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A multi-relaxation-time discrete Boltzmann model (DBM) with split collision is proposed for

both subsonic and supersonic compressible reacting flows, where chemical reactions take place among

various components. The physical model is based on a unified set of discrete Boltzmann equations

that describes the evolution of each chemical species with adjustable acceleration, specific heat ratio,

and Prandtl number. On the righ-hand side of discrete Boltzmann equations, the collision, force, and

reaction terms denote the change rates of distribution functions due to self- and cross-collisions, ex-

ternal forces, and chemical reactions, respectively. The source terms can be calculated in three ways,

among which the matrix inversion method possesses the highest physical accuracy and computational

efficiency. Through Chapman-Enskog analysis, it is proved that the DBM is consistent with the reac-

tive Navier-Stokes equations, Fick’s law and Stefan-Maxwell diffusion equation in the hydrodynamic

limit. Compared with the one-step-relaxation model, the split collision model offers a detailed and

precise description of hydrodynamic, thermodynamic, and chemical nonequilibrium effects. Finally,

the model is validated by six benchmarks, including multicomponent diffusion, mixture in the force

field, Kelvin-Helmholtz instability, flame at constant pressure, opposing chemical reaction, and steady

detonation.

Keywords: discrete Boltzmann method, reactive flow, detonation, nonequilibrium

effect

1. Introduction

Reactive flows are a complex physicochemical phenomenon where different chemical species

collide randomly and react violently, various interfacial and/or mechanical structures coexist,

the chemical, hydrodynamic and thermodynamic nonequilibrium effects play significant roles

[1–4]. Due to its practical importance in both nature and society, reacting flows have been

widely studied in human history. With the rapid development of computer hardware and

computational science in recent decades, numerical simulation has become indispensable for

academic research. Roughly speaking, there are three levels of physical description of reac-

tive fluids, i.e., the macroscopic, mesoscopic and microscopic models. The most commonly

used method is the macroscopic description based upon the continuous models, such as the

reactive Euler or Navier-Stokes (NS) equations, where hydrodynamic quantities such as the

density, velocity, temperature, and pressure are utilized to characterize the reactive system

[1–3]. Despite their great success, the traditional hydrodynamic governing equations ignore

2
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detailed thermodynamic nonequilibrium effects that often play essential roles, especially in a

microscopic system or a local structure with sharp physical gradients [3, 4]. By contrast, the

microscopic description is generally based on molecular dynamics (MD) where the interaction

potential between molecules is considered [5]. Although the exact position and velocity of each

molecule can be obtained dynamically, the MD is not capable of mimicking a relatively large

system due to its excessive computational cost.

To solve the aforementioned issues, one way is to resort to the mesoscopic description that

bridges the microscopic molecular and macroscopic continuous models. As a kinetic method-

ology, the discrete Boltzmann method (DBM) is regarded as a promising tool for mimicking

multi-physics flow phenomena [6–18]. The DBM is a variant version of the standard lattice

Boltzmann method (LBM) that has achieved great success in simulating complex reactive or

nonreactive flows [19–37]. Early in 1997, Succi et al. proposed the pioneering simple extension

of the LBM for numerical combustion where reactive flow dynamics is handled in the limit of

fast chemistry [21] . In 2010, Chiavazzo et al. presented the modelling of reactive flows based

upon a coupling between accurate reduced reaction mechanism and the LBM simulation of flow

phenomena [22]. In 2014, Kang et al. proposed a thermal multicomponent LBM for catalytic

reactive flows where the Bhatnagar-Gross-Krook (BGK) relaxation process is split into two

parts: the first part is characterized by the relaxation toward an auxiliary state and the second

part describes the relaxation toward the thermodynamic equilibrium [23]. In 2020, Dugast et

al. proposed a topology optimization algorithm based on a multi-relaxation-time (MRT) LBM

coupled with a level-set method for reactive fluid flows, allowing higher Reynolds numbers flow

simulations compared to the ordinary single-relaxation-time model [28]. In 2021, Lei and Luo

developed a sophisticated LBM for reactive flows in porous media, where separate equations

describe the evolution of multicomponent flows and chemical species [33]. In 2022, Jiang et

al. proposed an immersed boundary LBM for particle combustion with varying thermodynam-

ic and transport properties, and conducted the hydrodynamics-resolved simulation of a char

particle combustion [34].

Although a series of LBM studies have been performed for reactive flows over the past two

decades, they have not been developed to simulate complex compressible reacting flows where

3
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significant hydrodynamic, thermodynamic and chemical nonequilibrium effects coexist and in-

teract with each other. In fact, both the DBM and basic LBM are intended as solvers for a

truncated version of the Boltzmann equation, and they have the following same advantages:

(i) Simple scheme. It is easy to code the algorithm for the discrete Boltzmann equation with a

simplified collision operator. (ii) Parallel computation. It is convenient for massively parallel

computing as all the information transfer is local in time and space [38]. (iii) Boundary condi-

tion. It is straightforward to deal with complex geometry by changing the discrete distribution

functions [26, 39]. Moreover, the differences between the DBM and basic LBM are as follows:

(i) Phase-space discretization. Classical LBM solvers rely on a specific stencil to discretize the

phase space and a Lagrangian approach is used for the time-space discretization (integration

along characteristic lines) resulting in the streaming-collision algorithm; The DBM is a classical

Eulerian solver for the discrete Boltzmann equation where the discretization is performed using

a moment-matching approach. (ii) Physical model. Traditional LBMs mainly serve as the solver

of NS equations or other partial differential equations, while the DBM is fairly equivalent to a

modified hydrodynamic model plus a coarse-grained model of thermodynamic nonequilibrium

behaviors. Namely, the DBM is strictly inherited by the Boltzmann equation and can describe

nonequilibrium system beyond macroscopic governing equations, while the standard LBM is a

numerical scheme characterized by the streaming-collision steps and can be used to model a

large family of advection equations beyond the topic of the Boltzmann equation.

It should be pointed out that the last aforementioned difference is the key reason why the

DBM has been developed. The DBM is derived from the nonequilibrium statistical physics

and has been successfully applied to investigate compressible reacting flows [7–18], multiphase

[40–43], and fluid instabilities [44–52], etc. In 2013, the pioneering DBM for combustion was

developed by using a hybrid scheme, and the hydrodynamic and thermodynamic nonequilibrium

effects were investigated around the detonation wave [7]. In 2016, the DBM was employed

to probe detonation with negative temperature coefficient from three aspects: hydrodynamic

quantities, nonequilibrium quantities and entropy productions [10]. In the same year, a DBM

was constructed where one (another) set of distribution function describes chemical reactant

(product) [9]. In 2017, a BGK DBM for multicomponent reactive flows was presented, where

4
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the relaxation time has the same value for one species and the Prandtl number is fixed to Pr = 1

[11]. In 2019, an efficient MRT DBM was developed to tackle steady or unsteady supersonic

reactive flows [13]. Since 2021, the DBM has been extended to three-dimensional steady and

unsteady detonation [15, 16]. In 2022, the DBM was used to study the quantitative discrepancy

between equilibrium and nonequilibrium distribution functions around the detonation wave [17].

In 2023, via the DBM and the fast Fourier transform, the deviations of the velocity distribution

function from the equilibrium state have been investigated and the kinetic moments of reaction

terms have been discussed in the evolution of unsteady detonation [18].

Base on previous works [11, 13, 14, 50], we develop an MRT DBM with a split collision

term for reacting flows with both hydrodynamic and thermodynamic nonequilibrium effects.

Compared with the BGK model [11], the MRT DBM has various relaxation times for different

nonequilibrium processes and a flexible Pr. In contrast to the single-distribution-function DBM

[13, 14], the current DBM takes account of collisions and reactions among different chemical

species. Different from the MRT DBM for multicomponent mixtures [50], this model involves

the effects of chemical reaction and external force, and a splitting technique is applied to the

collision term. In historical context, the splitting technique originated within the realm of

plasma physics for electron-ion systems, where the distinct impacts of self-collision and cross-

collision on each species were recognized [53, 54]. Physically, complex systems often undergo

multiple evolution stages characterized by varying time scales, and their components, such as

electrons or ions, may exhibit divergent temperatures [53, 54]. Consequently, employing an

appropriate methodology becomes imperative to investigate such intricate physical systems,

especially those involving reactive flows with numerous chemical species. This serves as the

primary motivation for this study. Specifically, the MRT DBM with split collision is developted

for a mixture system to delineate the effects of self-collision and cross-collision on individual

species. In contrast, the DBM without split collision represents a simplified version of the

current model, applicable under the condition where relaxation frequencies during self-collision

match those in cross-collision scenarios.

The rest of the paper is organized as follows. First, we introduce details of the MRT

DBM with the split collision term for compressible reacting flows. The model is subsequently

5
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validated by six benchmarks, i.e., the multicomponent diffusion, homogeneous mixture in the

force field, Kelvin-Helmholtz (KH) instability, flame at constant pressure, opposing chemical

reaction, and steady detonation. Finally, conclusions are drawn.

2. Discrete Bolzmann method

The coarse-grained physical modeling from the Boltzmann equation to the DBM mainly

involves three key steps [45, 55]: (i) Simplification of the collision term. It is difficult to solve

the original Boltzmann equation where the collision term is too complex in the integral form.

Hence, it is necessary to simplify the collision term in order to utilize the Boltzmann equation.

In this paper, we employ the widely used MRT collision model [8, 13, 47]. (ii) Discretization

of the particle velocity. For the purpose of physical accuracy and numerical efficiency, the

particle velocity space is discretized with the matrix inversion method [6, 13]. (iii) Description

of nonequilibrium effects. The main purpose of the DBM is to probe and extract essential

nonequilibrium information beyond traditional hydrodynamic models [7, 9, 44]. Note that

the first two steps are for coarse-grained modeling, and the third one is the core of DBM.

The last step is not only an extension to the first two, but also puts forward stricter physical

requirements for the construction. To be specific, all kinetic moment relations in the DBM

should be consistent with those in the nonequilibrium statistical physics, and multi-physics

fields (including density, temperature, velocity) should be coupled naturally as various physical

quantities are obtained from the kinetic moments of the same distribution function.

In this work, the MRT discrete Boltzmann equations, which describe the spatio-temporal

evolution of reacting flows, take the form,

∂f
σ

∂t
+ v

σ
⋅ ∇f

σ
= Ω

σ
+ F

σ
+R

σ
. (1)

Here t represents the time. The superscript σ = 1, 2, . . . , Ns indicates chemical species with

the number Ns in total. The column matrices f
σ
= (fσ1 f

σ
2 ⋯ f

σ
N )

T

, Ω
σ
= (Ωσ

1 Ω
σ
2 ⋯ Ω

σ
N )

T

,

F
σ
= (F σ

1 F
σ
2 ⋯ F

σ
N )

T

, and R
σ
= (Rσ

1 R
σ
2 ⋯ R

σ
N )

T

denote the discrete distribution func-

tions, collision terms, force terms, and reaction terms, respectively. The diagonal matrix

6
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Figure 1: Sketch of discrete velocities.

v
σ
= diag (vσ1 v

σ
2 ⋯ v

σ
N ) stands for the discrete velocities, and the subscript i = 1, 2, . . . ,

N is the index of discrete velocities, with N = 16 in this paper. As shown in Fig. 1, a discrete

velocity set reads

v
σ
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cyc ∶ vσa (±1, 0) , 1 ≤ i ≤ 4,

v
σ
b (±1,±1) , 5 ≤ i ≤ 8,

cyc ∶ vσc (±1, 0) , 9 ≤ i ≤ 12,

v
σ
d (±1,±1) , 13 ≤ i ≤ 16,

(2)

where cyc indicates the cyclic permutation and (v
σ
a , v

σ
b , v

σ
c , v

σ
d ) are flexible parameters. Besides,

to take account of the part of internal energies due to molecular rotation and/or vibration, we

introduce the symbol η
σ
i = η

σ
a , η

σ
b , η

σ
c , and η

σ
d for 1 ≤ i ≤ 4, 5 ≤ i ≤ 8, 9 ≤ i ≤ 12, and 13 ≤ i ≤ 16,

respectively, where the parameters (η
σ
a , η

σ
b , η

σ
c , η

σ
d ) are tunable as well.

