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Abstract

X-ray Computed Tomography (CT) images are widely used in various fields of natural,
physical, and biological sciences. 3D reconstruction of the images involves segmenta-
tion of the structures of interest. Manual segmentation has been widely used in the
field of biological sciences for complex structures composed of several sub-parts and
can be a time-consuming process. Many tools have been developed to automate the
segmentation process, all with various limitations and advantages, however, multipart
segmentation remains a largely manual process. The aim of this study was to develop
an open-access and user-friendly tool for the automatic segmentation of calcified tis-
sues, specifically focusing on craniofacial bones. Here we describe BounTl, a novel
segmentation algorithm which preserves boundaries between separate segments
through iterative thresholding. This study outlines the working principles behind this
algorithm, investigates the effect of several input parameters on its outcome, and
then tests its versatility on CT images of the craniofacial system from different spe-
cies (e.g. a snake, a lizard, an amphibian, a mouse and a human skull) with various scan
qualities. The case studies demonstrate that this algorithm can be effectively used to
segment the craniofacial system of a range of species automatically. High-resolution
microCT images resulted in more accurate boundary-preserved segmentation, none-
theless significantly lower-quality clinical images could still be segmented using the
proposed algorithm. Methods for manual intervention are included in this tool when
the scan quality is insufficient to achieve the desired segmentation results. While the
focus here was on the craniofacial system, BounTI can be used to automatically seg-
ment any hard tissue. The tool presented here is available as an Avizo/Amira add-on,
a stand-alone Windows executable, and a Python library. We believe this accessible

and user-friendly segmentation tool can benefit the wider anatomical community.
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1 | INTRODUCTION

3D image analysis is extensively used in various fields of natural,
physical and biological sciences (e.g. Cunningham et al., 2014;
Garvey, 2002; Metzger et al, 2015; Rawson et al., 2020;
Razmkhah, 2020). A key part of such analysis involves segmen-
tation, based on computed tomography (CT) or magnetic reso-
nance imaging (MRI). Segmentation is the partition of an image
into multiple parts, usually based on voxel characteristics. A num-
ber of techniques for segmentation can be used, such as manual
selection, grey value thresholds or artificial intelligence (Al) algo-
rithms (e.g. Lenchik et al., 2019). Manual segmentation specifically
is an extremely time-consuming process. Choosing a grey value
threshold allows the operators to select the section of the image,
with voxel intensities higher than the threshold. This relatively
time-efficient operation can produce acceptable results for bone
segmentation as bone tends to have a higher voxel intensity than
the surrounding soft tissues (e.g. Ranefall & Wahlby, 2016; Singh
et al., 2022).

While direct threshold can be an extremely helpful tool to ob-
tain bone segmentation from volume data, it is highly dependent
on the image quality (resolution, contrast, sharpness and absence
of artefacts). When a single object is considered such as a single
bone, a simple threshold may be sufficient to separate the bone
voxels from the surrounding soft tissue. However, anatomical
structures are usually complex and consist of several hard tissue
sub-parts connected via soft tissue joints. Disarticulating such
connected sections can often be laborious and require manual de/
selection of the connected voxels and is further complicated in
disease models and patient scans with morphological abnormali-
ties (Mansoor et al., 2015).

To facilitate automatic segmentation a variety of tools have been
developed, aiming to streamline the process and minimise the re-
quired manual user input. These tools included automated threshold
selection algorithms (e.g. Otsu, 1979) and local threshold algorithms
(e.g. Sauvola & Pietikdinen, 2000) that can help augment the tradi-
tional threshold approach. Newer Al algorithms can generate an an-
atomically accurate segmentation result even when the information
in the images is not sufficient to obtain such segmentation through
conventional algorithms (e.g. Cui et al., 2022). However, the former
is still highly reliant on image quality while the latter often requires
extensive training datasets (Belvedere et al., 2022; Engelkes, 2021;
llesan et al.,, 2023; Irimia et al., 2019; Rad et al., 2013; Singh
et al., 2022; van Eijnatten et al., 2018). Additionally, most of these
tools tend to be technically advanced and can be difficult to use for
operators.

