Ectoparasite and bacterial population genetics and community structure indicate extent of bat movement across an island chain

Clifton D. McKee, Alison J. Peel, David T. S. Hayman, Richard Suu-Ire, Yaa Ntiamoa-Baidu, Andrew A. Cunningham, James L. N. Wood, Colleen T. Webb, Michael Y. Kosoy Supplementary Material

Table S1. Oligonucleotide primers used for haplotyping of bat flies and bacterial detection with conventional PCR amplification. Sequences designated [F] are forward primers and those designated [R] are reverse primers.

Target	Locus	PCR round	Primer sequence	Primer name	Product size (bp)	Reference	
Bartonella fts2		1	ATTAATCTGCAYCGGCCAGA [F]	Bfp1	885	1	
			ACVGADACACGAATAACACC [R]	Bfp2			
		2	ATATCGCGGAATTGAAGCC [F]	ftsZ R83	670	2	
			CGCATAGAAGTATCATCCA [R]	ftsZ L83			
Bartonella	gltA	1	GCTATGTCTGCATTCTATCA [F]	CS443f	767	3, 4	
			GATCYTCAATCATTTCTTTCCA [R]	CS1210r			
		2	GGGGACCAGCTCATGGTGG [F]	BhCS781.p 356		3, 5	
			AATGCAAAAAGAACAGTAAACA [R]	BhCS1137.n			
Bartonella	ITS	1	CTTCAGATGATGATCCCAAGCCTTCTGGCG [F]	325s	364-398	6	
			GAACCGACGACCCCCTGCTTGCAAAGA [R]	1100as			
Arthropod 16S mitochondrial DNA		1	TACGCTGTTATCCCTAA [F]	LR-J-13007	411	7-9	
			CGCCTGTTTATCAAAAACAT [R]	LR-N- 13398			
Arthropod	cytb	1	AGGRCAAATATCATTTTGAG [F]	A5	387	10	
mitochondrial DNA			AAATATCATTCTGGTTGAATATG [R]	B1.1	1		
Enterobacteriales	16S	1	GGGTTGTAAAGTACTTTCAGTCGT [F]	ArsF	575	11	
	rRNA	rRNA		CCTYTATCTCTAAAGGMTTCGCTGGATG [R]	ArsR3		

References: ¹Zeaiter *et al.* (2002); ²Colborn *et al.* (2010); ³Birtles & Raoult (1996); ⁴Gundi *et al.* (2012); ⁵Norman *et al.* (1995); ⁶Diniz *et al.* (2007); ⁷Simon *et al.* (1994); ⁸Kambhampati & Smith (1995); ⁹Szalanski *et al.* (2004); ¹⁰Dittmar de la Cruz & Whiting (2003); ¹¹Duron *et al.* (2008).

Target	Locus	PCR round	Thermal program
Bartonella	ftsZ	1	95°C 4:00, (95°C 0:30, 55°C 0:30, 72°C 1:00)x40, 72°C 10:00, 4°C ∞
		2	95°C 4:00, (95°C 0:30, 55°C 0:30, 72°C 1:00)x40, 72°C 10:00, 4°C ∞
Bartonella	gltA	1	95°C 2:00, (95°C 0:30, 48°C 0:30, 72°C 2:00)x40, 72°C 7:00, 4°C ∞
		2	95°C 3:00, (95°C 0:30, 55°C 0:30, 72°C 0:30)x40, 72°C 7:00, 4°C ∞
Bartonella	ITS	1	95°C 3:00, (95°C 0:30, 66°C 0:30, 72°C 0:30)x55, 72°C 5:00, 4°C ∞
Arthropod mitochondrial DNA	16S rRNA	1	95°C 3:00, (95°C 0:45, 46°C 0:45, 72°C 0:45)x55, 72°C 7:00, 4°C ∞
Arthropod mitochondrial DNA	cytb	1	95°C 12:00, (95°C 0:30, 40°C 0:30, 72°C 2:00)x55, 72°C 7:00, 4°C ∞
Enterobacteriales	16S rRNA	1	95°C 2:00, (95°C 0:30, 52°C 0:30, 72°C 1:30)x55, 72°C 5:00, 4°C ∞

 Table S2. Thermocycler protocols used for conventional PCR amplification.

