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A multi-relaxation-time discrete Boltzmann model (DBM) with split collision is propesed for
both subsonic and supersonic compressible reacting flows, where chemical reactions take place.among
various components. The physical model is based on a unified set of discrete Boltzmann equations
that describes the evolution of each chemical species with adjustable acceleration, specifie heat ratio,
and Prandtl number. On the righ-hand side of discrete Boltzmann equations, the collision, force,and
reaction terms denote the change rates of distribution functions due to self- and. cross-collisions, ex-
ternal forces, and chemical reactions, respectively. The source terms can bhée ecalculated,in three ways,
among which the matrix inversion method possesses the highest physical accuracy and computational
efficiency. Through Chapman-Enskog analysis, it is proved that the DBM is-eensistent with the reac-
tive Navier-Stokes equations, Fick’s law and Stefan-Maxwell diffusion €quation in the hydrodynamic
limit. Compared with the one-step-relaxation model, the split collision model offers a detailed and
precise description of hydrodynamic, thermodynamic, and chemical nonequilibrium effects. Finally,
the model is validated by six benchmarks, including multicompenent diffusion, mixture in the force
field, Kelvin-Helmholtz instability, flame at constant pressure, opposing chemical reaction, and steady

detonation.
- 4

Keywords: discrete Boltzmann method, reactive flow, detonation, nonequilibrium

effect

1. Introduction

Reactive flows are a complex physicochemical phenomenon where different chemical species
collide randomly and react vielently, various interfacial and/or mechanical structures coexist,
the chemical, hydrodynamic arzl thermodynamic nonequilibrium effects play significant roles
[1-4]. Due to its ptactical impertance in both nature and society, reacting flows have been
widely studied in human history. With the rapid development of computer hardware and
computational seience in recent decades, numerical simulation has become indispensable for
academic reséarch. Rotuighly speaking, there are three levels of physical description of reac-
tive fluids, 1.e.4 the macroscopic, mesoscopic and microscopic models. The most commonly
used method issthe macroscopic description based upon the continuous models, such as the
reactive Euleror Navier-Stokes (NS) equations, where hydrodynamic quantities such as the
density, velocity, temperature, and pressure are utilized to characterize the reactive system

[1-3]. "Despite their great success, the traditional hydrodynamic governing equations ignore

2
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detailed thermodynamic nonequilibrium effects that often play essential roles, espeecially in a
microscopic system or a local structure with sharp physical gradients [3, 4]. By contzast; the
microscopic description is generally based on molecular dynamics (MD), where the interaction
potential between molecules is considered [5]. Although the exact position and velocity, of each
molecule can be obtained dynamically, the MD is not capable of mimicking a relatively large

system due to its excessive computational cost.

To solve the aforementioned issues, one way is to resort to the mes\oscopic description that
bridges the microscopic molecular and macroscopic continuousumodels. As a kinetic method-
ology, the discrete Boltzmann method (DBM) is regarded as ajprémising tool for mimicking
multi-physics flow phenomena [6-18]. The DBM is a variant version of the standard lattice
Boltzmann method (LBM) that has achieved great successin simulating complex reactive or
nonreactive flows [19-37]. Early in 1997, Succi et«als proposed the pioneering simple extension
of the LBM for numerical combustion where reactive ﬂow’dynamics is handled in the limit of
fast chemistry [21] . In 2010, Chiavazzo'et al. presented the modelling of reactive flows based
upon a coupling between accurate reduced reactionnmechanism and the LBM simulation of flow
phenomena [22]. In 2014, Kang et als, proposed a thermal multicomponent LBM for catalytic
reactive flows where the Bhatnagar-GrosssKrook (BGK) relaxation process is split into two
parts: the first part is characterizediby the relaxation toward an auxiliary state and the second
part describes the relaxation toward the thermodynamic equilibrium [23]. In 2020, Dugast et
al. proposed a topology optimi;ition algorithm based on a multi-relaxation-time (MRT) LBM
coupled with a levelsset method for reactive fluid flows, allowing higher Reynolds numbers flow
simulations compared to the ordinary single-relaxation-time model [28]. In 2021, Lei and Luo
developed a sophisticated \LBM for reactive flows in porous media, where separate equations
describe the evolutionyof multicomponent flows and chemical species [33]. In 2022, Jiang et
al. proposed an‘fimmersed boundary LBM for particle combustion with varying thermodynam-
ic and transport properties, and conducted the hydrodynamics-resolved simulation of a char

partiele eombustion [34].

Although a series of LBM studies have been performed for reactive flows over the past two

decades, they have not been developed to simulate complex compressible reacting flows where

3
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significant hydrodynamic, thermodynamic and chemical nonequilibrium effects coexist and in-
teract with each other. In fact, both the DBM and basic LBM are intended as solvers for a
truncated version of the Boltzmann equation, and they have the following same advantages:
(i) Simple scheme. It is easy to code the algorithm for the discrete Boltzmann equation with a
simplified collision operator. (ii) Parallel computation. It is convenient for massively parallel
computing as all the information transfer is local in time and space([38]. (iii) Boundary condi-
tion. It is straightforward to deal with complex geometry by chamging.the discrete distribution
functions [26, 39]. Moreover, the differences between the DBM and ba\sic LBM are as follows:
(i) Phase-space discretization. Classical LBM solvers rely on a gpecdifie stencil to discretize the
phase space and a Lagrangian approach is used for the time-spage discretization (integration
along characteristic lines) resulting in the streaming-collisiomalgorithm; The DBM is a classical
Eulerian solver for the discrete Boltzmann equationswhere the discretization is performed using
a moment-matching approach. (ii) Physical model. Traditional LBMs mainly serve as the solver
of NS equations or other partial differentialequationsywhile the DBM is fairly equivalent to a
modified hydrodynamic model plus a coarsesgrained model of thermodynamic nonequilibrium
behaviors. Namely, the DBM is strictly inherited by the Boltzmann equation and can describe
nonequilibrium system beyond macroscopie, governing equations, while the standard LBM is a
numerical scheme characterized by.the streaming-collision steps and can be used to model a

large family of advection equations beyond the topic of the Boltzmann equation.

N
It should be pointed out that the last aforementioned difference is the key reason why the

DBM has been developed.” The/DBM is derived from the nonequilibrium statistical physics
and has been successfully applied to investigate compressible reacting flows [7—18], multiphase
[40-43], and fluid instabilities [44-52], etc. In 2013, the pioneering DBM for combustion was
developed bydising a hybrid scheme, and the hydrodynamic and thermodynamic nonequilibrium
effects were ‘investigated around the detonation wave [7]. In 2016, the DBM was employed
to probe detonation with negative temperature coefficient from three aspects: hydrodynamic
quantities;monéquilibrium quantities and entropy productions [10]. In the same year, a DBM
wasg, constructed where one (another) set of distribution function describes chemical reactant

(produet) [9]. In 2017, a BGK DBM for multicomponent reactive flows was presented, where
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the relaxation time has the same value for one species and the Prandtl number is fixed.to Pr =1
[11]. In 2019, an efficient MRT DBM was developed to tackle steady or unsteady supersonic
reactive flows [13]. Since 2021, the DBM has been extended to three-dimensional steady and
unsteady detonation [15, 16]. In 2022, the DBM was used to study the quantitative diserepancy
between equilibrium and nonequilibrium distribution functions around the detonation wave [17].
In 2023, via the DBM and the fast Fourier transform, the deviations‘of the veloeity distribution
function from the equilibrium state have been investigated and therkinetic moments of reaction

~
terms have been discussed in the evolution of unsteady detonation/[18].

Base on previous works [11, 13, 14, 50], we develop an MRT DBM with a split collision
term for reacting flows with both hydrodynamic and thermodynamic nonequilibrium effects.
Compared with the BGK model [11], the MRT DBM has various relaxation times for different
nonequilibrium processes and a flexible Pr. In contrast to.the single-distribution-function DBM
[13, 14], the current DBM takes account of collisigns and’reactions among different chemical
species. Different from the MRT DBM for multicomponent mixtures [50], this model involves
the effects of chemical reaction and externab foreey and a splitting technique is applied to the
collision term. In historical contexty, the'splitting technique originated within the realm of
plasma physics for electron-ion systems, where the distinct impacts of self-collision and cross-
collision on each species were recognized [53, 54]. Physically, complex systems often undergo
multiple evolution stages characterized by varying time scales, and their components, such as
electrons or ions, may exhibit\divergent temperatures [53, 54]. Consequently, employing an
appropriate methodelogy becomes imperative to investigate such intricate physical systems,
especially those involvingireactive flows with numerous chemical species. This serves as the
primary motivation for this study. Specifically, the MRT DBM with split collision is developted
for a mixturessystemto’delineate the effects of self-collision and cross-collision on individual
species. In‘econtrast, the ' DBM without split collision represents a simplified version of the
current/model, applicable under the condition where relaxation frequencies during self-collision

match-those in/eross-collision scenarios.

The rest of the paper is organized as follows. First, we introduce details of the MRT

DBM with the split collision term for compressible reacting flows. The model is subsequently

5
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validated by six benchmarks, i.e., the multicomponent diffusion, homogeneous mixture in the
force field, Kelvin-Helmholtz (KH) instability, flame at constant pressure, opposingchemical

reaction, and steady detonation. Finally, conclusions are drawn.

