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A B S T R A C T   

Over the coming decades, Kenya is likely to see a large increase in electricity demand driven by economic growth 
and wider electrification of different sectors. At the same time, Kenya remains committed to maintain its high 
share of renewable generation. This study proposes a novel framework to soft link OSeMOSYS, a capacity 
expansion model (CEM), and FlexTool, a production cost model (PCM), to address the limitations of CEMs in the 
representation of variable renewable energy sources. Results show the effectiveness of the methodology in 
identifying critical grid issues that would have been missed by the capacity expansion model alone, especially in 
the case of a higher penetration of non-dispatchable sources. They also confirm that based on robust planning 
approaches, Kenya is well placed to maintain its very low carbon generation system under different demand 
growth projections, leveraging on firm generation from geothermal and high wind potential.   

1. Introduction 

1.1. Kenyan context 

The Kenyan electricity system has undergone a significant trans
formation over the last decade, more than doubling access to electricity 
to over 75% of the population [1], up from 36% just 10 years ago. This 
increase in access and therefore demand for electricity has been pro
vided mainly by an expansion in renewable generation capacity, notably 
from geothermal and wind. In 2021, over 85% of electricity generated 
came from renewable sources, an increase on a 75% share a decade 
before. This progress in expanding access whilst maintaining a very high 
share of renewable generation shows the potential of serving increasing 
energy demands whilst doing so with clean energy and contributing to 
meeting the country’s Nationally Determined Contribution (NDC) [2]. 

However, Kenya is likely to see further high increases in demand for 
electricity over the coming decades, resulting from economic growth 
and the wider electrification of different economic sectors. At the same 

time, at the political level, Kenya remains committed to maintaining its 
high share of renewable generation, with a target to hit 100% renewable 
energy by 2030 [3]. The projected demand growth combined with the 
need to have a fully renewable system by 2030 and beyond brings a 
number of potential challenges to ensuring new investment but also for 
system operation, such as low inertia in the system; transmission con
straints leading to load shedding, out-of-merit thermal dispatch; low 
off-peak demand and high must-run capacity resulting in energy 
curtailment. 

The Kenyan government is actively looking to understand and assess 
these challenges via their planning process, both in the short term (via 
the Medium-Term Plan – MTP [4]) and longer term (via the Least Cost 
Power Development Plan – LCPDP [5,6]), through a process started in 
2016 with the publication of the Power Generation and Transmission 
Master Plan [4,5]. The latest version of the long-term report highlights 
the need for a comprehensive study on additional grid requirements for 
the envisioned increased levels of intermittent renewable energy sour
ces, suggesting looking into storage solutions such as battery energy 
systems and pumped hydropower. To do this, the government are using 
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a range of modelling tools to inform the planning process. In this paper, 
we present a novel model linking analysis used by the planning team, 
using OSeMOSYS and FlexTool, to assess how Kenya can meet its 
growing demand whilst retaining its objective of a fully renewable 
system. 

The structure of the paper is as follows; in section 1.2, we first review 
the literature on modelling studies to date, to determine the novelty and 
suitability of our proposed approach set out in section 2. Section 3 
outlines the scenarios used in the study. Results are presented in section 
4, with the discussion and conclusions provided in sections 5 and 6 
respectively. 

1.2. Literature review 

In recent years, a growing body of literature has focused on energy 
system planning in Low- and Middle-Income Countries (LMICs). Com
mon trends and approaches are identified by a number of articles that 
have reviewed the topic focusing on different geographical areas [7,8] 
or aspects of planning [9–11]. 

An early review by Trotter et al. [7] identifies adequate policy 
design, sufficient finance, favourable political conditions and local ca
pacity building as key success factors for the electrification in 
sub-Saharan Africa (SSA). The need for capacity building is also high
lighted by Musonye et al. [8], with European-based institutions often 
found to be the main authors of energy modelling studies in the SSA 
region. In parallel to a wider participation of local stakeholders to the 
modelling process, a better representation of key system requirements 
such as spinning reserve, ramping rates, system inertia, peak loads, and 
quick start reserve margins are identified as needed to make modelling 
more realistic. 

Concerning specific planning aspects, a recurring topic of focus is the 
electrification of rural areas. The role of large-scale planning tools has 
been reviewed by Ciller and Lumbreras [9], considering techniques, 
software tools and approaches to evaluate grid extension and the 
diffusion of mini-grids and stand-alone systems. They propose a classi
fication of models based on complexity and computation speed, and 
identify areas for future development, like the introduction of 
multi-objective optimisation. There is also a focus in the literature on 
how to best include variable renewable energy (VRE) sources in the 
planning process [10,11]. Das et al. [10] have analysed this from a 
methodological point of view, distinguishing between exogenous and 
endogenous approaches. Exogenous methods are characterized by a 
variety of methodologies that are differentiated by distinguishing be
tween unidirectional or bidirectional links, and soft- or hard-linking. 

Endogenous approaches avoid the need for complex data transfer pro
cedures yet require a careful calibration of the model itself and might be 
subject to structural limitations in the representation the variability of 
renewable sources. The focus of Sterl’s review [11] is on the actual study 
findings in the literature, rather than on their methodological ap
proaches. The model-based literature suggests that key elements for the 
integration of VRE sources in the African continent are increased in
terconnections between power pools, the capacity of exploiting spatio
temporal complementarities between solar PV, wind and hydropower, 
and large-scale deployment of energy storage. 

