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In brief

Yang et al. show visual cues from

elevated walls are necessary for stable

place and grid cell firing in virtual reality,

whereas cues from a patterned floor are

not. Without visible boundaries, grid cells

show hexagonal patterns only on short

timescales. Invisible boundaries (inferred

from beacon cue movement) partly

stabilize nearby place fields.
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SUMMARY
The hippocampal formation contains neurons responsive to an animal’s current location and orientation,
which together provide the organism with a neural map of space.1–3 Spatially tuned neurons rely on external
landmark cues and internally generated movement information to estimate position.4,5 An important class of
landmark cue are the boundaries delimiting an environment, which can define place cell field position6,7 and
stabilize grid cell firing.8 However, the precise nature of the sensory information used to detect boundaries
remains unknown. We used 2-dimensional virtual reality (VR)9 to show that visual cues from elevated walls
surrounding the environment are both sufficient and necessary to stabilize place and grid cell responses
in VR, when only visual and self-motion cues are available. By contrast, flat boundaries formed by the edges
of a textured floor did not stabilize place and grid cells, indicating only specific forms of visual boundary sta-
bilize hippocampal spatial firing. Unstable grid cells retain internally coherent, hexagonally arranged firing
fields, but these fields ‘‘drift’’ with respect to the virtual environment over periods >5 s. Optic flow from a vir-
tual floor does not slow drift dynamics, emphasizing the importance of boundary-related visual information.
Surprisingly, place fields are more stable close to boundaries even with floor and wall cues removed, sug-
gesting invisible boundaries are inferred using the motion of a discrete, separate cue (a beacon signaling
reward location). Subsets of place cells show allocentric directional tuning toward the beacon, with strength
of tuning correlating with place field stability when boundaries are removed.
RESULTS

Place and grid cells were recorded while mice navigated in a

2-dimensional (2D) virtual reality environment9 (796 place cells

and 138 grid cells; see Data S1A for breakdown by animal and

experimental session and Figure S1A for details of apparatus).

The external sensory cues defining the environment were purely

visual, while the animal’s movement around the environment

was coupled to its movement on a spherical trackball. Mice

were trained to navigate toward a moveable beacon to receive

a reward.9 After mice had learned this task,9 we tested the ne-

cessity of different visual cues for place and grid cell firing by

removing specific subsets of these cues as mice continued to

perform the navigation task (Figure S1A; see details in STAR

Methods).

Removing the wall cues alone produced a strong disruption in

the spatial specificity and within-trial (intra-trial) stability of place

cells, as did removing both walls and floor cues simultaneously

(Figures 1B–1F). By contrast, removing only floor cues had no

significant effect on place cell spatial firing (Figures 1A and 1F).
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This is an open access article under the
Removing the floor cues only did, however, cause a modest de-

gree of remapping, as measured by the across-trial (inter-trial)

stability of place cell firing between the cue-present and cue-ab-

sent trials (Figures 1A and 1F). This indicates a degree of saliency

of floor cues to place cell firing, but only the removal of wall cues

resulted in a significant decrease in place cell within-trial stability

and spatial tuning.

The effects of cue removal on grid cells paralleled those

observed for place cells: removing walls only or floor and walls

together resulted in a strong reduction in gridness scores and

within-trial stability, while there was no significant effect of

removing the floor cues alone (Figures 1A–1C, 1G, and 1H). Un-

like place cells, grid cells did not significantly remap between

cue-present and floor-off trials (Figure 1I). Analyzing grid cell

data using simultaneously recorded grid module ensembles as

statistical units did not alter the reported results (Figures 1J–1L).

Furthermore, the walls-off condition disrupted place and grid

cell firing to the same extent as the all-off condition: there were

no significant differences in spatial information, gridness scores,

or intra-trial stability between these conditions (Figures 1D, 1E,
ay 20, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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Figure 1. Visual cues from boundaries provide sufficient inputs to stabilize spatial patterns of place cells and grid cells

(A) Visual cues were removed from the floor (floor off).

(B) Visual cues were removed from all four walls (walls off).

(C) All environmental visual cues were removed (all off). The panels on the left column are schematic of the manipulations with a cue-present environment on the

top and a cue-absent environment on the bottom, the 2nd and 3rd columns are the rate maps of two example place cells in the corresponding environments, and

the 4th and 5th columns are rate maps of two example grid cells. Numbers at the bottom right of rate maps are peak firing rates (Hz).