It is worth emphasizing that the values of v
σ
i and η

σ
i can be adjusted to optimize the DBM

robustness and accuracy. On the one hand, the parameters (v
σ
a , v

σ
b , v

σ
c , v

σ
d ) can be chosen

around the values of flow velocity u
σ

and sound speed v
σ
s =

√
γσT σ/mσ, where T

σ
stands for

the temperature, m
σ

the molar mass, γ
σ
= (D + Iσ + 2)/(D + Iσ) the specific heat ratio, D = 2

the spatial dimension in this paper, and I
σ

extra degrees of freedom due to molecular rotation

and/or vibration. On the other hand, among (η
σ
a , η

σ
b , η

σ
c , η

σ
d ), one (another) parameter should be

7
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less (greater) than η̄
σ
=

√
IσT σ/mσ, because the extra internal energy is about

1

2
m
σ
η̄

2
=

1

2
I
σ
T
σ

according to the equipartition of energy theorem.

2.1. Macroscopic quantities

The individual molar concentration n
σ
, mass density ρ

σ
, velocity u

σ
, energy E

σ
, and tem-

perature T
σ

are given by,

n
σ
= ∑

i
f
σ
i , (3)

ρ
σ
= m

σ
n
σ
, (4)

n
σ
u
σ
= ∑

i
f
σ
i v

σ
i , (5)

E
σ
=
m
σ

2
∑

i
f
σeq

i (∣vσi ∣2 + ησi
2), (6)

T
σ
=

2E
σ − ρσuσ2

(D + Iσ)nσ , (7)

respectively. The mixing number density n, mass density ρ, velocity u , energy E, internal

energy Eint, and temperature T are obtained from

n = ∑
σ
n
σ
, (8)

ρ = ∑
σ
ρ
σ
, (9)

ρu = ∑
σ
ρ
σ
u
σ
, (10)

E = ∑
σ
E
σ
, (11)

Eint = E −
1

2
ρ∣u ∣2, (12)

T =
2Eint

∑σ (D + Iσ)nσ
, (13)

respectively. Actually, energies E
σ

in Eq. (6) and E in Eq. (11) are not conserved during

chemical reaction and may be called the “sensible” or “total nonchemical” energies.

It should be mentioned that, with the substitution of the equilibrium discrete distribution

functions f
σeq

for the discrete distribution functions f
σ
, the formulas (3) - (6) still holds. In

fact, the aforementioned physical quantities in Eqs. (3) - (13) are macroscopic parameters that

8
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are statistical results of particles with random motion, and can be conveniently measured by

traditional numerical or experimental methods.

2.2. Split collision term

In fact, the discrete Boltzmann equation (1) is a simplified form of the original Boltzmann

equation, and the collision term is a reduced expression of its original nonlinear integral term.

To be specific, the collision term is composed of three parts, i.e.,

Ω
σ
= Ω

1σ
+Ω

2σ
+Ω

3σ
, (14)

in terms of

Ω
1σ
= −(M σ)−1

S
1σ (f̂ σ − f̂

σseq) , (15)

Ω
2σ
= −(M σ)−1

S
2σ (f̂ σ − f̂

σseq) , (16)

and

Ω
3σ
= (M σ)−1

Â
σ
, (17)

where the diagonal matrix S
1σ

= diag (S1σ
1 S

1σ
2 ⋯ S

1σ
N ) indicates the relaxation frequencies

that control the relaxation speed of kinetic moments f̂
σ
= (f̂σ1 f̂

σ
2 ⋯ f̂

σ
N )

T

approaching their

individual intermediate equilibrium counterparts f̂
σseq

= (f̂σseq

1 f̂
σseq

2 ⋯ f̂
σseq

N
)
T

, and S
2σ

=

diag (S2σ
1 S

2σ
2 ⋯ S

2σ
N ) denotes the relaxation frequencies which govern the relaxation speed

of f̂
σseq

= (f̂σseq

1 f̂
σseq

2 ⋯ f̂
σseq

N
)
T

approaching the ultimate equilibrium counterparts f̂
σeq

=

(f̂σeq

1 f̂
σeq

2 ⋯ f̂
σeq

N
)
T

. Here f̂
σeq

is the function of (n
σ
, uα, T ), and f̂

σseq
is expressed by

substituting(u
σ
α, T

σ
) for (uα, T ) in the formula of f̂

σeq
, see Appendix A. The square ma-

trix M
σ
= (Mσ

il ) and its inverse (M σ)−1
= ((Mσ

il )
−1), both of which have N × N elements, act

as the link between the velocity and moment spaces. To be specific,

f̂
σeq

= M
σ
f
σeq
, (18)

f̂
σseq

= M
σ
f
σseq

, (19)

f̂
σ
= M

σ
f
σ
, (20)

9
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with f
σeq

= (fσeq

1 f
σeq

2 ⋯ f
σeq

N
)
T

and f
σseq

= (fσseq

1 f
σseq

2 ⋯ f
σseq

N
)
T

. Here (f̂
σeq

, f̂
σseq

, f̂
σ
) and

(f
σeq

, f
σseq

, f
σ
) correspond to the moment and velocity spaces, respectively. In fact, Eq. (18)

is equivalent to the following relationship,

∬ f
σeq

Ψdvdη = ∑
i
f
σeq

i Ψi, (21)

in terms of Ψ = 1, v , (∣v ∣2 + η2), v , (∣v ∣2 + η2) v , v , (∣v ∣2 + η2) v , and their corresponding dis-

crete counterparts Ψi = 1, v
σ
i , (∣vσi ∣2 + ησi 2), vσi vσi , (∣vσi ∣2 + ησi 2) vσi , v

σ
i v

σ
i v

σ
i , (∣vσi ∣2 + ησi 2) vσi vσi .

In this work, the theoretical equilibrium distribution function is expressed by [11]

f
σeq

= n
σ( m

σ

2πT
)
D/2

( m
σ

2πIσT
)

1/2

exp [−m
σ∣v − u ∣2

2T
−
m
σ
η

2

2IσT
] . (22)

Actually, the formula (21) is a necessary condition to recover the NS equations in the hydro-

dynamic limit.

Note that in the simplification process from the original Boltzmann equation to the DBM,

the physical quantities (such as density, momentum, energy, and lower-order kinetic moments)

under consideration remain unchanged, while some other physical information (such as higher-

order kinetic moments and the interactions between them) may be lost. The loss of relevant

information constrains the applications of the physical model, and may lead to inaccuracy

for particular real situations. To rectify this, Chapman-Enskog (CE) multiscale analysis can

be employed to identify and amend the deficiencies in the physical model. For this purpose,

an additional term Â
σ

is incorporated into the collision term to make up for the missing

relation between physical quantities f̂
σ
5 , f̂

σ
6 , f̂

σ
7 , f̂

σ
8 , and f̂

σ
9 . Specifically, the term Â

σ
=

(0 ⋯ 0 Â
σ
8 Â

σ
9 0 ⋯ 0)

T

depends upon

Â
σ
8 = 2 (S1σ

8 − S
1σ
5 )uσx∆

σ
5 + 2 (S1σ

8 − S
1σ
6 )uσy∆

σ
6 , (23)

Â
σ
9 = 2 (S1σ

9 − S
1σ
7 )uσy∆

σ
7 + 2 (S1σ

9 − S
1σ
6 )uσx∆

σ
6 , (24)

with

∆
σ
5 =

2n
σ
T
σ

S1σ
5 mσ

(1 −D − Iσ

D + Iσ
∂u

σ
x

∂x
+

1

D + Iσ
∂u

σ
y

∂y
) , (25)

10
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∆
σ
6 = −

n
σ
T
σ

S1σ
6 mσ

(∂u
σ
x

∂y
+
∂u

σ
y

∂x
) , (26)

∆
σ
7 =

2n
σ
T
σ

S1σ
7 mσ

( 1

D + Iσ
∂u

σ
x

∂x
+

1 −D − Iσ

D + Iσ
∂u

σ
y

∂y
) . (27)

It should be further explained that the physical meaning of the first two parts in Eq.

(14) is as follows: there are two split steps during the thermodynamic relaxation process.

The distribution function f̂
σ

firstly approachs its temporary equilibrium state f̂
σseq

under the

control of relaxation frequency S
1σ

, then tends toward the local ultimate equilibrium state f̂
σeq

with relaxation frequency S
2σ

. It is worth mentioning that, there are more flexible parameters

in the two-step-relaxation collision term, which is suitable for a wider application range of

physical systems. Through the CE expansion, the relations can be determined between the

relaxation parameters and other physical quantities, such as the nonequilibrium quantities (48)

- (52), diffusivity (55), thermal conductivity (B10), dynamic viscosity (B11). Consequently,

compared with the one-step-relaxation MRT or BGK model, the two-step-relaxation collision

term presents a more detailed relationship between the thermodynamic relaxation process and

nonequilibrium effects.

Moreover, substituting Eqs. (15) - (17) into (14) leads to the following expression

Ω
σ
= −(M σ)−1 [S 1σ (f̂ σ − f̂

σseq) + S
2σ (f̂ σseq

− f̂
σeq) − Â

σ] . (28)

Clearly, in the case of S
1σ
= S

2σ
= S

σ
, the split collision model (28) (called two-step-relaxation

collision model) reduces to the popular MRT model (named a one-step-relaxation collision

model)

Ω
σ
= −(M σ)−1 [Sσ (f̂ σ − f̂

σeq) − Â
σ] , (29)

which further reduces to the single-relaxation model

Ω
σ
= −

1

τσ
(f σ − f

σeq) , (30)

if S
σ
= I /τσ, and I denotes the unit tensor. Clearly, Â

σ
8 = Â

σ
9 = 0 when S

1σ
5 = S

1σ
6 = S

1σ
7 =

S
1σ
8 = S

1σ
9 , as seen in Eqs. (23) and (24). Namely, the additional term Â

σ
disappears in the

11
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single-relaxation case. A widely used single-relaxation model is the BGK model. In fact, both

MRT and BGK models are also suitable for a fluid system if there is only one component or

the average mixing effect is under consideration. Besides, in order to achieve local momentum

conservation for a two-component system, the relaxation times of the two components should

be equal: τ
σ
= τ

σ̄
= τ , which is a constraint of the single-relaxation BGK model [54].