The aim of this study was to develop and introduce an easy-
to-use, technically simple, and entirely explicit tool for the auto-
matic segmentation of hard tissues: BounTl (Boundary-preserving
Threshold Iteration). Here we describe the novel algorithm behind
BounTl, test its sensitivity to some of its key input parameters and

showecase its application to automatically segment and separate
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different components of the skeleton in different species with a
specific focus on the craniofacial region. Nonetheless, the tool de-
veloped can be used for the automatic segmentation of other artic-

ulated skeletal regions.

2 | MATERIALS AND METHODS

BounTl iterates through thresholds and slowly builds segments onto
the seed generated from the initial threshold (Figure 1). It is spe-
cifically designed to be accessible to as wide an audience as pos-
sible and thus is available as an add-on for the Avizo/Amira suite, a
Python package and a stand-alone Windows application. The tool
and full user guides, including tutorials and further segmentation
examples and visualisations, are available in Supplement 1. All of
the visualisations in this work were produced through Avizo 2022.1
(Thermo Fisher Scientific, MA, USA). Neither the stand-alone ex-
ecutable nor the Python library have built-in visualisation modules,
thus, visualising the segmentation results and introducing further
manual segmentation for non-Avizo/-Amira users will require third-

party software.

2.1 | BounTlalgorithm
2.1.1 | Inputparameters

The algorithm takes volume data and four numerical variables de-
fined by the operator as input. These include:

e The initial threshold (IT) - a high grey scale value above which
the segmentation results in the desired separation of anatomical
elements,

e Thetargetthreshold (TT) - alow grey scale value above which the
segmentation results in the desired bone definition,

e The number of iterations (NI) - a number of threshold steps from
the initial threshold to the target threshold that will be done and

e The number of segments (NS) - a number of largest separate
segments that will be retained for processing from the initial
threshold.

The two parameters that are the most challenging to select are
the initial threshold and the number of iterations. Thus, several sen-
sitivity tests were performed on the choice of these parameters on
a sample dataset to investigate the effect of the aforementioned

parameters.

2.1.2 | Processing

BounTlI first creates the seed from the initial threshold. The seed

here is a segmentation of fully disarticulated components obtained
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FIGURE 1 An overview of the technique developed, and threshold-based versus BounTl segmentation. (a) segmentation using the target
threshold (27,000) and (b) segmentation using BounTI (IT - 35,000, TT - 27,000, NI - 150 and NS - 40).

using the initial threshold where the largest separate segments are
extracted. The number of these segments in the seed is equal to
the number of segments parameter. Each segment in the seed can
be optionally expanded by one voxel to include surrounding voxels
(dilated), this can produce cleaner results. This option was not em-
ployed in these investigations as it can also lead to less predictable
results. The threshold step (TS) is the amount by which the threshold
will be changed between iterations and is obtained using the follow-
ing Equation (1.

TS= ——. 1)

The volume data is thresholded using a current iteration thresh-
old (CIT) given by the following Equation (2.

CIT=IT-TSxCI. (2)

Here Cl is the current iteration. The surrounding connected vox-
els are added to all of the seed segments individually and the current
iteration is increased by one starting from zero. This is repeated until
the current iteration is equal to the number of iterations and the last
threshold is done at a threshold equal to the target threshold. This
results in segmentation that can simultaneously keep the separation
achieved by using a high threshold (that alone results in extremely
poor definition) and the segment definition that can be obtained by
using a low threshold (that alone results in erroneously connected
segments).

2.2 | BounTltool

The algorithm devised in this work has been implemented into an
easy-to-use tool available in three distinct forms (Avizo/Amira add-
on, Python library, Stand-alone Windows executable). While in-
depth user guides are available in Supplement 1. This section briefly
introduces the input and output data types, common considerations
and highlights the differences between the three implementations
of the algorithm.

The workflows for the three implementations are shown in
Figure 2. Data preparation can be done in any preferred image
processing software. Input CT data should be converted to 16-
bit unsigned format. When converting from 32-bit data the input
range often requires adjustments to minimise bone grey value in-
formation loss. As 8-bit data is rarely used in research settings the
tool is not designed to take in such data. Thus, 8-bit data should
be converted to 16-bit unsigned data with the output range set
from O to 255. Additionally, it is often advisable to resample the
data to at least be under 2Gb, this ensures timely segmentation,
which can be particularly important when fine-tuning the input
parameters.