(D–I) Comparison of firing properties of place cells and grid cells in all three manipulations including spatial information (D; ANOVA cue presence*manipulation,

F(2,617) = 26.94, p < 0.001; simple main effects [SME] cue present versus absent, floor off, p = 0.305; walls off, p < 0.001; all off, p < 0.001), intra-trial stability (E;

ANOVA cue presence*manipulation, F(2,617) = 90.36, p < 0.001; SME absent versus present, floor off, p < 0.01; walls off, p < 0.001; all off, p < 0.001), and inter-

trial stability between the cue-present and cue-absent trials (F; ANOVA cue presence*manipulation, F(2,617) = 114.60, p < 0.001; SME absent versus present,

floor off, p < 0.001; walls off, p < 0.001; all off, p < 0.001) for place cells and gridness scores (G; ANOVA cue presence*manipulation, F(2,109) = 32.92, p < 0.001;

SME absent versus present, floor off, p = 0.202; walls off, p < 0.001; all off, p < 0.001), intra-trial stability (H; ANOVA cue presence*manipulation, F(2,109) = 64.45,

p < 0.001; SME absent versus present, floor off, p = 0.972; walls off, p < 0.001; all off, p < 0.001), and inter-trial stability (I; ANOVA cue presence*manipulation,

F(2,109) = 99.92, p < 0.001; SME absent versus present, floor off, p < 0.05; walls off, p < 0.001; all off, p < 0.001) for grid cells. **p < 0.01; ***p < 0.001.

(J–L) Re-analysis of the grid cell data, using the mean scores across all grids in a simultaneously recorded module as the statistical unit of analysis. Removing

walls only or floor and walls together resulted in a strong reduction in gridness scores and intra- and inter-trial stability, while there was no significant effect of

removing the floor cues alone.

(J) Gridness score: ANOVA cue presence*manipulation, F(2, 11) = 12.45, p < 0.01; SME absent versus present, floor off, p = 0.874; walls off, p < 0.01; all off,

p < 0.001.

(K) Intra-trial stability between the cue-present and cue-absent trials: ANOVA cue presence*manipulation, F(2, 11) = 29.12, p < 0.001; SME absent versus present,

floor off, p = 0.484; walls off, p < 0.001; all off, p < 0.001.

(L) Inter-trial stability between the cue-present and cue-absent trials: ANOVA cue presence*manipulation, F(2, 11) = 25.03, p < 0.001; SME absent versus present,

floor off, p = 0.154; walls off, p < 0.001; all off, p < 0.001. *p < 0.05; **p < 0.01; ***p < 0.001.

See also Figure S1 and Data S1.
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1G, and 1H). These results suggest that environmental walls are

the cues responsible for stabilizing place and grid cell firing

within this virtual environment.

A subset of cells was also recorded in a second cue-present

trial, directly after the cue-absent trial. Both place and grid cells

restored their firing patterns after visual cues were replaced, with

the second cue-present trial showing significantly greater spatial

information, gridness scores, and intra-trial stability than the
2 Current Biology 34, 1–9, May 20, 2024
cue-absent trial (Figures S1D–S1K). There were no significant

differences in running speed between cue-present and cue-ab-

sent trials across all manipulations (Figure S1B). Mice collected a

similar (floor-off) or slightly higher (walls-off, all-off) number of re-

wards in the cue-absent trials (Figure S1C). Place and grid cell

spatial firing was disrupted even when these neurons were co-

recorded with medial entorhinal cortex head direction cells

(mEC HDCs) that retained their directional tuning in cue removal
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trials (Figures S1L–S1U). The above results confirm that disrup-

ted firing in the cue-absent trial is a specific effect of visual cue

removal, rather than the result of electrode instability over the

experimental session, mouse behavior, or unstable heading

information.

Computational models predict that grid cells can generate

regular hexagonal patterns from purely idiothetic informa-

tion.10–13 Anchoring these patterns to the external world using

landmark cues is thought to prevent instability arising from

accrued path integration error.14 We tested whether grid pat-

terns were present at short timescales in the cue-absent condi-

tions (walls-off and all-off), as this would be an indication of path

integration drift. Time-windowed auto-correlogram firing rate

maps (STAR Methods) showed hexagonal patterns at short

time intervals (Figures 2A and 2B; peaking at 5 s), with progres-

sive disruption at longer durations. Gridness scores of the

time-windowed rate maps increased at longer durations when

cues were present but decreased at longer durations when

cues were absent (Figure 2C). Thus, hexagonal grid firing pat-

terns were detectable over short time intervals in both cue-ab-

sent conditions. Similar results were observed using simulta-

neously recorded grid cell modules as statistical units of

analysis (Figure 2E).

