two baselines are tested for comparison. For the first baseline, which exhibits classic
catastrophic forgetting, the generative model is trained on only the most recently
encoded environment (representing the recent memories stored in the hippocampus
and replayed during sleep and rest). For the second baseline I test ‘experience replay’,
which just replays n random samples from the training data for each previous stage
of the task.

Evaluation Metrics
Model performance is evaluated using two metrics.

The first is the next location prediction accuracy: given a sequence ‘FROM apple,
TO: pear, PATH: apple NORTH’ can the generative model predict the next location?
(Note that the ‘TO:” part of the sequence is irrelevant to the task, but is included
because the model has been trained on this format of sequence.) After training on
each environment, performance is tested on this task across all five environments. For
each environment, the model predicts the next locations given partial sequences from
the test data (where partial sequences end in directions so that each problem has a

single solution), and these are compared with the true next locations. For testing,



CHAPTER 4. CONSOLIDATION AND CONTINUAL LEARNING 172

the highest probability token was picked at each stage (i.e. greedy decoding), rather
than sampling from the probability distribution.

The second is the shortest path accuracy: given a sequence ‘FROM apple, TO:
pear, PATH:” can the generative model provide a valid shortest path? Since there
are multiple such paths of equal length for some pairs of points, the subset of test
problems with no solutions in the training data are used. In other words, a good score
on this metric requires inferring a novel solution, not just remembering a training

example.

I also analyse the generated sequences at each stage of the task to explore the effect
of generative replay on learning. Firstly, I calculate the number of unique locations
from each environment that feature in the generated sequences. Secondly, I categorise
generated sequences into i) ‘real’ shortest paths that were present in the training data,
ii) ‘valid’ shortest paths that are consistent with the grid environment but were not
present in the training data, and iii) ‘invalid’ sequences. This third category could
include sequences that are not consistent with the grid, e.g. a sequence that predicts
‘table NORTH chair’ when ‘chair’ is in fact south of ‘table’; or sequences which are

consistent with the grid but are not shortest paths.

4.2.2 Continual learning with images

I also explore whether generative replay reduces catastrophic forgetting with the

variational autoencoder (VAE) used in the first chapter.

The MNIST dataset was used to represent the ‘old environment’, and the inverted
MNIST dataset was used to represent the ‘new environment’. The latter simply
inverts all pixel values in MNIST images so that they display black digits on a white
background rather than white digits on a black background.

Before simulating consolidation of the inverted MNIST dataset, a VAE with 20 latent
variables was trained for 25 epochs on the MNIST dataset (with early stopping based
on the loss enabled). A learning rate of 0.001 and batch size of 32 was used. The
architecture of the VAE was the same as in the MNIST simulations in Chapter
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Two.

I then tested the performance of three different models: firstly, I tested the VAE prior
to any training on the inverted MNIST dataset. Secondly, I fine-tuned the VAE on
1000 inverted MNIST examples (reflecting consolidation of the new ‘environment’
without generative replay). Thirdly, I generated images (which were representative
of the MNIST dataset) using the VAE, by sampling from the standard normal
distribution for each of the 20 latent variables, and converting the result into an image
with the VAE’s decoder. T then mixed together 500 inverted MNIST images with
500 generated images, and fine-tuned the VAE on this randomly shuffled dataset. 10
epochs of training with a learning rate of 0.001 were used in each case. Histograms of
the VAE’s reconstruction errors for images from inverted MNIST and MNIST datasets
were then plotted. Finally, I tested the effect of different numbers of self-generated
samples, holding the number of new images constant at 500. Results were averaged

across three trials.

4.2.3 Continual learning and sleep

The sleep simulations use the same method as in the sequence simulations described
above, but rather than mixing the ‘recent memories’ and ‘generated data’ together,
they are used in alternating stages. NREM sleep is modelled by replaying sequences
from the most recently encoded environment to the model while REM sleep is modelled
by sampling from the current generative model, and training the generative model on

these samples.

100 epochs are used per simulation in total (an epoch is a complete iteration through
the current training data). Epochs per sleep cycle is calculated as total epochs divided
by the number of cycles. Some fraction of the epochs per cycle are REM epochs
and some fraction are NREM epochs (giving a total of rem_epochs and nrem_epochs
respectively). The base model is first fine-tuned on train_size training sequences from
environment one, representing the model before consolidation of environment two,

then the sleep simulation begins. During each NREM stage, the model is trained
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for nrem_epochs epochs on train_size items (sampled from all possible sequences in
environment two). During each REM stage, the model is trained for rem_epochs
epochs on train_size items sampled from the current generative model. The perplexity
after each stage is recorded, and at the end of ‘sleep’ the ‘next location prediction’
accuracy across the test data for both environment one and environment two is

measured.

Note that because the generated sequences are from the current generative model,
not the initial one, the distribution of the samples changes over time. (For example,
one would expect all the samples to reflect environment one at first, but to reflect
envionments one and two during REM sleep after some consolidation of environment

two.)

There are many parameters that can be varied in the code in future experiments,

including:

1. The number of ‘sleep cycles’ for which to train the VAE, each cycle consisting
of a non-REM phase and a REM phase

2. The fraction of epochs per cycle allocated to the REM phase at the beginning
of the training, and at the end of training, with the fraction increasing linearly

between these values
3. The number of items to use for training during each phase of each sleep cycle

4. The learning rate (different learning rates could be used for REM and NREM
sleep, although I did not explore this)

5. The sampling parameters for generative replay, including the temperature

As described above, the fraction of NREM vs. REM sleep was set by changing the
number of epochs (so that the model saw each sample multiple times), rather than
the number of samples. However the latter would also be a sensible way to implement

this fraction in future work.
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4.2.4 Simulating rumination

Rumination can be modelled as the generative network consolidating a memory as
usual, but then rehearsing the memory repeatedly, and learning from these outputs

according to the procedure described above.

The generative network underwent initial training on the Bartlett (1932)) story plus
one of three datasets. To explore the effect of the generative network’s ‘priors’ on
the effect of of rumination, the simulation was run with three different background
data distributions, as in the memory distortion simulations in Chapter Three: the
‘Shakespeare” model uses lines from Shakespeare plays, the ‘News’ model uses the
‘AG’s News’ dataset (Zhang et al., 2015), and the ‘Scientific papers’ model uses
abstracts of papers scraped from PubMed (Cohan et al., 2018]).

Two further stages of training followed the initial consolidation of the story. In each
stage, the model recalled the Bartlett story, given the sequence ‘One night two young
men from Egulac’ as a prompt. The model was was then trained on the recalled story,
plus 5000 items from the background dataset as before. Recall was tested at the end

of each stage with a sampling temperature of 0.25.

Word clouds show all words in the recalled story (up to the length of the original
Bartlett story). Words that feature in the original story are in grey, whereas new

words (‘semantic intrusions’) are in red.

4.3 Results

4.3.1 Mixing self-generated with new memories

In these simulations I explore consolidation over longer timescales in a constantly
changing environment. Suppose an animal explores five environments consecutively,
e.g. one in the first week, another in the second, and so on. I make the simplifying
assumption that sequences are only stored in the hippocampus for the most recently

experienced environment; even if this would not be true after a week, I assume that
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fully consolidated sequences are not all stored in the hippocampus indefinitely. (For
convenience I do not explicitly simulate the hippocampal network, and the replayed

hippocampal memories are simply sampled from a list of sequences.)

The environments are represented as grids in which each location (i.e. square) is
labelled by a random noun, and shortest paths are represented as sequences of the
form ‘FROM: apple, TO: chair, PATH: apple EAST cat NORTH chair’ (Figure .
Using shortest paths enables us to test the ability to infer the shortest path based
on a few examples of a new environment. As in the previous chapter, I use GPT-2
(Radford et al., 2019), an autoregressive model that learns to predict the next item in
a sequence, to represent the generative network trained through consolidation. The
pre-trained GPT-2 model is further pre-trained on a large set of random three-by-three
grids, in order to reflect the generative network’s ‘background knowledge’ at the start
of the task. It is then trained on five environments consecutively, with and without

generative replay. See Methods for further details.

In the baseline case, the generative model is trained on only the most recently
encoded environment at each stage (representing the recent memories stored in
the hippocampus and replayed during sleep and rest). As expected, catastrophic
forgetting is observed (Figure ) - performance is only high on the most recently
consolidated environment, and decays at an unrealistic rate on the previously learned
environment. (It is worth noting that this is a large model that definitely has capacity
for many environments to be memorised simultaneously, if they were interleaved.
So catastrophic forgetting does not reflect capacity limitations in the network, but

instead interference of new with old knowledge.)

Let us now compare this with the effect of generative replay. At each stage of
consolidation, 100 samples are replayed from the new environment as before, but in
addition n self-generated sequences are added into the training data (where n is 10,
50, or 100 in Figure —d respectively). The results show that forgetting of the old
environments is more gradual thanks to the generative replay; that is, generative replay

alleviates catastrophic forgetting during consolidation into a generative model.
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The more self-generated samples are used, the better performance on the old environ-
ments’ tasks is preserved. Using as few as 10 self-generated samples, intermixed with
100 sequences from the new environment, makes a substantial difference. How little
data is needed for either rehearsal or ‘pseudo-rehearsal’ has been noted in previous
work, e.g. Scialom et al. (2022)) preserve performance of a large language model on
previous tasks during successive fine-tuning by replaying a ‘memory buffer’ containing
only 1% of every previous dataset. As Van de Ven et al. (2020]) observe, even a small
amount of generative replay is beneficial, since not forgetting is easier than learning

from scratch.

I also corroborate the claim that generative replay reduces catastrophic forgetting
with the VAE used in the first chapter, showing that this is not specific to one
particular type of generative model. To demonstrate this, a VAE was trained on
MNIST, and the histogram of reconstruction errors for new images from MNIST and
inverted MNIST datasets was plotted. Unsurprisingly errors were low for MNIST
and higher for inverted MNIST (Figure [£.3] part a). Then the model was trained
on 1000 inverted MNIST images, leading to catastrophic forgetting of MNIST (part
b). However, interleaving 500 samples generated by the VAE at the end of MNIST
training with 500 new inverted MNIST images alleviates this problem, and error for
the MNIST dataset remains low (part ¢). As above, surprisingly few self-generated
samples are required, with a sudden change to the MNIST dataset’s reconstruction

error once 30-40 samples are used. See Methods for further details.