If the Avizo/Amira add-on is used the data preparation can
be conducted in Avizo/Amira, if it is conducted in other software
packages any data type that Avizo/Amira accepts can be used. The
Python package uses 3D NumPy array (dtype - np.uint16) as input,
thus the users can use any external library to convert the data from

95U8017 SUOWILWIOD SAIES1D) 3l dde 8y} Ag pauienoB aJe S391Le YO ‘8SN JO'S3|NJ 40} Akl 8UIUO AS|IA LO (SUONIPUOD-PUE-SWLIS)L0D AB 1M ARRIq 1 )BU|UO//:SANY) SUOIPUOD PUe SIS | 84} 89S *[202/S0/v2] Uo Ariqiauliuo A8|iM ‘1591 AQ €901 T BOITTTT OT/10p/wWod A3 1M Aleud Ul |uoy/:sdiy wolj pspeojumod ‘0 ‘0852697 T



L wicey- ANATOMICA! T

Python Library

Avizo Script Object

DIDZIOKAS ET AL.

Stand-alone GUI

| 8bit CT data |

| 16bit CT data ‘

| 32bit CT data |

‘ Convert to 16bit unsigned I

A 4

I Export desired format l

Export as TIF stack (3D)

}

Import to Python ‘

errdirr e —————

Segmentation

! |

Optionally produce initial labels

|

SETTETTEETET EETETTEY

Define parameters

Drag and drop
< BounTl.pyscro
to Avizo/Amira

Define parameters

sessssssennesfesssnnshasaquransnnnannnnnnanan

Run BounTl.exe
‘—l—{ pip install bounti |

]
v

Input Volume / volume_array — 16bit CT Data.

Input Label / label — Initial Segmentation (optional), used directly as the seed segmentation.
of / —the number of segments that will be produced.
Number of Iteration (NI) / iterations — the number of iterations run. Step size = (IT—TT)/NI.
Initial Threshold (IT) / initial_threshold — Initial threshold (High), should provide adequate
separation, usually has poor segment definition.

Numh

Target Threshold (TT) / target_threshold —Final threshold (Low), should provide desired segment
definition, usually has erroneous connections between segments.

Seed Dilation / seed_dilation — grows each segment in initial seed by 2.

Label Preservation / label_preserve —retains input label numbering, used only with input label.
Save Seed — optionally returns the seed segmentation, useful when optimising the parameters.

Output

Boundary preserved segmentation

Y

Visualise and edit in

Export or visualise in Python

Avizo/Amira

-
SECTTTTET TR ETLTY SETETRRET T

Y

Visualise and edit in preferred
software

sssssssssssssssssafessssnnnnnnnhan
-

1
]

I

1

I

|

: 1

Export as TIF stack (3D) :
1

|

|

1

1

1

FIGURE 2 An overview of the three implementations of the algorithm. Highlights the data input and output types, and the different data
import and export steps for the Avizo/Amira add-on, Python library and the Stand-alone executable.

any data type to the array. A built-in method is available to import
3D tiff stacks. The stand-alone executable requires the 3D tiff stack
as input data.

While the tool can significantly reduce the segmentation time,
manual postprocessing is often a recommended final step. The
Avizo/Amira add-on produces segmentation data that the users will
be familiar with and will be able to manipulate as any other segmen-
tation. Similar to the input data type, the Python function will output
the same data type, again external libraries can be used to visualise

or export the segmentation or a built-in method is available to export
the segmentation as a 3D tiff stack. The stand-alone executable will
export the output as a 3D tiff stack.

The manual in Supplement 1 includes a detailed step-by-step
guide on how to achieve the best results from specific CT data, high-
lights some possible use cases and shows how the tool can be used
in conjunction with manual segmentation. While all the steps are laid
outin Avizo the same steps should apply to any other image segmen-

tation tool.