In addition, the collision term in Eq. (14) can be rewritten as,

Ω
σ
= Ω

1σ∗
+Ω

2σ∗
+Ω

3σ
, (31)

with

Ω
1σ∗

= −(M σ)−1
S

1σ∗ (f̂ σ − f̂
σseq) , (32)

Ω
2σ∗

= −(M σ)−1
S

2σ∗ (f̂ σ − f̂
σeq) , (33)

where S
1σ∗

= S
1σ − S

2σ
and S

2σ∗
= S

2σ
. The terms Ω

1σ∗
and Ω

2σ∗
are related to the self-

collision and cross-collision among various particles, respectively. In fact, both self-collision and

cross-collision affect the evolution of the discrete distribution functions. In other words, the

effects of self-collision and cross-collision on the evolution of physical systems are taken into

consideration.

2.3. Force term

Physically, the force term denotes the change rate of distribution function due to the external

force. How to calculate the force term is a key to an accurate physical model. In this part, we

introduce three ways to obtain the mathematical expression of the force term. The first two

methods, which were actually proposed for two-component fluids in Ref. [45], are extended to

multicomponent systems in this work. The last method that is named the matrix inversion

method [6, 13] is developed for multicomponent systems for the first time as well.

Method I

Via the Taylor expansion, it can be found that the main part of the distribution function

is the equilibrium distribution function in a system not too far from equilibrium [45]. Theoret-

ically, f
σ

is close to f
σseq(nσ,uσ

, T
σ) rather than f

σeq(nσ,u , T ), especially in a non-premixed

12
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or partially premixed system. Hence the approximation f
σ
≈ f

σseq(nσ,uσ
, T

σ) can be used as

follows,

F
σ
= −a

σ
⋅
∂f

σ

∂v
≈ −a

σ
⋅
∂f

σseq

∂v
= a

σ
⋅ (v − u

σ) m
σ

T σ
f
σseq

, (34)

where a
σ
= a

σ
αeα stands for the body acceleration of species σ, and eα the unit vector in the

α direction. Then, the force terms are obtained in the discretization form directly

F
σ
i = a

σ
⋅ (vσi − u

σ) m
σ

T σ
f
σseq

i . (35)

In fact, Eq. (35) is a conventional way to calculate the force terms [46, 47].

Method II

The force terms are used to incorporate forcing effects into the Boltzmann equation. Ac-

cording to its physical meaning, the force terms can be expressed by the change of discrete

distribution functions δf
σ
i due to the external force over a small time interval δt, i.e.,

F
σ
i =

∂f
σ
i

∂t

»»»»»»»»Force

= lim
δt→0

δf
σ
i

δt

»»»»»»»»Force

≈

∆f
σseq

i

∆t

»»»»»»»»»Force

, (36)

where ∆f
σseq

i
represents the corresponding change of the equilibrium distribution function with-

in a time step ∆t and is a function of the concentration, velocity and temperature.

In classical physics, the impulse (work) done by an external force changes the momentum

(kinetic energy) of a system directly, while the mass, internal energy, and temperature remain

constant in the force field. In other words, the force changes the velocity and energy of the fluid

components, but does not have a direct influence on the density or temperature. Consequently,

∆f
σseq

i
in Eq. (36) can be written as

∆f
σseq

i = f
σseq†
i − f

σseq

i , (37)

where the equilibrium distribution functions change from f
σseq

i
= f

σseq

i
(nσ,uσ

, T
σ) to f

σseq†
i

=

f
σseq

i
(nσ,uσ†

, T
σ), and the flow velocity changes fromu

σ
to u

σ†
= u

σ + a
σ
∆t within a time

step.

Theoretically, because of the external force, the energy of component σ change from E
σ

into E
σ†

= E
σ + ρσuσ ⋅ aσ∆t, then it can be derived from Eq. (7) that the temperature of

13
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component σ is

T
σ†
= T

σ
−
m
σ∣aσ∣2

D + Iσ
(∆t)2 ≈ T σ. (38)

Clearly, T
σ†

equals T
σ

as ∆t approaches zero. In other words, the temperature is not changed

by the external force. It can be found from Eq. (38) that the expression in Eq. (37) is of the

second order accuracy.

Method III

Let us consider the following relation [13],

∬ F
σ
Ψdvdη = ∑

i
F
σ
i Ψi, (39)

where Ψ and Ψi are the same as those in Eq. (21), and F
σ

and F
σ
i denote the force terms in

the continuous and discrete velocity spaces, respectively.

In fact, the formula (39) is equivalent to the following matrix form

F̂
σ
= M

σ
F
σ
, (40)

where the elements of F̂
σ

are given in Appendix A. From Eq. (40), the force terms can be

expressed by

F
σ
= (M σ)−1

F̂
σ
. (41)

It is noteworthy that there are two similarities among above three methods. (I) Based upon

the approximation f
σ
≈ f

σseq(nσ,uσ
, T

σ), the force terms are expressed with the discrete equi-

librium distribution functions; (II) The relations satisfied by the force terms are sufficient to

recover the NS equations, see Appendix B. Besides, the differences among above three methods

are as follows. (I) As for Method I, there are nine relations satisfied by the force terms, which

are the necessary and sufficient conditions to recover the NS equations. In contrast, besides the

nine relations, another seven relations are satisfied by the force terms in the last two methods as

well. That is to say, there are sixteen relationships in Methods II and III, respectively. (II) As

shown in Eqs. (35) and (37), the force terms are a function of the equilibrium discrete distribu-

tion functions. Consequently, it is necessary to calculate the equilibrium discrete distribution

functions in the program for Method I or II. In contrast, as shown in Eq. (41), the force terms
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are computed by using an inverse matrix in the last method, which has a higher computational

efficiency. In other words, the matrix inversion method has the characteristic of high physical

accuracy and computational efficiency, see Table 2. Consequently, this methodology is utilized

to calculate the reaction terms in the next subsection as well.

2.4. Reaction term

The reaction term, which represents the change rate of distribution function because of the

chemical reaction, satisfies the following relationship [13],

∬ R
σ
Ψdvdη = ∑

i
R
σ
i Ψi, (42)

where Ψ and Ψi are the same as those in Eq. (21), and R
σ

and R
σ
i are the reaction terms in

the continuous and discrete velocity spaces, respectively. The expression of R
σ

reads [8],

R
σ
= f

σeqn
σ ′

nσ
+ f

σeq− (1 +D) IσT +mσ
I
σ∣v − u ∣2 +mσ

η
2

2IσT 2
T
′
, (43)

where n
σ′

stands for the concentration variation rate of species σ,

T
′
=

2 [E ′ ⋅∑σ n
σ (D + Iσ) − Eint ⋅∑σ n

σ ′ (D + Iσ)]
[∑σ n

σ (D + Iσ)]2
, (44)

is the temperature variation rate, and

E
′
= ωovQ, (45)

indicates the release rate of chemical heat that equals the energy variation rate due to the

chemical reaction. In Eq. (45), ωov stands for the chemical reaction rate, and Q stands for the

chemical heat release of reactant per unit mole.

In addition, the formula (42) is equivalent to the following matrix form

R̂
σ
= M

σ
R
σ
, (46)

where the elements of R
σ

are given in Appendix A. From Eq. (42), the expressions of reaction

terms can be obtained

R
σ
= (M σ)−1

R̂
σ
. (47)
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As for the description of chemical reactions, we can adopt the one-step reaction, two-

step reaction, detailed or reduced multi-step chemical kinetics. For example, without loss of

generality, three simple chemical reaction models are adopted in this manuscript.

It should be emphasized that, via the reaction terms on the right-hand side of the discrete

Boltzmann equation (1), the multi-physics and chemical reactions are naturally coupled. The

matrix inversion method is a precise and efficient calculation approach to compute the reaction

terms in Eq. (47), because the sixteen moment relations of reaction terms are satisfied in an

elegant way.

2.5. Nonequilibrium effects

In fact, the difference between Eqs. (18) and (20) indicates the nonequilibrium departure

degree of the physical system,

f̂
σneq

= f̂
σ
− f̂

σeq
= M

σ (f σ − f
σeq) = M

σ
f
σneq

, (48)

with f
σneq

= (fσneq

1 f
σneq

2 ⋯ f
σneq

N
)
T

and f̂
σneq

= (f̂σneq

1 f̂
σneq

2 ⋯ f̂
σneq

N
)
T

. Similarly, we can

define

f̂
σsneq

= f̂
σ
− f̂

σseq
= M

σ (f σ − f
σseq) = M

σ
f
σsneq

, (49)

with f
σsneq

= (fσsneq

1 f
σsneq

2 ⋯ f
σsneq

N
)
T

and f̂
σsneq

= (f̂σsneq

1 f̂
σsneq

2 ⋯ f̂
σsneq

N
)
T

. Physically, Eq.

(49) means the kinetic moment deviation of a fluid component from its individual temporary

equilibrium state, and Eq. (48) denotes the departure of a chemical species from the local

mixing eventual equilibrium.

It is noteworthy that the physical quantities f
σneq

and f
σsneq

represent the nonequilibrium

effects from various aspects. To be specific, f̂
σneq

1 = f̂
σsneq

1 = 0 in line with the mass conservation;

f̂
σsneq

2 = 0 and f̂
σsneq

3 = 0 due to the momentum conservation; m
σ
f̂
σneq

2 = ρ
σ(uσx − ux) and

m
σ
f̂
σneq

3 = ρ
σ(uσy − uy) denote the individual mass diffusion fluxes in the x and y directions,

respectively; f̂
σsneq

4 = 0 on account of the energy conservation; Neither f̂
σsneq

i
nor f̂

σneq

i
may be

zero for i ≥ 5 when a system is in the nonequilibrium state.
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Furthermore, Eqs. (25)-(27) are parts of the following nonequilibrium quantities,

f̂
σsneq

5 = ∆
σ
5 −

ρ
σ′

S1σ
5 mσ

(uσx − ux)2 + (uσy − uy)
2

D + Iσ
+

ρ
σ′

S1σ
5 mσ

(uσx − ux)2

+
S

2σ
4 ρ

σ

S1σ
5 mσ

u
σ2 − u2

D + Iσ
−
S

2σ
5 ρ

σ

S1σ
5 mσ

(uσx2 − u2
x) +

S
2σ
4 − S2σ

5

S1σ
5

ρ
σ

mσ2
(T σ − T )

+
S

2σ
2 ρ

σ

S1σ
5 mσ

D + Iσ − 1

D + Iσ
2u

σ
x (uσx − ux) −

S
2σ
3 ρ

σ

S1σ
5 mσ

2u
σ
y (uσy − uy)
D + Iσ

, (50)

f̂
σsneq

6 = ∆
σ
6 +

S
2σ
2 ρ

σ

S1σ
6 mσ

(uσx − ux)uσy +
S

2σ
3 ρ

σ

S1σ
6 mσ

u
σ
x (uσy − uy)

−
S

2σ
6 ρ

σ

S1σ
6 mσ

(uσxuσy − uxuy) +
ρ
σ′

S1σ
6 mσ

(uxuy + uσxuσy − uxuσy − uσxuy) , (51)

f̂
σsneq

7 = ∆
σ
7 −

ρ
σ′

S1σ
7 mσ

u
σ2 + u2 − 2u

σ
xux − 2u

σ
yuy

D + Iσ
+

ρ
σ′

S1σ
7 mσ

(uσy − uy)
2

+
S

2σ
4 ρ

σ

S1σ
7 mσ

u
σ2 − u2

D + Iσ
−
S

2σ
7 ρ

σ

S1σ
7 mσ

(uσy 2 − u2
y) +

(S2σ
4 − S2σ

7 ) ρσ

S1σ
7 mσ

T
σ − T

mσ

−
S

2σ
2 ρ

σ

S1σ
7 mσ

2u
σ
x (uσx − ux)
D + Iσ

+
S

2σ
3 ρ

σ

S1σ
7 mσ

D + Iσ − 1

D + Iσ
2u

σ
y (uσy − uy) , (52)

at the NS level, which can be proved via the CE expansion.