Further research is needed to explore if the latent representations move more or less in
the latent space as a result of generative replay. If they move less between phases, i.e.
are more stable, this may be advantageous for systems that store latent codes, as Kali
and Dayan (2004)) describe. This is because if they are unstable, decoding a latent
code that was stored some time ago may produce a meaningless output. In addition,
recent research proposes ways to keep representations more stable in generative replay
(Caccia et al., 2021). However, whether this would occur the expense of other abilities

- e.g. integrating knowledge across old and new memories - is unclear.
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Figure 4.1: Design for the simulations. Each ‘environment’ is a 3x3 grid with different randomly
selected nouns as locations. Sequences from the environment, specifically shortest paths between
two points, are used as training data. This is intended to mimic ‘standard’ hippocampal replay,
but I do not simulate the hippocampus explicitly. The main task used for testing is next location
prediction given the sequence so far (including the final direction, so that there is a single solution to
each problem). In trials without generative replay, five environments are ‘consolidated’ consecutively.
In trials with generative replay, self-generated samples are added to the training data. Note that

the samples are drawn from the current generative model, not the initial one.
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Figure 4.2: The effect of generative replay. a) The rate of forgetting as a sequence model
consolidates five environments consecutively. The legend gives the environment the model is tested
on. The x-axis gives the most recently consolidated environment. The mean across three trials is
shown, and error bars give the standard error of the mean. b-d) At each stage of consolidation, 100
samples are replayed from the new environment as before, but in addition n self-generated sequences
are added into the training data.
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Figure 4.3: Corroborating the effect of generative replay with a variational autoencoder as the
generative model. a) The histogram of reconstruction errors for new images for a model trained on
the MNIST dataset. As expected, the error is low for MNIST (dataset one) and higher for inverted
MNIST (dataset two). b) Results for a model trained on MNIST then inverted MNIST. Catastrophic
forgetting of MNIST (indicated by the high reconstruction errors) occurs. ¢) Results for a model
trained on MNIST (phase one) then inverted MNIST (phase two), but with samples generated by
the VAE at the end of phase one added to the training data in phase two. d) Mean reconstruction
error on the MNIST and inverted MNIST datasets against the number of self-generated samples.
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4.3.2 Varying the sampling parameters

Generative replay can produce samples along a spectrum from ‘remembered’ to
‘imagined’. Furthermore ‘memories’ in the generative model vary in strength; replaying
only the strongest consolidated memories produces different results to replaying a a
wider variety of weaker memories too. The diversity of the generated samples turns

out to be a key factor in the results of generative replay.

For models like GPT-2, this can be manipulated by varying the temperature parameter,
which controls the ‘sharpness’ of the probability distribution from which the next
token is drawn. (At a low temperature, already high probability tokens are boosted
further, whereas at a high temperature, lower probability tokens are more likely to
be picked, producing more ‘imaginative’ outputs.) Accordingly, I now explore the
effect of the ‘imaginativeness’ of generated samples on continual learning. (There are
similar ways to control the variation of data generated using other types of generative
model; for example, in a variational autoencoder, sampling from a larger region of

latent space would also produce more ‘imaginative outputs’.)

Figure [4.4] shows the effect of temperature on generative replay. As the temperature
increases (i.e. as the outputs become more varied) knowledge of old environments
is initially better preserved, until performance deteriorates again at the highest
temperature tested. Figure provides an explanation for this. Each plot shows
the number of unique locations featuring in the generated data at each stage of
training, across a range of temperatures. At lower temperatures, fewer environments
are represented in the generated data. For example, at the end of the simulation, no
sequences from environment one are generated at a temperature of 0.3, but sequences
from all five environments are generated at a temperature of 2.1, together with
sequences that do not exist in any environment (which may be either sequences from

imagined environments or invalid sequences from learned environments).

The results in Figures (summarised in Figure 4.7h) and reflect a trade-off
between the variety and the quality of the samples. At low temperatures a subset of

real memories are generated - the quality of the data is higher but variety is lower.
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At high temperatures a wider range of real memories are generated, but also some
‘imagined’ ones, which may include sequences that are inconsistent with the real
environments - the variety of the data is higher but quality is lower. When the quality

degrades beyond a certain point, performance deteriorates.

Norman et al. (2005) note that ‘an important problem that autonomous rehearsal
mechanisms need to solve is runaway consolidation’, where ‘strong memories are
rehearsed more often than weak memories ... [leading] to a positive feedback loop’
(Implementation of REM section). In the simulations, a low temperature might lead
to only a subset of sequences with the highest probabilities being generated, and whilst
this subset of strong memories would be preserved very well weaker memories would
be forgotten completely. Figure appears to show the ‘runaway consolidation’
of the first environment at the cost of retaining subsequent environments (since it
was first to be consolidated its sequences were generated the most, compounding the

issue with each stage of generative replay).

Figure breaks down the generated sequences at each temperature into three
categories: those that are ‘remembered’ (i.e. appeared in the training data for the
environment), those that are ‘imagined’” and consistent with the environment, and
those that are ‘imagined’ but inconsistent. For example, if ‘apple NORTH table’ is
part of a sequence but in fact ‘chair’ is north of ‘apple’ in the grid, this is inconsistent.
Note that this is with only 20 sequences used for training - the number of valid
sequences increases with more training data, but the purpose of the figure is to
illustrate the trade-off.

In summary, a higher temperature gave better results up to a point (Figure ), but
this could be because more real sequences were generated from remote environments
(Figure . In other words, the results so far do not necessarily imply that ‘imagined’
rather than ‘remembered’ sequences are helpful for learning. (Perhaps the best
sequences for the model to learn from are veridical memories, but in the trade-off

between variation and accuracy, higher variation is worth reduced accuracy.)
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Figure 4.4: The effect of temperature on generative replay. Each plot shows the rate of forgetting
as a sequence model consolidates five environments consecutively. At each stage of consolidation,
100 samples are replayed from the new environment as before, but in addition 50 self-generated
sequences, sampled using the given temperature, are added into the training data. The legend
gives the environment the model is tested on. The x-axis gives the most recently consolidated
environment.
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Figure 4.5: The distribution of locations generated at different temperatures. FEach plot shows
the number of unique locations featuring in the generated data at each stage of training, where the
generated data is sampled at the given temperature. At lower temperatures, fewer environments are
represented in the generated data. For example, in part a, only locations from the most recent and
second most recent environments feature in generative replay, whereas in part c, all environments
that have been seen so far feature at each stage.
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Figure 4.6: Analysing the generated sequences. a) The total number of unique real locations (red)
and imagined locations (blue) at each temperature tested, for a model trained on 20 real sequences.
Real locations are those that occur in the environment the model was trained on, while imagined
locations are those that do not. Note that generated sequences at the end of the first stage of
training were used in this analysis, such that there are only nine real locations. b) The number of
real sequences (blue), novel but valid sequences (orange), and other sequences (green) in generative
replay, using the same model as in part a. Valid sequences are correct shortest paths in the training
environment that were not included in the training data. Errors bars give the SEM.

4.3.3 Generative replay and generalisation

Whilst the primary focus of this chapter is on generative replay for continual learning,
it may also help with another objective: supporting generalisation from a few examples.
One might hypothesise that novel sequences which are consistent with the structure
of the environment aid generalisation (much like other forms of data augmentation),
especially when real memories of the environment are limited. This is a claim that
generative replay provides a benefit above and beyond approximating experience

replay without the need to store hippocampal memory traces forever.

To investigate this, I compare the case when there is experience replay of real memories
of old environments to the case where there is generative replay (keeping the total
number of additional ‘replays’ constant). The rationale for this is that if generative
replay provides no benefit beyond experience replay, that suggests generative replay

is useful insofar as it reactivates real memories in a far more memory-efficient way.



CHAPTER 4. CONSOLIDATION AND CONTINUAL LEARNING 186

a) b)
0.0

—0.06 A
(9] [
2 2 o1
£ -0.08 - 8
o v
> >
8 g
5 —0.10 5 —0.21
[ o
o o
© ©
c C
T —0.12 - 3 —0.31
= =

—01441Z ; . : 0.4 1+ . . . .

0.5 1.0 1.5 2.0 0 50 100 150 200
Temperature Sample size

Figure 4.7: Mean accuracy change against temperature and number of generative replay samples
(with 100 real sequences from the new environment at each stage). a) The mean accuracy change on
the test set for an environment at each stage after its consolidation, for a range of temperatures.
The change in ‘next location prediction’ accuracy between stages n and n+1 was calculated for each
environment at each stage of training, excluding stages before the environment was consolidated.
The average was taken across all of these accuracy differences, across three trials. 50 generative
replay samples were used. b) The mean accuracy change on the test set (as described above) for a
range of numbers of generative replay samples. A temperature of 1.2 was used.

But if generative replay gives better results, this suggests the ‘imagined’ rather than

‘remembered’ sequences are aiding learning.

So far the accuracy has been measured with a simple next location prediction task,
however now also I test whether the model can correctly complete the shortest path,
which reflects the ability to draw novel inferences from memories. Furthermore, to
avoid a ‘ceiling effect’, rather than training the model on a random subset of n paths,
I select the n shortest strings (measured by number of characters). This places further

demands on the model to extrapolate beyond the training data.

To avoid the trade-off between quality and variety mentioned previously, I use a
different sampling approach to in the previous experiments. Instead of unconditional
sampling, which led to repetition of sequences with the same start and end location,
generative replay is conditioned on sequences of the form ‘FROM: x, TO: y’ for all
pairs x and y in the previously learned grid. This makes the generated sequences more

diverse, without needing to raise the temperature. In this experiment beam search
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with five beams (as opposed to sampling) is used to continue the sequence.

Figure compares the shortest path and next location accuracy with 100 items
of experience replay to 100 items of generative replay, with the generative replay
conditioned on pairs of locations as described above. Generative replay does con-
siderably better than experience replay on the shortest path task. This provides
tentative support for the view that under certain circumstances, on a task requiring
inference, generative replay may benefit generalisation more than an experience replay

baseline.

a) b)
Shortest path task:

Continue from 'FROM: apple, TO: pear, PATH:' s Experience replay
I Generative replay
apple cat table apple cat table
>
o
o
3
chair pear horse chair pear horse &%’
tiger bread lamp tiger bread lamp
Correct Incorrect ' Next location prediction Shortest path prediction

Figure 4.8: Experience vs. conditioned generative replay. a) The shortest path accuracy tests
the ability to draw novel inferences from memories. I prompt the model with sequences of the
form ‘FROM apple, TO: pear, PATH:’, and calculate the fraction for which a valid shortest path is
generated. I exclude pairs for which one or more routes feature in the training data. b) I compare
the next location and shortest path prediction accuracy with 100 items of experience replay to 100
items of generative replay. The simulation involves two successive environments, with models tested
on the first environment after training on the second, with either generative or experience replay of
the first environment. Generative replay is conditioned on sequences of the form ‘FROM: x, TO: y’
for all pairs in the previously learned grid, and then greedy decoding (as opposed to sampling) with
beam search is used to continue the sequence. The mean across three trials is shown on both the
next location and shortest path tasks. Errors bars give the SEM.

4.3.4 Exploring the link to sleep

Papers such as Singh et al. (2022) suggest remote memories are replayed by neocortex
in REM and recent memories are replayed by hippocampus in NREM, with this

combination preventing catastrophic interference of recent memories with remote
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memories. This follows on from papers like Norman et al. (2005), which suggests
REM involves ‘autonomous memory rehearsal’. Let us now consider how sleep might
relate to generative replay, extending the ideas in the papers above to generative

models.