85US0 |7 SUOWWOD BAFe81D) 8|qedl|dde au Aq peusenob ke s|oiie VO ‘SN 0 S8|nJ 10} ArIg1T3UIIUO AB]IM UO (SUOTHPUOD-PUE-SWLBHLIOD™A8 | 1M AReq | BU1|UO//SARY) SUORIPUOD pUe SWS | 8U388S *[202/S0/72] Uo AreiqiTaulluo A8lIM ‘a1 Ad 90T B0l/TTTT OT/I0p/wod A8 |mAIq1jeulu0//SdnY Wo.y pepeojumod ‘0 ‘085.69%T



DIDZIOKAS ET AL.

T AN T QMG witey-L

TABLE 1 BounTl parameters used for the different sensitivity tests carried out.

Number of Number of
Test Initial threshold Target threshold iterations segments File size, MB
Initial threshold sensitivity 30,000-40,000 27,000 60-260 28 181
Number of iterations sensitivity 35,000 27,000 10-200 28 181
File size sensitivity 35,000 27,000 10 28 7-1200

2.3 | Volume data

The volume data used in this work were CT images of the craniofa-
cial region. This was chosen as it is a complex system consisting of
several bones joined together by cranial and facial sutures and syn-
chondroses (e.g. Richtsmeier and Flaherty, 2013). Hence, it is ideal to
test the functionality of BounT].

First, a preoperative craniosynostosis patient skull (female
right-sided coronal suture fusion, 92days old) was used to highlight
the sensitivity of the BounTl to the choice of its input parameters.
Second, to establish the versatility of BounT]l, five additional scans
were used. These included: a snake (Lamprophis olivaceus, adult;
Natural History Museum, UK), a lizard (Pseudopus apodus, adult;
Evans Lab., UK), an amphibian (Andrias japonicus, adult; Kanagawa
Prefectural Museum of Natural History, JP), a mouse (Mus musculus,
7 days old; Pauws Lab, UK) and a healthy anonymised human skull
(female, 111 days old; Necker-Enfants Malades University Hospital,

France).

2.4 | Sensitivity tests

Three sensitivity tests were performed on the preoperative cranio-
synostosis patient scan to investigate the effects of input param-
eters on the segmentation results:

Initial threshold sensitivity: the initial threshold for this scan
was varied from 30,000 to 40,000 in increments of 1,000. These
were set to capture the full range of the bone grey values from the
scan. At threshold values lower than 30,000, the soft tissues and
noise were included while at values higher than 40,000 little to no
bone would be selected. The number of segments was set to 28 as
this was deemed sufficient to capture the 23 cranial bones (Dixon
et al., 1997) as well as the mandible and vertebrae present in the
scan. The number of iterations was adjusted to retain a threshold
step of 50, which was done to remove the influence of step size on
the outcome. Thus, the segmentations with higher initial thresholds
would require more iterations (see Equation (1), if the number of it-
erations was left unchanged it would result in different step sizes
between iterations. Here the target threshold of 27,000 was used
for this scan given that it resulted in the desired bone definition.

Number of iterations sensitivity: the number of iterations defines
how many times the algorithm should be repeated between the ini-
tial and target thresholds. Tested values were 10, 25, 50, 100, 150
and 200 resulting in threshold steps of 800, 320, 160, 80, 53 and
40 respectively. These were chosen to capture the full range of the

CT contrast resolution, that is, the step size of 40 was finer than the
actual spread of the grey values, meaning that further increasing the
number of iterations would have had no effect on the segmenta-
tion results. An initial threshold of 35,000 (obtained from the initial
threshold sensitivity test) was used with the target threshold set to
27,000. The number of segments was set to 28.

File size sensitivity: Resampling was used to obtain volumes
ranging from 7 MB to 1.2 GB in file size, by increasing or decreas-
ing the voxel size of the original scan. (Lanczos resampling in Avizo)
Execution time was taken as the wall time (the amount of time that
the program takes from start to finish) on a Windows machine with
128 GB RAM, Intel Xeon W-2265 CPU @ 3.50 GHz. Algorithm pa-
rameters were as follows: 35,000, 27,000, 10 and 28 for the initial
threshold, target threshold, number of iterations and number of seg-
ments respectively (Table 1).