Locus	Bat fly species	Haplotype	Sampling location	Counts of bat flies with mitochondrial or bacterial symbiont haplotype
ectoparasite mitochondrial 16S rRNA	C. greefi	1	Annobón	81
			Bioko	38
			Ghana	41
			Príncipe	55
			São Tomé	93
	E. africana	1	Ghana	25
			Nigeria	7
		2	Príncipe	10
			São Tomé	1
	D. biannulata	1	Ghana	1
ectoparasite mitochondrial cytb	C. greefi	1	Annobón	3
			Bioko	10
			Ghana	25
			Príncipe	9
			São Tomé	32
		2	Annobón	8
	E. africana	1	Ghana	15
		2	Ghana	4
		3	Ghana	3
		4	Ghana	18
		5	Príncipe	9
			São Tomé	1
Enterobacterales symbiont 16S rRNA	C. greefi	1	Annobón	1
			Ghana	12
			Príncipe	3
			São Tomé	5
	E. africana	1	Ghana	11
		2	Príncipe	3
			São Tomé	1

Table S3. Counts of bat fly and bat fly *Enterobacterales* symbiont haplotypes detected at each sampling location. Counts were used for calculation of relative abundance in Figure 3B,D,F.

Table S4. *Bartonella* infection prevalence in bat flies across sampling years by species. Samples were considered positive for *Bartonella* bacteria if one or more genetic markers produced a sequence confirmed as *Bartonella*. Binomial 95% confidence intervals for prevalence were estimated using Wilson score intervals. Differences for *Dipseliopoda biannulata* were not exampled because only one specimen was collected in 2016.

Bat host species	Bat fly species	Sampling year	Samples	Bartonella positive	Prevalence
Eidolon helvum	Cyclopodia greefi	2009	49	40	0.82 (0.69–0.9)
		2010	551	436	0.79 (0.76–0.82)
		2012	18	14	0.78 (0.55–0.91)
		2016	90	76	0.84 (0.76–0.91)
Rousettus aegyptiacus	Eucampsipoda africana	2010	11	5	0.45 (0.21-0.72)
		2012	22	7	0.32 (0.16-0.53)
		2016	23	12	0.52 (0.33-0.71)

Table S5. Counts of *Bartonella* genogroups detected in bat flies across locations. Counts are based on the presence of sequences representing a given genogroup from any of three genetic loci used for detection (ITS, *ftsZ*, *gltA*). Counts were used for calculation of relative abundance in Figure 4A and community dissimilarity in Figure 5.

Bat host species	Bat fly species	Location	E1	E2	E3	E4	E5	Ew	Eh6	Eh7	B. rousetti
E. helvum	C. greefi	Ghana	3	16	11	36	30	60	0	0	0
		Bioko	5	3	7	30	36	60	1	2	0
		Príncipe	13	16	1	21	19	27	0	2	0
		São Tomé	17	43	6	29	48	45	0	4	0
		Annobón	13	25	7	10	59	69	0	1	0
R. aegyptiacus	E. africana	Ghana	0	0	0	0	0	0	0	0	19
		Príncipe	0	0	0	0	0	0	0	0	4
		São Tomé	0	0	0	0	0	0	0	0	1

Table S6. Age distribution of *E. helvum* populations sampled for bat flies. Ages are abbreviated N – neonate, J – juvenile, SI – sexually immature adult, and A – sexually mature adult. Counts were used for calculation of relative abundance in Figure 4C. Note that many individuals captured on Bioko island in May 2010 were free-flying dependent young that were less than two months old (Peel *et al.*, 2017; below the age cutoff for juveniles), so are thus lumped with other neonates.

Location	Years sampled	N	J	SI	Α	Total
Annobón	2010	1	0	69	132	202
Bioko	2010	84	0	4	17	105
Príncipe	2010	0	10	11	40	61
São Tomé	2010	26	0	15	61	102
Ghana	2009, 2012, 2016	20	63	406	1220	1709

Table S7. Distance measures for sampled populations. Physical distance is measured in kilometers between islands and the mainland, considering Ghana as a representative population for the mainland as in Figure 2B. *Bartonella* community dissimilarity is calculated as one minus the Spearman rank correlation between counts of *Bartonella* genogroups across locations. Genetic distances for *E. helvum* across locations are recorded as Slatkin's linearized ϕ_{ST} ($\phi_{ST}/(1 - \phi_{ST})$) for mitochondrial *cytb* sequences and F_{ST} ($F_{ST}/(1 - F_{ST})$) for microsatellites taken from Peel *et al.* (2013).