The sleep simulations follow the same procedure as in the sequence simulations
described above, but rather than mixing the ‘recent memories’ and ‘generated data’
together, they are used in alternating stages. NREM sleep involves replaying sequences
from the most recently encoded environment to the model (note that whilst this
represents hippocampal replay, the hippocampus is not modelled explicitly). REM
sleep involves sampling from the current generative model, and training the generative
model on these samples. Because the generated sequences are from the current
generative model, not the initial one, the distribution of the samples changes over

time.

There are many variables that can be manipulated, such as the number of sleep
cycles, the temperature for sampling, the learning rates in NREM and REM sleep,
the ratio of NREM to REM ‘sleep’, and the change in this ratio over the course
of ‘sleep’. Figure 4.9 shows the effect of the number of sleep cycles. More sleep
cycles are advantageous in the range tested, but further experiments are required to
see if this trend continues. (This is unsurprising - if a block of NREM sleep is too
long, remote memories may be forgotten to the extent that they cannot be recovered
by REM sleep.) Figure shows the effect of the ratio of NREM to REM sleep.
This demonstrates that the ratio determines the trade-off between learning the new
environment and retaining the old one; the optimal value would be a happy medium

between these objectives.

4.3.5 The effect of rumination

Offline rehearsal of memories after consolidation — i.e. ruminating on particular
memories — leads to further distortion. Word clouds of the three stages of training

for the three models are shown. The word clouds show that the accuracy of recall
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Figure 4.9: The effect of the number of sleep cycles. a) The schedule consisting of five ‘sleep cycles’
for the simulation, the next location prediction accuracy before and after sleep, and the perplexity
per test dataset over time. b) As above but for ten cycles.
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Figure 4.10: The effect of the ratio of REM to NREM sleep. I model REM sleep as training on
self-generated sequences, and NREM sleep as training on real sequences from the new environment,
representing (veridical) hippocampal replay. The same set of ‘memories’ are sampled from in each
cycle of NREM sleep, whereas new sequences are generated from the current generative model at the
start of each phase of REM sleep. a) The schedule consisting of ten ‘sleep cycles’ for the simulation,
each with 20% REM sleep, the next location prediction accuracy before and after sleep, and the
perplexity per test dataset over time. b) As above but with 80% REM sleep.
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decreases with successive stages of training on self-generated data, and that the
semantic intrusions reflect the ‘priors’ of the model. This is unsurprising given the

results in Chapter Two.

This is corroborated by some more qualitative analysis of the stories. Consider the
model trained on Shakespeare lines as the background distribution. In stage one, the
gist of the memory across the samples is fairly accurate, but there are a few lines like
‘My relatives do not know where I have gone ... but I may be killed’ suggesting a
threat of violence. In stage two, the belief that the people in the canoe are pirates
emerges, with several samples containing text such as: ‘They thought: “Oh, they

29

must be pirates”’. Then in stage three, this belief strengthens, with other aspects of
the story changing to match the belief that the people in the canoe are pirates. For

example, one story starts as follows:

‘One night two young men from Egulac went to the river to hunt seals.
The sun rose and they heard war-cries. They thought: “Oh, they must be
pirates”. They crept up to the shore and hid behind a log. Suddenly a
canoe came up to them and out of the canoe came five men armed with
bows and arrows. One of the young men said: “What do you think? We
wish to take you along. We are going up the river to make war on the
people.” “I do not wish to go along,” the other replied. “Then you must

do as I say,” the captain said.’

Terms like ‘the captain’ show how aspects of the story have been distorted in line
with the false belief that the canoe is a pirate ship. Similarly, the following lines occur
later in the story: ‘So they went back to Egulac and the young man told everybody
and said: “Behold I accompanied the pirates and we went up the river to make war

9

on the people.

The model trained on scientific papers displays similar effects. At first small distortions
are observed, but by the end of the third stage, lines such as ‘Now you may well be
thinking: “Oh, that’s a canoe full of people.” But you would be mistaken’ are added

to the Bartlett story. Meanwhile, the model trained on news stories initially exhibits
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only a few semantic intrusions related to crime and punishment, but after the third
stage includes lines like: ‘Now this is the law: A man who kills a seal ... shall be
punished by death’ or ‘“The court ... in the province of Egulac has pronounced the

following verdict:’.

Model Stage 1 Stage 2 Stage 3 Example
jESplaigomss  SMBRIETIVERs e
: s_? oW told Many c & thought 2 “log ., sgals
aclaoﬂgﬁw" 5d10%c2 Sroe ekbecanes 2 E mn]g»“,’Q%%“opff tﬁu%gli “Behold |
f G -, (
250N ehlu c{rlroﬁg 2of LAt e LS, 07 rgtvg;g JeH et fect  accompanied the
Shakespeare 503 = 3 canoe d
P ”US‘,,,,.Ca”O flght S ME M . CORES; s AL heard pirates and we
model 2war entiient sy = ot -Senohc led pirates went up the river
E)eg’““ %tkllla?d woart to make war on
O told 'feel alde {3
P yw%ngwc hom figh d the people:
mghecame gwimang went Sal hoie
Ywarriors Emanys, CriesroSe™ NEaT doir
ATy TGS
Flver: eelzyoun & oh Al Now you may
'Cnlﬁﬂh%nc"grgf'g;‘ ‘=insulin gro D well be thinking:
Scientific * Lt g“fpﬂ&e) yg,,t h 0 L!gs G "Oh, that's a
del Ekil ed“”“lng S b canoe full of
papers model alshranic > Al "
nl{jv R people.” But you
sln 160 pla‘htlle‘ntsmm Id b
OéBpl ST would be
hur\L p mistaken’

noe b hlﬁr warhi‘&'
o manys: ‘canoewsrtiores:

NelLTio. uatei?ﬁéa

ch (anoe)st

§ gl e Whi
t

e klllé‘d arrows g fightihitka

camet 1d <
sfcsksfjﬁe suhnors 1ve0rm swent B

megulg MANY e hits

hids warrlorswal"E
€iheardbecamey.

Newsmodel ~ along’ people home
1ogcanoeu feel Ocries

yOUﬂg bo flghtman
ghosts'\‘”’c:’ wen ‘ttw

aide canoe
calmnOW HaninaMEN

‘The court ... in
the province of
Egulac has
pronounced the
following verdict:'

Figure 4.11: Modelling the effect of rumination on recall of narratives. Word clouds showing the
effect of rumination on recall of narratives, for each of three ‘background datasets’. From left to
right, the three stages of training are shown. Stage one is the initial consolidation, and stages two
and three involve training on the recalled story.

4.4 Discussion

In a memory system in which new memories in the hippocampus are consolidated
into a generative model, how can old knowledge in the generative model be preserved,

without retaining memories indefinitely in the hippocampus? This chapter tries
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to connect several strands of research relevant to this question, and proposes that
training the generative model on its own ‘imagined’ sequences during consolidation

could help to integrate new and old memory without catastrophic forgetting.

In the neuroscience literature, there are a few studies of how the brain might address
catastrophic interference during consolidation by rehearsing memories in neocortex
(e.g. Norman et al., 2005; Singh et al., 2022)). In the machine learning literature, there
are many studies of generative replay as an approach to continual learning, including
some where generative models are trained on their own samples (Shin et al., [2017;
Van de Ven & Tolias, 2018)). A subset of these studies have explored generative replay
from a neuroscience perspective, most notably Van de Ven et al. (2020)), but with
limited attention to consolidation. As this thesis models the neocortex as a generative
network that can produce events as well as learning from them, this framework is

well suited to simulate the role of generative replay in consolidation.

I considered the consolidation of consecutive spatial environments, using the model
of sequential memory construction and consolidation described in Chapter Three.
The results show that generative replay reduces catastrophic forgetting in the model.
This can be effective even with relatively little self-generated data; it is easier to not
forget an environment than to learn it in the first place. But the effect is sensitive to
how the generative model is sampled from. Varying the temperature allowed us to
see how the distribution of generated examples affects learning in the simulations.
A higher temperature appeared to be beneficial because a wider range of locations
were visited in the generated sequences, i.e. as the temperature increased (up to
a certain point), generative replay better approximated experience replay. More
speculatively, I showed that alternating blocks of veridical hippocampal replay and
generative replay, representing NREM and REM sleep respectively, also prevented
catastrophic forgetting, with results depending on the number of ‘sleep cycles’ and
fraction of NREM vs. REM sleep.

In the experiments, generative replay did not just reactivate experienced sequences,
but also novel schema-congruent ones, e.g. a valid shortest path between a new pair of

points in a learned environment, or even a path in an entirely imagined environment. [
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tried to distinguish between two views: Firstly, one could hypothesise that generative
replay is more effective than experience replay, as it introduces more variation to the
generative model’s training data and prevents overfitting to real experiences (Hoel,
2021} Kurth-Nelson et al., 2023). Secondly, one could hypothesise that generative
replay is only helpful insofar as it approximates experience replay without the need to
store the original data. In a ‘shortest path prediction’ task requiring novel inferences to
be drawn across memories, generative replay gave better results than experience replay
(but only when sequences were conditioned in a certain way to maximise variation
whilst ensuring quality, and when the number and complexity of real memories was
limited).

Other results complicate the picture of generative replay as beneficial for learning. 1
modelled rumination as maladaptive offline learning from self-generated data, which
could be thought of as a human analogue of the ‘model autophagy’ described in Section
in which negative beliefs ‘self-reinforce’ over time. Under certain conditions
learning from self-generated data is highly adaptive, stabilising old knowledge during
new learning, and perhaps even helping the brain to generalise from limited experience.
But the results show that under different conditions, learning from self-generated
data reinforces negative beliefs, leading to a vicious cycle in which statistical biases

in the generative model increase over time.

These results raise several interesting issues. They show that generative replay can
beat experience replay in certain scenarios, but this only scratches the surface of a
broader question about the feasibility of offline learning from imagination. Generative
models can improve other models’ ability to generalise, as seen in classification and
reinforcement learning tasks, but that involves two separate models, with the larger
generative model teaching the smaller classifier about its ‘world model’. In other
words, the generative model is providing an external source of information, so it
is unsurprising the smaller model improves. We cannot conclude that a generative
model can augment its own training data in the same way, so under what conditions

these models can ‘self-improve’ through offline learning is an open question.

Some research suggests that generative networks inevitably deteriorate when trained
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on their own outputs, with the quality or variety of their samples decreasing as their
statistical biases are reinforced (Alemohammad et al., 2023} Shumailov et al., [2023)).
On the other hand, if the system encompasses a generative model and a memory
store, it is clear that offline learning can be effective (as demonstrated by the brain).
So if a generative model is capable of memorising examples from the training data,
as LLMs are, one might argue that offline learning on self-generated outputs should
be possible in this case. However, as we have seen, even when generative models
memorise their examples ‘semantic distortions’ are introduced, which may undermine

this view.