2. Discrete Bolzmann method

The coarse-grained physical modeling from the Boltzmann equation to the DBM mainly
involves three key steps [45, 55]: (i) Simplification of the collision @) 1t is difficult to solve
the original Boltzmann equation where the collision term is teo,complex in the integral form.
Hence, it is necessary to simplify the collision term in order.to utilize the Boltzmann equation.
In this paper, we employ the widely used MRT collision medel [8, 13, 47]. (ii) Discretization
of the particle velocity. For the purpose of physical accuracy and numerical efficiency, the
particle velocity space is discretized with the matrix inversion method [6, 13]. (iii) Description
of nonequilibrium effects. The main pdrpese of the DBM is to probe and extract essential
nonequilibrium information beyond traditional hydrodynamic models [7, 9, 44]. Note that
the first two steps are for coarse‘grainedsinodeling, and the third one is the core of DBM.
The last step is not only an extension to the first two, but also puts forward stricter physical
requirements for the constructions, To be specific, all kinetic moment relations in the DBM
should be consistent with those in the monequilibrium statistical physics, and multi-physics
fields (including density, tempeﬁtute, velocity) should be coupled naturally as various physical
quantities are obtained. fromi the Kinetic moments of the same distribution function.

In this work, the MRI' discrete Boltzmann equations, which describe the spatio-temporal

evolution of reacting flows, take the form,

8 7 g g ag ag g
%+v Vf =Q +F +R. (1)
Here ¢ represents the time. The superscript o = 1, 2, ..., N, indicates chemical species with

T T
the nwmber N, in total. The column matrices f° = (ff fo v f]‘\’,) , Q7 = (Q‘f QF - Qj‘v) ;

T T
F7 = (F{’ Fy +e F]‘\’,) , and R” = (R‘f Rj - R‘]’V) denote the discrete distribution func-

tions, ecollision terms, force terms, and reaction terms, respectively. The diagonal matrix

6
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Figure 1: Sketch of disérete velocities.

- 4
v’ = dia,g(v‘l’ vy e v‘]’v) stands for the discrete welocities, and the subscript ¢ = 1, 2, ...,
N is the index of discrete velocities, with:/N'= 16 in this paper. As shown in Fig. 1, a discrete

velocity set reads

eyc T gl 0), 1<i<4,

> vy (£15£1), 5<i<8,

U, =9 (2)
cyc:vg (£1,0), 9<i=<12,
v (£1,£1), 13 <i < 16,

L

where cyc indicates the cyclic permutation and (v;, vy , vy, vy) are flexible parameters. Besides,
to take account of the/part of intérnal energies due to molecular rotation and/or vibration, we
introduce the symbol#; =, , 1m0, and n for 1 <i<4,5<i<8,9<i<12 and 13 <i <16,
respectively, where the parameters (n,, 7, , 7., 1;) are tunable as well.

It is worth emphagizing that the values of v; and 7; can be adjusted to optimize the DBM
robustness and‘accuracy. -On the one hand, the parameters (v,, vy, vo, vy) can be chosen
around/the values of flow velocity u” and sound speed v7 = \/77T° /m?, where T7 stands for
the tempetature, m’ the molar mass, v = (D + I° + 2)/(D + I°) the specific heat ratio, D = 2
the spatial dimension in this paper, and I” extra degrees of freedom due to molecular rotation

and/or vibration. On the other hand, among (1, 1 , Nc , ), one (another) parameter should be

7
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1 1
less (greater) than 77 = \/I°T° /m?, because the extra internal energy is about §maﬁ2 = §I T’

according to the equipartition of energy theorem.

2.1. Macroscopic quantities

The individual molar concentration n’, mass density p”, velocitysw’, ehergy £E°, and tem-

perature T° are given by,

n’=> f/, ~ (3)

o=’ (4)

S S (5)

B ==y 7 (Hagl + ) (6)
o 2F° — paua2 4

.~ (D +I7)n°
respectively. The mixing number density 7z, mass density p, velocity u, energy F, internal

energy Fi., and temperature T are.obtained from

N ZU n’, (8)
p=> 1, 9)

N pu = ZU pg'u,g’ (10)
E=) E, (11)
1
Eiw=FE— §P|U|2> (12)
2Eint
T = , 13
ZJ (D+17)n° (13)

respectively. JActually, energies E° in Eq. (6) and E in Eq. (11) are not conserved during
chemical reaction and may be called the “sensible” or “total nonchemical” energies.

Itrshould bé mentioned that, with the substitution of the equilibrium discrete distribution
functions f2° for the discrete distribution functions f7, the formulas (3) - (6) still holds. In

fact, the aforementioned physical quantities in Eqs. (3) - (13) are macroscopic parameters that

8
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are statistical results of particles with random motion, and can be conveniently measured by

traditional numerical or experimental methods.

2.2. Split collision term

In fact, the discrete Boltzmann equation (1) is a simplified form of theioriginal Boltzmann
equation, and the collision term is a reduced expression of its original nonlinear integral term.

To be specific, the collision term is composed of three parts, i.et, g
Q=07 + 07 +Q", (14)

in terms of

0 = _(MU)—ISIU (fo _ foseq) 7 (15)
920 £ _(MJ)—ISZJ (fo' N fzSGQ) ’ (16)

and
Q7 =M A7, (17)

where the diagonal matrix § o 2 diag (5’11‘7 ,5'21” S}\}’) indicates the relaxation frequencies
o

R o AT
that control the relaxation speed of kinetic:moments f ( i fo - f]‘\’,) approaching their

. R . AT
individual intermediate equilibrium @eunterparts fgSeq - ( T f ;Seq) , and S =
diag (512" 522“ SJQVU) denotes the relaxation frequencies which govern the relaxation speed

Aoseq

of f

T o
" N ~ aceq . o poseq .
( feq ;eq . ](\T[eq) < “Here f is the function of (n , Uq, I )7 and f 1S expressed by

T .
= ( 7 ) %4 .8 ;Seq) approaching the ultimate equilibrium counterparts faeq =

substituting(uZ, T7) fori(u,, T) in the formula of f ', see Appendix A. The square ma-

trix M° = (Mg)-and. itsdnverse (M°)™" = ((Mﬁ)_l), both of which have N X N elements, act

as the link hetween the velocity and moment spaces. To be specific,

F7e M, (18)
Fe M (19)
=My (20)

9
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T T
with foeq — ( feq ;’eq f;eq) and faseq — (ffseq 2aseq . ;seq) _ Here (foeq, foseq’ ]EU) and

(F74, £ f7) correspond to the moment and velocity spaces, respectively. I fact, Eq. (18)

is equivalent to the following relationship,

10 [ rreowdvan =y s, (21)

13 in terms of ¥ =1, v, (|’u|2 + 772), v, (|'v|2 + 772) v, v, (|'v|2 + 772) v, and their corresponding dis-

oNOYTULT D WN =

2 2 2 2 2 2
crete counterparts ¥, = 1, v;, (|vf| +n ), v; vy, (|vf| +1; )'vf, v; Vs V7, (Ivfl +n )vaf

16 In this work, the theoretical equilibrium distribution function is‘expressed by [11]

18 o

™ D/2 mcr 1/2 m0|'v _ u|2 manQ
19 4 = ng( ) ( ) exp| — . (22)

T orI°T 2T T 2I°T

Actually, the formula (21) is a necessary condition towrecover the NS equations in the hydro-
24 dynamic limit. &

26 Note that in the simplification procegsyfrom the original Boltzmann equation to the DBM,
28 the physical quantities (such as density, mementum, energy, and lower-order kinetic moments)
30 under consideration remain unchangedypwhile some other physical information (such as higher-
order kinetic moments and the interactions between them) may be lost. The loss of relevant
information constrains the applieations of the physical model, and may lead to inaccuracy
35 for particular real situations. To rectify this, Chapman-Enskog (CE) multiscale analysis can
37 be employed to identify and amend.the deficiencies in the physical model. For this purpose,
39 an additional term A’ is incorporated into the collision term to make up for the missing
40 relation between physical quantities f7, fJ, f7, fJ, and fJ. Specifically, the term A’ =
42 (0 e 0 AZ A 0 4 O)T depends upon

45 A7 =2(887 = 37 )ugAg +2(S” = 857 ug AF, (23)

48 AT =2(87 = S$17)ug A7 +2(S5” = 857 ) ulAZ, (24)
with

1-D—=1° Ou; 1 Ou,

J_QnUTU N
D+1° 0x D+1° 0y’

53 A5 =
54 Séo’mcr
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n’T? [oul  Ouy
Ag = — =+ 2
6 Séo.mo. ( ay ax )7 ( 6)
s 2T 1 oul 1-D-1I0u,
A = Slome \ D+ 17 dx TTD¥If Dy ) (27)

It should be further explained that the physical meaning of the first two parts in Eq.
(14) is as follows: there are two split steps during the thermodymamic relaxation process.
The distribution function f y firstly approachs its temporary equilibfium state f 71 under the
control of relaxation frequency S 10, then tends toward the locabultimate equilibrium state fgeq
with relaxation frequency S *7 Tt is worth mentioning that, there are more flexible parameters
in the two-step-relaxation collision term, which is suitable for a wider application range of
physical systems. Through the CE expansion, the relations can be determined between the
relaxation parameters and other physical quantities such.as the nonequilibrium quantities (48)
- (52), diffusivity (55), thermal conductivity (B10), dynamic viscosity (B11). Consequently,
compared with the one-step-relaxation MRT orsBGK model, the two-step-relaxation collision
term presents a more detailed relationship between the thermodynamic relaxation process and
nonequilibrium effects.

Moreover, substituting Eqs. (15) - (17) into (14) leads to the following expression

o - (s [ ) e s (7

x -4, (28)

Clearly, in the case of §'7 =487 = 87 the split collision model (28) (called two-step-relaxation
collision model) reduces,to the popular MRT model (named a one-step-relaxation collision
model)

Q7 =-(M°)[S7(F-F7)- A7), (29)

which further.réduces to the single-relaxation model
o 1 o oeq
Q7= —— (£ - ), (30)
if 87 = I/7°, and I denotes the unit tensor. Clearly, A = A = 0 when Si% = §5° = 517 =

Se7 =837, as seen in Egs. (23) and (24). Namely, the additional term A’ disappears in the
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single-relaxation case. A widely used single-relaxation model is the BGK model. In fact, both
MRT and BGK models are also suitable for a fluid system if there is only one¢ compenent or
the average mixing effect is under consideration. Besides, in order to aghieve local momentum
conservation for a two-component system, the relaxation times of the two eomponents should
be equal: 77 = 77 = 7, which is a constraint of the single-relaxation B@K,model [54].