2.5 | Versatility analysis

BounTl segmentation was performed on all the specimens described
in the volume data section. The scans were obtained from differ-
ent CT machines with different resolutions and qualities. Figure 3
presents a sagittal slice of the aforementioned scans as well as the
grey value distribution (left - O, right - 65,535, range markers show
the initial [higher - left] and target [lower - right] threshold used for
each case study in the versatility analysis) and volume dimensions in
voxels. The initial threshold was selected as the value at which the
bones were sufficiently separated when using a direct threshold and
the target threshold was the value at which the desired bone defi-
nition was reached. As the CT data was arbitrarily converted from
32-bit to 16-bit with the goal of preserving the greyscale value data
for the bone, the numeric values are arbitrary and have little physical
meaning beyond higher values signifying higher x-ray attenuation.
Specific BounTl and scan parameters used for each specimen were
as follows:

Lamprophis olivaceus (Snake): BounTl - Initial threshold of
40,000, target threshold of 21,000, number of segments set to 40
and number of iterations set to 100; Scan - 13 umx 13 umx 13 um,
90kV, 111 uA, 0.354s exposure.

Pseudopus apodus (Lizard) (Marghoub et al., 2023): BounTI| -
Initial threshold of 48,000, target threshold of 28,000, number of
segments set to 200 and number of iterations set to 200; Scan - 23
umx 23 umx 23 um, not known to us.

Andrias japonicus (Amphibian) (Matsumoto et al., 2024): BounTI
- Initial threshold of 47,000, target threshold of 32,000, number of
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FIGURE 3 Sagittal slices and scan volume size in voxels for the segmented cases. The histogram range is from O (left) to 65,535 (right)
and pointers initial (higher) and target (lower) thresholds used for example segmentations. (a) Snake - Lamprophis olivaceus adult, (b)
Lizard - Pseudopus apodus adult, (c) Amphibian - Andrias japonicus adult, (d) Mouse - Mus Musculus 7 days old, (e) Human - Female right-
side coronal suture fusion 92 days old, (f) Human - Female 111 days old. Note visualisations in this figure were generated in Avizo image
processing software.
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segments set to 40 and number of iterations set to 100; Scan - 100
umx 100 um x 100 um, not known to us.

Mus musculus (Mouse) (Didziokas et al., 2024): BounT! - Initial
threshold of 34,000, target threshold of 21,000, number of seg-
ments set to 30 and number of iterations set to 100; Scan - 9.6
umx 9.6 umx 9.6 um, 90kV, 90uA, 1s exposure.

Homo Sapiens (Human), female right-sided coronal suture fusion,
92days old (Mellgren et al., 2024): BounT! - Initial threshold of 35,000,
target threshold of 27,000, number of segments set to 28 and number
of iterations set to 100; Scan - 293 umx 293 um x 300 um, not known
to us.

Homo Sapiens (Human), female, 111days old (Liang et al., 2023):
BounTl - Initial threshold of 29,000, target threshold of 22,000,
number of segments set to 28 and number of iterations set to 100;

Scan - 304 pm x 304 pm x 296 pm, not known to us.

3 | RESULTS
3.1 | Initial threshold sensitivity

The analysis showed that a lower initial threshold resulted in errone-
ously connected segments because the segments were connected

Initial threshold =
32,000

Initial threshold =
30,000

BounTlI
. Seed
segmentation

Sagittal slice of
BounTI segmentation

Initial threshold =
35,000

T AN T QMG witey-L

in the seed (Figure 4). Conversely, an overly high initial threshold led
to erroneous separation as seen on the parietal bone in the 40,000
threshold case. Additionally, in the latter case, some segments were
also erroneously connected due to the seed lacking a segment to
build onto (see parietal bone in Figure 4). For brevity five out of the
11 cases tested are shown in Figure 4. The full set is available in
Supplement 2. Note, the colours of the segments in all figures were
based on the volume of the segment in the seed. This resulted in
different colours of the same bone in some of the BounTl segmenta-
tion. While this can be easily changed manually or algorithmically
to coincide between segmentations in this work it was chosen to
present the results exactly as generated.