1.2.1. Modelling the variability of renewable energy sources 
The main issue with increasing the share of VRE sources in power 

system planning is how to correctly estimate flexibility requirements 
[10,12]. Numerous Capacity Expansion Models (CEMs) exist and have 
been analysed and categorized from multiple perspectives in different 
review articles [12–14]. Examples of CEMs include TIMES [15], OSe
MOSYS [16], and LEAP [17]. Yet most CEMs have an embedded limited 
capability of representing flexibility because of the simplifications 
introduced in the formulation of the problem, especially with regard to 
the use of timeslices [18]. The process of averaging time series to define 
loads and VRE generation per timeslice leads to an underestimation of 
variability and inadequate expression of the chronological order of 
timesteps. Moreover, as shown by Merrick et al. [19], if 10 timeslices are 
sufficient to capture variability in a traditional power system, the 
introduction of VRE can increase that number by up to 1000. Opera
tional constraints of power systems are also difficult to implement 
because of low temporal resolution and missing chronology between 
timeslices [20]. 

Production Cost Models (PCMs), on the other hand, are intended for 
validation of the technical feasibility of a given system, typically by 
minimising the operation costs for given capacities [18]. Likewise with 
CEMs, they provide the generation dispatch of power plants through cost 
optimisation. However, their results are more accurate at a finer time 
resolution, usually at an hourly level, and take into account various 
reliability constraints that are not included in CEMs. Because of this 
detailed modelling, they do not provide details on the expansion of the 
grid which would be too complex for the optimisation. Examples of 
PCMs include PLEXOS [21], Antares [22], Dispa-Set [23] and FlexTool 
[24,25]. 

Multiple approaches have been proposed in the literature to solve the 
shortcomings in flexibility requirements estimation, and some reviews 
have been published on the topic [10,12,14,26]. From a user perspec
tive, capacity expansion planning studies require either (a) to adapt 
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CEMs to improve how flexibility is accounted for, (b) linking of CEMs to 
PCMs, or (c) use of models that integrate both investment planning and 
unit commitment. 

1.2.2. Soft linking between power system planning and operation models 
The approach adopted in this study is a bidirectional soft-linking of a 

capacity expansion model and a production cost model. Soft linking is a 
practice that involves transfer of information from one model to 
another, controlled by the user [27], a terminology derived from studies 
linking economic and energy models from mid-1990s. This contrast to 
hard linking approaches, which simultaneously solves interconnected 
models without user intervention. 

An increasing number of works in the literature have considered soft- 
linking approaches between power system planning models and opera
tion ones. For example, TIMES and PLEXOS models were linked to 
analyse the 2020 Irish power system back in 2012 [28]. Results show 
that, due to the lower temporal resolution and missing technical con
straints, the long-term planning model undervalues flexibility re
quirements and wind curtailment, while it overestimates the role of 
baseload technologies. A similar procedure is outlined by Deane et al. 
[29], where a six-region TIMES model of Italy is linked to a model of the 
Italian power system in PLEXOS. Findings identify the increasing need 
for flexibility with increasing VRE share and concerns on the capability 
of the Italian energy system to provide adequate supply. More recently, 
Alimou et al. [22] assessed the security of supply of the French power 
generation sector for the period 2013 to 2050, while developing a more 
general methodological framework based on a multi-model approach. 
The TIMES model alone identifies an optimal power generation mix for 
2030 that risks insufficient supply levels, while the iterative feedback 
loops with the Antares model can ensure the economic effectiveness and 
security of supply requested by French authorities. 

Sector coupling can be a source of flexibility for modern energy 
systems and has also been assessed via linking approaches. Pavičević 
et al. [23] investigated its potential by soft-linking the long-term plan
ning multisectoral model for Europe JRC-EU-TIMES and Dispa-SET, a 
unit commitment and optimal multisectoral dispatch model. Results 
show different contributions from each individual sector, with the 
transport sector providing the highest flexibility in terms of power 
curtailment, load shedding, congestion and CO2 emissions reduction, 
while system adequacy and operational costs minimization are better 
provided by a combination of sources. Model linkage is also at the core 
of a recent study by Miri et al. [30], where COPPER, a deterministic 
CEM, is bidirectionally linked to SILVER, a model for optimal economic 
dispatch, day-ahead unit commitment and optimal power flow with 
network constraints. From the analysis of the Canadian power system, it 
emerges that additional transmission and storage capacities are required 
with respect to what was initially found by the expansion model, that 
also overestimates wind capacity. Total system costs can be partially 
offset by improvements in wind curtailment, congestion and load 
shedding. Linking, therefore, yields important insights that go beyond 
the findings that can be obtained from a single model analysis, especially 
in the case of systems with a high penetration of VRE sources. 

