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Abstract

Quantum annealing is a non-universal sub-field of quantum computing used for

solving combinatorial optimisation problems found in industries such as telecommu-

nications, supply-chain networks, and finance. However, whether current quantum

annealers can provide additional commercial value compared to state-of-the-art

classical optimization algorithms is still an open question, given that some of the

quantum nature of the computation is lost to noise sources plaguing modern qubits.

The work presented addresses a range of problems faced when solving optimi-

sation problems on quantum annealers, with experimental validation of the novel

methods proposed where possible. We compare parameter setting methods, demon-

strating that the choice of method is crucial to the success of minor-embedding,

something which is typically overlooked in the literature when solving large-scale

optimisation problems that cannot be directly embedded onto the quantum process-

ing unit (QPU) topology. It is also shown how the mapping that exists between NP

problems is useful in reducing qubit overheads in constrained optimisation problems,

with the reduction of the graph-colouring problem into several maximal-independent

set problems evaluated.

Reverse-annealing for optimisation was explored for its potential as a local-

search algorithm that can improve existing suboptimal results. It was found that

thermal effects on the QPU contribute to the performance of this algorithm, hinting

that non-adiabatic algorithms can be successful in finding solutions on modern

quantum annealers. The usefulness of thermally assisted computation is investigated

using a Hamiltonian with tuneable hardness called the perturbed ferromagnetic chain,

which was also used to demonstrate that the thermalization mechanisms observed on
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the QPU are distinctly different from classical thermalization mechanisms.

Finally, the framework of the locally-suppressed transverse-field diabatic quan-

tum annealing is extended to optimisation problems and compared to traditional

adiabatic quantum annealing and classical analogues. The protocol is also adapted

into an interferometer and used as a test of coherence for multi-qubit systems.
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Chapter 1

Adiabatic Quantum Computing &

Quantum Annealing

Simulating nature and its phenomena was the original inspiration behind the con-

ception of the quantum computer proposed by Feynmann, Benioff and Manin [1–3]

in the early 1980s due to the classical Turing machine being unable to simulate

quantum processes efficiently. The quantum computer’s ability to solve problems

(not just in quantum physics) was formalized by Deutsch [4], after which a host of

algorithms demonstrating speed-ups over classical computers were developed [5–9].

It is this ability of being able to solve ’hard’ problems that drives research in quan-

tum computing to develop algorithms that exhibit a “quantum advantage”. This

is where the problem size increases for a specific class of problem (e.g., discrete

logarithm problem), the runtime of the quantum algorithm scales better (i.e., lower

computational complexity) compared to any known classical algorithm. Experi-

mental realizations however face huge challenges that prevent quantum computers

being large enough to solve industrially relevant problems. Despite this, there are

sufficiently large quantum computers that demonstrate a quantum advantage over

modern classical computing [10].

Quantum computing has several domains that differ in the methods used to

explore the Hilbert space where the problem solution lies, and are equivalent with

some polynomial overhead [11]. The most prominent domain is that of gate-based
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quantum computing, where an input state is guided through the Hilbert space to the

solution of the problem by applying sets of unitary gates. However, the domain

that will be the focus of this work will be that of adiabatic quantum computation

(AQC), where the adiabatic algorithm proposed by Farhi et al. [12] can be used to

find solutions to optimization problems provided that we meet the conditions of the

adiabatic theorem [13] by remaining in the ground state (the lowest energy/cost state)

at all times. As a result, the system in AQC is evolved continuously through the

Hilbert space, rather than discretely as in gate-based quantum computing.

The adiabatic algorithm is primarily used to find solutions to specific com-

binatorial optimization problems that lie in the complexity class NP, where on a

classical computer it is not possible to find a solution to these problems in polynomial

time. Adiabatic quantum computing can provide a general speed-up if the adiabatic

condition (evolving the system slow enough to remain in the ground state at all

times) is maintained, but this speed-up is uncertain for finite temperature systems

that undergo decoherence due to the presence of noise. These systems are referred to

as open-quantum systems, and all physical manifestations of quantum computers

fall under this category of quantum system. Using the adiabatic algorithm at finite

temperature and not insisting on adiabaticity or universality is commonly known

as quantum annealing. This is where we initialize the system in a quantum state

and anneal to a classical state, which is comparable to traditional annealing, where

one anneals from a hot to a cold state. If the adiabatic condition is maintained, then

the final classical state would correspond to the optimal solution to the optimization

problem. However, the solution found using quantum annealing is typically subop-

timal due to the violation of the adiabatic condition, which tends to occur when a

problem possesses an avoided-level crossing between the ground state and higher

excited states. The scaling of a problem therefore depends on how the crossing gap

scales in the system size, with larger gapped problems being easier to solve.

The technological leader in quantum annealing hardware is D-Wave Systems

Inc., where one can solve optimization problems with up to 5640 binary variables [14–

25]. The practical performance of this hardware remains an area of active research
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because of the detrimental effects that the experimental compromises have on the

quantum system. In addition to noise and avoided crossings, there are restrictions on

the number of qubits and their connectivity on the hardware, and techniques such

as problem decomposition and embedding are needed to overcome this at the cost

of it negatively impacting computation [26, 27]. The culmination of these issues

has meant that no computational advantage for quantum annealing optimization

has been explicitly shown [28], and there are classical algorithms such as quantum

Monte Carlo that exhibit similar scaling (but with larger prefactors) to quantum

annealing [29]. However, there are hints of a scaling advantage when using a quantum

annealer to simulate quantum systems [30], and there are some theoretical problem

cases where quantum annealing can outperform its classical counterparts [31, 32].

In this work, we look to address and present methods to help circumvent the

three main limitations that hinder successful computation in quantum annealing,

which consist of:

1. Hardware restrictions that prevent large and highly connected problems from

being implemented.

2. Noise in experimental quantum annealers that causes decoherence and prevents

coherent quantum dynamics from occurring.

3. Minimum gaps at avoided-level crossings that close exponentially in problem

size and force the system into excited states.

The first limitation is an area of continual development that drives industry to produce

more and better connected qubits, and in Chapter 2 various approaches are presented

that attempt to mitigate the detrimental effects of embedding and better utilize the

current hardware to increase the size of problems that can be solved on a quantum

annealer. The second limitation to quantum annealing is also a hardware problem

but is focused on the quality of qubits, such that they are more resilient to the

multitude of noise sources that disrupt quantum processes, from thermal noise to

cosmic rays [33–36]. On the D-Wave processors, the significant noise levels result in

coherence times on the order of tens of nanoseconds, which is typically shorter than
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the available minimum anneal time. However, tunnelling events are still shown to be

present within this timescale in quantum annealing [29, 37, 38], inferring that there

is some quantum computational value to be had despite the system experiencing

decoherence. The value of incoherent tunnelling is explored in Chapter 3 with

a gadget that can also be used to contrast the differences between classical and

quantum dynamics in an incoherent quantum system.

The final limitation to computation with quantum annealing is the minimum gap

problem, which is an entirely theoretical problem and limits that kinds of problems

that can be solved using quantum annealing. The adiabatic theorem places a “speed

limit” on the time it takes to pass through these gaps, such that if a gap reduces

in size exponentially as the problem scales in size, then the adiabatic run time

also increases exponentially. In Chapter 4, we explore a possible solution to this

problem by removing the adiabatic condition completely and use excited states in

our computation in what is called diabatic quantum annealing (DQA). Specifically,

we look at a near-term DQA protocol presented in Ref. [39] for optimization, which

can also be used as a test of coherence. Throughout the rest of this chapter, a more

in depth introduction to adiabatic quantum computing, quantum annealing and these

limitations are given, highlighting the advantages and disadvantages of this form of

quantum computation, as well as exploring the current state-of-the-art methods used

to solve optimization problems.

1.1 Adiabatic Quantum Computation

Both the gate-based and adiabatic models for quantum computation rely on transi-

tioning away from the binary variable known as a bit, to a quantum variable known

as a qubit (quantum-bit), which can be thought of as a nuclear spin that can have any

value within a Bloch sphere [40]. The z-axis of the Bloch sphere is the computational

axis, where the values −1 (spin down) and 1 (spin up) are equal to the binary values

of 0 and 1 given a change of variables. The simplest matrix notation of the qubit
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system and its three dimensions are given by the Pauli matrices,

σ
x =

0 1

1 0

 σ
y =

0 −i

i 0

 σ
z =

1 0

0 −1

 , (1.1)

where all matrices are non-commuting (i.e., [σ x,σ y] = σ xσ y−σ yσ x ̸= 0) because

each has its own unique eigenbasis. The Pauli matrices can be used to construct the

Hamiltonian of a quantum system, where adding a qubit to your system increases the

size of the Hamiltonian (and therefore Hilbert space) exponentially. For example, a

rudimentary Hamiltonian describing two independent qubits with a Z-component is

(σ z⊗I)+(I⊗σ z), where I is the 2×2 identity matrix and⊗ is the Kronecker product.

Additionally, the state-vector |ψ⟩ of two qubits in the spin up configuration, where

the spin up eigenstate of σ z is |0⟩ = [1,0]T (the spin down state is |1⟩ = [0,1]T ),

is |ψ⟩ = |00⟩ = |0⟩ ⊗ |0⟩. A further pedagogical overview of the linear algebra

describing quantum systems can be found in Ref. [41].

Instead of applying unitary quantum gates to the initial state-vector as is used

in the gate model, adiabatic quantum computation evolves an easy to prepare ground

state-vector to an unknown ground state using a time-dependent quantum Hamilto-

nian. The success of AQC relies on the adiabatic theorem [13] which guarantees that

when the system is initialized in the ground state, it will remain in the ground state

at all times if the Hamiltonian is evolved slowly enough with respect to the system

minimum energy gap. This was formalized for optimization in [12, 14, 42] where the

adiabatic algorithm evolves a linear combination of non-commuting Hamiltonians,

which in its simplest form consists of interpolating between Hinitial which has the

easy to prepare initial ground state, to Hproblem with an unknown ground state that

encodes the problem of interest. This total time-dependent Hamiltonian is written as

H(t) = A(t)Hinitial +B(t)Hproblem , (1.2)

where A(t) and B(t) are monotonic time-dependent coefficients that allow us to inter-

polate between the Hamiltonian terms (i.e., argmax(A(t)) = 0 and argmax(B(t)) =
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tfinal). It was also later shown that AQC is an extension of universal quantum com-

putation [11], where both the gate model and AQC can simulate each other with no

more than a polynomial resource overhead. Therefore, there exist adiabatic variants

of well known gate model algorithms, such as Grover and Deutsch-Jozsa [43, 44]

whose speed-up is equivalent to that in the gate model. There is also an attempt to

implement the quantum Fourier-transform on quantum annealers [45], essential to

Shor’s algorithm [9].

AQC is naturally framed to solve combinatorial optimization problems, with

the earliest variants of AQC taking inspiration from adding quantum dynamics to

the established simulated annealing algorithm [46–48]. One of the most common

models of AQC to use for optimization is the transverse-field Ising model (TFIM),

which is a quantum extension of the classical Ising model [49]. The optimization

problem is encoded in the longitudinal fields of the classical Ising model to form

Hproblem, and then transverse field components are added to form Hinitial. Taking

σ z to be the computational basis when encoding the Ising model in the problem

Hamiltonian, the total Hamiltonian is

H(t) =−A(t)
N

∑
i=1

σ
x
i +B(t)

[
N

∑
i=1

hiσ
z
i + ∑
⟨i, j⟩

Ji jσ
z
i σ

z
j

]
(1.3)

where σ x represents the transverse-field component of the model, hi is the spin bias

on the ith qubit, and Ji j is the coupling strength between two qubits i and j. Also note

that because this is an N-qubit system, σ x
i = (

⊗i−1 I)⊗σ x⊗ (
⊗N−i I), ∀i≥ 1 and

where
⊗k I is Kronecker product of k lots of identity matrices. The initial ground

state for this Hamiltonian at t = 0 (i.e., B(0) = 0 and A(0) ̸= 0) is |ψ⟩ = |+⟩⊗N ,

where |+⟩= [1,1]T/
√

2 and is an eigenstate of σ x. The initial state |ψ⟩ in the TFIM

is interpreted as a superposition of all possible solutions to the optimization problem

in the σ z basis.

This class of AQC Hamiltonian is defined as being stoquastic (quantum stochas-

tic), where the Hamiltonian always has real non-positive off-diagonal matrix elements

with respect to a given basis [50] (typically the computational basis). In the TFIM,
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the off-diagonal contributions come from the transverse-field component, which

are non-positive in Equation (1.3). If a Hamiltonian were to violate the stoquastic

condition, it is known as non-stoquastic. Given this definition of stoquasticity, one

may naïvely say that changing the sign in front of the transverse-field term in Equa-

tion (1.3) will make the off-diagonal elements positive and therefore non-stoquastic,

but there also is a unitary transformation that can be applied to rotate the system

such that the Hamiltonian will be stoquastic once again. Determining whether a set

of local unitary transforms can “cure” an arbitrary non-stoquastic Hamiltonian to be

stoquastic again is also known to be NP-complete [51].

If stoquastic AQC is made to follow the adiabatic theorem and remain in the

ground state, then it is widely believed that stoquastic AQC is not universal [52], and

the ground state can be associated with a classical probability distribution, which is

generally attributed to a Boltzmann distribution [53–57]. The non-universality of

ground state stoquastic AQC has lead to widespread scrutiny over whether a quantum

advantage exists for this class of computation. Stoquasticity also has important

implication to the simulability of a quantum system, as it has been demonstrated

that ground state stoquastic AQC can be efficiently simulated by quantum Monte

Carlo (QMC), such that both methods scale similarly with some overhead between

them, both theoretically and experimentally [29, 58–61]. However, exceptions exist

that posses either topological obstructions (such as a particle restricted to a circular

potential) [32, 62] that prevent QMC algorithms from equilibrating, and/or large

differences between L1 and L2 normalized wavefunctions [63] that can cause long

convergence times in QMC.

In general though, the simulability of stoquastic Hamiltonians is attributed to

there not being a sign problem [64]. If a problem is sign-problem free then for

all terms in the partition function Z = ∑cWc, it holds that Wc ≥ 0 ∀c, where c is

a configuration of the Hamiltonian H. This is derived from the common form of

the partition function Z = Tr
{

e−βH
}

for a system at inverse temperature β (see

Ref. [65, 66] for derivation). The simplest example of where Wc < 0 can arise,

and therefore a sign problem exists, is when simulating fermionic systems, as the
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Figure 1.1: Illustration of an anti-crossing in a two-level system, with a minimum gap
∆10 that forms between the ground state and first-excited state. The solid lines represent a
system whose states are coupled via some perturbation, and the dashed lines represent the
system without this perturbation. In AQC, the unperturbed system Hproblem is perturbed by
the non-commuting Hamiltonian Hinitial (Equation (1.2)).

Pauli exclusion principle states that an exchange of fermions is antisymmetric,

i.e., ψ(x1,x2) = −ψ(x2,x1), and negative weight configurations can arise. Non-

stoquastic Hamiltonians also can possess this sign problem, and therefore become

NP hard to simulate [65], making them a potential route to quantum speed-ups over

classical computation [67, 68] and a potential route to universal adiabatic quantum

computation [11, 69]. However, there do exist some instances where non-stoquastic

Hamiltonians are simulable [70–72], caused by a vanishing geometric phase of that

Hamiltonian.

In addition to the non-universality and simulability of stoquastic AQC, the

problem of gap scaling remains to be the most pertinent hindrance to all approaches

searching for ground-state (optimal) solutions to optimization problems. Many

problems in AQC can possess an avoided-level crossing with a minimum gap ∆10,

where two energy levels become relatively close to one another but can never cross

(see Figure 1.1). Starting in the ground state, if one were to pass through this

gap too fast (i.e., non-adiabatically) then Landau-Zener transitions [73, 74] transfer
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probability density from the ground state to the excited states, violating the adiabatic

condition. The time, ta, required to pass through this gap adiabatically [13] with

no Landau-Zener transitions is bounded by ta >> 1/∆3
10 [75] (the worst case) or

by ta >> 1/∆2
10 [76] (the best case if certain conditions are met). Ref. [77] also

generalizes the quantum adiabatic theorem for open quantum systems where there is

finite temperature and bath coupling. Therefore, the time-to-solution of the adiabatic

algorithm relies on ∆10 scaling polynomially for an exponential speed-up over

classical algorithms, but this is not guaranteed [12].

If a problem were to have a minimum gap that closes exponentially (i.e, ∆10 ∝

e−cN , c > 0), then annealing adiabatically incurs an exponential slow-down within

stoquastic AQC, and can be the result of a first-order quantum phase transition [42,

78–84]. This typically occurs when a localized ground state (i.e., a state whose

probability density is concentrated on a few computational states) has an avoided-

level crossing with a localized first-excited state, whose magnetization phase is

distinctly different. However, there are some examples where only polynomial

scaling of the energy gap occurs in the presence of a first-order phase transition [85,

86].

Despite the issues that face stoquastic AQC, there have been provable quantum

speed-ups that come from removing the restriction of adiabatic evolution. The most

well known is the glued-trees problem [31, 87], where the proof exploits the fact that

no classical algorithm can find the solution, with high probability, with less than a

sub-exponential number of oracles, whereas stoquastic AQC can find a solution in

polynomial time. To achieve this, the stoquastic Hamiltonian is initialized in the

ground state and evolved towards the first avoided-level crossing where a diabatic

transition causes the state-vector to enter the first excited state (breaking the adiabatic

condition), and continues to the second avoided-level crossing and then diabatically

transitions back to the ground state corresponding to the optimal solution. This

approach utilizes the exponential gap scaling problem to its advantage in order to

gain a quantum speed-up.

The relaxation of the adiabatic condition to permit evolution with excited states



1.2. Quantum Annealing 30

has also been used to give speed-ups to problems seen in Refs. [67, 70, 88, 89], and

for the case of a 3-local stoquastic Hamiltonian that evolves non-adiabatically, it

is shown to be equivalent to general AQC and thus universal [90]. Non-adiabatic

(diabatic) evolution is a promising approach to counter slow-downs within AQC, but

there exist other methods that also focus on navigating the minimum gap efficiently to

mitigating its detrimental effects, such as adding extra terms to the Hamiltonian such

as a catalyst [67, 70, 81, 91–95], counter-diabatic driving [96–103], inhomogeneous

driving of the qubits [39, 104–109], and optimizing evolution schedules [110–112].

In the next section, we focus on a prominent intersection to AQC known as quantum

annealing, but for a further overview of AQC and more details about techniques used

to overcome slow-downs within AQC, see Ref. [28].

1.2 Quantum Annealing

1.2.1 Formalism

The key to universality for adiabatic quantum computing (AQC) relies on ensuring

adiabatic evolution of the quantum system, which for open-quantum systems cannot

be guaranteed. Quantum annealing is a framework that relaxes the adiabatic condition

such that the entire spectrum can be used for computation, but at the cost of losing

general universality [113]. Quantum annealing (QA) adiabatically at zero tempera-

ture and noise is equivalent to AQC, but this is not possible to achieve experimentally.

Therefore, it is unknown whether experimental realisations of quantum annealing

can provide a quantum advantage. The first instances of QA were considered part of

AQC and attempted to build upon the simulated annealing (SA) model developed by

S. Kirkpatrick et al. [114], where a system is annealed slowly from a “hot” state to a

“cold” state such that the system settles in a good (but generally suboptimal) solution

to a combinatorial optimization problem (see Appendix A, Alg. 2 for more details).

This method relies on using thermal fluctuations to traverse the energy landscape of

the optimization problem, whereas in QA, the idea is to use quantum tunnelling to

pass through energy barriers that may exist (Figure 1.2). Analogous to SA, the hot

state would instead be a fully quantum state, which is annealed to a classical state
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Figure 1.2: Illustration of classical and quantum dynamics traversing the potential energy
landscape, where the landscape changes as a function of the solution to the optimization
problem (x-axis). The displayed mechanisms are analogous to the dynamics used by simu-
lated and quantum annealing, where the objective is to reach the minimum energy (optimal)
solution in the landscape. Simulated annealing uses thermal fluctuations parameterized by
temperature T , and quantum annealing uses quantum tunnelling through the energy barriers
parameterized by the transverse-field Ht . Figure taken from Brooke et al. [115].

that corresponds to a solution of the optimization problems [46–48, 115]. The first

direct comparison of QA to SA hinted that QA performs better than SA [47], and it

has since been further verified that a quantum scaling advantage exists by using QA,

but not one that quantifies a definitive quantum speed-up (see review [28]).

Both SA and QA can be framed within the Ising model [49], such that opti-

mization problems are formulated as an ensemble of discrete spins, si ∈ {−1,1},

that mathematically represent complex magnetized systems. The Ising model is

related to classical binary optimization by using a change of variables from spins to

binary values, such that the Ising problem now constitutes a quadratic unconstrained

binary optimization (QUBO) problem. Given a set of spins, the general cost (energy)

function for an Ising system with 2-local interactions is

E (s) =
N

∑
i

hisi + ∑
⟨i, j⟩

Ji jsis j , (1.4)

where s ∈ {−1,1}N , hi is the bias of spin si, and Ji j is the coupling strength between

two spins such that Ji j < 0 (Ji j > 0) corresponds to ferromagnetic (antiferromagnetic)

couplings. SA minimizes this cost function by using Metropolis-Hastings updates to

move to new solutions, s′, that incur a lower cost. The formulation of optimization
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problems within the Ising model has been generally shown for all of Karp’s 21

NP-complete problems [116], as well as some NP-hard instances such as Steiner

trees, maximum independent set, and max-cut. These problems are typically defined

in QUBO notation using binary variables xi ∈ {0,1}, which form a set of vertices V

on a graph G = (V,E). The QUBO cost function is

Q(x) = ∑
i∈V

cixi + ∑
(i, j)∈E

Wi jxix j , (1.5)

where N = |V | is the number of variables in our problem, and ci and Wi j are the

problem weights. Substituting xi = (si + 1)/2 into Equation (1.5) translates the

QUBO into the Ising model.

By substituting spin si in Equation (1.4) for Pauli Z matrices, we create the

problem Hamiltonian

Hproblem =
N

∑
i

hiσ
z
i + ∑
⟨i, j⟩

Ji jσ
z
i σ

z
j , (1.6)

which is a diagonal matrix of size 2N × 2N , whose eigenvalues correspond to the

energies, ei, of each computational solution, |i⟩, such that Hproblem |i⟩= ei |i⟩. The

primary goal of QA is to find the eigenstate of Hproblem with the lowest eigenenergy;

this is achieved by adding a non-commuting Hamiltonian Hinitial (also known as a

driver Hamiltonian) that has a ground state of which is easy to prepare and introduces

quantum fluctuations into the system. The simplest model that can be realized is the

transverse-field Ising model (TFIM), where Hinitial is the transverse-field driver term

composed of Pauli X matrices local to each qubit, with an easily prepared ground

state of |+⟩⊗N . The combination of these terms forms the total TFIM Hamiltonian,

H(t) =−A(t)
N

∑
i

σ
x
i +B(t)

[
N

∑
i

hiσ
z
i + ∑
⟨i, j⟩

Ji jσ
z
i σ

z
j

]
, (1.7)

where the annealing aspect is driven by the Hamiltonian coefficients A(t) and B(t)

that monotonically decrease and increase in time, respectively. Quantum annealing
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is not restricted to the TFIM Hamiltonian, but its simplicity has meant that it is easier

to design hardware for this model compared to other models with more complex

terms, which has lead to quantum annealing in the TFIM being often simplified to

quantum annealing. This simplicity is reflected by the number of qubits that are

commercially available from D-Wave Systems Inc. (∼ 5640) compared to other

quantum computing systems, which is discussed further in the Section 1.3.

Whether the introduction of quantum phenomena holds any general computa-

tional benefit is an unresolved question within the field, as it was shown in Ref. [89]

that quantum tunnelling is neither necessary nor sufficient for speed-ups solving

the perturbed Hamming weight problem. In an open quantum system setting where

decoherence has already manifested itself, thermally-assisted quantum tunnelling has

been shown to play an important computational role [29, 37, 38, 59, 117] (explored

more in Chapter 3). When this phenomenon is shown to occur between energy

levels [117], it is therefore beyond what is described by the AQC framework and is

specific to quantum annealing. Whether this mechanism can also provide a general

quantum advantage is still subject to debate, but there have been improved scaling

advantages for specific problem instances [30].

The notion of thermally-assisted tunnelling is distinctly different from that

of coherent tunnelling, where a coherent state of qubits can tunnel through energy

barriers to remain in the ground state whilst also retaining its phase. When the system

is coupled to a bath, noise processes damp the coherent oscillations causing the

system to undergo decoherence, and prevents this pure form of quantum tunnelling

from occurring. However, the coupling to the environment can provide additional

degrees of freedom that are not available in a closed system setting, such that if the

coupling to the environment can be seen as a perturbation, then the transition rate

between eigenstates is given by Fermi’s golden rule

Γ1→0(t)≈ γ(ω10(t))
N

∑
i=1

∣∣⟨ψ0(t)|σ z
i |ψ1(t)⟩

∣∣2 , (1.8)

where constants are set to unity, γ is the noise spectrum, and ω10(t) is the en-
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Figure 1.3: Illustration of the open system thermalization effects that occur as a system
approaches a minimum gap. Both excitations and relaxations to and from the ground state
follow Equation (1.8), and allow the system to thermally equilibrate. Figure taken from
Ref. [37].

ergy gap between states |ψ0(t)⟩ and |ψ1(t)⟩. This represents the thermal relax-

ation rate between states, and the equivalent of the thermal excitation is given by

Γ0→1(t) = e−βω10(t)Γ1→0(t), where β is the inverse temperature. If the thermal

relaxation process is shown to pass through a classically forbidden region, then this

introduces the notion of thermally-assisted tunnelling (also known as incoherent

tunnelling). However, whether the relaxation process (Figure 1.3) in experimental

quantum annealers is quantum or classical in nature is still under question, as both

quantum [118] and classical [119] dynamics can be used to replicate the processes.

Another quantum phenomenon that can enable computation beyond what is clas-

sically possible is entanglement, where in the gate-model it is an important resource

for technologies such as quantum cryptography [120]. It is also present in quantum

annealing, where qubit tunnelling spectroscopy [121] was used to demonstrate the

existence of entanglement [122,123] using negativity [124,125] and an entanglement

witness [126–128]. However, the computational role that entanglement plays has

so far proved to be inconclusive, with increasing entanglement not correlating to

changes in success probability [129, 130]. In fact, if the Hamiltonian at the end of
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the anneal is diagonal then there exists an analytical upper-bound on ground state

probability, which states that if entanglement persists at the end of an anneal then it

is detrimental to the ground state probability [129]. Nonetheless, entanglement is

present and necessary for many quantum annealing evolutions, and will likely be a

key resource in any potential quantum advantage found in quantum annealing.

The TFIM Hamiltonian in Equation (1.7) is also classed as stoquastic and can

therefore be simulated efficiently by quantum Monte Carlo [52, 65]. Using path-

integral Monte Carlo (PIMC) methods to simulate QA within the Ising model [131–

133] is also called simulated quantum annealing (SQA), and in specific circumstances

it is an efficient emulator of most stoquastic quantum systems, even those exhibiting

quantum tunnelling [58, 134, 135]. Therefore, the performance of most quantum

annealing protocols are comparable in scaling to SQA [29, 38, 136–138], with

exception to simulating geometrically frustrated magnets where quantum annealing

demonstrated a scaling advantage over PIMC [30]. SQA can also be adapted to

include open system effects such as dephasing [139–141], which is a form of quantum

noise that affects physical implementations of QA. Open system effects can also be

explored more precisely with numerical simulations of master equations [142–145],

but the intractable scaling of these equations means that only small systems can be

analysed. These methods are defined and further discussed in Section 1.4.

From a theoretical perspective, many believe that the current state of quantum an-

nealing cannot be advantageous over classical methods, and several limitations need

to be addressed before it can be considered to be potentially successful [28,146–148].

This includes increased connectivity between qubits (explored in Section 1.3.2), in-

creased coupler order (e.g., 2-local σ
z
i σ

z
j → 3-local σ

z
i σ

z
j σ

z
k ), noise control (explored

in Section 1.3), and error correction. The theoretical success of the gate-model stems

from proposals for fault-tolerant quantum computing, where error-correction can

be used to preserve the quantum state even in the presence of open-system effects,

otherwise it cannot function on a large scale [149]. Given that quantum annealing is

an analogue protocol, error-correction is also of significant importance for it to be

resilient to the ubiquitous open-system effects. Unsurprisingly, there are methods
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for error correction that exist for adiabatic quantum computation [150, 151] and

quantum annealing [152, 153], which reduce the number of available variables for

computation, but it is seen to have an improvement on success probability [154].

1.2.2 Applications

Despite the numerous problems that hinder quantum annealing (QA), the number

of applications that have used QA for computation continues to grow. There are

three classes of problems that QA can be applied to: optimization, sampling, and

simulation. Optimization was the primary purpose of QA upon its inception [12, 47],

but the break-down of the adiabatic condition means that probability density is not

restricted to the ground-state, and therefore QA can be thought of sampling states

according to some probability distribution. For long anneal times that are quasistatic,

the sampled distribution from a quantum annealer was shown to be similar to a Boltz-

mann distribution [53], where the optimal solution would be the most probable state,

i.e., p(s0) = e−βE(s0)/Z. However, QA experiences nonequilibrium dynamics that

impedes fair sampling [155–158], such that some states are exponentially suppressed

including those that are part of a degenerate ground state [137, 159].

Nonetheless, there have been many successful attempts in finding solutions

to a broad range of classical combinatorial optimization problems. These applica-

tions range from computer science [14–16], flight gate assignment [18], air traffic

management [160], radio networks [19], traffic optimization [20, 22], automated

guided vehicles [161], finance [17, 162–164], mathematics [165–168], schedul-

ing [169–171], circuit fault diagnosis [148, 172], chemistry [23–25], and machine

learning [173–176]. However, the ground states of certain optimization problems are

highly sensitive to the parameters, like the knapsack problem [116], and therefore

are detrimentally affected by noise sources.

A promising area of application that is beyond the domain of AQC is sampling,

whereby the goal is not to find the ground state precisely, but sample a range of

low-energy states that represent a distribution that is difficult to sample from. This

is seen as a way towards a quantum advantage with QA [177], an example being

when samples from a Boltzmann distribution are required for training restricted
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Figure 1.4: Schematic of the transitions induced between the ground and first-excited state in
RFQA, where spins {i, j,k} have an oscillating driver term (Equation (1.9a)) with frequencies
{ fi, f j, fk} applied to them. Combinations of the frequencies cause resonance tunnelling
events that allow the two states to thermally equilibrate. Figure taken from Ref. [108].

Boltzmann machines (RBM) [178] in machine learning. Sampling from an RBM

uses a method called persistent contrastive divergence [179, 180], which when

sampled from classically, typically has highly-correlated samples, leading to long

mixing times. A quantum annealer can be used to generate less correlated samples

to speed up mixing times, which can then be used to speed up the training of RBMs.

This premise has been extended to quantum Boltzmann machines as well, and has

been used to train a host of deep-learning models [56, 181–187]. Interestingly,

the temperature of the Boltzmann distribution generated by a quantum annealer

suggests an instance dependent temperature that is higher than the physical system

temperature [54, 188], and this is attributed to sampling a system that has frozen

before the anneal has finished [53]. Additionally, the training of deep-learning

models with QA samples is not as affected by noise sources, largely because noise is

typically seen as beneficial to the training process in order to avoid over-fitting.

However, as previously mentioned, having a representative distribution typically

relies on fair sampling from that distribution, which is something that quantum

annealing cannot achieve in its present form. To remedy this, an extension to

quantum annealing, named random-field quantum annealing or radio-frequency
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quantum annealing (RFQA) [108, 109], was developed to allow for micro-canonical

thermalization of the system during the entire anneal rather than near the minimum

gap (see Figure 1.4). This is enabled by an oscillating driver term which is of the

form

HDriver(t) =−A(t)∑
j

[
cos
(
θ j(t)

)
σ

x
j + sin

(
θ j(t)

)
σ

y
j

]
(1.9a)

θ j(t) = α sin(2π fit) , (1.9b)

where fi is randomly chosen, and is small enough (i.e., ⪅ ∆10) to prevent access to

higher energy states. It is shown to have a speed-up over traditional adiabatic QA in

terms of time-to-solution, particularly near critical points in quantum phase transi-

tions, demonstrating that quantum thermalization can be used as a computational

resource.

The final application that QA is used for is simulating both quantum and clas-

sical physical systems, which can be seen as a combination of both optimization

and sampling (depending on the application). These experiments include simulat-

ing the Kibble-Zurek mechanism [189–192], Griffiths-McCoy singularity [193],

Shastry-Sutherland model [194], Kosterlitz-Thouless phase-transition [30, 136],

and spin-glasses and their phase transitions [195–197]. The theory behind these

well-established models also means that experimental data can be compared to the

predictions of a purely quantum model. A model that exhibits this clearly is the

Kibble-Zurek mechanism, where the kink density (the density of misaligned spins

in the system), n̄, of a ferromagnetic quantum Ising model is proportional to t−0.5,

where t is the annealing time. If open system effects are prevalent and the system

decoheres, then the scaling factor increases (e.g., n̄ ∝ t−0.4), therefore meaning it can

be used as proof of coherence in a quantum system [189, 198]. This idea of using

QA to simulate quantum physics aligns with Feynman’s idea of what would be the

primary purpose of a quantum computer [1].

1.2.3 Reverse Annealing

The traditional QA protocol initializes in a quantum state before annealing to a classi-

cal state, but as discussed previously it can struggle in the presence of exponentially
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small gaps and noise. Catalysts and tailored coefficient schedules can be used to im-

prove the competitive performance of vanilla QA over classical algorithms, but one

variant of QA that can be used in conjunction with these methods is adiabatic reverse

annealing (ARA) [199–202]. In this protocol, the system is initialized in a classical

state that has been derived by other means, and then has quantum fluctuations applied

to it by a driver, with the parameters of the original problem Hamiltonian slowly

introduced. For a given anneal time ta, the ARA Hamiltonian is defined as

H(t) = (1− s(t))(1−λ (t))Hinitial +(1− s(t))λ (t)Hdriver + s(t)Hproblem , (1.10)

where s(0) = λ (0) = 0, s(ta) = λ (ta) = 1, Hinitial encodes an initial classical solution,

Hdriver introduces the transverse field (quantum fluctuations), and Hproblem encodes

the cost function we are trying to minimize. If the Hamiltonian is evolved within

the adiabatic limit, then it is shown that first order phase transitions are avoided if

the initial solution is close in Hamming distance to the ground state (see Figure 1.5),

causing the gap to scale polynomially rather than exponentially. The example used

in Ref. [200] is the p-spin model

HP =−N
(

1
N ∑σ

z
i

)p

, (1.11)

where p≥ 3. This Hamiltonian possesses a first-order phase transition if s(t) and

λ (t) are applied incorrectly, but the path restriction is relaxed the closer the initial

solution is to the ground state.

In an attempt to realize this physically, D-Wave systems adjusted their quantum

annealers to carry out this protocol in the TFIM. However, the Hamiltonian used

by D-Wave is still of the same form as the Hamiltonian in Equation (1.7), which

is distinctly different from Equation (1.10). Instead, the initial state-vector is set

by biasing the qubits with nearby SQUIDs (superconducting quantum interference

devices) according to the initial solution. This biasing is then switched off, and

the problem Hamiltonian fields are turned on instantly, contrary to ARA where the

problem and initial Hamiltonians are slowly increased and decreased respectively
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Figure 1.5: Static phase diagram for the p-spin model (Equation 1.11) using adiabatic
reverse annealing. The coloured lines indicate the position of a first-order phase transition
for a given value of s and λ (see Equation (1.10)). The value c ∈ [0,1] is a measure of how
close the initial state is to the ground state in terms of Hamming distance, with c = 1 being
the ground state solution itself. If the initial solution is close enough to the ground state
(c = 0.8,0.9), then the first-order phase transition is “softened” to a second-order phase
transition for some values of s and λ , such that the gap no longer scales exponentially in that
regime. Figure taken from Ref. [201].

during the anneal. We refer to this method as reverse annealing (RA), and if this

method were made to follow the adiabatic condition, then no ground state would

ever be found as no transitions between eigenstates would occur. However, quantum

annealing typically breaks the adiabatic condition, and given that ground state/lower

energy solutions are found experimentally [17, 30, 57, 136, 168, 203], it is evident

that diabatic transitions are used for computation in RA.