Physically, both (f̂
σneq

, f̂
σsneq

) and (S
1σ

, S
2σ

) play roles in the thermodynamic and hydro-

dynamic behaviors, and various nonequilibrium modes are coupled in the relaxation process.

Moreover, the nonequilibrium effects are important and traditional hydrodynamic models are

not accurate in cases with small characteristic scales or large Knudsen numbers, particularly

for multicomponent flows where various complex material and/or mechanical interfaces exist.

For those complex nonequilibrium problems, the DBM provides a convenient tool to probe and

analyze the nonequilibrium state and process.

2.6. Nondimensionalization

For numerical simulations and investigations, it is helpful to perform nondimensionaliza-

tion. In this paper, Φd and Φn are designated as dimensional and nondimensional variables,
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respectively, and their ratio is Φr = Φd/Φn. The number density n, length L, flow speed u = ∣u ∣,
temperature T , and universal gas constant R are adopted as references, see Table 1. Obviously,

from these references, we can derive other ratios of dimensional to nondimensional variables,

see Appendix C. With the ratios and dimensional quantities, the nondimensional values are

obtained in a straightforward way.

Variable Dimension Nondimension Ratio

Number density nd nn nr

Length Ld Ln Lr

Flow speed ud un ur

Temperature Td Tn Tr

Universal gas constant R 1 R

Table 1: References for nondimensionalization.

Additionally, various numerical schemes can be adopted to solve the discrete Boltzmann

equations (1). In this paper, we employ the third-order total variation diminishing Runge-Kutta

[56] for handling the time derivative and the fifth-order weighted essentially non-oscillatory

scheme for the space derivative [57]. Consequently, in order to achieve good numerical stability,

both the temporal and spatial steps must adhere to the Courant-Friedrichs-Lewy condition, and

the temporal step should be smaller than the relaxation time. In the DBM with split collision,

there are two sets of relaxation frequencies represented as S
1σ

= diag (S1σ
1 S

1σ
2 ⋯ S

1σ
N ) and

S
2σ
= diag (S2σ

1 S
2σ
2 ⋯ S

2σ
N ), hence the temporal step ∆t should be smaller than the mimimum

of (S1σ
i )−1

and (S2σ
i )−1

. As for the DBM without split collision, there exists only one set of

relaxation frequencies S
σ
= diag (Sσ1 S

σ
2 ⋯ S

σ
N ), with the restriction ∆t < (Sσi )−1

.

3. Verification and validation

To verify and validate the current model, six benchmarks are under consideration. First of

all, multicomponent diffusion is adopted to confirm that the MRT DBM with the split collision

term could provide a detailed relationship between the thermodynamic relaxation frequencies
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and the diffusivity of chemical species. Second, homogeneous mixture in a force field is used to

test that the DBM can describe both thermal and isothermal systems where the acceleration

and relaxtion frequencies are tunable. Third, the KH instability is simulated to demonstrate

that the DBM could capture fluid flows with complex interfacial structures. Fourth, the laminar

flame of a propane-air mixture is chosen to demonstrate that the DBM is capable of mimicking

combustion. Fifth, simulations of the opposing reactions are performed to verify that the

DBM can capture the chemical nonequilibrium process accurately. Finally, steady detonation

is simulated to validate that the DBM has the ability to capture the supersonic reactive front

with a strong compressible effect.

3.1. Multicomponent diffusion

Diffusion [58, 59] widely exists in fields of physics, chemistry, biology, etc. It plays a vital

role in the combustion process, particularly where nonpremixed or partially mixed fuel and

oxidant contact [1]. To mimic the diffusion in an accurate way is a prerequisite to simulating

the combustion precisely. Actually, the diffusion (as well as viscosity and heat conduction) is

a fundamental physical phenomenon in the thermodynamic nonequilibrium process. As the

first benchmark, multicomponent diffusion is considered to validate our DBM for this kind of

nonequilbrium process.

Give four chemical species σ = A, B, C, and D with the same molar mass m
σ
= 1 in the

initial field as below
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(nA, nB, nC , nD)
L
= (1, 2, 3, 4) ,

(nA, nB, nC , nD)
R
= (4, 3, 2, 1) ,

(53)

where the subscript L indicates 0 ≤ x ≤ 0.05, and R indicates 0.05 < x ≤ 0.1. The inflow

and outflow boundary conditions are adopted in the x direction, and the periodic boundary

conditions in the y direction. Moreover, the physical system is at rest (u = 0) and can be

regarded as isothermal (T = 1). Consequently, the exact solutions of the concentrations read

[58, 59],

n
σ
=
n
σ
L + n

σ
R

2
−
n
σ
L − n

σ
R

2
Erf (x − x0√

4ζσt
) , (54)
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Figure 2: Grid convergence analysis: the horizontal distribution of concentration n
A

at the

time t = 0.15. The solid line represents the exact solution, and the other lines indicate the

simulation results under different mesh grids.

where Erf denotes the complementary error function, x0 = 0.05 the interfacial position, and the

diffusivity

ζ
σ
=

T

mσSσ
J

, (55)

in terms of S
σ
J = S

2σ
2 = S

2σ
3 .

To begin with, let us perform a grid convergence analysis, which is of great importance for

numerical simulations. For this sake, four simulations are conducted under various mesh grids

Nx ×Ny. To be specific, the mesh number is given as Nx = 10, 20, 40, and 80 in the horizontal

direction and fixed as Ny = 1 in the vertical direction. The relaxation frequencies are chosen

as S
1σ
i = S

2σ
i = 1250, the temporal step ∆t = 2 × 10

−5
, the extra degrees of freedom I

σ
= 3,

and the parameters (v
σ
a , v

σ
b , v

σ
c , v

σ
d , η

σ
a , η

σ
b , η

σ
c , η

σ
d ) = (0.01, 0.01, 1.75, 1.3, 3, 0, 2.1, 1). Figure

2 delineates the concentration of species A. The long-dashed, short-dashed, dash-dotted, and

short-dotted lines denote simulated results in the four cases, and the solid line stands for the

analytical solution in Eq. 54. As shown in Fig. 2, with increasing resolution, the numerical

results approach the exact solution. That is to say, the differences between these simulation

results and theoretical solutions decrease as the spatial step reduces. In particular, numerical
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Figure 3: Evolution of concentrations of four chemical species at time instants t1 = 0.01,

t2 = 0.05, and t3 = 0.15, respectively. The left panel is for components A and D, and the

right panel for B and C. Squares, circles, and triangles represent the simulation results at time

instants t1 = 0.01, t2 = 0.05, and t3 = 0.15, respectively. Lines denote the corresponding exact

solutions.

results for both Nx = 40 and Nx = 80 are quite close to the solution, which is satisfying.

Next, a comparison is made between simulation results and exact solutions at various time

instants during the evolution of multicomponent diffusion. In order to obtain simulation results

as accurate as possible, the mesh grid is chosen as Nx × Ny = 200 × 1. Other parameters are

the same as those used in Fig. 2. Figure 3 displays the concentrations of chemical species A,

B, C, and D along the x direction in the diffusion process. Symbols denote the DBM results,

and solid lines indicate the corresponding exact solutions of Eq. (54). It can be observed that

the simulated results match the exact solutions. Therefore, it is confirmed that the DBM can

accurately describe the multicomponent diffusion.

Furthermore, as shown in Eq. (55), the diffusivity is a function of S
2σ
2 and S

2σ
3 , but neither

S
1σ
2 nor S

1σ
3 . To verify it, a series of simulations are performed with different values of those

parameters, i.e., S
1σ
2 = S

1σ
3 = S

1σ
J , and S

2σ
2 = S

2σ
3 = S

2σ
J . Figure 4 (a) illustrates concentrations

of species A versus x for cases of a fixed S
2σ
J = 1250 and various S

1σ
J = 10000, 5000, 2500, and

1250, respectively. Figure 4 (b) is for cases of a fixed S
1σ
J = 1250 and various S

2σ
J = 10000,
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(a) (b)

Figure 4: Concentrations of species A along the x direction at a time instant t = 0.15 in the

diffusion process: (a) For a fixed S
2σ
J and various S

1σ
J ; (b) For a fixed S

1σ
J and various S

2σ
J .

Symbols denote the DBM results, and lines represent the corresponding exact solutions.

5000, 2500, and 1250, respectively. Obviously, the parameters S
1σ
2 and S

1σ
3 have a negligible

impact on the diffusion process. The diffusivity depends upon the values of S
2σ
2 and S

2σ
3 . The

numerical simulations are entirely consistent with the exact solutions.

It should be mentioned that the two-step-relaxation DBM presents the same results as the

one-step-relaxation model for S
1σ
i = S

2σ
i . It is verified that numerical results of the one-step-

relaxation model are identical to those of the two-step-relaxation model when S
1σ
i = S

2σ
i in Fig.

4 (a) or (b). Meanwhile, the simulations of the two-step-relaxation model in cases of S
1σ
i ≠ S

2σ
i

are beyond the one-step-relaxation model. Compared to the latter one, the former model could

present more details of nonequilibrium relaxation processes.

In addition, to further validate that the DBM can be used to measure thermodynamic

nonequilibrium manifestations, Fig. 5 displays nonequilibrium quantities f̂
σsneq

5 for species

σ = A and B in the multicomponent diffusion process. Symbols stand for numerical results and

lines for the corresponding analytical solutions in Eq. (50). It can be observed that the DBM

results coincide with the analytical solutions. The profiles of species C and D are similar to

those in Fig. 5 and are not plotted here for brevity. As a result, it is demonstrated that the
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Figure 5: Nonequilibrium quantities f̂
σsneq

5 in the diffusion process: (a) For species σ = A;

(b) For species σ = B. Squares, circles, and triangles denote DBM results at time instants

t1 = 0.01, t2 = 0.05, and t3 = 0.15, respectively. Solid lines represent the corresponding

analytical solutions.

DBM is capable of describing nonequilibrium behaviors.

3.2. Mixture in the force field

To confirm that chemical species with various accelerations and relaxation frequencies can

be well described by using the current DBM, let us consider two situations, i.e., isothermal and

thermal systems in force fields. Both the isothermal and thermal systems are homogeneous

nonreactive mixtures that contain three components σ = A, B, and C, respectively. We choose

the molar mass (mA
,m

B
,m

C) = (2, 1.5, 1), molar concentrations (nA, nB, nC) = (1, 4, 2), accel-

erations (aA,aB,aC) = (−a0, 0, a0) ex, extra degrees of freedom I
σ
= 3, parameters (v

σ
a , v

σ
b , v

σ
c ,

v
σ
d , η

σ
a , η

σ
b , η

σ
c , η

σ
d ) = (0.5, 1.5, 2.2, 3.5, 0, 5.2, 3, 0). Because the physical field is uniformly

distributed, only one mesh grid Nx × Ny = 1 × 1 is used to have a high computing efficiency,

and the periodic boundary conditions are adopted.