In addition, the collision term in Eq. (14) can be rewritten as,

Qa - Qlo* + QQU* + 930" ~ (31>

with
Qlcr* - _(MU)—ISIU* (j_.‘o' _ Aaseq) : (32>
QQO'* — _(MO')—:[SQO'* (fg _ "UGQ) 7 <33>

where §'7* = §' — §%7 and §°7* = §%°. Thé terms Q9" and Q7" are related to the self-
collision and cross-collision among various particles, respectively. In fact, both self-collision and
cross-collision affect the evolution of the discrete distribution functions. In other words, the
effects of self-collision and cross-cellision,on the evolution of physical systems are taken into

consideration.

2.3. Force term

N
Physically, the force téerm denotes the change rate of distribution function due to the external

force. How to calculaté the ferce/term is a key to an accurate physical model. In this part, we
introduce three wayssto obtain the mathematical expression of the force term. The first two
methods, whichawere actually proposed for two-component fluids in Ref. [45], are extended to
multicomponént systems in this work. The last method that is named the matrix inversion
method [6, 13]4s developed for multicomponent systems for the first time as well.

Method I

Viar the, Taylor expansion, it can be found that the main part of the distribution function
is the equilibrium distribution function in a system not too far from equilibrium [45]. Theoret-

oseq ( o

ically, f%1s close to f7°*Un’, u”,T7) rather than f°°Yn”, u,T), especially in a non-premixed

12

https://mc03.manuscriptcentral.com/ctphys



oNOYTULT D WN =

Communications in Theoretical Physics Page 34 of 73

or partially premixed system. Hence the approximation f” = f7*n’,u”,T”) can be used as

follows,
oseq o
o af _ m oseq

af° o o
Ty T 5o =a’ (v-u’) = : (34)

ag ag
F =-a

where a’ = a e, stands for the body acceleration of species o, and e, (the it vectorin the

a direction. Then, the force terms are obtained in the discretization form directly
g

F = a’ (o] = u’) o £ (35)
~

In fact, Eq. (35) is a conventional way to calculate the forcé terms [465 47].

Method II

The force terms are used to incorporate forcing effects intorthe Boltzmann equation. Ac-
cording to its physical meaning, the force terms c¢an, be expressed by the change of discrete
distribution functions Jf; due to the external férce over agsmall time interval dt, i.e.,

off

=1m
5t=0 0t

of°
FO'_ f’L

A fio'seq
LT ot -

At

, (36)

Force

Force Force

where A figseq represents the correspondingichange of the equilibrium distribution function with-
in a time step At and is a function of the goncentration, velocity and temperature.

In classical physics, the impulse (work) done by an external force changes the momentum
(kinetic energy) of a system directly, while the mass, internal energy, and temperature remain
constant in the force field/ In oaer words, the force changes the velocity and energy of the fluid
components, but does not have a direct influence on the density or temperature. Consequently,

A7 in Eq. (36) can be,written as
Afioseq — fiaseqT _ fioseq’ (37>

where the equilibrium distribution functions change from ffseq = fl.oSeq (n”,u’,T7) to fl.gseqT =

I = 4% + a’At within a time

f7 (na, uw’l T J), and the flow velocity changes fromu’ to u’
steps
Theoretically, because of the external force, the energy of component o change from E°

into = E7 + p"u” - a” At, then it can be derived from Eq. (7) that the temperature of

13
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component o is

o 0'|2

Tt -2 (A1)~ T°. (38)

D+I7
Clearly, Tt equals T as At approaches zero. In other words, the temperature is‘hot‘changed
by the external force. It can be found from Eq. (38) that the expression in Equ. (37) is'of the
second order accuracy.

Method III

Let us consider the following relation [13], ~

/ / F'Udvdn = ) F¥, (39)

where U and U, are the same as those in Eq. (21), ahd E’ and'F; denote the force terms in
the continuous and discrete velocity spaces, respectively.

In fact, the formula (39) is equivalent to the followingamatrix form
F" = M° F?, (40)

where the elements of F° are givéndimAppendix A. From Eq. (40), the force terms can be
expressed by
F . (41)

It is noteworthy that there are twosimilarities among above three methods. (I) Based upon
the approximation f” = f© 4n”, u”, T"), the force terms are expressed with the discrete equi-
librium distributiontfunctions; (II) The relations satisfied by the force terms are sufficient to
recover the NS equations; see Appendix B. Besides, the differences among above three methods
are as follows. (L) As for Method I, there are nine relations satisfied by the force terms, which
are the necessary and sufficient conditions to recover the NS equations. In contrast, besides the
nine relationsyanother seven relations are satisfied by the force terms in the last two methods as
well. That is tossay, there are sixteen relationships in Methods II and III, respectively. (II) As
showmiin Egs. (35) and (37), the force terms are a function of the equilibrium discrete distribu-
tion functions. Consequently, it is necessary to calculate the equilibrium discrete distribution

functions'in the program for Method I or II. In contrast, as shown in Eq. (41), the force terms

14
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are computed by using an inverse matrix in the last method, which has a higher computational
efficiency. In other words, the matrix inversion method has the characteristic of highyphysical
accuracy and computational efficiency, see Table 2. Consequently, this methodelegy is utilized

to calculate the reaction terms in the next subsection as well.

2.4. Reaction term

The reaction term, which represents the change rate of distributionfunetion because of the

chemical reaction, satisfies the following relationship [13],

/ / R™Wdvdy =y R, (42)

where ¥ and U, are the same as those in Eq. (21), and R*and R; are the reaction terms in

the continuous and discrete velocity spaces, respéetivelyanThe expression of R’ reads [8],
- 4

w0 geq= (14 D) ITT+ mlI v — ul|” +m Ty’
Ra=f(7qn_+fq( ) mL”| |"+m’n

T, 43
n’ 2[0T2 ( )
where n”’ stands for the concentration variation rate of species o,
2[E"-Y mND+IF)-Ey,-> n" (D+1°
T = [ Zo ( ) t 220 ( )]’ (44)
[Yon (D +1°)]
is the temperature variation rate, and
Y E' = w,Q, (45)

indicates the releasenrate of .ehemical heat that equals the energy variation rate due to the
chemical reaction. dmEq. (45); w,, stands for the chemical reaction rate, and ) stands for the
chemical heat release of reactant per unit mole.

In addition, the formula (42) is equivalent to the following matrix form
R =M°R’, (46)

whererthe eleménts of R’ are given in Appendix A. From Eq. (42), the expressions of reaction
terms can be obtained

R (47)
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As for the description of chemical reactions, we can adopt the one-step reaction, two-
step reaction, detailed or reduced multi-step chemical kinetics. For example, savithout less of
generality, three simple chemical reaction models are adopted in this manuscript.

It should be emphasized that, via the reaction terms on the right-hand side of thediscrete
Boltzmann equation (1), the multi-physics and chemical reactions are‘maturally coupled. The
matrix inversion method is a precise and efficient calculation approach to compute the reaction
terms in Eq. (47), because the sixteen moment relations of reaction terms are satisfied in an

~
elegant way.

2.5. Nonequilibrium effects

In fact, the difference between Eqgs. (18) and.(20)indicates the nonequilibrium departure

degree of the physical system, y
fO’neq — fo’ _ fo'eq 3 Ma (fo- _ faeq) — ]\IO'fUHBq7 (48)
one T aoneq A A A T
with f77"4 = ( FORL fomed L f;neq) and f = ( A AT f;neq) . Similarly, we can
define
posneq 70 p05€q o o ose O posne
o5 - = M7 =) = MO, (49)
osne N 4 Aosneq ~ ~ ~ T
with 700 = (prmea prndl el and f7U0 < (frevea jenea L jenea)” physically, Eq

(49) means the kineti¢moment deviation of a fluid component from its individual temporary
equilibrium state, and Eq.. (48) denotes the departure of a chemical species from the local
mixing eventual.equilibrium.

It is noteworthy that the physical quantities £7"°* and £7™"® represent the nonequilibrium

~

. . one posne
effects from vazious aspects. To be specific, f; = 4=

L 1 0 in line with the mass conservation;

A~

P . o pone
[y 20 andaf, = 0 due to the momentum conservation; m’ 7"

3 2 = pa(ug - ux) and

m’ fg i Q pg(ug — u,) denote the individual mass diffusion fluxes in the = and y directions,
. fosne . . posne rone
respectively; f, 9 =0 on account of the energy conservation; Neither [ 4 nor f; 9 may be

zero for4= 5 when a system is in the nonequilibrium state.
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Furthermore, Eqs. (25)-(27) are parts of the following nonequilibrium quantities;
or o 2 g 2 or
rosne o P (Um - ul“) + (U,y - uy) P o 2
f = AR - D+ I° + oo (e =~ Ua)
S:7m + S:.7m
200 0 02 2 20 o 20 20 o
Sy p u—u _ S5 p (ua2_u2) Sy =S5 p (TU_T)
S;Um" D+1J° S;"m" & & S;U maQ
So’p” D+17-1_, S57p” 2uy (ug=m,)
+ 2u, (um - ux) - ’ (50)
S;Umg D+1I° S;Umg D+ I°
~
rosne e SSUPU o o ngfpff o o
fo 0= A+ —— (ug —u,) —=g (uy =u,)
Sg7m Sgm
SQUpU pm
- 166 - (uguz - uxuy) + = (uwuy + Uy Uy — Uy Uy — uguy) , (51)
Sg7m Sg7m
fosneq AZ pU' U’UQ + u2 - Qu;uﬂc = 2“’;“1/ pU’ o 2
= —_ & + —
f7 7 S%"m" D%Jo S’;_O'mo' (uy Uy)
200 0 02 2 200 o (S’QU _S’QU) S—y
Sip u —u S7p(a2 2)+ 4 T )P T =T
S;oma D+ ]° S%O'mo' Y Uy S%O'ma me
Sy’p” 2uf (ug S Yomds®” D+17=1_ .
- D + Io 2uy (uy - uy) ) (52>

S%"m" D+ 1° S;Um"

at the NS level, which can be proved via the CE expansion.

aoneq

Physically, both (f

Agsneq

) f

) and (S'7, §*’) play roles in the thermodynamic and hydro-

dynamic behaviors, and Variou}nonequilibrium modes are coupled in the relaxation process.