An illustration of the RA schedule implemented on a D-Wave annealer is seen

in Figure 1.6, whereby s = 1 corresponds to a classical system, s = 0 corresponds to a

quantum system, and s∗ is the value of s that the reverse anneal is annealed to before

then returning to a classical state. The lower the value of s∗, the more transverse-

field is applied to the system, which is represented by the ratio of the coefficients

in Equation (1.7), Q(s) = A(s)/B(s). The value of s∗ can also be interpreted as the

range of the local-search. However, it was suggested in Ref. [203] that the range

of the local search is sensitive to the noise present on a quantum annealer, with
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Figure 1.6: Plot of the annealing control parameter, s, in a reverse anneal schedule on a D-
Wave quantum annealer. The anneal begins and finishes at s = 1, and linearly interpolates to
different values of s, with the minimum denoted as s∗. A pause mid-anneal is used to maintain
a value of Q(s∗) for time tpause, where Q(s) = A(s)/B(s) is a proxy for the magnitude of
quantum fluctuations induced in the system using the coefficients from Equation (1.7).

a lower noise system having a larger search radius. This was explored with two

experimental annealers each with different noise profiles, but it is likely that an

optimal amount of noise for RA exists that is out of the range of these annealers,

where too little noise would not allow diabatic transitions, and too much would

obstruct the relaxation process. The schedule in Figure 1.6 also features a pause

mid-anneal, which is a simple method of observing thermalization effects at different

points in an anneal as the relaxation rate to the ground state is dependent on the

value of s∗ (see Section 2.3). If the system is paused near the minimum gap, the

ground state probabilities are seen to increase due to thermalization effects driving

the diabatic transitions [57], and therefore pausing with reverse annealing can be

seen as a method of detecting the minimum gap position during an anneal.
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1.3 Quantum Annealing using Superconducting

Hardware

1.3.1 Experimental Implementation

Artificial Ising spin systems can be realized within a host of different quantum models,

such as trapped ions [204], but the most common is the analogue superconducting

flux qubit model [205–221]. This is where the spin of a qubit is encoded into

the flux of a superconducting loop, such that a spin up state |↑⟩ corresponds to an

anticlockwise circulating (persistent) current, and vice versa for a spin-down state

|↓⟩. A schematic of the superconducting flux qubit is given in Figure 1.7a, where the

two loops φ1 and φ2 correspond to the Z and X components of the qubit, respectively.

At the beginning of an anneal where the transverse-field (flux through φ2x) is large,

the potential in Figure 1.7b is unimodal, allowing for a superposition of both |↑⟩

and |↓⟩ states. As the transverse-field decreases, δU increases and a double-well

potential starts to form, each well corresponding to the computational spin-state of

the qubit.

To use the qubits for computation, longitudinal fields and couplers must be

introduced that can be easily parameterized. The local bias parameter hi for qubit i is

controlled by the external field φ1x in Figure 1.7, which lowers the energy of one of

the potential wells with respect to the other by 2hi. The coupling between qubits is

introduced by a programmable inductive coupler that is almost identical to the qubit

in Figure 1.7a, but there is only control over φ2x, which controls the coupler strength

Ji j and whether it is ferromagnetic or antiferromagnetic. As it is inductive, a change

in persistent current in one qubit will induce a current in the coupler, affecting the

current in another inductively connected qubit.

This framework of using superconducting flux qubits with inductive couplers

is what is made commercially available to the public by the quantum annealing
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Figure 1.7: Schematic of a the superconducting flux qubit and b its potential energy diagram.
Here, the direction of the flux in φ1 and φ2 corresponds to the spin sign in the Z and X
bases, respectively. The circulating (persistent) current in φ1 can encode the spin-up |↑⟩
and spin-down states |↓⟩ simultaneously, creating the necessary superposition for quantum
annealing. External biases φ1x and φ2x control the values of the bias 2h and barrier height δU
in the potential energy diagram, respectively, such that increasing φ1x increases the energy
difference between the two wells, and an increased φ2x decreases δU . The intra-well energy
spacing is ωp, and the qubit is measured by its magnetization, which should not be affected
by intra-well excitations, improbable as they are. Figure taken from Ref. [207].



1.3. Quantum Annealing using Superconducting Hardware 44

Figure 1.8: Plot of the D-Wave 2000Q annealing schedule at the Los Alamos National
Laboratory for the Hamiltonian coefficients in Equation (1.12), as a function of the control
parameter s. The black dashed is the environmental temperature of the qubits, which is
12.26mK.

company D-Wave Systems Inc. The form of this Hamiltonian is given by

H(s) =−A(s)
2

N

∑
i

σ
x
i +

B(s)
2

[
N

∑
i

hiσ
z
i +∑

i, j
Ji jσ

z
i σ

z
j

]
, (1.12)

which is equivalent to the transverse-field Ising model defined in Equation (1.7),

but with coefficients scaled by a factor of a half and parameterized by a control

parameter s. The local fields and couplers are also bounded by hi ∈ [−2,2] and

Ji j ∈ [−2,1]. The coefficient functions are unique to each D-Wave quantum annealer

because of qubit calibration, and an exemplar is given in Figure 1.8 for the D-Wave

2000Q formerly housed at Los Alamos National Laboratory. In every schedule, the

longitudinal field coefficient B(s) is quadratic in order to give a linear change in qubit

persistent current as s changes. Furthermore, the value of s is further parameterized

by the normalized annealing time τ = t/ta given the total annealing time ta. An

example of how s can be parameterized with respect to time is given in Figure 1.6,

but a vanilla quantum anneal follows s(τ) = τ .

Topological constraints in superconducting hardware mean that all-to-all con-

nectivity between many qubits is unattainable with what is currently technologically
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Figure 1.9: A diagram of D-Wave’s proprietary Chimera and Pegasus quantum processing
unit architectures. Each graph has a maximum qubit degree of 6 and 15, respectively, which
yields more usable couplers for the Pegasus 4 (264 qubits and 1604 couplers) than the
Chimera 6 (288 qubits and 816 couplers) despite similar numbers of qubits.

feasible. As a result, the arrangement of qubits and their couplers follow either the

Chimera or Pegasus architectures in D-Wave quantum annealers [222]. Chimera was

the first architecture to be implemented on physical quantum annealers (Figure 1.9),

and consists of repeating K4,4 bipartite cells that are connected to adjacent cells, such

that a qubit has a maximum degree (number of couplers) of 6. There have been four

major iterations of the D-Wave annealer with the chimera topology - D-Wave one

(128 qubits), D-Wave two (512 qubits), D-Wave 2X (1024 qubits) and the D-Wave

2000Q (2048 qubits). The next and latest topology that is commercially available

is the Pegasus, which is used on the D-Wave Advantage system. Not only is there

an increase in the number of qubits to 5640, but the maximum qubit degree has

increased to 15, with odd-cycles now also permitted in the graph. See Figure 1.9 for

a comparison.

Since January 2019 (when research included in this work commenced), there

have been three distinct D-Wave devices that have been used, the first being the

D-Wave 2000Q, the second being the low noise variant of the D-Wave 2000Q that
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saw an enhancement in tunnelling rates by a factor of∼ 7.4 [223], and the third being

the D-Wave Advantage, which can solve the largest problems to date on a quantum

annealer. Generally, each iteration of the D-Wave has shown better performance

than the last [224]. The Advantage however was recently seen to be noisier than

the low-noise 2000Q [225], and this contributes to the debate on how quantum

the D-Wave is due to the prevalent quantum and classical noise sources that can

obscure important quantum processes [143, 226, 227]. To address this, D-Wave

recently demonstrated that the low-noise D-Wave 2000Q can perform coherent

quantum annealing for anneal times ∼ 25ns [189], where the experimental results

were consistent with coherent Kibble-Zurek and Landau-Zener processes. The next

generation topology due to be released in 2023/2024 is Zephyr on the Advantage

2 [228], which is promised to have 7440 qubits with a maximum degree of 20 and

features K8,8 bipartite and K4 complete graph configurations.

Using superconducting qubits for quantum annealing also comes with a number

of integrated control errors that must be accounted for when modelling any D-Wave

device, due to the fact that they can distort the programmed values of h and J, thus

changing the problem being solved. The first of these is cross-talk, whereby the flux

of nearby qubits can induce additional ferromagnetic couplings and biases that were

not explicitly programmed. The model accounting for cross-talk (XT ) is

hXT
i = hi−χ ∑

k∈A(i)
Jikhk (1.13a)

JXT
i j = Ji j +χ ∑

k∈S(i, j)
JikJ jk , (1.13b)

where A is the neighbourhood function of the original problem, S(i, j) = {A(i)∩

A( j)}, χ is the background susceptibility multiplied by the mutual inductance [159],

hXT
i is the adjusted bias with contributions from the bias leaked from adjacent qubits,

and JXT
i j is the induced next-nearest neighbour coupling such that if Ji j does not exist

in the original problem graph, then Ji j = 0.

The next source of noise is low frequency (1/ f ) noise that is ubiquitous on

superconducting flux qubits and is considered a major hindrance to their develop-



1.3. Quantum Annealing using Superconducting Hardware 47

ment [220]. This type of noise is used to generally describe the complex random

noise sources that are prominent at low frequencies. On quantum devices, 1/ f noise

can originate from thermal noise processes but also other quantum phenomena such

as particle scattering and interference. For example, in quantum annealing this can

be significantly detrimental if fields are near-zero for h and J due to the increased

likelihood of field sign changes, altering the problem being computed. Another

source of noise is introduced by the manufacturing inconsistencies between qubits

that produce systematic errors to bias and coupling values. Therefore, setting the

values of h and J on the qubits can be modelled as a stochastic process

hi ∼N (hi +δhi,σhi) (1.14a)

Ji j ∼N
(
Ji j +δJi j ,σJi j

)
, (1.14b)

where N is the normal distribution with arguments of the mean and standard devia-

tion, and δ and σ are the systematic error and deviation, respectively. The values

for these errors and susceptibilities can be found in the annealer parameter manu-

als [229]. Negating these systematic errors is achieved through a technique known

as shimming, which was introduced in Refs. [30, 136]. This is a classical gradient

descent method used to calibrate a system of qubits by adding additional flux biases

to qubits (with no previously set bias) that ensure the average magnetization of a

qubit is centred about zero as much as possible. This calibration step is problem

dependent and is necessary for the successful simulation of quantum systems.

Another prevalent source of error is spin-bath polarization, which introduces

additional biases and correlations in the superconducting system. This is caused

by the parameters of a quantum anneal polarizing the qubit substrate, therefore

introducing additional bias mid-anneal. If anneal times are long and sufficient time is

not left between anneals, the spin-bath polarization can persist, causing subsequent

anneals to be correlated. This is particularly prevalent in reverse-annealing, where the

biasing SQUID causes spin-bath polarization that affects the results significantly (see

Section 2.3). An effective way to average out the analogue errors in superconducting
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flux qubits is by applying a spin-reversal transform (SRT), which is a form of gauge

transformation that changes the bias and coupling signs whilst still preserving the

ground state. For an N qubit problem, a random transform g ∈ {−1,1}N is generated

that changes the parameters

hSRT
i = higi , JSRT

i j = Ji jgig j , (1.15)

such that the spin in the unaltered solution si is recovered from the transformed

solution sSRT
i by si = sSRT

i gi. Therefore, there are at most 2N transforms that one

can apply to the problem, but in practice only a fraction of anneals have a transform

applied (e.g., a different transform for every 10 anneals) due to the increased run-time

of using this error-mitigation technique. The final source of error to be discussed is

readout error, where noise present on the QPU can impact the spin-value measured

in the readout procedure. This is mitigated by introducing a readout thermalization

time before the readout procedure begins to allow qubits time to equilibrate with the

system to reduce the impact of thermal noise fluctuations.

1.3.2 Minor Embedding

So far, the parameters defined have been for the physical qubits rather than the

actual problem, and relating the logical problem parameters defined by the problem

Hamiltonian to the physical qubits requires an embedding. If the logical problem

graph is a sub-graph of the hardware graph, then a direct embedding exists such

that the logical problem qubit is a single physical qubit, and the graph parameters

are placed directly onto the QPU if they are within the allowed parameter ranges

of hi ∈ [−2,2] and Ji j ∈ [−2,1]. Otherwise, the problem parameters are globally

rescaled to meet these ranges. This generally is not a problem unless the parameters

are too far out of this range, in which case the differences between the rescaled

values can be lost to the noise on the QPU. Embedding to specific subsections of the

QPU may also biases the states measured due to the quality of qubits varying across

the entire QPU. Averaging across many embeddings can be used mitigate this, and if

the embedding is small enough then space-division multiplexing can be used. This
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method divides the QPU into many subsections to place many embeddings across it

to maximise the qubit usage across the entire QPU, increase the number of measured

samples per quantum anneal, and also mitigate embedding biases.

Unfortunately, many logical problem graphs (particularly those with con-

straints [116]) cannot be directly embedded onto the hardware graph, either because

they are too large or because no sub-graph exists. If a logical problem graph G is

not a sub-graph of the hardware H, a process called minor-embedding is required

to find a mapping I that will create a new graph I(G) that is a sub-graph of H. This

is done by inserting multiple physical qubits to represent one logical qubit, instead

of the one-one mapping in a direct embedding. Finding a minor-embedding is NP-

hard [230], but heuristic algorithms such as minorminer [230] mean that finding

an embedding is tractable. The multiple physical qubits that represent one logical

qubit are ferromagnetically coupled to act as a collective spin, with an illustration

shown in Figure 1.10. For large problems, this can result in many physical qubits

forming one logical qubit, incurring large coupling strengths relative to the logical

problem parameters. Instances that require minor embedding typically are dense

graphs, have logical qubits with large degrees of connectivity, and have odd cycles

in a graph (Chimera architecture only). To avoid minor-embedding completely, one

would have to turn to novel architectures such as the Lechner-Hauke-Zoller (LHZ)

annealer, which has all-to-all connectivity using quasi-local interactions [231, 232].

This is technologically beyond current quantum annealers as it requires a 4-local

ZZZZ coupler in order to operate.

Not only does minor embedding increase the problem formulation overhead,

but it is also extremely detrimental to the scaling performance of quantum anneal-

ing [27], and can also lead to exponential suppression of logical solutions in sampling

problems [26]. The impact of embedding increases as chains get longer (i.e., more

physical qubits in an embedded logical qubit), where chains can become broken

(misaligned physical qubits) which means some form of post-processing is needed

to choose a logical spin value. This is why there is a drive to not only increase

the number of qubits in a quantum annealer, but to increase connectivity between
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Figure 1.10: An Illustration of a minor-embedded logical qubit with degree 6 in (a) to multi-
ple physical qubits (green) with degree 3 in (b). The logical qubit becomes is composed of
multiple spins in the embedding (typically called a chain) coupled by a strong ferromagnetic
coupling, F , such that all spins in the logical qubit act as an effective qubit (i.e., aligned at
all times). Coupler values external to the embedding remain the same, but the logical qubit
bias is distributed amongst the physical qubits. Figure taken from Ref. [233].

qubits to minimize the amount of minor-embedding. Once a minor-embedding is

found, the next question is how do we parameterize the additional physical qubits

that were added to the problem such that it preserves the ground state of the logical

problem. Theoretical bounds to the parameter setting problem have been explored in

some detail [233–236], but do not match the experimentally derived result for the

Sherrington-Kirkpatrick problem [237] for large problem instances. This is further

explored in Section 2.1.

Particularly difficult problems to solve using quantum annealing because of

the minor-embedding overhead are those with constraints, which in the Ising model

manifest as complete graphs within the original problem graph. A simple example of

this is the graph colouring problem, where we want to know whether we can colour

a graph (assign colours each vertex in V ) with k colours such that no adjacent vertex

in the graph G = (V,E) share the same colour. In QUBO formulation, this has the

form [116]

Q(x) = ∑
v∈V

(
1−

k

∑
i=1

xv,i

)2

+ ∑
(u,v)∈E

k

∑
i=1

xu,ixv,i , (1.16)

and the constraint here is stipulated by the quadratic term that penalizes the solution
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(a) One-hot encoding (b) Domain-wall encoding

Figure 1.11: Examples of a) one-hot and b) domain wall encodings for a single vertex
colouring constraint of a four colouring problem (Equation (1.16)). In (a), all couplers are
anti-ferromagnetic, and in (b) red edges are antiferromagnetic and black are ferromagnetic,
with the original graph shown for comparison. The constant λ > 0 is suitably large to enforce
the domain-wall constraint. Both figures are taken from Ref. [238].

that tries to colour a vertex with more than one colour. This encoding is also called a

one-hot constraint, but generally there can be K-hot constraints. When the quadratic

term is expanded, the logical problem to solve now consists of Kk complete graph at

each vertex (see Figure 1.11a), and increases the minor-embedding overhead making

it harder to solve.

In order to reduce the impact that K-hot constraints have on minor-embedding,

two alternative constraint encoding schemes have been proposed. The first is a

method that encodes the constraint as a domain wall [238], which is shown to have

improved performance by comparison with the one-hot method [239], largely due to

reduction in constraint variables from k to k−1 and there being linear connectivity

rather than a complete graph in the domain-wall encoded constraint (see Figure 1.11).

The other approach is to use hybrid quantum-classical methods that focus on reducing

the quadratic constraint term to a linear term by decomposing the problem to other

sub-problems without constraints in polynomial time (see Section 2.2). A general

example of this reduction method uses the Hubbard-Stratonovich transformation to

reduce the quadratic constraint to a new parameter that can be found using classical

optimization, which, when set correctly, will return the ground state solution [240].

These methods should not be confused with D-Wave Hybrid methods that use a

combination of classical and quantum solvers to find the ground state solution.



1.4. Simulating Quantum Annealing 52

1.4 Simulating Quantum Annealing
Benchmarking quantum annealing against algorithms that can be performed on a

classical computer is an important aspect of identifying whether a quantum advantage

can exist for quantum annealing, and in its current state, it is widely believed

that no quantum advantage can exist. Despite its success, Quantum annealing is

outperformed by parallel tempering Monte Carlo [241–245], the Hamze-de Freitas-

Selby heuristic [246, 247] (for Chimera architectures only), and the hybrid cluster

method [237]; but it can outperform simulated annealing [60, 114] and population

annealing [248,249]. In this section, we do not focus on methods used to benchmark

quantum annealing as an optimization algorithm, but instead survey a range of

numerical and stochastic methods that are used to simulate quantum annealing in

order to better understand the dynamics that occur on a quantum annealer.

1.4.1 Adiabatic Master Equation

To understand how quantum dynamics can be used for computation in quantum

annealing, it is important to simulate the system in both open (i.e., coupled to an

external bath and with limited coherence) and closed (i.e., perfect quantum system

with no decoherence) settings using numerical methods. All quantum systems are

typically described by a wavefunction |ψ⟩, whose mechanics are described by the

Schrödinger equation [250]. The Schrödinger equation can also be written in density-

matrix formalism, such that it contains information about the probability densities of

each eigenstate in the system. The wavefunction can be composed as a sum of many

eigenstates of the system |ψ⟩= ∑i ai |i⟩, such that the density matrix of this system is

simply ρ̂ = ∑i pi |i⟩⟨i|, where pi = |ai|2 is the probability of being in computational

state |i⟩. For a time-dependent Hamiltonian Ĥ(t) and therefore time-dependent state

|ψ(t)⟩, the dynamics are described by the von-Neumann equation

ℏ ˙̂ρ(t) =−i
[
Ĥ(t), ρ̂(t)

]
, (1.17)

which is equivalent to the Schrödinger equation in the dynamics it describes. From

now on all constants such as ℏ are set to unity. When a system Hamiltonian such as
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the transverse-field Ising model (Equation (1.7)) is the total Hamiltonian, it describes

a closed quantum system which can be numerically approximated for small system

sizes using

ρ̂(t) =U ρ̂(0)U† (1.18a)

U = T+ exp
{
−i
∫ t f

0
H(t)dt

}
(1.18b)

where T+ is the forward time-ordering operator. However, when a bath is added

to the system, the total Hamiltonian Ĥ now includes Ĥ = ĤS + ĤI + ĤB, where the

terms are the system, interaction and bath Hamiltonians, respectively. The total

Hamiltonian can be simplified by transforming Ĥ into a rotating frame defined by

unitary U(t) such that, H̃ =U†(t)ĤU(t), where U(t) acts non-trivially on the bath

Hamiltonian term to remove it, leaving H̃ = H̃S + H̃I . The Redfield equation [251]

is a well-established master equation that chooses this rotating frame to be U(t) =

US(t)⊗UB(t), where US(t) is defined in Equation (1.18b) and UB(t) = exp{−iHBt}.

However, this master equation is computationally intractable for systems of even a

few qubits, which makes it impracticable to simulate quantum annealing with unless

the problem can be approximated by a two-level system [38].

Attempts to maintain computational tractability or to capture different coupling

regimes in open quantum systems has resulted in a plethora of master equations,

which all make various approximations or assumptions [144,252–259]. An appropri-

ate and relatively tractable method of simulating open-system quantum dynamics

in quantum annealing is the adiabatic master equation (AME) [142, 143]. It is a

Davies-style master equation [255], where coupling to the bath is introduced through

sets of Lindblad operators [256] in the weak-coupling limit. In order to reduce

complexity, both the Markov assumption and rotating-wave approximation are also

applied to yield

˙̂ρS(t) =− i
[
ĤS(t)+ ĤLS(t), ρ̂S(t)

]
+∑

αβ

∑
ω

γαβ (ω)

[
Lω,β (t)ρ̂S(t)L†

ω,α(t)

− 1
2

{
L†

ω,α(t)Lω,β (t), ρ̂S(t)
}]

, (1.19)
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where HLS is the Lamb-shift term (see Ref. [145]), γαβ (ω) is the noise spectral

density, and Lω,α(t) is the Lindblad operator define by

Lω,α(t) = ∑
ω=Eb−Ea

⟨Ea|Aα |Eb⟩ |Ea⟩⟨Eb| . (1.20)

The Aα term here denotes the coupling of the sub-system α to the bath. To define the

noise spectrum and the Aα term denoting the operator coupling the sub-system α to

the bath, further assumptions based on the quantum system must be made. Generally,

the model of decoherence in open quantum annealing systems typically assumes

that all qubits are coupled equally to the bath independently, qubits experience

decoherence by dephasing, and that decoherence takes place in (or close to) the

instantaneous energy eigenbasis. Therefore, the dephasing on each qubit occurs

through Aα = σ
z
i . The noise spectrum is also generally assumed to take the form of

a bosonic Ohmic bath

γ(ω) = 2πηg2 ω exp(−|ω|/ωc)

1− exp(−βω)
, (1.21)

where β = T−1 is the inverse temperature, ωc is the cut-off frequency, ηg2 is the

dimensionless bath coupling strength. The AME presented so far is in the weak-

coupling limit, where H̃S dominates H̃I such that decoherence occurs in the energy

eigenbasis. However, the other extreme limit where H̃I dominates H̃S is called the

singular coupling limit (SCL). This system is represented by the master equation

˙̂ρS(t) =− i
[
ĤS(t)+ ĤLS(t), ρ̂S(t)

]
+∑

αβ

∑
ω

γαβ (0)
[

Aβ ρ̂S(t)A†
α(t)

− 1
2

{
A†

α(t)Aβ (t), ρ̂S(t)
}]

, (1.22)

where now the Lindblad operators are simply the system coupling operators Aα , and

γαβ (0) = 2πηg2/β from Equation (1.21). Decoherence for this master equation

now occurs in the computational basis [143], and results in a loss of instantaneous

quantum ground state coherence, making adiabatic quantum computation almost
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impossible due to the final state being fully mixed. This results in the state probability

being fully random (i.e., pi = 1/2N) for the singular coupling limit, compared to the

weak coupling limit that follows a Gibbs distribution (i.e., pi = e−βEi/Z).

The AME in the weak-coupling limit has served as a good approximation of

the open-system dynamics on quantum annealers [39, 117, 119, 159, 260], however,

when the energy gap ω is sufficiently small, the weak-coupling assumption in the

AME starts to break down and therefore its validity fails. This is the case for many

hard instances, since the energy gap can be orders of magnitude smaller than the

bath temperature. In such a regime the energy levels become broadened due to the

stronger coupling to the bath, such that the discrete energy levels should emulate a

more continuous potential, similar to the semiclassical picture. Therefore, despite

the AME not being able to describe these strong-coupling regimes as accurately

as more sophisticated models like the Redfield equation, it serves as a reasonable

approximation of the open-system dynamics.

Another limiting factor of both the Redfield equation and AME is the increasing

error with respect to the bath coupling strength. To overcome this, models such

as the non-interacting blip approximation (NIBA) [252, 259], also called polaron-

transformed Redfield equation (PTRE) [144, 145], are designed to operate in these

stronger coupling limits, which is thought to better simulate the dynamics of exper-

imental quantum annealing [38, 145, 261]. In the polaron transform, the bath and

interaction terms become

ĤB = ∑
i,k

ωi,kb†
i,kbi,k , (1.23)

ĤI = ∑
i

giσ
z
i ⊗Bi (1.24a)

Bi = ∑
k

λk

(
b†

i,k−bi,k

)
, (1.24b)

such that the Polaron transformed TFIM Hamiltonian becomes

H(t) = A(t)

[
N

∑
i

σ
+
i ⊗ξ

+
i (t)+σ

−
i ⊗ξ

−
i (t)

]
+B(t)HProblem (1.25a)
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ξ
±
i =U†

B(t)exp
{
±∑

2giλi

ωk

(
b†

i,k−bi,k

)}
UB(t) , (1.25b)

where σ x
i = σ

+
i +σ

−
i . If the system is rotated again with a Markov approximation

applied, then the AME can be re-derived with a different Lindblad operator [145]

Lω,α
i (t) = A(t) ∑

ω=Eb−Ea

⟨Ea|σα
i |Eb⟩ |Ea⟩⟨Eb| , (1.26)

where A(t) is the time-dependent transverse-field coefficient. The most notable part

of the AME-PTRE is that the noise spectrum now consists of high and low frequency

parts that represent a hybrid Ohmic bath [262, 263]. In the polaron frame, the noise

spectrum is simply a convolution of high and low frequency components GL(ω) and

GH(ω), respectively, such that

γp(ω) =
1

2π

∫
∞

−∞

GL(ω− x)GH(x)dx (1.27a)

GL(ω) =

√
π

2W 2 exp
{
−ω−4εL

8W 2

}
(1.27b)

GH(ω) =
4γ(ω)

ω2 +4γ2(0)
, (1.27c)

where γ(ω) is the Ohmic noise spectrum (Equation (1.21)), W is the macroscopic

resonant tunnelling linewidth, and εL is the reorganization energy, which is related

to W via W 2 = 2εLT by the fluctuation-dissipation theorem. This hybrid model of

noise can therefore simulate quantum systems with low-frequency noise in the strong

coupling limit, which is ubiquitous in superconducting qubits.

1.4.2 Quantum Monte Carlo

The intractable simulability of master equations has impelled the development of

classical analogues to large quantum systems, a field commonly known as quantum

Monte Carlo (QMC). There exist many variants of QMC, and they derive their

formulations from the quantum partitions function defined as Z = Tr
{

e−βH
}

, where

the expectation of an operator at thermal equilibrium is ⟨A⟩ = Tr
{

Ae−βH
}
/Z. In

this section, we focus on simulating the transverse-field Ising model (Equation (1.7))
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with path-integral Monte Carlo, off-diagonal expansion Monte Carlo, and subtypes

within each method. Path-integral Monte Carlo (PIMC) [131, 133] is known to be

efficient in simulating quantum annealing [29, 30, 58, 134–137], and is derived from

a Suzuki-Trotter approximation [264] of an exponentiated Hamiltonian containing

non-commuting terms. The partition function of the transverse-field Ising model

containing terms HD (transverse-field) and HP (problem) can be rewritten as

Z = Tr
{

e−βH
}

= Tr
{

e−βH/Nτ

}Nτ

= Tr
{

e−β (HD+HP)/Nτ

}Nτ

= ∑
{s1}

. . . ∑
{sNτ }

〈
s1∣∣e−β (HD+HP)/Nτ

∣∣s2〉 . . . 〈sNτ

∣∣e−β (HD+HP)/Nτ

∣∣s1〉 ,
(1.28)

where {sτ} is the set of all possible spin configurations in the kth Trotter slice

that follow the completeness relation I = ∑{sτ} |sτ⟩⟨sτ |. Note that a cyclic bound-

ary condition is imposed such that sNτ+1 = s1. Applying the Trotter break-up

formula exp{−β (HD +HP)/Nτ} ≈ exp{−βHD/Nτ}exp{−βHP/Nτ} introduces an

error that is proportional to O
(
(β/Nτ)

2). For HD = −A(t)∑
n
i=1 σ x

i and A(t) > 0,

each term in Equation (1.28) therefore becomes

〈
sτ
∣∣e−β (HD+HP)/Nτ

∣∣sτ+1〉≈ 〈sτ
∣∣e−βHD/Nτ e−βHP/Nτ

∣∣sτ+1〉
=
〈
sτ
∣∣e−βHD/Nτ

∣∣sτ+1〉e−βEτ+1/Nτ

= e−βEτ+1/Nτ

n

∏
i=1

〈
sτ

i
∣∣eβA(t)σ x

i /Nτ

∣∣sτ+1
i
〉
.

(1.29)

It can be shown that [131] ⟨↑|eaσ x |↑⟩ = ⟨↓|eaσ x |↓⟩ = cosha, and ⟨↑|eaσ x |↓⟩ =

⟨↓|eaσ x |↑⟩= sinha, and given that the target form of ⟨s|eaσ x |s′⟩ is CeJ⊥ss′ , where s

and s′ are individual spins, it can be shown that [131]

〈
sτ
∣∣e−βHD/Nτ e−βHP/Nτ

∣∣sτ+1〉=Cn exp

{
J⊥∑

i
sτ

i sτ+1
i

}
exp
{
− β

Nτ

Eτ+1
}

(1.30)
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where J⊥ is a ferromagnetic coupling between Nτ Trotter replicas along an additional

dimension named the Trotter/imaginary time dimension. Both the prefactor C and

J⊥ are given by

J⊥(t) =−
1
2

ln tanh
βA(t)

Nτ

, (1.31)

C2(t) =
1
2

sinh
2βA(t)

Nτ

, (1.32)

which then for the full partition function yields

Z ≈ ZPIMC =CnNτ ∑
{s1}

. . . ∑
{sNτ }

e−βEd+1 . (1.33)

The d +1 refers to the additional Trotter dimension added to simulate the properties

of the original problem. The total cost function that can be minimized using Monte

Carlo is

Ed+1(t) =
B(t)
Nτ

Nτ

∑
τ=1

[
n

∑
i=1

hisi,τ + ∑
⟨i, j⟩

Ji, jsi,τs j,τ

]
− J⊥(t)

β
∑
i,τ

si,τsi,τ+1 . (1.34)

This method simulates finite-temperature quantum annealing efficiently and scales

better than the numerical methods employed in Section 1.4.1. Additional open

system effects such as dephasing can also be introduced into this model by including

a phenomenological noise spectrum of the form γ(ω) = 2παω [139–141] where α

is the system-bath coupling, which introduces a coupling between all Trotter slices.

This supplements Equation (1.34) with

EB =− απ2

2βN2
τ

n

∑
i=1

Nτ

∑
τ=1

Nτ

∑
τ ′=τ+1

si,τsi,τ+1

sin2
(

π

Nτ
|τ− τ ′|

) . (1.35)

Despite the success of this algorithm, the error of this method does scale with β and

the total Trotter replicas, but it is found in practice that more Trotter slices does not

necessarily lead to better results, with there being optimal values for Nτ [131, 133].

To remove the error, continuous-time PIMC (CT-PIMC) takes the Nτ → ∞ limit

such that the Trotter dimension is no longer composed of discrete imaginary time
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replicas for each individual spin, but now a continuous timeline of length β [132].

A spin is updated in CT-PIMC by inserting domains into its timeline by a Poisson

process, and the updates are accepted or rejected by a chosen update process such as

Metropolis-Hastings.

The success of PIMC is highly dependent on the method used to update the

d+1-system. The simplest method is using single-spin Metropolis-Hastings updates,

to sweep through all nNτ spins. It is known however that near phase transitions this

method suffers from increased autocorrelation times, drastically increasing the time

to reach thermal equilibrium that is required to calculate the critical exponents of

the system [265–267]. This is remedied by updating clusters of spins instead of

single spins, using methods such as the Swendsen-Wang [268] and Wolff cluster

updates [269].

The next method to be discussed is the off-diagonal expansion Monte Carlo

(ODE) [270, 271], which comes away from path-integral approaches that introduce

discretization error by instead approximating the partition function using a Taylor

expansion of the exponential. It builds upon the stochastic series expansion Monte

Carlo (SSE) [272, 273], by calculating generalized Boltzmann weights instead of

sampling traces. Both methods rely on the off-diagonal operators of the Hamiltonian

being permutation operators with respect to the computational basis, i.e., σ x |↑⟩= |↓⟩.

For the transverse-field Ising model Hamiltonian H =−Γ∑i σ x
i +HP, the partition

function can be expanded using the Taylor series to give

Z = Tr
{

e−β (−Γ∑i σ x
i +HP)

}
= ∑
{s}
⟨s|e−β (−Γ∑i σ x

i +HP)|s⟩

= ∑
{s}

∞

∑
k=0

β k

k!
⟨s|(Γ∑

i
σ

x
i −HP)

k|s⟩

= ∑
{s}

∞

∑
k=0

∑
{Vk}

β k

k!
⟨s|Vk|s⟩ ,

(1.36)

where {Vk} is the set of all product sequences of length k between HP and σ x
i . The

next steps (where we refer the reader to Ref. [270]) involve separating the diagonal
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and off-diagonal terms such that {Vk} no longer has any contributions from HP. The

final form of the partition function becomes

Z = ∑
C

WC , (1.37)

where the configuration C is a set of permutation operators {Vk} that satisfy

⟨s|∏iVk,i|s⟩= 1, such that the generalized Boltzmann weight WC is

WC =
(βΓ)k

k!
e−βEC , (1.38)

where EC is the classical effective energy calculated from the divided differences of

the multiset of energies.

The approach of ODE is not to flip spins as we would in PIMC or simulated

annealing, but to generate sets of permutation operators that would then permute s

to other spin configurations within ⟨s|∏iVk,i|s⟩ = 1. The procedure of generating

sets of permutation operators is continued until ODE Monte Carlo has observed

convergence for some expectation value such as total internal energy ⟨H⟩. Note

that the ODE approach is typically used to retrieve equilibrium statistics from the

quantum system instead of emulating quantum anneals. A more recent extension

to ODE is the permutation matrix representation Monte Carlo (PMR) [66], which

generalizes the forms presented here to capture more complex models, including

those with non-stoquastic terms [274]. Not only does PMR converge faster than SSE

for the problems tested (especially for low temperatures), but PMR is interesting

from the perspective that when a generalized Boltzmann weight is negative, the

problem has a sign-problem. Therefore, PMR can be used to help determine whether

a problem is non-stoquastic.