Comparison	Physical distance	<i>Bartonella</i> community dissimilarity	<i>E. helvum</i> genetic distance, mtDNA	<i>E. helvum</i> genetic distance, microsatellites
Bioko– Mainland	35.9	0.1	0	0
Príncipe– Mainland	217.2	0.09	0.5	0.05
São Tomé– Mainland	242.4	0.15	0.31	0.04
Annobón– Mainland	349.3	0.2	0.57	0.12
Príncipe-Bioko	207.6	0.19	0.46	0.04
São Tomé– Bioko	372.7	0.19	0.29	0.03
Annobón– Bioko	604.6	0.21	0.5	0.11
São Tomé– Príncipe	147.1	0.14	0.07	0.01
Annobón– Príncipe	378.8	0.17	0.77	0.07
Annobón–São Tomé	185.5	0.05	0.58	0.07

Table S8. Bat fly specimens tested for bacterial symbionts by PCR. The number of positive specimens based on confirmed *Enterobacterales* sequences is recorded. Binomial 95% confidence intervals for prevalence were estimated using Wilson score intervals.

Bat fly species	Location	Samples	Tested	Symbiont positive	Prevalence
C. greefi	Ghana	158	70	12	0.17 (0.1–0.28)
	Bioko	176	138	0	0 (0-0.03)
	Príncipe	81	74	3	0.04 (0.01–0.11)
	São Tomé	165	135	5	0.04 (0.02–0.08)
	Annobón	131	95	1	0.01 (0-0.06)
E. africana	Ghana	44	43	11	0.26 (0.15–0.4)
	Príncipe	10	10	3	0.3 (0.11–0.6)
	São Tomé	1	1	1	1 (0.21–1)

Figure S1. Maximum likelihood phylogenetic tree of *Bartonella* cell division protein gene (*ftsZ*) sequences produced from a 638 bp alignment of 515 sequences. The best model of sequence evolution according to IQ-Tree was HKY+F+G4 based on BIC. The tree was rooted at the midpoint and separate genogroups are highlighted in different colors: E1 – red, E2 – yellow, E3 – green, E4 – blue, E5 – purple, Ew – brown, Eh6 – gray, Eh7 – magenta, *B. rousetti* – orange. Abbreviations in sequence names: Eh – *Eidolon helvum*, Hm – *Hypsignathus monstrosus*, Ra – *Rousettus aegyptiacus*, AN – Annobón, BI – Bioko, GH – Ghana, PR – Príncipe, ST – São Tomé.

Figure S2. Collapsed version of the *Bartonella ftsZ* maximum likelihood tree showing separate genogroups and branch support. Colors for genotypes are the same as in Figure S1. Branch support values for each genogroup cluster are shown along the branch to the left of each node.

Figure S3. Maximum likelihood phylogenetic tree of *Bartonella* citrate synthase gene (*gltA*) sequences produced from a 301 bp alignment of 500 sequences. The best model of sequence evolution according to IQ-Tree was TIM3+F+G4 based on BIC. The tree was rooted at the midpoint and separate genogroups are highlighted in different colors: E1 – red, E2 – yellow, E3 – green, E4 – blue, E5 – purple, Ew – brown, Eh6 – gray, Eh7 – magenta, *B. rousetti* – orange. Abbreviations in sequence names: Eh – *Eidolon helvum*, Hm – *Hypsignathus monstrosus*, Ra – *Rousettus aegyptiacus*, AN – Annobón, BI – Bioko, GH – Ghana, PR – Príncipe, ST – São Tomé.

Figure S4. Collapsed version of the *Bartonella gltA* maximum likelihood tree showing separate genogroups and branch support. Colors for genotypes are the same as in Figure S1. Branch support values for each genogroup cluster are shown along the branch to the left of each node.