Moreover, the nonequilibriwm effects are important and traditional hydrodynamic models are

not accurate in caseS with small characteristic scales or large Knudsen numbers, particularly

for multicomponent flows, where various complex material and/or mechanical interfaces exist.

For those complex nenequilibrium problems, the DBM provides a convenient tool to probe and

analyze the monequilibrium state and process.

2.6. Nondimensionalization

For numerical simulations and investigations, it is helpful to perform nondimensionaliza-

tion. In“this paper, &4 and &, are designated as dimensional and nondimensional variables,
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respectively, and their ratio is @, = ®4/®,. The number density n, length L, flow speed u = |u|,
temperature T', and universal gas constant R are adopted as references, see Table 1. " Obviously,
from these references, we can derive other ratios of dimensional to nondimensioenal variables,
see Appendix C. With the ratios and dimensional quantities, the nondimensional values are

obtained in a straightforward way.

Variable Dimension Nondimension Ratio
Number density ng n, ~ n,
Length Ly L, L,
Flow speed Ug Uy Uy
Temperature Ty T, T,
Universal gas constant R 1 R

Table 1: References for/mondimensionalization.

Additionally, various numerical schemes ean be adopted to solve the discrete Boltzmann
equations (1). In this paper, we employ the third-order total variation diminishing Runge-Kutta
[56] for handling the time derivativetand the fifth-order weighted essentially non-oscillatory
scheme for the space derivativen57]. Consequently, in order to achieve good numerical stability,
both the temporal and spatial stepsmust adhere to the Courant-Friedrichs-Lewy condition, and
the temporal step should be sn&ller than the relaxation time. In the DBM with split collision,
there are two sets of relaxation frequencies represented as S = diag (5'11(’ 521" 5’]1\,") and
S% = diag (Sf" 522" SJQV"), hence the temporal step At should be smaller than the mimimum
of (Sll U)_l and (512 J)_l. As for the DBM without split collision, there exists only one set of

relaxation frequéncies §” = diag (Sf S e SX[), with the restriction At < (7).

3. Verification and validation

Towerify and validate the current model, six benchmarks are under consideration. First of
allj multicomponent diffusion is adopted to confirm that the MRT DBM with the split collision

term could provide a detailed relationship between the thermodynamic relaxation frequencies
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and the diffusivity of chemical species. Second, homogeneous mixture in a force fieldvis used to
test that the DBM can describe both thermal and isothermal systems where the acceleration
and relaxtion frequencies are tunable. Third, the KH instability is simulated to, demonstrate
that the DBM could capture fluid flows with complex interfacial structures. Fourth, thelaminar
flame of a propane-air mixture is chosen to demonstrate that the DBM¢4s capable of mimicking
combustion. Fifth, simulations of the opposing reactions are performed . toyverify that the
DBM can capture the chemical nonequilibrium process accuratelyr Finally, steady detonation
is simulated to validate that the DBM has the ability to capture the ;personic reactive front

with a strong compressible effect.

3.1. Multicomponent diffusion

Diffusion [58, 59] widely exists in fields of physies,,chemistry, biology, etc. It plays a vital
role in the combustion process, particularly where nonpremixed or partially mixed fuel and
oxidant contact [1]. To mimic the diffusion injan accurate way is a prerequisite to simulating
the combustion precisely. Actuallygthe diffusion (as well as viscosity and heat conduction) is
a fundamental physical phenomenon mmnthe thermodynamic nonequilibrium process. As the
first benchmark, multicomponent, diffusion is considered to validate our DBM for this kind of
nonequilbrium process.

Give four chemical species @=.A{ B, C, and D with the same molar mass m’ = 1 in the

initial field as below
(nA, n”, nc,nD) =(1,2,3,4),
A B C D - (53)
(0", 0% n") = (4,3,2,1),
where the subscript L indicates 0 < x < 0.05, and R indicates 0.05 < x < 0.1. The inflow
and outflow/boundary c¢enditions are adopted in the z direction, and the periodic boundary

conditionsuin the _yddirection. Moreover, the physical system is at rest (u = 0) and can be

regarded, as isothermal (7" = 1). Consequently, the exact solutions of the concentrations read

[58¢59],

(54)

ag ag ag ag
o nL+nR TLL_TLR .CE_.CEO
n = - Erf 5

T
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Figure 2: Grid convergence analysis: the horizontal distribution of concentration n at the
time ¢ = 0.15. The solid line represents the exactasolution; and the other lines indicate the

simulation results under different mesh grids. R

where Erf denotes the complementary error functiony@, = 0.05 the interfacial position, and the

diffusivity

(55)

in terms of S5 = S57 = 537

To begin with, let us perform a grid convergence analysis, which is of great importance for
numerical simulations. For this\sake, four simulations are conducted under various mesh grids
N, X N,.. To be spegifi¢, the mesh number is given as IV, = 10, 20, 40, and 80 in the horizontal
direction and fixed.as, /V;,'= lsin the vertical direction. The relaxation frequencies are chosen
as 9.7 = §77 =250, the temporal step At = 2 x 107, the extra degrees of freedom 7 = 3,
and the parameters (Vg3 vy, Ve, Vg, Nas My Mo, Ny) = (0.01, 0.01, 1.75, 1.3, 3, 0, 2.1, 1). Figure
2 delineates the congentration of species A. The long-dashed, short-dashed, dash-dotted, and
short-dotted lines denote simulated results in the four cases, and the solid line stands for the
analytical solution in Eq. 54. As shown in Fig. 2, with increasing resolution, the numerical
results approach the exact solution. That is to say, the differences between these simulation

results and theoretical solutions decrease as the spatial step reduces. In particular, numerical
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Figure 3: Evolution of concentrations of four chemical species at time instants ¢; = 0.01,
ty = 0.05, and t53 = 0.15, respectively. The left panel is for eomponents A and D, and the
right panel for B and C'. Squares, circles, and triangles.represent the simulation results at time
instants t; = 0.01, t, = 0.05, and t3 = 0.15, respectively. »"ldimes denote the corresponding exact

solutions.

results for both N, = 40 and N, =80vare quite, close to the solution, which is satisfying.

Next, a comparison is made between simulation results and exact solutions at various time
instants during the evolution of multicomponent diffusion. In order to obtain simulation results
as accurate as possible, the mesh grid is chosen as N, X N, = 200 X 1. Other parameters are
the same as those used in Fig.v. Figure 3 displays the concentrations of chemical species A,
B, C, and D along the, x ditection in the diffusion process. Symbols denote the DBM results,
and solid lines indicate the corresponding exact solutions of Eq. (54). It can be observed that
the simulated results mateh the exact solutions. Therefore, it is confirmed that the DBM can

accurately deseribe the multicomponent diffusion.

Furthermoré, as shown in Eq. (55), the diffusivity is a function of 5'220 and S§U, but neither
S;U nor S;U. To verify it, a series of simulations are performed with different values of those
parameters;.i.e:, 5210 = S;U = S}g, and 5220 = S§" = 5’30. Figure 4 (a) illustrates concentrations
of 'species A versus x for cases of a fixed S?a = 1250 and various S}U = 10000, 5000, 2500, and
1250, respectively. Figure 4 (b) is for cases of a fixed S}J = 1250 and various S?,U = 10000,
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Figure 4: Concentrations of species A along the z direction atra time instant ¢ = 0.15 in the
diffusion process: (a) For a fixed S77 and various'8}; (b) For a fixed S} and various S5°.

Symbols denote the DBM results, and lines represent the €orresponding exact solutions.

5000, 2500, and 1250, respectively. Obviously,'the parameters 5210 and S;J have a negligible
impact on the diffusion process. THerdiffusivity depends upon the values of S37 and Sa°. The
numerical simulations are entirely consistent with the exact solutions.

It should be mentioned that the two-step-relaxation DBM presents the same results as the
one-step-relaxation model for Sil 7= Sf 7. Tt is verified that numerical results of the one-step-
relaxation model are identical t} those of the two-step-relaxation model when Sz-l 7= SZ»2 7 in Fig.
4 (a) or (b). Meanwhile, the/simulations of the two-step-relaxation model in cases of S;7 # S7°

are beyond the one-step-telaxation model. Compared to the latter one, the former model could

present more details of nonequilibrium relaxation processes.

In addition, to further validate that the DBM can be used to measure thermodynamic
nonequilibrium/ manifestations, Fig. 5 displays nonequilibrium quantities f; "1 for species
o = A and B inghe multicomponent diffusion process. Symbols stand for numerical results and
linesofor the corresponding analytical solutions in Eq. (50). It can be observed that the DBM
results coincide with the analytical solutions. The profiles of species C' and D are similar to

those in Fig. 5 and are not plotted here for brevity. As a result, it is demonstrated that the
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"4 in the diffusion process: (a) For species o = A;

Figure 5: Nonequilibrium quantities f;
(b) For species 0 = B. Squares, circles, and triangles denote DBM results at time instants
t; = 0.01, t, = 0.05, and t3 = 0.15, respectively. Solié lines represent the corresponding

analytical solutions.