Optic flow is thought to be an important source of movement

information that can contribute to path integration.15,16 However,

the patterned visual information provided by the floor did not

significantly improve the gridness score at short timescales

(Figures 2D and 2F). There was no evidence, therefore, that optic

flow from patterned visual information supports grid cell stability

in the virtual reality environment.

To investigate whether grid drift is primarily translational or

directional, we constructed time-windowed cross-correlogram

maps between simultaneously recorded grid cell pairs and

tested whether directional offsets between grids are preserved

at short timescales. We found that the change in directional off-

sets between cue-present and cue-absent (in a 5 s time window)

was no greater than that between repeated cue-present trials,

indicating that the directional component of grid firing was stable

in cue-absent trials (Figure S2). This analysis further confirms

(along with the stability of mEC HDCs) that cue removal in virtual

reality leads to disruption of 2D spatial firing, despite the preser-

vation of the head direction signal.

As the reward beacon was the only source of positional infor-

mation in the all-off condition (STARMethods), we reasoned that

the mouse may infer the presence of the virtual boundary from

themotion of the reward beacon relative to its ownmotor output.

We tested whether such inferred boundaries could contribute to

spatial firing stability in the all-off condition by calculating the

intra-trial stability in separate boundary and center zones

(STAR Methods). We found that cue removal consistently

reduced stability in the center zone, relative to the boundary

zone, for both place cells (Figure 3C) and grid cells (Figure 3D).

However, the specific effects of cue removal were different

across the two cell types. Place cells were equally stable across

environmental boundary and center when cues were present but

were significantly more stable near boundaries in the all-off con-

dition (Figure 3C). These results suggest that, in a highly familiar

environment, place fields can be at least partially stabilized by

boundary cues even when these cues themselves are not
perceptually available but are rather inferred from the movement

(relative to motor output) of other, perceptually available, cues.

Grid cells, by contrast, were more stable in the environment cen-

ter when cues were present but became equally unstable at all

environmental locations in the all-off condition (Figure 3D). This

pattern of results was replicated in the subset of animals for

which grid and place cells were simultaneously recorded (Fig-

ure 3E), ruling out across-animal sampling bias as a cause for

this result. Taken together, these data indicate that place, but

not grid representations, might benefit from the presence of

the moving reward beacons to calculate location.

Our finding of higher grid field stability in the environment cen-

ter, in the cue-present condition, has not previously been re-

ported in real-world studies, raising the possibility that this phe-

nomenon is specific to virtual reality. However, analysis of

grid cells from the same cohort of mice recorded in real-world

arenas revealed a similar result (albeit with a smaller effect

size) (Figures S3G and S3H), even after controlling for positional

sampling bias (Figures S3A–S3F, S3I, and S3J).

Following our unexpected finding that place fields can be sta-

bilized by a boundary inferred from the movement of a discrete

cue (the reward beacon), we tested whether place cell firing

may be modulated by this cue. Specifically, we tested whether

place cells encoded the animal’s bearing to the reward beacon,

irrespective of the animal’s head orientation. In the baseline (cue

present) condition, 18.6% (114/614) of place cells showed signif-

icant directional tuning toward the reward beacons (STAR

Methods) (Figures 4A–4C). Directional tuning toward the beacon

was reduced in the all-off condition (Figure 4D), but there re-

mained a correlation between the degree of beacon tuning in

baseline and all-off trials (Figure 4E), suggesting that beacon tun-

ing is a cell-specific property. Moreover, the strength of place

cells’ allocentric tuning (Rayleigh vector scores) in the all-off con-

dition was significantly and positively correlated with the intra-

trial stability in the all-off condition, irrespective of the relative po-

sition of place fields with respect to environmental boundaries

(Figure 4F), indicating that, in our experimental paradigm, the

reward beacons help to stabilize the firing patterns of place cells

in the all-off condition. We also tested whether place cell or grid

cell firing was tuned to the reward position in 2D (x,y) space;

however, we found no more tuning to the reward beacon than

expected by chance (Figure S4). Furthermore, we did not find

any correlation between the directional reward tuning of place

cells and animals’ performance on the reward beacon task

(Figures 4G and 4H).