Figure S5. Maximum likelihood phylogenetic tree of *Bartonella* 16S–23S ribosomal RNA intergenic spacer region (ITS) sequences produced from a 522 bp alignment of 542 sequences. The best model of sequence evolution according to IQ-Tree was HKY+F+R3 based on BIC. The tree was rooted at the midpoint and separate genogroups are highlighted in different colors: E1 – red, E2 – yellow, E3 – green, E4 – blue, E5 – purple, Ew – brown, Eh6 – gray, Eh7 – magenta, *B. rousetti* – orange. Abbreviations in sequence names: Eh – *Eidolon helvum*, Hm – *Hypsignathus monstrosus*, Ra – *Rousettus aegyptiacus*, AN – Annobón, BI – Bioko, GH – Ghana, PR – Príncipe, ST – São Tomé.

Figure S6. Collapsed version of the *Bartonella* ITS maximum likelihood tree showing separate genogroups and branch support. Colors for genotypes are the same as in Figure S1. Branch support values for each genogroup cluster are shown along the branch to the left of each node.

Figure S7. Maximum likelihood phylogenetic tree of concatenated *Bartonella ftsZ* and *gltA* sequences produced from a 1247 bp alignment (891 bp *ftsZ*, 356 bp *gltA*) of 114 sequences. The best model of sequence evolution according to IQ-Tree was TVM+F+R7 based on BIC. The tree was rooted at the midpoint and bootstrap branch support values are shown in gray next to branches. Names of *Bartonella* species/strains previously obtained from bats are colored gray, genogroups previously obtained from *E. helvum* or *C. greefi* are colored dark blue, genogroups from *R. aegyptiacus* or *E. africana* are colored orange, and names of new genogroups from *E. helvum/C. greefi* are colored light blue.

Figure S8. Nonmetric multidimensional scaling (NMDS) ordination of *Bartonella* community composition in individual bat flies tested from *E. helvum*. Ordination was performed using a Euclidean distance matrix based on presence/absence of *Bartonella* genogroups in individual bat flies from each sampling location. The scree plot (top left) shows the reduction in stress with increasing number of dimensions for NMDS, with the red line at 0.05 showing the recommended cutoff. After 250 random starts to the NMDS using three dimensions, the stable solution had excellent fit between the observed dissimilarity and ordination distances (bottom left). The stable ordination solution (right) showed that in two dimensions, different *Bartonella* genogroups had stronger weighting (as indicated by length of lines from the origin). *Bartonella* communities were largely similar across sampling locations, shown by overlapping 95% confidence interval ordination ellipses and closely clustered centroids for each sampling location.

Figure S9. Correlations between genetic data from *E. helvum* populations, physical distance between sampling locations, and *Bartonella* community dissimilarity. Mantel tests based on Pearson's correlation were performed with 119 permutations (the complete set for the 5x5 matrices). (A) Relationship between physical distance and mtDNA genetic distances, Slatkin's linearized ϕ_{ST} ($\phi_{ST}/(1 - \phi_{ST})$) for *cytb* sequences. (B) Relationship between physical distance and genetic distances for microsatellites, Slatkin's linearized F_{ST} ($F_{ST}/(1 - F_{ST})$). (C) Relationship between genetic distances from mtDNA and *Bartonella* community dissimilarity. (D) Relationship between genetic distances from microsatellites and *Bartonella* community dissimilarity. All values are recorded in Table S7. Locations are abbreviated AN – Annobón, BI – Bioko, MA – mainland (Ghana), PR – Príncipe, and ST - São Tomé.