DBM is capable of describing nonequilibrium behayiors.

3.2. Mixture in the foree field

To confirm that chemical species with various accelerations and relaxation frequencies can
be well described by using theurrent DBM, let us consider two situations, i.e., isothermal and
thermal systems in«foree fields. ABoth the isothermal and thermal systems are homogeneous
nonreactive mixtures.thaticontain three components o = A, B, and C, respectively. We choose
the molar mass (mA, mB,mC) = (2,1.5,1), molar concentrations (nA,nB, nC) = (1,4, 2), accel-
erations (aA, a”. aC) =(—ay, 0, ay) e,, extra degrees of freedom I = 3, parameters (v, v, , vg,
Vs Nas My s Newdly) = (057715, 2.2, 3.5, 0, 5.2, 3, 0). Because the physical field is uniformly
distributed, only one mesh grid N, X N, = 1 X 1 is used to have a high computing efficiency,
and_the periodic boundary conditions are adopted.

As for the isothermal mixtures, the initial temperatures and velocities are given as 77 = 1

and u” =0, respectively. Theoretically, the temperatures and velocities are expressed by Eqgs.
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21 Figure 6: Horizontal velocities (a) and temperatures| (b) with different accelerations when the
22
23 isothermal systems reach steady states. Symbolssdenote the DBM results, and solid lines
24
25 represent the exact solutions. y
26
27
28 (D2) and (D4), when the systems reach steady states. To compare the DBM results with the
29
30 theorical solutions, Fig. 6 displays#he velogities and temperatures as the mixtures are imposed
31
32 on various accelerations and the relaxation frequencies are chosen as 521” = 5220 = 2000. The
gi squares, circles, triangles, and diamonds indicate the simulation results of the mixing system,
;2 chemcial species A, B, and | respectively. The solid lines stand for the corresponding exact
37 results. Obviously, all DBM resiltsrcoincide exactly with the theoretical solutions.
38
ig Let’s now examinesthe impact of varying relaxation frequencies. In Fig. 7, we observe the
41 horizontal velocities and temperatures when employing variable Sil 7 alongside a fixed Sf 7 = 2000
42
43 within the stationary isothermal system. Meanwhile, Fig. 8 showcases scenarios involving a
44 - . . - . .
45 constant Sil =2000 alongside a variable SZ»2 . Numerical results are denoted by symbols, while
2? theoretical outgomes are represented by lines. It’s apparent that the physical fields remain
22 unaffected by Sz-l “and are solely dependent on Sf ? within this homogeneous mixture under the
50 specified body force. Notably, the DBM consistently yields exact results across all cases, which
51
52 is quite satisfying.
53
54 Next, the thermal mixtures are under consideration. The ultimate steady physical fields of
55
56
57
58 24
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Figure 7: Horizontal velocities (a) and temperature§i(b) with variable S, and fixed 27 in the

stationary isothermal system. Symbols denote the DBM gesults, and solid lines represent the

corresponding exact solutions.

0.04 1.0006
2
2 0.02 o
® 3 1.0004
z 5
5 000 5
S S 1.0002
= -0.02 =
o
o=

-0.04 1.0000

In(s>°)

T (DBM)
T (DBM)
7% (DBM)
7¢ (DBM)

* b o n

In(52°)

10

Figure 8 Horizontal velocities (a) and temperatures (b) with fixed S;° and changeable S;° in

the stationarydsothermal system. Symbols denote the DBM results, and solid lines represent

the corresponding exact solutions.
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Figure 9: Evolution of temperatures with different @ccelerations. Symbols denote the DBM

results, and solid lines represent the exact solutions.
- 4

the isothermal mixtures in Fig. 6 are set as the initial configurations of the thermal systems.
Figure 9 plots the evolution of temperatures when the thermal mixtures are in force fields.
Four values of accelerations aq =410,7305.50, and 70 are under consideration. The squares,
circles, triangles, and diamonds represent,the simulated temperatures of the mixing system,
chemcial species A, B, and C', respectively. The solid lines are for the exact results of the
mixing temperatures. It is clear that the DBM results are in good agreement with the exact

solutions. N

Figure 10 delineates the velogities and temperatures at the time ¢ = 0.15 in the evolution
of thermal systems with warious accelerations. Note that, the velocities of thermal mixtures
in Fig. 10 (a) are exactly the same as those in Fig. 6 (a). Besides, the simulated mixing
temperaturesagree wellswith the exact solutions, and the individual and mixing temperatures
are close to eacli other inthe thermal systems, as shown in Fig. 10 (b). In fact, there are only
minor differences among the individual and mixing temperatures in the isothermal systems as

well,_sec Fig. 6/

[t should be mentioned that the simulation results in Figs. 6 - 10 are calculated with

Method I Actually, Methods II and III give similar results. To compare Methods I, II, and
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Figure 10: Horizontal velocities (a) and temperatures (b) with different accelerations when the
thermal systems are at the moment ¢ = 0.15. Symbels denote the DBM results, and solid lines

represent the exact solutions. y

ITI, Table 2 lists the data in the simulation: case of ay = 10 in Fig. 10. Simulations are
performed on a personal computer with Intel(R) Core(TM) 19-9880H CPU @ 2.30GHz, RAM
64.0 GB, and a 64-bit version gystem. for double precision floating point operations. As shown
in Table 2, the simulated dengcy and velocities equal the corresponding exact solutions. It
means that the conservation of mass and momentum is obeyed for all methods. Besides, the
mixing temperatures, simulated with Methods I, II, and III are T" = 1.01714857, 1.02572000,
and 1.01714857, respectively.sCompared with the exact value 1.01714286, the relative errors
are 5.6 X 107°, 8.4 x 10_3, and 5.6 x 107°, respectively. That is to say, Methods I and III give
the same simulation results, both have a higher accuracy than Method II. Additionally, the
computing time is 54, 60, and 50 seconds for the three methods as the simulation runs 2 X 10°
time stéps. In ether words, Methods I and II require 8% and 20% more computing time than
Method TII. Because it needs to calculate the equilibrium distribution functions f7°°* once per

loop. for Method I, twice per loop for Method II, while it does not demand f7*** for Method

ITI. Consequently, it takes less computational cost and running time for Method III.
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Methods p Uy uf uf ug T Compiiting, time
Method I 10 0 -=0.006 0 0.006 1.01714857 b4 s
Method II 10 0 -=0.006 0 0.006 1.02572000 60°s
Method III 10 0 -=0.005 0 0.006 1.0171485% 50 s
Exact 10 0 -=0.006 0 0.006 1.01714286 /

Table 2: Simulation data about the three methods to calculkte force terms.

TL:TM

Figure 11: Initial eenfiguration of the KH instability.
N

Prn= Py

3.3. Kelvin-Helmholtz instability

Pr

As a fundamental interfacial instability in fluid mechanics, the KH instability occurs when

there is velocity shear across a wrinkled interface in a fluid system, and leads to the formation

of vortices and turbulence [60]. The KH instability is ubiquitous in nature and of considerable

interest in sciengific and engineering fields [60-62]. To show the capacity of our DBM in dealing

with complex fluid systems, here we simulate the KH instability with a complicated interfacial

dynamics.

Figure 11 portrays the sketch of the initial configuration of a three-component fluid. The

length and height of the calculation domain are L, = L, = 1. The domain is divided into three
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parts, i.e., 0 < x < xy, 1 < x < X9, and x5 < x £ L,. Between the left and middle parts is the
interface located at x; = 0.3L,, between the middle and right parts is the interface located at
xy = 0.7L,. To trigger the KH instability rollup, both interfaces have an impesed coginusoid
perturbation, w = wy cos (47y/L,), with an amplitude wy = L,/200. Initiallypthe lefey(middle,
right) part is occupied by species A (B, C') moving upwards (downwards;upwards) with velocity
up = upe, (upy = —upe,, ug = ype,). Both concentrations and temperaturesin the three parts
are equal, i.e., ny, = ny; = ng and Tr, = Ty, = Tk, hence the pressure is,homogeneous across the
two interfaces, p;, = pyr = pr, due to the constitutive relation p° = nai}r . To be smooth across

the interface, the initial profiles of the concentrations and velocitiesiare given by

A _ L nLt L T —xtw
no== 5 tan W ,
n -2+
2 T Wy

B A ¢
n =ny-—n.—n,

ur+uy U — Uy rT—x +w L,
e 5 - 5 tanh(Tu), forO0<z < DR
T uyt+urp uGp—up T—xy+w L,
- - <<
5 5 tanh( . ), for 5 < L,,

where W,, (W,,) indicates theswidth of concentration (velocity) transition layer.

The boundary conditions are asiwfollows: specular reflection boundary condition in the z
direction and periodic boundary condition in the y direction. Simulation is carried out on a
uniform mesh N, X N, =/2000 >2000 with Ax = Ay =5 X 107", The time step is set to be as
small as At = 2.5 x 107 to keep the numerical dissipation negligible. The other parameters are
m* =1, m" =15, mS.=I%=3, 5/ =5 =5x10°, and (v7, v}, v7, v, 12, n5, 0. 15) = (2,
1.414, 3.9, 2.758;1.5, 0, 5.5, 0). In addition, as the number of mesh grids is large enough, the
parallel programming with the message-passing interface is implemented in Fortran to improve
the computing speed: Actually, because all information transfer is local in time and space in the
evolution of thesdiscrete Boltzmann equation, the DBM has natural parallelism with excellent
scalability [38]«

Figure 12 depicts contours of the molar fraction of species B at representative times in

the evolution of the miscible KH instability. It can be observed in Figs. 12 (a)-(b) that the
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41 Figure 12: Molar fraction X7 at time instants ¢t = 0.0, 0.5, 1.0, 1.5, 2.0, and 3.0 in the evolution

43 of the KH instability. The color from blue to red corresponds to the value from 0 to 1.
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Figure 13: Conserved quantities ([f pdzdy, [f J.dzdy, [[ Jydady, [[ Edzdy) in the evolution of

the KH instability. Symbols and lines indicate numerical and exact results, respectively.

