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A B S T R A C T

Developing mathematical models used to elucidate reaction kinetics plays a crucial role in the design, control,
and optimization of chemical processes. One of the most challenging tasks in kinetic model identification
is the precise estimation of unknown kinetic model parameters. This challenge can be effectively addressed
through the application of Model-Based Design of Experiments (MBDoE) techniques, which enable the
design of experiments facilitating precise model parameter estimation with minimal runs and analytical
resources. Nevertheless, MBDoE techniques rely on an optimization procedure that is susceptible to parametric
uncertainty, making the design procedure computationally intensive and prone to issues of local optimality.
MBDoE techniques are also employed in online procedures to expedite the identification of kinetic models
in autonomous platforms. As a result, ensuring rapid convergence becomes imperative to mitigate numerical
issues during operational processes. In this paper a Fisher Information Matrix Driven (FIMD) approach is
introduced to tackle these challenges. The methodology integrates a sampling-based experimental design
approach with experiment ranking based on FIM to select the most informative experiment at each iteration.
The effectiveness of the proposed design methodology is examined and discussed via two different case studies
of increasing complexity: a fed-batch reactor in which the fermentation of baker’s yeast is carried out and a
nucleophilic aromatic substitution in a flow reactor system.
1. Introduction

In chemical engineering, kinetic models are fundamental for quan-
titatively describing the progress of chemical reactions that occur in a
reaction system (Bonvin et al., 2016). The availability of trustworthy
models is an essential requirement for the design, simulation control,
and optimization of dynamic systems. Systems can be described by
dynamic, deterministic models that are usually expressed in the form of
differential and algebraic equations (DAEs). When conventional model-
building strategies are adopted (Asprey and Macchietto, 2002; Blau
et al., 2008), reaction kinetics are modeled starting from a set of
candidate models based on preliminary experimental observations and
hypotheses on the reaction mechanism. The subsequent key step is
to determine the best model for describing the system under analysis
among the candidate sets. The standard sequential approach proposed
by Asprey and Macchietto (2000) consists of three steps.

1. Preliminary analysis based on the practical identifiability and
distinguishability of model structures (Zarrop, 1977). Practical
identifiability of a kinetic model refers to the ability to uniquely
determine the parameter values of the model using experimen-
tal data. Distinguishability refers to the ability to differentiate
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between two mathematical models based on their predicted
outcomes (Asprey et al., 2000). It involves assessing whether
the models produce significantly different results under the same
conditions. This concept is crucial in scientific research for eval-
uating model validity and their ability to represent real-world
phenomena.

2. Model-based design of experiments to discriminate among the
candidate rival models that passed the first stage (MBDoE-MD,
where MD stands for model discrimination) (Atkinson, 1970);

3. Model-based design of experiments to improve the precision of
the identified parameters for the best model selected in Step 2
(MBDoE-PE, where PE stands for parameter estimation) (Atkin-
son et al., 2007).

If a model fails the identifiability test, this means that it is not
possible to identify the complete set of model parameters from the
available data. If no model passes the identifiability test in Step 1,
it becomes necessary to propose a new set of candidate models or
consider an alternative model reparametrization. In Step 2, a model
structure is selected and the accuracy of the estimates is improved.
To achieve this, it is necessary to conduct experiments to increase
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the information available on model parameters. Experimental condi-
tions are optimally computed according to the expected amount of
information achievable for model discrimination (Step 2) or parameter
estimation (Step 3) predicted by candidate models. In the current
study, the focus is on the design of experiments to enhance parameter
precision, assuming that the model structure, i.e. the set of relevant
model equations, is known a priori. Before being able to apply MB-
DoE techniques, information on the system under analysis is needed
which is provided by preliminary experiments. Several methods are
available to obtain this initial information, for example performing
a Design of Experiments (DoE) based on sampling techniques in the
experimental design space to identify a set of candidate experiments
that homogeneously explore the experimental design space, i.e. en-
abling space exploration (Montgomery, 2017). Obtaining preliminary
data is crucial as it (i) allows to achieve a reliable estimate of model
arameters to be used as initial guesses and (ii) allows to improve the

precision of the parameter estimate from the early iterations of MBDoE.
Given the importance of the initial information and consequently of
preliminary experiments, various methodologies have been developed
introducing indices to quantify the relative amount of information and
to rank the information obtained from a set of preliminary experiments
carried out on a system (Galvanin et al., 2016). In addition to these
methodologies, different types of sampling methods have also been
implemented which are able to provide a quantitative and qualitative
representation of the experimental design space (Kusumo et al., 2020).
In recent years, automated model identification platforms have been
developed to identify the parameters of kinetic models online and
speed up the identification procedure to reduce computational and
experimental costs (Waldron et al., 2020; Pankajakshan et al., 2019).
However, the parameter estimation procedure is complex and presents
several challenges. The identification problem is often ill-conditioned
and consequently, the objective function of MBDoE optimization may
become difficult to compute (Quaglio et al., 2019). Another problem
in automated platforms for model identification is the optimization
procedure included in the MBDoE step. Often, optimization can be
difficult for the following reasons:

• The system under analysis is structurally complex and requires
candidate models characterized by a high number of parameters.
Owing to the complexity given by the number of parameters
of candidate models, the non-convexity of the optimization and
numerical problems affecting the optimization procedure can lead
to infeasible solutions.

• For systems characterized by a high number of state variables
and design variables, the MBDoE procedure can become computa-
tionally very expensive, thus hindering the benefits of the online
identification of kinetic models.