3.2 | Number of iterations sensitivity

The effects of the number of iterations is shown in Figure 5a. The
main effect was the definition of the boundary between two ad-
jacent regions, with the higher number of iterations resulting in a
cleaner, more anatomically accurate boundary. However, the differ-
ences in the boundary between the 100 and 200 iterations cases
were hard to identify, suggesting a limit on the boundary-improving
effect of the number of iterations used. For brevity, three out of the

Initial threshold =
40,000

Initial threshold =
37,000

FIGURE 4 Effects of initial threshold value on the generated seed segments and the final segmentation. (Number of segments set to
28 and the number of iterations adjusted for each threshold to retain a step size of 50). Boxes outline the facial region (nasal, maxilla and

zygomatic bones).
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(@ Number of iterations = 10 Number of iterations = 100 Number of iterations = 200
Step size = 800 Step size = 80 Step size =40

(b) |teration 0/200 Iteration 50/200 Iteration 100/200 Iteration 150/200 Iteration 200/200

FIGURE 5 (a)Effect of the number of iterations on segment boundary quality. Boxes outline the interface of two segments and (b)
change in the segmentation with iterations completed with an initial threshold of 35,000, target threshold of 27,000, number of segments
set to 28, and number of iterations set to 200, resulting in a step size of 40.

six cases tested are shown in Figure 5a. The full set is available in
Supplement 3.

Additionally, Figure 5b highlights the working principles of the
algorithm showing the outcome of the segmentation through the
iterative process, at different iterations where the number of itera-
tions was set at 200 that is, at 0 (0%), 50 (25%), 100 (50%), 150 (75%)
and 200 (100%). Animated visualisation for the iterations for both
the craniosynostosis case and the normal skull scans is available in

Supplement 4.

3.3 | File size sensitivity

Some loss of segmentation quality occurred when the volume
data were down-sampled, namely the facial bones (nasal and max-
illa) Figure 5a. Overall bone definition was also affected and can
be observed as more apparent voxels in the down-sampled cases.
Additionally, the execution time was directly proportional to the file
size when the data was down-sampled (see Figure 6). While the spe-

cific relation shown here will not be true for all data sets and BounT]
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FIGURE 6 (a) Comparison of segmentation results for downsampled CT data and (b) Execution time in seconds against CT data set size in
megabytes. All tests were segmented with an initial threshold of 35,000, target threshold of 27,000, number of segments at 28 and number

of iterations set to 10, resulting in a step size of 800.

settings, the direct relation between computation time and file size
is always present, meaning that as file size increases execution time

will also increase.

3.4 | Versatility analysis

The algorithm successfully segmented various bony parts of the
craniofacial skeleton in all presented cases (Figure 7). Nonetheless,
the results were still dependent on both the specimen type and scan
quality and not all the bones were separated even if, anatomically,
the bony segments were distinct. This can be observed to some ex-
tent in all cases considered here and may still require some manual
segmentation. However, the results also highlight the versatility
and capabilities of the approach with the majority of the bones
segmented and, in the lizard case, including all the individual osteo-
derms (Figure 7b).

The comparison between the segmentation of the cranio-
synostosis infant and the normal infant skulls (i.e. Figure 7e vs
7f) highlights two key aspects of the algorithm. Firstly, the fused
frontal and parietal bones were not segmented in the former spec-
imen. Additionally, the latter specimen showed better and more
anatomical segmentation as seen in the nasal and maxillary bones
(see highlight boxes in Figure 7e,f). The unclear boundaries in the
craniosynostosis skull segmentation are known as overflow and
are a direct result of the scan quality (contrast, resolution and

sharpness).

4 | DISCUSSION

We have here presented a novel automated segmentation tool and
highlighted its capabilities. BounT| was successfully developed and
used to segment craniofacial bones of different species. The ‘right’
choice of input parameters for this algorithm will depend on a range
of parameters including the quality of volume data, specifically reso-
lution and greyscale value distribution (contrast). The user manual
available in Supplement 1 can be a useful resource to identify the
input parameters. Nonetheless, the sensitivity tests included in this
study can act as a troubleshooting guide for users when selecting
these parameters for their specific data sets.