&

amplitude of perturbation w increases duexto the shear effect and the width of concentration
transition layer W,, increases because of diffusions, The fluid interface begins wiggling and its
shape changes from regular to irregular'gradually. It can be found in Fig. 12 (c) that, as time
advances, several pairs of vortices appeary.and the middle fluid penetrates into the left and
right ones. Figures 12 (d)-(e) show that the continuous growth of vortices leads to formation
of billows, and nonregular interfaces become more complex at the later stage. As shown in
Fig. 12 (f), fluid structures are\chaotic and the KH instability promotes the mixture between
different fluid species. IThe above dynamic process of the KH instability obtained by our model

is basically consistent with the scenarios in previous studies [61, 62].

To further yerify our model, we measure conserved quantities in the process of KH in-
stability, seedFig. 13.0Squares, pentagrams, circles, and triangles indicate numerical results
of the mass [[ pdxdy, momentum in the z direction [[ J,dzdy, momentum in the y direction
[ J,dzdy, and energy [[ Edzdy, respectively. Solid lines are for the corresponding exact solu-
tionsff pdudy= 1.5, [ J.dady = 0, [[ J,dzdy = 0.15, and [ Edazdy = 2.685, respectively. It
is clear in Fig. 13 that our computed results agree well with these exact solutions. Moreover,

it is found that the numerical results of [[ p’dzdy are exactly equal to their corresponding
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theoretical solutions 0.3, 0.6, and 0.6 for species o = A, B, and C, respectively. The results are

very good and satisfactory.

3.4. Laminar flame

In this subsection, the objective is to demonstrate that the DBM is.suitable for combustion.

For this purpose, we simulate a laminar flame of propane-air mixture. {The combustion is

controlled by the one-step overall reaction, ~
C3Hg + 50, = 3CO, + 4H,0, (56)
w’ =57 -m’ - W (57)
Wy = oy 0% exp (=E,/RT), (58)
L

where C3Hg, Oy, CO,, and H,0O stand for propanes oxygen, carbon dioxide, and water, respec-
CaHs O COp

) Y

tively. Nitrogen N, is assumed to be inert, The stoichiometric coefficients are [s
120 sNz] = [-1, =5, 3, 4, 0], the molar mass [mC3H8, m®%, m02, m"2°, mN2] =[4.4,32,44,18,
2.8] x1072 [kg/mol], the reaction coefficient kg, = 9.9 X 10 [m3 -mol " - s_l:l, the universal gas
constant R = 8.315 [J -mol ™ 4 K_l], the effective activation energy E, = 1.26 x 10° [J . mol_l],
the chemical heat of overall reaetion @) = 2.05 X 10° [J . mol_l], the overall reaction rate w,,, the
mass change rate of species w?pand the parameters (v, vy, ve, V5, Na, M, Ne, Ng) = (0.7, 0.7,
3.9,2.758, 1.5, 0, 5.5, 0). InitiaEy, a channel with length L = 4 cm is filled with the propane-air
mixture with an equivalence ratio 0.6. The molar concentration is 44.6 mol - m_g, the temper-
ature 300 K, the pressurerl atm. After ignition in the left part of the channel 0 < x < L/64,
the flame starts 40 move downstream. The periodic boundary conditions are used at the upper
and lower walls, the gpécular reflection (outflow) boundary condition at the left (right) side.
The grid is chosen as N, X N, = 1600 X 1, the spatial step Az = Ay = 2.5 X 107° m, and the
temporal step Af = 1.25 X 107" s.

Figure 14 delineates the overall reaction rate at various time instants in the evolution of the
laminar flame. Clearly, the overall reaction rate first increases then decreases and forms a peak

at the combustion front as the flame propagates forwards. The profile of reaction rate gradually
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Figure 16: The burning speed in the evolution of the laminarflame. The insert shows the zoom-
in view within the range 0.045 s < t < 0.05 s. The 'dashed and solid lines denote simulation

- 4
results and their average, and the squares represent experimental data.

becomes steady as time goes on. Let us define the flame position as the location where the
reaction takes its maximum. Then we can'obtain the temporal evolution of the flame position
and its velocity, as shown in Fig. 15. It is'elear that the flame moves rightwards after the initial
ignition stage, and its speed tends to.be a constant in the later period. To be specific, the flame
speed is around U; = 0.522 m/s at ¢ = 0.05 s. Meanwhile, the value of flow velocity is about
U, = 0.413 m/s ahead of/the rr?)ving flame. Note that the burning velocity can be estimated
by the relation, Uy =.Ug + Uy, hemce the resultant burning velocity is Uy, = 0.109 m/s.

Figure 16 exhibits.the evolution of the burning speed. To give a clearer depiction, an insert
is attached for the enlargement within the period 0.045 s < ¢ < 0.05 s, during which the flame
speed is almost steady with only small perturbations. It is easy to calculate the average burning
speed, U, =0:10941, within the time range 0.045 s <t < 0.05 s. Clearly, the numerical result
approaches theexperimental datum 0.11 m/s in Ref. [63]. Furthermore, Fig. 17 displays the
temperature profiles at ¢ = 0.05 s. Specifically, the temperatures are 1704 K and 1705 K in
the simulation and experiment [1], respectively. The satisfying result of the DBM is due to its

outstanding advantages: (i) Physical properties such as the extra degrees of freedom and the
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Figure 17: Temperature profiles in the evolution of the laminar flame at time instant ¢ = 0.05

s. The line and squares stand for the DBM resultsrandiexperimental data [1], respectively.
- 4

specific heat ratio are flexible in the DBM; (ii) The physical fields of concentration, velocity,
temperature, and pressure are naturally coupleditogether in the DBM,; (iii) The DBM is suitable

for both low-speed incompressible and high-speed compressible fluid flows.

3.5. Opposing reaction

To demonstrate that our DBM is suitable for a chemical nonequilibrium system, the op-
posing reactions A = B are us\ed as a typical benchmark. The forward and reverse reaction
coefficients are k; and k., reSpectively. Hence the overall reaction rate reads w,, = k:lnA—k:_lnB.
Initially, the concentrations are (nA, nB) = (ng, 0) = (1, 0), the velocity u = 0, the temperature

T =1. The concentrations are

A A B king
n =n, +n, exp|— Bt,
ne

B_ B B king
n =n, —n, expl— Bt,
n@

during the nonequilibrium reaction process, and

= k_1ng
© ky+ k]
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Figure 18: Physical quantities versus time in thetevolution of opposing reaction. Symbols

denote DBM results in the legend, and lines depote corresponding exact solutions.

B2 Ky
W et ko,
when the chemical reaction reachés equilibrium. Given the heat release () = 10 and extra
degrees of freedom [ I ey g 3, the temperature reads

2nBQ

T'="1,+ ,
* " ne(D+1)

N
as the chemical reaction takesiplace.

Figure 18 illustrates physical quantities (nA, nB, P, Uy, Ty wey ) versus time in the case of (ky,
k_1) = (0.3, 0.7). Thexelaxation frequencies are choosen as Sil 7= SZ-2 7= 104, and the parameters
(v, vy, Ve, Vg, Aas My e ny) = (0.7, 0.7, 2.7, 2.7, 0, 5.3, 5, 0). To be specific, concentration
of species A (B) decreases (increases) gradually as time goes on. The mixture density remains
p = 1, which equals the exact solution p = mn® + mPn® with m”* = m® = 1. The system
remaing motionless, i.e., u, = u, = 0, in line with the momentum conservation. The temperature
risessand the réaction rate reduces over time. On the whole, the DBM results coincide well
with the exact solutions in the evolution of chemical reaction. All quantities become constant

when the opposing reaction reaches equilibrium. At ¢ = 20, the numerical results (nA, nB, 0,
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Figure 19: Concentrations of species A and B versugithe reaction coefficient. Symbols represent

DBM results in the legend, and lines represent correspondgng exact solutions.

Uz, Ty woy) = (0.7, 0.3, 1, 0, 2.2, 0) match the exact sélutions. Consequently, it is verified that
the DBM is capable of both chemical equilibrium and nonequilibrium processes.

Let us consider more cases of opposing réactions with various forward reaction coefficients
ky. For simplicity, the corresponding reverse reaction coefficients are set as k_; = 1 — k.
Figure 19 displays the concentrations of species A and B after the chemical reaction reaches
equilibrium. It is clear that t{e congentration of species A (B) reduces (increases) linearly
with the increasing forward réaction coefficient. There is a satisfying agreement between the

simulation results and/éexact solutions.