One might hypothesise that there is a threshold for model performance below which
subsequent generative replay is unhelpful - in other words, if the environment or
task has not been learned well generative replay will just compound the errors.
Conversely, if the model already understands the environment or task well, or at least
has memorised relevant experiences, learning from its own ‘imagination’ can be more
helpful. One might expect that the better the ‘world model’, the more ‘imaginative’
sequences can be whilst still benefitting learning; further research could therefore
explore whether there is an interaction between model performance and the optimal
temperature. (Alternatively, one might hypothesise that generative replay only helps
learning in networks that can memorise their training data with sufficient reliability,

as otherwise error compounding is too serious a problem.)

The fact that training on too much self-generated data can lead to model degeneration
is a challenge for certain models in which the hippocampus only encodes latent
representations (Benna & Fusi, [2021; Kali & Dayan, 2004). In such cases the full
memory must be decoded from stored latent representations, and training on these
generated outputs might inevitably reinforce statistical biases within the model.
I suggest that memory traces combining different levels of abstraction would be

sufficient to alleviate this problem.

One more speculative suggestion I explore in this chapter is that dreams implement
generative replay. This is obviously a stronger claim than suggesting that some kind

of offline learning from self-generated data takes place, since there are several other
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phenomena this could correspond to. The ‘dreams aid generalisation’ (Hoel, 2021))
and ‘dreams promote continual learning’ (Norman et al., 2005; Singh et al., 2022)
hypotheses are not mutually exclusive — dreams as (one variety of) self-generated
training data for a predictive ‘world model’ could explain both of these benefits.
However there are limitations to the modelling of sleep which make it hard to draw
clear conclusions about the optimal ‘schedule’ of sleep stages for integrating old and
new knowledge. In particular, neural networks learn better from interleaved than
from blocked training, whereas humans can learn well from both (Flesch et al., 2018;
Flesch et al., 2023)); some of the sleep results, e.g. better performance with more
cycles, might just display a limitation of connectionist models rather than useful

predictions about sleep.

Despite this, much more work could be undertaken on sleep and dreams using the
framework. For example, there is intriguing evidence that the nature of dreams varies
throughout sleep, e.g. dreams in REM sleep are more vivid and bizarre than those in
NREM sleep. As mentioned above, there may be a correlation between the ideal level
of ‘creativity’ and model performance; one might expect less ‘imaginative’ sampling
(a lower temperature) to be optimal early on in learning, but more ‘imaginative’
sampling (a higher temperature) to be optimal later on. Further experiments could
cycle between temperature values rather than using a fixed value. In addition, there
are developmental changes in dreaming that could be explored. It is striking that
dreams become richer and more complex in early childhood (Foulkes, |2009) as the
neocortical ‘world model’ matures, and that this coincides with the end of infantile
amnesia, which could potentially reflect catastrophic forgetting (Darby & Sloutsky,

2015).

There are many other directions for future research. Firstly, hippocampal forgetting
in the simulation could be refined to be more realistic. Here I tested a very simplified
scenario in which all traces of environment n were gone from the ‘hippocampus’ when
environment n+1 was encountered, but really consolidation is gradual. I suggest
events in an environment would be consolidated at different rates, with each sequence

‘marked for deletion’ in the hippocampus once prediction error is low enough. A more
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sophisticated simulation could ‘delete’ hippocampal traces individually rather than
the entire environment in one go. One would then observe a smoother transition from

experience to generative replay for each environment.

Secondly, solving the tasks in this chapter required only one environment at a time, but
the experiment could be adjusted to explore more complex tasks, in which inferences
must be drawn based on memories from multiple environments. For example, if the
last ‘column’ of one grid environment was the first ‘column’ of another, finding the
shortest route between environments would require the integration of memories from
different stages. One might expect that this kind of task would particularly benefit

from generative replay (perhaps more so than experience replay).

Thirdly, generative replay is likely to be one of several mechanisms for avoiding
catastrophic forgetting during consolidation. Future work could explore how generative
replay could be combined with other mechanisms in the context of consolidation. For
example, could particularly salient remote memories in the neocortical network be
protected by elastic weight consolidation (Kirkpatrick et al., [2017)? Or might there
be some targeted expansion of neocortical networks if the statistics of experience
change drastically (Rao et al.;2019)? In addition, these alternative mechanisms could
be compared to generative replay. One might speculate that the relative performance
would depend on how similar successive environments are, and whether the task
requires integrating knowledge across environments; expansion-based or regularisation-
based approaches might do less well when information must be synthesised, as they

tend to ‘partition’ tasks in different areas of the network.

Fourthly, the experiments could be repeated with larger models. It may be that the
generative models used here, while clearly demonstrating the utility of generative
replay for continual learning, are too basic to fully demonstrate the role of imagination
in learning. There are plenty of other phenomena that ‘emerge’ as generative models
get larger, so perhaps the ability to do more complex offline learning based on

self-generated thoughts is one of them.

Finally, more complex ways of sampling from the generative model could be explored,
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which might improve the quality and diversity of imagined sequences. For example,
beam search constructs several sequences in parallel before selecting the one with
the highest overall probability (see Methods), and its effect could be tested more
systematically. Techniques that guide generative models from the GPT family to
generate a certain kind of sequence may also be relevant to modelling generative
replay (Dathathri et al., |2019; Ouyang et al., 2022). In addition, given the positive
impact of conditioning generative replay on certain subsequences in the generalisation

results, this could be investigated further.

In summary, I have shown that generative replay supports continual learning in
the model, stabilising old knowledge as new memories are consolidated into the
neocortical generative network. I also found evidence that generative replay is helpful
for generalization under certain conditions. However, in simulations of rumination
generative replay was found to compound errors, introducing more ‘semantic intrusions’
over time. Given this complex picture, more research should explore the conditions
under which self-generated data is beneficial or harmful for learning in brains and

machines.



Chapter 5
Discussion

Brains need to make predictions to survive, and to achieve this must extract statistical
structure from experience. Generative neural networks provide a mechanism for
learning to do this by ‘prediction error’ minimisation. In this thesis I explored
how memories may be replayed over the course of systems consolidation to train a
predictive model of the world, which supports multiple cognitive functions. These
include episodic memory, semantic memory, imagination, and inference. This provides
a more mechanistic account of the theory that episodic memories are reconstructions

that are influenced by our beliefs, i.e. recall involves ‘predicting’ the past.

In Chapter Two I presented a computational model in which episodic memories are
initially encoded in the hippocampus, then replayed to train a neocortical generative
network to (re)construct sensory experiences via latent variable representations. Us-
ing images, I simulated how this network can reconstruct scenes from partial inputs
according to learned schemas (which produces gist-based distortions) and construct
novel scenes consistent with those schemas. That is, through consolidation we ‘learn
to imagine’. The generative model could correspond to a network including the hippo-
campal formation and association cortex which is implicated in many kinds of event
generation, including imagination, dreaming, and day-dreaming. (Furthermore, mul-

tiple generative networks could be trained concurrently from a single autoassociative
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network, with different networks optimised for different tasks.)

Even right after an experience, remembering involves imagining the past based on
concepts, combining some stored details with our expectations about what happened.
I also showed how unique and predictable elements of memories could be stored and
reconstructed by efficiently combining both hippocampal and neocortical systems,

optimising the use of limited hippocampal storage.

Experiences and our memories thereof are sequences, not snapshots; in Chapter
Three I extended the ideas above to the construction and consolidation of sequential
memory, using networks trained to predict the next item in a sequence during replay.
I applied this model to statistical learning, relational inference, and planning tasks,
and considered distortions in our memories of narratives and events. Recent work
on large language models suggests how parametric and non-parametric memory can
be combined using ‘retrieval augmented generation’, in which sequence generation
is conditioned on relevant ‘memories’. 1 also explored this as a potential model for

hippocampal-neocortical interaction during recall.

Having considered learning to imagine, Chapter Four explored some effects of learning
from imagination. I explored how predictive models of the world trained through
consolidation avoid catastrophic forgetting, and suggested that learning from self-
generated events (i.e. generative replay) could stabilize old knowledge as new know-
ledge is assimilated into neocortical networks. One might think that the value of
generative replay is just to approximate experience replay without the need to store
memories in the hippocampus forever. However, I showed that under certain condi-
tions generative replay may help generalisation as well as continual learning, with
imagined sequences extrapolating beyond limited experience to enable novel inferences.
On the other hand, under certain conditions generative replay reinforces errors in a

‘vicious cycle’ of increasing distortion.

I now discuss limitations of this research, themes emerging from it, and ideas for

future work.
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5.1 Limitations

Marr (1982)) proposed that cognitive processes can be studied at three levels: the
computational level (the high-level computation being performed), the algorithmic
level (the algorithm used to perform the computation), and the implementation level
(the neural implementation of the algorithm). Understanding a cognitive process
requires an integrated explanation across all three levels. This thesis addresses the
computational and algorithmic levels of memory construction and consolidation, but
has less to say about the implementation level, as the results relate to behavioural

rather than neural data. This is the main limitation of the model.

In particular, the types of generative model used are not realistic at a neural level.
Whilst biological intelligence is thought to involve learning via prediction error
minimisation (e.g. Friston, 2010)), the implementation of such algorithms is unclear.
The deep neural networks used in this thesis are trained by computing error gradients
via backpropagation, and then performing gradient descent to optimise the weights.
But deep learning by backpropagation is not thought to be biologically plausible (with
issues including the use of non-local information, symmetric synaptic weights, and
neurons with continuous outputs), let alone the elaborate architectures of variational
autoencoders and generative pre-trained transformers (Whittington & Bogacz, 2019)).
Further work is therefore required to bridge the gap between realistic models of
learning at the synaptic level and the generative models used here. Approximations
to error backpropagation do exist (Whittington & Bogacz, |2019), as well as other
families of network that mimic the brain more closely (Dayan et al., 1995} Friston,
2010; Rao & Ballard, [1999)). Whilst these alternatives cannot yet accomplish the feats
of GPT-2 (Radford et al., [2019) etc., there is no reason to think this is impossible in
principle, so these issues do not necessarily undermine the main arguments of the

thesis.

Further work is also required to fully specify the extended sequential model, and to
incorporate certain aspects of the static model. As described in Chapter Three, the

extended sequential model would store a compressed conceptual representation of
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a sequence, but whether this would be an intermediate vector representation from
the generative network or some other kind of sequential ‘gist’ is unclear. Also, ‘pixel-
level’ reconstruction errors were used to disentangle predictable and unpredictable
elements of memories. But the analogue for sequences is not obvious - perplexity
could perhaps be used to identify unexpected subsequences within a sequence, and
retrieval augmented generation could recombine a stored ‘gist’ with such elements,
but the mechanism for deconstructing and reconstructing memories was not simulated

explicitly.