DISCUSSION

The hippocampus uses multimodal sensory information to

generate spatially tuned neural firing and support spatial cogni-

tion.17–22 Disentangling the contribution of different sensory mo-

dalities can be practically difficult in a real-world setting; hence

the importance of introducing virtual reality techniques,5,9,23,24

which allow arbitrary manipulations of sensory stimuli. We

have shown that, in virtual reality, purely visual barriers, which

present no somatosensory or olfactory cues to the animal (unlike

real-world barriers), nonetheless support place and grid cell

firing. Our results are consistent with previous evidence demon-

strating the importance of boundaries for neural representations
Current Biology 34, 1–9, May 20, 2024 3
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Figure 2. Grid cells maintain hexagonal patterns on short timescales

(A and B) Time-windowed rate maps and their auto-correlograms with 2, 5, 10, 20, 40, and 80 s windows of representative grid cells in cue-present (top rows) and

cue-absent (bottom rows) for the walls-off (A) and all-off (B) conditions.

(C) Mean (±SEM) elliptical gridness scores calculated from the time-windowed displacement firing rate maps comparing cue-present (gray) with cue-absent

(blue) trials. Two-way ANOVA duration-cue presence: SME duration F(5, 136) = 37.34, p < 0.001; interaction duration*cue presence F(5,136) = 13.87, p < 0.001.

(D) Mean (±SEM) elliptical gridness scores calculated from the time-windowed displacement firing rate maps comparing the walls-off (solid) with the all-off

(dotted) conditions. Two-way ANOVA manipulation-duration: main effect of manipulation (walls off versus all off), F(5, 135) = 0.02, p = 0.904.

(E) Mean (±SEM) elliptical gridness scores calculated from the time-windowed displacement firing ratemaps comparing cue-present (blue) with cue-absent (gray)

trials with gridmodule as the statistical unit of analysis. Two-way ANOVA duration-cue presence: SME duration F(5, 8) = 15.67, p < 0.001; interaction duration*cue

presence F(5, 8) = 8.11, p < 0.001.

(F) Mean (±SEM) elliptical gridness scores calculated from the time-windowed displacement firing rate maps comparing the walls-off (solid) with the all-off

(dotted) conditionswith gridmodule as the statistical unit of analysis. Two-way ANOVAmanipulation-duration: main effect ofmanipulation (walls off versus all off),

F(5, 7) = 0.04, p = 0.800. *p < 0.05; **p < 0.01; ***p < 0.001.

See also Figure S2.
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Figure 3. Proximity to inferred boundaries increases stability for both place cells and grid cells

(A) Rate maps of three example place cells recorded in a 60 cm virtual square in the cue-present and cue-absent (all-off) conditions.

(B) Rate maps of three example grid cells recorded in a 60 cm virtual square in the cue-present and all-off conditions. The left column shows the rate maps for the

whole environment, the middle column shows the boundary area of the maps, and the right column shows the central area of the maps. Numbers at the bottom

right of firing rate maps are peak firing rate (Hz).

(C) Intra-trial stability of boundary (open bars) and central (solid bars) rate maps in the cue-present (gray) and all-off (blue) conditions for place cells. ANOVA,

zone*cue presence, F(1,611) = 6.97, p < 0.01. Paired t test: all off, t(613) = 6.03, p < 0.001; cue-present, t(613) = 1.96, p = 0.051.

(D) Intra-trial stability of boundary (open bars) and central (solid bars) rate maps in the cue-present (gray) and all-off (blue) conditions for grid cells. ANOVA,

zone*cue presence, F(1,106) = 34.97, p < 0.001. Paired t test: all off, t(106) = 0.85, p = 0.400; cue-present, t(106) = �8.41, p < 0.001.

(E) Intra-trial stability of boundary (open bars) and central (solid bars) place fields in the cue-present (gray) and all-off (blue) conditions for the subset of place cells

simultaneously recorded with grid cells. As for the full place cell dataset, place fields are equally stable across boundary and center zones in the cue-present

condition and were significantly more stable near the boundary in the all-off condition. ANOVA, zone*cue presence, F(1,317) = 4.26, p < 0.05. Paired t test: all off,

t(317) = 4.65, p < 0.001; cue-present, t(317) = 1.56, p = 0.120. ***p < 0.001.

See also Figure S3.
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of space: boundaries shape firing patterns of place cells and grid

cells in rodents,6–8,25,26 as well as neural representations in the

human medial temporal lobes.27

In the walls-off condition, a visual boundary is available to the

animal in the form of the edge of the patterned floor texture, but

this cannot support stable place and grid cell firing. Our results,

thus, show for the first time that purely visual boundaries need to

take a specific form, i.e., an elevated, not flat, extended cue, in

order to support spatially tuned firing. This is in contrast to pre-

vious modeling work,13,15,28 which suggested that flat bound-

aries could stabilize spatial cells, and the experimental finding
that boundary-tuned neurons responded to flat ‘‘drop-off’’

boundaries.29 Previousmodeling work13,15 and experimental vir-

tual reality studies16 have also emphasized the importance of

optic flow from patterned visual cues in stabilizing spatial firing.