Soft linking has been adopted in several planning studies for LMICs, 
often in the context of electrification of rural areas [31,32], while only a 
few specifically deal with the issue of flexibility representation in power 
system planning. It is the case of the work by McPherson et al. [33], 
where IRENA’s long-term energy planning model SPLAT (Systems 
Planning Test) and an electricity system dispatch model developed by 
the authors are applied to evaluate the integration of VRE sources and 
electric vehicles for various degrees of decentralization in Zambia. Gaur 
et al. [34] consider the role of short-term operational constraints on 
long-term energy system planning through a case study for Northern 
India. TIMES is used in combination with an extension for 
unit-commitment to better evaluate the flexibility requirements of high 
shares of VRE sources. 

1.2.3. Modelling studies in Kenya 
A range of studies have been undertaken on power system planning 

for Kenya, which we have been considered to determine our own 
approach for this study. Carvallo et al. [35] analysed 14 scenarios with a 
2035 time-horizon through a 47 nodes model based on the SWITCH 
long-term planning tool. Results suggest a preeminent role for wind and 
geothermal, with little to no solar. Selected scenarios evidence a higher 
sensitivity of geothermal to operational degradation rather than high 
capital costs, limited sensitivity of the results to CO2 pricing and the role 
of diesel and natural gas capacity as flexibility providers. Moksnes et al. 
[31] introduced soft-linking between OSeMOSYS and OnSSET to ac
count for both the spatial and temporal dimensions of the system. The 
geospatial analysis shows a key role for solar in bringing universal access 
to electricity in rural areas, despite the almost negligible contribution to 
the total annual electricity generation. Finally, Dalla Longa and van der 
Zwaan [36] evaluated Kenya’s nationally determined contributions 
(NDCs) also in light of the Vision 2030 programme [37]. The analysis, 
based on the global TIAM-ECN model, finds the target achievable pro
vided that stringent climate change policies are introduced for the res
idential and transport sectors, while no stringent greenhouse gases 
abatement targets are needed for the power sector. 

Similar conclusions are obtained by Musonye et al. [38] through a 
TIMES model for the Kenyan power sector. Scenarios are obtained from 
the combination of two carbon emissions abatement targets and three 
different levels of demand projections. Results show a penetration of 
renewable energy sources higher than 50% in all scenarios, except for 
the one where the business-as-usual case is associated to the highest 
demand level, where the system fails to cover the demand while meeting 
the reduction targets. Imposing a carbon emission cap implies the 
addition of higher cost renewables and substantial overcapacity leading 
to higher electricity unit cost. 

Kenya’s power system is highly dependent on hydro and geothermal 
energy resources, which is why Spittler et al. [39] developed a 
bottom-up system-dynamics model to account for the dynamics of 
resource utilization. The paper analyses eight different scenarios, based 
on different demand projections and resource dynamics considerations. 
Results indicate that higher installed capacities will be required for 
hydro and geothermal to compensate for production losses. 

A LEAP model for Kenya developed by Kehbila et al. [40] includes an 
extension to internalize the benefits from avoided premature deaths and 
crop losses from pollution. Seven scenarios are modelled up to 2040 
based on government’s development plans, regional strategies, and in
ternational commitments, all built through a backcasting approach. The 
fully renewable and SDGs-compliant scenarios show higher overall costs 
than the scenario backed by the government’s plan, yet with lower 
marginal abatement costs. A recent article [41] presents another LEAP 
model for Kenya, in this case paired with the optimisation tool NEMO 
(Next Energy Modeling system for Optimisation). Two scenarios are 
considered, using a time horizon to 2037. The renewable energy sce
nario, largely due to the supporting role of storage, is found to be the 
least cost one. 

A synthesis of the main characteristics of each study is reported in 
Table 1. 

1.3. Aim and elements of novelty 

As stated earlier, the objective of this study is to inform how Kenya 
can plan for increasing electricity demand whilst retaining a predomi
nantly renewable system. To do this, we propose the use of OSeMOSYS, 
a widely recognised CEM, to explore capacity expansion options, soft 
linked to FlexTool, a PCM, to assess the operability of the future system. 
The addition of FlexTool is key, given the high renewable shares and the 
limitations of OSeMOSYS to adequately represent the temporal resolu
tion needed to model operational constraints. 

The novelty of our approach is in two regards; firstly, we provide a 
new logical framework for linking a CEM and PCM, to ensure operability 
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of future capacity mixes; second, we apply this linking procedure for the 
first time in the Kenyan context for a CEM-PCM. An approach that 
provides the benefits of both CEM and PCM characteristics, either linked 
or in an integrated framework, has never been applied in the Kenyan 
context. The linking approach is important from a planning perspective 
in Kenya as it allows for OSeMOSYS to also be applied for wider whole 
systems analysis – but based on a consistent power system 
representation. 

The remainder of the text is divided in Section 2, where the adopted 
approach to modelling the power sector is described, Section 3, that 
presents the data used and how the analysed scenarios have been 
formulated, Section 4, where all results are presented, and Sections 5 
and 6, where results are first discussed and the conclusions drawn. 

2. Approach to modelling 

In this study, the Kenyan power system is modelled through the 
linking of a capacity expansion model (CEM), OSeMOSYS [16] and a 
production cost model (PCM), FlexTool [25]. A more detailed descrip
tion of how flexibility is represented in the models and the linking 
procedure is reported in the next subsection, while a general description 
of the models is given hereafter. 