The sequential model captures the sequential nature of experience, but in reality
each moment is ‘high-dimensional’ (more like the images in the static model than the
‘tokens’ in the sequential one). For example, video data, whilst still far less rich than
reality, better reflect this: a video is made up of a succession of frames, each of which
is rich in data, and recalling it requires ‘filling in the gaps’ of a particular frame as
well as predicting successive ones. This would require changes to the associative and
generative networks. Firstly, since pattern completion of both the current stimulus
and the next stimulus would be required in the associative network, a combination
of autoassociative and heteroassociative connectivity in the hippocampal network
might be required. Secondly, the generative model could be replaced with one for
video data (e.g. Yan et al., 2021), although the time and cost required to train such

a model might make this impractical.

Another simplification in the current model is the division between sensory and
conceptual representations (where conceptual representations are latent variables
extracted from the most compressed layer of a VAE). The extended static model
captures how memories bind together both sensory and conceptual representations
from the outset. But really such representations must span a hierarchy of abstraction;
for example, visual stimuli could be represented at one level as small patches of
colour, and at another level as shapes and patterns. Going further up the hierarchy,
the stimuli could be represented as objects in a particular configuration, and at the
top as a schema for the scene (without specifying particular objects). These could

align with representations in successive layers of a neural network, or the hierarchy
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of a predictive coding network. How might more than two levels of abstraction be
integrated into the model? One option is to store multiple representations and the
poorly predicted elements relative to each. This could potentially correspond to the
gradient of representations in the hippocampus, from fine-grained, perceptual features
in posterior hippocampus to coarse-grained, conceptual ones in anterior hippocampus.
(Note that sensory representations bound together in an episodic memory are already
highly processed, unlike ‘pixels’ making up an image, so this is another aspect of the
model that could be refined.)

5.2 Neural foundation models

Recent years have seen a move in machine learning from task-specific models to
larger task-general ones, sometimes referred to as ‘foundation models’ (Bommasani
et al., 2021)). Similarly, neuroscience has seen a move from a modular view of many
semi-independent networks learning particular tasks to a focus on the learning of
multipurpose representations. We should perhaps think of the brain as learning
neural ‘foundation models’ too, and the work in this thesis suggests how memory

consolidation could contribute to their development.

A foundation model is ‘any model that is trained on broad data (generally using
self-supervision at scale)’ (Bommasani et al., [2021, Introduction), and that can be
used for, or adapted to, many different tasks. The use of a self-supervised task to train
such models is key to their scaling, as human-annotated data is not required. Other
advantages of this approach include enabling superior generalisation, and multimodal
representation learning. One drawback of using a few task-general networks as
opposed to many task-specific ones is greater susceptibility to catastrophic forgetting,

as the same weights support a new task as the previous ones.

Crucially, these models can generalise to tasks they were not explicitly trained on,
as large language models (LLMs) demonstrate (Brown et al., 2020)). In ‘zero-shot’
inference, an LLM performs a task without any specific examples. For instance,

when given a prompt such as ‘Write a Shakespearean sonnet about the hippocampal
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formation” an LLM like GPT-3 can infer how to solve the task from the prompt alone,
applying its pre-existing general knowledge to generate a response (despite not having
observed this combination of style and topic before). In ‘few-shot’ inference, an LLM
can perform a task based on just a small number of examples in the prompt. An
example could be asking an LLM to write a poem about the hippocampal formation
in the style of a given poet, providing it with one or two examples of the poet’s work.
These examples highlight how foundation models enable generalisation with little or

no task-specific training.

Arguments that the brain learns something akin to foundation models include the
growing consensus that prediction error minimisation is key to biological intelligence
(e.g. Friston, 2010), neuroimaging evidence of large task-general, or even task-negative,
networks (e.g. Raichle et al., [2001), and the relative lack of external supervision in
learning. This last point is more debatable, but only a small minority of the ‘training
data’ for a human is ‘labelled’ by other humans (e.g. by a parent pointing out objects
to a child), and for all animals rewards seem too scarce for reinforcement learning to
be the main driver of knowledge acquisition. This is consistent with the view that

self-supervised learning is the predominant kind of learning in the brain.

5.3 Generative models and generalisation

Chapter Four scratched the surface of a key question: once we've learned to imagine,
how can we learn from imagination? What additional advantages does the brain’s
‘simulation machine’ provide? The machine learning literature explores the advantages
and disadvantages of synthetic training data, and further research could explore the

implications for offline learning in the brain.

Note that the feasibility of training a model on its own outputs is controversial. There
is strong evidence that a separate generative model can successfully augment the data
for a classifier (Trabucco et al., 2023)) or reinforcement learning agent (Sutton, [1991);
it is essentially acting as a teacher for a simpler student. But this does not imply

that a generative model can improve when trained on its own outputs, rather than
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simply reinforcing its existing biases. Even if it can, the conditions for improvement

vs. degeneration are unclear.

It has been suggested that generative replay is compositional in nature, enabling the
recombination of components to imagine new events. For example, in their MEG
study Schwartenbeck et al. (2023)) design a task in which participants must infer which
‘Tetris-style’ shapes make up a novel silhouette. Representations in hippocampus and
vmmPFC were found to support ‘vector arithmetic’, such that the sum of activities for
constituent shapes was closer to the true combined shape than a control shape. In

other words, representations in these regions appear to be conjunctive.

Further research could explore how generative models of the kind used in this thesis
relate to compositional reasoning. There are experimental and theoretical reasons
to think that representations which factorise / disentangle / decompose events are
useful for generalisation, and one way to think of this is as the separation of roles
and entities filling those roles, as Kurth-Nelson et al. (2023)) describe. When stimuli
can be factorised neatly based on prior knowledge, as in the Tolman-Eichenbaum
Machine (Whittington et al., 2020)), this works very well, but how compositional
representations are learned automatically seems more mysterious. Whether symbolic
reasoning of this kind is a ‘side effect’ of prediction error minimisation in a deep
neural network or requires some level of ‘hard-coding’ is unclear. In addition, the
extent to which representations should be disentangled may depend on the task, and

how a system would determine this is an open question.

There are many other questions relating to how generative models might be used to
simulate events optimally. Firstly, how can generative models self-correct or filter out
low-quality outputs? Secondly, can learning be regulated by the confidence in the
imagined data? For example, one could weight imagined events so that less confident
outputs have less effect on learning and vice versa (perhaps by using a low perplexity
as a measure of confidence). Thirdly, how should the ‘imaginativeness’ of simulated
events be controlled? As touched on in Chapter Four, early in learning generated data
is likely to be misleading, so perhaps the model should become more ‘imaginative’ as

training progresses.
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5.4 Modelling language and cognition

Many aspects of human cognition are inextricably linked to language. Some of the
computational modelling approaches in this thesis could be applied more broadly to

studies involving narratives.

Firstly, Loftus and Palmer (1974) showed that answers to questions about a re-
membered story could be biased by language at recall time (with different estimates
of the speed of a car in an accident depending on the choice of verb, e.g. with ‘smashed’
leading to a higher speed estimate than ‘bumped’). Semantic influences at recall time
could be easily modelled with GPTs encoding the stimulus story in the same way as
the Bartlett story was encoded in my simulations. Secondly, Bransford et al. (1972)
showed that changes congruent with the gist of a sentence were more likely to trigger
false recognition memory than incongruent ones. This would be straightforward to
model in the same way as the Bartlett experiment, with perplexity (how ‘surprising’

a candidate sentence is to the model) used as a measure of recognition.

The findings in this thesis align with an extensive literature on memory for narratives.
The gist of a narrative is perhaps best described as a situation model (Zwaan &
Radvansky, |1998)). Bransford et al. (1972) drew the conclusion that narratives ‘are
information which [people| can use to construct semantic descriptions of situations’
(p. 194), and it is these semantic constructions that are remembered. Whether the
situation model itself is non-verbal or verbal, as in the retrieval augmented generation
demonstration in Section of the Appendix, is an interesting topic for further
research. (In other words, does understanding and remembering language involve

constructing a non-verbal representation, or is the linguistic gist sufficient?)

More speculatively, one might wonder whether language comprehension involves the
construction of situation models, and whether these topics can be explored with
generative pre-trained transformers (but obviously there is a risk of anthropomorph-
ising LLMs when discussing their ‘comprehension’ of a story). This has interesting
implications for comprehension as a constructive process that involves generating

a mental model consistent with the stimuli. This would align with the idea that a
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neocortical generative network generates a gist representing the situation model, and

it is this gist which is encoded, together with certain details.

There is also a connection between the literature on situation models and event
boundaries and the model in this thesis. Event boundaries are thought to occur when
situation models change (Zacks et al., 2007)), and situation models might change
when the situation model is no longer predictive of the current sequence. Suppose
the system generates a situation model (‘gist’) and holds this in working memory.
Then when the situation model is no longer predictive of new information, the current
situation model would be written into memory, and a new situation model would be
created. (Note that this differs from the proposal that prediction error relative to the
narrative so far determines the event boundaries.) This suggestion could be explored
further.

5.5 Psychiatric symptoms and conditions

At several stages of memory processing, a balance must be struck between experience
and priors. One might speculate that a variety of psychiatric symptoms could be
related to this, with one cluster of symptoms involving hypo-priors, and the other
involving hyper-priors. In the hypo-priors case, too much weight is given to noisy
input data, with bottom-up processing dominant, whereas in the hyper-priors case,
too much weight is given to priors, with top-down processing dominant. (Note that
the terms ‘hypo-priors” and ‘hyper-priors’ obviously have a specific Bayesian meaning,

but I am using them more loosely.)

How might this manifest at different stages of memory processing? In Chapter Two,
it was suggested that when memories are encoded in the hippocampus, the prediction
error threshold determines how much detail is stored (as opposed to relying on a
conceptual ‘gist’). When the threshold is at a ‘happy medium’ it strikes a balance
between detail and efficiency, with some gist-based distortion from the outset that
further increases with consolidation. When the threshold is low, many sensory details

are encoded, but this is very inefficient in terms of storage. When the threshold is
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high, few sensory details are encoded, which would produce more gist-based distortion

than typical controls, with consolidation reinforcing these errors.

In Chapter Three, it was suggested that learning a ‘world model” involves a combina-
tion of replay of recent memories and generative replay to stabilise older knowledge.
With the right balance of these data, learning from imagination can not only help
continual learning in a constantly changing world, but also aids inference and gen-
eralisation. With too little generative replay, the ‘world model’ changes too much
based on new information, and inference and generalisation may be impaired. With
too much generative replay, the model may degenerate, reinforcing its existing errors

in a vicious cycle. See Table [5.1] for a summary.

Consistent with these ideas, one prominent hypothesis for autism is the hypo-priors
account (Pellicano & Burr, [2012), which suggests that cognition in autism is less
affected by prior beliefs. Symptoms like hypersensitivity to sensory data and difficulties
in resolving ambiguity are consistent with this view (Pellicano & Burr, 2012). Relative
strengths like superior attention to detail and reduced perceptual biases also align with
this account. For example, people with autism are less susceptible to optical illusions
(Happé, 1996), and better able to distinguish between similar stimuli (Plaisted et al.,
1998). More broadly, autistic patients may struggle to apply complex priors to new
experiences, e.g. social cognition involves a great deal of ‘filling in the blanks’ using
priors about others’ mental states (Frith, 2003). A number of studies look at autism
from a predictive coding perspective, for example Van de Cruys et al. (2014)) argue
that ‘errors resulting from violations to ... predictions are given a uniform, inflexibly

high weight’ in autism (Abstract).