1.4.3 Classical Dynamics

Identifying quantum dynamics within quantum annealing relies on ruling out possible

classical mechanisms that can explain the observed dynamics. Since quantum

annealing was inspired from the simulated annealing algorithm, the first dynamical
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comparisons were between simulated and quantum annealing [47, 115], but the

distributions of ground states were shown to be uniquely different due to the ground

state in quantum annealing following a different potential landscape compared to

the fixed simulating annealing landscape [159]. A more representative approach to

simulating quantum annealing with classical dynamics is by taking a semi-classical

approximation of the potential landscape, in which a classical particle can follow

the potential described by the transverse-field Ising model (TFIM) Hamiltonian H

(Equation (1.7)). A semiclassical ansatz |Ω⟩ can be derived from the spin-coherent

path integral formalism [275], where the amplitude A between the state at the end of

an anneal at time ta and at t = 0 is defined as

A= ⟨Ω(ta)|T+e−
i
ℏ
∫ ta

0 H(t)dt |Ω(0)⟩

=
∫
DΩ(t)e

i
ℏS[Ω(t)] ,

(1.39)

where the action S[Ω(t)] is given by

S[Ω(t)]] =
∫

dtL=
∫

dt (iℏ⟨Ω(t)|∂t |Ω(t)⟩− ⟨Ω(t)|H(t)|Ω(t)⟩) , (1.40)

and L is the Lagrangian equation. The ansatz |Ω⟩ is described by the spin coherent

state [276]

|Ω(t)⟩ ≡ |θ(t),φ(t)⟩ ≡
N⊗

j=1

cos
(

θ j(t)
2

)
|0⟩+ eiφ j(t) sin

(
θ j(t)

2

)
|1⟩ . (1.41)

This formalism parameterizes each spin in the system with two angles θ and φ , which

are the polar and azimuthal angles in a spherical coordinate system, respectively, and

provides the basis to the classical approaches used to simulate quantum annealing in

the TFIM.

1.4.3.1 Spin-Vector Monte Carlo

The spin-vector Monte Carlo algorithm replaces the Pauli matrices in the TFIM

Hamiltonian with O(3) rotors in the Bloch-sphere. The energy function minimized
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using Metropolis-Hastings updates is

E(s) =−A(s)
N

∑
j=1

cosφ j sinθ j +B(s)

[
N

∑
j=1

h j cosθ j + ∑
⟨ j,k⟩

J jk cosθ j cosθk

]
. (1.42)

Restriction to the XZ-plane of the Bloch sphere (i.e., φ = 0) recovers the O(2)

SVMC algorithm typically used to simulate quantum annealing [277]. The SVMC

algorithm attempts to update all rotor angles, θ , in every sweep (i.e. every increment

of time). There are two update methods typically used for SVMC:

θ
t
j ∈ [0,π], θ

t+1
j ∼ Uniform(0,π) , (1.43)

θ
t
j ∈ [0,π], θ

t+1
j = θ

t
j +min

(
A(s)
B(s)

,1
)

u, u∼ Uniform(−π,π) . (1.44)

The traditional method of update in SVMC is described by Equation (1.43), whereby

the new angle is a sample from a uniform distribution from zero to π . A more

recent update used to capture additional annealing artefacts such as freeze-out is the

transverse-field dependent update method (Equation (1.44)), which we refer to as

SVMC-TF [119].

1.4.3.2 Spin-Vector Dynamics

Despite Monte Carlo methods being efficient simulators of classical dynamics in the

TFIM, it does not have a direct relationship to evolution time and is an approximation

to the semiclassical system. A more exact representation of the dynamics can be

retrieved from the Euler-Lagrange equations of motion, which extremize the action

− d
dt

(
∂L
∂ θ̇i

)
+

∂L
∂θi

= 0 . (1.45)

We look to derive the equations of motion for both O(2) and O(3) semiclassical

models, and set all constants to unity. Starting with the O(2) model [278] where

φ = 0 in Equation (1.41), it can be shown that ⟨θ |∂t |θ⟩ = 0, simply leaving the

potential component to the Lagrangian. The Euler-Lagrange equation therefore
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yields

− ∂

∂θi
⟨θ(t)|H(t)|θ(t)⟩= 0 , (1.46)

where VSC = ⟨θ |H|θ⟩ plays the role of the semi-classical potential. This can be

interpreted as the path of least action through the potential. Rotating the system from

the XZ-plane to the XY -plane changes the spin-vector to
−→
θ i = (sin(θi),cos(θi)).

This results in the system of non-homogeneous equations to be solved numerically

dθi

dt
= ωi (1.47a)

dωi

dt
=−dVi

dθi
= A(t)cosθi +B(t)sinθi

[
hi + ∑

i, j;i ̸= j
Ji j cosθ j

]
. (1.47b)

To include temperature dependence, the Langevin equation is used to add Brownian

motion into the system. The Langevin equation for a particle in a potential is defined

as
dθi

dt
= ωi (1.48a)

dω

dt
=−dV

dx
− λ

m
ω +

1
m

ζ (t) , (1.48b)

where ζ is a Gaussian random process with moments

⟨ζ (t1)⟩= 0 (1.49a)

⟨ζ (t1)ζ (t2)⟩= 2λkBT δ (t1− t2) . (1.49b)

The over-damped Langevin equation for an O(2) system at finite temperature is

therefore
dθi

dt
= θ̇i = ωi (1.50a)

dωi

dt
=−dVi

dx
−λωi +

√
2λTWt , (1.50b)

where Wt is a Wiener process, λ is the damping constant, and all constants are

set to unity. The first term is the force of the potential returning the particle to the

minimum, the second is a damping term on the speed of the particle, and the last term
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contributes the Brownian motion of the particle according to the system temperature.

The final equations of motion to be derived is for the O(3) model (Equa-

tion (1.41)), where the ansatz is not restricted in the Bloch sphere. As a result,

⟨Ω|∂t |Ω⟩ ̸= 0, and it can be shown that

⟨Ω|∂t |Ω⟩=−
1
2 ∑

i
(1− cosθi)

dφi

dt
. (1.51)

When applied to the Euler-Lagrange equations, this yields

1
2

sinθi
dθi

dt
− ∂

∂φi
⟨Ω(t)|H(t)|Ω(t)⟩= 0 (1.52a)

−1
2

sinθi
dφi

dt
− ∂

∂θi
⟨Ω(t)|H(t)|Ω(t)⟩= 0 , (1.52b)

where each equation can be interpreted as the effective torque with respect to each

angle in the spherical basis. This system can instead be converted into a set of Bloch

equations by recognizing the following relation

dM⃗i

dt
= γ

d⃗Li

dt
= γτ⃗i = γ


0

θ̇i

sin(θi)φ̇i

 , (1.53)

where M⃗i is magnetization vector of spin i, γ is the gyromagnetic ratio, τ⃗ is torque

and L⃗ is the angular momentum. Note that there is no dependence on the radius,

which therefore has no contribution to angular momentum, i.e., γ = 1. Rearranging

Equations 1.52 yields the substitutions

θ̇i = 2A(t)sinφi (1.54a)

sin(θi)φ̇i = 2A(t)cosθi cosφi +2B(t)sinθiEi , (1.54b)

where Ei = hi +∑i, j Ji j cosθ j. Currently, the magnetization in Equation (1.53) is in

the spherical coordinate basis, and a change of basis to the Cartesian equivalents
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results in the retrieval of the Bloch equation

dM⃗i

dt
=


−2B(t)Ei sinθi sinφi

2A(t)cosθi +2B(t)Ei sinθi cosφi

−2A(t)sinθi sinφi

= H⃗i× M⃗i , (1.55)

where × denotes the cross product, M⃗i = (sinθi cosφi, sinθi sinφi, cosθi) and

H⃗i =−2A(t)x̂+2B(t)

[
hi +∑

i, j
Ji jM⃗ j · ẑ

]
ẑ . (1.56)

In order to include thermal noise contributions in the time-dependent potential, the

Landau-Lifshitz-Gilbert equation [279–281] must be used

dM⃗i

dt
=

[
H⃗i−λ

dM⃗i

dt
+
√

2λTWt

]
× M⃗i . (1.57)

This is a non-linear stochastic differential equation which is hard to numerically

approximate. In order to circumvent this complexity, Equation (1.55) is perturbatively

inserted to yield a Landau-Lifshitz friction term [279, 282] resulting in the following

equation of motion

dM⃗i

dt
=
[
H⃗i−λ H⃗i× M⃗i +

√
2λTWt

]
× M⃗i . (1.58)

The equation of motion can be separated into the form dM⃗i = f (u, t)dt +g(u, t)dW ,

which is the scalar stochastic differential equation to be solved. We now denote

M⃗i = (mx, my, mz) such that

dM⃗i =


−2λA(t)(m2

y +m2
z )−2B(t)Ei(λmxmz +my)

2A(t)(λmxmy +mz)+2B(t)Ei(mx−λmymz)

2A(t)(λmxmz−my)−2λB(t)Ei(m2
x +m2

y)

dt +
√

2λT


my +mz

mx +mz

mx +my

dW

(1.59)

Although these equations of motion have not been as successful as SVMC in simu-

lating the dynamics seen in quantum annealing [138, 159], they still serve as exact



1.4. Simulating Quantum Annealing 66

models whose dynamics can be easily understood.

In this chapter, the theoretical framework of adiabatic quantum computing,

quantum annealing and the transverse-field Ising model (TFIM) has been introduced,

alongside the schema to encode quadratic unconstrained binary optimisation (QUBO)

problems to the TFIM Hamiltonian. This enables the translation of Karp’s 21

NP-complete problems, a collection of hard problems that scale exponentially in

computational complexity, to the TFIM [116] and is explored in more depth for

the graph-colouring problem in Chapter 2.2. The experimental procedures and

constraints of quantum annealing using D-Wave annealers are detailed, including

the challenges posed by limited inter-qubit connectivity and sources of noise and

error on the quantum processing unit (QPU). The former challenge is solved by

minor-embedding, which enables generic problem graphs to be embedded onto the

QPU with the cost of an increased qubit overhead and the question of how to best set

the parameters on the additional qubits, which is investigated further in Chapter 2.1.

Several models of quantum annealing that can include the ubiquitous error and noise

processes are also presented, which attempt to describe the potential dynamical

processes in experimental quantum annealing, such as thermalization explored in

Chapter 3. These models are represented by both master equation and Monte-Carlo

simulations of classical and quantum systems, which are compared throughout the

subsequent chapters to contrast between quantum and classical dynamical processes

that could impact quantum annealing.



Chapter 2

Quantum Annealing Optimization

To solve an optimization problem using quantum annealing, the adiabatic theo-

rem [13] must be adhered to in order to remain in the ground state at all times during

the anneal. However, in experimental quantum annealing this is typically not possi-

ble due to decoherence in the quantum system and the existence of exponentially

scaling minimum gaps for the hardest of problems. Therefore, despite initializing in

the ground state of a quantum system, diabatic transitions occur to excited energy

states which correspond to suboptimal solutions to the optimization problem. This

has meant that when solving optimization problems on a quantum annealer, the

time-to-solution scales exponentially in problem size [29, 60]. Nonetheless, the

search continues for quantum annealing algorithms that can scale better than their

classical counterparts, despite the exponential scaling. This has been demonstrated in

the field of quantum simulation, with hints of a scaling advantage observed [30], but

this success requires intimate knowledge of the quantum annealer machine to correct

integrated control errors and adjust the problem to meet the hardware constraints,

meaning that a quantum annealer cannot generally be treated as a black box.

For most optimization problems, several transformations are required (see Sec-

tion 1.3.2) to reach the level where the problem can be implemented on the physical

quantum processing unit (QPU). This includes finding the values for the additional

parameters introduced in the transformation that preserve the problem. The trans-

form that is particularly detrimental to performance is that of minor-embedding [27],
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where the additional qubit overhead (particularly due to constraints) increases prob-

lem hardness [26]. In this section, we look to remedy these issues that quantum

annealing optimization faces. Firstly, in Section 2.1 we perform a comparison of

various parameter-setting methods, including the proprietary D-Wave method, for

solving random optimization problems and look at their performance measured by

time-to-solution. Secondly, in Section 2.2 we focus on reducing the number of addi-

tional qubits (overhead) introduced by minor-embedding by removing constraints

through hybrid quantum-classical methods, in particular we focus on reducing the

graph colouring problem by transforming the cost function in Ref. [116] to several

maximal independent set problems.

Finally, in Section 2.3 we look at a new form of heuristic quantum annealing that

uses diabatic transitions for computation, called reverse annealing. The protocol acts

as a local search algorithm by initializing the system in a previously found solution

(normally by classical means), and then partially turning on the transverse field to

allow for transitions to better solutions. We explore the properties of this method by

measuring how likely it is for an initial state to reach the ground state as a function of

their Hamming distance using both experimental and numerically simulated reverse

anneals. We find that reverse annealing can be used for computation, but is plagued

by experimental noise sources that bias the system. For a problem that is sensitive

to errors in its parameters, it is unlikely that reverse annealing can be used for

computation.

2.1 Parameter Setting

In quantum annealing, the logical problem graph we want to solve typically does

not directly translate (embed) onto the hardware due to topological constraints (see

figure 1.9 for hardware topologies). To overcome this, a method called minor-

embedding is used to make the problem graph translate onto the hardware by adding

additional qubits to the problem (section 1.3.2). The introduction of new qubits and

couplers can produce bottlenecks in practical quantum annealing [27] as dense prob-

lems typically need far more additional qubits in an embedding, limiting the logical
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problem size. The additional physical qubits introduced through an embedding must

act as a collective spin to represent the logical qubit in the original problem, meaning

that all the new embedded couplers within a logical spin must be ferromagnetic.

This leaves the open the question of how do we set the parameters of these new

qubit biases and couplers that will be physically implemented on the hardware?

This question has not been widely explored in the literature, largely because the

heuristic parameter setting normally used (i.e., uniform distribution of the original

bias amongst qubits and strong ferromagnetic couplers of the same strength) is seen

as enough to preserve the ground state solution in an embedding. However, optimal

bounds for the ferromagnetic coupling strength were found to exist experimentally

for the Sherrington-Kirkpatrick (SK) model [237] by finding what ferromagnetic

coupling strength yields the highest ground state probability for the minor-embedded

problem. The SK model does not contain any qubit biases, so the bound does not

extend to problems with biases.

Bounds on the ferromagnetic coupling strength exist because the minimum

coupling strength should be large enough to ensure that the fully aligned state

within an embedding is always energetically favourable. Theoretical bounds to the

parameter-setting values were first produced by V. Choi [234], with a tighter bound

closer to the experimental result later found by Y. L. Fang [233]; however, neither

fully match the experimental bound set in Ref. [237], particularly for large problems.

The basis for the bound set by Y.L. Fang [233] exhaustively compares the energies of

all configurations in the minor embedding to set the coupling strength large enough

to ensure the fully aligned state is the minimum energy state in the embedding. The

Fang method relies on the logical qubit bias already being distributed across the

physical qubits in the minor-embedding, of which the optimal distribution is not

known. The alternative method by Choi [234] does provide a method of setting

biases onto the new qubits, and determines this from calculating a quantity that

describes whether a qubit is locally determinable. What we will present in the rest

of this section is an assessment of the performance (in terms of time-to-solution)

of various parameter setting methods finding solutions to Erdős-Rényi graphs with
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randomly set logical parameters. The Fang method with uniform biases proves to be

the best parameter setting method overall, but given its complexity, it is intractable

if the embedding is large (i.e., the logical vertex contains more than 20 spins in the

embedding).

Let us define the logical problem graph G = (V (G),E(G)), to be embedded

onto a hardware graph U = (V (U),E(U)), and if G is not a sub-graph of U , then a

minor-embedding is required to map G onto a sub-graph of U . If a minor-embedding

mapping I exists, then I := (ν ,ε), where

• ν : V (G)→V (U), where each vertex i ∈V (G) is mapped to a set of vertices

ν(i)⊂V (U),

• ε : V (G)×V (G)→V (U), which is the mapping of edges such that for edge

i j ∈ E(G), ε(i, j) ∈ ν(i) and ε( j, i) ∈ ν( j).

If |ν |> 1 (i.e., there is no direct mapping of the vertex in G to a vertex in U), there

must also exist a set of edges τ(i) that connect the set of vertices in V (U) that

represent the logical vertex i such that τ(i) = E(ν(i))⊂ E(U). It is the parameters

within (ν ,τ) that we are concerned with when it comes to the parameter setting

bounds, where the edges in τ(i) are the ferromagnetic couplers used to create the

aligned spins in the logical qubit. The bounds depend on the problem parameters in

the logical graph, therefore if the logical problem Hamiltonian to be embedded is

HG = ∑
i∈V (G)

hiσ
z
i + ∑

i j∈E(G)

Ji jσ
z
i σ

z
j , (2.1)

then the Hamiltonian for the mapped graph I(G)⊂U is

HI(G) = ∑
i∈V (G)

(
∑

k∈ν(i)
hi(k)σ

z
k + ∑

pq∈τ(i)
F pq

i σ
z
pσ

z
q

)
+ ∑

i j∈E(G)

Ji jσ
z
ε(i, j)σ

z
ε( j,i) , (2.2)

where F pq
i is the ferromagnetic coupling strength between vertices p,q ∈V (U) that

represent logical qubit i (to ensure p,q behave as a collective vertex), and where

hi = ∑k∈ν(i) hi(k) such that the energy of the logical Hamiltonian is conserved with
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only some offset of c = ∑i∈V (G)∑pq∈τ(i)
∣∣F pq

i

∣∣. The optimal distribution of hi(k) is

an open question that we will explore further in the section. The exception to this is

Choi’s method, whereby the biases need to be set in a certain way for the definition

of the optimal bound (for Choi’s second theorem). This approach requires us to

define a classical measure of non-locality C(i) on qubit i,

C(i) =−|hi|+ ∑
j∈A(i)

∣∣Ji, j
∣∣ (2.3)

where hi and Ji, j are the qubit biases and adjacent couplers respectively, and A(i) is

the neighbourhood function that returns a set of nodes adjacent to i in the graph G. If

C(i)< 0 then the bias dictates the spin of the qubit such that it is locally determined,

otherwise the spin of the qubit is determined by the global state (non-local). To

define hi(k), we also define the function ∆(i,E) as the degree of vertex i within a

given set of edges E, the number of leaves l(i) in the sub-graph defined by the edge

set τ(i), and the original neighbourhood function, O(i(k)). This function will return

a set of adjacent nodes that are in a different logical node within the embedding, i.e.,

not other nodes within a logical node. Without loss of generality, it is assumed that

C(i)≥ 0 (non-local), such that if the local biases are defined as

hi(k) = sign(hi)


−C(i)

l(i)
+ ∑

j∈O(i(k))

∣∣Ji j
∣∣ if ∆(k,τ(i)) = 1 ,

∑
j∈O(i(k))

∣∣Ji j
∣∣ otherwise

(2.4)

then taking from Choi’s first theorem Fi ≤ −|hi|−∑ j∈A(i,E(G))

∣∣Ji, j
∣∣ means that a

tighter bound can be set to define Choi’s second theorem

Fi ≤−
l(i)−1

l(i)
C(i) . (2.5)

The method developed by Fang however yields a bound that is equal or tighter than
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Equation (2.5) if and only if the same biases are used as defined in Equation (2.4)

l(i)−1
l(i)

C(i)≥ C(i)
|∂Wi|

∀C(i)≥ 0 , (2.6)

where |∂Wi| is the number of possible domain walls that can form in the minor-

embedding of vertex i, which is always |∂Wi| ≥ 1. To derive the bound for an

embedding using the Fang method, all parameters except for the minor embedding

ferromagnetic coupling strengths must be set, from which the energies of all possible

spin configurations within the embedding are calculated. To ensure that the fully

aligned states are always energetically favourable, it holds that the energy of the all

up (down) configuration e↑ (e↓) should be less than every other spin configuration

ei, such that ei− e↑ > 0 and ei− e↓ > 0 ∀i. By using PYTHON’s SymPy library, a

bound for the ferromagnetic coupling strength F can be found generally for any

minor-embedded qubit in the problem, as long as there are 20 or fewer spins that

form the logical spin (see Ref [233] for a more detailed proof). The Fang method

also allows for different bias distributions to be implemented, but can only guarantee

that the bound holds if the biases set follow the condition for admissibility, which is

defined as guarantee that the parameters used for an embedding do not exclude any

possible spin configuration. Examples of possible non-admissible embeddings occur

if the condition C(i)≥ 0 is true, and if a single bias distribution is used [236], where

a single qubit in the embedding possesses the logical bias hi, with all others set to

zero.

Both the Choi and Fang methods are more sophisticated than the proprietary

D-Wave embedding method, which sets all minor-embedding chain strengths to

F = −1, and uniformly spreads a bias among all qubits that constitute a logical

qubit. This heuristically makes it unfavourable to have anti-aligned spins within

a minor-embedded vertex, but not with absolute energetic certainty. An example

of the methods evaluated is shown in Figure 2.1, where a single logical spin is

composed of three physical spins in the embedded system. The sum of the new

biases h10 +h11 +h12 = h1, and the minor-embedding strengths are calculated for

both Choi and Fang methods. The non-locality is C(1) = 1.1 (i.e., an admissible
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Figure 2.1: Illustration of the minor-embedding of a three spin problem, where the central
logical spin consists of three physical spins in the embedding. The local field biases on
the embedded spin are h10 = −0.3, h11 = −0.3, h12 = −0.3 for the uniform bias, and
h10 =−0.45, h11 = 0.0, h12 =−0.45 for the Choi and weighted bias methods. The minor-
embedding ferromagnetic coupling strength for D-Wave is F =−1.0, and F =−0.55 for
both Choi and Fang (Choi and weighted bias) coupling strengths. The Fang coupling strength
with uniform bias yields F =−0.4.

embedding) and l(1) = 2, resulting in F =−0.55 for the Choi method. The Fang

methods exhaustively test all combinations in the embedding once biases are set,

yielding embedding strengths equal to the Choi method, with exception to the

uniform bias setting method, which yielded the lowest minor-embedding strength

(F =−0.4) out of all methods for this problem.

To evaluate the performance of each method, we explore experimentally (using

Erdős-Rényi graph instances) which out of the D-Wave, Fang or Choi methods yields

the best time to solution (TTS), defined as

TTS = t f max
(

ln(1− pd)

ln(1− pG)
,1
)
, (2.7)

where t f is the annealing time, pd is the desired probability threshold (typically set

to 0.99 confidence that the ground state has been found), and pG is the measured

ground state probability. This measure is commonly used to compare quantum

anneals of different annealing times, as longer anneals can yield higher ground state

probabilities but not necessarily lower times-to-solution. The ground state solution(s)
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for these systems are found using exhaustive searches, thus we do not look at graphs

with size greater than 20 vertices. The question of what is the optimal bias setting

method was left as an open question by Fang [233], so we will also compare various

methods such as Choi, uniform, and weighted bias settings, as each affects the

non-locality of the embedded problem differently. The bias of a spin in the weighted

method is defined as

hi(k) =
hi

∑
j∈A(i)

∣∣Ji j
∣∣ ∑

j∈O(i(k))

∣∣Ji j
∣∣ , (2.8)

where bias is weighted on qubits with more logical couplers. If the original logical

spin has a C(i)≥ 0, then for all embedded spins, the weighted bias also ensures that

C(i(k)) =

1− |hi|
∑

j∈A(i)

∣∣Ji j
∣∣
 ∑

j∈O(i(k))

∣∣Ji j
∣∣+ ∑

p∈I(i(k))

∣∣∣F pi(k)
i

∣∣∣≥ 0 , (2.9)

where I is the internal neighbourhood function of an embedded spin. We exclude

the single bias distribution method [236] from the experiments due to the high

likelihood of non-admissibility [233]. The final TTS reported here does not include

the embedding pre-processing time, the same way that minor-embedding mappings

are not included into the TTS, because it is considered part of the problem formulation

process and not part of the solution computation.

To illustrate the problem instances that can be embedded onto D-Wave archi-

tectures, Erdős-Rényi graphs (randomly generated graphs, where an edge is placed

between a pair of nodes with some probability p) of various sizes with an average

node degree of 6 were generated (i.e., p = 6/(N−1)). The bias and coupler value

are randomly chosen from a normal distribution of zero mean and unit variance, and

are then normalized to the standard D-Wave parameter ranges of hi ∈ [−2,2] and

Ji j ∈ [−2,1]. For logical problem sizes of 14 to 20 vertices, twenty Erdős-Rényi

instances were generated (140 instances in total) and then minor-embedded onto

the Los Alamos National Laboratory (LANL) D-Wave 2000Q quantum annealer.

Ferromagnetic chain strengths and qubit biases were calculated for each of the seven

methods for a given embedding. The details and time complexity for each method
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Method Coupling Strength Bias Time Complexity Average F
1 D-Wave Uniform O (1) −1.0
2 D-Wave Weighted O (DL) −1.0
3 D-Wave Choi O (DL) −1.0
4 Choi Choi O (DL) −2.008
5 Fang Uniform O

(
D2L) −1.960

6 Fang Weighted O
(
D2L) −1.854

7 Fang Choi O
(
D2L) −2.004

Table 2.1: Outline of the various parameter-setting methods used in testing and their given
time complexity, where L is the number of physical qubits in an embedding, and D is the
degree of the logical qubit. Both Choi and Fang methodologies are outlined in Ref. [234]
and Ref. [233], respectively, with the D-Wave method simply setting coupling strengths to
-1, irrespective of problem information. The ferromagnetic coupling strength F within an
embedding is averaged across all nodes in all 140 instances is also shown to illustrate the
differences between each method.

are illustrated in Table 2.1. The additional overheads incurred by each method are

not included in the TTS metric, as we focus on the effects of embedding on the

quantum computation rather than the classical resources required to run the quantum

computation (which are typically significant). All problems have a non-degenerate

ground-state and were annealed for 4µs, with no spin-reversal transforms applied to

directly compare the naïve implementations of each parameter setting method due

to the potential biases introduced from transforming the embedding. For example,

the Choi method may have frustration across a ferromagnetic coupler as biases can

have opposite signs, and this frustration may be relieved through a gauge transform.

Majority-vote post-processing is also applied, where in that case the spins forming

the logical spin in the embedding are not all be aligned, the sign of the logical spin is

taken to be the most common spin sign in the logical spin.

The times-to-solution as a function of logical problem size for the raw (no

post-processing) and the majority-vote post-processed solutions for each method

in Table 2.1 are shown in Figure 2.2 and Figure 2.3, respectively. The number of

solutions found for each logical problem size are also shown to further highlight the

differences in each method. The worst performing method was the constant D-Wave

chain strength of −1 which set biases with the Choi method, which had an infinite

TTS if there was no post-processing. However, upon post-processing there is a large
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Figure 2.2: Data from the LANL D-Wave 2000Q without post-processing showing a) the
median time-to-solution (TTS) and b) the count of whether the single ground-state solution
was found out of the 20 random instances generated for each logical problem size for each
parameter setting method. For all 140 problem instances, the probability of finding the
ground-state was calculated from the median of 21 sets of 10,000 4µs quantum anneals with
no spin-reversal transforms. The error-bars plotted are the 95% confidence bounds of the
median TTS values. A different minor-embedding with random placement on the LANL
D-Wave 2000Q was used for each set of anneals. For the TTS, pd = 0.99 and the median
over all problem instances for a given logical problem size is plotted in a). Note that the
median TTS for the D-Wave: Choi parameter setting method could not be defined in a), as
too few ground-state solutions could be found for the defined problem instances, i.e., less
than 11 solutions in b) results in no finite median existing.

recovery in the number of solutions found (Figure 2.3b), which indicates that many

of the embeddings are misaligned (broken). This is typical of the Choi bias setting

method, as despite the sum of biases of the embedded qubits equalling the original

bias on the logical qubit, having both positive and negative biases can frequently

occur within an embedding. This creates frustration within the minor-embedding due

to all couplers being ferromagnetic, and increases the likelihood of a domain wall

forming, which is only remedied through majority-vote post-processing. Using the

chain strength set by the Choi method does not suffer from this due to the coupling

strength typically being large enough to prevent domain walls from occurring, but it

is still out-performed by the other methods.

To better illustrate the performance of all methods, for each of the 140 instances
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Figure 2.3: Data from Figure 2.2 with post-processing showing a) the median time-to-
solution (TTS) and b) the count of whether the single ground-state solution was found out
of the 20 random instances generated for each logical problem size for each parameter
setting method. Instead of discarding solutions with broken embeddings as in Figure 2.2,
majority-vote post-processing was used to assign logical-spin values to broken embeddings.
The error-bars plotted are the 95% confidence bounds of the median TTS values.

Figure 2.4: The best performing parameter-setting method, illustrated by win percentage
out of all 140 problem instances, where a win for a method is when it has the lowest TTS for
a given instance. Both raw and post-processed data sets are shown.
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the best performing method “wins” if it has the lowest TTS out of all methods. The

win percentage out of all 140 instances is shown in Figure 2.4 for both raw and

post-processed data. Here, the best performing method is the Fang method with

uniform biases, with all others performing relatively similarly (apart from method 3

as discussed previously). As seen in Table 2.1, the lowest average coupling strength

F that energetically ensures an aligned embedding is method 6, the weighted bias

Fang method. Typically, the lower the value of the coupling strength, the better

we expect it to perform due to the problem being effected less by rescaling of the

problem to fit the D-Wave parameter range whilst also being considered a tighter

bound to what may be experimentally derived [237]. Therefore, to assist in the

explanation as to why the uniform Fang method performs best, we look at using

the non-local measure C(i) stated in Equation (2.3) as a proxy for admissibility in

the embedded graph, I(G). If an embedding has a C(i(k)) < 0, then its local bias

determines the spin-sign and therefore excludes a spin-configuration, hence violating

the admissibility condition. To gauge how admissible the embedding parameters are,

the average minimum non-locality is found, which we define as

C̃min =
1

|V (G)| ∑
i∈V (G)

min{C(i(0)),C(i(1)), . . . ,C(i(|ν(i)|))} . (2.10)

The median C̃min across all 20 instances for each method and problem size is shown

in Figure 2.5a, and illustrates a consistent ordering between methods. The ordering

of C̃min for the D-Wave methods in Figure 2.5a also corresponds to the instance

win % order in Figure 2.4. Furthermore, the largest C̃min also corresponds to the

uniform Fang method, which has the highest win %. Relating C̃min of each problem

to the post-processed TTS data in Figure 2.3 requires a new metric to fairly compare

TTS across different system sizes. This will be defined as the time-to-solution ratio

(TTSR), where for some parameter-setting method m out of the 7 methods and for a

graph of size N, it is defined as

TTSR(m, N) = logA
TTSm,N

min
{

TTS1,N , TTS2,N , . . . , TTS7,N
} (2.11)



2.1. Parameter Setting 79

Figure 2.5: Plot of a) average minimum non-locality C̃min, as a function of system size,
and b) a fit of TTSR (Equation (2.11)) against C̃min to illustrate the correlation between
the variables. The C̃min used is the median out of the 20 graph instances for each problem
size, and the TTS data used to calculate the TTSR is taken from the post-processed data in
Figure 2.3. The correlation has R2 = 0.750 and is statistically significant, with a p-value of
1.33×10−9 , which was found from a two-sided hypothesis test whose null hypothesis is
that the slope has a zero gradient, using a Wald Test with the t-distribution of the test statistic.

where A is some scaling factor that ensures T T SR > 0, as to not infer that the

minimum TTS out of all the methods tested is the optimum parameter-setting method

generally. Setting A = 1.04, the TTSR is plotted in Figure 2.5b against C̃min and

illustrates the negative correlation of R2 = 0.750 between the two variables. The

statistical significance of this correlation is measured using a two-sided hypothesis

test whose null hypothesis is that the slope has a gradient of zero, and a p-value of

1.33×10−9 was found. Note that any apparent missing data points in Figure 2.5b

are due to non-finite TTS’s.

It must be realized that simply increasing C̃min to reduce the TTSR as suggested

by the correlation in Figure 2.5b would be limited in its success as increasing fer-

romagnetic coupling strength increases C̃min (Equation (2.3)) but also minimizing

the ferromagnetic coupling strength is crucial to the experimental success proba-

bility [237] as too large a coupling strength will be detrimental to the computation.

Considering this interplay, finding bias setting methods that can increase C̃min for

a given ferromagnetic coupling strength is shown to be a good proxy for finding
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optimal parameters for an embedded random problem. For the proprietary D-Wave

method this is shown to be true, as despite it not energetically ensuring the alignment

of an embedding, the weighted bias method has the best win rate in Figure 2.4

out of the other D-Wave methods with other bias parameters. This relates back

to equation 2.9 that ensures C(i(k)) ≥ 0, ∀k if C(i) ≥ 0, whereas the uniform bias

method does not ensure this condition, meaning values of C(i(k)) < 0 can occur,

which is non-admissible and lowers the value of C̃min (Figure 2.5a).

In conclusion, a good choice of parameter setting method that takes into account

the specific embedding of the problem can lead to better times-to-solution over the

proprietary D-Wave approaches, therefore mitigating the detrimental effects of

minor-embedding. However, what parameter-setting method performs best is highly

dependent on the optimization problem and the embedding itself. Therefore, there

is no “one size fits all” optimal parameter setting method, as seen by the general

spread of win rates in Figure 2.4. However, out of the parameter-setting methods

tested on the 140 Erdős-Rényi instances with randomly set biases and couplers, the

Fang method with uniform biases proved to perform the best in terms of having the

largest win rate in Figure 2.4, and having consistently low times-to-solution relative

to the other methods in both raw and post-processed quantum anneals in Figure 2.2

and Figure 2.3, respectively. However, as seen from Table 2.1, the complexity of

the Fang method, O(D2L), means that it is only computationally accessible if the

number of embedded spins L is less than 21. The heuristic D-Wave methods that are

generally used for quantum annealing because of the low computational overhead,

often performed worse compared to theoretical methods that ensure aligned spin

configurations in an embedding are always the energetically favourable state.

This poor performance was notable when the D-Wave method was combined

with the Choi bias setting method, where the majority of solutions couldn’t be

found without post-processing. This is largely because the Choi biasing method

introduces frustration into the embedding by sometimes placing biases of opposite

signs across the ferromagnetic coupler within the logical spin, which detrimentally

affects all methods that used the Choi biasing method. For the random problems
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tested, it was also found that the time-to-solution ratio of all parameter-setting

methods correlated with the average minimum non-locality parameter C̃min. This

correlation with an R2 = 0.750 provides a possible reason as to why the uniform Fang

method generally performs well despite having a higher average coupling strength

compared to the weighted Fang method (Table 2.1). Therefore, C̃min of a parameter

setting method can be used as a guide to picking the best method for an embedding,

but it should be noted that the interplay with the optimal embedded coupling strength

also contributes to performance. Therefore, future work would look to test other

classes of problems, as well explore new biasing schemes that ensure admissibility

and maximize the minimum non-locality in a way that keeps the embedded coupling

strength minimized. Further evaluation is also required in the context of quantum

advantage, where the cost of the classical resources when parameter setting will be

significant compared to the quantum computation, especially for the Fang parameter

setting method.

2.2 Graph Colouring

The formulations of Karp’s 21 NP-complete problems [283] in quadratic uncon-

strained binary optimization (QUBO) form (which can then be translated to the Ising

model) are presented by Lucas in Ref. [116], and are an important basis for many

quantum-annealing optimization problems. However, many of Karp’s problems

require solutions to fulfil some constraints, which can be achieved by using k-hot en-

coding in QUBO form. This encoding stipulates that out of a set of binary variables,

only k variables can have the value 1. This encoding normally comes at the cost of

having a quadratic increase in the number of bits as we encode the computational

problem into the logical problem, but classically this results in an exponential in-

crease in the difficulty of solving the problem. Furthermore, the variables that form

a k-hot encoding are fully-connected, creating regions of high density within the

logical problem. This last feature proves to be detrimental in the final process of

embedding the logical problem onto a quantum annealer, which as discussed in the

previous section already poses a major obstacle to the success of practical quantum
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Figure 2.6: Illustration of a 7-vertex problem graph G = (V,E) correctly coloured with
three colours. The minimum colouring of this graph (i.e., the chromatic number) is with two
colours.

annealing.