3.6. Detonation wave

Detonationdis a particular type of combustion with violent chemical heat release around a
supersonic exothermic front accelerating through a medium. The physical fields have strong
temporal and spatial changes near the detonation wave, which poses a great challenge to the
numerical robustness and physical accuracy of computational fluid dynamics. In this subsection,

we demonstrate that the DBM has the capability of capturing the detonation wave travelling
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at a supersonic speed. As the detonation wave passes in the x direction, the chemiecal reactant
A changes into the product B, i.e., A - B, and the chemical energy is releasedd In theory, the

speed of the steady detonation front is a function of the chemical heat release of reactant per

Do wv ;1)q+7T0+wv ;1)(1’ (59)

where T}y denotes the temperature in front of the detonation wave and v represents the specific

unit mass, ¢, i.e.,

heat ratio. Then, the Mach number Ma is calculated by -
D
Ma = ——. (60)
1o

Here we focus on a specific case where ¢ = 1, yielding a cortesponding Mach number of Ma =

1.74436. It is worth noting that the DBM excels dmsimulating detonations under a high Mach

. . L
number, employing a robust numerical scheme.
The reaction rate is controlled by
E
A a
ov = kov - ) 61
< a eXp( RT) (61)

in terms of k., =5 X 10° and Ey = 10. The initial configuration is set as

(n* il u,, T)L = (0, 1.38837, 0.57735, 1.57856) ,

(”A»”B,\%,T)R =(1,0,0,1), (62)

where the subscript@ldndicates 0'< x < 0.04, and R indicates 0.04 < x < 0.4. The quantities in
the left and right parts satisfyythe Hugoniot relationship for detonation wave. The parameters
are m’ =1,~7 =1.5, SZ»IU 3 SZ-% = 2% 10", and (Vg VL, Ve Vs Nas Mhs Moy M) = (0.5, 1.5, 2.2,
3.5, 0, 5.2, 34°0). In addition, inflow and outflow boundary conditions are adopted in the x
direction, and. the periodic boundary conditions in the y direction.

Figure 20 depicts the evolution of pressure profiles around the detonation wave that prop-
agatessforwards. It is clear that the spatial distribution of the pressure field is quite similar
to'each other at the four time instants ¢ = 0.075, 0.1, 0.125, and 0.15. It indicates that the

detonation wave moves forwards in a steady state. Then the speed of the steady detonation
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Figure 20: Pressure profiles at time instants t; = 0:075, ¢, = 0.1, t3 = 0.125, and ¢, = 0.15 in

the evolution of detonation. 3

front can be calculated, v; = 2.058. Compared with the analytic solution 2.06395, the relative

error is about 0.0029. The simulation results are satisfactory.

Figure 21 gives the density (a), temperature\(b), pressure (c), and horizontal velocity (d) at
t = 0.15 in the detonation progess. The squazes represent the DBM results, the triangles denote
the numerical outcomes obtained frem an Fuler solver, and the lines stand for the analytical
solutions of the Zel’dovich-Neumann-Déring (ZND) results theory [1]. Obviously, there is a
satisfying agreement among the three models in regions distant from the detonation wave. To
be specific, the DBM zesults.aredp, T, p, u,) = (1.38748, 1.57724, 2.18838, 0.57892) after the
detonation wave, resulting, insrelative errors of (0.0006, 0.0008, 0.0015, 0.0027) compared to
the ZND results [1]. However, slight differences between them emerge at the von-Neumann-
peak. This disparity arises from the fact that both the ZND theory and Euler solver neglect
the viscosity. and heat conduction, assuming a sharp discontinuity at the von-Neumann-peak.
In contrast, the. DBM takes into account the viscosity, heat conduction, and other thermody-
namiesnonequilibrium effects. As a result, the physical fields simulated by the DBM exhibit

smoothness across the detonation wave, aligning more closely with real-world conditions.

It should be mentioned that previous research on detonation mechanisms has primarily
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relied on traditional computational fluid dynamics methods, which differ substantially from
the current DBM. Physically, this DBM can be likened to a modified continuous fluid model
augmented with a coarse-grained representation of significant thermodynamic nenequilibrium
effects. Consequently, the DBM exhibits the capability to accurately capture detonation phe-
nomena with nonequilibrium effects, encompassing diffusion, viscosity, and thermal conduction.
In fact, the DBM is suitable for both steady and unsteady detonation scenarios, although the

latter is not explicitly demonstrated in this manuscript due to space eonstraints.
~

4. Conclusion

An MRT DBM with split collision is presented. for bothisubsonic and supersonic reactive
flows. The external forces, chemical reactions, amd multi-physical fields are coupled naturally
through the collision, force and reaction terms on the right?hand side of the discrete Boltzmann
equations that describe the evolution of reactive mixture. Through the CE expansion, it can
be proved that the DBM is consistent with the reaetive NS equations with external forces, the
Fick’s law and Stefan-Maxwell diffusion equation in the hydrodynamic limit. Each chemical
species owns individual adjustable molar mass, concentration, velocity, acceleration, tempera-
ture, pressure, diffusivity, dynamie wiscosity, thermal conductivity, specific heat ratio, Prandtl
number, Reynolds number, and, Schmidt number, etc.

Compared to the onesstepfrelaxation MRT or BGK model [11, 13], the DBM with the s-
plitting technique, antwo-step-relaxation model, offers greater flexibility in parameters and is
applicable to a broader rangejof physicochemical systems. (i) The relaxation frequencies S'e
and S*° govern the thermodynamic nonequilibrium process, guiding the approach toward tem-
porary individual equilibrium and ultimate mixing equilibrium. (ii) The relaxation frequencies
in the split eollision ferm influence both self- and cross-collisions, thereby impacting the evo-
lution of the mixture. (iii) Specific relationships can be established between the relaxation
frequenciesrand other physical quantities, such as thermodynamic nonequilibrium quantities,
diffusivity, dynamic viscosity, and thermal conductivity. (iv) Classical dimensionless numbers

in fluid mechanics, such as the Reynolds number, Prandtl number, and Schmidt number of
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each species, can be adjusted. Consequently, the DBM with the split collision term presents a
more detailed relationship between the thermodynamic relaxation process and monequilibrium
effects. Moreover, the two-step-relaxation DBM can reduce to the one-step-relaxation or BGK
model under special conditions.

It should be stressed that the hydrodynamic, thermodynamic, and ¢hemical nonequilibrium
effects can be captured and measured by the versatile kinetic DBM dynamicallyr Physically, the
DBM is more general than traditional NS solvers since it containg@moredetailed thermodynamic
nonequilibrium information. Mathematically, a set of uniform discrete\Boltzmann equations is
used to describe the reactive mixtures, and the algorithm is easy te code due to the linearization
of evolution equations. Computationally, it can be implemented on very large parallel clusters
with exceptional scalability because all information transfer in DBM is local in time and space,
which is similar to other LBMs.

In addition, three methods to calculate the source ter;ls (including the force and reaction
terms) are introduced into the multicompenent DBMiAs a traditional idea, Method I uses the
discretization form of the formula of source terms, in the velocity space directly. Method II
expresses the source terms as the change ofadiscrete distribution functions due to the source
influences over a small time interval. Method III gives the expression of source terms by using
the matrix inversion method. Methods I and III own higher accuracy than Method II which
possesses only the first-ordertaccuracy.” Besides, Method III has the highest computational
efficiency because it requires to calculate the equilibrium distribution functions zero, one and
two times per loop fer/Methods H1, I and II, respectively.

Finally, several.eanonieal systems, including the multicomponent diffusion, mixture in the
force field, KH imstability, laminar flame of propane-air mixture, opposing reactions, and det-
onation wave are simulated to validate this model. The first three benchmarks are physical
systems without chemical reaction, and the last three benchmarks have chemical reactions,
with the last ome containing rather violent chemical heat release. It is demonstrated that the
currentr DBM is suitable for multicomponent mixtures with or without the chemical reaction.
The interplay among different chemical species can be described accurately. The complex inter-

facial structures could be captured dynamically. The essential nonequilibrium and compressible
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effects can be quantified. In the near future, this DBM will be employed to investigate more

practical combustion problems with significant nonequilibrium and compressible effects.

A Matrices

The square matrix M? takes the form,

Mfl Mfz M{TN ~
M = M201 M202 MQUN : (Al)
M](\7/1 th\ffz MXJN
with M7y, = 1, My, = v;,, My, = vly, My, = 52 +77Z Mg, = U,x , Mg; = vg, zyﬂ Mz, = Viy MSz =

2 2 2 2 3
(v;f +773 )Uz:w M9z - (Uzq +77i )vzy7 MlOz = Vg, Mllz .UU ;‘yv M121 = UU vzi/ ) M13i = v;; )
My, = ( + 7);72)1);2, M5 = (vi +n; )v Uiy, and My, = (vi + 77;72)@% . Tts inverse (M°)™"
could be obtained by using a calculation software, such as Matlab or Mathematica.

The column matrix faeq is given by

) N T

fo‘eq — (ffeq 2o‘eq - X’]eq) , (AQ)
in terms of ffeq =n’, f;eq = n’u,, fg =n"u, Azeq = n’[(D+I°)T[m’ +u*], foeq =n’(T/m°+
ui), Ageq = n"u,u,, A;eq = ﬁm +u ) Ueq n’€E%u,, Ueq =n"¢"u,, foeq = 3n"u,T/m’ +
n’u’, Afleq = n’u,T/m’ +in’ uxuy, f;q = n"u,T/m’ +n uxuf/, Alageq = 3n"u,T/m’ + n’u 3

70 = 7T m® + WU + 2T m°), 0 = 0 ugu, (€7 + 2T m?), and fi = n?€ T m” +
nguz(fa + QT/mU), with §U = (D + 7% + Q)T/mg + u2‘

The column matrix faseq is expressed by

1 2 N

foseq ( foseq poseq J?ffseq)T7 (A3)

whoserelements are similar to those in Eq. (A2). The elements fioseq are functions of (n”, ug,
T7), and ffeq are functions of (n’, u,, T). The former are given by substituting (n”, ug, 7°7)

for (n% ., T) in the latter, respectively.
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Moreover, the column matrix F’ takes the form

A0

P = (B By B (A4)

oNOYTULT D WN =

O O o o o o o o o o o o o Mo o o o O
where Fy = 0, Fy, = na,, F; =na, F;y = 2n (uxax+uyay), Fs0= 2nw,a,, Fg

n’ (ugay +uya;), FY = 2n°u, ay, FY =204 (uzag +ujay)+n’a; [ua2 +(D + I0+ 2) T%m’
1 EY = 2n°u,, (u;a; + uZaZ)+nUaZ[u02+(D +17+2)T° Im7], F¥y = 3n°al (uZQ + 717 [m° ), Y
13 2naa2u2u2+naag(ugz+TU/ma), F=n"a] (ug2 +T7|m° )+2naa2ugug, Fo= 3n’a;, (uz2 +T7[m° ),
15 FY =207l [2u;2 + uZ2 +(D+I1°+5)T°|m’ ]+2naagug (ug2 + 77 fm” ), Fis = ngagug[3ug2+