The hypo-priors account (Pellicano & Burr, [2012) is potentially consistent with the
‘weak coherence’ account of autism (Frith, [2003; Happé & Frith, 2006), which suggests
a bias towards detail-oriented rather than gist-oriented processing, with a focus on
local rather than global features. Future work could disentangle the implications of
the weak coherence account, predictive coding account, and account outlined here, as

many of their predictions overlap.
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Conversely, hyper-priors could be connected to certain symptoms and conditions
involving false beliefs. This could be linked to rumination, as simulated in Chapter
Four, but also a broader range of phenomena like delusion and confabulation. Let
us consider a patient who holds some false beliefs (as all humans obviously do), and
then undergoes a shift to the hyper-priors state of the model. If the false belief is that
pirates are attacking, to use a ‘belief’ in the rumination simulation as an example,
a memory of a boat trip may rely heavily on conceptual representations in which
the sea is linked to pirates. This could mean that stronger gist-based distortions
are observed than in typical controls, with pirate attacks imagined in memories in
which they did not occur. Consolidation might then strengthen this belief further
by assimilating the episode into a neocortical model that believes pirate attacks are
common. If episodes that contradict the belief are encoded, these may be drowned
out by generative replay reinforcing the current model, such that the patient is unable
to correct their false belief with experience. In other words, maladaptive learning

from imagined pirate attacks might further entrench the false belief.

One might predict more neocortical involvement in memory from the outset and
more generative replay in patients with the hyper-priors cluster of symptoms, and the
reverse in patients with the hypo-priors cluster of symptoms. Further work could test
these predictions, and explore how the hyperparameters of the model (e.g. prediction
error threshold and fraction of generative replay) might be set. In addition, more
work could explore whether the predictive coding account and approach outlined
here make different predictions relating to computational psychiatry, and if so how

experimental tests could compare them.

5.6 Episodic and semantic memory

A theme throughout this thesis is that the classic distinction between episodic and
semantic memory (Tulving, 1985) is much blurrier than it seems. For example,

generative networks such as large language models (LLMs) can memorise ‘event-
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Hypo-priors Typical cognition | Hyper-priors
Definition Too much weight | Delicate  balance | Too much weight
given to noisy in- | between input data | given to priors.
put data. Bottom- | and priors. Top-down pro-
up processing dom- cessing dominates.
inates.
Memory en-| Many sensory de-| The prediction | Few sensory details
coding tails of an event are | error threshold for | of an event are
stored. Very ineffi- | encoding strikes a | stored. More gist-
cient in terms of hip- | balance = between | based  distortion
pocampal storage. efficiency and de-| / confabulation
tail. Gist-based | than typical con-
distortion from the | trols. Consolidation
outset, increasing | reinforces current
with consolidation. | errors.
Learning a | Online and offline | A combination | Offline learning
‘world model’ | learning from real- | of veridical and | from imagination.
ity. Veridical replay | generative replay | Generative replay
dominates. Cata- | consolidates new | dominates. Model
strophic forgetting | memories while | degenerates if ex-
once hippocampal | stabilising ‘world | ternal inputs are
memory traces fade. | model’. Learning | insufficient, produ-
Poorer generalisa- | from imagination | cing  rumination,
tion and inference. | helps inference | delusion, etc.
and generalisation,
but with sufficient
external inputs
to prevent model
degenerating.

Table 5.1: Comparison of hypo-priors, typical cognition, and hyper-priors.

unique’ specifics as well as generalities in a single network (Carlini et al., [2022). If
a series of narratives representing ‘episodes’ are ‘consolidated’ into an LLM, the
resulting LLM could support both memory for specific episodes and for semantic
‘facts’, with the latter learned as a side-effect of reconstructing the former. Not only
are ‘beliefs’” influenced by ‘episodes’ the network was trained on, but the ‘episodes’
are reshaped by the ‘beliefs’, as we saw in a range of memory distortion simulations.
My interpretation of these findings is that generative networks can support truly
episodic memory even once the hippocampal trace is erased, and that consolidated

memories can consist entirely of generative predictions; one could go as far as to
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say that remote episodic memory involves imagination constrained by beliefs about
the past. (This raises many definitional, and even philosophical, questions about
the boundary between memory and imagination, including how we could distinguish

between the two.)

A different view is that episodic memory must include some stored details in a
hippocampal trace to be experienced as memory rather than imagination. Even
though consolidation lessens dependence of episodic memory on the hippocampus,
memories arguably retain some limited trace in the hippocampus proper for a long
time. Thus the retrieval of event-unique details which have not yet been consolidated
could be how we distinguish memories from imagination. This could align with
hippocampal deficits in recognition memory when tested with ‘close foils’ that differ

only in small details from the previously seen item (Migo et al., 2009).

A final possibility is that truly episodic memory can eventually be supported by
the generative network, but that the hippocampus proper plays a greater role in
generation than in the models investigated so far. For example, memory fragments
stored in the hippocampus proper could augment event construction with further
detail drawn from real memories, or the hippocampal conceptual representations could
provide more than links to generative latent variables, e.g. ensuring that retrieved
scenes correspond to single viewpoints via place and head direction cells (Becker &
Burgess, 2000; Bicanski & Burgess, 2018). This would align with the finding that the
construction of complex and coherent scenes benefits from an intact hippocampus

proper, even though the entorhinal cortex can generate simple scenes (Hassabis et al.,
2007).

5.7 From behavioural to neural data

There are many other ways in which the neural substrates of the model could be

better understood (in addition to points in Sections [5.1] and [5.6).

Firstly, the differing roles of anterior hippocampus (aHPC) and posterior hippocampus
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(pHPC) could be explored; as discussed in Chapter One, aHPC is associated with
coarse-grained conceptual representations of memory, while pHPC is associated
with fine-grained perceptual representations (Robin & Moscovitch, 2017; Zeidman
& Maguire, 2016)). The extended model proposes that memories are encoded as a
combination of conceptual and sensory features (the latent variables and the poorly-
predicted elements respectively). One might predict that the former corresponds more
to aHPC and the latter more to pHPC. A test of this could be whether ‘expectations’
are more easily decoded from aHPC while elements deviating from expectation are
more easily decoded from pHPC. There is some evidence that aHPC activity increases
relative to pHPC activity as a memory is consolidated (Robin & Moscovitch, 2017)),
consistent with the predictions of Zeidman and Maguire (2016]) and Moscovitch et al.
(2016)); one might also speculate that the generative network is more dependent on
aHPC, so this could be explored further.

Secondly, how this relates to the lateralisation of hippocampal function could also
be investigated. Maguire and Frith (2003) found that right hippocampus was less
active for remote than recent memories, with no such temporal gradient for left
hippocampus. This is intriguing as the right hippocampus is more associated with
memory for visuospatial detail, while the left hippocampus is more associated with
memory for narratives (Burgess et al., [2002). As above, whether ‘expectations’ are
more easily decoded from left hippocampus while elements deviating from expectation

are more easily decoded from right hippocampus could be tested.

Thirdly, the link between the latent spaces of generative models and cognitive maps
in the hippocampal formation (Behrens et al., [2018) could be explored further. Grid
cells, with their characteristic hexagonal firing pattern as an animal moves through
an environment (Moser et al., 2008)), are thought to be a mechanism behind path
integration and vector navigation (Bush et al., [2015)). This model is consistent with
earlier proposals that EC encodes latent representations, capturing shared structure to
enable inference in spatial and non-spatial tasks (Whittington et al., [2020). But this
thesis does not explore how grid cells emerge, and whether this happens automatically

as a result of prediction error minimisation, or depends on additional constraints.
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Finally, the correspondence between components of the hippocampal autoassociative
network and cell types in the hippocampal formation requires further thought. One
view is that episode-specific neurons (Kolibius et al., 2021)) bind memories, acting
as an abstract ‘index’ for a pattern across the feature units. These episode-specific
neurons could correspond to memory units in a modern Hopfield network (Krotov &
Hopfield, 2020; Ramsauer et al., 2020). Another view is that episode-specific neurons
simply reflect event-unique features of memory. These could also be sufficient to bind
a trace together, without requiring an explicit ‘index’ for the pattern, but this would

align less closely to the modern Hopfield network.

5.8 Neurodevelopmental implications

Memory and learning change dramatically over the course of development, so the
neurodevelopmental implications of the model in this thesis could be explored further.
For example, adults are generally unable to recall episodic memories from before the
age of three to four, with very limited recall up to age seven or so (Bauer & Larkina,

2014), a phenomenon known as infantile amnesia (Miles, [1895)).

Infantile amnesia seems puzzling given the effects of early experiences on shaping
brain development (Alberini & Travaglia, 2017; Josselyn & Frankland, 2012)). One
might assume that memories are not encoded properly in early childhood, but there is
strong behavioural evidence that infants are capable of memory (Mullally & Maguire,
2014), e.g. babies rapidly learn to recognize their mother’s face and voice (DeCasper
& Fifer, [1980). One suggestion is that systems consolidation cannot happen effectively
for infants and young children because the neocortical networks into which memories
are consolidated are immature (Alberini & Travaglia, 2017). Infancy can be seen as a
period of great plasticity during which the brain ‘learns to remember’ (Alberini &
Travaglia, 2017; Mullally & Maguire, |[2014)). This is consistent with the proposal in this
thesis; if consolidation involves assimilation into a generative model, an immature and
unstable generative model would mean there is not a mature conceptual framework

into which to integrate experiences.
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Note that there are alternative explanations including retrieval failure and instability
due to hippocampal neurogenesis. The former suggests that memories from early
childhood are encoded adequately, but cannot be retrieved, since neocortical repres-
entations have changed so much that the original memory is no longer accessible
(Munakata, 2004); this is reminiscent of the Kali and Dayan (2004) description of
catastrophic forgetting. For example, Hayne and Rovee-Collier (1995)) argue that our
earliest memories are encoded in non-verbal terms, which our adult brains cannot
interpret. This invokes the encoding specificity principle (Tulving, 1983)); the context
of recall in adulthood may be very different to the context of encoding in infancy,
decreasing the recall accuracy. Another view is that neurogenesis in the hippocampus
causes accelerated forgetting (Akers et al., 2014 Josselyn & Frankland, 2012), as the
rate of neurogenesis is much greater in early childhood than in adulthood (Knoth
et al., 2010).