In this project, a new framework is proposed. The new approach
is based on the evaluation of information from a set of candidate
experiments using the expected Fisher Information Matrix (FIM). Differ-
ently from the traditional methodologies, this framework involves the
exploration of the experimental design space and the evaluation of the
expected information of each candidate experiment to determine the
most informative experiment to run at each iteration. This eliminates
the optimization step required in conventional MBDoE methods to iden-
tify the optimally informative experiment to be performed, making this
framework computationally more efficient and suitable to be applied to
systems characterized by multiple local optima. The paper is structured
as follows: in Section 2 the standard framework and the proposed
framework are presented, in Section 3 the two case studies and their
results are described and in Section 4 the conclusion and future works
are reported.
2

2. Proposed framework

Each candidate model in the MBDoE procedure can be formulated
as a set of differential and algebraic equations (DAEs), where the
measured variable y, can be sampled at finite time instants.

𝐟 (𝐱̇, 𝐱,𝐮,θ, 𝑡) = 0

𝐲 = 𝐡(𝐱,𝐮, 𝝂)
(1)

In Eq. (1) 𝐱 ∈ R𝑛𝑥 , 𝐮 ∈ R𝑛𝑢 , 𝐲 ∈ R𝑛𝑦 , θ ∈ R𝑛𝜃 and t are the vectors
of the state variables representing the system, vector of manipulated
variables, that in this work are defined as time-independent inputs, vec-
tor of the measured (output) variables, vector of the model parameters
of the process, and time variable, respectively. The physical system is
assumed to be subject to noise (𝝂 ∈ R𝑛𝜈 ). Each in-silico experimental
measurement is obtained using the following expression:

𝑦 = 𝑦̂ + 𝜈

𝜈 ∼  (0,𝜮𝒚)
(2)

where 𝜈 is a normally distributed measurement error with zero mean
and variance–covariance matrix 𝜮𝒚 . The objective of the proposed
methodology is to reduce the number of experiments required to esti-
mate the model parameters in a statistically adequate way by perform-
ing experiments that lead to a precise estimation of the model parame-
ters, i.e. minimum uncertainty. In this study three potential frameworks
are analyzed for a precise identification of model parameters:

• DoE-based: this framework utilizes a systematic design of ex-
periments to efficiently and informatively gather data. Employ-
ing a carefully planned sampling strategy, this approach aims
to thoroughly explore the experimental design space, contribut-
ing to a comprehensive understanding and identification of the
underlying model in the analyzed system.

• Standard MBDoE: this framework integrates mathematical models
with experimental design to efficiently explore the input vari-
able space, facilitating the identification and understanding of
complex system models.

• FIM-driven: the proposed methodology combines sampling meth-
ods with a ranking of experiments based on the structure of the
model and the experimental conditions analyzed.

For each framework, a schematic representation of the procedure is
shown in Figs. 1, 2, and 3.

2.1. DoE approach

Standard DoE approaches (Box, 1980) are widely used. These DoE
methods are based on sampling techniques to homogeneously explore
the experimental design space to obtain the conditions for carrying out
preliminary experiments and are particularly effective to acquire initial
information. To enable exploration of the experimental design space,
a screening experimental design as Latin Hypercube Sampling (LHS)
has been used in this study. LHS is a powerful technique employed in
DoE to efficiently explore the parameter space of the analyzed system
(Ye, 1998; M. D. Mckay and Conover, 2000; Montgomery, 1984).
This approach facilitates systematic sampling of the multidimensional
parameter space, ensuring comprehensive exploration of the entire
design space for a fixed number of experimental runs. Consequently,
it emerges as a cost-effective strategy for experimentation. The Latin
Hypercube Sampling (LHS) technique is utilized to generate a set of
experimental points. Fig. 1 illustrates the framework implemented for
the DoE.

The main steps of the DoE methodologies are:

1. Definition of the design space of the parameters: in this step, all
the variables that can be manipulated and optimized during the
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Fig. 1. Standard framework for DoE.
Fig. 2. Standard MBDoE framework.
process are collected in the experimental design vector (Eq. (3)).

𝝋 = [𝐮, 𝐱𝟎, 𝜏𝑒𝑥𝑝, 𝒕𝒔𝒑] (3)

here u is the vector of the inputs which can be both time
varying, u(t), and constant, u, throughout the experiment, x0 is
the vector of initial conditions, 𝜏𝑒𝑥𝑝 is the experiment duration,
and t𝑠𝑝 is the vector of sampling times (i.e. the set of time
instants at which the measured responses are sampled), that is
here assumed uniformly spaced. In this step, the upper/lower
bounds on experimental conditions are defined. In this way the
experimental design space within which to generate candidate
experiments is created.

2. Generation of candidate experiments: LHS is used to generate
candidate experiments to explore the space of operating condi-
tions uniformly. In this work, the ‘‘maximin’’ criterion was used
3

in which the minimum distance between candidate experiments
is maximized (Johnson et al., 1990).

3. The first experiment is randomly selected.
4. Execution of the selected experiment and parameter estimation.

This step is performed by maximizing the log-likelihood function
reported in Eq. (4) (Bard, 1974).

(𝒀 |𝜽) = − 𝑁
2

[

𝑁𝑦ln(2𝜋) + ln(det(𝜮𝒚))
]

− 1
2

𝑁
∑

𝑖=1

[

𝒚𝑖 − 𝒚̂𝑖(𝜽)
]𝑇 𝜮−1

𝒚
[

𝒚𝑖 − 𝒚̂𝑖(𝜽)
]

(4)

where 𝒚̂𝑖 represents the model prediction for the 𝑖th sample, 𝜮𝒚
is the covariance of the measurement error for sample 𝒚, 𝑁 is
the number of measurements and 𝑁𝑦 is the number of measured
output. The values of model parameters are those that optimize



Computers and Chemical Engineering 187 (2024) 108724A. Friso and F. Galvanin
Fig. 3. Framework of the FIMD approach.
the expression in Eq. (4):

𝜽̂ = argmin
𝜃

(𝐘|𝜽) (5)

Where Y is the [𝑁𝑦 ×𝑁] matrix of experimental measurements.
The statistics on the parameters are calculated to assess whether
the estimates are adequate to describe the system.