As for the isothermal mixtures, the initial temperatures and velocities are given as T
σ
= 1

and u
σ
= 0, respectively. Theoretically, the temperatures and velocities are expressed by Eqs.
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Figure 6: Horizontal velocities (a) and temperatures (b) with different accelerations when the

isothermal systems reach steady states. Symbols denote the DBM results, and solid lines

represent the exact solutions.

(D2) and (D4), when the systems reach steady states. To compare the DBM results with the

theorical solutions, Fig. 6 displays the velocities and temperatures as the mixtures are imposed

on various accelerations and the relaxation frequencies are chosen as S
1σ
2 = S

2σ
2 = 2000. The

squares, circles, triangles, and diamonds indicate the simulation results of the mixing system,

chemcial species A, B, and C, respectively. The solid lines stand for the corresponding exact

results. Obviously, all DBM results coincide exactly with the theoretical solutions.

Let’s now examine the impact of varying relaxation frequencies. In Fig. 7, we observe the

horizontal velocities and temperatures when employing variable S
1σ
i alongside a fixed S

2σ
i = 2000

within the stationary isothermal system. Meanwhile, Fig. 8 showcases scenarios involving a

constant S
1σ
i = 2000 alongside a variable S

2σ
i . Numerical results are denoted by symbols, while

theoretical outcomes are represented by lines. It’s apparent that the physical fields remain

unaffected by S
1σ
i and are solely dependent on S

2σ
i within this homogeneous mixture under the

specified body force. Notably, the DBM consistently yields exact results across all cases, which

is quite satisfying.

Next, the thermal mixtures are under consideration. The ultimate steady physical fields of
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Figure 7: Horizontal velocities (a) and temperatures (b) with variable S
1σ
i and fixed S

2σ
i in the

stationary isothermal system. Symbols denote the DBM results, and solid lines represent the

corresponding exact solutions.
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Figure 8: Horizontal velocities (a) and temperatures (b) with fixed S
1σ
i and changeable S

2σ
i in

the stationary isothermal system. Symbols denote the DBM results, and solid lines represent

the corresponding exact solutions.
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Figure 9: Evolution of temperatures with different accelerations. Symbols denote the DBM

results, and solid lines represent the exact solutions.

the isothermal mixtures in Fig. 6 are set as the initial configurations of the thermal systems.

Figure 9 plots the evolution of temperatures when the thermal mixtures are in force fields.

Four values of accelerations a0 = 10, 30, 50, and 70 are under consideration. The squares,

circles, triangles, and diamonds represent the simulated temperatures of the mixing system,

chemcial species A, B, and C, respectively. The solid lines are for the exact results of the

mixing temperatures. It is clear that the DBM results are in good agreement with the exact

solutions.

Figure 10 delineates the velocities and temperatures at the time t = 0.15 in the evolution

of thermal systems with various accelerations. Note that, the velocities of thermal mixtures

in Fig. 10 (a) are exactly the same as those in Fig. 6 (a). Besides, the simulated mixing

temperatures agree well with the exact solutions, and the individual and mixing temperatures

are close to each other in the thermal systems, as shown in Fig. 10 (b). In fact, there are only

minor differences among the individual and mixing temperatures in the isothermal systems as

well, see Fig. 6.

It should be mentioned that the simulation results in Figs. 6 - 10 are calculated with

Method I. Actually, Methods II and III give similar results. To compare Methods I, II, and
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Figure 10: Horizontal velocities (a) and temperatures (b) with different accelerations when the

thermal systems are at the moment t = 0.15. Symbols denote the DBM results, and solid lines

represent the exact solutions.

III, Table 2 lists the data in the simulation case of a0 = 10 in Fig. 10. Simulations are

performed on a personal computer with Intel(R) Core(TM) i9-9880H CPU @ 2.30GHz, RAM

64.0 GB, and a 64-bit version system for double precision floating point operations. As shown

in Table 2, the simulated density and velocities equal the corresponding exact solutions. It

means that the conservation of mass and momentum is obeyed for all methods. Besides, the

mixing temperatures simulated with Methods I, II, and III are T = 1.01714857, 1.02572000,

and 1.01714857, respectively. Compared with the exact value 1.01714286, the relative errors

are 5.6 × 10
−6

, 8.4 × 10
−3

, and 5.6 × 10
−6

, respectively. That is to say, Methods I and III give

the same simulation results, both have a higher accuracy than Method II. Additionally, the

computing time is 54, 60, and 50 seconds for the three methods as the simulation runs 2 × 10
5

time steps. In other words, Methods I and II require 8% and 20% more computing time than

Method III. Because it needs to calculate the equilibrium distribution functions f
σseq

once per

loop for Method I, twice per loop for Method II, while it does not demand f
σseq

for Method

III. Consequently, it takes less computational cost and running time for Method III.
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Methods ρ ux u
A
x u

B
x u

C
x T Computing time

Method I 10 0 −0.005 0 0.005 1.01714857 54 s

Method II 10 0 −0.005 0 0.005 1.02572000 60 s

Method III 10 0 −0.005 0 0.005 1.01714857 50 s

Exact 10 0 −0.005 0 0.005 1.01714286 /

Table 2: Simulation data about the three methods to calculate force terms.

A B C

L
u

M
u

R
u

A
n

B
n

C
n

L
T M

T
R
T

L
p M

p
R
p

Figure 11: Initial configuration of the KH instability.

3.3. Kelvin-Helmholtz instability

As a fundamental interfacial instability in fluid mechanics, the KH instability occurs when

there is velocity shear across a wrinkled interface in a fluid system, and leads to the formation

of vortices and turbulence [60]. The KH instability is ubiquitous in nature and of considerable

interest in scientific and engineering fields [60–62]. To show the capacity of our DBM in dealing

with complex fluid systems, here we simulate the KH instability with a complicated interfacial

dynamics.

Figure 11 portrays the sketch of the initial configuration of a three-component fluid. The

length and height of the calculation domain are Lx = Ly = 1. The domain is divided into three
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parts, i.e., 0 < x ≤ x1, x1 < x ≤ x2, and x2 < x ≤ Lx. Between the left and middle parts is the

interface located at x1 = 0.3Lx, between the middle and right parts is the interface located at

x2 = 0.7Lx. To trigger the KH instability rollup, both interfaces have an imposed cosinusoid

perturbation, w = w0 cos (4πy/Ly), with an amplitude w0 = Lx/200. Initially, the left (middle,

right) part is occupied by species A (B, C) moving upwards (downwards, upwards) with velocity

uL = u0ey (uM = −u0ey, uR = u0ey). Both concentrations and temperatures in the three parts

are equal, i.e., nL = nM = nR and TL = TM = TR, hence the pressure is homogeneous across the

two interfaces, pL = pM = pR, due to the constitutive relation p
σ
= n

σ
T
σ
. To be smooth across

the interface, the initial profiles of the concentrations and velocities are given by

n
A
=
nL
2
−
nL
2

tanh (x − x1 + w

Wn

) ,

n
C
=
nR
2
+
nR
2

tanh (x − x2 + w

Wn

) ,

n
B
= nM − n

A
− n

C
,

u
σ
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

uL + uM

2
−
uL − uM

2
tanh (x − x1 + w

Wu

) , for 0 < x ≤
Lx
2
,

uM + uR

2
−
uM − uR

2
tanh (x − x2 + w

Wu

) , for
Lx
2
< x ≤ Lx,

where Wn (Wu) indicates the width of concentration (velocity) transition layer.

The boundary conditions are as follows: specular reflection boundary condition in the x

direction and periodic boundary condition in the y direction. Simulation is carried out on a

uniform mesh Nx ×Ny = 2000 × 2000 with ∆x = ∆y = 5 × 10
−4

. The time step is set to be as

small as ∆t = 2.5× 10
−5

to keep the numerical dissipation negligible. The other parameters are

m
A
= 1, m

B
= 1.5, m

C
= 2, I

σ
= 3, S

1σ
i = S

2σ
i = 5×10

3
, and (v

σ
a , v

σ
b , v

σ
c , v

σ
d , η

σ
a , η

σ
b , η

σ
c , η

σ
d ) = (2,

1.414, 3.9, 2.758, 1.5, 0, 5.5, 0). In addition, as the number of mesh grids is large enough, the

parallel programming with the message-passing interface is implemented in Fortran to improve

the computing speed. Actually, because all information transfer is local in time and space in the

evolution of the discrete Boltzmann equation, the DBM has natural parallelism with excellent

scalability [38].

Figure 12 depicts contours of the molar fraction of species B at representative times in

the evolution of the miscible KH instability. It can be observed in Figs. 12 (a)-(b) that the
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(a) (b) (c)

(d) (e) (f)

Figure 12: Molar fraction X
B

at time instants t = 0.0, 0.5, 1.0, 1.5, 2.0, and 3.0 in the evolution

of the KH instability. The color from blue to red corresponds to the value from 0 to 1.
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Figure 13: Conserved quantities (∬ ρdxdy, ∬ Jxdxdy, ∬ Jydxdy, ∬ Edxdy) in the evolution of

the KH instability. Symbols and lines indicate numerical and exact results, respectively.

amplitude of perturbation w increases due to the shear effect and the width of concentration

transition layer Wn increases because of diffusion. The fluid interface begins wiggling and its

shape changes from regular to irregular gradually. It can be found in Fig. 12 (c) that, as time

advances, several pairs of vortices appear, and the middle fluid penetrates into the left and

right ones. Figures 12 (d)-(e) show that the continuous growth of vortices leads to formation

of billows, and nonregular interfaces become more complex at the later stage. As shown in

Fig. 12 (f), fluid structures are chaotic and the KH instability promotes the mixture between

different fluid species. The above dynamic process of the KH instability obtained by our model

is basically consistent with the scenarios in previous studies [61, 62].

To further verify our model, we measure conserved quantities in the process of KH in-

stability, see Fig. 13. Squares, pentagrams, circles, and triangles indicate numerical results

of the mass ∬ ρdxdy, momentum in the x direction ∬ Jxdxdy, momentum in the y direction

∬ Jydxdy, and energy ∬ Edxdy, respectively. Solid lines are for the corresponding exact solu-

tions ∬ ρdxdy = 1.5, ∬ Jxdxdy = 0, ∬ Jydxdy = 0.15, and ∬ Edxdy = 2.685, respectively. It

is clear in Fig. 13 that our computed results agree well with these exact solutions. Moreover,

it is found that the numerical results of ∬ ρ
σ
dxdy are exactly equal to their corresponding
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theoretical solutions 0.3, 0.6, and 0.6 for species σ = A, B, and C, respectively. The results are

very good and satisfactory.

3.4. Laminar flame

In this subsection, the objective is to demonstrate that the DBM is suitable for combustion.