2.1. Description of energy models 

The Open-Source energy MOdelling SYStem (OSeMOSYS) is an open- 
source, bottom-up modelling framework for the long-range optimisation 
of the energy system and energy mix of user-defined regions [16], where 
the expression ‘modelling framework’ indicates software used to 
generate specific models by populating them with user-defined data, as 
described in Gardumi et al. [42]. OSeMOSYS is a linear optimisation 
program that identifies the energy mix that minimises total system costs 
while meeting the exogenously defined energy demands, subject to 
predefined constraints. The constraints include conversion efficiencies, 
relations between different types of energy inputs and outputs, upper 
and lower limits on investments, energy and power capacity balances, 
upper limits on emissions and lower limits on renewable energy gen
eration. OSeMOSYS leverages a community of practice built around 
three pillars, namely, a code management structure, a community forum 
and outreach activities [43,44]. The full documentation for the model is 
available online [45]. 

FlexTool is a power system optimisation model developed by IRENA 
[24,25], that solves the unit commitment and economic dispatch 
problem using linear programming. It provides the least-cost optimisa
tion of the generation mix with a detailed power system flexibility 
assessment. The model can also optimise the best investment options to 
address flexibility issues. It assumes perfect foresight usually using a 
time resolution of 1 h or less. FlexTool is an open model and freely 
accessible [46]. 

A set of exogenous model parameters is used to describe the Kenyan 
power system from a techno-economic perspective in both models, 
ensuring consistency. Specified parameters include available resources 

(e.g., availability and cost of imported and locally produced fossil re
sources, availability and intensity of solar radiation and wind); energy 
conversion technologies (e.g., capacities, efficiencies, and investment 
and operation costs); transmission and distribution technologies; elec
tricity demand projections; constraints deriving by technical limitations 
or policy decisions (e.g., political decision to invest in gas power plants 
rather than coal ones). The implementation of each set of parameters is 
model-specific and depends on aspects such as the temporal detail 
considered. 

2.2. Approach to modelling flexibility 

Unlike many other LMICs, Kenya has a diversified energy mix that 
already includes a significant share of renewable energy [47], with the 
potential to increase in the next years. Overcoming capacity expansion 
models’ intrinsic limitations in the representation of energy system 
flexibility requires balancing the level of detail and computational 
burden. The approach here is to use a relatively high number of time
slices with chronology information, while soft linking the CEM with a 
PCM to check for unseen flexibility issues for specific marker years. The 
linkage also allows consideration of investments in the power sector, 
combining the long-term perspective of the CEM with the short-term 
perspective of the PCM. 

CEMs use a simplified representation of time based on timeslices. The 
choice of the number of timeslices depends on several factors, including 
demand curve shapes, power technologies considered, capacity factor 
profiles and storage representation [48]. The OSeMOSYS Kenya power 
sector model used in this study considers 48 timeslices, obtained by the 
combination of six within-day (i.e. diurnal) timeslices, to account for 
demand and power production (i.e., solar) variations; four seasons, to 
consider annual oscillations for wind and hydro capacity factors; and 
two day-types, to account for varying consumption between weekdays 
and weekends. A complete description of how timeslices have been 
defined can be found in the Supplementary material. Multiple daily 
timeslices in combination with information on their chronological order 
also enable modelling of the benefits of introducing battery energy 
storage systems on the grid. Batteries are considered to work with 
charge-discharge cycles of a few hours and the energy balance is 
imposed on a daily basis, while pumped hydro’s constraint is less 
stringent and can be balanced up to an annual timescale. 

FlexTool represents flexibility through a set of mathematical con
straints that account for energy balance, reserve requirements, inertia, 
ramp-up and down constraints and minimum load. The Kenyan model 
used in this work has a single node, so it does not consider constraints on 
power transfer between nodes. The input data has an hourly time res
olution. However, to make the model tractable, only a subset of all 
possible timeslices are selected, covering about 30% of the year. The 
demand profile for future marker years remains similar to the base year. 
The import profile is based on OSeMOSYS results: the import amount of 
each OSeMOSYS timeslice is divided evenly over corresponding hours in 
FlexTool. 

Table 1 
Capacity expansion planning studies for Kenya.  

Study Ref. Year Models Scenarios Time horizon Link Modelling approach 

Carvallo [35] 2017 SWITCH 14 2035 No CEM 
Moksnes [31] 2017 OSeMOSYS, 

OnSSET 
2 2030 Yes Soft-link (CEM + GIS) 

Dalla Longa [36] 2017 TIAM-ECN 4 2050 No CEM 
Musonye [38] 2021 TIMES 6 2045 No CEM 
Spittler [39] 2021 Self-dev. 8 2050 No CEM integrated with a system-dynamics model 
Kehbila [40] 2021 LEAP 7 2040 No CEM 
Wambui [41] 2022 LEAP, 

NEMO 
2 2037 Yes Hard-link (CEM + interface) 

Current – – OSeMOSYS, 
FlexTool 

3 2050 Yes Soft-link (CEM + PCM)  
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2.3. Approach to model linking 