1 uy (D + 17+ 4) T7 fm 40" aul[ug+3u) *+(D+I7+4)T7 [ia’], and B = 2n”aul (uj® + T7 /m” )+

18 2n° agu,, u? + 2u22 +(D+ 174+ 5)T° Im°].

| E—|

Additionally, the column matrix R’ is calculated by

22 50

T
23 R = (R RS 00 RG) - (A5)

25 with R] = n”", RS = n"'u,, Ry = T R] =n7[(D +’]O)T/mg + 0]+ (D + )T |m°,
57 RZ =n"'(T/m" +u2)+n’T' /m°, RS = n" Uy, R = na'(T/mU+u§,)+ngT'/mU, RS = n"'u, &7 +
(D + 17 + 20 u, T' [m®, R = n”"u,&” + (Dak I™®2)nu, T'/m’, Ry = 3n""u,T/m" +n"'u +
3n u, T [m®, Ry, = ng'uyT/mU+na'uiuy+nauyT'/mU, RS, = nmuxT/mg+nmuxu§+nauxT'/mU,
32 Ry = 3n""u,T[m" + ng'uz +30 u, T [m”, Ry = n"'¢"T [m’ + n”" (€7 +2T /m)+n’[2(D+1° +
34 T [m” +u’ + (D + I + A2 JTfmS BT = 0 uyu, (€7 + 2T /m”) +n°[(D + I7 + 4)u,u, T fm”
36 and Rjs = n”'€°T[m’ + na'uz(§i+ 2T /") +n[2(D+ I +2)T/m° +u* +(D+ 17 + 4)u§]T'/mo.

40 B Hydrodynamie-equations

43 Via the CE expansion,it can be found that the current DBM is consistent with the reactive
NS equationsdnithe hydrodynamic limit. Based on the Einstein summation convention, the

NS equations of individualrspecies read,
a8 9" 0 ooy o

- 4= = B1
49 ot da (p ua) P ( )

51 a o o a o o o o o o o
52 a(p Ug) + 8_,8(6“5]) + p ugug + Pog + Ugg + Vi)

54 = S;apa (ua - U’Z) + paag + pmuom <B2>

58 44
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an— a g O g o O'aTU o g g g
74_3_04 E u,+p ua—ﬁaa—a+uﬁpaﬁ+Xa+Ya
T-T°

[

1 ;
= §Siapa |:(D +17%) +u’ - u02:| + pugag, + B

Y

in terms of

PJ o 25045 6U§ aui (9u2
o8 =B\ DT 9y T 98 da )

27 Sapp’ STy 20080°
UU’ S4 BP ( 02_u2) JIx BP U(ua ~ )

aﬁ=51%D+[O’u _512D+Ioux x 4y
« ey
2
Sa% o o o Sjoz o, o
_Sla P (uauﬂ - uauﬁ) + Slg P (ua ua) uﬂ
af af
2 2
S%s - 5 Syl =Sap T’ =T
+Slg P Uy (uﬁ - uﬁ) + 0ap glo me
af af
- 4
or o2 o
Va—p v € 5u+u 2uyu
af Sla UaUp + U Ug T Hgils — Uslp af D+ 1I°
af

Slo‘

S i, -

2 U2S;§ < "[(D+I"+2) _ +u"2—u2]
stm (ul ua)[(D+I +2)—U+u2:|,

al TO' _
R 2210_ (ug — uy) |:(D +1°42) — + u’’ - u2]
1 PU’UZ o 2 o T o

_SégDJr[U(uﬁ—uﬁ) +(D+1° +2) T (Uq —ug),

with«the change rate of individual energy due to the chemical reaction

B D+I° T +u2 +D+1" p"T,_m”R4
=f 2 m° 2 2 me 2
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the thermal conductivity
o D+I"+2p°T°

K:CM 9 BlO
28k ;o2 B10)
the dynamic viscosity
o p
:uozﬁ = E? (Bll)
af

o a lo lo lo 20 20 20 lo
and the parameters (Sj,, S7,, Szz, Suys Syys Szzr Swyr Syys Suas

lo lo lo 20 20 20 lo lo 20 20
55 9 86 ) S? ) SE) ) Sﬁ 9 57 ) SS ’ SQ ) SS ) 59 )
In the case of Si7 = Sg” = 937 = S, and Se7 = S = 7. tHe Prandtl number is

lo 20
Sﬁy Smc )

Sao) = (837, 857,

b 5
I‘—SZ.

(B12)

Moreover, the specific heat at constant pressure and(volume are ¢, = (D + I° +2)/(2m”) and

co = (D +17)/(2m”), respectively. Consequently, the specific heat ratio is
o G D+d"+2 y

B = Bl

C

Additionally, summing Eqs. (B1) - (B3) over all.species o, we get the following reactive NS

equations,
dp. 0
P (pus) = 0, (B14)
8 8 6 o2 g o O PO' g o _ B
a (pua) + 8ﬁ § a( apP +p Uy Ug + afB g Uaﬁ + Vaﬂ) = Pag, ( 15)
oF 0 cle W o UaTU o 0 o o 1
—+—§ E + —kg— tuglP s+ X,+Y, |= + F B1
ot Do o-( Uy TP Uy Ko av U’ﬁ af « «@ Pl ) ( 6)

in the case of a;, = dgf wheres'= ) _ E°" denotes the change rate of mixing energy due to the
chemical reaction.

Actually, under some corresponding conditions, we could obtain the Fick’s laws of diffusion
and MaxwelléStefan diffusion equation from Egs. (B1) and (B2) as well [9]. More discussion is
beyond this werk.

C/ Nondimensional parameters

Now, let us demonstrate some important parameters in the current DBM.
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(i) Time. The dimensional time is tq = Lq/uq, the nondimensional time t, = Ly/u,, and

the time ratio
_ Ldun
T Lnud .

(C1)

(ii) Energy. The internal energies with dimension and nondimension are,Fi,.q = (D +

IngRT,/2 and Ei, = (D + I)n,T,/2, respectively, and the energy ratio reads

E. =

FE.
nd — o, RT.. (C2)

Eintn ~

(iii) Mass. Given the dimensional and nondimensional melar mass my and m,,, the mass
densities are pg = mgng and p, = myn, in dimensional and nondimensional forms, the kinetic

energies are Fyq = pdui /2 and E\, = ,onuf1 /2 in the two forms, 80 the energy ratio is

N (C3)

From Egs. (C2) and (C3), we obtain the'mass ratio

RT,
meE —, (C4)
ur
which leads to the mass density ratio p, =m,n,.
(iv) Viscosity. The Reynoldsmumber is defined as
L n nLn
N Re:ﬂdud d _ Pl (C5)

Ha Hn y

where uq and p, dénote the dynamic viscosity in dimensional and nondimensional forms, re-

spectively. The ratiosof dimensional to nondimensional dynamic viscosity takes the form

n, L, RT,
e = = (C6)
from which. we‘could get the kinematic viscosity ratio v, = p,/p;.
(v) Thermal diffusivity. The Prandtl number is a dimensionless number defined as the ratio

of momentumrdiffusivity (i.e., kinematic viscosity) to thermal diffusivity,

Vq Uy

Pr=—=—
! Kd Kn’

(C7)
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where (vgq, v,) and (K, K,) denote the momentum diffusivity and thermal diffusivity in di-
mensional and nondimensional forms, respectively. Consequently, the ratio of/dimensional to
nondimensional thermal diffusivity is K, = v;.
(vi) Mass diffusivity. The Schmidt number is a dimensionless number defined as the ratio
of momentum diffusivity (kinematic viscosity) to mass diffusivity,
Vqg Uy
LT
~

where (4 and ¢, stand for the dimensional and nondimensional mass diffusivity, respectively.

(C8)
Hence, the ratio of dimensional to nondimensional mass diffusivity 48 ¢, = v,.

D Homogeneous mixture with body force

When a homogeneous nonreactive mixture reaches its' steady state in the force field, the

time and space derivatives equal zero, hénee Eq. (B2)deads to
Sl (ua - ug) +p a. = 0. (D1)
Namely, the individual velocities read
U= U, + (Sja)_l ag. (D2)

N
Moreover, if the homogeneous nonreactive mixture is an isothermal system in the steady
state, Eq. (B3) gives

[

1 o o O'T_ o o o o
§SZp|:(D+[) ~ +u2—u2]+puaaa=0. (D3)

Consequently; the individual temperatures take the form

o
m

T =T+
D+1I°

[|u|2 - |u0|2 + 2(520)_1u0 . ag]. (D4)

Onrtheycontrary, for a thermal homogeneous mixture in the force field, if the individual
accgelerations are not equal, the chemical species propagate collectively with different velocities

and collide randomly with each other, which leads to the change of energies and temperatures.
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That is to say, the work done by external forces transforms into the kinetic and internal energies

of the thermal system, i.e,

aE g o g

E=nga-u, (D5>
which can be derived from Eq. (B16). Let us consider a special case where themixing velocity

keeps constant w = 0 in the force field, then Eq. (D5) changes into

8Ein o\-1 o o o
att=ZJ(SJ) 1pa ‘a . (D6)

From Egs. (13) and (D6), we get

o o ov—1 o o2
TJ~T_ZJ(D+1)n Ty+2Y (8507 |a®| 't ")
S (D +A°)ne ’

where T is the initial mixing temperature.
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