For this purpose, we simulate a laminar flame of propane-air mixture. The combustion is

controlled by the one-step overall reaction,

C3H8 + 5O2 → 3CO2 + 4H2O, (56)

ω
σ
= s

σ
⋅m

σ
⋅ ωov, (57)

ωov = kovn
C3H8n

O2 exp (−Ea/RT ) , (58)

where C3H8, O2, CO2, and H2O stand for propane, oxygen, carbon dioxide, and water, respec-

tively. Nitrogen N2 is assumed to be inert. The stoichiometric coefficients are [s
C3H8 , s

O2 , s
CO2 ,

s
H2O

, s
N2 ] = [−1, −5, 3, 4, 0], the molar mass [m

C3H8 , m
O2 , m

CO2 , m
H2O

, m
N2 ] = [4.4, 3.2, 4.4, 1.8,

2.8] ×10
−2

[kg/mol], the reaction coefficient kov = 9.9 × 10
7 [m3 ⋅mol

−1 ⋅ s−1], the universal gas

constant R = 8.315 [J ⋅mol
−1 ⋅K−1], the effective activation energy Ea = 1.26 × 10

5 [J ⋅mol
−1],

the chemical heat of overall reaction Q = 2.05×10
6 [J ⋅mol

−1], the overall reaction rate ωov, the

mass change rate of species ω
σ
, and the parameters (v

σ
a , v

σ
b , v

σ
c , v

σ
d , η

σ
a , η

σ
b , η

σ
c , η

σ
d ) = (0.7, 0.7,

3.9, 2.758, 1.5, 0, 5.5, 0). Initially, a channel with length L = 4 cm is filled with the propane-air

mixture with an equivalence ratio 0.6. The molar concentration is 44.6 mol ⋅m−3
, the temper-

ature 300 K, the pressure 1 atm. After ignition in the left part of the channel 0 ≤ x ≤ L/64,

the flame starts to move downstream. The periodic boundary conditions are used at the upper

and lower walls, the specular reflection (outflow) boundary condition at the left (right) side.

The grid is chosen as Nx × Ny = 1600 × 1, the spatial step ∆x = ∆y = 2.5 × 10
−5

m, and the

temporal step ∆t = 1.25 × 10
−10

s.

Figure 14 delineates the overall reaction rate at various time instants in the evolution of the

laminar flame. Clearly, the overall reaction rate first increases then decreases and forms a peak

at the combustion front as the flame propagates forwards. The profile of reaction rate gradually

32

Page 53 of 73

https://mc03.manuscriptcentral.com/ctphys

Communications in Theoretical Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



For Review Only
 ! "#  ! "$  ! "%  ! #"  ! #&

 

& 

% 

"# 

"' 

 

"

 

 
!

"
#
$
 
%
!
$

"
#

!
&

'
(

)

!()*+

 

#

 

&

 

,

Figure 14: The overall reaction rate in the evolution of the laminar flame at time instants

t1 = 3.125 × 10
−2

s, t2 = 3.75 × 10
−2

s, t3 = 4.375 × 10
−2

s, and t4 = 5 × 10
−2

s from left to right.
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Figure 15: Temporal evolution of the flame position and speed presented by the solid and

dashed lines, respectively.
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Figure 16: The burning speed in the evolution of the laminar flame. The insert shows the zoom-

in view within the range 0.045 s ≤ t ≤ 0.05 s. The dashed and solid lines denote simulation

results and their average, and the squares represent experimental data.

becomes steady as time goes on. Let us define the flame position as the location where the

reaction takes its maximum. Then we can obtain the temporal evolution of the flame position

and its velocity, as shown in Fig. 15. It is clear that the flame moves rightwards after the initial

ignition stage, and its speed tends to be a constant in the later period. To be specific, the flame

speed is around Uf = 0.522 m/s at t = 0.05 s. Meanwhile, the value of flow velocity is about

Uo = 0.413 m/s ahead of the moving flame. Note that the burning velocity can be estimated

by the relation, Uf = Uo + Ub, hence the resultant burning velocity is Ub = 0.109 m/s.

Figure 16 exhibits the evolution of the burning speed. To give a clearer depiction, an insert

is attached for the enlargement within the period 0.045 s ≤ t ≤ 0.05 s, during which the flame

speed is almost steady with only small perturbations. It is easy to calculate the average burning

speed, Ub = 0.10941, within the time range 0.045 s ≤ t ≤ 0.05 s. Clearly, the numerical result

approaches the experimental datum 0.11 m/s in Ref. [63]. Furthermore, Fig. 17 displays the

temperature profiles at t = 0.05 s. Specifically, the temperatures are 1704 K and 1705 K in

the simulation and experiment [1], respectively. The satisfying result of the DBM is due to its

outstanding advantages: (i) Physical properties such as the extra degrees of freedom and the
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Figure 17: Temperature profiles in the evolution of the laminar flame at time instant t = 0.05

s. The line and squares stand for the DBM results and experimental data [1], respectively.

specific heat ratio are flexible in the DBM; (ii) The physical fields of concentration, velocity,

temperature, and pressure are naturally coupled together in the DBM; (iii) The DBM is suitable

for both low-speed incompressible and high-speed compressible fluid flows.

3.5. Opposing reaction

To demonstrate that our DBM is suitable for a chemical nonequilibrium system, the op-

posing reactions A ⇌ B are used as a typical benchmark. The forward and reverse reaction

coefficients are k1 and k−1, respectively. Hence the overall reaction rate reads ωov = k1n
A−k−1n

B
.

Initially, the concentrations are (n
A

, n
B

) = (n0, 0) = (1, 0), the velocity u = 0, the temperature

T = 1. The concentrations are

n
A
= n

A
e + n

B
e exp (−k1n0

nBe
t) ,

n
B
= n

B
e − n

B
e exp (−k1n0

nBe
t) ,

during the nonequilibrium reaction process, and

n
A
e =

k−1n0

k1 + k−1

,
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Figure 18: Physical quantities versus time in the evolution of opposing reaction. Symbols

denote DBM results in the legend, and lines denote corresponding exact solutions.

n
B
e =

k1n0

k1 + k−1

,

when the chemical reaction reaches equilibrium. Given the heat release Q = 10 and extra

degrees of freedom I
A
= I

B
= I = 3, the temperature reads

T = T0 +
2n

B
Q

n0 (D + I) ,

as the chemical reaction takes place.

Figure 18 illustrates physical quantities (n
A

, n
B

, ρ, ux, T , ωov) versus time in the case of (k1,

k−1) = (0.3, 0.7). The relaxation frequencies are choosen as S
1σ
i = S

2σ
i = 10

4
, and the parameters

(v
σ
a , v

σ
b , v

σ
c , v

σ
d , η

σ
a , η

σ
b , η

σ
c , η

σ
d ) = (0.7, 0.7, 2.7, 2.7, 0, 5.3, 5, 0). To be specific, concentration

of species A (B) decreases (increases) gradually as time goes on. The mixture density remains

ρ = 1, which equals the exact solution ρ = m
A
n
A + mB

n
B

with m
A
= m

B
= 1. The system

remains motionless, i.e., ux = uy = 0, in line with the momentum conservation. The temperature

rises and the reaction rate reduces over time. On the whole, the DBM results coincide well

with the exact solutions in the evolution of chemical reaction. All quantities become constant

when the opposing reaction reaches equilibrium. At t = 20, the numerical results (n
A

, n
B

, ρ,
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Figure 19: Concentrations of species A and B versus the reaction coefficient. Symbols represent

DBM results in the legend, and lines represent corresponding exact solutions.

ux, T , ωov) = (0.7, 0.3, 1, 0, 2.2, 0) match the exact solutions. Consequently, it is verified that

the DBM is capable of both chemical equilibrium and nonequilibrium processes.

Let us consider more cases of opposing reactions with various forward reaction coefficients

k1. For simplicity, the corresponding reverse reaction coefficients are set as k−1 = 1 − k1.

Figure 19 displays the concentrations of species A and B after the chemical reaction reaches

equilibrium. It is clear that the concentration of species A (B) reduces (increases) linearly

with the increasing forward reaction coefficient. There is a satisfying agreement between the

simulation results and exact solutions.

3.6. Detonation wave

Detonation is a particular type of combustion with violent chemical heat release around a

supersonic exothermic front accelerating through a medium. The physical fields have strong

temporal and spatial changes near the detonation wave, which poses a great challenge to the

numerical robustness and physical accuracy of computational fluid dynamics. In this subsection,

we demonstrate that the DBM has the capability of capturing the detonation wave travelling
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at a supersonic speed. As the detonation wave passes in the x direction, the chemical reactant

A changes into the product B, i.e., A → B, and the chemical energy is released. In theory, the

speed of the steady detonation front is a function of the chemical heat release of reactant per

unit mass, q, i.e.,

D =

√
(γ2 − 1)q

2
+ γT0 +

√
(γ2 − 1)q

2
, (59)

where T0 denotes the temperature in front of the detonation wave and γ represents the specific

heat ratio. Then, the Mach number Ma is calculated by

Ma =
D

√
γT0

. (60)

Here we focus on a specific case where q = 1, yielding a corresponding Mach number of Ma =

1.74436. It is worth noting that the DBM excels in simulating detonations under a high Mach

number, employing a robust numerical scheme.

The reaction rate is controlled by

ωov = kovn
A

exp (− Ea

RT
) , (61)

in terms of kov = 5 × 10
5

and Ea = 10. The initial configuration is set as

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(nA, nB, ux, T )
L
= (0, 1.38837, 0.57735, 1.57856) ,

(nA, nB, ux, T )
R
= (1, 0, 0, 1) ,

(62)

where the subscript L indicates 0 ≤ x ≤ 0.04, and R indicates 0.04 < x ≤ 0.4. The quantities in

the left and right parts satisfy the Hugoniot relationship for detonation wave. The parameters

are m
σ
= 1, γ

σ
= 1.5, S

1σ
i = S

2σ
i = 2 × 10

4
, and (v

σ
a , v

σ
b , v

σ
c , v

σ
d , η

σ
a , η

σ
b , η

σ
c , η

σ
d ) = (0.5, 1.5, 2.2,

3.5, 0, 5.2, 3, 0). In addition, inflow and outflow boundary conditions are adopted in the x

direction, and the periodic boundary conditions in the y direction.

Figure 20 depicts the evolution of pressure profiles around the detonation wave that prop-

agates forwards. It is clear that the spatial distribution of the pressure field is quite similar

to each other at the four time instants t = 0.075, 0.1, 0.125, and 0.15. It indicates that the

detonation wave moves forwards in a steady state. Then the speed of the steady detonation
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Figure 20: Pressure profiles at time instants t1 = 0.075, t2 = 0.1, t3 = 0.125, and t4 = 0.15 in

the evolution of detonation.

front can be calculated, vd = 2.058. Compared with the analytic solution 2.06395, the relative

error is about 0.0029. The simulation results are satisfactory.

Figure 21 gives the density (a), temperature (b), pressure (c), and horizontal velocity (d) at

t = 0.15 in the detonation process. The squares represent the DBM results, the triangles denote

the numerical outcomes obtained from an Euler solver, and the lines stand for the analytical

solutions of the Zel’dovich-Neumann-Döring (ZND) results theory [1]. Obviously, there is a

satisfying agreement among the three models in regions distant from the detonation wave. To

be specific, the DBM results are (ρ, T , p, ux) = (1.38748, 1.57724, 2.18838, 0.57892) after the

detonation wave, resulting in relative errors of (0.0006, 0.0008, 0.0015, 0.0027) compared to

the ZND results [1]. However, slight differences between them emerge at the von-Neumann-

peak. This disparity arises from the fact that both the ZND theory and Euler solver neglect

the viscosity and heat conduction, assuming a sharp discontinuity at the von-Neumann-peak.