5. If the statistics on parameters are satisfied then the procedure
can be stopped, otherwise a new experiment is conducted, but
first, it is necessary to remove the conditions already tested from
the set of candidate experiments (Steps 5-6-7 in Fig. 1).

The procedure described above and shown in Fig. 1 is an iterative
procedure that requires a stopping criterion capable of interrupting the
procedure when the values of the identified parameters are reliable.
The stopping criteria used to stop the procedure can be the following:

1. Goodness of fit test on the model: this test is used to assess the
fitting performance of the model under analysis and is based
on a two-tailed 𝜒2 test (Draper and Smith, 2014). Under the
hypothesis of the proposed model being exact, using Eq. (6) it
is possible to evaluate the sum of normalized squared residuals
associated with the fitting of the dataset:

𝜒2
𝑌 =

𝑁
∑

𝑖=1

[

𝒚𝑖 − 𝒚̂𝑖(𝜽̂)
]𝑇 𝜮−1

𝑦
[

𝒚𝑖 − 𝒚̂𝑖(𝜽̂)
]

(6)

The value obtained using Eq. (6) is compared with two reference
values (𝜒2

5% and 𝜒2
95%) and if it lies between the two reference

values the model is considered adequate. Whenever 𝜒2
𝑌 is above

the 95% percentile the model is falsified for underfitting. If 𝜒2
𝑌

is below 5% percentile, the model is falsified for overfitting.
2. t -test on model parameters. The statistical quality of parameter

estimates (𝜽̂) can be assessed using a t -test with an adequate
significance value (Walpole et al., 2016). The first step is to
evaluate the t-values of all model parameters and compare them
4

with the reference t-value:
𝜃̂𝑖

𝑡
(

1+𝛼
2

)

√

𝜈𝜃,𝑖𝑖
≥ 𝑡(𝛼) ∀𝑖 = 1,… , 𝑁𝜃 (7)

In Eq. (7) 𝑡(𝛼) is the t -value obtained from a Student’s
t -distribution using the degrees of freedom of the system and
the significance level 𝛼.

3. Experimental budget termination: once the maximum budget
for conducting experiments has been reached, the experimental
campaign must be stopped regardless of having identified the
appropriate model to describe the system under analysis

In the case studies presented in Sections 3.1 and 3.2, the termination
criterion (3) has been used to enable a comparative assessment of
the efficacy of different experimental design approaches. Statistics for
criteria 1 and 2 will still be calculated to assess the performance of
the three proposed frameworks. This will enable the evaluation of the
efficacy of both stopping criteria across various methodologies.

2.2. MBDoE approach

The procedure presented in Section 2.1 is commonly employed in
preliminary studies of the system under analysis to initialize MBDoE
frameworks. The information obtained is used as preliminary informa-
tion to apply MBDoE. Fig. 2 illustrates a block diagram of the standard
MBDoE framework.

The fundamental steps of the MBDoE methodology for parameter
estimation are the following:

1. To perform a preliminary parameter estimation it is necessary
to obtain preliminary knowledge on the system under analysis.
This knowledge is usually provided by a preliminary set of data
imported into the system.

2. Using the available model, a preliminary parameter estima-
tion is conducted. This step is performed by maximizing the
log-likelihood function (Eq. (4)).
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3. Using the identified parameters a statistical analysis on the
model is performed to assess the performance of the model.
In this analysis, the uncertainty of the predicted parameters is
evaluated, and the fitting of the model is checked. In MBDoE,
the key statistic used in this step is the FIM, 𝐇𝜃̂(𝜽̂,𝝋):

𝐇𝜃̂(𝜽̂,𝝋) =
[

𝐕0
𝜃̂

]−1
+

𝑛𝑠𝑝
∑

𝑖=1

(

𝒅𝒚̂
𝒅𝜽̂

)𝑇

𝑖
𝜮−1

𝒚

(

𝒅𝒚̂
𝒅𝜽̂

)

𝑖
=
[

𝑽 (𝜃̂, 𝜑)
]−1 (8)

where 𝐕0
𝜃̂

is the prior variance–covariance matrix of the model
parameters, 𝒅𝒚̂

𝒅𝜽̂
is the sensitivity matrix, 𝝋 is the vector of the

experimental conditions used to perform the experiment, and
𝐕(𝜃̂, 𝜑) is the variance–covariance matrix, which is equal to the
inverse of the FIM. H𝜃̂ is the metric used to quantify the amount
of information that the experiment already performed provides
on the model parameters.

4. Once 𝐇𝜃̂ is available the new experimental conditions to test
are computed. This step is the core step of MBDoE, where the
estimated parameters and their uncertainties are used to esti-
mate the new experimental conditions. To identify the optimal
experimental conditions it is necessary to maximize a metric
of the FIM which can be the determinant, the trace, or the
minimum eigenvalue:

𝝋𝑛𝑒𝑤 = max
𝜃̂,𝝋

[𝛹 (𝐇(𝜃̂, 𝜑))]

s.t. 𝜑𝑖,lower bound ≤ 𝜑𝑖 ≥ 𝜑𝑖,upper bound

(9)

In this study, the D-optimality criterion (Pukelsheim, 2006) is
used as metric 𝛹 .

5. The new experiment is performed and the dataset is updated.

In this study the stopping criterion used is the achievement of the
aximum experimental budget, i.e. the maximum number of experi-
ents. The other criteria, the goodness of fit test and the 𝑡-test are

valuated . The standard MBDoE framework involves two different
ptimization steps: (1) during maximum likelihood parameter estima-
ion, to estimate the set of model parameters in model calibration
Eq. (5)), and (2) during optimal experimental design, used to identify
he optimal experimental conditions to perform to reduce the variance
f model parameters. This second optimization step can be computa-
ionally expensive, as it scales with the number of design variables of
he system under analysis.