The sensitivity tests demonstrated that the segmentation re-
sults are primarily affected by the choice of initial threshold. The
initial threshold first identifies the seed, that is, produces the ini-
tial segmentation from which each segment is then grown. Thus, it
had a profound effect on the separation (i.e. segmentation) obtained
from the algorithm. A low threshold led to insufficient separation
in the initial seed and therefore erroneous connections between
the segments. On the other hand, an overly high threshold led to
more disconnected segments in the initial seed and thus errone-
ous disconnections between the segments in the final segmen-
tation. Additionally, the high threshold led to missing segments as
the threshold was too high to obtain segments in the initial seed in
certain regions. This is observed in Figure 4 (see highlight box) for
the 40,000 threshold case where nasal and maxilla bones lack the
separation seen in the 35,000 and 38,000- threshold cases.
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FIGURE 7 Segmentation results for different CT scans (a) Snake - Lamprophis olivaceus adult, (b) Lizard - Pseudopus apodus adult (c)
Amphibian - Andrias japonicus adult, (d) Mouse - Mus musculus 7 days old, (e) Human - Female right-sided coronal suture fusion 92 days
old, (f) Human - Female 111 days old. Boxes outline the facial region (nasal, maxilla and zygomatic bones) in the human segmentations.

Bones of interested are highlighted.

A direct segmentation from a high threshold could be used to
obtain the initial threshold parameter. If the segmentation shows
connected segments where they are expected to be anatomically
separate the initial threshold should be higher, and if some segments
are missing the initial threshold should be lower. Additionally, the
tool developed here allows the direct extraction of the created and
optionally dilated seed, which can then be investigated and used to
adjust the initial threshold accordingly.

Some volume data may not have sufficient resolution, contrast,
or sharpness to obtain a well-separated seed with enough defini-
tion to build the segments in the iteration process. In such cases,
the initial seed can be put in manually, instead of using the gener-
ated seed from the initial threshold. If this approach is employed
then the initial seed can either be preserved that is, the segment
assignments retained, or disregarded by selecting the largest discon-
nected segments. For the latter method, all the desired segments
should already be disconnected in the seed, while using the former
will retain the segment separation even when the segments are in

contact (connected). This option was not investigated in this work,

more details on how to perform seed manipulation are available in
Supplement 1.

The number of iterations sensitivity test did not display a large
difference between the values considered due to the volume
data used. The spread of the grey value range (across the bone
voxels see Figure 3e histogram) in the initial data was relatively
small (Figure 5b). This significantly limits the effect of increas-
ing the number of iterations. However, when comparing the 10
and 100 iterations cases a clear difference in the quality of the
boundaries between the segments can be seen with the higher
iteration producing a more anatomical boundary definition. This
was not further improved by increasing the number of iterations
to 200 iterations (see highlight boxes in Figure 5b). This analysis
suggests that the number of iterations that should be selected is
affected by the spread of grey values across the bone. The spread
is dependent on the resolution, contrast and level of noise in the
scan among other factors. An overly high number of iterations may
not necessarily improve the quality of the final segmentation re-
sults, but it will impact the computational time. For example, in a
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lower file size volume (e.g. clinical CT) this may not be of concern.
However, for larger volumes, it can considerably impact the com-
putational time.

The file size sensitivity test showed that a larger file required
more computational time (Figure 6b). Volume data file size can be
reduced by three main methods. First, the grey values can be con-
verted to use fewer bits. In the case of this algorithm, unsigned
16-bit data is required as input, thus 32-bit, signed 16-bit, and
8-bit data should be converted to unsigned 16-bit data. For the
8-bit case, the output should be from O to 255 when convert-
ing. Secondly, the volume of interest can be cropped to include
only the desired parts for segmentation. Lastly, the data may be
down-sampled, however, as shown in Figure 6éa this can impact
the quality of the final segmentation. Down-sampling can lead to
the largest decrease in computational time and should be consid-
ered when using extremely large microCT volumes such as those
presented in Figure 3d.

Lastly, the versatility is highlighted in Figure 7 as the approach
can be used for a variety of species as well as a range of initial vol-
ume qualities as seen in Figure 3. This suggests that BounTI can be
an invaluable tool for a range of disciplines from anatomical research
to surgical planning as segmentation has been a historically tedious
and time-consuming manual process. As a manual target threshold
is used in the algorithm for the final threshold, it can never yield
any selection different to one segmented with the same threshold
directly. Consequently, in the worst-case scenario, BounT! will have
separated meaningless segments, but the overall definition will be
exactly as it would have been using direct thresholding. However,
in all cases shown here the majority of the segments separated are
anatomically accurate and useful.