In contrast, the DBM takes into account the viscosity, heat conduction, and other thermody-

namic nonequilibrium effects. As a result, the physical fields simulated by the DBM exhibit

smoothness across the detonation wave, aligning more closely with real-world conditions.

It should be mentioned that previous research on detonation mechanisms has primarily
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Figure 21: Physical quantities around the detonation wave. The squares, triangles, and lines

represent the results obatined from the DBM, Euler solver, and ZND theory [1], respectively.
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relied on traditional computational fluid dynamics methods, which differ substantially from

the current DBM. Physically, this DBM can be likened to a modified continuous fluid model

augmented with a coarse-grained representation of significant thermodynamic nonequilibrium

effects. Consequently, the DBM exhibits the capability to accurately capture detonation phe-

nomena with nonequilibrium effects, encompassing diffusion, viscosity, and thermal conduction.

In fact, the DBM is suitable for both steady and unsteady detonation scenarios, although the

latter is not explicitly demonstrated in this manuscript due to space constraints.

4. Conclusion

An MRT DBM with split collision is presented for both subsonic and supersonic reactive

flows. The external forces, chemical reactions, and multi-physical fields are coupled naturally

through the collision, force and reaction terms on the right-hand side of the discrete Boltzmann

equations that describe the evolution of reactive mixture. Through the CE expansion, it can

be proved that the DBM is consistent with the reactive NS equations with external forces, the

Fick’s law and Stefan-Maxwell diffusion equation in the hydrodynamic limit. Each chemical

species owns individual adjustable molar mass, concentration, velocity, acceleration, tempera-

ture, pressure, diffusivity, dynamic viscosity, thermal conductivity, specific heat ratio, Prandtl

number, Reynolds number, and Schmidt number, etc.

Compared to the one-step-relaxation MRT or BGK model [11, 13], the DBM with the s-

plitting technique, a two-step-relaxation model, offers greater flexibility in parameters and is

applicable to a broader range of physicochemical systems. (i) The relaxation frequencies S
1σ

and S
2σ

govern the thermodynamic nonequilibrium process, guiding the approach toward tem-

porary individual equilibrium and ultimate mixing equilibrium. (ii) The relaxation frequencies

in the split collision term influence both self- and cross-collisions, thereby impacting the evo-

lution of the mixture. (iii) Specific relationships can be established between the relaxation

frequencies and other physical quantities, such as thermodynamic nonequilibrium quantities,

diffusivity, dynamic viscosity, and thermal conductivity. (iv) Classical dimensionless numbers

in fluid mechanics, such as the Reynolds number, Prandtl number, and Schmidt number of
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each species, can be adjusted. Consequently, the DBM with the split collision term presents a

more detailed relationship between the thermodynamic relaxation process and nonequilibrium

effects. Moreover, the two-step-relaxation DBM can reduce to the one-step-relaxation or BGK

model under special conditions.

It should be stressed that the hydrodynamic, thermodynamic, and chemical nonequilibrium

effects can be captured and measured by the versatile kinetic DBM dynamically. Physically, the

DBM is more general than traditional NS solvers since it contains more detailed thermodynamic

nonequilibrium information. Mathematically, a set of uniform discrete Boltzmann equations is

used to describe the reactive mixtures, and the algorithm is easy to code due to the linearization

of evolution equations. Computationally, it can be implemented on very large parallel clusters

with exceptional scalability because all information transfer in DBM is local in time and space,

which is similar to other LBMs.

In addition, three methods to calculate the source terms (including the force and reaction

terms) are introduced into the multicomponent DBM. As a traditional idea, Method I uses the

discretization form of the formula of source terms in the velocity space directly. Method II

expresses the source terms as the change of discrete distribution functions due to the source

influences over a small time interval. Method III gives the expression of source terms by using

the matrix inversion method. Methods I and III own higher accuracy than Method II which

possesses only the first-order accuracy. Besides, Method III has the highest computational

efficiency because it requires to calculate the equilibrium distribution functions zero, one and

two times per loop for Methods III, I and II, respectively.

Finally, several canonical systems, including the multicomponent diffusion, mixture in the

force field, KH instability, laminar flame of propane-air mixture, opposing reactions, and det-

onation wave are simulated to validate this model. The first three benchmarks are physical

systems without chemical reaction, and the last three benchmarks have chemical reactions,

with the last one containing rather violent chemical heat release. It is demonstrated that the

current DBM is suitable for multicomponent mixtures with or without the chemical reaction.

The interplay among different chemical species can be described accurately. The complex inter-

facial structures could be captured dynamically. The essential nonequilibrium and compressible
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effects can be quantified. In the near future, this DBM will be employed to investigate more

practical combustion problems with significant nonequilibrium and compressible effects.

A Matrices

The square matrix M
σ

takes the form,

M
σ
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

M
σ
11 M

σ
12 ⋯ M

σ
1N

M
σ
21 M

σ
22 ⋯ M

σ
2N

⋮ ⋮ ⋱ ⋮

M
σ
N1 M

σ
N2 ⋯ M

σ
NN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (A1)

with M
σ
1i = 1, M

σ
2i = v

σ
ix, M

σ
3i = v

σ
iy, M

σ
4i = v

σ
i

2 + ησi
2
, M

σ
5i = v

σ
ix

2
, M

σ
6i = v

σ
ixv

σ
iy, M

σ
7i = v

σ
iy

2
, M

σ
8i =

(vσi 2 + ησi
2) vσix, Mσ

9i = (vσi 2 + ησi
2) vσiy, Mσ

10i = v
σ
ix

3
, M

σ
11i = v

σ
ix

2
v
σ
iy, M

σ
12i = v

σ
ixv

σ
iy

2
, M

σ
13i = v

σ
iy

3
,

M
σ
14i = (vσi 2 + ησi

2) vσix2
, M

σ
15i = (vσi 2 + ησi

2) vσixvσiy, and M
σ
16i = (vσi 2 + ησi

2) vσiy2
. Its inverse (M σ)−1

could be obtained by using a calculation software, such as Matlab or Mathematica.

The column matrix f̂
σeq

is given by

f̂
σeq

= (f̂σeq

1 f̂
σeq

2 ⋯ f̂
σeq

N
)
T

, (A2)

in terms of f̂
σeq

1 = n
σ
, f̂

σeq

2 = n
σ
ux, f̂

σeq

3 = n
σ
uy, f̂

σeq

4 = n
σ[(D+Iσ)T/mσ+u2], f̂σeq

5 = n
σ(T/mσ+

u
2
x), f̂σeq

6 = n
σ
uxuy, f̂

σeq

7 = n
σ(T/mσ + u2

y), f̂σeq

8 = n
σ
ξ
σ
ux, f̂

σeq

9 = n
σ
ξ
σ
uy, f̂

σeq

10 = 3n
σ
uxT/mσ +

n
σ
u

3
x, f̂

σeq

11 = n
σ
uyT/mσ + nσu2

xuy, f̂
σeq

12 = n
σ
uxT/mσ + nσuxu

2
y, f̂

σeq

13 = 3n
σ
uyT/mσ + nσu3

y,

f̂
σeq

14 = n
σ
ξ
σ
T/mσ + nσu2

x(ξσ + 2T/mσ), f̂σeq

15 = n
σ
uxuy(ξσ + 2T/mσ), and f̂

σeq

16 = n
σ
ξ
σ
T/mσ +

n
σ
u

2
y(ξσ + 2T/mσ), with ξ

σ
= (D + Iσ + 2)T/mσ + u2

.

The column matrix f̂
σseq

is expressed by

f̂
σseq

= (f̂σseq

1 f̂
σseq

2 ⋯ f̂
σseq

N
)
T

, (A3)

whose elements are similar to those in Eq. (A2). The elements f̂
σseq

i
are functions of (n

σ
, u

σ
α,

T
σ
), and f̂

σeq

i
are functions of (n

σ
, uα, T ). The former are given by substituting (n

σ
, u

σ
α, T

σ
)

for (n
σ
, uα, T ) in the latter, respectively.
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Moreover, the column matrix F̂
σ

takes the form

F̂
σ
= (F̂ σ

1 F̂
σ
2 ⋯ F̂

σ
N )

T

, (A4)

where F̂
σ
1 = 0, F̂

σ
2 = n

σ
a
σ
x, F̂

σ
3 = n

σ
a
σ
y , F̂

σ
4 = 2n

σ (uσxaσx + uσyaσy ), F̂ σ
5 = 2n

σ
u
σ
xa

σ
x, F̂

σ
6 =

n
σ (uσxaσy + uσyaσx), F̂ σ

7 = 2n
σ
u
σ
ya

σ
y , F̂

σ
8 = 2n

σ
u
σ
x (uσxaσx + uσyaσy )+nσaσx [uσ2 + (D + Iσ + 2)T σ/mσ ],

F̂
σ
9 = 2n

σ
u
σ
y (uσxaσx + uσyaσy )+nσaσy [uσ2+(D + Iσ + 2)T σ/mσ], F̂ σ

10 = 3n
σ
a
σ
x (uσx2 + T σ/mσ ), F̂ σ

11 =

2n
σ
a
σ
xu

σ
xu

σ
y+n

σ
a
σ
y (uσx2+T σ/mσ), F̂ σ

12 = n
σ
a
σ
x (uσy 2 + T σ/mσ )+2n

σ
a
σ
yu

σ
xu

σ
y , F̂

σ
13 = 3n

σ
a
σ
y (uσy 2 + T σ/mσ ),

F̂
σ
14 = 2n

σ
a
σ
xu

σ
x [2uσx2 + uσy

2 + (D + Iσ + 5)T σ/mσ ]+2n
σ
a
σ
yu

σ
y (uσx2 + T σ/mσ ), F̂15 = n

σ
a
σ
xu

σ
y [3uσx2+

u
σ
y

2+(D + Iσ + 4)T σ/mσ]+nσaσyuσx[uσx2+3u
σ
y

2+(D+Iσ+4)T σ/mσ], and F̂
σ
16 = 2n

σ
a
σ
xu

σ
x (uσy 2 + T σ/mσ)+

2n
σ
a
σ
yu

σ
y [uσx2 + 2u

σ
y

2 + (D + Iσ + 5)T σ/mσ].
Additionally, the column matrix R̂

σ
is calculated by

R̂
σ
= (R̂σ

1 R̂
σ
2 ⋯ R̂

σ
N )

T

, (A5)

with R̂
σ
1 = n

σ ′
, R̂

σ
2 = n

σ ′
ux, R̂

σ
3 = n

σ ′
uy, R̂

σ
4 = n

σ ′[(D + Iσ)T/mσ + u2] + (D + Iσ)nσT ′/mσ
,

R̂
σ
5 = n

σ ′(T/mσ+u2
x)+nσT ′/mσ

, R̂
σ
6 = n

σ ′
uxuy, R̂

σ
7 = n

σ ′(T/mσ+u2
y)+nσT ′/mσ

, R̂
σ
8 = n

σ ′
uxξ

σ+

(D + Iσ + 2)nσuxT ′/mσ
, R̂

σ
9 = n

σ ′
uyξ

σ + (D + Iσ + 2)nσuyT ′/mσ
, R̂

σ
10 = 3n

σ ′
uxT/mσ + nσ ′u3

x +

3n
σ
uxT

′/mσ
, R̂

σ
11 = n

σ ′
uyT/mσ+nσ ′u2

xuy+n
σ
uyT

′/mσ
, R̂

σ
12 = n

σ ′
uxT/mσ+nσ ′uxu

2
y+n

σ
uxT

′/mσ
,

R̂
σ
13 = 3n

σ ′
uyT/mσ+nσ ′u3

y+3n
σ
uyT

′/mσ
, R̂

σ
14 = n

σ ′
ξ
σ
T/mσ+nσ ′u2

x(ξσ+2T/mσ)+nσ[2(D+Iσ+
2)T/mσ + u2 + (D + Iσ + 4)u2

x]T ′/mσ
, R̂

σ
15 = n

σ ′
uxuy(ξσ + 2T/mσ)+ nσ[(D + Iσ + 4)uxuy]T ′/mσ

,

and R̂
σ
16 = n

σ ′
ξ
σ
T/mσ +nσ ′u2

y(ξσ +2T/mσ)+nσ[2(D+ Iσ +2)T/mσ +u2+ (D+ Iσ +4)u2
y]T ′/mσ

.