However, our data show that, when only visual cues are available

to the animal, optic flow from a patterned floor, although de-

tected by place cells, is neither necessary nor sufficient to sup-

port stable place and grid cell firing.

Grid cell networks display conserved internal dynamics across

behavioral states,2,30,31 and when recorded in the absence of vi-

sual input, grid cells maintain consistent co-activity patterns,
Current Biology 34, 1–9, May 20, 2024 5
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Figure 4. Place cell response to the locations of reward beacons

(A) Three example place cells showing strong directional tuning toward the location of reward beacons. The upper row shows 2D firing rate maps and the bottom

row shows allocentric reward-bearing polar plots. Numbers at the bottom right of firing rate maps are peak firing rate (Hz). The numbers at the top right of polar

plots are Rayleigh vector (RV) scores and the numbers at the bottom right are peak firing rates (Hz). Zero degrees marked on the polar plots (east) indicate the

direction in which rewards are located.

(B) Three example place cells showing low Rayleigh vector scores. Format of data as for (A).

(C) Illustration of allocentric (a) direction relative to the location of a reward beacon.

(D) Rayleigh vector scores of allocentric tuning directions in the cue-present and all-off conditions. Red lines are median, blue boxes cover the interquartile

range q1�q3, and dashed lines cover q1 � 1.5 3 IQR to q3 + 1.5 3 IQR including all data points. Cue-present, median = 0.12, IQR = 0.15; all-off, median = 0.10,

IQR = 0.12 for allocentric RV scores, Wilcoxon rank-sum test, z = 7.30, p < 0.001. ***p < 0.001.

(E) Relationship of allocentric Rayleigh vectors between the cue-present and all-off conditions. Partial correlation, r = 0.44; p < 0.001, controlling for the boundary

index.

(F) Relationship between the allocentric Rayleigh vectors and the intra-trial stability of rate maps in the all-off condition. Partial correlation, r = 0.19; p < 0.001,

controlling for the boundary index.

(G) Number of rewards collected in each experimental session for all recorded mice. The number of rewards collected was measured in the cue-present

condition.

(H) There is no significant correlation between the average allocentric RV values of place cell reward tuning and the number of rewards collected in the cue-

present condition (r = �0.14, p = 0.460). Each dot represents one experimental session.

See also Figure S4.
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despite spatial instability.32 Our results suggest that grid cell

instability may be caused by excessive accumulation of path

integration error, such that the internally coherent grid network

‘‘drifts’’ with respect to the external world. This interpretation

predicts that hexagonal grid patterns should be detectable at

sufficiently short timescales, with the timescale depending on

the rate of error accumulation. In contrast to the previous studies
6 Current Biology 34, 1–9, May 20, 2024
where only distance tuning, not drifting hexagonal patterns,

could be detected when grid cell firing was disrupted in the

dark,32,33 our study is the first to demonstrate the presence of

coherent but drifting hexagonal grid cell firing during spatial

exploration and shows that, in our experimental setup, error

accumulation begins to degrade grid stability from 5 s onward.

Surprisingly, the presence of patterned visual cues on the floor
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of the virtual environment does not reduce the rate of error accu-

mulation, indicating that not all visual cues can stabilize grid firing

equally and reinforcing the privileged role that boundaries play.

In addition to this, and unexpectedly, we observe that the firing

patterns of place cells are more stable in areas near environ-

mental boundaries even in the all-off condition, when the bound-

aries are not directly visible, and the only visible environmental

cue available is the (moving) reward beacon. We therefore hy-

pothesize that the animal can infer the presence of the boundary

from the movement of the beacon, relative to the animal’s own

motor output. As the animal’s progress through the virtual space

is blocked when it encounters the invisible boundary, this cre-

ates a mismatch between the visually observed beacon move-

ment and that predicted from the animal’s own motor output.

We hypothesize that the animal can use this mismatch to infer

boundary position, such that this inferred boundary can enhance

place cell stability. To our knowledge, this is the first demonstra-

tion that an ‘‘invisible’’ boundary, whose only physical manifesta-

tion is an impediment to movement, can modulate hippocampal

spatial responses. Our results therefore expand the functional

definition of boundaries to encompass entities that are not solely

defined by their sensory characteristics.

A further unexpected aspect of our results was that grid cell

fields are less stable close to boundaries in the presence of the

full set of cues, in both virtual reality and real-world conditions.