.3. Proposed framework

In the subsequent section, the methodology proposed to address
he challenges inherent in the MBDoE framework is outlined. This
ptimization-free approach, similar to traditional MBDoE techniques,
valuates expected information using a ranked-experiments approach,
s detailed in Galvanin et al. (2015). For this reason, the methodology
ill be called Fisher Information matrix (FIM) Driven approach, or
IMD approach. The FIMD belongs to the class of sequential experimen-
al design frameworks (Goujot et al., 2012; Duarte et al., 2019; Brendel
t al., 2004) where model identification follows an iterative procedure.
block diagram of this method is depicted in Fig. 3.
The fundamental steps of the proposed FIMD framework are the

ollowing:

1. Definition of the experimental design space: in this step the same
procedure used for the definition of the experimental design
space used in the DoE framework is followed. A design vector
is created using Eq. (3).

2. Definition of preliminary experiments to perform using DoE
techniques. In this study, 𝑁𝑒𝑥𝑝 experiments are selected using
LHS framework.

3. Selection of the first experiment to run: in this step, the first
experiment to run is selected randomly, since there is no prior
5

information on the system under analysis.
4. Execution of the experiment and parameter estimation: using
Eq. (4) and Eq. (5) a parameter estimation is performed. The
initial guess of the unknown parameters is updated with the new
estimation (𝜽̂).

5. Statistics on model parameters: statistics on the parameters are
calculated to assess whether the values of the identified parame-
ters are statistically reliable and to quantify the model adequacy
using goodness of fit tests.

6. Re-sampling: this optional step is performed to enable experi-
mental design space exploration during the procedure. In the
resampling procedure the candidate experiments are generated
using the LHS with ‘maximin criterion’ (Johnson et al., 1990).
This step is added to minimize the possibility of running the
same experiment multiple times and to improve the exploration
of the experimental design space.

7. Evaluation of expected information: H𝜃̂ is calculated for each
of the 𝑁𝑒𝑥𝑝 experimental points identified in Step 2 to compute
the expected amount of information on parameters that can be
achieved from each candidate experiment.

8. Ranking of candidate experiments: candidate experiments are
ranked based on the computed information content using the
concept of Relative Fisher Information (RFI) (Galvanin et al.,
2015). The expression of the RFI is given by:

RFI𝑖 =
‖𝐇𝑖‖

∑𝑁𝑒𝑥𝑝
𝑖=1 ‖𝐇𝑖‖

=
‖𝐇𝑖‖

‖𝐇𝑡𝑜𝑡‖
(10)

In Eq. (10) the numerator is the expected information of the 𝑖th
candidate experiment and the denominator is the total amount
of information achievable from the full set of experiments.

9. Selection of the next experiment to perform: the next experiment
(i + 1) to be performed is selected as the experiment providing
the highest RFI:

𝝋𝑖+1 = argmax(RFI𝑖) (11)

Also in this case, as in DoE and MBDoE, the proposed framework is
an iterative approach, the stopping criterion is the achievement of the
maximum experimental budget and the performance of the framework
is evaluated using the metrics presented in Section 2.1.

3. Case studies

The proposed methodology (FIMD) is tested on two different case
studies compared with the results obtained using standard methodolo-
gies. The first case study is a benchmark case study for the applications
of MBDoE techniques, while the second case study is a more complex
system characterized by a higher number of state variables, design
variables and parameters. In each case study three experimental design
approaches are compared:

• DoE: black box experimental design using LHS (Section 2.1);
• MBDoE: sequence of D-optimal experiments (Section 2.2);
• FIMD: proposed FIM-driven framework (Section 2.3).

Results are compared in terms of (a) profile of experimental design
variables; (b) statistics obtained after parameter estimation after each
iteration; (c) computational time. These case studies have been solved
using Python, the library used to solve the set of differential equations
is SciPy. The SciPy’s ‘odeint’ solver is a tool for solving ordinary differ-
ential equations (ODEs) that employs an adaptive approach. It utilizes
the LSODA algorithm, which combines implicit and explicit methods,
allowing it to adjust dynamically to the complexity of the problem
under analysis. This adaptability enables the solver to effectively handle
a wide range of differential equations while maintaining both accuracy
and computational efficiency. Moreover, its ability to automatically
adjust integration precision based on the system’s characteristics en-
hances its utility in scientific research and computational modeling.
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Fig. 4. Fed-batch reactor system under examination (Asprey and Macchietto, 2000). The figure on the left shows an example of the values of the variables manipulated during
the different experiments, while on the right is the value of the measured variable 𝑦1.
Table 1
Definition of experimental design space in terms of upper and lower bounds on design
variables.

Parameter Lower bound Upper bound Design variables

𝑥01[𝑔∕𝑙] 1 10 Yes
𝑢1 [ℎ−1] 0.05 0.2 Yes
𝑢2 (g/l) 5 35 Constant

To perform the parameter estimation the scipy.minimize tool has been
used. The L-BFGS-B algorithm, default in scipy.minimize, is a nonlinear
optimization method tailored for minimizing scalar functions subject
to linear or nonlinear constraints. It efficiently addresses optimization
problems with variable bounds by combining the BFGS quasi-Newton
method with limited-memory techniques (SciPy Developers, 2022).

3.1. Case study 1: Baker yeast growth model

The first proposed case study is the Baker yeast growth model
appearing as a benchmark case study in a number of publications (Espie
and Macchietto, 1989; Asprey et al., 2000; Asprey and Macchietto,
2000). Fig. 4 shows a schematic representation of the fed-batch reactor
used as case study.

We assume that the model used to generate the in-silico data
implements Monod-type kinetics and is described by the following set
of differential equations
𝑑𝑥1
𝑑𝑡

=
(

𝜃1𝑥2
𝜃2 + 𝑥2

− 𝑢1 − 𝜃4

)

𝑥1

𝑑𝑥2
𝑑𝑡

= −
𝜃1𝑥2𝑥1

(𝜃2 + 𝑥2)𝜃3
+ 𝑢1

(

𝑢2 − 𝑥2
)

(12)

In Eq. (12) 𝑥1 is the biomass concentration (g/l), 𝑥2 is the substrate
concentration (g/l), 𝑢1 is the dilution factor (ℎ−1) and 𝑢2 is the substrate
concentration in the feed (g/l). In this model the manipulated variables
are 𝑢1 and 𝑢2 and the model parameters are 𝜃1, 𝜃2, 𝜃3, 𝜃4. In Table 1
the experimental design space is defined in terms of upper and lower
bounds on input variables and initial conditions.