Graph colouring is one of Karp’s 21 NP-complete problems (see Figure 2.6),

which in QUBO form uses one-hot encoding to ensure that each node in the com-

putational problem is coloured with only one colour. Many optimization problems

(particularly within the context of networks) can be formulated as a graph colour-

ing problem, such as frequency/time division multiple access networks [284] and

wavelength division multiplexing [285]. Specifically, the NP-complete version of

the graph colouring problem asks whether we can colour a graph with k-colours

such that no two adjacent vertices have the same colour; whereas finding the chro-

matic number of a graph (the minimum number of colours needed to colour it) is

an NP-hard problem. In this section, we will show that the one-hot encoded graph

colouring (GC) problem can be decomposed into to several maximal independent

set (MIS) problems, which we refer to as greedy MIS colouring. It is acknowledged

that a similar version was recently presented by Kwok and Pudenz in Ref. [286], and

we compare our work against that method as well. Overall, this approach to graph

colouring uses fewer variables than the encoded version and solves the NP-hard

version of this problem, and therefore the NP-complete problem. Removing the

one-hot encoding is shown to lead to better scaling as problem size increases, as

well as have the practical advantage of being able to implement larger problems on
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experimental quantum annealers. The NP-complete version of the graph colouring

problem presented by Lucas [116] (hence now called the Lucas method) states that

if there is a k colouring solution x for a problem graph G = (V,E), the QUBO cost

function

Q(x) = ∑
v∈V

(
1−

k

∑
i=1

xv,i

)2

+ ∑
(u,v)∈E

k

∑
i=1

xu,ixv,i (2.12)

equals zero. The squared term represents the one-hot encoding that penalizes any

vertices having a colouring ̸= 1. Expanding out this term allows us to write the full

QUBO, which represents the logical version of the computational problem, L, which

has k|V | binary variables

Q(x) = ∑
v∈V

(
1−

k

∑
i=1

xv,i +2 ∑
i< j

xv,ixv, j

)
+ ∑

(u,v)∈E

k

∑
i=1

xu,ixv,i . (2.13)

Using the equation si = 2xi−1, a change of variables is used to turn the QUBO cost

function into an energy cost function that can solved in the Ising model

E (s) = ∑
v∈V

(
k

∑
i=1

2k+∆v−4
4

sv,i +
1
2 ∑

i< j
sv,isv, j

)
+

1
4 ∑
(u,v)∈E

k

∑
i=1

su,isv,i + c , (2.14)

where ∆v is the degree of node v and c= (|V |(4+ k(k−3))+ k|E|)/4. The quadratic

increase in spins from |V | to k|V | stems from each vertex in G now constituting a

complete graph of order k, created by the quadratic constraint.

The sets of colours for a valid graph colouring solution are all disjoint, such that

they are by definition independent sets. Therefore, by taking the greedy approach to

finding the colour sets, we would want to find multiple maximal independent sets

(MIS) to complete the colouring. The MIS QUBO cost function is defined as

Q(x) =−A ∑
v∈V

xv +B ∑
(u,v)∈E

xuxv , (2.15)

where B > A to always maintain the independent set condition. In Ising form,
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equation 2.15 becomes

E (s) = ∑
i∈V

(
−A

2
+ ∑

j∈A(i)

B
4

)
si + ∑

(i, j)∈E

B
4

sis j +

(
B|E|−2A|V |

4

)
. (2.16)

The values of A = 1 and B = 2 are used throughout the rest of this section.

Re-framing the graph colouring problem to the MIS problem is a well known

reduction in graph theory, but it is not widely used because finding solutions to MIS

problems can be as hard, if not harder in some instances, than finding the colouring

of that graph. However, the converse is true for quantum annealers where hardware

constraints exist, where it is harder to find solutions to colouring Hamiltonians

with quadratic constraints than it is to find solutions to MIS Hamiltonians without

quadratic constraints because of minor-embedding issues. The method used to colour

a graph with MIS’s is defined in algorithm 1, and assigns an MIS to constitute a

colour set, removing that set from the graph, and repeating until there are no vertices

left in the graph. The number of variables required to find a k colouring with Alg. 1

is always less than or equal to k|V |.

Algorithm 1 Greedy MIS Colouring

1: Graph G = (V,E)
2: Colours = /0
3: while G ̸= /0 do
4: M← Vertices with degree 0 ∈ G
5: G = G−M
6: Find maximal independent sets of G
7: I← maximal independent set with most adjacent edges in G
8: Colours = Colours + {M+ I}
9: G = G− I

10: end while

If Alg. 1 is to finish in the fewest iterations possible, which not only would

return a colouring close to the chromatic number but also reduce computational effort,

an additional greedy protocol is required to removing the maximal independent set

with the most adjacent edges upon a graph update. The Kwok method [286] is similar

in its formulation to Alg. 1 but does not set a condition for choosing the MIS to be

removed and does this randomly. The reason for the greedy protocol is given by the
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lower and upper bounds on the size of maximal independent sets (equation 2.18), of

which proofs are now given. We first start by defining the number of vertices and

edges in the problem graph G as n = |V | and e = |E|, respectively, and the number

of edges on any graph is upper bounded by Turán’s theorem defined in Ref [287]

e≤
(

1− 1
r

)
n2

2
, (2.17)

where r is the size of the largest clique (fully-connected sub-graph) in the G. The

bounds on the MIS size for any graph are now given.

Theorem 2.2.1. Let |I| be the cardinality of the maximal independent set I in graph

G, it holds that |I| is bounded by

n2

2e+n
≤ |I| ≤ 1+

√
1+4n2−4n−8e

2
∀ e >

n
2
. (2.18)

Proof. Upper bound: The number of edges between vertices that are not in I are at

most
(n−|I|

2

)
, and the number of edges that connect vertices in I to those not in I are

at most |I|(n−|I|). There are no edges between vertices in I. Therefore,

e≤
(

n−|I|
2

)
+ |I|(n−|I|) ,

2e≤
(
|I|2 + |I|(1−2n)+

(
n2−n

))
+2|I|(n−|I|) ,

|I|2−|I|−
(
n2−n−2e

)
≤ 0 ,

and given that |I| ≥ 0, solving the quadratic yields

|I| ≤ 1+
√

1+4n2−4n−8e
2

.

Lower bound: Let Ḡ be the compliment for the problem graph G, it holds that the

maximal clique size r̄ in Ḡ is equal to the maximal size of an independent set in G.

Therefore, using equation 2.17,

ē =
n(n−1)

2
− e≤

(
1− 1

r̄

)
n2

2
=

(
1− 1
|I|

)
n2

2
,
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where n(n−1)/2 is the number of edges in a complete graph. The maximal inde-

pendent set is therefore bounded by

n2

2e+n
≤ |I| .

The bounds defined in equation 2.18 dictate the range of MIS sizes that are possible,

and both bounds increase if the relative number of vertices to edges increases (i.e.,

average vertex degree decreases). Therefore, after each iteration in Alg. 1, it is nec-

essary to remove the MIS that will cause the largest decrease in the number of edges

in the subsequent graph, which is equivalent to choosing a maximal independent set

that has the maximum number of edges between the vertices in I and those not in I

(V\I). We refer to Alg. 1 with this greedy protocol as greedy MIS colouring (GMIS),

and we also refer to the Kwok method which does not have this protocol as random

MIS colouring (RMIS).

We now move to onto a comparison between the Lucas, RMIS, and GMIS

methods of graph colouring (Alg. 1), using a quantum annealer to compute the

combinatorial optimization components of each method, such that the RMIS and

GMIS methods can be thought of as quantum accelerated algorithms (sometimes also

referred to as quantum-classical hybrid algorithms). Two problem classes are used in

this comparison, the first being the extremal case of Turán’s theorem (equation 2.17)

named the Turán graph, and the second being a set of random graphs that are chosen

to be sparse, planar, and leafless such that they hold some resemblance to modern

day telecoms networks, such that we refer to them as random network graphs. Turán

graphs of n vertices are defined to be G = T (n,k) and are complete k-partite graphs

that have an equal number of vertices in each partite set (if not equal, the remaining

nodes are shared equally among the sets). The chromatic number of a Turán graph is

always its partite number k, and the special cases of the Turán graph includes the

complete graph (T (n,n)) and the complete bipartite (T (2n,2)). The Turán graph

is generally considered to be a dense graph, as it has a density ≥ 50% ∀k ≥ 2 .
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The random network graphs are defined here as G = R(n, p), where p ∈ [0,1] is

the fraction of additional edges to randomly add to an already randomly generated

2-regular graph, such that the total number of edges is n+ ⌈pn⌉. All network graphs

in this work are generated with p = 0.25. To ensure planarity, n≥ 6, and this also

ensures that for any random network graph it has a colouring of k ≤ 4 [288, 289].

The metric used to compare the performance of the Lucas, RMIS, and GMIS

colouring methods is time-to-solution (TTS, see equation 2.7), but the iterative and

unconstrained nature of GMIS and RMIS means that a new metric for TTS is needed

for a fair comparison. For a k colouring, the MIS methods use the quantum annealer

k times compared to the single usage from the Lucas method, therefore to represent

this, we extend equation 2.7 to include the number of computations,

T T Sk = nct f max
(

ln(1− pd)

ln(1− pk)
,1
)
, (2.19)

where pk is the probability of finding the colouring k, and nc is the number of

computations. For the Lucas method, the number of computations used is simply

nc = na, where na is the number of quantum anneals used to find solutions to the

constrained Hamiltonian. However, there are three stages of computations needed

for the RMIS and GMIS methods. The first is the k sets of quantum anneals to find a

k colourings, the second is the number of anneals nr used within each iteration to

find a maximal independent set nr, and the third is how many times the former two

steps are run in order to find pk with reasonable precision, which we refer to as the

number of runs r. Therefore, for each value of TTS there are nc = krnr computations

used in Alg. 1, where the number anneals per iteration is na = rnr.

Using the D-Wave Advantage quantum annealer housed in Burnaby, Canada,

the experimental performance of each method’s ability to find the colouring of Turán

graphs is assessed, where we focus on finding the optimal TTS as a function of

the number of computations, nc, for Turán graphs of various colourings with 12

vertices. The annealing time is kept constant at a value of 4µs, with the number

of spin-reversal transforms equal to the number of anneals. The logical graphs for

each method are embedded onto the Advantage annealer using minorminer and
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Figure 2.7: Times to the correct colouring of Turán graphs (order k, with 12 vertices) as
a function of the number of computations. Lucas, RMIS [286], and GMIS (Alg. 1) graph
colouring solutions were computed using the D-Wave Advantage quantum annealer with
4µs anneals and majority-vote post-processing. Each data point represents the bootstrapped
median of 20 times-to-solution (TTS) with 95 % confidence bounds. Solid lines are interpo-
lations between data points to approximate the functional form of TTS against number of
computations, and the dashed and dotted lines represent the minimum bounds of the TTS for
each method.

the proprietary D-Wave parameter setting methods (i.e., uniform bias setting and

chain strengths of -1). For RMIS and GMIS, we set r = 100 to estimate pk, and

nr = ⌊na/r⌋, with the values of k taken to be a constant overhead.

Figure 2.7 illustrates the performance of each method when colouring Turán

graphs, where the measured TTS is given by the solid line and the minimum possible

TTS is given by the dashed line. The minimum TTS for all methods scale linearly

in the number of computations, but RMIS and GMIS minimum TTS is always a

factor of k larger than the Lucas method due to the iterative nature of Algorithm 1.

Nonetheless, all MIS methods have a consistently lower TTS than the Lucas one-

hot constraint method. The MIS methods also reach the minimum TTS in many

instances, indicating that the correct maximum independent sets are found in the

algorithm when a sufficient number of computations are used in each iteration.

When colouring Turán graphs, the Lucas method is unable to find correct

colouring for a low number of computations k > 3 even with majority-vote post-

processing, indicating that the probability of finding the colouring solution is very

low. For each value of k, the number of edges in the graph is given by e = 72−
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Figure 2.8: Illustration of the optimal TTS scaling as a function of Turán graph colouring
for the Lucas, RMIS [286], and GMIS (Alg. 1) graph colouring methods. The Turán graphs
are of logical size 12, and each data point is the optimal TTS derived from interpolated data
in Figure 2.7.

⌈72/k⌉ ∀k > 1, which therefore increases the graph density and therefore the level

of minor-embedding required for all methods. The poor performance of the Lucas

method is also compounded by the quadratic increase of qubits in k that results

in increased hardness. Using interpolation methods, we find the number of reads

that give the optimal TTS and plot against the colouring index to demonstrate the

scaling of each method. Despite the additional computational overhead in the RMIS

and GMIS methods, the optimal TTS for each Turán graph colouring in Figure 2.8

confirms that the MIS methods outperform the Lucas method, but no significant

difference is seen between the RMIS and GMIS methods for these dense problems.

Finally, we also test the methods on the random network graphs, where instead

of increasing the chromatic number and keeping system size constant, we keep the

chromatic number bounded by k ≤ 4 and increase the system size. Starting from

a graph size of 32 vertices and up to 2048 vertices, the largest logical problem for

the Lucas (GMIS) method that could be embedded onto the D-Wave Advantage

annealer was 512 logical (2048 physical) vertices. Again, standard proprietary D-

Wave embedding methods and an annealing time of 4µs were used, and spin-reversal

transforms were applied once every 50 anneals instead of every anneal. For RMIS
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and GMIS, we set r = 100 and nr = 100, and for the Lucas method na = 10,000.

Given that the number of anneals na is the same for both methods, we remove this as

a constant overhead from equation 2.19 by setting na = 1, and focus on the colouring

overhead for the MIS methods, such that nc = k̄, where k̄ is the average k ∀k ≤ 4

colouring solutions out of the r = 100 runs. Interestingly, RMIS and GMIS were

both able to find colouring solutions for all problems in Figure 2.9a, whereas the

Lucas method was not able to find solutions to any of the problems for k = 4. In an

attempt to remedy this, different parameter setting methods such as weighted biases

and longer anneal times were used, but the embeddings were still too broken to yield

valid colouring solutions for the Lucas method. The GMIS method is also seen to

outperform RMIS for these sparse problems, with an improvement over RMIS seen

for 4 out of the 7 problem sizes tested.

To illustrate the detrimental effect of embedding for the Lucas method and why

it is unable to find solutions in Figure 2.9 using a quantum annealer, we look at the

embedding overhead of each method, which is defined to be the ratio of the number

of vertices in the minor-embedded problem to the number of vertices in the original

problem. This value will always be ≥ 1, and we can compare the ratio of overheads

between the Lucas method and the MIS method using the embedding ratio ζ , which

is defined as

ζ =
nLucas

I nGMIS
G

nLucas
G nGMIS

I
. (2.20)

where n is the number of vertices. Figure 2.9b shows two sets of ratios, where the

first (solid line) is the embedding ratio with respect to the original problem of size N,

and the second being the adjusted embedding ratio (dashed line). The adjusted ratio

compares the logical graph sizes, where for the Lucas method it is always has k = 4

times greater number of logical vertices than the MIS methods. As expected from a

one-hot encoding, the overhead from the Lucas method is always greater than the

GMIS method for both ratios, and increasing problem size compounds this further.

Overall, the greedy MIS approach presented here has proven itself to be an

efficient alternative to the one-hot encoded graph colouring in equation 2.12, and is

an example of how reformulating the problem can increase the problem sizes one can
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Figure 2.9: Plots of a) TTS as a function of problem size for the RMIS and GMIS colouring
methods, and b) embedding ratio (Equation 2.20) between the Lucas and MIS methods for
the original problem (solid) and the logical problem (dashed). A valid solution is one that
returns a colouring ≤ 4, and a D-Wave Advantage annealer was used to find solutions using
an annealing time of 4µs. Data points in a) are bootstrapped medians from 20 estimates of
the TTS, and the error bars are the 95% confidence intervals.

solve, circumventing the hardware restrictions, as well as reducing the embedding

and therefore detrimental effects this has on performance. Experimentally, we have

seen that the GMIS method (Alg. 1) is able to correctly colour all the dense Turán and

sparse random network graphs tested, with correct colourings found for sizes equal

to 2048, demonstrating that this method is a viable route to graph colouring with

industrial size problems of sizes > 10,000 variables. The method presented by Kwok,

which we refer to as random MIS colouring, also performs well against the Lucas

method of colouring. It also performs comparably to the greedy MIS method for

dense graphs, but was seen to have a worse TTS than the greedy MIS method when

looking at large sparse graphs. The Lucas method is only able to find colourings for

small graphs with a low chromatic number, as demonstrated by increasing TTS and

need for higher number of computations in Figure 2.8, indicating that increasing the

number of options in the one-hot constraint is particularly detrimental to performance.

The GMIS method can also be tested in future work against alternative encoding

schemes such as domain wall encoding [238, 239], as well as different parameter

setting methods as explored in Section 2.1.
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2.3 Reverse Annealing
As previously introduced in Section 1.2.3, reverse annealing can be viewed as a

local search algorithm that will improve upon solutions already found by some

optimization algorithm [17, 199, 202, 203]. The protocol starts by initializing the

system in a state with zero transverse-field that corresponds to a previously found

solution, instead of a superposition state with maximum transverse-field in traditional

quantum annealing. A transverse-field is then introduced, which is equivalent to

introducing quantum fluctuations into the system that can allow the initial solution

to explore the local configuration space in the hope that a better solution exists

nearby. This is shown to avoid first-order phase transitions in adiabatic reverse

annealing [200, 201] (Equation (1.10)), but is heuristically implemented in D-Wave

annealers such that diabatic transitions are needed to reach the ground state. It was

shown in Ref. [57] that reverse annealing had the largest probability of reaching the

ground state from a non-optimal solution if the system was held before the minimum

gap and did not pass through it. However, knowing the position of the minimum

gap and therefore when to stop increasing transverse field in a reverse anneal is a

computationally hard question, but there do exist some methods to approximate its

position using perturbation theory [290].

Reverse annealing therefore opens up a paradigm of adiabatic quantum com-

putation where we do not have to pass through the minimum gaps, at the cost of it

being restricted to a being a local-search protocol. Taking quantum tunnelling to

be the primary dynamical mechanism in quantum annealing, we look at the reverse

annealing protocol on the D-Wave 2000Q quantum annealer and ask how effective is

reverse annealing at exploring the solution space? To help answer this, we consider

a Hamiltonian with a quadruply degenerate first excited state, where the Hamming

distances from the ground state are {2,3,3,4}, i.e., small enough to permit tunnelling

to the ground state. By reverse annealing from each of the four first excited states, we

can compare experimental and simulated data to determine whether the Hamming

distance to the ground state affects the ground state probability, and try to match

a model that explains the observed phenomena best. However, it found that there
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Figure 2.10: Graphical illustration of the four spin chain problem Hamiltonian used for
the reverse annealing experiments. The tuneable parameter, d > 0, tunes the size of the
minimum gap, and R > 0 tunes the energy scale of the problem. The sign convention for this
problem follows the Hamiltonian defined in Equation 2.21.

are hardware artefacts such as spin-bath polarization that bias reverse anneals, such

that none of the models tested match the experimental data. It also means that if

an optimization problem is highly sensitive to its parameters (i.e., a large condition

number) then spin-bath polarization can change the problem you are trying to solve.

Nonetheless, the phenomena affecting reverse anneals are probed to give a better

understanding of their effects.

The problem Hamiltonian of interest for our reverse annealing experiments is

shown in Figure 2.10, and consists of a tunable spectral gap (controlled by the value

of d), and has a classical energy spectrum with a single isolated ground state and

quadruply degenerate first excited-states whose Hamming distances from the ground

state increase from 2 to 4. For ease of analytical and numerical calculations, the

Hamiltonian in Figure 2.10 is kept to four spins, and therefore will be called the four

spin chain (FSC); however larger versions can exist and are explored in Chapter 3.

The form of the full Hamiltonian in Figure 2.10 in the transverse field Ising model

(Equation (1.3)) can be written as

H =−A(s)
4

∑
i=1

σ
x
i +RB(s)

[
(1−d)

(
σ

z
2 +σ

z
3
)
−
(
σ

z
1 +σ

z
4
)
−

3

∑
i=1

σ
z
i σ

z
i+1

]
. (2.21)

The properties of the FSC are illustrated in Figure 2.11 using the eigenstates and

eigenenergies of the diagonalized Hamiltonian in Equation 2.21. The energy spec-
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Figure 2.11: Plots of a) the first five instantaneous energy eigenstates Ei of the four spin
chain (Figure 2.10) as a function of the anneal parameter s, b) the scaling of the minimum
gap ∆10

min as a function of the tuneable parameter d, c) the Hamming weights of the first five
states according to the Hamming weight operator in Equation 2.22 as a function of s, and d)
the negativity (entanglement) of the ground state with respect to the partial transposes of the
inner qubit sub-spaces of the four spin chain. The global energy scale is set to R = 1.0 GHz
throughout, and a value of d = 0.05 was used for plots a), c), and d). The schedules A(s)
and B(s) used follow the D-Wave 2000Q schedule defined in Figure 1.8. The black dashed
line shows the position of the minimum energy gap.

trum of the five lowest energy states is shown in Figure 2.11a, and the minimum gap

between E0 (the ground state) and E1 (first excited state) is shown as a function of d

in Figure 2.11b. Note that the first-excited-state degeneracy of the FSC problem is

broken for a non-zero transverse-field. Two other properties of the FSC also exhibit

interesting features. The first is that the Hamming weight is given by the operator

W =
1
2

N

∑
i
(Ii−σ

z
i ) , (2.22)

where ⟨Ei|W|Ei⟩ is the expectation value of the Hamming weight for eigenstate |Ei⟩

in Figure 2.11c. It demonstrates the presence of a quantum phase transition at the
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minimum gap (the black dashed line) due to the large change in Hamming weight

(and therefore magnetization). Also note how the four excited states superimpose to

all have a Hamming weight equal to 3, which is caused by the outer qubits in the

FSC being in a superposition of spin −1 and spin 1 simultaneously (i.e., Hamming

weight = 0.5) and inner qubits have Hamming weight of 1. This then collapses onto

their computational Hamming weights of {2,3,3,4} as soon as the transverse-field

is zero.

Secondly, the negativity of the instantaneous ground state (Figure 2.11d), which

is a measure of how entangled the state is, defined as

N =
1
2
(
1−
∣∣∣∣ρTA

∣∣∣∣
1

)
, (2.23)

where ||·||1 is the trace norm, ρ is the ground state density matrix, and A is the sub-

system which is partially transposed in ρ (taken to be the inner qubits in this case).

The spike in negativity also confirms the presence of a quantum phase transition

between the ground and first excited state, and increases further if d is decreased

(i.e., smaller minimum gap).

The final part of the analysis involves looking at the semi-classical potential V

of the FSC, calculated using the spin-coherent ansatz in the O(2) model [275] (see

Section 1.4.3), which is defined as

|θ⟩=
N⊗
k

[
cos

θk

2
|0⟩+ sin

θk

2
|1⟩
]

(2.24)

V (t,θ ,φ) = ⟨θ ,φ |H(t) |θ ,φ⟩ , (2.25)

where θk is the polar angle describing the kth qubit. The potential equation is

restricted to the XZ-plane of the Bloch sphere (removing the azimuthal component),

and can be described using only two angles due to the permutation symmetry of the

FSC, such that θ1 and θ2 represent the inner and outer qubits, respectively. This

restriction reflects the fact that the Hamiltonian (Equation 2.21) only has energy

contributions in the XZ-plane, and therefore this form can be used to emulate
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Figure 2.12: Plots of the semi-classical potential from Equation 2.26 as a function of s for a
four spin chain with d = 0.05 and R = 1.0. The red marker indicates the global minimum of
the landscape, and the inner and outer spin angles are denoted by θ1 and θ2, respectively.

quantum annealers [277]. The simplified form is therefore

V (s,θ1,θ2) = ⟨θ2θ1θ1θ2|H(s) |θ2θ1θ1θ2⟩ , |θk⟩= cos
θk

2
|0⟩+sin

θk

2
|1⟩ . (2.26)

The FSC semi-classical potential is illustrated in Figure 3.4, with a discontinu-

ous change in position of the red marker (global minimum of the potential) exhibited.

This occurs about the minimum gap, and signifies the presence of a phase transition

and that annealing guides particles to a false minimum. It also confirms the ground

state is isolated away from the other first excited states, with the first excited states

all being found along the θ1 = π and −π axis. Using these properties, one can use

D-Wave’s reverse annealing (as outlined in Figure 1.6) to initialize the system in

each of the first excited states |0110⟩, |1110⟩, |0111⟩ and |1111⟩, that are of differ-

ent Hamming distances to the ground state |0000⟩, and measure the ground state

probability after a reverse anneal. To support the experimental data, open system

Monte Carlo and numerical simulations of RA are used to emulate the experimental

dynamics. Both the Monte Carlo and numerical models selected emulate quantum

annealing in a regime where there are strong decoherence effects. These models are

also tractable to simulate whilst also being able to model any incoherent dynamics
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that could explain the experimental observations.

For the numerical simulations, the adiabatic master equation (AME) outlined

in [143] is used to simulate open system RA in the singular coupling limit (see

Section 1.4.1, Equation (1.22) for more details). However, given that analytical

simulations of the FSC are expensive and restricted to coupling limit regimes, we use

both classical and quantum Monte Carlo (MC) to further support the experimental

data. For the classical approaches, Metropolis-Hastings updates are used to minimize

the following energy functions

E(t) = β (t)

[
N

∑
i

hisi +∑
i, j

Ji, jsis j

]
(2.27)

E(θ , t) =−A(t)
N

∑
i

sin(θi)+B(t)

[
N

∑
i

hi cosθi +∑
i, j

Ji, j cosθi cosθ j

]
, (2.28)

where Equation (2.27) and Equation (2.27) correspond to classical (simulated) an-

nealing and spin-vector Monte Carlo (SVMC), respectively. SVMC explores the

Bloch sphere in the XZ-plane only, and has varying degrees of success in replicating

the results of the D-Wave quantum annealer [89, 119, 159, 277]. Secondly, we use

path-integral Monte Carlo (PIMC) that applies the Trotter break-up formula to the

Hamiltonian, such that a discrete imaginary time dimension with Nτ Trotter slices

is introduced to approximate the quantum system using a classical one (see Sec-

tion 1.4.2). PIMC can be used to successfully model incoherent quantum annealing as

well as other dynamical effects such as tunnelling. Single spin Metropolis-Hastings

updates are used to minimize the energy function that represents a closed quantum

system with no sign problem,

βE(t) = β

Nτ

B(t)∑
τ

[
∑

i
hisi,τ +∑

i, j
Ji, jsi,τs j,τ

]
− J⊥(t)∑

i,τ
si,τsi,τ+1 , (2.29)

where J⊥(t) is the coupling strength between Trotter slices along the imaginary time

direction such that,

J⊥(t) =−
1
2

ln(tanh(βA(t)/Nτ)) . (2.30)
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This method can be used to emulate QA efficiently and scales better than the numer-

ical methods employed, and it can be extended to include quantum noise such as

dephasing by adding an explicit bath term to Equation (2.29). This term takes the

form

βEB =−α

2

(
π

Nτ

)2 N

∑
i=1

Nτ

∑
τ=1

Nτ

∑
τ ′=τ+1

si,τsi,τ+1

sin2
(

π

Nτ
|τ− τ ′|

) (2.31)

where α is the effective system-bath coupling strength. This can be used to explore

intermediate coupling regimes that D-Wave quantum annealing systems are likely to

be operating in, but it is a regime that the master equations cannot access [143].

Throughout the rest of this section, we use d = 0.05 to create an FSC Hamilto-

nian whose minimum energy gap value, εG, is an order of magnitude less than the

system temperature (taking the system temperature to be 15mK [229], εG is ≈ 12×

smaller). This value of d also is large enough to ensure that if integrated control

errors change the value of d, then d > 0 holds for more than 95% of the time for

a standard deviation of σ = 0.03. Reverse annealing within this regime will allow

us to probe in greater detail the role of thermal dynamics in the D-Wave annealer

for optimization. It is also expected that for a coherent or equilibrium system, there

is no ground state probability dependence on the initial states Hamming weight

when finite transverse-field is introduced. This stems from the observations in Fig-

ure 2.11c, as for any non-zero transverse-field where s∗ < s < 1 the excited states all

have an expected Hamming Weight of 3. However, the D-Wave annealers possess

incoherent systems and nonequilibrium dynamics, therefore it is unknown whether

the Hamming weight of the initial state would affect the ground state probabilities.

We explore this experimentally and with simulations in Section 2.3.1 and 2.3.2

respectively.

To summarize, we confirm that the ground state is isolated and is not energeti-

cally accessible during the anneal by analysing the semi-classical energy potential.

The evolution of the potential landscapes as a function of s is shown in Figure 2.12,

and demonstrates the creation of two separate potential wells at s = 0.4. This is

indicative of a false minimum, as for low values of s the energetically preferred
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route is to the eigenstates that will finish being the degenerate first excited states

at s = 1. At the phase transition, the isolated potential well becomes the ground

state, confirming the fact that either thermal and/or quantum dynamics are required

to reach the ground state during an anneal.

2.3.1 Experimental

Using the D-Wave 2000Q at Los Alamos National laboratory, reverse anneals using

the FSC were performed with the same schedule defined in Figure 1.6, whereby the

annealing rate r ∈ (0,1] and the minimum value of s, s∗, define the reverse anneal

time, such that

t1 =
1− s∗

r
, (2.32)

and total reverse anneal time is tanneal = 2t1 + tp, where tp is the time spent pausing,

allowing the system to thermalize. Throughout the experiments, the annealing

rate is set to r = 0.5µs−1, and various pause times are used to explore the effect

of pausing on the time-to-solution defined in Equation (2.7). The magnitude of

quantum fluctuations introduced into the reverse anneal is parameterised by Q(s∗) =

A(s∗)/B(s∗), where A(s∗) and B(s∗) are the maximum transverse and minimum

longitudinal field strengths, respectively, in the reverse anneal (see FSC Hamiltonian

in Equation 2.21). Figure 2.13 illustrates the amplitude of Q(s∗) needed to enable

diabatic transitions from the initial state to the ground state with and without pausing

the system. For all Q(s∗), the reverse anneals with initial states closer in Hamming

distance to the ground state had a higher probability of reaching the ground state at

the end of the anneal, inconsistent with what is expected from an equilibrium system,

but consistent with reverse annealing being a local search algorithm [201–203].

The additional pause time is shown to increase ground state probability about the

minimum gap, consistent with thermalization phenomena previously observed in

literature [57, 118, 119].

From an optimization perspective, this peak of probability about the minimum

gap would also correspond to a minimum time-to-solution (TTS) due to the reverse-

anneal times being shorter for smaller values of Q(s∗). A translation of Figure 2.13b
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Figure 2.13: Ground state probability after reverse annealing with a pause of a) 0µs and
b) 2µs from each of the four degenerate first-excited-states on the LANL D-Wave 2000Q
quantum annealer. The maximum relative magnitude of transverse-field applied to the FSC is
defined as Q(s∗) = A(s∗)/B(s∗), where s∗ is the minimum value of the annealing parameter
in a reverse anneal. A ramp rate (Equation 2.32) of 0.5µs−1 is used for both plots, the
black dashed line marks the position of the minimum gap, and the orange dashed line marks
the value of Q(0.4), where to the right of this line the potential starts to become unimodal
(Figure. 2.12). Each reading is the bootstrapped median from 100 ground state probabilities,
each calculated from 125,000 measurements on the QPU with a readout thermalization of
1µs. Using space-division multiplexing, 125 FSC’s were fitted onto the D-Wave 2000Q
device, such that only 1000 runs were needed to retrieve 125,000 measurements.

to TTS is shown in Figure 2.14a, where the minimum TTS is shown to occur when

s∗ is at the minimum gap, i.e., significant system thermalization when paused at

this position. However, an increase in ground state probability using thermalization

is offset by an increase the total computation time, resulting in no computational

benefit to the TTS. Figure 2.14b illustrates the minimum TTS that occurs at s∗opt ∀s∗

for reverse anneals anneals with various pause times. The states closest in Hamming

distance to the ground state have a minimum TTS at tp = 0µs and therefore do not

benefit from any pausing, with exception to initial state furthest in Hamming distance

(i.e., the hardest state to initialise in), where some pausing was seen to be potentially

beneficial. To confirm this effect, larger problems would be needed to be reverse

annealed in order to increase the hardness and Hamming distances between initial

problem states.
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Figure 2.14: Plots of a) the time-to-solution as a function of s∗ for the reverse anneal with a
2µs pause shown in Figure 2.13b, and b) the minimum TTS at s∗opt for various pause times
when reverse annealed from each of the four degenerate first-excited-states on the LANL
D-Wave 2000Q quantum annealer. A ramp rate (Equation 2.32) of 0.5µs−1 is used for both
plots, the black dashed line marks the position of the minimum gap, and the orange dashed
line marks the value of Q(0.4), where to the right of this line the potential starts to become
unimodal (Figure. 2.12). The experimental procedures follow those defined in Figure 2.13
for all results shown. The error-bars plotted in b) are the 95% confidence bounds of the
median TTS values.

There are two regimes of interest when reverse annealing the FSC, the first being

the dynamics about the minimum gap (the black dashed line in Figure 2.13) where the

thermalization phenomena occur, and secondly is when the semiclassical potential

starts to become unimodal again as seen in Figure 2.12. For s∗ < 0.4, the reverse

anneal will start to enter a potential that is no longer bimodal, and the orange dashed

line marks the beginning of reverse annealing entering the unimodal distribution

for Q(s∗)> Q(0.4). Despite reverse annealing into a region where the potential is

unimodal and therefore losing most memory of the initial state magnetization, there

still appears to be some memory of the initial state due to the consistent ordering

of ground state probabilities. The separation is less prominent for longer anneal

times, as seen in the longer pause-time regime in Figure 2.13b, and therefore reverse

annealing maybe affected by some integrated control error on the QPU.

A single unbiased qubit is used to illustrate to what extent this control error

in reverse annealing affects state probability in Figure 2.15, where we initialize a



2.3. Reverse Annealing 102

Figure 2.15: The probability of being in the |0⟩ state after a reverse anneal as a function of
s∗ (the minimum value of s annealed to) for a single unbiased spin on the D-Wave 2000Q.
Starting in either of the initial states biases the qubit differently for both annealing rates of a)
r = 0.5 (i.e., shorter reverse anneal) and b) r = 0.05 (i.e., longer reverse anneal). Each data
point is a bootstrapped median of 100 probabilities, with error bars representing the 95%
confidence intervals. Each probability is found from a randomly placed spin on the D-Wave
2000Q that is sampled 1000 times.

random qubit on the QPU in either the spin up (|0⟩) or spin down (|1⟩) state and then

measure the probability of being in the spin up state (P|0⟩) for different values of

s∗. We expect that the random placement of qubits across the QPU should yield an

average result of P|0⟩ = 0.5, but as clearly observed in Figure 2.15 there is a biasing

of P|0⟩ in towards the initial state configuration. Two different annealing rates were

used for this demonstration, where in both cases the system is frozen for high values

of s∗ before then entering a regime where quantum dynamics allows convergence to

P|0⟩ = 0.5. Figure 2.15a uses an annealing rate of r = 0.5µs−1, and there is a clear

deviation from P|0⟩ = 0.5, which interestingly is larger if the system is initialized

in the |1⟩ state. For a smaller annealing rate of r = 0.05µs−1 in Figure 2.15b (i.e.,

longer annealing times), the deviation is smaller in both cases, with only a marginally

larger deviation for the |1⟩ state.