This result is seemingly in contrast with a previous report of

enhanced grid cell stability following boundary contact,8 though

differences in environment size and methodology for assessing

stability may explain the discrepancies between the two studies.

We observed a dissociation between the behavior of HDCs

and that of place and grid cells, namely, only the former are sta-

ble in the walls-off and all-off conditions. Furthermore, unstable

grids retain their orientations at short timescales, despite drifting

translationally. These findings are consistent with previous real-

world studies32 and suggest a key functional dissociation be-

tween the robustness of directional and 2D spatial signals, under

cue impoverished conditions. In this study, we cannot determine

whether the cues stabilizing HDCs derive from virtual reality (e.g.,

reward beacon) or the real world (e.g., virtual reality projection

monitors). A virtual landmark can control HDC preferred firing di-

rections in our apparatus9 (at least for rotations not in conflict

with apparatus symmetry): future experiments could investigate

further the effect of dissociating real and virtual reality cues, for

example, through gradual rotations of virtual landmarks.

We showed that a subpopulation of place cells tracks the allo-

centric bearing of the animal to the reward beacon (which moves

approximately every 4–5 s but is stable between these reloca-

tions). This result is consistent with the previously reported mod-

ulation of hippocampal place cell firing by (stable) goals and/or

objects.4,34–40 We observe a significant correlation between

place cell stability and the degree of their allocentric directional

tuning to the reward beacon, indicating that tracking the allocen-

tric location of the visible reward beacon enhances place cell

stability.

In this study, we used virtual reality to dissect the exact role

and nature of visual cues that support spatially tuned firing.

Although virtual reality cannot replicate all aspects of the real

sensory environment (for example, olfactory cues41,42), findings

obtained in virtual reality can nevertheless generalize to the
real world. For example, human children tested on the spatial re-

orientation task43 could not use the flat outline of a rectangle as a

geometric reorientation cue,44 consistent with the lack of spatial

neuron stability in the walls-off environment observed in virtual

reality.
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Chen (guifen.chen@qmul.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability

d There are no standardized datatypes generated in this study. Data reported in this paper is shared on https://osf.io/m8qwp/.

d This paper does not report the original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

MATLAB https://uk.mathworks.com/products/matlab.html RRID: SCR_001622
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Experimental model
Seven male 3-month-old C57BL/6 mice were used and housed under a reversed 12h/12h light/dark cycle (lights on at 10 a.m.).

METHOD DETAILS

Subjects and surgery
Mice were implanted with custom-made head plates and microdrives loaded with 17mm platinum-iridium tetrodes. Each mouse

received a dual implant with one microdrive in right CA1 (ML: 1.8 mm, AP: 2.1 mm posterior to bregma) and the other in left mEC

(ML = 3.1 mm, AP = 0.2 mm anterior to the transverse sinus, angled 4� posteriorly), each drive carrying four tetrodes. See further

details in Chen et al.5 All procedures were carried out under the Animals (Scientific Procedures) Act 1986.

Virtual reality
Virtual environments (Figure S1A) were constructed using a game engine (Unity, Unity Technologies) which ran on a Dell Precision

T7500 workstation. The virtual scenes were rendered on a combination of four Acer B236HL LCD monitors mounted vertically in

a square array plus two LCD projectors (native resolution 480 3 320, 150 lumens) mounted above. A mouse was attached to a

head holder mounted in a bearing (Kaydon Reali-Slim bearing KA020XP0), which allowed free rotation on the horizontal plane.

The bearing was held over the centre of an air-supported 200mm-diameter hollow polystyrene ball. The movement of the ball, trig-

gered by the movement of the animal, can be detected by two optical computer mice (Logitech G700s gaming mouse) mounted with

orthogonal orientations at the front and side of the ball. The output of the two optical mice drove the translational movement of the

virtual scene in the X and Y axes respectively, corresponding to the movement of the animal.5,9 When the animal reached the edge of

the virtual environment, the ball could continue tomove freely, but the animal’s position within the virtual environment remained at the

boundary, until the animalmoved away from thewall. The virtual reality environment included realistic parallax, such that visual stimuli

for near objects move faster than visual stimuli for far objects, given a constant mouse speed.
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Behavioral training
After recovery from surgery, mice were also exposed to a 60 cm 3 60 cm square in a real environment to screen for place cells and

grid cells. Electrodes were lowered by 62.5 mm per day independently on each side of the hemisphere until the spatial cells were

found. In themeantime, mice were trained in the virtual environments as presented in Chen et al.,5,9 learning to forage for the rewards

indicated by a visual beacon. Foraging behavior was motivated by sweetened soya milk drops as a reward, delivered through a tube

positioned within licking distance of the animal’s mouth. Visual beacons (a striped cylinder and a black rounded disk, see Figure S1A)

were placed in the virtual environments randomly to indicate the reward locations. At any given moment, there was always one

reward location visually indicated by the beacon. The beacon would remain at the same location until mice visited the virtual re-

warded location, at which point a drop of milk would be delivered. Once the reward was delivered, the beacon would be repositioned

to a different random location, which could be at any position within the virtual environment, except within a radius of 20cm from the

previous reward position.