The objective is to compare different experimental design strategies
to precisely and accurately estimate the set of model parameters.
Precision is assessed by evaluating the variance of model parameters
at each iteration, while accuracy is assessed in terms of closeness to
an assumed ‘‘true value’’ used to generate the in-silico experimental
data. Table 2 shows the values of the parameters 𝜽 used to simulate the
experiments and the initial guess values. To generate the synthetic data,
noise was simulated to render the generated data as close as possible
6

Table 2
Parameter values used for the in-silico experiments and
initial guesses.
Parameter True value Initial guess

𝜃1 0.31 5
𝜃2 0.18 5
𝜃3 0.55 5
𝜃4 0.05 5

to the experimentally obtained data. Specifically, a normal distribution
with a mean of zero and a standard deviation of 0.5 𝑔2∕𝑙2 was employed
to emulate the measurement noise. The final value of the generated
data is obtained using Eq. (2) using a variance–covariance matrix of
measurement errors equal to:

𝜮𝒚 =
[

0.5 0
0 0.5

]

(13)

In this case, the design vector, 𝝋, is composed of the initial state 𝑥01
and the input 𝑢1 while the initial value of the substrate concentration
and the value of the substrate concentration in the feed (𝑢2) are kept
constant and equal to 0.01 g/l and 5 g/l respectively.

𝝋 = [𝑥01, 𝑢1] (14)

The bounds used to define the design space for 𝑥1 and 𝑢1 are the
same used in Asprey and Macchietto (2000) and reported in Table 1.
To solve the differential equation of the kinetic model (Eq. (12)) has
been used 10 time intervals so the discretization element is equal to
10.

3.1.1. Generation of candidate experiments
Both in the DoE framework and the FIM-driven one it is necessary

to generate a first set of candidate experiments. To generate this set
a Latin Hypercube Sampling (LHS) coupled with the bounds reported
in Table 1 has been used. The criterion used to obtain a space filling
sampling is the ‘maximin’ criterion (Johnson et al., 1990). The objective
of this design is to maximize the minimum distance inter points:

max{min[𝑑(𝑝𝑖, 𝑝𝑗 )]} (15)

where 𝑑(𝑝𝑖, 𝑝𝑗 ) is the distance between two experimental points 𝑝𝑖 and
𝑝𝑗 .

3.1.2. Results case study 1
The sampling of the experimental design space obtained using this

criterion is reported in Fig. 5a.



Computers and Chemical Engineering 187 (2024) 108724A. Friso and F. Galvanin
Fig. 5. Set of candidate experiments obtained using LHS, with the first experiment
selected randomly.

Fig. 5 highlights the first randomly selected experiment. To ensure
a fair comparison, the initial experiment is kept the same for all three
methodologies. The profiles of the experimental design variables (𝑥1(0)
and 𝑢1) in the experiment designed using DoE, FIMD, and MBDoE are
reported in Fig. 6. The figures show how DoE and FIMD explore the
experimental design space in a more effective way, while MBDoE either
works in a narrower range of experimental conditions (Fig. 6(a)) or
oscillates between two values (Fig. 6(b)).

In Figs. 7(a) and 7(b), the values of information metrics (deter-
minant of FIM, Eq. (8)) of the single experiments performed and the
cumulative information obtained are reported. Fig. 7(a) illustrates the
comparison between the information obtained from the individual
experiment evaluated using Eq. (8) (excluding the prior information
given by the term

[

𝐕0
𝜃̂

]−1
). The experiments identified using the MB-

DoE methodology are those that provide the most information on
parameters, and this is apparent by analyzing the total amount of
information achieved from the experimental campaign (Fig. 7(b)). In
the eighth and tenth experiments, it is evident that employing the
MBDoE provides a higher amount of information compared to the
other two methodologies, as shown in Fig. 7(a). This is due to the fact
that while with MBDoE the experiment performed is always the most
informative, with DoE the design of the experiment to be performed is
fixed (it is generated at the start of the procedure, Fig. 5) and with FIMD
the experiment selected is the most informative of the set of candidate
experiments of that iteration, meaning that the average information
contained in the eighth iteration was very low.

Figure shows the profiles of the estimates of the unknown parame-
ters of the model (Eq. (12)). In Figs. 8 the comparison of the profiles of
estimated (a) 𝜃 , (b) 𝜃 , (c) 𝜃 and (d) 𝜃 and their respective variance
7

1 2 3 4
are reported. In these figures, the blue line represents the value of the
identified parameters, the orange line is the value of the parameter
used to generate the in-silico data and the blue shaded area represents
the uncertainty of the prediction. From these figures it is possible to
notice that the predictions obtained using the FIMD and the MBDoE are
more precise than the predictions obtained using the DoE framework
since the first experiment (the blue shaded area that represents the
uncertainty of the prediction is lower for the FIMD and MBDoE).