The likely explanation for this effect can be attributed to a biasing SQUID used

in the D-Wave reverse anneal protocol, whereby the initial state is encoded onto

qubits by an adjacent SQUID that induces a persistent current before the reverse
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anneal. If this SQUID polarizes the substrate, it can retain flux after the reverse

anneal starts, and therefore keep a persistent memory of the initial state on the qubit.

This effect of polarizing the substrate is known as spin-bath polarization, and is

known to occur on D-Wave annealers (see Section 1.3.1). This introduces additional

bias to the qubits, which corresponds to state probabilities biased away from the

expected result. This effect is also seen to reduce in magnitude over time, as seen in

Figure 2.15b, and is consistent with the residual flux in the adjacent SQUID being

lost over time. Therefore, the separation of states in Figure 2.13 is hypothesized to

be the artefact of spin-bath polarization, and not the result of reverse annealing being

a local-search algorithm.

To confirm that separation of states is not the result of some other dynamical

process, we rule out other models in Section 2.3.2 to further support that spin-bath

polarization is responsible. Despite the presence of this effect, it can also be mitigated

to some extent, such that reverse annealing has been used in the literature for quantum

simulations of phenomena such as the Kosterlitz-Thouless phase-transition [30, 136].

The effect is mitigated using two methods, where firstly for a set of consecutive

reverse anneals the final state found from the previous reverse anneal is left to be the

initial state of the next reverse anneal. This avoids the reinitialization of the initial

state used for the first reverse anneal, and therefore avoids using the biasing SQUIDs

that inflict spin-bath polarization. The second method is using a technique called

“shimming”, which is a classical gradient descent method used to apply flux bias

to unbiased qubits such that they have an expected magnetization as close to zero

as possible before reverse annealing. This can be applied to Figure 2.15 in order to

counter-bias the qubits such that they actually meet the expected value of P|0⟩ = 0.5,

and is key to the success of the work presented in Refs. [30, 136].

Another artefact that was also observed when the system had passed through the

minimum gap are oscillations in ground state probability (Figure 2.16a) as a function

of reverse anneal time. The reverse anneal used was one with a constant anneal rate

of r = 0.5µs−1 and with a 2µs pause, such that the anneal time was parameterized

by tanneal = 2(3−2s∗)µs. A fundamental harmonic of 25 MHz for the ground state
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Figure 2.16: Plots of a) the oscillations in ground state probability as a function of anneal
time tanneal, such that tanneal = 2t1 + tp where t1 = 2(1− s∗)µs and tp = 2µs, and b) its
corresponding power spectrum. Readings were taken using the same methodology used in
Figure 2.13.

probability oscillations is illustrated in the power spectrum in Figure 2.16b, with

other subsequent resonances also shown to be present. In a pure closed system, we

would expect oscillatory behaviour in the ground state probability for a low enough

value of s∗ due to the interference caused by Mach-Zehnder interferometry [291].

However, the experimental quantum annealer is not in a coherent limit on these

timescales tested, and it is therefore unlikely that the oscillations are a result of

Mach-Zehnder interferometry.

To further explore this, additional reverse annealing schedules are experimen-

tally implemented with different combinations of fixed or variable annealing rates,

pause times, s∗, annealing times, and time past the minimum gap tgap. The schedule

combinations are presented in Table 2.2, which tries to identify different annealing

regimes possessing oscillations. Schedule 1 is the original reverse anneal schedule

used to generate oscillations in Figure 2.16, with the only other schedule being able

to replicate ground state probability oscillations being schedule 3. This schedule

is uniquely different to schedule 1 as there is no time-domain due to the fixed the

annealing time and tgap, but oscillations are still seen as a function of s∗. Dependence

on time is also ruled out by other annealing schedules, particularly in schedule 2



2.3. Reverse Annealing 105

Schedule Fixed r Fixed tp Fixed s∗ Fixed ta Fixed tgap Oscillating PG
1 ✓ ✓ × × × ✓
2 ✓ × ✓ × × ×
3 ✓ × × ✓ ✓ ✓
4 × × ✓ × ✓ ×
5 × ✓ × × ✓ ×
6 × ✓ ✓ ✓ × ×

Table 2.2: Reverse annealing experiments used to reproduce oscillations in ground state
probability PG as a function of pause time tp and/or annealing time ta and/or ,time past
the minimum gap tgap. The schedules also fix or vary the annealing rate, r, and minimum
annealing parameter, s∗. Schedule 1 is the schedule used to produce the oscillations in
Figure 2.16.

where we anneal down with a constant rate to a fixed value of s∗, pause for various

times before coming back to s = 1.

One could still propose that despite the constant time oscillations in schedule 3,

there were still different accumulations of phase in each state because the scheduled

annealed down to different values of s∗. Therefore, we would want to attempt to

change the amplitude of these oscillations by annealing at different fixed rates using

schedules 1 and 3. In both cases, there were no changes in oscillation amplitude,

and also no dependence on frequency with respect to the initial state, it is therefore

likely that this phenomena the result of some artefact/interference effect caused by

integrated control errors on the D-Wave QPU. This artefact occurs when we reverse

anneal to different values of s∗ (and therefore transverse-field) at a fixed annealing

rate, which indicates that it is possibly the result of quantization error cause by the

digital to analogue conversion of the schedule. Therefore, minor deviations from the

true values of A(s∗) and B(s∗) may occur systematically, leading to these apparent

oscillations in ground state probability.

Overall, reverse annealing with the D-Wave 2000Q quantum annealer exhibited

how quantum fluctuations and thermalisation effects can be used to access the ground

state from initial state of varying Hamming distance. The reverse anneals with initial

states closer in Hamming distance to the ground state consistently had a higher

probability of reaching the ground state at the end of the anneal. Pausing in a

reverse anneal resulted in a reduced separation in ground state probability between



2.3. Reverse Annealing 106

initial states, and also a peak in probability about the minimum gap induced by

thermalisation. To see whether this had a beneficial impact on the time-to-solution

(TTS), the optimal time to solution was calculated for various pause times. Reverse

anneals with no pause had the lowest TTS, with exception to the initial state furthest

in Hamming distance (i.e., the hardest reverse anneal), indicating that pausing could

be computationally beneficial for harder problem instances.

The persistent separation in ground state probability between initial states even

when the energy potential was unimodal suggested that spin-bath polarization was

impacting reverse anneals. This was demonstrated in Figure 2.15, by randomly

selecting 1000 unbiased qubits and reverse annealing from either a spin-up or spin-

down initial state. It was found that a persistent bias was found even for long anneal

times that depended on the initial state, confirming that spin-bath polarization is

caused by the setting of the initial state in reverse annealing. Minor oscillations in

ground-state probability for all initial states were also observed for this problem if

a specific reverse anneal schedule was used. This was also attributed to hardware

control errors win the reverse anneal, where quantization error in the digital-to-

analogue conversion of the anneal schedule parameters can introduce systematic

errors leading to the apparent oscillations. Therefore, reverse annealing as an

optimisation method holds promise as a local-search algorithm, but the system

errors and biases may detrimentally impact problems that are parameter sensitive

and where there is a poor choice of initial state.

2.3.2 Simulation

This section focuses on reverse annealing with several models generally used to

emulate D-Wave annealers and whose dynamics are well understood. The models

explored are not expected to be accurate in modelling the D-Wave annealer, but are

used to rule-out certain dynamical models in order to better explain the experimental

observations. We first look at the adiabatic master equation (AME) [143] in the sin-

gular coupling limit (Equation (1.22)), which is a model of decoherence specifically

in the computational basis. In this limit, quantum dynamics are quickly lost due to

strong decoherence, leading to a fully mixed final state (i.e., one in an infinite temper-
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ature limit) in a standard quantum anneal. This is not found to be an accurate model

of experimental quantum annealing [137], but is a computationally tractable model

that can be compared against the experimental data in Figure 2.13. For a reverse

anneal with a pause time of 0µs (for tractability purposes), Figure 2.17 illustrates

how the FSC performs when modelled by the AME in the singular coupling limit.

Both models with (Figure 2.17b) and without (Figure 2.17a) cross-talk (see

Equation (1.13)) possess a separation in ground state probability between the |1111⟩

initial state and all other initial states, contrary to what is seen experimentally. A peak

in probability also occurs as the reverse anneal approaches the unimodal distribution

of the potential, before then decreasing to the probability of a random guess (= 1/24)

as we increase transverse field to reach the |+⟩ state which becomes maximally

mixed in the singular limit. Cross-talk also does little to effect the ground state

probabilities, and increases the separation between the |1111⟩ state and other states,

as the |1111⟩ state will experience the largest favourable contribution from the cross-

talk due to the number of aligned spins in the state. We are unable to use AME in the

weak coupling limit for this problem Hamiltonian, due to the intractable convergence

times caused by the small minimum gap.

For more tractable simulations, Monte Carlo methods are used (see Section 1.4),

where we first look at the classical reverse annealing models. All simulations

employed have noisy bias and coupling values set before the anneal begins, where

the noise is a sample from the normal distribution parameterized by the mean and

standard deviation set to µ = 0 and σ = 0.03, respectively, after which cross-talk

is applied to the system with a background susceptibility of χ = −0.035. The

temperature of the simulations is set to be the minimum operating temperature

of 12.26mK, which in Ising energy units for the LANL D-Wave 2000Q annealer

is T = 0.018. The first classical model used is simulated annealing, where in

the context of reverse annealing the initial state begins from a cold system (few

thermal excitations) and is annealed to a hotter system parameterized by maximum

temperature T ∗, then back to the cold system. The cold temperature is set to be

1.226mK, which is a tenth of the minimum system temperature of the LANL D-Wave
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Figure 2.17: Plots of ground state probability after a reverse quantum anneal from each of
the initial states a) without cross-talk and b) with cross-talk, which was simulated using
the AME in the singular coupling limit [143]. Both the |1110⟩ and |0111⟩ state perfectly
overlap in the plots. The maximum relative magnitude of transverse-field applied to the
FSC is defined as Q(s∗) = A(s∗)/B(s∗), where s∗ is the minimum value of the annealing
parameter in a reverse anneal. The system was evolved using the same time schedules used
experimentally in Figure 2.13 for a pause time of 0µs. An Ohmic bath (Equation (1.21)) is
used with a coupling strength of ηg2 = 10−3, T = 12.26 mK, and a bath cut-off frequency
of ωc = 8π GHz. The background susceptibility for the cross-talk was set to χ =−0.035.
The black dashed line marks the position of the minimum gap, the orange dashed line
marks where the semiclassical energy potential starts to become unimodal at Q(0.4), and the
dotted black line indicates the probability of a random guess. The reverse anneal parameter
schedules were the same as those used in Figure 1.6, which parameterize the Hamiltonian
coefficients defined in the Figure 1.8 for the LANL D-Wave 2000Q quantum annealer.

2000Q QPU. The maximum temperature is a value where the Boltzmann factor gives

a 50% acceptance probability for the largest energy change in the problem (i.e.,

exp{−Emax/Thot}= 0.5), and both temperatures are also scaled to Ising energy units.

The temperature is related to the minimum annealing parameter s∗ by a geometric

progression from the hottest temperature at s = 0 to the coldest temperature at s = 1,

and the same schedule used for Figure 2.13 is also used here. The results of the

reverse simulated anneal are shown in Figure 2.18, where the magnitude of ground

state probability is greater than that seen in an experimental reverse quantum anneal,

but possesses no separation of states at any temperature range (due to the degenerate

first excited state being in thermal equilibrium). The reverse simulated anneal does

feature a thermalization peak when the system is paused at a fixed temperature, and
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Figure 2.18: Reverse simulated annealing of the four spin chain from each of the computa-
tional first-excited states for a) no pause and b) a pause of 2µs. The simulated annealing cold
and hot temperature limits are 1.226mK and 3K, respectively, where T∗ is the temperature at
which the system is held in the reverse simulated anneal. The black dashed line represents
the temperature that equals the energy difference between the ground and first excited state.
Each data point is a median of 50 bootstrapped probabilities with 95% confidence intervals,
calculated from 1000 simulated anneals. The reverse anneal schedules were the same as
those used in Figure 1.6, and the number of increments (sweeps) in the simulated anneal is
related to the total annealing time ta = 2(3−2s∗) by 1000 steps µs−1.

occurs about the point in the anneal where the maximum temperature T ∗ equals the

energy difference between the ground and first excited state (∆10 = 0.2).

The next method is spin-vector Monte Carlo (SVMC) which explores the semi-

classical potential of the transverse-field Ising model using thermal excitations, and

is thought to emulate quantum annealing in some respects [89, 119, 277]. However,

the data shown in Figure 2.19, deviate from what is observed experimentally in

Figure 2.13 both in the magnitude of ground state probability and there not being

any separation of states. Pausing the system also exhibits some peak in probability

from thermalization effects, but it is centred after the minimum gap, which is more

akin to the simulated annealing thermalization model rather than what is seen ex-

perimentally. After SVMC reverse anneals into a unimodal distribution, the ground

state probability also becomes constant, and is a probability less than a random guess

(prandom = 0.0625).

For Figure 2.19b, timescales are long enough for SVMC to yield non-zero
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Figure 2.19: Reverse spin-vector Monte Carlo (SVMC) anneals of the four spin chain from
each of the computational first-excited states for a) no pause and b) a pause of 2µs at a system
temperature of 12.26 mK. The maximum relative magnitude of transverse-field applied to
the FSC is defined as Q(s∗) = A(s∗)/B(s∗), where s∗ is the minimum value of the annealing
parameter in a reverse anneal. The black dashed line marks the position of the minimum
gap, and the orange dashed line marks where the semiclassical energy potential starts to
become unimodal at Q(0.4). Each data point is a median of 50 bootstrapped probabilities
with 95% confidence intervals, calculated from 1000 anneals. The reverse anneal parameter
schedules were the same as those used in Figure 1.6, which parameterize the Hamiltonian
coefficients defined in the Figure 1.8 for the LANL D-Wave 2000Q quantum annealer. The
number of increments (sweeps) in the SVMC anneal is related to the total annealing time
ta = 2(3−2s∗)µs by 1000 steps µs−1.

probability for low values of Q(s∗), which is known to be a region of system freeze-

out experimentally. In order to remedy this, we use a SVMC with transverse-field

dependent updates (SVMC-TF), which was first presented in Ref. [119] (also see

Section 1.4.3 for more details). This is where the spin rotors used to explore the

semiclassical potential become more restricted as transverse-field decreases, such

that SVMC-TF can emulate freeze-out effects. This is shown to be true when reverse

annealing with SVMC-TF in Figure 2.20, and also results in a slight increase in

ground-state probability, but not enough to reach the random probability threshold.

Again a peak due to thermalization occurs, but it is less pronounced compared to

SVMC, and again the probability also becomes constant after the potential becomes

unimodal.

Finally, we look at quantum Monte Carlo methods to simulate reverse annealing,
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Figure 2.20: Plots of reverse annealing the four spin chain with a) no pause and b) a pause of
2µs when simulated by SVMC with transverse-field dependent updates (SVMC-TF) starting
in each of the computational first-excited states. The simulation uses the same settings as
those defined in Figure 2.19.

specifically looking at path-integral Monte Carlo (PIMC) which is shown to emulate

quantum annealing [29, 30, 38, 60]. The FSC has noise and cross-talk applied to it

in the same fashion as the classical methods had, and the PIMC cost function in

Equation (2.29) follows the schedule used by the LANL D-Wave 2000Q. Single

spin-flips are used to update the system in PIMC, and therefore results in PIMC

simulations that exhibit nonequilibrium dynamics. Dynamics closer to thermal

equilibrium can be achieved by using cluster update methods [26, 141], but seeing

as we are not concerned with calculating exponents, and because the features in the

experimental data are likely caused by nonequilibrium behaviour, we do not look to

implement these more advanced update methods. The results of reverse annealing

with PIMC are shown in Figure 2.21, whereby the range of Q(s∗) simulated is

extended to show the full range of dynamics up to s = 0 (maximum transverse-field).

Remarkably, PIMC achieves a separation of states is in order of Hamming weight for

low values of Q(s∗), and a ground state probability similar to what is experimentally

observed. As expected, the separation of states converge for large values of Q(s∗)

unlike the experimental data, but this simulation does not take into account spin-bath

polarization.
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Figure 2.21: PIMC reverse anneals of the four spin chain from each of the computational
first-excited states for a) no pause and b) a pause of 2µs at a system temperature of 12.26
mK. The maximum relative magnitude of transverse-field applied to the FSC is defined
as Q(s∗) = A(s∗)/B(s∗), where s∗ is the minimum value of the annealing parameter in a
reverse anneal. The black dashed line marks the position of the minimum gap, and the orange
dashed line marks where the semiclassical energy potential starts to become unimodal at
Q(0.4). Each data point is a median of 50 bootstrapped probabilities with 95% confidence
intervals, calculated from 1000 anneals. The reverse anneal parameter schedules were the
same as those used in Figure 1.6, which parameterize the Hamiltonian coefficients defined in
the Figure 1.8 for the LANL D-Wave 2000Q quantum annealer. The number of Trotter slices
used is Nτ = 20, and the total number of increments (sweeps) in the PIMC anneal is related
to the total annealing time ta = 2(3−2s∗)µs by 50 steps µs−1.

The dynamics of PIMC with and without pauses become active about the point

in a reverse anneal where the potential becomes unimodal, instead of it being about

minimum gap as seen in SVMC and the experimental data. To see whether this

is corrected by emulating quantum noise sources such as dephasing (i.e., adding

Equation (2.31) to the PIMC cost function), PIMC is simulated under three different

bath-coupling regimes that control the extent of dephasing in the system. The

tunability of the bath-coupling allows this version of PIMC to enter intermediate

coupling regimes that are inaccessible to master equations such as the AME [143].

Reverse anneals with a 2µs pause are illustrated in these regimes in Figure 2.22,

where a lower value of α represents a weaker coupling to the bath. For α = 0.2,

dephasing is not substantial enough to effect the system, and therefore resembles

PIMC without an explicit dephasing term. As α is increased to 0.6, the system
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Figure 2.22: Reverse anneal simulations of the four spin chain with a pause of 2µs and using
PIMC with dephasing. The initial states are from each of the computational first-excited
states, and the extent of dephasing is represented here by three regimes of the bath-coupling,
parameterized by α at a system temperature of 12.26 mK. The simulations use the same
settings as those defined in Figure 2.21.

dynamics start to become frozen along the Trotter dimension of the system such that

it acts as a collective spin, therefore leading to dynamics that resemble those seen

from simulated annealing, as shown by the increase in probability.

For α = 1.0, the system starts to freeze-out completely along the Trotter di-

mension as dephasing dominates dynamics. This results in the largest separation

of states seen so far, but means that dynamics are only accessible for the largest

values of Q(s∗) possible on the LANL D-Wave 2000Q schedule. Despite there

being no peak in probability that is representative of thermalization dynamics, PIMC

supports the physical intuition that initial state Hamming distance does affect ground

state probability for low values of Q(s∗), making it the model closest to what is

observed experimentally. The absence of consistent state separation for all simulated

models supports the hypothesis that spin-bath polarization is affecting experimental

reverse anneals, as other integrated control errors such as cross-talk and noise do not

replicate the experimental observations.

In conclusion, the FSC problem Hamiltonian (Figure 2.10) used to assess

reverse annealing as an optimization method has demonstrated that it does behave as

a local search method, with ground state probabilities being larger for an initial state
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that is closer in Hamming distance to the ground state for an experimental reverse

anneal on the LANL D-Wave 2000Q quantum annealer. Initial states further in

Hamming distance also correspond to a lower ground state probability, and therefore

longer times-to-solution. Pauses were used mid anneal to increase ground state

probability and decrease TTS near the minimum gap (Figure 2.13b), which is a

result of thermalization effects driving diabatic transitions, and is explored further

in Chapter 3. The increase of ground state probability was particularly prominent

about the minimum gap, and is largest before passing through the minimum gap,

suggesting that reverse annealing can be used to successfully compute solutions to

optimization problems without passing through the minimum gap. However, in order

to achieve this the initial state needs to be in one of the low-energy states of the

original problem, and it is hard to find a priori the position of the minimum gap.

There are also some caveats to be had with this method of optimization, as

despite the fact that pausing increases ground state probability, the benefit to TTS

is nullified by the increase in computation time. Additionally, all reverse anneal

times-to-solution are longer than if one performed the corresponding forward anneal

(Figure 2.14). The apparent local-search behaviour seen in the experimental data

is also not something that a system at equilibrium would exhibit, and by excluding

other integrated control errors such as parameter noise and cross-talk using several

simulated models of quantum annealing, the local-search behaviour is likely a

result of spin-bath polarization. This effect introduces erroneous biases into reverse

annealing due to the adjacent biasing SQUID used to initialize the state. Therefore,

for an optimization problem with a large condition number (i.e., one that is sensitive

to errors), reverse annealing may alter the solution space to the extent that the ground

state of the original problem is no longer the ground state being found experimentally.

This can be mitigated using techniques such as shimming, but it requires many prior

reverse anneals to find the set of counter-biases to apply to each qubit.

Another artefact that was found to be the cause of some integrated control error

is the presence of oscillations in ground state probability. This is found to occur when

there was a reverse anneal with a constant annealing rate and a varying s∗ parameter,
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and is thought to be the result of some quantization error in the transverse-field

magnitude that affects the ground state probability. Neither these oscillations nor

constant probability differences due to the initial state are seen in the simulation

models tested. PIMC held the closest resemblance to the experimental data in terms

of ground state probability and correct separation of states for low values of Q(s∗)

(relative maximum magnitude of transverse field). Other models such as simulated

annealing and SVMC did not exhibit probability comparable to the experimental data

or any initial state dependence on the ground state probability, but did have peaks in

probability when the system was paused and left to thermalize, something that did

not feature in PIMC simulations. The AME in the singular coupling limit also did

not resemble the reverse anneal, and despite it having probability differences, it did

not agree with what was seen experimentally. Future work with reverse annealing

would involve finding regimes where TTS may be lower than what can be found

using forward annealing. Larger optimization problems would be needed to find this

regime, and would also require the use of shimming in order to mitigate spin-bath

polarization effects that bias reverse annealing.



Chapter 3

Thermalization in Quantum Annealing

Modern realizations of quantum computers all must find methods to mitigate the

noise sources that cause quantum systems to decohere, as coherence is key to the

theoretical foundation on which quantum computation was established. However,

noise will always manifest itself after some timescale in superconducting qubits, and

without error-correction protocols it is the major limiting factor to computation. In

the context of D-Wave quantum annealers, coherence lifetimes are on the order of

tens of nanoseconds due to the rate at which noise permeates into the system dynam-

ics. Therefore, the quantumness of the dynamics used for computation on quantum

annealers is still subject to debate due to the prevalent quantum and classical noise

sources that can obscure coherent quantum processes [143, 225–227]. However, it

has been shown that incoherent processes can aid computation on quantum annealers

where the anneal times are orders of magnitude larger than the single-qubit deco-

herence time [37, 38, 53]. This is largely in the form of thermally driven transitions

between the energy eigenstates, such that if this transition is seen to occur between

states separated by a classically forbidden region, then this process is also known

as thermally-assisted tunnelling, inferring that tunnelling for computation does not

necessarily require coherent dynamics.

These effects notably affect the ground state probability when the system is

paused mid-anneal and allow the system to thermalize near the minimum gap [57,

118, 119]. However, to what extent thermalization is computationally beneficial
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is still an active area of research, with lower noise quantum annealers (i.e. those

with lower thermalization rates) being seen to improve tunnelling ranges in local

search (reverse) quantum anneals [203]. A theoretical foundation as to why ground

state probability increases when a system is paused is given in Ref. [118], and finds

that this thermalization phenomenon only occurs when (i) the thermalization rate

is decreasing after the minimum gap, (ii) the thermalization rate is large near the

minimum gap, (iii) the thermalization rate is small at the end of an anneal, and (iv)

the ground state at the end of the anneal is sub-thermal (i.e., is lower in probability

than is predicted by the Boltzmann distribution). If these criteria are met, then

thermalization phenomenon driven by quantum dynamics are seen. However, it was

also shown in Ref. [119] that the thermalization signature of a quantum anneal with

a pause can be replicated with spin-vector Monte Carlo (SVMC) [277], which is a

classical heuristic used to mimic the behaviour of physical quantum annealers [60,89].

Therefore, it is possible that classical dynamics could be responsible for the thermal

transitions observed in experimental quantum anneals.

In order to differentiate between the classical and quantum mechanisms driving

the thermal transitions on a quantum annealer, it is necessary to use artificial gadgets

that are hard to solve in the transverse-field Ising model [29, 31, 38, 60, 292]. These

gadgets possess properties such as false minima within the energy potential that

classical evolutions would follow to suboptimal solutions. Increasing the hardness

to better contrast between dynamics generally relies on increasing the system size,

and therefore thermalization cannot be simulated using master equations after the

Hamiltonian exceeds a few qubits. In Section 3.1, a new Hamiltonian, the perturbed

ferromagnetic chain, is presented where the degree of hardness can be controlled by

a tuneable parameter at a fixed system size (published in Ref. [117]). The properties

of the perturbed ferromagnetic chain are studied, and it is shown that it possesses

both a false minimum and an exponentially large (in system size) first-excited-

state manifold. Both classical and open quantum system dynamical models are

simulated in Section 3.2, and demonstrate that ground state probability differs by

orders of magnitude between the models, suggesting that quantum thermalization
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is driving computation. Finally, experimental evidence of quantum thermalization

is presented in Section 3.3 for different D-Wave quantum annealers and various

systems sizes of the perturbed ferromagnetic chain, showing that thermalization is

most prevalent in time-scales many orders of magnitude larger than the coherence

lifetime of the quantum annealers. We also present evidence that suggests that

thermal transitions that appear to happen between states that have a large Hamming

distance use intermediate states in order to complete this transition.

3.1 Perturbed Ferromagnetic Chain

Many classical problems can in fact become harder to solve when placed in the

transverse-field Ising model (TFIM) compared to a purely classical models, such as

simulated annealing, due to the presence of harsher quantum phase transitions. An

example of this is the random energy model, which develops a first order quantum

phase transition in the TFIM compared to one of second order phase transition in the

classical model [82]. The perturbed ferromagnetic chain (PFC) [117] possess this

feature in the TFIM, and is inspired from other quantum consistency tests presented

in Refs. [137, 159], where these cyclic gadgets have highly degenerate ground

states. If annealed classically, then probability would be equally shared amongst

the ground states, but in a quantum anneal it is shown to populate all states apart

from one. By adding a perturbative parameter, one can in fact break the degeneracy

of this ground state into a single ground state and a highly degenerate first excited

state. Additionally, the minimum gap energy, ∆10, can be tuned by the perturbative

parameter, providing access to different minimum gap regimes e.g., a gap smaller

than the environmental temperature.

Throughout the rest of this section, we present the theoretical properties of

the PFC and compare classical spin-vector Monte Carlo (SVMC) variants with the

adiabatic quantum master equation. We demonstrate that SVMC methods get trapped

in the exponentially large first-excited computational state manifold when solving

this frustrated problem, whereas evolution using quantum dynamics remains in the

lowest energy eigenstates. This results in significant differences in ground-state
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Figure 3.1: Illustration of the perturbed ferromagnetic chain Hamiltonian in general form.
In yellow are the auxiliary qubits with biases of −R, and in turquoise are the backbone
qubits with biases R(1−d). The dark blue edges are the ferromagnetic couplers of strength
−R. The total number of qubits, N, in this problem is 2M, where M denotes the number of
two-qubit subsystems (indexed by i) in the Hamiltonian. The system energy is scaled by R,
and d describes the magnitude of perturbation. The properties of this model hold generally
for M ≥ 2, R > 0, and 1 > d > 0.

probability when using either classical or quantum annealing dynamics in the TFIM.

It is also shown that the mechanism contributing to these significant differences is

that of thermally-assisted tunnelling in a system that experiences decoherence at a

finite temperature, such that we can observe its computational role when annealing

with the PFC.

3.1.1 Classical Model

The PFC (Figure 3.1) is a ferromagnetically coupled chain of M frustrated subsys-

tems, each composed of two qubits, and is designed to be an easily embeddable

gadget that can be used as an experimental test of hardness in the TFIM. The PFC

Hamiltonian is given by

ĤP = R

[
M

∑
i=1

(1−d)σ̂ z
b,i− σ̂

z
a,i−Rσ̂

z
a,iσ̂

z
b,i

]
−

M−1

∑
i=1

σ̂
z
b,iσ̂

z
b,i+1 (3.1)

where M is the number of subsystems, R scales the energy of the problem, and the

magnitude of the perturbation is characterized by the parameter 0 < d < 1. The value
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of d is proportional to the size of the energy gap between the ground and first-excited

state, and therefore controls the problem hardness. The parameter d is referred to as

the perturbative parameter throughout. The auxiliary and backbone qubits, depicted

by the yellow and turquoise circles shown in Figure 3.1 respectively, are denoted by

Pauli Z matrices σ̂ z
a and σ̂

z
b respectively.

The ground state of this Hamiltonian is the |0⊗M
b ,0⊗M

a ⟩ (all up) state, and given

that d < (M−1)−1 the first excited state is a degenerate manifold whose size grows

exponentially in M. This validity range exists due to the minimum gap between

the manifold states and the ground state being ∆10 = 2RMd, which states that gap

size is proportional to system size, leading to the manifold state no longer being

the first excited state for large M. This manifold always has the backbone qubits in

the |1b⟩⊗M (all down) configuration, and the auxiliary qubits are isoenergetic with

respect to their spin state, creating a 2M-degenerate manifold of “floppy” auxiliary

qubits. This creates an energy gap between the ground state and exponential manifold

of ∆10 = 2RMd, where the states in the manifold have a Hamming distance between

M and 2M from the ground state.

Classically the PFC is exactly solvable via the transfer matrix method [293],

where at an inverse temperature, β , the partition function, Z , can be found in

polynomial time. The partition function in transfer matrix form is expressed as

Z = vWM−1vT , (3.2)

where,

v =
(

e
1
2 βR(d+1), e

1
2 βR(d−3), e

1
2 βR(1−d), e

1
2 βR(1−d)

)
(3.3)

handles the boundary subsystems of the chain, and
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W =


eβR(d+2) eβRd 1 1

eβRd eβR(d−2) e−2βR e−2βR

1 e−2βR eβR(2−d) eβR(2−d)

1 e−2βR eβR(2−d) eβR(2−d)

 , (3.4)

handles the inner subsystems of the chain. We can then find the magnetization of a

subsystem at thermal equilibrium using

⟨σ z
i ⟩=

1
Z
[
vWi−1

σ
z
i WM−ivT ] , (3.5)

where σ
z
i =

1
2

(
σ̂

z
a,i + σ̂

z
b,i

)
. The average magnetization of the PFC is then an average

over all contributions, ⟨σ z⟩= 1
M ∑

M
i ⟨σ z

i ⟩. From this formalism, the free-energy of the

PFC can be derived, which can then be used to derive further thermodynamic proper-

ties. The transfer-matrix representation of the PFC partition function (Equation (3.2))

involves singular, noncommuting matrices W (Equation (3.4)) and V = vT v (where v

is defined in Eq. (3.3)), which does not allow for an obvious reduction to an analytical

free energy that is generally defined as

F =− lim
N→∞

1
βN

lnZ , (3.6)

where Z is the partition function. We begin by redefining the partition function in

Equation (3.2) to

Z = Tr
(
WM−1V

)
, (3.7)

where M = N/2, such that we now take the limit in M→ ∞ due to W containing

information about the subsystem rather than a single qubit. Performing an eigen-

decomposition on W yields a diagonal matrix of eigenvalues, D, and a matrix of

eigenvectors, P, in the form W = PDP−1. When W is raised to any power, the

decomposition simply becomes WM = PDMP−1. Given the cyclic invariance of the
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trace, the partition function therefore becomes

Z = Tr
(
PDM−1P−1V

)
= Tr

(
DM−1P−1VP

)
. (3.8)

Taking A = P−1VP, and the largest absolute eigenvalue of W to be λ1 (the spectral

radius), the trace summation will yield

Tr
(
DM−1A

)
=

4

∑
i=1

Aiiλ
M−1
i =

4

∑
i=1

(
M−1√

Aiiλi

)M−1

=
(

M−1√
A11λ1

)M−1 4

∑
i=1

(
M−1√Aiiλi

M−1√A11λ1

)M−1

.

(3.9)

Given that W is positive semidefinite, in the limit of M→ ∞ the trace is simply left

with λ
M−1
1 as a nonvanishing term, such that we find the analytical form of the free

energy to be

F =− lim
M→∞

1
βM

lnTr
(
DM−1A

)
=− 1

β
lnλ1 . (3.10)

This eigenvalue can be found symbolically using PYTHON’s SymPy library, such that

λ1 =e2βR coshβRd + coshβR(2−d)

+

√(
e2βR coshβRd + coshβR(2−d)

)2−4sinh4βR .
(3.11)

The validity of this free energy relies on the fact that our spectral radius is ≥ 1,

otherwise W would converge to zero in the limit of M→ ∞. However, the PFC has

bounds of R > 0 and 0 < d < 1, such that our eigenvalue λ1 ≥ 4, and is therefore

finite everywhere except for βR = ∞.

3.1.2 Transverse-Field Ising Model

Translating the PFC into the TFIM involves the addition of a noncommuting

transverse-field term, composed of σ̂ x operators, which introduces the driver of

quantum fluctuations that can potentially be used to aid computation [14, 47]. The
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(a)

(b)

Figure 3.2: (a) Intensity plot of the average qubit magnetization in the instantaneous ground
state for a PFC in the presence of a transverse field (Equation (3.12)) with M = 2 and R = 1.0.
The solid red line shows the boundary between the quantum paramagnetic and negative
magnetization phases. The white dashed line indicates the position of the minimum gap. (b)
Cross sections of (a) showing the average magnetization during an anneal.
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TFIM Hamiltonian of the PFC is given by

Ĥ(s) =−A(s)
N

∑
j=1

σ̂
x
j +B(s)ĤP , (3.12)

where the classical PFC is encoded into ĤP [Eq. (3.1)]. The coefficients are taken

to be A(s) = 3(1− s) GHz and B(s) = 3s GHz throughout this work, where s is the

normalized annealing time s = t/tanneal.

For sufficiently small values of d, the ground state of this Hamiltonian is seen

to undergo a quantum phase transition, illustrated in Figure 3.2 by the change in

average qubit magnetization from negative to positive phases. Therefore, in the

TFIM, the perturbative parameter d can be used to tune the problem hardness. The

average qubit magnetization is defined as

⟨σ z⟩= 1
N

N

∑
j=1
⟨E0(s)|σ̂ z

j |E0(s)⟩ , (3.13)

where |E0(s)⟩ is the instantaneous ground state from the diagonalized Hamiltonian

of Eq. (3.12) at some value of s, and N is the number of qubits in the PFC. The

formation of the negative phase before the minimum gap is indicative of the ground-

state qubits becoming magnetized to resemble the exponentially large degenerate

first-excited-state manifold (further illustrated in Sections 3.1.3 and 3.2.2). After

passing through the minimum gap, the instantaneous ground state enters the positive

phase and then goes on to finish in the computational ground state. It must be

noted that even if the d < (M−1)−1 condition is broken such that the exponentially

degenerate manifold is no longer the computational first-excited-state, for small d the

instantaneous ground state maintains its resemblance to the exponentially degenerate

manifold before the minimum gap.