Cue manipulations
A typical experimental session comprised two 40-min trials with a 40-min interval. Each trial consisted of either 40-min baseline trial

or 20-min baseline and a 20-min manipulation trial. In the baseline trial - ‘Cue-present’, animals forage for rewards in a familiar

60 cm3 60 cm virtual square environment identical to the one used during training. In the manipulation trial - ‘Cue-absent’, subsets

of the visible cues in the virtual square environment were removed and replaced with a dark grey background (Figure S1A). There

were three types of manipulations: Floor-Off, Walls-Off and All-Off. In the Floor-Off condition, the patterned floor texture was

substituted with a plain grey area, while animals maintained physical contact with the ball. In the Walls-Off condition, both distal

and proximal wall textures were replaced with a plain grey background. In the All-Off condition, the only visible virtual cue was

the reward beacon: all other VR stimuli were replaced with a plain grey surface. The visual reward beacons were still available to indi-

cate the location of reward, in all ‘Cue-absent’ trials. They moved to a pseudo-random location after the mouse had consumed the

reward. Notably, the movement of the animal was restricted to within the same environment boundaries in all manipulation condi-

tions, hence the animal’s movement within the virtual arena would cease if it ran into a boundary, which could be detected even

in the All-Off condition by a lack of corresponding movement of the reward beacon. On average, the reward beacon moved approx-

imately every 4-5 s, but was stable between these relocations.

On any given day, one manipulation and at least one baseline trial where all visual cues were present (a ‘Cue-present’ trial, see

Figure S1A) were carried out.

Real-world cell recordings
Using the same cohort of animals as for the VR experiments, 20-min recordings were carried out in a real-world open-field environ-

ment. The environment was a square, 60cm side length, walls were 50cm high. All walls were constructed from wood painted plain

light grey covered with a similar patterned texture used in the VR. The floor was black perspex. Extra maze cues consisted of a prom-

inent white cue card (A0, 84 cm3 119 cm), illuminated by a lamp. Animals were encouraged to forage for randomly scattered rewards

on condensed milk. The floor was washed to scramble/minimize olfactory cues before each trial.

Data acquisition
Extracellular action potentials were recorded using DACQ (Axona Ltd., UK). Spike sorting was performed offline using an automated

clustering algorithm (KlustaKwik) followed by amanual review and editing step using an interactive graphical tool ‘Waveform’ (https://

github.com/d1manson/waveform).

QUANTIFICATION AND STATISTICAL ANALYSIS

Classification of place cells and grid cells
Firing rate maps were constructed using 1.5 3 1.5 cm bins and a 5 3 5 boxcar filter. Spatial information and gridness scores were

calculated using the methods in Chen et al.32 Cells were classified as grid cells if their gridness scores in a Cue-present condition

exceeded the 95th percentile of a distribution of 1,000 gridness scores derived from spatially shuffled data, created by temporally

shifting the spike train relative to position. Place cells were defined in a similar fashion, with spatial information being used to quantify

the spatial tuning of a neuron.

Spike-triggered time-windowed rate maps
Time-windowed spatial displacement ratemapswere constructed following themethods in Bonnevie et al.45 In detail, the spike times

of one neuron (the ‘reference’ neuron) were used to define a series of timewindows of duration T seconds, each starting at the time of

a reference neuron spike. Windowswere reduced in duration if a reference spike occurred within T seconds of the end of the trial. The

position at the time of the reference neuron spike was assigned an (x,y) value of (0,0). Within each time window, a 2-dimensional his-

togram was created of the (x,y) positions associated with the spiking of the second neuron (the ‘test’ neuron; bin size = 1.5 cm), with

positions being defined relative to that at the time of the reference neuron spike. The histograms of all windows were then summed,

and smoothed, producing an overall map of the positions in which the test neuron fired relative to the reference neuron, within a short

timewindow. To control for uneven patterns ofmovement, the spike histogramwas then divided by a summed, smoothed, histogram
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of all of the relative dwell times across all time windows: this defined the spatial cross-correlogram. The values of T were set to 2, 5,