References

- Birtles, R. J. and Raoult, D. (1996). Comparison of partial citrate synthase gene (*gltA*) sequences for phylogenetic analysis of *Bartonella* species. *International Journal of Systematic and Evolutionary Microbiology* **46**, 891–897. doi: 10.1099/00207713-46-4-891.
- Colborn, J. M., Kosoy, M. Y., Motin, V. L., Telepnev, M. V., Valbuena, G., Myint, K. S., Fofanov, Y., Putonti, C., Feng, C. and Peruski, L. (2010). Improved detection of *Bartonella* DNA in mammalian hosts and arthropod vectors by real-time PCR using the NADH dehydrogenase gamma subunit (*nuoG*). *Journal of Clinical Microbiology* 48, 4630–4633. doi: 10.1128/jcm.00470-10.
- Diniz, P. P. V. D. P., Maggi, R. G., Schwartz, D. S., Cadenas, M. B., Bradley, J. M., Hegarty,
 B. and Breitschwerdt, E. B. (2007). Canine bartonellosis: serological and molecular prevalence in Brazil and evidence of co-infection with *Bartonella henselae* and *Bartonella vinsonii* subsp. *berkhoffii. Veterinary Research* 38, 697–710. doi: 10.1051/vetres:2007023.
- Dittmar de la Cruz, K. and Whiting, M. F. (2003). Genetic and phylogeographic structure of populations of *Pulex simulans* (Siphonaptera) in Peru inferred from two genes (*CytB* and *CoII*). *Parasitology Research* 91, 55–59. doi: 10.1007/s00436-003-0879-5.
- **Duron, O., Bouchon, D., Boutin, S., Bellamy, L., Zhou, L., Engelstädter, J. and Hurst, G. D.** (2008). The diversity of reproductive parasites among arthropods: *Wolbachia* do not walk alone. *BMC Biology* **6**, 27. doi: 10.1186/1741-7007-6-27.
- Gundi, V. A. K. B., Billeter, S. A., Rood, M. P. and Kosoy, M. Y. (2012). *Bartonella* spp. in rats and zoonoses, Los Angeles, California, USA. *Emerging Infectious Diseases* 18, 631–633. doi: 10.3201/eid1804.110816.
- Kambhampati, S. and Smith, P. T. (1995). PCR primers for the amplification of four insect mitochondrial gene fragments. *Insect Molecular Biology* **4**, 233–236. doi: 10.1111/j.1365-2583.1995.tb00028.x.
- Norman, A. F., Regnery, R., Jameson, P., Greene, C. and Krause, D. C. (1995). Differentiation of *Bartonella*-like isolates at the species level by PCR-restriction fragment length polymorphism in the citrate synthase gene. *Journal of Clinical Microbiology* 33, 1797–1803. doi: 10.1128/jcm.33.7.1797-1803.1995.
- Peel, A. J., Sargan, D. R., Baker, K. S., Hayman, D. T. S., Barr, J. A., Crameri, G., Suu-Ire, R., Broder, C. C., Lembo, T., Wang, L.-F., Fooks, A. R., Rossiter, S. J., Wood, J. L. N. and Cunningham, A. A. (2013). Continent-wide panmixia of an African fruit bat facilitates transmission of potentially zoonotic viruses. *Nature Communications* 4, 2770. doi: 10.1038/ncomms3770.
- Peel, A. J., Wood, J. L. N., Baker, K. S., Breed, A. C., de Carvalho, A., Fernández-Loras, A., Gabrieli, H. S., Gembu, G.-C., Kakengi, V. A., Kaliba, P. M., Kityo, R. M., Lembo, T., Mba, F. E., Ramos, D., Rodriguez-Prieto, I., Suu-Ire, R., Cunningham, A. A. and Hayman, D. T. S. (2017). How does Africa's most hunted bat vary across the continent? Population traits of the straw-coloured fruit bat (*Eidolon helvum*) and its interactions with humans. *Acta Chiropterologica* 19, 77–92. doi: 10.3161/15081109ACC2017.19.1.006.
- Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. and Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. *Annals of the Entomological Society of America* 87, 651–701. doi: 10.1093/aesa/87.6.651.

- Szalanski, A. L., Austin, J. W., Scheffrahn, R. H. and Messenger, M. T. (2004). Molecular diagnostics of the Formosan subterranean termite (Isoptera: Rhinotermitidae). *Florida Entomologist* 87, 145–151. doi: 10.1653/0015-4040(2004)087[0145:MDOTFS]2.0.CO;2.
- Zeaiter, Z., Liang, Z. and Raoult, D. (2002). Genetic classification and differentiation of Bartonella species based on comparison of partial *ftsZ* gene sequences. Journal of Clinical Microbiology 40, 3641–3647. doi: 10.1128/jcm.40.10.3641-3647.2002.