To complement the partial representation of flexibility in OSeMOSYS 
with the more detailed description in FlexTool, the bidirectional soft- 
linking procedure outlined in Fig. 1 is applied. First, OSeMOSYS is run 
for the entire time horizon until 2050. Next, potential flexibility issues 
are assessed for two marker years: 2030 and 2050, using FlexTool in 
dispatch mode. Dispatch mode in FlexTool is a run setting where the 
capacities are fixed, and which assess flexibility issues including lack of 
reserves, inertia and loss of load. If issues are identified, further FlexTool 
runs are performed to understand how these flexibility issues could be 
addressed. Investment mode in FlexTool is first run to provide insights 
into the type of additional investment that could be made to resolve the 
issues, followed by a run using dispatch mode to check whether the 
additional investment deals with any issues. If issues remain unresolved, 
additional options are evaluated in FlexTool to address the flexibility 
gaps. Some flexibility issues may remain if the investment required to 
address them exceeds the penalty cost associated with such issues. Once 
issues are resolved, a second run is performed in OSeMOSYS, with 

technology capacities fixed for the marker year that was analysed, but 
with the additional investments suggested by FlexTool added in. The 
procedure is then repeated for all marker years considered. 

3. Scenario formulation 

The scenario analysis using the modelling approach described in 
section 2 is built around Kenya’s Least Cost Power Development Plan 
(LCPDP). The incorporation of this plan into the modelling is first 
described, followed by a description of the three core scenarios 
undertaken. 

3.1. Kenya’s least cost power development plan 

The initial reference energy system for the Kenyan power system was 
built starting from the available Starter Data Kit [49–51], but has then 
been comprehensively checked and revised based on more dis
aggregated data, down to the single power plant level, in line with data 
from the Medium Term Plan and the LCPDP. The MTP is updated every 
year by the LCPDP team and is mostly used as an internal document. The 
latest publicly available version is the 2015–2020 one [4]. At the time of 
writing, the latest version officially released of the LCPDP was that for 
2022–2041 [6], constituting the third update of the long-term plan first 
published in its 2015–2035 version. The aim of the LCPDP is to inform 
the committee responsible for the development of the Integrated Na
tional Energy Plan (INEP). The document reflects the key requirements 
outlined by the Energy Act 2019 [52], including the development of an 
energy plan “in respect of coal, renewable energy and electricity so as to 
ensure delivery of reliable energy services at least cost”. In the current 
Section, the plan is analysed in terms of demand projections, key con
siderations on the future capacity mix, and economic assumptions. 

3.1.1. Demand 
The LCPDP outlines three different demand scenarios, of which two 

are considered in this study. The reference scenario forecasts a demand 
increase based on historical growth rates, considering an average year- 
on-year increase of 5.28%. The high demand scenario is based on the 
Vision 2030 development framework and considers an average growth 
in demand of 8.20% per year. Key driving factors include population 
growth and urbanization rates, GDP growth and the realisation of Vision 
2030 flagship projects. A detailed description of demand growth pro
jections by sector can be found in the LCPDP report [6]. Fig. 2 shows the 
demand projections in terms of annual energy consumption (left-hand 
side axis) and peak demand (right-hand side axis). Peak demand 
changes, depending on the temporal resolution considered. The peak 
demand in FlexTool, working at hourly resolution, is much higher than 
OSeMOSYS, where the demand is redistributed through the timeslices. 
The LCPDP projections are limited to 2040 and are complemented up to 
2050 with data from The Electricity Model Base for Africa (TEMBA) 
included in the Kenya Data Starter Kits developed by Allington et al. [49, 
50]. 

Annual electricity demand is divided between three end-use sectors 
(commercial, residential and industry) using IEA energy balance data for 
the base year of 2019 [53]. The representation of demand is relatively 
static, in that the relative share of electricity demand between the three 
sectors does not change through time. The annual demand profile for 
each sector is provided on an hourly timestep and does not change from 
one year to the other. 

3.1.2. Power plants 
The LCPDP includes two capacity expansion scenarios, one based on 

a list of candidate plans and the other on an optimisation procedure. A 
set of recommendations are included and have been considered to 
compile the list of power plants for this study. Peaking capacity power 
plants and battery storage are suggested as solutions in the short term to 
reduce the amount of vented steam during off-peak hours, provide Fig. 1. Soft-linking procedure.  
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system reserve and prevent load-shedding in Western Kenya. In the 
longer term, for the same purpose, LNG gas turbines, pumped hydro 
storage and hydro dams are to be considered as potential solutions. 
Transmission capacity from Ethiopia is also considered, up to 200 MW in 
the short term, and up to 400 MW after 2026. 

Power plants are characterized by capacity bounds, efficiencies, ca
pacity, availability factors, investment and running costs. Each plant is 
considered either to be already existing, planned or a candidate power 
plant. Power plants already existing in 2019 constitute the residual ca
pacity and are considered to be online until their retirement year. 
Planned power plants are those included in the MTP and have a given 
capacity and a Commercial Operation Date (COD) set. The MTP has a 
five-year time-horizon, hence there are no planned power plants after 
2027. Candidate plants are only defined by the available capacity and an 
earliest COD. The resulting available capacities obtained from the 
LCPDP are shown in Fig. 3. 