10, 20, 40 and 80 s. Cross-cell time-windowed maps (‘time-windowed cross-correlograms’) were constructed in an analogous

fashion, except that the reference spike times were taken from one grid cell, and the test spike times were taken from another, simul-

taneously recorded, grid cell. Within each pair of grid cells, Cell A and Cell B, time-windowed rate-maps were generated using both

Cell A as reference and Cell B as Test, and Cell B as reference and Cell A as Test. Following this, the spatial cross-correlogram be-

tween the two time-windowed rate maps was calculated, to provide a more accurate estimate of the directional offset between the

two grid patterns. Within a simultaneously recorded ensemble, all possible grid cell pairs combinations were used for the analysis,

with the sole restriction that a grid cell could only contribute if its time-windowed auto-correlogram gridness score was >0.17 (at a

10 s time window). We introduced this threshold to ensure that only well-sampled cross-correlograms were used. The value of the

threshold was derived from a population of gridnesses of spike-time shuffled auto-correlograms in the All-Off condition at the 95%

percentile.

The gridness scores for the time-windowed maps were calculated by taking maximum gridness scores computed from rings as

described as ‘Gridness measure 2’.46 In brief, an autocorrelation of a smoothed rate map was first calculated and seven peaks

closest to the center were identified. The inner radius of the ringwas defined as half of themean distance from the peaks to the center,

and the outer radii ranged from the inner radius to the closest autocorrelogram edge. Then the rotational autocorrelations of these

rings were calculated and a set of gridness scores were computed as the difference between the lowest correlation observed at 60 or

120 degrees of rotation and the highest correlation at 30, 90, or 150�.

Place/grid field stability
Intra-trial stability was calculated by correlating the firing rates of spatially corresponding bins between the first and the second

halves of a trial. Inter-trial stability was measured by correlating the firing rates of spatially corresponding bins between the baseline

and manipulation trials. To compare the field stability, the entire environment was divided equally into two zones: central and bound-

ary. Central position bins were assigned to the central zone and surrounding position bins to the boundary zone, ensuring an equal

number of bins in each zone.

Analysis of reward-modulated firing
Allocentric reward-bearing polar plots were constructed by first calculating, for every position sample, the angle to the current reward

position in the virtual environment reference frame. Angles were then binned into 6� bins, and spikes assigned to each bin. Both po-

sition maps and spike maps were smoothed separately using a 30� wide boxcar filter and finally the smoothed spike maps were

divided by the smoothed position maps. The directional tuning of the cell wasmeasured using the length of themean resultant vector

(Rayleigh Vector; RV) of the bins of the reward-tuned directional firing rate maps. To classify cells as reward-tuned, the actual RV

lengths were compared to null distributions of RV lengths derived from two different populations of spike-shuffled data, generated

by: (1) shifting the entire spike train randomly with respect to position (as for place and grid cell classification), (2) maintaining the

mean firing rate in each 2-dimensional rate map bin, but reassigning the spikes which occurred in each rate map bin randomly across

the total set of time points for which the animal occupied that same bin. The second shuffle controlled for artifactual reward-bearing

tunings which may have arisen primarily from the concentration of firing in one particular (2-dimensional) location. A cell was clas-

sified as reward-tuned if its reward-bearing map RV length exceeded the higher of the 99th percentiles of the two shuffled

reward-bearing RV lengths described above.

To examine the reward tuning in two-dimensional space, a time window of 5 s was used to construct time-windowed rate maps

centered around actual reward delivery times. The beacon-centered maps therefore effectively replot the spatial firing of neurons

such that the upcoming reward beacon is always at (x,y) coordinate (0,0). Windows were truncated when the next reward was deliv-

ered in less than 5 s. To establish a negative control for comparison, time-windowed rate maps were also constructed using a shuf-

fled set of reward positions, which was generated through a random re-ordering of the actual beacon positions used in a trial.

Partial correlation
To test whether the enhanced stability of reward-tuned cells was primarily driven by their proximity to a boundary, the correlation of

stability versus reward tuning was a partial correlation, controlling for a ‘boundary score’, which quantified the extent to which firing

occurred near a boundary. The boundary scorewas calculated by assigningweights to each bin in a ratemap based on its distance to

the closest edge. The boundary score for each cell was defined by the sum of the firing rates within each bin multiplied by the cor-

responding weight from the mask.
e3 Current Biology 34, 1–9.e1–e3, May 20, 2024
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