In Chapter Four I explored how catastrophic forgetting could be avoided in the
generative model during consolidation. Another hypothesis might be that some
initial consolidation occurs, but the mechanisms to avoid catastrophic forgetting
are immature. Darby and Sloutsky (2015)) note that in young children retroactive
interference effects are ‘reminiscent of the catastrophic interference effects observed
in simple connectionist models’ (Implications section). Intriguingly the period of
infantile amnesia appears to coincide with reduced dreaming (Foulkes, [2009), which
could also be consistent with an immature generative model that cannot ‘stabilise’

old memories.

5.9 Conclusion

Consolidation can be thought of as a process of learning to construct events, or
in other words, a process of ‘learning to imagine’. In this thesis I suggested that
memories are replayed over the course of consolidation to train a predictive model of
the world, which supports functions including episodic memory, semantic memory,

and imagination, and forms of statistical learning, inference, and planning. Generative
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neural networks provide a mechanism for extracting conceptual structure through
prediction error minimisation, eventually encoding ‘priors’ for the reconstruction of
stimuli such that recall involves ‘predicting’ the past. I suggest this corresponds
to a network including the hippocampal formation and association cortex which is

involved in many kinds of event generation.

I presented a computational model in which episodic memories are initially encoded
in the hippocampus, then replayed to train a neocortical generative network to
(re)construct sensory experiences. I also showed how this could be extended to
sequential stimuli to capture the sequential nature of experience. Even right after
encoding an experience, remembering involves imagining the past, combining some
stored hippocampal details with neocortical expectations. Finally, generative networks
trained through consolidation are continually updated over a lifespan, maintaining
a relatively stable ‘world model” without catastrophic forgetting. One strategy to
achieve this may be learning from imagination, with generative replay stabilising old

knowledge as new knowledge is assimilated into neocortical networks.
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Appendix A

Data and code availability

A.1 Data availability

The following datasets (all covered by the Creative Commons Attribution 4.0 License)

were used in the simulations:

Dataset Origin

MNIST (LeCun et al., |2010) https://www.tensorflow.org/datasets/catalo
g/mnist

Shapes3D (Burgess & Kim, 2018) | https://www.tensorflow.org/datasets/catalo
g/Shapes3D

ROCStories (Mostafazadeh et al., | https://cs.rochester.edu/nlp/rocstories

2016)

Tiny Shakespeare https://huggingface.co/datasets/tiny_shake

speare

AG’s News (Zhang et al., [2015) https://huggingface.co/datasets/ag news

Scientific Papers (Cohan et al., | https://huggingface.co/datasets/scientific_p
2018) apers

Table A.1: Overview of data availability.
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A.2 Code availability

Code for all simulations can be found at https://github.com/ellie-as. Specifically the

following repositories were used:

Code Section
https://github.com/ellie-as/generative-memory Chapter 2
https://github.com/ellie-as/sequence-memory Chapter 3

https://github.com/ellie-as/sleep-continual-learning, https:/ | Chapter 4
/github.com/ellie-as/sequence-continual-learning

Table A.2: Overview of code availability.

Some diagrams were created using BioRender.com.
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Supplementary results

B.1 Chapter Two

Figure [B.1] shows results for the 18 remaining Deese-Roediger-McDermott task word
lists not shown in Figure 2.8 As in the human data, lure words are often but not
always recalled when the model is presented with ‘id_n’. The model also forgets
some words, and produces additional semantic intrusions. See Methods for further
details.

Figure shows that latent representations support few-shot learning better than
intermediate representations extracted from the encoder or the ‘sensory’ image
features. Decoding accuracy is measured by training a support vector machine to
classify the central object’s shape, varying the input features and the amount of
data, and evaluating the resulting model on a held-out test set. The intermediate
features tested are the outputs of four convolutional layers in the encoder, flattened

to one-dimensional vectors.
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Additional results for the Deese-Roediger-McDermott task. In the extended model,

gist-based semantic intrusions arise as a consequence of learning the co-occurrence statistics of

Figure B.1

converted

)

2016

(Mostafazadeh et al.,

representing background knowledge. The system then encodes the lists as

words. First the VAE is trained to reconstruct simple stories

to vectors of word counts,

the combination of an

s latent

and the VAE’

term capturing unique spatiotemporal context,

‘idn’

representation of the word list. In each plot, recalled stimuli when the system is presented with
‘id_n’ are shown, with output scores treated as probabilities so that words with a score of above 0.5

are recalled. Words from the stimulus list are shown in blue, and lures in red.
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Figure B.2: Latent representations support few-shot category learning. The accuracy of an object
shape classifier on a held-out test set is shown for different amounts of training data, with different
layers of the VAE as input features. The classifier is a simple support vector machine as in Figure

22h.
B.2 Chapter Three

In Section , I suggest retrieval augmented generation (Lewis et al., 2020) may
be a potential model of hippocampal-neocortical interactions consistent with the
broader proposal in this thesis. In particular, it could help explain how planning and
inference based on recent memories are possible, before those memories have been
assimilated into the generative network. This can be illustrated more vividly with
stories (noting that this is a very simplified version of the extended sequential model,
where a neocortex-generated gist represents the ‘predictable conceptual features’ of a
memory, and the ‘unpredictable details’ are not simulated). This section discusses a
toy example of the encoding and recall of narratives. See Figure for a diagram
showing the steps involved, and Table for examples of encoded and recalled

stories.

Ten stories from the ROCStories dataset (Mostafazadeh et al., 2016) are encoded
in the system. First the generative model (GPT-3.5; Brown et al., 2020) generates
a gist for each story. This is simply done by prompting the model with the story
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followed by ‘One line summary:’. Then each gist is stored in the hippocampus; in
reality this would be accompanied by unpredictable details but this is not simulated
explicitly. To make the hippocampus ‘searchable’ each gist is encoded together with
an embedding capturing its meaning (for simplicity the vectors are also obtained

from the OpenAl API, but any sentence embedding model could be used).

Then given a query as the input to recall, the neocortex ‘searches’ the hippocampus
for relevant traces. This is simulated by generating an embedding for the query,
e.g. ‘What happened to Melody?’ in the first example in Table [B.I], and then by
retrieving the traces with the nearest embedding to the query embedding. However
this could be done in many ways, e.g. by finding traces which feature the words in

the query.

Finally, the generative network representing the neocortex (GPT-3.5 as before)
produces an ‘answer’ conditioned on the retrieved hippocampal trace(s). This involves
constructing a prompt that includes the retrieved traces together with the query. Note
that in this simulation, only one trace is retrieved per query. But this mechanism is
scalable to cases where many traces are relevant to the query, and is thus a potential
model of inference and planning based on multiple recent memories as well as a single

memory.
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Original event

Gist from HPC

Neocortex-generated answer

Melody’s  parents
surprised her with
a trip to the big
aquarium. Melody
took a nap during
the two hour car
ride to the aquar-
ium. When they
arrived, Melody
was energetic and
excited. At the
aquarium Melody
saw sharks, tropical
fish and many oth-
ers. After five hours
at the aquarium,
Melody and her
family drove home.

Melody’s  parents
surprised her with
a trip to the big

aquarium, where
she saw various
marine  creatures

and had an ener-
getic and exciting
day.

When Melody’s parents surprised her, they took
her to the big aquarium. At the aquarium, Melody
had the opportunity to see a wide variety of marine
creatures. She was likely amazed by the colorful
fish swimming gracefully in the tanks, the playful
dolphins performing tricks, and the majestic sea
turtles gliding through the water. The aquarium
would have provided an educational and interact-
ive experience for Melody, allowing her to learn
about different species of marine life and their
habitats. It is also possible that Melody had the
chance to touch some of the marine creatures, such
as starfish or stingrays, in a touch tank exhibit.
Throughout the day, Melody would have been filled
with excitement and energy as she explored the
different exhibits and witnessed the beauty and
wonder of the underwater world.

John was a pastor
with a very bad
memory. He tried
to memorize his ser-
mons many days in
advance but to no
avail. He decided to
learn to sing to over-
come his handicap.
He then made all
his sermons into mu-
sic and sang them
on Sundays. His
congregation was de-
lighted and so was
he.

A pastor with a bad
memory learns to
sing his sermons and
delights his congreg-
ation.

John, the pastor with a bad memory, faced a
unique challenge in delivering his sermons to his
congregation. Due to his forgetfulness, he often
struggled to remember the content of his sermons,
leading to moments of confusion and frustration.
However, John was determined to find a solution
that would not only help him remember his ser-
mons but also engage and delight his congregation.
After much contemplation and experimentation,
John discovered a creative approach to overcome
his memory issues. He decided to start singing his
sermons instead of delivering them in a traditional
spoken format. This innovative idea not only al-
lowed him to remember the content of his sermons
but also added a new level of excitement and enter-
tainment for his congregation. John began incor-
porating music into his sermons, composing catchy
tunes that conveyed the messages he wanted to
share.

Table B.1: Narrative examples of retrieval augmented generation as a model of hippocampal-
neocortical interaction. The ‘Original event’ column gives the story ‘experienced’ by the system. The
‘Gist from HPC’ column gives the gist generated by the neocortex and stored in the hippocampus.
The ‘Neocortex-generated answer’ column gives the result when the most relevant gist is retrieved
from the hippocampus and used to condition the generative network (GPT-3.5; Brown et al., [2020)).
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Further model details

C.1 Variational autoencoders

This section provides a more detailed description of the variational autoencoders
(VAEs) used in Chapter Two. See Section for a more general discussion of
VAEs.

The VAEs in these simulations use convolutional layers to better encode and decode
image features. Convolutional layers learn sliding windows that scan the image for a
relevant feature, outputting a stack of feature maps (LeCun et al., |[1989)). Applying
such a layer to the output of a preceding convolutional layer has the effect of finding
higher-level features in the stacked feature maps, i.e. if the first convolutional layer
learns to identify simple features such as lines at different orientations, the second

convolutional layer might learn features consisting of combinations of lines.

A large VAE was used for the Shapes3D dataset (containing RGB images of size
64x64 pixels), and a small VAE was used for the MNIST dataset (containing greyscale
images of size 28x28 pixels). In the large model’s encoder, four convolutional layers
gradually decrease the width and height of the representation and increase the depth

(as is standard when using convolutional neural networks to encode images), followed
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by a pooling layer and dense layers to represent the mean and log variance of the
latent representation. In addition, a dropout layer immediately after the input layer
is added to improve the denoising abilities of the model (Srivastava et al., 2014). In
the decoder, four convolutional layers alternate with up-sampling layers to increase
the width and height of the representation and decrease the depth. The smaller
VAE used for the MNIST simulations has a latent dimension of 20, and a reduced
architecture with fewer convolutional layers for efficiency (specifically, there are two
convolutional layers in the encoder and two transposed convolutional layers in the
decoder).