For geothermal, hydro, solar and wind, additional generic technol
ogy options were added after 2025 to account for the gap between the 
technical potential and the planned capacity of each renewable 
resource. Each additional capacity is characterized through a seed value 
and a growth rate. Table 2 provides detail for the technical potential for 
each renewable resource, while Fig. 4 shows a comparison between 
aggregated upper capacity bounds obtained from the LCPDP and the 
estimated potential capacity for geothermal, hydro, photovoltaics, and 
wind resources. 

3.1.3. Economic assumptions 
Cost data are obtained from the power plant database used to 

compile the MTP and LCPDP, and input on a plant-by-plant basis. 
Table 3 and Table 4 show ranges of capital and fixed operating cost 
ranges across power plants grouped by primary energy sources. For 
generic technologies a capital cost increase of 10% with respect to the 
most expensive power plant of the same technology is assumed: this 
ensures that generic technology options are selected only after all 
candidate plants have been built by the model. O&M costs associated to 
hydro, solar, wind and batteries are just considered on an annual fixed 
basis, and variable costs are hence null. 

Future costs of power generation technologies are highly uncertain, 
with variable renewables (solar and wind) in particular exhibiting huge 

Fig. 2. Demand projections for the LCPDP reference and high demand cases. Black solid lines represent peak demand when considering hourly timesteps, while black 
dashed lines represent peak demand for aggregated timeslices. 

Fig. 3. Residual power capacity (left) compared to identified capacity (centre), composed by planned and candidate plants. The sum of residual and identified 
capacity is the total capacity (right) part of the Long Term Plan. 

Table 2 
Generic technologies remaining potential, upper bound.  

Renewable 
resource 

Remaining 
potential [GW] 

Seed 
value 

Growth 
rate 

Ref. 

Geothermal 6.7 0.125 8.7% [54] 
Small hydro 0.1 0.016 9.4% [55] 
Large hydro 0.8 0.098 9.3% [55] 
Solar 14.8 0.051 31.6% [56] 
Wind 15.1 0.057 22.7% Own 

assumptiona  

a Capacity addition grows from a seed value of 0.06 GW/year in 2026 to 1 
GW/year in 2040, and is then held constant. 
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cost reduction potential [59]. In the reference scenario a modest 
learning of 0.3% capital cost reduction per year is applied, leading to an 
average capital cost of 735 $/kW for solar and 1650 $/kW for wind in 
2050. A single social discount rate of 8.9% has been applied to all costs 
in the model, in line with the average interest rate of the Central Bank of 
Kenya of the last 10 years [60]. 

3.1.4. Flexibility assumptions 
The technical and economic assumptions for each technology, the 

fuel costs are aligned between OSeMOSYS and FlexTool. However, due 
to the temporal disaggregation of the FlexTool model, the capacity 
factors for wind and solar, and the inflows for hydro power plants are 
provided at an hourly level, whilst aggregated to the timeslice level in 
OSeMOSYS. Moreover, the storage usage of the hydro power plant with 
dams is optimized by the model. The imports are not optimized in 
FlexTool, they are fixed based on the OSeMOSYS results. The amount of 
energy for a given OSeMOSYS timeslice is equally distributed between 
the corresponding hours. Total electricity demand is aligned between 
the two models. The hourly demand profile is based on the 2019 profile 
and stays similar for the following marker years. 

The penalty costs associated with the different constraints explained 
above are shown in Table 5 and have been agreed with the LCPDP team. 
For each year, the inertia limit Ilim is computed using the following 

formula: 

Ilim =
f
2
⋅

Ploss

RoCoF
(1)  

with f the nominal frequency of the system which is 50Hz for the Kenyan 
power system, Ploss the maximum power that could be lost and RoCoF the 
rate of change of frequency. The rate of change of frequency has not 
been fixed for the Kenyan power system, but for this study, a value of 1 
Hz/s was taken. The amount of inertia thus depends on the year 
considered as the maximum power loss changes according to the marker 
year. The reserves margin is computed based on a similar method than in 
OSeMOSYS: firm capacity equivalent to a share of 10% of the demand is 
required at each hour. 

Finally, the computation time to run FlexTool for the whole year 
would be too resource intensive. Thus, 33% of the hours are selected 
covering the weeks with the highest and lowest net load and the highest 
and lowest inflow. In addition, one week out of every four is also 
included to capture each month of the year. 

3.2. Modelled scenarios 

The first two scenarios are based on the two different demand pro
jections previously illustrated from the LCPDP plan. The reference sce
nario considers the capacity bounds as per the LCPDP and the estimated 
renewable resources potential, as outlined in sub section 3.1.2. The high 
demand scenario requires increased capacities to meet demand re
quirements. Four gigawatts of extra capacity are introduced both for 
batteries and natural gas power plants, as to guarantee freedom to the 
model to choose whether to develop intermittent renewable energy 
sources plus storage or fossil fuel peaking plants. 

To account for the high variability in projected capital costs for 
renewable energy sources, a third scenario is added. In the low-cost 
renewables scenario, solar and wind power plants are projected to 
decrease their costs from the 2019 levels to the average global costs of 
the IEA’s World Energy Outlook 2022 Net Zero scenario [57]. Photo
voltaic panels’ capital cost decreases from an average of 1288 $/kW in 
2019 to 308 $/kW in 2050, while wind goes from 1781 $/kW to 1090 
$/kW. 