Nonetheless, BounTl has limitations. The comparison between
craniosynostosis and normal human skull scans shows that the
algorithm cannot separate physically fused bones. More crucially
the higher quality of the normal human scan highlights the impor-
tance of scan quality as the segmentation was more anatomically
accurate for the normal skull. Namely the more accurate separa-
tion of the nasal and maxillary bones in the normal skull compared
to the craniosynostosis skull highlighted in Figure 7e,f. A concep-
tually similar approach attempted to address the overflow issue
that has led to these scan quality-based separation differences in
BounTl (Huang et al., 2011). However, this method requires sig-
nificantly more computational steps and the overflow issue only
occurs for low-resolution and low-contrast images. Direct thresh-
old iteration was chosen for BounTI to retain the relative simplicity
of the algorithm and to maximise the information obtained from
the grey values of the volume data directly, but this resulted in
lower-quality segmentation for some clinical CT scans that tend
to yield lower resolution/lower contrast images compared to
higher-quality images such as those produced with microCT. The
required scan quality largely depended on the specimen investi-
gated as specimens with smaller gaps between bones may require

higher resolution or specimens with less difference in the x-ray
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attenuation between the bones and tissues connecting the bones
may require longer scans to improve contrast.

The focus of this work was on the segmentation of the cranio-
facial system however, the tool can be used to segment other skel-
etal regions as is. Segmentation of iodine-stained soft tissues may
be possible using the tool however, the slightly higher grey values
observed surrounding the soft tissue boundaries in these scans con-
tradict the core principle of the algorithm that the grey value is lower
at the boundary than other parts of the segment. Similar issues are
present in fossil scans as well as MRI scans. While it may be possible
to segment these scans either with or without additional processing
steps using BounT]I this has not been tested.

Pilot validation has been included in Supplement 5. This includes
a comparison of two extremely different manual segmentation
cases, a normal human infant skull to later be used for FEA and a
minimally segmented Yucatan 1-month-old mini pig where the goal
of the segmentation was to separate the segments manually by re-
moving the material in the sutures connecting bones. These valida-
tion examples are in no way comprehensive and BounTl users are
highly advised to carry out case-specific sensitivity tests, especially
when the segmentation is used directly for analysis as opposed to
further manual corrections.

A commonly used score to evaluate segmentation accuracy is the
Dice Similarity Coefficient. It captures the similarity between two
arrays. In this case, Dice scores were calculated for each segment
and the average of these scores presented as the overall similarity
between the manual and BounTl segmentation. The average Dice
scores for the human scan were 56% and 72% with the missing com-
ponents in the BounTl segmentation included and not included in
the average respectively. For the pig segmentation no components
were missing in the BounTl segmentation and the average accu-
racy was 99%. As FE models require increased suture thickness to
be computationally viable the majority of the difference between
manual and BounTl segmentation is present across the sutures in
the human segmentations. (Supplement 5a) The sutures have been
significantly idealised in the manual segmentation giving rise to the
majority discrepancy in dice scores between the human and pig seg-
mentation accuracy (Liang et al., 2024). Additionally, some of the
segments in the manual human segmentation were not separated in
the BounTl segmentation due to insufficient grey value separation
of these small facial bones further contributing to the differences
in accuracy. This investigation highlights the variability of BounTI
segmentation accuracy due to segmentation goals and data quality.

Even with the limitations laid out in this work, BounTl was able
to successfully segment the vast majority of the anatomically sep-
arate bones in all of the investigated specimens in a matter of min-
utes compared to days, weeks or in the lizard case months of work
required to manually separate the segments. The tool is available
in three distinct forms - Avizo/Amira addon (Script Object), Python
library and a stand-alone executable. As the method is shown to
be versatile it is crucial to make it as accessible as possible to re-

searchers and clinicians of all backgrounds (see also Davies et al.,
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2017). With the segmentations produced by BounTl, it is sometimes
possible to automatically infer the soft tissue joints connecting the
craniofacial bones (see example in Supplement 1). Further investi-
gations into the techniques described in this work may lead to the
automation of not only the bone segmentation but also the segmen-
tation of sutures and synchondroses.
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