In the following figure, the profiles of the variances of the different
parameter predictions are compared. Fig. 9 shows the profiles of the
variances of the four parameters. The profiles show that the variance
evaluated using MBDoE decreases faster than the one evaluated using
DoE and FIMD approach. The profiles of the variance evaluated using
the FIMD approach exhibits a faster decrease compared to the profiles
calculated using the DOE approach. This observation indicates that the
FIMD achieves results comparable to those obtained with MBDoE but
with improved performance compared to DoE as the variance on the
predictions is smaller (Table 3). In Fig. 10 the correlation matrices of
the identified parameters using the three frameworks are shown. In
Fig. 10(a) the correlation matrix of the parameters obtained using the
FIMD is shown, it is evident from this figure that the parameters 𝜃1 and
𝜃2 have a strong positive correlation as their correlation coefficient is
greater than 0.8. Figs. 10(b) and 10(c) show the correlation matrices
obtained with DoE and MBDoE, respectively. The correlations have
been evaluated using the following equation:

𝑅𝑖,𝑗 =
𝑣𝜃̂𝑖,𝑗

√𝑣𝜃̂𝑖,𝑖𝑣𝜃̂𝑗,𝑗
(16)

where 𝑅𝑖,𝑗 are the values of the correlation matrix and 𝒗𝜃̂ is the variance
covariance matrix obtained from the Fisher information matrix.

In Table 3 the values of the predictions obtained with DoE, MBDoE,
and FIMD and their relative prediction variances obtained after 10
experiments are reported. This table shows that the variance in the
predictions obtained with the FIMD is smaller than that obtained with
the DoE and similar to that obtained with the MBDoE. This means
that the estimates obtained with the proposed method are more precise
than those obtained with the DoE and comparable with those obtained
with the MBDoE. To assess the precision of the identified parameters,
it is essential to examine the results of the t -test performed on the
estimates (as discussed in Section 2.2). The t -values of all the model
parameters after six performed experiments are compared with the
reference t -value in Table 4.

The results presented in this table indicate that after six experiments
estimates obtained using the FIMD and the MBDoE methodologies are
statistically precise as they pass the t -test (their t -values are greater
than the reference t -value evaluate with significance equal to 95%).
However, the parameters obtained using the DoE methodology fail the
t -test, making the parameters 𝜃 , 𝜃 , and 𝜃 less accurate.
2 3 4
Fig. 6. Comparison of the experimental design variables using the FIMD, DoE, and MBDoE methodologies. (a) 𝑥01; (b) 𝑢1.
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Fig. 7. Information iteratively obtained after each experiment designed using DoE (blue bars), MBDoE (red bars) and FIMD (green bars). (a) Information obtain from each single
experiment; (b) Cumulative information obtained after every iteration of the three methods.
Fig. 8. Profiles of the identified model parameters in terms of estimated value (blue line), assumed true value (orange line) and uncertainty (blue shaded area). (a) 𝜃1, (b) 𝜃2, (c)
𝜃3, (d) 𝜃4.
Table 3
Parameters used to generate the in-silico data and values identified with DoE, MBDoE and FIMD.

Parameter True value DoE MBDoE FIMD

𝜃1 0.31 1.32 ± 2 ⋅ 10−2 0.21 ± 8 ⋅ 10−3 0.18 ± 7 ⋅ 10−3

𝜃2 0.18 1.76 ± 9 ⋅ 10−3 0.02 ± 7 ⋅ 10−3 0.01 ± 9 ⋅ 10−3

𝜃3 0.55 0.78 ± 0.1 ⋅ 10−5 0.71 ± 0.1 ⋅ 10−5 1.1 ± 0.1 ⋅ 10−5

𝜃4 0.05 0.07 ± 0.23 ⋅ 10−5 0.21 ± 0.13 ⋅ 10−5 0.23 ± 0.19 ⋅ 10−5
8
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Fig. 9. Profiles of the variance of the predicted parameters (a) 𝜃1, (b) 𝜃2, (c) 𝜃3 and (d) 𝜃4.

Fig. 10. Correlation matrices of the parameters predicted using (a) FIMD framework; (b) DoE and (c) MBDoE.
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Fig. 11. Multistep S𝑁Ar reaction (Reizman and Jensen, 2012).
Table 4
Results of the t -test after six experiments. Parameters failing the t -test are indicated in
boldface.

Method t -ref 𝑡𝜃1 𝑡𝜃2 𝑡𝜃3 𝑡𝜃4
DoE 1.83 2.68 0.92 1.14 1.02
FIMD 1.83 28 19 25 128
MBDoE 1.83 203 97 82 128

3.2. Case study 2: aromatic nucleophilic substitution

The second case study proposed consists of a nucleophilic aromatic
substitution (S𝑁Ar), described in the work of Reizman and Jensen
(2012). The schematic of the reaction is depicted in Fig. 11.

This reaction involves five different measurable states: the 2,4-
dychloropyrimidine (1) that reacts with the morpholine (2) in ethanol
to form the desired 2-substituted aminopyrimidine (4) and the un-
desired 4-substituted aminopyrimidine (3) the final product of this
reaction is the 2,4-substituted byproduct (5). The kinetic model used
to perform the in-silico experiments follows the scheme reported in
Fig. 11 under the assumption that the reaction system can be modeled
as an ideal plug flow reactor (PFR). Considering these assumptions
the kinetic model governing the generation and consumption of the
different species is:
𝑑𝑐1
𝑑𝑡

= −𝑘1𝑐1𝑐2 − 𝑘2𝑐1𝑐2 (17)

𝑑𝑐2
𝑑𝑡

= −𝑘1𝑐1𝑐2 − 𝑘2𝑐1𝑐2 − 𝑘3𝑐3𝑐2 − 𝑘4𝑐4𝑐2 (18)

𝑑𝑐3
𝑑𝑡

= 𝑘1𝑐1𝑐2 − 𝑘3𝑐3𝑐2 (19)

𝑑𝑐4
𝑑𝑡

= 𝑘2𝑐1𝑐2 − 𝑘4𝑐4𝑐2 (20)

𝑑𝑐5
𝑑𝑡

= 𝑘3𝑐3𝑐2 − 𝑘4𝑐4𝑐2 (21)

Eqs. (17)–(21) express the concentrations of the different compo-
nents involved in the system in time. These equations are function of
the temperature and of the initial concentrations, the rate constant 𝑘𝑖
for the 𝑖th reaction is expressed in the following way:

𝑘𝑖 = 𝐴𝑖exp
(

−
𝐸𝑎,𝑖

𝑅𝑇

)