The specific modelling assumptions for each scenario are summar
ised in the following. 

Fig. 4. Available capacity from renewable energy sources. Dark colours indicate available capacity already accounted by the LCPDP, lighter colours the additional 
capacity introduced in the model based on the estimated potentials listed in Table 2. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 

Table 3 
Cost assumptions for low-carbon power sources. Intervals include both varia
tions in time and between different power plants. All costs from LCPDP [6], 
except for nuclear [57] and batteries [58].  

Technology Capital cost 
[M$/GW] 

Fixed O&M cost 
[M$/GW/year] 

Variable O&M cost 
[M$/PJ] 

Biomass 2500 75 0.2 
Geothermal 1100–4900 20–450 0.14 
Hydro 2700–4500 15–125 0 
Pumped hydro 1150 15 0 
Solar 650–1500 15–26 0 
Nuclear 5000 8 0.13 
Wind 1600–1900 71–76 0 
Batteries 732–1483 18–37 0  

Table 4 
Cost assumptions fossil fuels power plants. All costs from LCPDP [6].  

Technology Capital cost 
[M$/GW] 

Fixed O&M cost 
[M$/GW/year] 

Variable O&M cost 
[M$/PJ] 

Coal 2500 66 0.36 
Heavy-fuel oil 1400–1700 32 2.4 
Natural gas 850–1350 21–33 3.7 
Light-fuel oil 1250 21 3.5  

Table 5 
Penalty assumptions in FlexTool.  

Loss of load 
[$/MWh] 

Loss of reserves 
[$/MWh] 

Lack of inertia 
[$/MWs] 

Lack of capacity 
[$/MWh] 

1500 1000 30000 5000  
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● Reference (REF). Electricity demand is aligned with the LCPDP 
reference projections. Residual capacity, committed and candidate 
power plants follow the plans as in the MTP and LCPDP. Additional 
renewable sources potential starts to be available after 2025 with 
exponential increase in available capacity. Nuclear is available from 
2036.  

● High demand (HD). All reference scenario assumptions stand, but 
higher demand is assumed according to the Vision 2030-compliant 
LCPDP’s demand projections. The potential of renewable energy 

technologies is increased of 10%, as higher demand justifies the 
exploitation of less economic resources. An extra 4 GW capacity is 
made available to the models after 2030 both for battery storage and 
natural gas to cover additional flexibility requirements while letting 
the models free to choose between options. 

● Low-cost renewables (LCR). As per reference scenario but with pro
jected higher costs reduction for renewables. 

Fig. 5. Capacity and electricity production by generation type across the modelled scenarios. Production from storage technologies is shown separately to avoid 
double counting. 
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4. Results 

This section outlines the results obtained for the Kenyan power 
sector in the three scenarios considered, reference (REF), high demand 
(HD) and low-cost renewables (LCR). Results are presented through 
comparison with first OSeMOSYS runs, and the subsequent linking with 
FlexTool to generate further OSeMOSYS simulations. 

4.1. OSeMOSYS power system pathways prior to flexibility assessment 

As shown in Fig. 5, the initial capacity installed in 2019 is 2.7 GW, 
which grows to 14.4 GW in the REF scenario in 2050. The most signif
icant capacity increase is for wind, which grows from around 300 MW to 
more than 7.3 GW, and geothermal, increasing from 800 MW to 3.5 GW. 
In generation terms, geothermal dominates due to higher capacity fac
tors, maintaining a higher share throughout the time horizon, from 6.6 
TWh to almost 30 TWh, corresponding to 44% of the total electricity 
demand, with wind reaching 42% in 2050 (compared to a capacity share 
of 51%). Installed hydro capacity remains almost constant from 2019 to 
2050, reaching slightly more than 1 GW. 

Fossil fuel power plants and solar tend to have a marginal role in the 
energy mix. Oil power plants tend to be substituted by natural gas ones 
at the end of their operational life. The installed capacity is only required 
by the model to meet the reserve margin requirements, as no production 
from fossil fuel power plants is realized. Overall storage capacity gets to 
1.1 GW in 2050, almost equally split between pumped hydro (0.6 GW) 
and batteries (0.5 GW). Pumped hydro is built earlier on, while batteries 
only come into the mix from 2044. Both storage technologies enable the 
production from non-dispatchable power sources to be shifted in time to 
meet demand. 

The HD scenario shows a more than two-fold increase (125%) in 
capacity installed in 2019, reaching 32.4 GW in 2050. In generation 
terms, the increase is 106%, lower than the capacity increase due to a 
higher reliance on renewable technology with lower capacity factors. 
The role of wind is similar to the reference scenario, with all available 
capacity of 16.8 GW built by 2050. In this scenario, wind is not only the 
major resource on a power basis, but also on an energy one, producing 
59 TWh out of 135 TWh, compared to the 46 TWh of electricity from 
geothermal resources. Geothermal also sees all available capacity 
installed. The same goes for storage technologies, which enable a higher 
share of solar capacity to be installed, totalling 2.9 GW in 2050, at 9% of 
the system share. As the model is tightly constrained towards the end of 
the time horizon, nuclear is also part of the capacity mix, and all the 
three 300 MW units available are built. A significant amount of 
geothermal capacity becomes available around 2040, where a step in
crease can be observed. The lower capacity available between 2030 and 
2040 is compensated by a temporary increase in electricity imports, 
reaching 2.8 TWh/year around 2035. 