Figure 3.3 illustrates the exponential scaling of the minimum gap between

the ground and first-excited state, ∆10, in system size, M, for various perturbative

parameters, d. The gap sizes were determined through numerical diagonalization

of the TFIM Hamiltonian (Equation 3.12) for all s, and follow exponential fits of
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Figure 3.3: Plot of how the minimum gap ∆10 scales with system size M in the TFIM for
various values of the perturbative parameter d. The PFC used R = 1.0, and the lines plotted
are fits to the equation Ae−bM.

the form Ae−bM. The exponential minimum gap scaling in M is also consistent

with first-order quantum phase transitions, therefore making M another method of

increasing the problem hardness. However, large quantum systems lead to intractable

computational times for some of the simulation methods explored in the results,

making d a more desirable tunable hardness parameter because of the minimum gap

∆10→ 0 as d→ 0.

In summary, the PFC becomes hard in the TFIM for small values of d due

to the presence of a quantum phase transition, and for large values of M where

the minimum gap exponentially reduces in size. In the next section, we perform a

semiclassical analysis to show that when the PFC is translated into the TFIM a false

minimum exists. The interplay between the false and true minima is particularly

prominent when annealing through the region where the ground state is in the

negative magnetization phase shown in Figure 3.2.
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3.1.3 Semi-Classical Analysis

To further explore the behaviour of the PFC in the TFIM, a semiclassical approx-

imation can be made by using the spin-coherent ansatz [275] (see Section 1.4.3)

to calculate the semiclassical effective potential landscape as a function of s. The

magnetization expectation values of the auxiliary qubits are almost identical, and the

same is true for the backbone qubits. We can therefore approximate the states of the

PFC in the spin-coherent ansatz as

|θa,θb⟩=

[
M⊗

i=1

cos
(

θa

2

)
|0⟩+ sin

(
θa

2

)
|1⟩

]
(3.14)

⊗

[
M⊗

i=1

cos
(

θb

2

)
|0⟩+ sin

(
θb

2

)
|1⟩

]
.

Here, θa and θb are the angles of the states in the XZ plane of the Bloch spheres for all

of the auxiliary and backbone qubits respectively. Here, we assume that the azimuthal

angle φ j is equal to zero as there are no Y-contributions to the TFIM Hamiltonian

eigenvalues. This semiclassical approximation without the Y-component has been

used to simulate specific problems in the TFIM [277]. The semiclassical potential is

then given by

VSC(s,θa,θb) = ⟨θa,θb| Ĥ(s) |θa,θb⟩ . (3.15)

The visual representation of the potential at various stages of an anneal

(Figure 3.4) shows the PFC initially taking a path to the first excited states

(θa ∈ [−π,π],θb = π). This is then followed by a discontinuous change in the

position of the global energy minimum about the minimum gap (at s = 0.841) to the

computational ground state (θa = 0,θb = 0). This is referred to as a false minimum,

which is where an initial single minimum forms two or more minima mid-anneal,

where the lowest minimum at this point (i.e., the most probably route) leads to an

excited state at the end of the anneal. This false minimum will always be separate

from the minimum that leads to the ground-state solution past this point. The false

minimum can be visualised by taking a hyperplane that passes through the global

minimum (and the local minimum where applicable). It is clear that as we evolve
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from a unimodal to a bimodal potential, the all-down (θb = π) configuration of the

backbone qubits is energetically preferable until the minimum gap is traversed. Addi-

tionally, the computational ground state is energetically isolated from the low-energy

excited states, meaning that further dynamical evolution is still needed to reach the

ground state after the minimum gap. If the system is evolved under an adiabatic,

coherent regime [13] then the dynamical process is quantum tunnelling. In a classical

model (like SVMC) we can only use thermal excitations to traverse these energy

barriers and escape the false minimum.

If tunnelling were to occur in the instantaneous ground state, then this would

result in delocalization about the bistable potential. Using the trace-norm distance,

D(s,θa,θb) =

√
1−|⟨E0(s)|θa,θb⟩|2 , (3.16)

we can quantify the distance between the instantaneous ground state and the spin-

coherent ansatz to determine the extent to which the ansatz accurately describes the

instantaneous ground state. In Figure 3.5 we show the trace-norm distance for a four-

qubit (M = 2) instance of the PFC in the vicinity of the minimum gap. This is the

same instance whose potential landscape is shown in Figure 3.4 and whose minimum

gap occurs at s = 0.841. At s = 0.835 the trace-norm distance has a global minimum

whose location in (θa,θb) space closely corresponds to the global minimum of the

semiclassical potential (i.e., near θb = π). Nevertheless, there is a local minimum in

the trace-norm distance which extends along the indicated hyperplane, showing that,

prior to the minimum gap, tunnelling enables a finite probability amplitude in the

local minimum of the potential landscape near θb = 0. After the minimum gap, as

shown for the case s = 0.845 in the right panel of Figure 3.5, the global minimum

of the trace-norm distance now closely corresponds to the global minimum of the

semiclassical potential near θb = 0. This minimum continuously evolves into the

global minimum of the problem Hamiltonian at s = 1 as shown in Figure 3.4.

Using semiclassical analysis, we have shown the existence of a false global

minimum before the minimum gap, when the value of d is small enough. Under

quantum evolution, the transition from the false minimum to the true minimum
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Figure 3.5: The trace-norm distance between the spin-coherent state and the instantaneous
ground state (Equation (3.16)) in the vicinity of the minimum gap at s = 0.841 for a PFC with
M = 2, R = 1.0 and d = 0.09. The backbone and auxiliary spins in the PFC are characterized
by angles θb and θa, respectively. The red cross marker indicates the global minimum of the
trace-norm landscapes, and the red circle indicates the minimum of the potential landscape
in Figure 3.4. The hyperplane (white dashed line) from Figure 3.4 is also plotted.

exploits tunnelling, and this is visualized by measuring the trace-norm distance be-

tween spin-coherent states and the instantaneous ground state to show delocalization

across the potential barrier (Figure 3.5). Under classical evolution, thermal excitation

of multiple qubits is needed to traverse the barrier to reach the computational ground

state. Additionally, the manifold along θb = π (corresponding to the exponentially

large computational first-excited-state manifold) is equally accessible under classical

dynamics. Therefore, classical algorithms that explore this energy landscape, such as

SVMC, can remain in this manifold instead of reaching the ground state. We explore

in Section 3.2.2 the extent to which this hinders computation in both classical and

quantum evolution.

3.2 Simulated Thermalization

3.2.1 Quantum & Classical Methods

The two main methods to simulate the TFIM with coupling to a thermal bath are

through the use of spin-vector Monte Carlo (SVMC) and master equations. The

former is a fully classical representation of the TFIM, which can be thought of as
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a classical particle following the continuous semiclassical potential. This model

uses stochastic temperature dependent updates to the spin vector (parameterised

by angles) to traverse the energy potential and reach the ground state. It has been

used to simulate experimental quantum annealing and its thermalization effects [89,

119, 159, 277], and has therefore raised the question as to how quantum the D-Wave

quantum annealer is if it can be simulated by a classical emulator. The master

equations are fully quantum representations of the dynamical evolution, where

both coherent and incoherent evolutions through a quantized energy potential are

modelled. Entanglement between qubits and tunnelling through barriers in the energy

potential is possible in this regime, as well as thermalisation between energy levels

for master equations that model incoherent processes.

To explore this with the PFC, we look at SVMC and several variants as the

classical simulator of open-system dynamics. Numerical approaches such as spin-

vector dynamics (SVD) that use the Langevin equation (Section 1.4.3) could also be

used for the classical simulation, but in the dynamical simulations we are interested

in the distribution of states generated, which is better represented by SVMC. The

dynamics simulated by SVD have also not been accurate representations of what

is seen in experimental quantum annealing [138, 159]. The variants of SVMC to

be explored include the original SVMC proposed in Ref. [277], and SVMC with

transverse-field dependent updates (SVMC-TF) proposed in Ref. [119], details of

which are in Section 1.4.3.1. Both SVMC and SVMC-TF are dynamically restricted

to only operating in the XZ-plane of the Bloch sphere, however, this restriction is

removed by including the azimuthal angle φ j such that SVMC now has access to the

entire Bloch sphere. We will refer to these variants as spherical SVMC and spherical

SVMC-TF. This coordinate extension does not affect the Z (polar) components of

the energy function. It does, however, affect the transverse-field component, such

that the new energy function becomes

E(s) =−A(s)
N

∑
j=1

cosφ j sinθ j +B(s)

[
N

∑
j=1

h j cosθ j + ∑
⟨ j,k⟩

J jk cosθ j cosθk

]
, (3.17)
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where the azimuthal angle, φ j ∈ [−π,π], is also updated in the same way as the polar

angle, θ j. For all variants, we also take the annealing functions to be A(s) = 3(1− s)

GHz and B(s) = 3s GHz, where the anneal runs from s = 0 to s = 1 at a temperature

of 12 mK. All algorithms update spins individually in a randomly permuted order

and thus cannot capture any simultaneous multiqubit moves, unlike those that may

occur in systems evolved using quantum dynamics.

The second approach to simulating quantum systems coupled to a thermal-

bath is through the use of master equations, all of which are extensions of the von

Neumann equation (see Section 1.4.1). In particular, we look at the adiabatic master

equation (AME) in the weak coupling limit [142, 143], due to it being far from

the semiclassical limit and computationally tractable for the system sizes we are

interested in. This model is a reduction of the Redfield equation, where noise is

assumed to be Markovian and the rotating-wave approximation made by assuming

there is weak coupling between the system energy levels to the bath. In this model,

we assume that coupling to the bath introduces decoherence by dephasing all qubits

independently, and that the bath spectral density takes the form of a Bosonic Ohmic

bath,

γ(ω) = 2πηg2 ω exp(−|ω|/ωc)

1− exp(−βω)
, (3.18)

where β = (kBT )−1 is the inverse temperature, ωc is the cut-off frequency, ηg2 is the

dimensionless bath coupling strength and kB is the Boltzmann constant. Throughout

the rest of the paper we specify the bath parameters to be T = 12 mK, ωc = 4

GHz and ηg2 = 10−3. Bath coupling strengths on quantum annealing hardware are

thought to be ηg2 ≥ 10−3, but higher coupling strengths would violate the weak-

coupling approximation used to derive the AME and therefore yield unphysical

dynamics.

The decoherence by dephasing manifests itself in the energy eigenbasis through

the time-dependent Lindblad operators

L̂ j,ωkl(t) = ⟨El(t)|σ z
j |Ek(t)⟩|El(t)⟩⟨Ek(t)| . (3.19)



3.2. Simulated Thermalization 132

This describes how the jth qubit couples to the environment with respect to the energy

gap, ωkl = Ek−El , between the instantaneous energy eigenstates, |Ek(t)⟩ and |El(t)⟩

of the system Hamiltonian (Equation (3.12)). Coupling to the energy eigenstates

models how probability density moves between the energy levels near to the ground

state, and therefore how quantum annealing can still perform quantum computation

after the system has decohered. Coupling to the computational basis would result in

strong decoherence to the maximally mixed state, which is not observed to occur in

quantum annealing.

This form of the AME is also used to model thermally-assisted adiabatic quan-

tum computation near the adiabatic limit. Assuming that most of the ground state

population is lost to the first excited state after passing through the minimum gap,

the re-population of the ground state via thermal relaxation can be related to the

transition rate via

Γ1→0(t) ∝ γ1→0(t) = γ(ω10(t))∑
j

∣∣∣⟨E0(t)|σ z
j |E1(t)⟩

∣∣∣2 . (3.20)

Here the temperature dependence of the transition rate is introduced by the Ohmic

spectral density function, γ in Equation (3.18). However, when the gap, ω10, is

sufficiently small, the weak-coupling assumption in the AME starts to break down.

This is the case for hard PFC instances, since the gap can be very small relative to

the bath temperature. In such a regime the energy levels become broadened due to

the stronger coupling to the bath, such that the discrete energy levels should emulate

a more continuous potential, similar to the semi-classical picture. Therefore, despite

the AME not being able to describe these strong-coupling regimes as accurately

as more sophisticated models like the Redfield equation, it serves as a reasonable

approximation of an open-system model of the PFC.

For all simulations, the initial state is the pure ground state of the system at

s = 0, which when using Equation (3.12) is ρ̂(0) = |+⟩⟨+|. To identify where

thermally-assisted dynamics may be affecting computation, all AME simulations are

compared against closed system simulations using the von Neumann equation. Both

the AME and von Neumann equation are simulated using the Hamiltonian Open
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Quantum System Toolkit [145] (HOQST), a simulation library written for the JULIA

language.

3.2.2 Dynamical Simulations

We begin the dynamical analysis of the PFC by observing the performance of the

SVMC variants when scaling in M. The systems chosen meet the d < (M−1)−1

condition such that the first excited state is the exponentially large manifold which

is at least a Hamming distance of M away from the ground state. The combined

effects of an exponentially scaling gap and manifold are observed in Figure 3.6(a)

by measuring the ground-state probability at the end of the anneal with respect to the

number of incremental sweeps used in all SVMC variants. Typically, we expect an

increasing number of sweeps to correspond to an increasing ground-state probability,

but here there are three distinct regimes when annealing the PFC. For low sweep

numbers, where the semiclassical potential is evolved in large steps, we have a

relatively high ground-state probability as the false minimum is not well resolved

but SVMC still guides the spin vector to the low-energy states.

For medium sweep numbers we see reduction in ground-state probability, caused

by the quasicontinuous evolution of the semiclassical potential now leading the

SVMC algorithm to the false minimum. This guides SVMC to the θb = π manifold

(Figure 3.4) corresponding to the degenerate computational first excited states,

causing SVMC to spread out into this manifold and into states that are potentially

further in Hamming distance from the computational ground state (see Figure 3.7 for

further evidence of this). Finally, for high sweep numbers, SVMC starts to thermally

equilibrate and ground-state probability begins to return.

To confirm the detrimental role that the exponential manifold has on SVMC,

the state probabilities just after the minimum gap are measured in Figure 3.7 for

both spherical SVMC-TF (for 10,000 sweeps) and a system evolved using AME

(for 200 ns). The probability distribution is measured at s = 0.83 for a PFC (M = 3,

R = 1.0, d = 0.1) with a minimum gap at s = 0.8227. It can be seen that the

probability density spreads into the computational first-excited-state manifold when

evolving using spherical SVMC-TF, which is caused by following the false minimum
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(a)

(b)

Figure 3.6: Probability of being in the ground state (PG) for (a) both SVMC (solid lines)
and spherical SVMC-TF (dotted lines), and (b) SVMC-TF (solid lines) and spherical SVMC
(dotted lines), as the system scales in size, M, for a PFC with d = 0.1. Here, all probabilities
are found from 20,000 samples, which we repeat 50 times and bootstrap to find the median
and 95% confidence intervals for the data point and error bars, respectively.
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and accessing the θb = π manifold using classical dynamics. However, a system

evolved using the AME remains in the lowest instantaneous eigenstates after the

minimum gap, where E0 also has a large overlap with the computational ground

state, ⟨E0(s = 0.83)|0⊗N⟩= 0.98. After this point in the anneal, both the AME and

spherical SVMC-TF experience freeze-out, which prevents any more dynamical

evolution that could affect ground-state probability. This is illustrated by the ground-

state probability of the AME (spherical SVMC-TF) evolution at s = 0.83 being

∼ 0.50 (∼ 3.4×10−3), compared to that at s = 1 being ∼ 0.51 (∼ 3.4×10−3) (see

Figure 3.8). It is also worth noting that we measure in the computational basis for

SVMC since it is a classical algorithm with no other analogous discrete states to

compare against the instantaneous states used by the AME.

Finally, we explore how the tunable hardness parameter, d, affects the PFC in

both quantum and SVMC simulations for M = 3, in Figure 3.8. We measure the

probability at the end of the anneal of being in the ground state as well as any of the

first excited states for different annealing durations. The value of d also determines

the size of the minimum gap, such that we span d to capture various regimes at a

fixed system temperature of 12 mK. At d ∼ 0.227 we have a minimum gap that

approximately equals the system temperature. The form of all SVMC variants when

scaling in d in Figure 3.8 is similar to what is also seen in Figure 3.6(a) when scaling

in M, which is a result of increasing hardness and the variants preferably annealing

to the first-excited-state manifold (following the false minimum). Additionally,

spherical SVMC-TF consistently outperforms all other variants for the hardest

problems (d ≤ 0.15), which is a result of the spherical component on average

reducing the transverse-field in Equation (3.17) and slowed dynamics from the

transverse-field dependent updates preventing the spin vector from getting lost in the

first-excited-state manifold.

The probabilities at the end of a closed-system quantum anneal (for time tanneal)

are of a similar form, with a bump for short anneal times (the diabatic bump [294])

and then reaching the adiabatic limit (where the ground-state probability tends

towards 1) at longer anneal times (e.g., tanneal≃ 20ns for d = 0.3). The closed-system
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Figure 3.7: State probability at s = 0.83 (= t/tanneal), just after passing through the minimum
gap (s = 0.8227) for (a) the AME with tanneal = 200ns and (b) spherical SVMC-TF with
tanneal = 10,000 sweeps. We measure a PFC with M = 3 and d = 0.1. For the AME we
measure the probability of being in the jth instantaneous state, E j, and for spherical SVMC-
TF we take a classical measurement of being in either the ground state or any of the first
excited states. The spherical-SVMC-TF probabilities are found from 20,000 samples, of
which we repeat 50 times and bootstrap to find a median and 95% confidence intervals for
the data point and error bars, respectively.

dynamics describe quantum evolution at a temperature of 0 K with no dephasing, and

therefore requires a run time of tanneal = O(1/∆2
10) to run adiabatically. For example,

at d = 0.05 the approximate adiabatic run time is ∼ 163µs and we therefore see a

probability ∼ 0 due to the short run times.

However, for the open-system simulations, we see a nonzero ground-state

probability at d = 0.05 for tanneal = 200ns. This means that the addition of a thermal

bath to the system is aiding computation, and since this transition passes through

a potential barrier, it can be attributed to thermally-assisted tunnelling governed

by the relaxation rate (Equation (3.20)) being nonzero about the minimum gap
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Figure 3.8: Plots of state probability for being in either the ground state (solid lines) or
any of the 2M-degenerate first excited states (dashed lines) at the end of an anneal. A PFC
with system size M = 3 was evolved using quantum and classical dynamics. The horizontal
black dashed line indicates the probability with random guessing, i.e., 1/64. The quantum
simulations are plotted against anneal time in nanoseconds, while the SVMC simulations are
plotted against the number of sweeps. The closed- and open-system dynamics are evolved
according to the von Neumann and adiabatic master equation, respectively. The probabilities
for all SVMC variants are found from 20,000 samples, of which we repeat 50 times and
bootstrap to find a median and 95% confidence intervals for the data point and error bars,
respectively.
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Figure 3.9: Plot of the evolution of ground-state probability from the AME (black solid) and
the Gibbs state (black dotted), as well as the transition rate (red) (Equation 3.20). A PFC of
M = 3, R = 1.0, and d = 0.05 was simulated at a system temperature of 12 mK. The AME
was evolved for tanneal = 200ns and the minimum gap occurs at s = 0.9059.

(Figure 3.9). This can occur because the system is subthermal [118] (i.e., the

ground-state probability is less than that at thermal equilibrium) immediately after

the minimum gap, and the energy gap is still small enough to allow significant

thermalization from the first excited state to the ground state. Additionally, this

transition involves all backbone qubits changing their magnetization simultaneously.

Therefore, thermalization in a quantum system is seen to be of some computa-

tional use, as has been seen in other literature [37,57,118,119,203]. However, we see

that on the time scales tested that classical thermalization mechanisms represented in

SVMC play a far less significant role, and results in a ground-state probability (after

10,000 sweeps) two orders of magnitude lower than a 100-ns AME evolved anneal.

The marked difference between the two types of dynamical simulations highlights

the effect of the minimum gap and the exponential manifold on ground-state proba-

bility, making it a gadget of interest for when differentiating between quantum and

classical evolutions in the TFIM. For a better contrast between dynamics, annealing

larger versions of the PFC (M > 10) would result in negligible statistical contribution
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from random state sampling, and an extremely large first-excited-state manifold that

would likely result in SVMC failing to find the ground state.

In this section, we have introduced the perturbed ferromagnetic chain

(PFC) [117], a gadget with an exponentially large first-excited-state manifold and

an isolated ground state, whereby problem hardness and frustration is tuned by the

perturbative parameter, d. When annealed in the transverse field Ising model (TFIM),

the PFC develops computationally hard characteristics such as an exponentially

small minimum gap (in N), a quantum phase transition, and a false minimum. The

evolution of the PFC in the TFIM was assessed with quantum dynamics using the

adiabatic master equation (AME), and classically using both spin-vector Monte

Carlo (SVMC) and its variants (see section 3.1.3 for more information). For quasi-

continuous evolution of the PFC with the SVMC methods, the false minimum is

followed to the computational first-excited-state manifold. This results in probable

transitions to other low energy states further in Hamming distance away from the

computational ground state (Figure 3.7), and therefore reduces the probability of

reaching the ground state significantly. This is compounded by increasing problem

size (Figure 3.6(a)) and by tuning d (Figure 3.8).

For a PFC evolved using the AME, the system mostly remains in the lowest

two eigenstates (Figure 3.7) instead of accessing the exponential manifold, such

that a 100ns open-quantum-system anneal results in a ground state probability two-

orders of magnitude larger than a 10,000 sweep spherical SVMC-TF anneal for the

hardest comparative problem simulated (Figure 3.8). The AME evolution permits

thermalization to the ground state (Figure 3.9) in time-scales too short for adiabatic

evolution, indicating that thermalization aids computation of the PFC in the TFIM.

The distinct differences seen between classical and quantum evolutions therefore

makes the PFC a useful gadget in differentiating dynamical systems, something

which other gadgets cannot always exhibit [60, 89, 119]. Comparative tests at larger

PFC system sizes of M > 10 would also allow for better differentiation and insight

into the computational extent of thermalization in quantum and classical evolutions.
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3.3 Experimental Thermalization

In the previous section, it was demonstrated with simulations how the perturbed

ferromagnetic chain (PFC) [117] is able to distinguish between evolutions evolved

using thermally-assisted quantum dynamics, and those that are classical or purely

quantum by means of ground state probability measured. It is known that D-Wave

quantum annealers use thermalization dynamics to aid computation in some in-

stances [37, 57, 119, 203], but whether these dynamics are classical or quantum in

nature is still a debated question. Therefore, the PFC can be used to shed light

on this question, as well as whether incoherent quantum dynamics can be used for

computation. In this section, we compare the simulated models to the experimental

results obtained using various D-Wave quantum annealers, which yielded insights

into the questions posed and allowed for the characterization of quantum dynamics

on the various D-Wave annealers. The Hamiltonian for all annealers tested is

H(s) =−1
2

A(s)
N

∑
i=1

σ
x
i +

1
2

B(s)

[
N

∑
i=1

hiσ
z
i +∑

i, j
Ji jσ

z
i σ

z
j

]
(3.21)

where the parameter schedules A(s) and B(s) are defined in Figure 3.10 for a

D-Wave 2000Q housed at Los Alamos National Laboratory (LANL), D-Wave

Advantage_system4.1 hosted by D-Wave over cloud services, and a low-noise

D-Wave 2000Q (named DW_2000Q_6) also hosted by D-Wave over cloud services.

The simple connectivity of the PFC means that no minor-embedding is required and

no parameter rescaling is required when placing the PFC on the quantum processing

unit (QPU).

In Section 3.3.1, the M = 3 PFC with d = 0.05 is run on the D-Wave Advantage

annealer and compared to the simulation models used in Section 3.2, using the

shorter minimum anneal time of 500ns available on the D-Wave Advantage QPU

compared to the minimum of 1µs on 2000Q annealers. Larger system sizes beyond

what is possible to simulate using the adiabatic master equation are then explored and

compared to classical SVMC in Section 3.3.2, where the effects of thermalization

are more distinct. For larger system sizes, the condition of d > 1
M−1 required for the
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Figure 3.10: Plots of D-Wave annealing coefficient schedules for the a) DW_2000Q_6, b)
Los Alamos National Laboratory DW_2000Q, and c) Advantage_system4.1 systems, with
operating temperatures Tenv of 13.5±1.0 mK (0.279±0.021 GHz), 12.3 mK (0.256 GHz,
no error provided) and 15.4± 0.1 mK (0.321± 0.002 GHz), respectively. The schedules
parameterize Equation 3.21 as a function of the annealing parameter s.

exponentially-degenerate manifold state,M, to be the first-excited state is broken in

order to preserve the PFC properties in case of integrated control errors (i.e., d > 0

at all times). An example is shown in Figure 3.11 for d ≯ 1
M−1 , whereby despite this

condition being broken the avoided-level crossing is still between theM-state and

the ground state, with the other energy state not part of the exponential manifold

(called the intermediate-state) crossing theM-state such that the intermediate I-state

becomes the new first-excited state. Here there are 4 degenerate intermediates states

caused by a bit-flip on a terminal backbone qubit, that can happen on either end of

the PFC, and whereby the auxiliary qubit is isoenergetic to its spin-state.

3.3.1 Model Comparisons

For tractability of simulations in the model comparison, the shorter 500ns minimum

anneal time Advantage annealer, Advantage_system4.1, is used in this section with

a system temperature of 15.4±0.1 mK. Experiments are compared against SVMC-

TF, closed quantum system, and AME simulations. The roles of two prominent QPU

noise sources are also explored in the comparison, the first being cross-talk, which is

the leakage of magnetic fields to neighbouring qubits characterised by the magnetic

susceptibility of qubits χ , and the second being parameterization noise, where the
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Figure 3.11: The example energy-gap spectrum for an M = 6 perturbed ferromagnetic
chain with d = 0.25, where the d < 1

M−1 condition is violated. In this regime, the manifold
states,M, is no longer the first-excited state at the end of the anneal, and are replaced by
the intermediate states, I. The system is annealed according to the Hamiltonian defined
in Equation 3.21 with the DW_2000Q_6 coefficient schedule, and then rescaled such that at
s = 1 the energy difference is in the Ising energy units of the problem Hamiltonian.

defined bias and coupler values are the means of a normal distribution with some

standard deviation σ . The latter error is only applied to the Monte-Carlo simulations,

and values of χ =−0.035 and σ =
√

0.03 are used throughout, in accordance with

values stated in QPU datasheets. Experimentally, these noise sources are mitigated

using methods such as spin-reversal transforms, longer intervals between samples to

reduce inter-sample correlation, and random direct embedding to average over the

error across the entire QPU.

Comparisons of simulation models against the Advantage_system4.1 an-

nealer is shown in Figure 3.12 for models with and without QPU noise emulation.

Ground-state probability was adversely impacted in both open and closed quantum

simulations by the addition of cross-talk, whereas there was negligible impact on

the SVMC-TF simulations. Furthermore, no direct match between the experimental

data and models tested is observed, and for short anneal times an unusually high

ground state probability is observed, which then decreases as anneal-time increases.

Quantum models were only observed to have decreasing ground-state probability
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Figure 3.12: Comparison between the simulated classical and quantum models to the D-
Wave Advantage_system4.1 annealer for the short anneal time regime between 500ns −
1µs for an M = 3, d = 0.05 PFC. Plot a) illustrates simulated models with no integrated
control errors in the anneal, whilst b) introduces cross-talk (see Equation 1.13) into the
Hamiltonian with χ = −0.035 for all simulated models, and parameter setting errors for
both biases and coupling (see Equation 1.13) with a standard deviation of 0.03 for SVMC-TF
simulations. The probabilities for the D-Wave Advantage and SVMC-TF was obtained
from the median of 50 sets of 10,000 samples that were bootstrapped to yield error bars
to two standard deviations. The number of Monte-Carlo steps per µs for SVMC-TF were
chosen to be 1000 µs−1. Open quantum system simulations assumed an Ohmic bath with
ηg2 = 1×10−3, ωc = 4.0 GHz at temperature T = 15.4 mK.

in anneal time after the “diabatic bump”, observed in Figure 3.8, however the QPU

is annealed at a timescale where this phenomenon has already passed. Given that

we are also not at a timescale to observe adiabaticity, the decreasing ground-state

probability observed for the QPU can be attributed to mechanisms similar to the

classical SVMC due to the consistency in the decreasing ground-state probability

justified in Section 3.2.2.

SVMC-TF ground-state probability increases when simulated at a temperature

higher than the defined QPU temperature of 15.4 mK, and the largest probabilities

observed occur between T = 30− 50 mK, however, all SVMC-TF ground-state

probabilities measured do not match the experimental observations. Other causes that

result in the larger than expected experimental probabilities such as initialising in high

temperature thermal state at tanneal = 0 are also improbable due to the large separation

between energy states at the beginning of the anneal. Therefore, it is likely that the
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noise-model and/or system-bath coupling for the QPU are beyond the Ohmic bath in

the weak-coupling limit approximations, and closer to that described by the polaron-

transformed Redfield equation [144, 145] which tends to a classical description in

the infinite coupling strength limit. Therefore, in this setting it is not possible to

determine whether incoherent quantum processes are driving computation, and we

extend to larger system sizes to exponentially increase the number of manifold states,

which is known to hinder a system following a semiclassical potential (Section 3.2.2)

to better determine whether incoherent quantum processes are present.

3.3.2 Thermalization with Large Systems

The indication that the Advantage_system4.1 annealer evolution is closer to sim-

ulated classical evolutions meant that thermalization experiments with large PFC

systems were conducted with the low-noise DW_2000Q_6 annealer to mitigate non-

trivial effects beyond the adiabatic master equation. To illustrate the key differences

between the two annealers, a forward anneals of 1µs and 20µs were conducted

using a PFC of M = 15 and d = 0.1. The ground(G)-state, manifold(M)-state,

intermediate(I)-state, and other excited state probabilities were measured in Fig-

ure 3.13 for both annealers, with the DW_2000Q_6 placing the majority of probability

density on the M-states as expected by both the classical and quantum models.

Additionally, the DW_2000Q_6 is also seen to thermalise to the ground state for

longer anneal times, consistent with the thermalization models over long anneals. In

contrast, the Advantage_system4.1 annealer is seen to place probability density

on a variety of excited states away from theM-states for short anneal times, and

begins to correct itself for the longer anneal time of 20µs. The disparity in profiles

demonstrates how it is possible to characterise noise in annealers with the PFC.

Progressing with the DW_2000Q_6 annealer to demonstrate thermalization in

large PFC systems, we explore the effect on ground state probability for annealing

schedules with a pause, which is known to show peaks in ground-state probability

if the schedule pauses at the correct combination of transverse and longitudinal

fields [57]. Figure 3.14 illustrates the pause schedule we use for the M = 15,

d = 0.1 PFC as a function of normalised annealing time s, which parametrises the
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Figure 3.13: State probabilities after a forward anneal on an M = 15, d = 0.1 PFC using
a) the DW_2000Q_6 and b) the Advantage_system4.1 D-Wave annealing systems, where
G-state,M-state, I-state and other refer to the ground, manifold, intermediate and higher
excited states, respectively. Probabilities were collected from 10,000 samples that underwent
100 spin-reversal gauge transformations.

Hamiltonian coefficients defined in Figure 3.10. The schedule includes a pause time

of tp = 19µs at a specific value of s = sp, and keeps the time when the fields are

non-static at 1µs, such that the total anneal time is always equal to 20µs and the

rate which we evolve dynamics is kept constant throughout to emphasise the role

that the pause has on system thermalization. Instead of sweeping the temperature

of the system, which is fixed in the experimental setup, the classical energy-levels

of the PFC are scaled by R. For R < 0.047 is where the energy scale of the PFC

biases and couplers start to be less than the energy of the system temperature in the

DW_2000Q_6 annealer, and where we can expect thermal noise to disrupt the system

completely.
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Figure 3.14: Illustration of the forward anneal with a pause for time tp at a constant value of
s = sp. In this example, the dynamic periods t1 and t2 are a total of 1µs in duration, with a
pause of tp = 19µs.

Figure 3.15 directly compares ground-state probability measured at various val-

ues of R and pause position sp for both the DW_2000Q_6 annealer and the SVMC-TF

model, which is the classical model known to emulate quantum annealing thermal-

ization signatures in Ref. [119]. The PFC at this system size demonstrates that

the classical model cannot access the ground-state using classical thermalization

mechanisms in Figure 3.15b, whilst the quantum annealer displays a clear thermal-

ization signature. The effect of spin-bath polarization potentially contributing to the

difference in profiles has also been mitigated with random placement of the PFC

on the QPU, and spin-reversal transforms. Additionally, the annealing timescale

of 20µs is shorter than the 1ms timescale that the spin-bath polarization effect has

been previously reported to manifest at [119], and is therefore not considered to

significantly contribute to the measured ground-state probability.

Given that in Figure 3.13 the system is primarily in the exponentially large

manifold in both the quantum and classical systems, pausing in the quantum sys-

tem demonstrates that the mechanism used to access the ground-state is distinctly

different from what can be classically modelled using SVMC-TF. Therefore, ther-

malization in the quantum annealer is distinctly different to what is described by the

classical model. However, to thermalize from theM-state to the ground-state in this
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Figure 3.15: Ground state probability after a forward anneal following the schedule defined
in Figure 3.14 using a) the DW_2000Q_6 and b) SVMC-TF for various energy scales R and
pause positions sp. A PFC with M = 15 and d = 0.1 was used for these experiments, which
was randomly embedded onto the QPU upon for each 20µs run where 10,00 samples were
collected with 100 spin-reversal gauge transforms. Probabilities obtained for both plots
are from the median of 10 sets of runs, and the QPU system temperature and coefficient
schedules were used in the simulations (see Figure 3.10). The number of SVMC-TF Monte-
Carlo steps per µs for this comparison with the QPU were chosen to be at 1000 µs−1.

problem requires the system to tunnel a Hamming distance ≥ 15, which involves

all 15 qubits in the backbone that are negatively magnetized (see Figure 3.2) to

become positively magnetized simultaneously. The quantum thermal transition rate

according to Fermi’s golden rule in Equation 3.20 will tend to zero as Hamming

distance between states increase due to the term summing the vanishing off-diagonal

elements tending to zero in this case, therefore making a thermal transition highly

improbable.

To provide an explanation for this transition, we consider the intermediate states

that occur between theM-state and the ground-state, which for N = 15 there are 5

distinct energy eigenvalues corresponding to degenerate I-states. The I-states as a

classical Ising spin-state represent domain-walls along the backbone of the PFC, and

are closer in Hamming distance and energy to theM-states compared to the ground

state. Given that domain-walls commonly occur in ferromagnetic systems [238, 239]

on quantum annealers (e.g., minor-embedding), it is hypothesised that the I-states

provide an alternative and potentially lower action thermalization route through the

Hilbert space to the ground state, compared to a single multi-qubit thermal transition

that requires a large change in Hamming weight. Figure 3.16 illustrates that a
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Figure 3.16: Diagram of a possible intermediate state configuration that could provide a
route to the ground state configuration, where sa and sb and the auxiliary and backbone spins,
respectively. Starting from the first-excited state closest in Hamming distance to the ground
state, a spin flip on a terminal backbone spin, such as sb

M , can result in spins further down the
backbone also flipping (i.e., to other lower energy intermediate states) to reach the ground
state configuration of all spins equal to 1.

terminal backbone qubit sb that has undergone a spin flip can induce subsequent

backbone spins to also flip to the all spin-up configuration (i.e., the ground state).

Experimental observations in Figure 3.13a have shown that few to no I-states were

measured despite being energetically lower than the manifold states, and in a system

that experiences thermalization, we should expect non-negligible probability in these

states.