𝑖 = 1,… , 𝑁𝑟𝑒𝑎𝑐𝑡 (22)

where 𝐴𝑖 and 𝐸𝑖 are the pre-exponential factor and the activation
energy associated with the 𝑖th reaction that has to be determined using
the experimental data and 𝑁𝑟𝑒𝑎𝑐𝑡 is the number of reactions taking
place. In Table 5 the values of the parameters used to generate the in-
silico data and the initial guesses used in the identification procedure
are reported. As in the previous case study, it was assumed that the
measurement noise follows a normal distribution with mean equal to
zero and standard deviation equal to 0.001.
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Table 5
Parameter values used for the in-silico experiment and initial guesses.
Parameter Value Initial guess

𝐴1 [1/M s] 𝜃1 0.712 1
𝐸1 [kJ/mol] 𝜃2 2.7⋅104 1⋅104
𝐴2 [1/M s] 𝜃3 1.389 1
𝐸2 [kJ/mol] 𝜃4 3.21⋅104 1⋅104
𝐴3 [1/M s] 𝜃5 4.237 1
𝐸3 [kJ/mol] 𝜃6 6.0⋅104 1⋅104
𝐴4 [1/M s] 𝜃7 3.853 1
𝐸4 [kJ/mol] 𝜃8 4.5⋅104 1⋅104

Fig. 12. Candidate experiment generated using the LHS and selected experiment.

Table 6
Definition of experimental design space.
Parameter Lower bound Upper bound

𝑐1 0.1 1
𝑐2 0.1 1
𝑇 [◦C] 40 100

Table 6 shows the experimental bounds used to generate the candi-
date experiments with the LHS where 𝑐1 and 𝑐2 are the initial concen-
trations of the components 1 and 2, 𝜏 is the residence time (in this case
it is kept constant and equal to 1200 s) and T is the reactor temperature
in ◦C.

In this case, since the residence time is constant, the design vector
𝝋 is:

𝝋 =
[

𝑐 (0), 𝑐 (0), 𝑇
]

(23)
1 2
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Fig. 13. A comparison of the experiments designed using the FIMD, DoE, and MBDoE methodologies. (a) Inlet 1; (b) Inlet 2; (c) Temperature.
Fig. 14. Cumulative information calculated using Eq. (8) using the three different
methodologies (FIMD, DoE, and MBDoE). The blue bar represents information from the
DoE methodology, the green bar depicts total information from the FIMD approach,
and the red one signifies information obtained using the standard MBDoE method.

The procedure followed to generate the candidate experiments is
described in Section 3.1.1. To solve the differential equation of the
kinetic model (Eq. (12)) has been used 10 time intervals so the dis-
cretization element is equal to 10. The following section presents the
results obtained from the DoE, MBDoE, and FIMD methodologies to
compare their relative performance.

3.2.1. Results case study 2
The distribution of the first set of experiments used for the three pro-

posed framework generated using the bounds in Table 6 is illustrated
in Fig. 12 with the first experiment to be performed.

Starting from the experiment shown in Fig. 12 the sequence of
experiments for the three different frameworks described in the pre-
vious sections was carried out to identify the values of the eight
unknown parameters. The profiles of the experimental design variables
(inlet concentration of components 1 and 2, and temperature) in the
experiment designed using DoE, FIMD, and MBDoE are reported in
Fig. 13. The information achieved from each experimental campaign
is reported in Fig. 14. The cumulative information acquired through
the MBDoE methodology, evaluated from Eq. (8), is on the order of
magnitude of 1021, with the FIMD approach achieving around 1020 and
the DoE framework yielding a total information of 1016.

Fig. 14 illustrates the superior performance of MBDoE and FIMD
over DoE, as evidenced by increased information obtained. While dif-
ferences between MBDoE and FIMD are less pronounced, suggesting
similar performance in complex systems, MBDoE yields slightly more
information as experiments progress. This is reflected in the variance
of model parameters. Subsequent figures show the profiles of the
eight identified parameters and their variances, demonstrating variance
reduction with fewer experiments compared to DoE.

In Fig. 17 the elements of the correlation matrix (Eq. (16)) of the
identified parameters obtained using the three different methods are
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shown. Fig. 17(a) shows that parameters 𝜃6, 𝜃7 and 𝜃3, 𝜃1 are positively
strongly correlated (the values of the correlation coefficients are greater
that 0.7). Figs. 17(b) and 17(c) show that using DoE and MBDoE results
in a similar parameter correlation pattern.

In Table 7 the values of the parameters identified using DoE, MB-
DoE, and FIMD and their respective variances are compared with the
true values used to generate the in-silico data. Table 7 and Figs. 15–16
show that by adopting MBDoE and FIMD frameworks the variance of
the estimates decreases faster than in DoE (this can be seen from the
decrease of the blue shaded area in the figures and the variance values
after 10 experiments in the table)

The rate of variance reduction translates into the precision of the
estimates, as illustrated by the t-test results reported in Table 8.

The t-test reveals that after ten experiments all parameters obtained
with FIMD and MBDoE are statistically reliable, while four out of
eight parameters (𝐴1, 𝐴2, 𝐸2, 𝐸4) obtained with the DoE approach
failed the test, rendering them unreliable. This underlines the fact that
using DoE requires more experiments than FIMD for precise parameter
identification.

3.3. Computational burden

The significant advantage of the proposed methodology compared
to MBDoE techniques is that it does not require any optimization
to identify the optimal experiment to perform. This reflects on the
computational costs and computational time necessary to precisely
estimate the full set of parameters of the model under examination,
allowing to explore the experimental design space without incurring
into local optima.

In Table 9 the computational times required to reach a solution
with the DoE, MBDoE, and the FIMD methodology are reported. Results
were obtained using an Intel® Core™ i9-10885H @ CPU 2.40 GHz
with 16.0 GB RAM. The reported computational times refer only to the
times necessary for parameter estimation and experimental design to
be performed, while in the case of DoE and FIMD, they do not take
into account the time necessary to generate the first set of candidate
experiments using LHS. Table 9 shows the time needed to reach a
solution in Case study 1 and Case study 2.