The following list describes the sequence of operations within the large VAE’s encoder

network, using the layer names from the TensorFlow Keras API (Abadi et al., [2016))

(see also Figure [C.1)):

1. Input layer for arrays of shape (n, 64, 64, 3), representing n 64x64 RGB images

2. Dropout layer with a dropout rate of 0.2 (during training, dropout randomly
sets a fraction of the input units to 0 at each step, reducing overfitting and

encouraging robustness)

3. Conv2D layer with 32 filters (i.e. convolutional windows, or feature detectors)

and kernel size of 4 (i.e. windows of 4x4 pixels)

4. Batch normalisation layer (batch normalisation is a common technique which
computes the mean and variance of each feature in a mini-batch and uses them

to normalise the activations)

5. LeakyReLU activation layer (LeakyReLU is an activation function that is a
variant of the Rectified Linear Unit, ReLU)

6. Conv2D layer with 64 filters and kernel size of 4
7. Batch normalisation layer
8. LeakyReLU activation layer

9. Conv2D layer with 128 filters and kernel size of 4
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10

11.
12.
13.
14.
15.
16.

17.

18.

The

10.

. Batch normalisation layer

LeakyReLU activation layer

Conv2D layer with 256 filters and kernel size of 4
Batch normalisation layer

LeakyReLU activation layer

Global average pooling 2D layer

Dense layer to produce the mean of the latent vector

Dense layer to produce the log variance of the latent vector (in parallel with

the layer above)

Custom sampling layer that samples from the latent space, with the mean and

log variance layers as inputs
same information for the decoder network is as follows:

. Input layer for arrays of shape (n, latent_dimension), where latent_dimension is

20 in these results, representing n latent vectors
. Dense layer that expands the latent space to a size of 4096
. Reshape layer to reshape the input to a 4x4x256 tensor
Upsampling2D layer with a 2x2 upsampling factor
Conv2D layer with 128 filters and kernel size of 3
. Batch normalisation layer
LeakyReLU activation layer
Upsampling2D layer with a 2x2 upsampling factor
Conv2D layer with 64 filters and kernel size of 3

Batch normalisation layer
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11. LeakyReLU activation layer

12. Upsampling2D layer with a 2x2 upsampling factor
13. Conv2D layer with 32 filters and kernel size of 3
14. Batch normalisation layer

15. LeakyReLU activation layer

16. Upsampling2D layer with a 2x2 upsampling factor

17. Conv2D layer with 3 filters and kernel size of 3

C.2 Autoregressive sequence models

This section provides a few more details about the training or fine-tuning of models
like GPT-2 (Radford et al., 2019).

The main text gives the intuition for attention, but to be more precise the equation

is given below:

Attention(Q, K, V') = softmax (QKT) Vv
Vdy
In this equation, (), K and V represent the query, key, and value matrices, respectively.
These are derived from the input data. dj represents the dimensionality of the keys
(and queries), and is used to scale the dot products in a way that leads to more stable
gradients. The softmax function is applied to ensure the weights sum up to 1. When
the resulting term is matrix multiplied by V, the result is the relevance-weighted sum
of the vector representations in V, for each token in V. In other words, the attention
mechanism enriches a token’s representations with a relevance-weighted sum of the
other tokens’ representations. See Alammar (2018) for a detailed description of this

process.

Self-attention is a special case of attention in which elements of a sequence ‘attend to’
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a) Schematic of network:
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Figure C.1: Additional model details. a) Variational autoencoder architecture. Trainable layers
(plus the input, output, and sampled latent vector) are shown in boxes, along with the dimensions of
their outputs, and non-trainable operations such as activation functions, batch normalisation, and
upsampling are shown as annotations. See the text for more details. b) Figure adapted from Hou
et al. with permission, showing the effect of adding and subtracting a proportion « of various
different vectors in the latent space of their VAE. (Diagrams were created using BioRender.com.)
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the sequence they are a part of. Specifically, ‘masked’ self-attention is used, meaning
that the representation of a token in an attention block only ‘attends to’ preceding
tokens. Previous models like BERT (Devlin et al., 2018) perform much less well at

text generation partly because their attention is not masked in this way.

Transformer blocks come in different varieties. GPT-2 (Radford et al., 2019) is a
decoder-only model consisting of a stack of transformer decoder blocks. Each such
block consists of a masked self-attention layer followed by a feedforward layer. In
a nutshell, inference with GPT-2 works as follows: First an embedding for each
token is obtained from a learned embedding matrix. A key point is that position
embeddings representing the tokens’ positions in the sequence are added to the token
embeddings (these are required because self-attention is permutation-invariant, so
otherwise information about the order of items in the sequence would be lost). Then
the sequence of embeddings passes through a series of transformer decoder blocks,
each further enriching the token representations so that they come to capture the
meaning of the text. See Alammar (2019) for helpful illustrations of the stages of
processing in GPT-2.

GPT-2 (Radford et al., 2019) comes in several sizes, with the number of transformer
blocks depending on the size of the model. The small variant has 12 transformer
blocks, the medium variant has 24 transformer blocks, and the large variant has 36

transformer blocks.

C.3 Asymmetric modern Hopfield networks

In Section I discuss several options for how sequential traces might be stored
in the initial hippocampal network. One straightforward option is the asymmetric

variant of a modern Hopfield network outlined below.

As mentioned earlier, one can combine the concept of the modern asymmetric Hopfield
network (Chaudhry et al., 2023} Millidge et al., |2022)), with return projections from

memory to feature units being the next states as illustrated in Figure 3.1} with a
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state representation that captures the history of previous states.

In other words, we want to store patterns X and ‘next patterns’ X, instead of just

patterns, and change the update rule accordingly:

gnea:t - Xnemtsoftmax(ﬁXTé.)

To show how the preceding ‘context’ is captured, consider the example of encoding
sentences, i.e. sequences of characters. Each state can be represented by a vector of
length equal to the number of symbols, with one at the index of the current symbol,
plus the previous state multiplied by some decay factor. In other words, we want a
vector representation x; of the it! state which is a sum of the current symbol’s vector
v and activity from the previous state x; ; multiplied by a decay rate A (noting that

the states are then normalised to unit length):

x; — Vit XX
1]l

This has the benefit of still being compatible with one-shot learning, and works in
initial testing for a range of sequences represented as characters, e.g. the model of
HPC can encode and retrieve sentences (although retrieval performance goes down
with sentence length). As noted above, our sequences consist of a single symbol at
any moment in time, but other sequences like frames in a video consist of complex
representations at each time step. In the latter, the decaying activity from previous
states would be hard to distinguish from the current state, so a more complex
solution like the temporal predictive coding network of Tang et al. (2023) may be
required. In addition the memory capacity may not scale as well as the more complex

approaches.

As with all modern Hopfield network (Ramsauer et al., |[2020) variants, the inverse
temperature, (3, is a key parameter determining the network’s behaviour. In this case

a high value of 8 would be desirable to avoid composite states. The softmax function
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is given below; in the limit of high §, the output of this function becomes a vector

with one at the index of the maximum and value and zero elsewhere:

softmax(z;)) = ———

i K 3.

Zj:l el
One additional detail is that a special token can be used to represent the start and
end of a sequence (e.g. ‘[" and ‘]’ in my code). This means that ‘replay’ can be
initiated by giving the network the start of sequence token. Since all sequences begin
with this character, the dot product of the input and all possible next items is the
same, so if a ‘random tiebreak’ is implemented at the softmax stage, this corresponds

to random sampling from the bank of memories.

C.4 Predictive coding networks

This section provides some more details on predictive coding networks, a more biolo-

gically plausible alternative to the generative networks used in the simulations.

Bogacz (2017)) introduces predictive coding with a simple toy problem involving
perceptual inference: an animal receiving noisy sensory data, a single value of light
intensity u, must infer the size of an object, v. The variable u is noisy, so is represented
as normally distributed with a mean of g(v), which gives the expected light intensity
for an object of size v. The variable v is also normally distributed, with a mean of v,,
which represents the prior for v. Note that the animal has two sources of uncertainty
in this problem: it doesn’t know the true value of v but must infer it from u, and in
addition the estimate of u is noisy given v. The problem then is to estimate the most
likely size of the object, ¢, from the noisy observation of light intensity. That is, we

want to find the value of v, ¢, that maximises p(v|u):

p(u | v)p(v)

p(v|u)= ()
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To find the most likely size ¢, we want to maximise the numerator, or equivalently

the logarithm of the numerator, a quantity F"

F =1np(¢) + Inp(ulp)

What is the relationship between the quantity F' we want to maximise and the
Helmholtz free energy? In mathematical terms, Bogacz (2017) shows that ‘for certain
assumptions the negative free-energy is equal (modulo a constant) to the function F’
(Free-energy section), so that maximising F' minimizes the free energy, which can be

thought of very loosely as ‘surprise’.

Bogacz (2017)) defines two quantities representing prediction error. e, represents
the difference between the inferred object size and the prior, while €, represents the
difference between the observed light intensity and the expected value given ¢ (while

¥, gives the variance of the light intensity and X, the variance of the size):

-

Y _U_9(¢)

We want to take the derivative of F' with respect to ¢ to find its maximum, at
which the derivative is zero. Bogacz (2017)) proceeds to show that the following four

equations converge to find the maximum of ¢:

¢ = €,9(P) — €p.bp =& — U — Lpép, € = u — g(@) — Bye

Bogacz (2017) also finds the derivatives of F with respect to ¥,, ¥,, and v,, and

these gradients can be used to update >, ¥,, and v, to maximise F'.

So in summary, for some sensory input u, and given network weights described by >,
Y, v, and g(¢), we have a set of equations to find the values of phi, ¢,, and ¢,, based
on finding the maximum of F' with respect to ¢ (where maximising F’ is related to

minimising the free energy). These values are activities at the nodes of the network.
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They converge over time, with activity bouncing back and forth between the layers
of the network (unlike in the standard feedforward networks used in deep learning).
We also have equations for updating the parameters of the network. As Millidge
et al. (2021)) describe, the network minimizes prediction error, ‘first through the
optimization of neuronal firing rates on a fast timescale, and then the optimization of

synaptic weights on a slow timescale’ (Introduction).

These equations can be implemented by the network shown in Figure reproduced
from Figure 3 of Bogacz (2017). Note that only the prediction error €,¢'(¢) is
transmitted upwards through the hierarchy (in contrast to autoencoders, as discussed

above), while the prediction ¢g(¢) is transmitted downwards.

This toy example illustrates a local learning algorithm that involves only propagating
errors from lower to higher levels, and accounts for uncertainty in both the latent
representation given the sensory data, and the sensory data given the latent repres-
entation in a mathematically principled way. The authors then develop this simplified
version into the full predictive coding network, by generalising to multiple input
features, hidden features, and layers in a hierarchy, and by making the distribution
g(v), which describes the value of the sensory data u for some inferred cause v, learned
rather than fixed.

Predictive coding networks’ use outside of neuroscience is limited, partly because
they are slower to train than more traditional learning algorithms. However, various
modifications have been suggested to address this, such as incremental predictive

coding networks (Salvatori et al., 2022)).
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Figure C.2: A toy example of predictive coding reproduced from Figure 3 of Bogacz (2017)), in
which circles are nodes, arrows are excitatory connections, and lines ending in circles are inhibitory
connections.
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