B Hydrodynamic equations

Via the CE expansion, it can be found that the current DBM is consistent with the reactive

NS equations in the hydrodynamic limit. Based on the Einstein summation convention, the

NS equations of individual species read,

∂ρ
σ

∂t
+

∂

∂α
(ρσuσα) = ρσ

′
, (B1)

∂

∂t
(ρσuσα) +

∂

∂β
(δαβpσ + ρσuσαuσβ + P σ

αβ + U
σ
αβ + V

σ
αβ)

= S
σ
Jαρ

σ (uα − uσα) + ρσaσα + ρσ′uα, (B2)
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∂E
σ

∂t
+

∂

∂α
(Eσ

u
σ
α + p

σ
u
σ
α − κ

σ
α

∂T
σ

∂α
+ uσβP

σ
αβ +X

σ
α + Y

σ
α )

=
1

2
S

2σ
4 ρ

σ [(D + Iσ) T − T
σ

mσ + u2 − uσ2] + ρσuσαaσα + Eσ ′
, (B3)

in terms of

P
σ
αβ = µ

σ
αβ (

2δαβ

D + Iσ
∂u

σ
χ

∂χ
−
∂u

σ
α

∂β
−
∂u

σ
β

∂α
) , (B4)

U
σ
αβ =

S
2σ
4

S1σ
αβ

δαβρ
σ

D + Iσ
(uσ2 − u2) −

S
σ
Jχ

S1σ
αβ

2δαβρ
σ

D + Iσ
u
σ
χ (uσχ − uχ)

−
S

2σ
αβ

S1σ
αβ

ρ
σ (uσαuσβ − uαuβ) +

S
σ
Jα

S1σ
αβ

ρ
σ (uσα − uα)uσβ

+
S
σ
Jβ

S1σ
αβ

ρ
σ
u
σ
α (uσβ − uβ) + δαβ

S
2σ
4 − S2σ

αβ

S1σ
αβ

ρ
σT

σ − T

mσ , (B5)

V
σ
αβ =

ρ
σ′

S1σ
αβ

(uαuβ + uσαuσβ − uαuσβ − uσαuβ − δαβ
u
σ2 + u2 − 2u

σ
χuχ

D + Iσ
) , (B6)

X
σ
α =

S
2σ
4

S1σ
κα

ρ
σ
u
σ
α

D + Iσ
(uσ2 − u2) −

2S
σ
Jβ

S1σ
κα

ρ
σ
u
σ
α

D + Iσ
u
σ
β (uσβ − uβ)

+
S
σ
Jα − S

σ
Jβ

S1σ
κα

ρ
σ
u
σ
αu

σ
β (uσβ − uβ)

+
S

2σ
4 u

σ
α − S

2σ
καuα

2S1σ
κα

ρ
σ [(D + Iσ + 2) T

σ − T

mσ + uσ2 − u2]

+
S
σ
Jα − S

2σ
κα

2S1σ
κα

ρ
σ (uσα − uα) [(D + Iσ + 2) T

σ

mσ + u
σ2] , (B7)

Y
σ
α =

ρ
σ ′

2S1σ
κα

(uσα − uα) [(D + Iσ + 2) T
σ − T

mσ + uσ2 − u2]

−
1

S1σ
κα

ρ
σ′
u
σ
α

D + Iσ
(uσβ − uβ)

2
+ (D + Iσ + 2) ρ

σ
T
′

2S1σ
καm

σ
(uα − uσα) , (B8)

with the change rate of individual energy due to the chemical reaction

E
σ ′
= ρ

σ ′ (D + Iσ

2

T

mσ +
u

2

2
) + D + Iσ

2

ρ
σ

mσT
′
=
m
σ
R̂4

2
, (B9)
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the thermal conductivity

κ
σ
α =

D + Iσ + 2

2S1σ
κα

ρ
σ
T
σ

mσ2
, (B10)

the dynamic viscosity

µ
σ
αβ =

p
σ

S1σ
αβ

, (B11)

and the parameters (S
σ
Jx, S

σ
Jy, S

1σ
xx , S

1σ
xy , S

1σ
yy , S

2σ
xx , S

2σ
xy , S

2σ
yy , S

1σ
κx, S

1σ
κy S

2σ
κx, S

2σ
κy ) = (S

2σ
2 , S

2σ
3 ,

S
1σ
5 , S

1σ
6 , S

1σ
7 , S

2σ
5 , S

2σ
6 , S

2σ
7 , S

1σ
8 , S

1σ
9 , S

2σ
8 , S

2σ
9 ).

In the case of S
1σ
5 = S

1σ
6 = S

1σ
7 = S

σ
µ and S

1σ
8 = S

1σ
9 = S

σ
κ , the Prandtl number is

Pr
σ
=
S
σ
κ

Sσµ
. (B12)

Moreover, the specific heat at constant pressure and volume are c
σ
p = (D + Iσ + 2)/(2mσ) and

c
σ
v = (D + Iσ)/(2mσ), respectively. Consequently, the specific heat ratio is

γ
σ
=

c
σ
p

cσv
=
D + Iσ + 2

D + Iσ
. (B13)

Additionally, summing Eqs. (B1) - (B3) over all species σ, we get the following reactive NS

equations,
∂ρ

∂t
+

∂

∂α
(ρuα) = 0, (B14)

∂

∂t
(ρuα) +

∂

∂β
∑

σ
(δαβpσ + ρσuσαuσβ + P σ

αβ + U
σ
αβ + V

σ
αβ) = ρaα, (B15)

∂E

∂t
+

∂

∂α
∑

σ
(Eσ

u
σ
α + p

σ
u
σ
α − κ

σ
α

∂T
σ

∂α
+ u

σ
βP

σ
αβ +X

σ
α + Y

σ
α ) = ρuαaα + E ′

, (B16)

in the case of a
σ
α = aα, where E

′
= ∑σ E

σ ′
denotes the change rate of mixing energy due to the

chemical reaction.

Actually, under some corresponding conditions, we could obtain the Fick’s laws of diffusion

and Maxwell-Stefan diffusion equation from Eqs. (B1) and (B2) as well [9]. More discussion is

beyond this work.

C Nondimensional parameters

Now, let us demonstrate some important parameters in the current DBM.
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(i) Time. The dimensional time is td = Ld/ud, the nondimensional time tn = Ln/un, and

the time ratio

tr =
Ldun

Lnud

. (C1)

(ii) Energy. The internal energies with dimension and nondimension are Eintd = (D +

I)ndRTd/2 and Eintn = (D + I)nnTn/2, respectively, and the energy ratio reads

Er =
Eintd

Eintn

= nrRTr. (C2)

(iii) Mass. Given the dimensional and nondimensional molar mass md and mn, the mass

densities are ρd = mdnd and ρn = mnnn in dimensional and nondimensional forms, the kinetic

energies are Ekd = ρdu
2
d/2 and Ekn = ρnu

2
n/2 in the two forms, so the energy ratio is

Er =
Ekd

Ekn

= mrnru
2
r . (C3)

From Eqs. (C2) and (C3), we obtain the mass ratio

mr =
RTr

u2
r

, (C4)

which leads to the mass density ratio ρr = mrnr.

(iv) Viscosity. The Reynolds number is defined as

Re =
ρdudLd

µd
=
ρnunLn

µn
, (C5)

where µd and µn denote the dynamic viscosity in dimensional and nondimensional forms, re-

spectively. The ratio of dimensional to nondimensional dynamic viscosity takes the form

µr =
nrLrRTr

ur
, (C6)

from which we could get the kinematic viscosity ratio νr = µr/ρr.

(v) Thermal diffusivity. The Prandtl number is a dimensionless number defined as the ratio

of momentum diffusivity (i.e., kinematic viscosity) to thermal diffusivity,

Pr =
νd

Kd

=
νn

Kn

, (C7)
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where (νd, νn) and (Kd, Kn) denote the momentum diffusivity and thermal diffusivity in di-

mensional and nondimensional forms, respectively. Consequently, the ratio of dimensional to

nondimensional thermal diffusivity is Kr = νr.

(vi) Mass diffusivity. The Schmidt number is a dimensionless number defined as the ratio

of momentum diffusivity (kinematic viscosity) to mass diffusivity,

Sc =
νd

ζd

=
νn

ζn

, (C8)

where ζd and ζn stand for the dimensional and nondimensional mass diffusivity, respectively.

Hence, the ratio of dimensional to nondimensional mass diffusivity is ζr = νr.

D Homogeneous mixture with body force

When a homogeneous nonreactive mixture reaches its steady state in the force field, the

time and space derivatives equal zero, hence Eq. (B2) leads to

S
σ
Jαρ

σ (uα − uσα) + ρσaσα = 0. (D1)

Namely, the individual velocities read

u
σ
α = uα + (SσJα)

−1
a
σ
α. (D2)

Moreover, if the homogeneous nonreactive mixture is an isothermal system in the steady

state, Eq. (B3) gives

1

2
S

2σ
4 ρ

σ [(D + I
σ) T − T

σ

mσ + u
2
− u

σ2] + ρσuσαaσα = 0. (D3)

Consequently, the individual temperatures take the form

T
σ
= T +

m
σ

D + Iσ
[∣u ∣2 − ∣uσ∣2 + 2(S2σ

4 )−1
u
σ
⋅ a

σ] . (D4)

On the contrary, for a thermal homogeneous mixture in the force field, if the individual

accelerations are not equal, the chemical species propagate collectively with different velocities

and collide randomly with each other, which leads to the change of energies and temperatures.
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That is to say, the work done by external forces transforms into the kinetic and internal energies

of the thermal system, i.e,
∂E

∂t
= ∑

σ
ρ
σ
a
σ
⋅ u

σ
, (D5)

which can be derived from Eq. (B16). Let us consider a special case where the mixing velocity

keeps constant u = 0 in the force field, then Eq. (D5) changes into

∂Eint

∂t
= ∑

σ
(SσJ )

−1
ρ
σ
a
σ
⋅ a

σ
. (D6)

From Eqs. (13) and (D6), we get

T
σ
≈ T =

∑σ (D + Iσ)nσT0 + 2∑σ (SσJ )−1
ρ
σ ∣aσ∣2t

∑σ (D + Iσ)nσ
, (D7)

where T0 is the initial mixing temperature.
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