The computational times in this table show that even though the
complexity of the system under analysis, measured in terms of the num-
ber of parameters, inputs and measured states, is not significantly high,
the time required to achieve a solution using MBDoE is more than four
times greater than the time required by FIMD to reach a solution (Case
study 1). In Case study 2, where the system is more complex (in terms
of state variables, design variables and unknowns than the first case
study) the difference in computational times increases significantly. In
fact, if in Case study 1 the time required for MBDoE was approximately
four times greater than the time required for FIMD, in Case study 2 the
time required is approximately twenty times greater. The significant
reduction in CPU time depends not only on the elimination of the
optimization required to evaluate the new experimental conditions to
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Fig. 15. Profiles of the identified model parameters in terms of estimated value (blue line), assumed true value (orange line), and uncertainty (blue shaded area). (a) 𝐴 , (b) 𝐸 ,
1 1
(c) 𝐴2, (d) 𝐸2.
Table 7
Parameter values used to generate the in-silico data and estimated values including 95% confidence intervals.
Parameter True value DoE MBDoE FIMD

𝐴1 0.712 0.931 ± 0.029 0.711 ± 0.006 0.855 ± 0.023
𝐸1 ⋅ 10−4 2.7 1.549 ± 0.164 1.159 ± 0.096 1.712 ± 0.019
𝐴2 1.389 1.737 ± 0.211 1.388 ± 0.024 1.380 ± 0.165
𝐸2 ⋅ 10−4 3.21 2.98 ± 0.29 2.313 ± 0.045 2.73 ± 0.10
𝐴3 4.237 4.711 ± 0.002 4.237 ± 1.9 ⋅ 10−4 4.610 ± 0.001
𝐸3 ⋅ 10−4 6.0 3.928 ± 0.156 2.870 ± 0.017 4.736 ± 0.044
𝐴4 3.853 3.819 ± 0.009 3.853 ± 0.002 3.922 ± 0.009
𝐸4 ⋅ 10−4 4.50 4.45 ± 0.375 2.785 ± 0.010 4.262 ± 0.067
Table 8
t -values of the identified parameters after 10 experiments, parameters failing the t -test are indicated in boldface.
Method t -ref 𝑡𝐴1

𝑡𝐸1
𝑡𝐴2

𝑡𝐸2
𝑡𝐴3

𝑡𝐸3
𝑡𝐴4

𝑡𝐸4

DoE 1.68 1.46 3.42 1.65 1.43 38.2 5.28 13.9 1.22
FIMD 1.68 2.91 5.25 2.46 4.34 79.6 20.8 26.8 12.9
MBDoE 1.68 6.45 6.23 5.67 6.43 101 20.9 38.3 12.7
be tested, but also on FIMD framework requiring less model evaluations
than MBDoE. In the standard method, in fact, the model structure
is evaluated in each optimization step, which greatly increases the
computation time. The efficiency of FIMD becomes more pronounced
as system complexity increases, with computation time for MBDoE
approximately twenty times greater than the one for FIMD in the more
complex Case 2. This emphasizes the scalability and effectiveness of the
FIMD methodology, particularly in scenarios with higher-dimensional
systems and increased unknown variables.
12
4. Conclusion and future work

This article introduced a novel Fisher Information Matrix Driven
(FIMD) framework for rapid parameter identification, leveraging a
ranking-based selection of candidate experiments. Comparative anal-
yses with established methodologies, namely Design of Experiments
(DoE) and Model-Based Design of Experiments (MBDoE), were con-
ducted to test the performance of the proposed framework. The ap-
proach presented herein enables precise estimation of unknown model
parameters, emphasizing a significant reduction in computational time
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Fig. 16. Profiles of the identified model parameters in terms of estimated value (blue line), assumed true value (orange line) and uncertainty (blue shaded area). (a) 𝐴3, (b) 𝐸3,
(d) 𝐴4, (e) 𝐸4.
Table 9
Comparison between computational times required
by different experimental design approaches in the
two case studies according to the model complexity
(number of state variables 𝑛𝑥, number of inputs 𝑛𝑢 and
number of parameters 𝑛𝜃).

Case study 1 Case study 2

𝑡𝐹𝐼𝑀𝐷 [s] 2.9 10
𝑡𝑀𝐵𝐷𝑜𝐸 [s] 13.5 233
𝑛𝑥 2 5
𝑛𝑢 2 3
𝑛𝜃 4 8

required for solution attainment. Two simulated (in-silico) case stud-
ies were employed to evaluate the effectiveness of the methodology
in identifying parameters by performing the t -test on the identified
parameters. In Case study 1, FIMD, DoE, and MBDoE were applied to
a biochemical reactor. In this system it was possible to achieve results
in terms of parameter precision comparable to a conventional MBDoE
and significantly better than those obtained with a DoE. Notably, com-
putational time requirements for solution attainment were comparable
among the DoE and FIMD, with the FIMD framework achieving results
in one-quarter of the time needed for MBDoE. The second case study,
involving a reaction system, yielded even more promising outcomes in
terms of statistical precision of parameter estimates. FIMD methodology
was 20 times faster than a conventional MBDoE, but preserving a
similar precision and accuracy in parameter estimation. These findings
underscore the efficiency and accuracy gains achievable through the
proposed FIMD methodology, establishing it as a valuable tool for
expediting parameter identification in complex systems.
13
Future work will explore the practical applicability of the proposed
methods to autonomous kinetic model identification platforms to effec-
tively exploit the advantages deriving from the reduced computational
time.
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Fig. 17. Correlation matrices of the parameters predicted using (a) FIMD framework; (b) DoE and (c) MBDoE.
Appendix A. Supplementary data
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