To test whether the intermediate states are playing a role in accessing the ground-

state, PFC’s of increasing size and therefore an increasing number of intermediate

states between the exponential manifold and ground state were evaluated on the

Los Alamos National Laboratory D-Wave 2000Q quantum annealer. Given that

sufficient time is required for the PFC to access the ground-state via thermalization,

the time-to-solution (TTS) metric is used to measure performance of the PFC over

various anneal times and find an optimum TTS. The time-to-solution is defined as

T T S = tanneal max
(

1,
ln(1−Pd)

ln(1−PG)

)
(3.22)
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Figure 3.17: Plots of a) time-to-solution (T T S, Equation 3.22) for a d = 0.19 PFC for
various anneal times and system sizes, M, and b the optimum time-to-solution found for
each system size extracted using univariate spline interpolation from the PYTHON package
SciPy. These results were obtained using the Los Alamos National Laboratory D-Wave
2000Q quantum annealer with 100 spin-reversal transforms, reduced inter-sample correlation,
and a readout thermalization time of 20µs. Probabilities were obtained from the median
of 50 sets of 10,000 samples that were bootstrapped to yield the 95% confidence intervals.
Space-division multiplexing was used to reduce the number of runs required to reach 10,000
samples, from which a different random QPU embedding was used on each iteration.
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where Pd is the desired probability threshold that is set to Pd = 0.99, and PG is the

probability of measuring the ground state. For sufficiently small PFC systems, the

optimum TTS is at a time shorter than 1µs and is inaccessible on the QPU, therefore,

large PFC’s are required to find an optimum TTS. The TTS and corresponding

optima are plotted for PFC’s of size M ≥ 20 in Figure 3.17, where for an increasing

system size a constant/decreasing optimal TTS is observed. Furthermore, for anneal

times > 20µs, the larger PFC’s have a higher probability of measuring the ground

state than smaller PFC’s, as indicated by the lower TTS in Figure 3.17a. Given

the literature reviewed, this is the first problem found with an exponentially small

avoid-level crossing gap whose experimentally derived optimal TTS is observed to

not scale exponentially as system size increases.

The explanation for this scaling supports the hypothesis that the intermediate

states are playing a significant role in the thermalization process, as despite the

closing gap with increasing PFC system size, the number of intermediate states

increase between the ground and M-state as the manifold states are pushed to

higher energies (gap size ∆M0 between the manifold and ground state is ∆M0 =

2RMd). For all system sizes measured, the I-state closest in Hamming distance

to theM-states is always a distance of 6 away throughout. Provided that theM-

states can access the closest I-state via thermalization, this provides the pathway

to the ground state as the Hamming distance interval between intermediate-states

is 1. Consequently, the time-scales that were annealed to are long enough to also

incur spin-bath polarization, potentially contributing to the larger than expected

ground-state probabilities. However, this phenomenon has not been observed to be

significant enough to cause non-exponential scaling in system size, but does likely

contribute to the appearance of the small negative scaling in Figure 3.17b, instead of

a constant scaling if there is a constant thermalization rate between theM-states and

I-state. Further confirmation of this hypothesis for large PFC systems would require

analysis of quenched anneals, in an attempt to observe a distribution of intermediate

states being accessed progressively to reach the ground state. However, D-Wave

QPUs do not allow for accurate system quenching, as the rate at which fields can
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be changed in time is two orders of magnitude lower than is required for accurate

quenching.

Overall, in this section we have compared different models of thermal-

ization in short-time scales to experimental measurements from the D-Wave

Advantage_system4.1 annealer, which demonstrated that the QPU possesses a

thermalization model that is beyond the weak-coupling approximation of an open

quantum system and the classical approximation of the annealer. The PFC was then

used to experimentally confirm this difference by demonstrating that the D-Wave

Advantage_system4.1 is a noisier system compared to the known lower-noise

DW_2000Q_6 annealer due to the distribution of states away from the manifold states

for short anneal times. Using the low-noise annealers, it was demonstrated that the

thermalization mechanism on the QPU is distinctly different from that described

solely by classical dynamics, due to the clear thermalization signature present in Fig-

ure 3.15 for the annealer. However, the Hamming distance from the manifold-states

to the ground-state in the thermal transition is 15, which is highly improbable given

a thermal transition governed by Fermi’s golden rule.

A hypothesis that intermediate-states are being used to reach the ground-state

was therefore proposed to provide an explanation as to how the system can make a

large Hamming distance transition. An experiment that demonstrated how increasing

PFC system size, and therefore Hamming distance of the effective thermal transition,

resulted in flat scaling of the optimal TTS, which has not been observed yet in

literature for problems with exponentially scaling gaps such as the PFC. To confirm

the presence of intermediate states in the thermal transition, quenching experiments

are proposed in order to observe a distribution of intermediate states being used in

the transition. Quenching with D-Wave QPUs cannot happen on a timescale that

freezes the dynamics fast enough to take a snapshot of the state distribution during

the anneal, and therefore more specialist hardware is required to further confirm this

thermalization mechanism.



Chapter 4

Diabatic Quantum Annealing

The objective of most adiabatic algorithms is to finish in the ground state of some ob-

jective Hamiltonian at the end of the anneal, but exponential closing of avoided-level

crossings in system size for some problems make the ground-state effectively inacces-

sible for large problems, even when evolved in a zero-temperature quantum system.

In an attempt to generalize, algorithms have been designed to use avoided-crossings

to temporarily break the adiabatic condition and use excited states mid-anneal before

then returning to the ground state at the end of the anneal [31, 70, 95].

Given that the system is prepared to be the ground state of some initial Hamil-

tonian, the protocol that purposely uses excited states during an anneal is referred

to as a diabatic quantum annealing (DQA). To have a successful DQA algorithm,

there must be a path using excited energy states that returns to the ground state at the

end of the anneal. The simplest example of a path is when there are two avoided-

crossings between the ground and first-excited state, which are both separated from

higher excited states. If the scaling of the avoided-crossings and higher excited state

separation is exponential and polynomial, respectively, then this provides a quantum

speed-up (see Figure 4.1), but this has not yet been generalized and is only applicable

to specific problems. The hardware requirements to run many DQA algorithms

are also beyond what is currently technologically feasible, as they make use of XX

couplers or other specialized Hamiltonians [31, 95].

More recently, an algorithm proposed by Fry-Bouriaux et al. [39], named the
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Figure 4.1: Example of a diabatic annealing spectrum taken from Somma et al. [31]. The
spectrum plotted is instantaneous state energy as a function of normalized annealing time s,
whereby green points 1→ 2 and 3→ 4 indicate diabatic transitions at exponentially scaling
avoided-crossings, whilst all other spectral gaps are polynomially scaling. It illustrates how
the first excited state is used temporarily during an anneal (from s = 0 to s = 1) to reach the
ground state in a way that provides a provable quantum speed-up over a purely adiabatic
approach and classical methods such as quantum Monte Carlo.

locally suppressed transverse-field diabatic quantum annealing protocol (LSTF-

DQA), manages to create the spectra necessary for successful DQA within current

hardware constraints. In this algorithm, a single qubit in the system has its transverse-

field component suppressed to freeze its local dynamics and guide the rest of the

qubits towards the optimal solution. This method uses the unitary dynamics of a

quantum system to guide the system to the final ground state solution. However,

the protocol does not guarantee that every problem will form the correct spectra for

DQA, and relies on the problem having inherent magnetic frustration due to local

biases.

Given the potential promise of DQA being a solution to the problem of expo-

nentially scaling avoided-crossings in quantum annealing, the rest of this chapter

details research conducted to address open questions:

1. What problems can we use locally suppressed transverse-field diabatic quan-

tum annealing for?

2. Is there a way of identifying a priori which qubit has to have a suppressed

transverse-field that ensures the necessary double avoided crossing for locally

suppressed transverse-field diabatic quantum annealing?
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3. Can classical spin-vector dynamics emulate locally suppressed transverse-field

diabatic quantum annealing?

4. Can DQA be adapted to become an interferometer and therefore a test of

coherence?

Section 4.1 addresses the first three questions within the context of combinatorial

optimisation, focusing on specific problem classes such as maximum independent

set (Section 4.1.1) and max-cut (Section 4.1.2) problems. We demonstrate how

maximum independent set problems can benefit from the LSTF-DQA algorithm

due to the inherent frustration present in the problem Hamiltonians, and how the

unitary quantum evolution provides the necessary dynamics to reach the ground

state efficiently compared to classical evolutions. A framework is also presented that

introduces local frustration to Hamiltonians without any local fields, such as max-cut,

whilst preserving the ground-state. Finally, in Section 4.2, the LSTF-DQA algorithm

is repurposed into an interferometer by interpreting the avoided-crossings as beam

splitters and conducting Mach-Zehnder style interferometry experiments [291, 295,

296]. The perturbed ferromagnetic chain defined in Chapter 3 is used to provide

examples of how interferometry can be conducted and how it is sensitive to the level

of decoherence experienced by the system.

4.1 Diabatic Quantum Annealing for Optimization
Locally suppressed transverse-field diabatic quantum annealing (LSTF-DQA) is a

near-term implementation of DQA algorithms on quantum annealing hardware. The

current hardware that is commercially available commonly uses the transverse-field

Ising model Hamiltonian defined by

Ĥ(s) =−A(s)
N

∑
i

hx
i σ

x
i +B(s)

[
N

∑
i

hz
i σ

z
i +∑

i j
Jz

i jσ
z
i σ

z
j

]
, (4.1)

where the first term represents the transverse-field components, and the second term

contains the longitudinal fields and couplers that encode the optimization problem

of interest. Schedules A(s) = 1− s and B(s) = s in normalized time s = t/tanneal are
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used consistently throughout the rest of the chapter. For a more detailed overview of

this Hamiltonian, readers are referred to Section 1.2.

The LSTF-DQA protocol adapts Equation 4.1 by choosing a qubit in the Hamil-

tonian, which we refer to as the target qubit, and suppressing its transverse-field

component (i.e., the local suppression of the transverse-field). An independent lon-

gitudinal field schedule is also applied to the target qubit to initialize the spin state

of the qubit, which prepares the qubit in either a spin-up or spin-down state. The

LSTF-DQA Hamiltonian is defined as

Ĥ(s) =−a(s)
N

∑
i̸=k

σ
x
i +b(s)

[
N

∑
i̸=k

hz
i σ

z
i (s)+∑

i j
Jz

i j(s)σ
z
i σ

z
j

]
− cx(s)σ x

k + cz(s)hz
kσ

z
k , (4.2)

where the target qubit k has a longitudinal and transverse field schedule independent

of the rest of the system. The spectrum necessary for DQA is created using this

Hamiltonian if the problem possesses an avoided-level crossing induced by localised

frustration, which can be relieved if the transverse-field of the correct choice of

target qubit is suppressed [39]. Suppressing the transverse-field component and

choosing the correct longitudinal-field bias on the target qubit guides the system to

the ground-state solution. This is analogous to providing the system with part of the

solution, which then enables it to find the ground-state. This independent tuning of

fields required for LSTF-DQA is not made available on quantum annealing systems

such as D-Wave, and therefore means the work presented here is entirely based on

numerical simulations and analytical results.

The schedules presented in equation 4.2 are composed of two stages, an initial-

ization phase and an annealing phase, which end and begin at s = sx, respectively,

for s ∈ [0,1]. The initialization phase is where the ground-state is slowly made

unfavourable, whilst the rest of the system remains stationary with constant fields, to

force probability density into the excited state at the end of the initialization phase.

The annealing phase is the period during which the fields of the entire system are

evolved from Ĥ(sx) to the problem Hamiltonian, Ĥ(s = 1) (Equation 4.2). The
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Figure 4.2: Plots of a) the energy spectrum and b) the schedules respective annealing sched-
ules for both adiabatic quantum annealing (Equation 4.1) and LSTF-DQA (Equation 4.2)
for a M = 1 perturbed ferromagnetic chain (presented in Chapter 3) with d = 0.3. The
DQA schedules presented in b) are defined in Equations 4.3-4.6 and are parameterized with
sx = 0.2, c0 = c1 = 0, and b = 1.

schedules in equation 4.2 are plotted in Figure 4.2b and are defined as

a(s) = min
(

1, 1− s− sx

1− sx

)
(4.3)

b(s) = max
(

0,
s− sx

1− sx

)
(4.4)

cx(s) =


c0s
sx

if s < sx

c0 +(c1− c0)
s−sx
1−sx

otherwise
(4.5)

cz(s) =

b s−sx
1−sx

if s < sx

s−sx
1−sx

otherwise
. (4.6)

The magnitudes of transverse field on the target qubit are set by values c0 and c1,

which are the initial and final values of transverse-field on the target qubit respectively.

Please note that both Equation 4.5 and Equation 4.6 are different to what is defined in

Ref. [39] in order to make cx(s = 0) = 0 and introduce a custom choice of initial spin-

state (b ∈ {−1,1} for spin-down and spin-up initial state preparation, respectively)

on the target qubit. The double-crossing between the ground and first excited states



4.1. Diabatic Quantum Annealing for Optimization 157

required for LSTF-DQA are achieved when c0 = c1 = 0, which corresponds to zero

transverse field on the target qubit. This is illustrated in Figure 4.2 alongside the

adiabatic equivalent of the problem. If we were to use a non-zero transverse field on

the target qubit and maintain c0 << 1 and c1 << 1, then the double crossings we

have from c0 = c1 = 0 become double avoided crossings, whose gaps we can tune

with c0 and c1 (see Section 4.2.1.2 Figure 4.9 for an example).

In this section, we build on the work presented in Ref. [39] by using LSTF-DQA

to solve the maximal independent set (MIS) and max-cut combinatorial optimisation

problems. For the MIS problem in Section 4.1.1, we look at two non-isomorphic

three-regular graphs that have a highly degenerate ground state, where the degeneracy

can be broken through random perturbations. The LSTF-DQA protocol is simulated

using both unitary quantum and classical spin-vector dynamics, where the successful

anneals are analysed to identify any key properties that a target qubit possesses that

would allow for an a priori selection of the target qubit. In Section 4.1.2, a framework

is introduced to address the issue that LSTF-DQA has with problems that possess no

local-qubit biases, such as the max-cut problem. This creates local-frustration and

the spectra necessary for LSTF-DQA for max-cut problems with uniform coupling

weights.

4.1.1 Maximal Independent Set

The maximal independent set (MIS) problem is an NP-hard problem that aims to

find the largest set of vertices on a graph, such that none of the vertices in the set are

adjacent to one another. This problem class is particularly useful in combinatorial

optimization because of the reduction of all satisfiability problems to the 3-SAT

problem [283], which can then be reduced to the MIS problem [16]. The cost

function for the MIS problem [116] is

Q(x) =−A ∑
i∈V

xi +B ∑
(i, j)∈E

xix j , (4.7)

where A < B such that it is never favourable to violate the constraint that no two

adjacent vertices can have xi = 1 for xi ∈ {0,1}. This cost function is also equivalent
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Figure 4.3: The graphs of the only two non-isomorphic 3-regular graphs with 6 vertices,
with an example of a maximum independent set for each graph indicated by the red coloured
vertices. The left and right graphs have two and four maximum independent sets, respectively.

to the set-packing problem, which asks for the largest number of subsets Vi which

are all disjoint. Using a change of variables, Equation 4.7 can be put into an Ising

spin formulation where si = {−1,1} and si = 2xi−1. The cost function with spin

variables is therefore,

Q(s) = ∑
i∈V

(
−A

2
+

B|A(i)|
4

)
si +

B
4 ∑

(i, j)∈E
sis j +

(
B|E|−2A|V |

4

)
, (4.8)

where in an annealing setting the biases hi and coupler Ji j values are equal to the

coefficients of the si and sis j terms, respectively.

LSTF-DQA lends itself well to solving MIS problems, as it satisfies the criteria

of possessing local biases and local frustration caused by all couplers being anti-

ferromagnetic and biases that are generally positive on every spin. However, making

an a priori determination on the choice of target problem is still not exactly clear,

therefore trial and error is the only appropriate method of determining a suitable

candidate. To obtain insights into the characteristics of what is a good choice of target

qubit (i.e., the qubit that will create the spectra necessary for LSTF-DQA), 3-regular

graphs with 6 vertices are investigated, of which there are only 2 non-isomorphic

graphs that are presented in Figure 4.3. These graphs are referred to as the bipartite

and prism isomorphisms throughout. Furthermore, by setting A = 1 and B = 2 the
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general MIS cost function for 3-regular graphs is,

Q(s) = ∑
i∈V

si +
1
2 ∑
(i, j)∈E

sis j (4.9)

which results in degenerate ground-states for both 6-vertex MIS graph problems.

For LSTF-DQA, uniform noise is added to perturb A to break the degeneracy and

produce a single ground state whilst maintaining B > A, i.e., A ∈ (1,2). With the

correct target qubit chosen, LSTF-DQA will produce double crossings and finish in

the ground state at the end of the anneal. For each isomorphism, 20 perturbations of

the MIS problem were generated, each with a single ground-state solution (found

using a brute-force search of all 26 possible solutions) and the valid spectra necessary

for DQA. For all perturbations generated, it was found that the target qubits resulting

in the correct DQA spectra were part of the maximal independent set, i.e., the

ground-state solution for that perturbation. Therefore, given that the MIS for the

prism and bipartite graphs are of size 2 and 3, respectively, all valid combinations

of perturbation and target qubit were tested, totalling 100 DQA anneals for a given

annealing time.

Whether quantum dynamics are required in LSTF-DQA anneals is first ad-

dressed by comparing quantum and classical simulations in a closed system setting.

Quantum simulations are modelled using the von-Neumann equation

˙̂ρ(t) =−i
[
Ĥ(t), ρ̂(t)

]
, (4.10)

using the Hamiltonian defined in Equation 4.2 with c0 = c1 = 0, and an initial state

of all qubits in the |+⟩ state except the target qubit which is initialized in the spin-up

state, |0⟩. It is noted that the spin state of the target qubit is important in LSTF-

DQA, but because the MIS nodes are identified by spin-up states in the solution,

we know a posteriori to consistently initialise the target qubit to in the spin-up

state. The classical spin-vector dynamics (SVD) simulations are derived using the

Euler-Lagrange equations of motion for both a single angle (O(2)) rotor and a full

Bloch sphere double angle (O(3)) rotor. Dynamics for SVD O(2) simulations are
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kept in the spherical coordinate basis but restricted to the XZ-plane, i.e., φ = 0, and

are described by a system of non-homogeneous equations

dθi

dt
= ωi (4.11a)

dωi

dt
=−dVi

dθi
= A(t)cosθi +B(t)sinθi

[
hi + ∑

i, j;i ̸= j
Ji j cosθ j

]
. (4.11b)

where V = ⟨θ |H|θ⟩ plays the role of the semi-classical potential described by

the Hamiltonian. The simulations for SVD O(3) dynamics were also derived in

the spherical basis but changed to Cartesian basis for numerical stability and its

equivalence to the Bloch equation, given by

dM⃗i

dt
= H⃗i× M⃗i =


−2B(t)Ei sinθi sinφi

2A(t)cosθi +2B(t)Ei sinθi cosφi

−2A(t)sinθi sinφi

 , (4.12)

where × denotes the cross product, M⃗i = (sinθi cosφi, sinθi sinφi, cosθi) and

H⃗i =−2A(t)x̂+2B(t)

[
hi +∑

i, j
Ji jM⃗ j · ẑ

]
ẑ . (4.13)

Further details on the derivation of these equations are found in Section 1.4.3.2. For

each method, the expected ground-state probability is measured, which is defined as

⟨PGS(tanneal)⟩=
1

n|S|

n

∑
i=1

|S|

∑
k=1

PGS(tanneal, i,k) (4.14)

where n is the number of perturbed problems, |S| is the cardinality of the MIS, S,

and k is the target qubit in the set S. This probability measure evaluates the success

probability of the algorithm at a given time across all perturbations and target qubits.

A comparison between the quantum and classical dynamics for both LSTF-

DQA and adiabatic quantum annealing (AQA) is shown in Figure 4.4, where for

all anneal times evaluated the ⟨PGS(tanneal)⟩ for the quantum DQA protocol is seen
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Figure 4.4: Plots of the expected ground-state probability ⟨PGS(tanneal)⟩ as a function of
anneal time for a) the prism and b) the bipartite isomorphisms simulated using closed
quantum system, O(2) and O(3) spin-vector dynamics (SVD) for both adiabatic quantum
annealing (AQA) and LSTF-DQA protocols. The expected ground-state probability was
calculated using Equation 4.14 and the 1 standard deviation error-bars were calculated from
bootstrapped sets of ground-state probability.
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to be greater than or equal to all other simulated dynamics tested. The bipartite

graph transpired to be an easy problem to solve for all dynamical models, as they

were able to find the ground-state with 100% probability for tanneal > 100ns, except

for SVD O(2) DQA simulations that failed to consistently find solutions for both

instances. In the harder prism graph, both classical DQA models failed whilst their

AQA variants performed better, but plateaued at tanneal > 75ns meaning that the

even the AQA classical instance could not find solutions to all perturbed instances,

unlike the quantum models. This confirms that quantum unitary dynamics are crucial

to the success of LSTF-DQA solving MIS problems. Furthermore, the quantum

DQA protocol performed better at all time-scales, whereas the success of the SVD

DQA protocols is highly dependent on the rate at which the classical state-vector is

evolved through the semi-classical potential. After sufficient time, the SVD O(3)

DQA simulation converged for both graphs, whereas the SVD O(2) DQA expected

probability continued to fluctuate significantly, which is caused by the restriction to

the XZ-plane of the Bloch sphere.

In six out of the twenty prism instances, the ground-state probability in quantum

DQA was also found to be dependent on which target qubit was selected, with the

protocol converging to ⟨PGS(k, tanneal)⟩ → 1 faster if the correct target qubit was

selected. To assess whether local-frustration contributes to this difference, a classical

measure of frustration is defined for spin i with respect to spin j as

f (hi,h j,Ji j) = tanh

(
sign(h j)Ji j

hi∣∣|hi|−
∣∣h j
∣∣∣∣
)

(4.15)

where f (hi,h j,Ji j)> 0 and f (hi,h j,Ji j)< 0 corresponds to a frustration and align-

ment across a coupler Ji j, respectively, e.g., ferromagnetic frustration f (hi = 1,h j =

−1,Ji j =−1) = 1 and anti-ferromagnetic alignment f (hi = 1,h j =−1,Ji j = 1) =

−1. Note that this measure is directional from the qubit defined in the first argument,

i.e., f (hi,h j,Ji j) is with respect to qubit i, and f (hi,h j,Ji j) ̸= f (h j,hi,J ji) unless

hi = h j. It is also a limited measure of frustration that looks only at the local frus-

tration between qubits, rather the wider system. Furthermore, Ji j = 0.5 for couplers
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in all problems, and therefore the shorthand f (hi,h j,0.5) = f (hi,h j) is used. The

local-frustration of a target qubit is defined as the average frustration over all adjacent

couplers,

f (k) =
1
3 ∑

j∈A(k)
f (hk,h j) , (4.16)

where A is the neighbourhood function returning the set of adjacent qubits, where

|A(k)|= 3 for all 3-regular graphs.

Out of the two possible target qubits for the prism instances, the Pearson

correlation, CX ,Y , between the ground-state probability and frustration was first

measured. There was no significant correlation between ground-state probability

and target-qubit frustration across all instances and target qubits, however in cases

where a target qubit yielded a higher probability than the other possible target qubit, a

correlation of CPGS, f (k) = 0.956 was found between local-frustration and ground-state

probability. If a problem possesses a target qubit with this property is not obvious a

priori, and only indicates that problems with this property can benefit from quantum

LSTF-DQA if it contains high local-frustration that can be relieved through the

correct choice of target qubit.

To determine what choice of target qubit should be used in LSTF-DQA, the

effect of target-qubit frustration on quantum DQA ground-state probability in prism

instances is shown in Figure 4.5. The performance of two heuristics are presented,

where the choice of target qubit is based on whether it has the highest or lowest

local-frustration, i.e, k = argmax f (k), or k = argmin f (k), respectively. For long

anneals, a target qubit with lower local frustration tended to 100% probability faster

than target qubits with higher frustrations on average. For shorter anneal times, the

converse was true, resulting in a cross-over between the two heuristics at ∼ 60ns.

The result of lower local frustration tending to give higher expected ground-state

probability with LSTF-DQA is also consistent with the correct choice of target qubit

for the two-qubit system in Ref. [39], where the frustrated system only formed the

correct spectra for the less frustrated qubit.

In this section, it has been shown for MIS problems on 6-qubit 3-regular graphs

with random perturbations that quantum dynamics are necessary for the LSTF-DQA
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Figure 4.5: Difference in expected ground-state probability ⟨PGS(tanneal)⟩ when quantum
LSTF-DQA anneals chose the target qubit based on whether it possesses the largest or lowest
local frustration, i.e., k = argmax f (k) or k = argmin f (k) respectively (see Equation 4.16).
The expected ground-state probability was calculated using Equation 4.14 and the 1 standard
deviation error-bars were calculated from 1000 bootstrapped sets of ground-state probability.

protocol to run successfully when compared to dynamical spin-vector equations

for both O(2) and O(3) rotors in Figure 4.4, which failed in several instances to

find solutions above 50% probability. Furthermore, quantum LSTF-DQA was also

observed to consistently out-perform the adiabatic protocol for all variants tested.

However, it was observed that in some instances the choice of target qubit resulted

in different ground-state probabilities, and this was analysed against a measure of

local frustration defined in Equation 4.15. In these instances, the local frustration

of the target qubit was found to positively correlate with ground-state probability

(CPGS, f (k) = 0.956), hinting that problems with this property and high-frustration

could benefit from quantum LSTF-DQA. Further analysis of local-frustration in

Figure 4.5 for 6-qubit 3-regular graphs indicated that by choosing target qubits with

lower local frustration can lead to higher expected ground-state probabilities for
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long anneal times. This hypothesis is consistent with previous work [39], supporting

the heuristic of choosing a target qubit with the lowest local frustration. Extending

this heuristic to other MIS problems graphs without high symmetry and constant

coupling strengths is necessary to further test generality.

4.1.2 Max Cut

The max-cut of a graph G = (V,E) is the partitioning of vertices such that the

total weight of the edges (which indicate the capacity/flow) between the partition is

maximised. A vertex is assigned to a partition depending on whether it is spin up

and spin down. The problem is known to be NP-hard, and is described concisely by

the antiferromagnetic Ising cost function,

Q(s) = ∑
i, j∈E

Ji j

(
sis j−1

2

)
, (4.17)

where Ji j is the edge weight/capacity in the problem graph. The absence of local

biases in this problem means that the solution to this problem is always (at least)

doubly degenerate, and also does not possess the local frustration required by LSTF-

DQA [39]. Therefore, in this section, we provide a framework to solve max-cut

when all Ji j = R with the LSTF-DQA protocol by including local frustration into the

problem by using the properties of Hamiltonians that always form the correct DQA

spectra (e.g., MIS), whilst also maintaining a ground-state solution to max-cut.

Adding a single bias ∈ R to any spin in the max-cut Hamiltonian will break the

degenerate-state and result in a single ground-state set that is aligned in the direction

of the bias. Note that adding a single bias will always preserve the ground-state. To

create local frustration, further local biases must be added, where the extra energy

contribution has to be always less than the energy separation between the ground

state and all other excited states, which can be bounded for max-cut with uniform

weights. Defining E0 as the ground-state cost/energy, n biases of constant value h

are added to the problem to ensure frustration in the antiferromagnetic system. To
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preserve the ground state, it must hold that

Ek−E0 >
n

∑
i

hs0
i −hsk

i , ∀k > 0 , (4.18)

where Ek is an excited energy state such that Ek > E0, and s0
i (sk

i ) is the ith spin in the

ground (excited) state. The worst-case scenario for the summation in equation 4.18

will result in Ek−E0 > 2nh. Given that all Ji j = R, the lowest-energy difference

between excited and ground states is achieved by swapping vertices in the partitions

that yield a slightly lower max-cut, for which the lowest energy change is Ek−E0 ≥

2R. The bias value is therefore bounded by,

h <
R
n
, (4.19)

which guarantees the preservation of the max-cut ground state whilst being able to

increase magnetic frustration artificially in the problem, necessary for successful

LSTF-DQA. This bound asymptotically tends to 0 as the number of local biases

added increases, and is not valid for problems with non-uniform Ji j weights.

An 8-spin planar graph with R = 1 (shown in Figure 4.6) is used to assess how

much artificial local-frustration is required to add to the max-cut cost function in

order to yield the correct DQA spectra. It was found that for a given choice of target

qubit, a double-crossing was observed if all neighbouring qubits were also biased,

i.e., frustration on every coupler connected to the target qubit. Therefore, the bias

applied to the target qubit k and all adjacent qubits is h = −0.99R
δk+1 , where δk is the

degree of the target qubit. The pre-factor of 0.99 ensures that the bias value does

not exceed the bound and preserves the problem ground state. The spectra for one

of the lowest degree qubits is seen in Figure 4.6, where the energy level separation

in-between the two DQA crossings is small, and is compounded further for qubits

of higher degree as the local bias applied tends to zero. This DQA framework for

max-cut is therefore anticipated to not perform well in open quantum systems where

energy-level broadening occurs, therefore resulting in large transition rates between

the ground and first-excited states due to the small energy level separations.



4.1. Diabatic Quantum Annealing for Optimization 167

Figure 4.6: Illustration of the 8-spin max-cut problem and the respective spectra, showing
the two-lowest energy levels in the adiabatic quantum annealing and LSTF-DQA settings.
All couplers in this problem have value Ji j = 1, and the biased spins have value h =−0.99

3 .
The target qubit is indicated by the square node and the biased adjacent spins in orange. The
annealing schedules are A(s) = 1−s and B(s) = s, with cx(s) = cz(s) = 0 for the LSTF-DQA
protocol.

Figure 4.7: Plot of the average ground-state probability for the 8-qubit problem (Figure 4.6)
where local bias is added to the target qubit, k, of degree δk and all adjacent qubits. The
DQA and AQA variants are plotted with solid and dashed lines, respectively. The biased
spins have value h = − 0.99

δk+1 , and are annealed with schedules A(s) = 1− s, B(s) = s, and
cx(s) = cz(s) = 0.
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The dynamical performance of this framework is evaluated for closed quantum

systems in Figure 4.7, where both adiabatic and diabatic quantum annealing protocols

are compared for the max-cut problems with artificial local-frustration. If the low-

degree target qubits are chosen, then the average DQA ground-state probability PGS

is observed to converge to 1 faster than the adiabatic variants. For δk = 2, the anneal

time required to reach 99% probability was ∼ 5.4ns and ∼ 17.4ns for LSTF-DQA

and AQA, respectively, resulting in a∼ 3.2× speed-up. Note that the offset in anneal

time between AQA and DQA anneals is due to the additional initialization time

required by DQA (e.g., if sx = 0.2 then DQA anneals are 1.25× longer) but the

rate at which we anneal through the gaps and crossings is equal. The ground-state

probability is averaged over target qubits with the same degree, i.e., problems with

the same number of local biases and bias h =− 0.99
δk+1 , where target qubits with the

lower degrees perform better overall. The one exception being δk = 4, where the

target qubit k = 1 formed a triple crossing instead of the double-crossing seen for

all other target qubits. This therefore resulted in PGS = 0 for k = 1, averaging to

PGS = 0.5 due to k = 5 DQA ground-state probability tending to 1 for long anneal

times.

Therefore, this section has presented an initial framework of generalising LSTF-

DQA to problems without local-frustration. It has been shown possible to create

the double crossings necessary for DQA by artificially adding localised frustration

to max-cut Hamiltonians, whilst preserving the ground-state. For target qubits of

low degree, LSTF-DQA is successful in achieving higher ground-state probabilities

compared to AQA over all annealing times (i.e., lower times to solution) for the 8-

qubit problem tested. However, this framework is only general to max-cut problems

with equal weights on the graph edges, and will have biases tending to zero for

dense problem graphs. Nonetheless, this framework increases the problem scope in

which it is possible to use the LSTF-DQA protocol to find solutions to combinatorial

optimization problems more efficiently than AQA can. Further exploration is required

to generalise LSTF-DQA to more combinatorial optimization problems, and to

investigate to what extent vanishing biases in this framework are impacted by open-
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system thermalization effects.

4.2 Testing Coherence using Diabatic Quantum

Annealing
Coherence in quantum systems is vital to the success of many quantum algorithms, as

it allows for tunnelling and interference effects to take place between quantum states.

Therefore, it is seen as a key metric for the quality of a qubit used for computation.

There are two timescales that can be used to assess the coherence of a quantum

system, these are T 1 and T 2 times that measure the relaxation and dephasing times,

respectively. The T 1 relaxation time defines the timescale of which a spin undergoes

a spontaneous bit flip, e.g. decay from |1⟩ to the |0⟩ state, due to an energetic

relaxation process. Similarly, the T 2 dephasing time defines the timescale in which

the phase of a qubit deviates over time such that the initial and final states become

uncorrelated. For an ensemble of qubits, T 2 can also measure how the mutual phase

between qubits is lost over time, which is important for many phenomena such as

coherent tunnelling between states.

Both T 1 and T 2 capture different aspects of decoherence within quantum

systems, but a generic method of assessing whether a system possesses coherence

is by using interferometry. Within the context of quantum annealing, interference

can occur between populated ground and first excited states in a coherent regime

due to the difference in the accumulated phases in each state. The splitting and

recombination of state probability density takes place at avoided-level crossings,

which is analogous to a beam splitter in traditional Mach-Zehnder interferometry, due

to the Landau-Zener transitions that occur between states. Interference effects have

been exhibited numerically and experimentally in quantum annealing [291,295,296],

where the standard approach is to initialize the system in the ground state, pass

through an avoided-level crossing to split probability density between the ground

and first excited state, evolve the system for some time t to let phase difference

accumulate, and finally pass back through another avoided-level crossing to cause

interference. The measured interference pattern manifests itself as oscillating ground-
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state probability in time (see Section 4.2.2.1 for examples).

In open quantum systems, both relaxation and dephasing decoherence mecha-

nisms will disrupt this interference process. Thermal relaxation and excitation can

occur between the ground and first excited state away from the avoided-level crossing

as the open system attempts to reach the Gibbs state (the thermal equilibrium state),

and dephasing causes damping of state phase. In this section, we will show how

the LSTF-DQA protocol can be converted into an interferometry experiment for a

multi-qubit system (Section 4.2.1), and provide analytical interferometry expres-

sions for the perturbed ferromagnetic chain (PFC) Hamiltonian at M = 1 (also used

in Ref. [39]). How interferometry is affected by decoherence when introducing

open-system quantum noise is explored in Section 4.2.2.2, as well as discussing how

LSTF-DQA can be used as a test of coherence for quantum systems.

4.2.1 Two-qubit Perturbed Ferromagnetic Chain

4.2.1.1 Unperturbed System

The first closed-system to be explored using LSTF-DQA interferometry is the per-

turbed ferromagnetic chain (PFC) at M = 1, where the Hamiltonian is defined as

HS(s) =−
1
2
[
cx(s)σ x

1 +a(s)σ x
2 − cz(s)(1−d)σ z

1 +b(s)
(
σ

z
2 +σ

z
1σ

z
2
)]

, (4.20)

where d is the perturbative parameter in the system, the target qubit is k = 1, and the

coefficient schedules are

cz(s) =
s− sx

1− sx
(4.21)

cx(s) =


c0s
sx

if s < sx

c0 +(c1− c0)cz(s) otherwise
(4.22)

a(s) = min(1, 1− cz(s)) (4.23)

b(s) = max(0, cz(s)) , (4.24)
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where sx marks the beginning of the annealing phase, c0 is the transverse-field at

s = sx, and c1 is the transverse-field magnitude at s = 1, which should therefore be

much less than b(s = 1) for accurate system measurements in the Z basis at the end

of the anneal.

So far in this chapter, we have specified cx(s) = 0 in order to achieve the double

crossings required for DQA. In this section, we refer to this as the unperturbed system.

as when c0 ̸= 0 and c1 ̸= 0 the crossings change into avoided-level crossings (i.e., the

beam splitters), which are required for interferometry. To extract analytical equations

for the perturbed case, we first derive the eigenenergy functions for the ground and

first-excited-state for Equation 4.20 in the unperturbed case (i.e., cx(s) = 0). Due to

the frozen dynamics of the target qubit, the Hamiltonian can be decomposed into two

single qubit Hamiltonians with a constant offset, where the first offset is one where

the target qubit σ
z
1 is spin up (H↑S ), and the second is with the spin down (H↓S ) offset.

H↑S =
1
2

cz(s)(1−d)−2b(s) −a(s)

−a(s) cz(s)(1−d)+2b(s)

 (4.25)

H↓S =
1
2

−cz(s)(1−d) −a(s)

−a(s) −cz(s)(1−d)

 . (4.26)

The four energy levels from the two decomposed Hamiltonians form the full spectrum

of the original two-qubit Hamiltonian, where the two lowest energy levels are the

states that cross one another and are defined as

E↑0 =
1
2

[
(1−d)cz(s)−

√
4b(s)2 +a(s)2

]
(4.27)

E↓0 =−1
2
[(1−d)cz(s)+a(s)] , (4.28)

where E↑0 begins and ends as the ground state, and E↓0 is the ground state between

the two crossings. Substituting in the coefficient functions and expressing E↑0 and E↓0
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Figure 4.8: Plots of a) the two lowest energy states in defined in Equations 4.29 and 4.30
in the unperturbed setting for d = 0.3 and sx = 0.2, and b) the comparison between the
numerical (solid lines) and analytical (dotted lines) results for both ∆̄10 and sg as a function
of the perturbative parameter, d. The integral was evaluated numerically using the QuadGK
package in the Julia language.

in terms of the annealing parameter, s, yields

E↑0(s) =


1
2

[
(1−d) s−sx

1−sx
−1
]

if s < sx

(1−d)(s−sx)−
√

5s2−(8sx+2)s+4s2
x+1

2(1−sx)
otherwise

(4.29)

E↓0(s) =

−
1
2

[
(1−d) s−sx

1−sx
+1
]

if s < sx

sd+sx(1−d)−1
2(1−sx)

otherwise
(4.30)

where we can observe that E↓0 is piecewise linear in s (see Figure 4.8a).

For the rest of the section, we define sx = 0.2 in order to interpret the effect

that the perturbative parameter d has on the spectra, and therefore its effects on

interferometry. The most important variable in interferometry is the relative phase

acquired between beam splitters, for which the position of the first beam-splitter is

always set by the value of sx, which marks the start of the annealing phase. The

position of the second crossing (beam splitter), sg, for sx = 0.2 is defined as

sg =
d2 +3d−5

5(d2−d−1)
, 0 < d < 1 . (4.31)

The energy difference between the ground and first-excited states in the interval
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[sx, sg] for the unperturbed case is defined as

∆10(s) =
1
8

[
5(1−2d)s+2d +3−

√
125s2−90s+29

]
, (4.32)

where the integral of ∆10(s) in this interval is equal to the phase difference, which is

given by

∆̄10 =
∫ sg

sx=0.2
∆10(s)ds

=− 1
2000

[
64
√

5ln
∣∣∣√5

√
125s2−90s+29+25s−9

∣∣∣
+5(25s−9)

√
125s2−90s+29

+625(2d−1)s2−250(2d +3)s
]sg

sx=0.2
,

(4.33)

Comparison of the numerical and analytical values for sg and ∆̄10 are given in

Figure 4.8b as a function of the perturbative parameter d. The integral was evaluated

numerically using the QuadGK package in the Julia language, and exact overlap

between the analytical and numerical values are observed. Interestingly, d controls

the magnitude of the relative phase difference, which in Section 4.2.2.1 is shown to

be equal to the frequency of oscillations. Tuning the interferometer frequency with a

single parameter perturbative parameter is simpler from an experimental quantum

annealing perspective instead of adjusting coefficient schedules or global energy

scales.

4.2.1.2 Perturbed System

In order to perform interferometry, a small perturbation is introduced to the target

qubit (i.e., c0 ̸= 0 and c1 ̸= 0) to create avoided-level crossings that act as the

beam splitters of state probability between the ground and first-excited states. For

initial state preparation and measurement accuracy in the computational basis, it is

necessary to have c0 << a(s = 0) and c1 << b(s = 1), respectively, which means

that the unperturbed derivations defined in Section 4.2.1.1 can be approximated to

the perturbed system if this condition is met. Furthermore, a two-level approximation
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Figure 4.9: Plot of a) shows the two avoided-level crossings from the diagonlized Hamil-
tonian in Equation 4.20 (solid line) and from Equation 4.35 (dotted line) in the perturbed
setting with c0 = 2.0×10−3, c1 = 2.75×10−3, d = 0.3 and sx = 0.2. Plot b) illustrates the
closed-system evolution of the Hamiltonian defined in plot a) for a 500 ns anneal.

of the system using the two unperturbed energy levels E↓0 and E↑0 is represented by

the perturbed Hamiltonian

H∗S (s) =

E↑0(s) −
cx(s)

2

−cx(s)
2 E↓0(s)

 , (4.34)

where its eigenenergies are given by

E±(s) =
1
2

(
E↑0(s)+E↓0(s)

)
± 1

2

√
∆10(s)2 + |cx(s)|2 . (4.35)

Figure 4.9 compares Equation 4.35 to the energies found from diagonalizing the

full system Hamiltonian (Equation 4.20), and illustrates how state probability is no

longer kept solely in the ground state during an anneal with avoided-level crossings.

For consistency, the second gap size parameterized by c1 is chosen to be equal to

the size of the first gap, which is always equal to c0. Using Equation 4.35, it can be

found that c1 = c0 results in equal gap sizes ∀d, however, deriving c1 numerically

(see Figure 4.10) finds that the value of c1 is dependent on the value of d used in the

Hamiltonian.

This discrepancy can be attributed to the two-level Hamiltonian H∗S (s) neglect-

ing higher order perturbative terms from states beyond the two lowest energy states,
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Figure 4.10: The numerical values of c1 that result in both avoided-level crossing gaps
being equal in size compared to the estimated value of c0 = c1 = 2×10−3 (dashed line) as a
function of d.

resulting in minor deviations in the gap size of the second gap, ∆10(sg), which are

visible in the second inset in Figure 4.9a. In order to achieve ∆10(sg) = c0 (i.e., equal

gap sizes at each avoided-level crossing), c1 > c0 is required to offset the higher

order terms making ∆10(sg) smaller than predicted when c1 = c0. The magnitude

of this offset is also roughly proportional to d (Figure 4.10), which also defines

the problem hardness in the adiabatic quantum anneal setting, where a smaller d

corresponds to smaller minimum gaps [117]. The oscillation frequency can also

be considered to be independent of c0 and c1 due to their negligible contribution if

the approximation condition is met, but the magnitudes of c0 and c1 can impact the

oscillation amplitudes observed over time.

4.2.2 LTSF-DQA Interferometry

4.2.2.1 Coherent Dynamics

Given that each avoided-level crossing acts as a beam-splitter, closed-system in-

terferometry can be conducted using the Hamiltonian defined in Equation 4.20.

The interference between the ground and first-excited states are demonstrated by

oscillations in the ground state probability as a function of anneal time. By keeping

the two-level approximation of the Hamiltonian, the approximate final ground state
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probability for a given annealing time is defined as

PGS =
∣∣∣c0

00c1
00 + e−iζ c0

01c1
10

∣∣∣2 (4.36)

where ck
i j is the jth state amplitude after passing through the kth avoided-level crossing

from the ith state, and ζ is the phase accumulated by amplitude c0
01 in the first excited

state between the two avoided-level crossings. Analytical expressions cannot be

found for the amplitudes, therefore PGS is calculated using numerical methods. Using

parameters that allow for near-term implementation on hardware, closed-system

interferometry simulations of the von-Neumann equation were conducted using the

Hamiltonian Open Quantum System Toolkit [145] package in the Julia language.

LSTF-DQA interferometry is demonstrated in Figure 4.11, with ground-state

probability oscillating due to constructive and destructive interference at the second

minimum gap, sg. The amplitude of oscillations is observed to have three distinct

regimes, the first being that for short anneal times diabatic Landau-Zener transitions

are highly probably at both avoided-level crossings (i.e., minimal beam-splitting)

resulting in minimal interference at the second avoided-level crossing. The dashed

line in Figure 4.11 plots the probability of being in the ground state after the first

avoided-level crossing, and shows that it is low for short anneal times. The second

regime is one where there is an equal division of probability between the ground

and first-excited state after the first avoided-level crossing, resulting in maximum

oscillation amplitude; and the final regime is where the system anneal time is long

enough such that adiabatic transitions start to dominate at the avoided-level crossings,

reducing the probability in the first-excited state and again lowering the oscillation

amplitudes.

How quickly we can enter any one of these three regimes is highly dependent on

the system parameters used in the interferometry. The division of probability density

between the ground and first excited state, and therefore the oscillation amplitude,

can be tuned by using the perturbative d parameter, the first gap position sx, initial

transverse-field magnitude on the target qubit c0, and the global energy scale of the

system, which has so far been kept constant. However, these parameters also affect
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Figure 4.11: Results of simulated LSTF-DQA interferometry for the ground-state probability
of the perturbed ferromagnetic chain at M = 1 and d = 0.75 as a function of the anneal time,
tanneal . The black dashed line is the ground state probability at the midpoint between the
two avoided-level crossings. LSTF-DQA interferometry was conducted according to the
Hamiltonian defined in Equation 4.20 with sx = 0.2, c0 = 2.0×10−3, c1 = 2.29×10−3.

the frequency of oscillations, and therefore careful tuning is required to obtain a

system with the desired oscillation amplitude and frequency for a given annealing

timescale.

By keeping sx = 0.2 and c0 = 2.0×10−3, we can sweep values of the pertur-

bative parameter d and anneal time, tanneal, to observe the effect on frequency and

amplitude of the ground state probability PGS, as illustrated in Figure 4.12a. The

value of c1 is determined numerically throughout to ensuring that both avoided-level

crossings consistently have the same gap size. It may also be noted that so far,

experiments have focused on the traditional approach of fixing the system parameters

and sweeping the anneal-time, but Figure 4.12a demonstrates that interferometry

experiments can also be conducted for a fixed annealing time whilst varying d. How-

ever, the latter is not explored here due to the non-linear oscillation frequency as a

function of d.

Given that the magnitude of transverse-field on the target qubit is sufficiently

small, the accumulated phase and therefore the frequency can also be approximated

using the analytical solution of the unperturbed system. From Equation 4.36, the
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Figure 4.12: Plots of a) the ground state probability PGS as a function of the perturbative
parameter d and anneal time tanneal, and b) the oscillation frequency derived from the
numerical methods compared to what is predicted using Equation 4.33. The system has
parameters sx = 0.2 and c0 = 2.0×10−3, with c1 numerically set to always keep the second
minimum gap the same size as the gap.

accumulated phase is defined as ζ = 2πtanneal
∫ sg

sx
∆∗10(s)ds for the energy gap ∆∗10(s)

of the perturbed problem. Approximating ∆∗10(s) to the unperturbed energy gap

∆10(s) results in ζ ≈ 2πtanneal∆̄10, where ∆̄10 is defined in Equation 4.33 for sx = 0.2.

Figure 4.12b illustrates the accuracy of this approximation by comparing both the

numerically derived frequency and the predicted approximation to the unperturbed

analytical solution across various values of d.

So far, we have only applied interferometry to the simplest case of the perturbed

ferromagnetic chain of M = 1, and have kept all simulations closed-system (i.e.,

infinite quantum coherence lifetime). To use this method as a test of quantum

coherence for multi-qubit systems, we extend this approach to larger perturbed

ferromagnetic chain system sizes. In Figure 4.13, the same protocol is applied to

both M = 2 and M = 3 case of the perturbed ferromagnetic chain, which also exhibit

the same oscillations but with different frequency and amplitude to the M = 1 case.

The same control qubit is used in all cases, with c1 determined numerically to ensure

equal sized avoided-level crossings. Therefore, LSTF-DQA interferometry can also

be used as a possible test of coherence for multi-qubit systems, and the tunable

nature of the Hamiltonian should accommodate for most experimental setups. In the

next section, we shall explore to what extent quantum coherence is necessary and
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Figure 4.13: Demonstration that LSTF-DQA interferometry occurs for PFC systems with
M > 1 and d = 0.75. The target qubit for all problems was kept constant, with additional
qubit subsystems always appended to the right of the target qubit. LSTF-DQA interferometry
was conducted according to the Hamiltonian defined in Equation 4.20 with sx = 0.2 and
c0 = 2.0× 10−3 for all problems. The value of c1 was determined numerically for all
problems in order to maintain equal gap sizes, which for M = 1, M = 2 and M = 3 were
found to be c1 = 2.29×10−3, c1 = 2.66×10−3 and c1 = 2.67×10−3, respectively.

how it is possible to extract a measure of decoherence.

4.2.2.2 Measuring Decoherence in Open Systems

LSTF-DQA interferometry has so far only been simulated with full quantum co-

herence, and to determine whether coherence is necessary we explore how deco-

herence impacts LSTF-DQA interferometry. To extend the von-Neumann equation

used for the coherent simulations, we use the adiabatic master equation (AME)

that is commonly used to model quantum noise in open-system quantum anneal-

ing [119, 142, 143]. The AME used is defined in Section 1.4.1, where in this model

the decoherence of the system occurs in the instantaneous energy eigenbasis. The

level of decoherence is defined through the Ohmic bath spectral density

γ(ω) = η
ω exp(−|ω|/ωc)

1− exp(−βω)
, (4.37)
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where η is the bath-coupling strength, ωc the bath cut-off frequency and β is the

inverse temperature. The type of decoherence introduced into the energy eigenbasis

is dephasing noise, which is a used to emulate quantum noise in experimental

annealing [159].

The sensitivity of LSTF-DQA interferometry to dephasing will determine how

the oscillations are damped, from which we can model approximately using the

semi-empirical equation defined in Ref. [296]. Defining the dephasing frequency of

the ohmic bath to be

γd(s) =
1
2

γ(∆10(s))(1+ exp(−β∆10(s))) , (4.38)

and the average thermalization rate as γ̄d =
∫ 1

0 dsγd(s), the semi-empirical equation

is defined as

P′GS(t f ) = (PGS(t f )−PE(β ))e−γ̄dt f +PE(β ) , (4.39)

where t f is the annealing time, P′GS is the ground-state probability of the decoherent

system, PGS is the ground state probability of the coherent system, and PE(β ) is

the probability of being in the ground state at thermal equilibrium at the end of the

anneal, given by PE(β ) = e−βE0/Z, with Z = ∑i e−βEi . This expression was derived

for a two-level system and describes how the closed-system ground-state probability

decays to the steady-state solution (the Gibbs state) as t f → ∞, where the decay rate

is the thermalization rate γ̄d . The validity of Equation 4.39 holds for interferometry

if the two-level approximation made for the perturbed system in Section 4.2.1.2

remains true in the open-system setting, i.e., state probability above the first-excited

state is negligible.

LSTF-DQA interferometry simulations in a system governed by the AME

with an Ohmic bath is shown in Figure 4.14 for various temperatures and bath-

coupling strengths. Given the numerical closed-system solutions, a curve-fit of

the open-system measurements to the semi-empirical equation was performed with

the Python package SciPy, where the thermal ground-state probability, PGibbs(β ),

and thermalization rate, γ̄d , were extracted from the fit. The fitted curves plotted
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Figure 4.14: Open-system simulations of LSTF-DQA interferometry using the adiabatic
master equation [142, 143] illustrating oscillations in ground state probability PGS as a
function of anneal time, tanneal, for a PFC with M = 1 (Equation 4.20) and d = 0.75. Solid
lines represent the numerical simulation results and the dashed lines are fits to the semi-
empirical equation defined in Equation 4.39, with the fitted parameters shown in Figure 4.15.
Plot a) is for a temperature varying open-system with a bath-coupling strength fixed at η =
5×10−5, and plot b) is for an open-system at a fixed temperature of T = 8mK with varying
bath-coupling strength. The LSTF-DQA schedule parameters are sx = 0.2, c0 = 2.0×10−3,
and c1 = 2.29×10−3.

in Figure 4.14 show close agreement to the numerical result for systems with a

bath-coupling strengths of η < 10−4, and for simulations above this threshold, large

deviations were observed indicating that the semi-empirical equation approximations

are no longer valid.

The average thermalization rates and steady-state probabilities derived from

the curve-fits are also presented in Figure 4.15 for various temperatures and bath-

coupling strengths. Note that the error-bars to one-standard deviation from fitting

to Equation 4.39 are on average 5 orders of magnitude smaller than the values

plotted, and are therefore omitted from the plots. However, this does not mean that

the curve-fit accurately fitted the data to Equation 4.39. The fitted PE(β ) values

are observed to be consistently lower than the true ground state probability at

thermal equilibrium for that given temperature, implying that the measured system

temperature is consistently higher than the true system temperature. The cause for the

higher temperature observations is due to the system not being in thermal equilibrium

for the time-scales the fit was performed over, and therefore the system dynamics
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Figure 4.15: Plots of the parameters fitted to the results in Figure 4.14 using Equation 4.39
for various temperatures, T , and bath-coupling constants, η . The plot a) shows the predicted
steady-state probability, PE , including the true ground-state probability at thermal equilibrium
(black-dashed line) for some temperature T , and the plot b) shows the predicted average
thermalization rate γ̄d from the curve-fit.

can freeze earlier than anticipated. This is commonly known as freeze-out [57], and

because this occurs when the gap-sizes between the ground and first-exited states

are smaller than the gap at the end of the anneal, the system temperature appears to

be larger than expected, also called the effective temperature of the system. This

freeze-out effect is also seen for the PFC at M = 2 in Section 3.2.2. A system that

possesses late freeze-out will therefore have a lower effective temperature that is

closer to the true temperature of the system.

Both the thermalization rate and spectral broadening of energy levels can have

competing effects on freeze-out, which makes PE a poor choice for measuring system

decoherence using LSTF-DQA interferometry. This is demonstrated in Figure 4.15a

for a system with η = 5×10−5 appearing to be at a higher effective temperature than

a system with η = 1×10−4 for T > 15mK. This is due to a higher thermalization

rate at larger temperatures shown in Figure 4.15b causing freeze-out to occur later

in the anneal. For low temperatures, most of the transitions at the avoided-level

crossing as diabatic, with thermal excitation and relaxation rates effected more by

the broadening of the energy levels at larger system-bath coupling strengths.

For all problems, the average thermalization rate γ̄d proved to be the most

consistent measure of decoherence, even when curve-fits to the semi-empirical
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equation (Equation 4.39) have large deviations from the numerical solutions (e.g., for

large system bath coupling strengths). The interesting aspect of this method is that

it can be used to characterise noisy multi-qubit quantum systems without complex

schedules or any exotic hardware changes. This can be achieved by measuring

the oscillating ground-state probability and fitting to the semi-empirical equation to

obtain γ̄d , which is a measure of the multi-qubit coherence time of the system. In fact,

γ̄d can be used to define the T2 time for the adiabatic master equation in the weak

coupling limit in Ref [143], and therefore the inverse of the average thermalization

rate can be thought of as a multi-qubit extension to the T2 time defined there.

Overall, LSTF-DQA can be used as a scalable multi-qubit interferometer in a

coherent quantum system. The implementation is experimentally accessible using

current hardware, i.e., no exotic hardware or schedules are required for implementa-

tion, and it requires no exotic topology to be directly embedded onto the hardware.

We have shown that the system can be reduced to a two-level approximation (Sec-

tion 4.2.1.2), and consequently the interferometry oscillation frequency can be

approximated to an analytical expression (Equation 4.33). The number of parameters

in the schedule and problem means that there is a large degree of tunability when it

comes to choosing the desired oscillation amplitudes and frequencies. However, in

order to ensure that both gap-sizes are the same in LSTF-DQA interferometry, the c1

schedule parameter had to be determined numerically due to higher-order interac-

tions beyond the two-level approximation creating a smaller than expect gap at the

second avoid-level crossing. This effect was quantified in Figure 4.10 to demonstrate

that this deviation increases as the perturbative parameter gets smaller, i.e., a harder

problem and less separation between the first-excited state and higher-excited states.

In the open-system setting, LSTF-DQA interferometry proved to be sensitive

to decoherence, as observed by the damping of oscillations as both temperature

and/or bath-coupling strength increased when simulated in an Ohmic bath using the

adiabatic master equation. By fitting the numerical results to the semi-empirical

equation (Equation 4.39), an additional coherence time can be extracted from the

average thermalization rate, even when there were large deviations between the
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fitted and simulated result. LSTF-DQA interferometry therefore has the potential to

be a good measure of decoherence in multi-qubit systems, provided that the bath-

coupling strength and system temperature remain sufficiently low. Establishing this

for experimental realizations, as well as for larger systems (since the compounding

of decoherence in multi-qubit systems is generally non-trivial), would mean that

LSTF-DQA interferometry could serve as a benchmark for multi-qubit decoherence,

which is not provided by the single qubit T1 and T2 benchmark times typically used

today.



Chapter 5

Conclusion

5.1 General Conclusions
The computational methods presented here demonstrate that whilst noise and in-

tegrated control errors are ubiquitous in modern quantum annealers, it is possible

to still extract solutions to combinatorial optimization problems using quantum

dynamics. This is achieved by addressing the pertinent issues limiting the success

of quantum annealing, first being the hardware restrictions that prevent quantum

annealers from finding solutions to large and/or dense problems, second whether

incoherent quantum dynamics are of computational value in quantum annealing, and

finally can the minimum gaps at avoided-level crossings that close exponentially

in problem size be solved using diabatic quantum annealing protocols. Chapter 2

provides solutions to the hardware issues in Section 2.1 and Section 2.2, through

better minor-embedding via parameter-setting and reformulation of the optimiza-

tion problem, respectively. By comparing several parameter-setting methods on

random problem instances on the D-Wave 2000Q quantum annealer, the detrimental

effects of minor-embedding were shown to be lessened when using schemas that

guaranteed it was energetically unfavourable to break a minor-embedding rather than

heuristically setting parameters such as those seen in proprietary methods used by

D-Wave. A parameter measuring classical minimum non-locality is also identified

as a heuristic indicator of parameter setting performance, however the interplay
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with optimal embedding coupling strengths (i.e., as small as possible) must also be

considered with this measure.

Reformulating the constrained graph-colouring cost-function into several

maximal-independent set (MIS) problems in Section 2.2 demonstrated the large

reduction in hardware overheads required to solve the graph colouring problem. The

reduction in overheads is attributed to the removal of the one-hot constraint in the

original graph colouring problem that stipulates the solution must have k colours, and

which therefore also reduces the amount of minor-embedding required. A greedy

MIS colouring approach was proposed that reduces the problem size by choosing

the MIS that removes the most density from the problem graph. This is in contrast

to another in the literature (Ref. [286]) that had a random selection approach, but

both rely on improving performance through the removal of the constraint. An incre-

mental performance gain was observed using the greedy approach on the D-Wave

Advantage annealer, for planar graph problems of sizes 32 to 2048 nodes, whilst

graph colouring with one-hot constraints failed for very small problem sizes.

The computational value of incoherent quantum annealing for solving optimiza-

tion problems is first addressed in Section 2.3, where reverse-annealing is used to find

the ground-state of a small frustrated problem. Given that reverse-annealing is not

an adiabatic algorithm, it was demonstrated experimentally on the D-Wave 2000Q

that the ground state was accessed using diabatic transitions driven by incoherent

dynamics. Ground-state probability was also found to be higher as the Hamming dis-

tance between the initial solution and ground-state decreases. This was consistently

observed, whilst other quantum, classical, and quantum inspired models did not

demonstrate a similar ordering. It was hypothesised that the initialisation phase used

to pre-program the computational state in reverse-annealing triggered a phenomenon

called spin-bath polarization, which altered the optimization problem being solved.

To better contrast between hardware errors and computational processes driven by

incoherent quantum dynamics, Chapter 3 introduced the perturbed ferromagnetic

chain (PFC), which is a Hamiltonian whose problem hardness (i.e., gap size) is

controlled by a tuneable perturbative parameter and not just problem size. In the
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transverse-field Ising model, it possesses the property of having a false minimum

which is exponentially large in system size, and therefore requires additional dynam-

ics to access the ground state if the system passes through the exponentially scaling

minimum gap non-adiabatically.

The computational value of incoherent dynamics is tested by comparing numer-

ical solutions to closed and open quantum system equations, and several spin-vector

Monte Carlo (SVMC) methods, which have been proposed as classical mechanisms

that D-Wave annealers could follow. Closed system simulations failed to achieve any

significant ground-state probability for the hardest problem tested, whereas open-

system dynamics provided a thermalisation route to the ground state not accessible

in the closed-system setting. The ground-state probability using the open-quantum

dynamics for this problem was also found to be two orders of magnitude larger than

all classical SVMC models tested, demonstrating that incoherent quantum dynamics

are important computationally for the PFC, and can also be used to distinguish

between quantum and classical thermalisation mechanisms. This was experimentally

tested using various D-Wave annealers, where no model was observed to emulate

the dynamics of the D-Wave advantage annealer. However, the PFC was used to

show that the Advantage annealer was a noisier quantum system than anticipated

due to the distribution of states away from the ground and exponential manifold

states. Using the low-noise D-Wave 2000Q annealer, thermalisation was observed

for large PFCs where the analogue classical system failed to reach the ground state

completely, therefore demonstrating that incoherent quantum dynamics can be useful

for computation. A mechanism for the large Hamming weight change in the thermal

transition was proposed using intermediate states that exist between the manifold

and ground-state for large problem sizes. The effect of this mechanism on time-to-

solution by increasing problem size was not observed to scale with the exponential

closing minimum gap size on the D-Wave 2000Q. Instead, the time-to-solution had

(close to) zero scaling as problem size increased.

The final question regarding diabatic quantum annealing is addressed in Chap-

ter 4, where the locally suppressed transverse-field diabatic quantum annealing
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(LSTF-DQA) protocol was extended from the random frustrated problems in

Ref. [39] to select MIS and max-cut combinatorial optimisation problem instances.

This is to utilise the faster annealing that is possible in LSTF-DQA due to double

crossings created by the protocol. Using 3-regular graphs, MIS problems with inher-

ent local frustration (required by LSTF-DQA) demonstrated that quantum unitary

dynamics are required due to the failure of classical dynamical models using LSTF-

DQA. Measures of local frustration were also defined as heuristics to choose the

target qubit, and demonstrated that target qubits with lower local frustration yielded

higher ground-state probabilities for the problems tested. A framework to introduce

local frustration into the max-cut problem was also presented in Section 4.1.2, by

introducing local fields to qubits that preserved the ground-state and create the nec-

essary LSTF-DQA spectra. It was demonstrated that for a small max-cut problem,

the LSTF-DQA protocol converged to 100% probability faster than the adiabatic

quantum annealing variant when the target qubit has a low degree (∼ 3.2× faster for

the lowest degree target qubit). However, this method is only applicable to max-cut

problems with constant coupling values, limiting the range of optimisation problems

that can be solved using LSTF-DQA.

Finally, in Section 4.2 an interferometer using LSTF-DQA is proposed as a test

of coherence in quantum annealing. Analytic approximations of the interferometer

oscillation frequency are given for a special case of the PFC and are shown to match

the numerically derived solutions. The interferometer is extended to larger PFC

sizes, such that coherent oscillations were observed for 6-qubit systems and could be

extended further. Numerical simulations of LSTF-DQA interferometry performed in

open-quantum systems exhibited oscillation damping, and oscillations at low system-

bath coupling strengths could be fitted to a semi-empirical equation. The values

extracted from fitting this equation to the numerical results were measures of average

thermalization rates, and therefore gave a measure of the noise and coherence time

in the quantum system. LSTF-DQA is therefore a promising optimization protocol

that can be used to solve combinatorial optimisation problems with local-frustration,

and also serve as a tool to benchmark the decoherence in many-qubit systems.
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Overall, quantum annealing still has the potential to demonstrate a scaling

advantage over classical methods for specific optimisation problem classes, however,

major challenges such as embedding and hardware errors need to be still overcome

when using quantum annealers (such as those produced by D-Wave). Therefore, a

black-box approach to quantum annealing is not likely to result in successful compu-

tation, and only approaches tailored to the problem can mitigate these issues, such as

those presented in this work. This also means that a general quantum optimisation

advantage with annealing unlikely, but hybrid or novel quantum optimisation algo-

rithms still hold promise and can still yield good solutions to specific optimisation

problems. To help achieve this near term, researchers require increased analogue

control of the state-of-the-art quantum annealers to test the many promising algo-

rithms, such as LSTF-DQA. In the longer term, users of quantum annealers will still

require improvements to qubit count, inter-qubit connectivity and coherence times to

compete with state-of-the-art optimisation methods.

5.2 Future Work

The most promising future research area given the work presented lies in further gen-

eralisations of LSTF-DQA to optimisation problems if it is able to mitigate/prevent

the closing gap problem experienced in adiabatic variants. This can only be tested

currently on small problems due to the intractable simulations for larger problems.

Given that the LSTF-DQA protocol was designed to be easily implemented on

existing hardware, it is therefore of benefit to quantum annealing researchers and

algorithm developers to make annealers with higher degrees of qubit control acces-

sible. In the case of LSTF-DQA, individual field control of a single target qubit

is required to enable this algorithm. With this additional control, larger optimi-

sation problems can be tested and compared experimentally to adiabatic variants.

LSTF-DQA interferometry and therefore tests of coherence can also be conducted

on low-noise quantum annealers, allowing for the coherence of many-qubit systems

to be evaluated.

In addition to extra qubit controls, rapid quenching of quantum annealers for
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state analysis would also help confirm the possible role of intermediate states in the

thermalisation mechanism of the PFC. The use of intermediate-states to reach low-

energy configurations from excited states would strengthen the connection between

quantum annealing and physical systems that also use intermediate-states, e.g., lasers.

Furthermore, additional control would also assist in conclusively verifying that the

observed incoherent thermalisation mechanism used by the PFC cannot be attributed

to effects such as spin-bath polarization, which is observed for long anneal times and

in reverse annealing.



Appendix A

Monte Carlo Algorithms

A variety of Markov-chain algorithms are used to simulate quantum annealing

and find solutions to optimization problems throughout this document, and here

we provide pseudocode to the algorithms implemented. For the complete GitHub

repository of the algorithms presented, please refer to Ref. [297]. The first is the

simulated annealing (Alg. 2) [114], where the cost of accepting a proposed spin-flip is

only accepted given that it yields a lower-energy state or where the Boltzmann factor

is greater than a sample from a uniform distribution, Uniform(0,1). The anneal starts

in a hot temperature environment, i.e., many proposed changes accepted, before

finishing at a low temperature, freezing the dynamics. Spin-vector Monte Carlo

Algorithm 2 Simulated Annealing

1: Spins = {−1,1}N

2: TemperatureSchedule = Interpolate(Thot, Tcold, NumIncrements = sweeps)
3: for T in TemperatureSchedule do
4: RandSpins← RandomPermutation(1, . . . , N)
5: for i in RandSpins do
6: CurrentSpin← Spinsi
7: NewSpin← Flip(CurrentSpin)
8: ∆E← EnergyDifference(i, CurrentSpin, NewSpin)
9: if exp{−∆E/T}> Uniform(0,1) then

10: Spinsi← NewSpin
11: end if
12: end for
13: end for
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(Alg. 3) [277] is a classical analogue to quantum annealing, where the system is

annealed in normalised time, s, which parameterizes coefficient schedules A(s) and

B(s). The condition for accepting a new configuration is the same as simulated

annealing, but instead discrete spin states are represented as O(2) rotors given by a

continuous angle θ ∈ (0,π), where the discrete spin state is retrieved by sign(cosθ).

Spin-vector Monte Carlo with transverse-field dependent updates (Alg. 4) [119] is

Algorithm 3 Spin-vector Monte Carlo

1: SpinVector =
{

π

2

}N

2: Schedule = Interpolate(0, 1, NumIncrements = sweeps)
3: for s in Schedule do
4: RandSpins← RandomPermutation(1, . . . , N)
5: for i in RandSpins do
6: θ t ← SpinVectori
7: θ t+1 ∼ Uniform(0,π)
8: ∆E← EnergyDifference(i, θ t , θ t+1, s)
9: if exp{−∆E/T}> Uniform(0,1) then

10: SpinVectori← θ t+1

11: end if
12: end for
13: end for

an extension where the angle updates include transverse-field dependence to emulate

freeze-out when A(s) << B(s). The angles are still bounded, θ ∈ (0,π), but are

updated additively such that as A(s)/B(s)→ 0, ∆θ → 0. The final algorithm listed

is path-integral Monte Carlo (Alg. 5) [131, 133], where the quantum dynamics are

Trotterized into nτ replicas of the original N-spin problem. The slices are coupled

ferromagnetically according to Jτ =−1
2 ln(tanh(βA(s)/nτ)), where β = 1/T and

contributes to the energy difference calculated in the spin-flip proposals.
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Algorithm 4 Spin-vector Monte Carlo – Transverse Field

1: SpinThetas =
{

π

2

}N

2: Schedule = Interpolate(0, 1, NumIncrements = sweeps)
3: for s in Schedule do
4: RandSpins← RandomPermutation(1:N)
5: for i in RandSpins do
6: θ t ← SpinThetasi
7: u∼ Uniform(−π,π)

8: θ t+1← θ t +min
(

1, A(s)
B(s)

)
u

9: θ t+1←max
(
min

(
θ t+1,π

)
,0
)

10: ∆E← EnergyDifference(i, θ t , θ t+1, s)
11: if exp{−∆E/T}> Uniform(0,1) then
12: SpinThetasi← θ t+1

13: end if
14: end for
15: end for

Algorithm 5 Path Integral Monte Carlo

1: Spins = {−1,1}N×nτ

2: Schedule = Interpolate(0, 1, NumIncrements = sweeps)
3: for s in Schedule do
4: for τ in {1, . . . ,nτ} do
5: RandSpins← RandomPermutation(1, . . . , N)
6: for i in RandSpins do
7: CurrentSpin← Spinsi,τ
8: NewSpin← Flip(CurrentSpin)
9: ∆E← EnergyDifference(i, τ , CurrentSpin, NewSpin)

10: if exp{−∆E/T}> Uniform(0,1) then
11: Spinsi,τ ← NewSpin
12: end if
13: end for
14: end for
15: end for
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A list of publications related to the work presented:

1. D. T. O’Connor, L. Fry-Bouriaux, and P. A. Warburton, Perturbed Ferromag-

netic Chain: Tunable Test of Hardness in the Transverse-Field Ising Model,

Phys. Rev. A 105, 022410 (2022).

2. L. Fry-Bouriaux, D. T. O’Connor, N. Feinstein, and P. A. Warburton, Locally

Suppressed Transverse-Field Protocol for Diabatic Quantum Annealing, Phys.

Rev. A 104, 052616 (2021).

A list of publications beyond the scope of the work presented here:

1. D. O’Connor and W. Vinci, RBM-Flow and D-Flow: Invertible Flows with

Discrete Energy Base Spaces, ArXiv:2012.13196 [Cs, Stat] (2021).
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Colophon

This document was created using the Overleaf editor using the template provided by

the Research Computing team, Information Services Division, University College

London. Times Roman typeface using LATEX and BibTEXis used throughout, and all

references to the literature were collected using the reference management software,

Zotero. All figures that were created by the author used the PYTHON packages:

• matplotlib v3.7.1 [298]

• NetworkX v2.8.8 [299]

• D-Wave Ocean Software Development Kit v6.3.0

Numerical simulations and analysis plotted were made accessible in tractable times

using the languages JULIA v1.6 [300] and CYTHON v0.26 [301]. Important libraries

used in the work presented include Hamiltonian Open Quantum System Toolkit

v0.7.3 [145] and QuadQK v2.6.0 in JULIA, as well as SciPy v1.10.1 [302] and

NumPy v1.24.3 [303] in PYTHON. Furthermore, simulation tools that were created for

this work were published to the GitHub repository in Ref. [297].
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