Finally, the LCR scenario sees a significant increase in wind and solar 
installed capacities, reaching 10.1 GW and 3 GW respectively, taking the 
total installed capacity to 18.6 GW. The increase in VRE sources is 
partially compensated by a decrease in geothermal capacity, dropping to 
2.4 GW, after peaking at 2.8 GW in 2040. The steady increase in 
geothermal capacity to 2040 and the subsequent decrease (despite de
mand continuing to grow), suggests that around 2040 solar plus storage 
reaches cost parity with geothermal, in essence behaving like a dis
patchable energy source. As in the other scenarios, no substantial change 
in the amount of hydro capacity installed is observed. Natural gas ca
pacity is around 0.5 GW with respect to the 0.6 GW of the reference 
scenario, almost without producing any electricity at all. This capacity is 
expected to be used minimally as a reserve measure. 

4.2. The use of FlexTool for assessment of system flexibility 

The OSeMOSYS results were then assessed in FlexTool for 2030 and 
2050 marker years. The results reported below are for the FlexTool 

model only. The REF scenario has a minor reserve shortfall by 2030 as 
0.25% of total reserve requirements are not met. However, FlexTool’s 
suggested investments in hydro, geothermal, natural gas and batteries 
lead to a higher cost than the equivalent cost penalty incurred for the 
reserve deficit. Thus, the suggested mix of capacities by FlexTool is for 
no change to those provided by OSeMOSYS (Fig. 6). By 2050, flexibility 
issues are more significant. Loss of load occurs on 1.7% of total annual 
demand and reserves are 4.3% too low, leading to a penalty for the 
system of about 2000 M$. FlexTool’s suggested investments (Fig. 6) 
amount to 1000 M$ and decrease the total cost of the system from 3300 
to 2300 M$, by eliminating loss of load and decreasing the insufficient 
reserves to less than 0.1%. For both marker years, the inertia constraint 
is satisfied. 

For the HD scenario in 2030, reserves are about 0.6% short of the 
requirement. As in the REF scenario, FlexTool’s suggested investments 
lead to a higher system cost, and therefore the optimal mix capacities do 
not change compared to the ones provided by OSeMOSYS (Fig. 6). By 
2050, insufficient reserves of 7% of the total requirement are observed, 
while loss of load occurs for more than 1% of total annual demand. The 
associated penalty amounts to almost 4000 M$. The model chooses to 
invest in all available gas power plants, in almost all available hydro
power plants, in 6 GW of solar PV with 4 GW of batteries. All geothermal 
capacities have already been built in OSeMOSYS so there is not an op
tion to increase this. These additional capacities eliminate loss of load 
and reduce insufficient reserves to less than 0.04% of the total required. 
Despite 1750 $M of investment, the system cost decreases from 7400 M$ 
to 4700 M$. For both years, the inertia constraint is satisfied. 

In the LCR scenario, in 2030 reserves are about 0.5% short of the 
requirement while the loss of load is almost negligible (less than 0.01% 
of total demand). However, due to its RES shares, inertia is 0.01% short 
of the requirement, leading to a higher penalty than in the other sce
narios, of 400 M$ compared to less than 20 M$. The suggested invest
ment by FlexTool (Fig. 6) in geothermal, hydro, natural gas and batteries 
eliminates all flexibility issues. The system cost decreases from 840 M$ 
to 650 M$. By 2050, loss of load affects more than 3.5% of the demand 
and reserves are 3% short of the requirement. The suggested investments 
do not eliminate all flexibility issues but decrease them to less than 
0.05% of total demand for loss of load and to 0.7% for the insufficient 
reserves. They amount to 1000 M$. The system cost decreases from 
5100 M$ to 2600 M$. 

4.3. Revisiting OSeMOSYS scenarios based on flexibility insights from 
FlexTool 

Fig. 7 shows, for the marker years considered, the differences in 
electricity production from each generation type across the three 
modelled scenarios. For each scenario, results are reported for OSe
MOSYS’ first run (OS pre-FT), FlexTool (FT) and OSeMOSYS’ final run, 
with additional capacities fixed from FlexTool (OS post-FT). Given the 
linking procedure, the capacities installed in the system for the FT and 
the OS post-FT runs are always the same, while the OS pre-FT run ca
pacities change according to Fig. 6. In FlexTool, imports are fixed as 
provided by OSeMOSYS. Therefore, no changes in imports can be seen 
between the OS pre-FT and FT runs, while changes might appear in the 
OS post-FT case, as capacities imposed by FlexTool lead to more pro
duction from non-dispatchable sources. 

Across all scenarios a difference in hydro production can be noticed. 
This has to do not only with different installed capacities (as between 
pre-FT and FT runs), but also with differences in how hydro power plants 
are modelled in OSeMOSYS and FlexTool. OSeMOSYS directly relies on 
capacity factors estimated per each power plant, while FlexTool uses 
inflows data and considers the capacity of storing water, and hence 
energy, of dam hydro plants to optimise the hydropower production. 

Lower production from hydro is compensated in OSeMOSYS by 
higher shares of geothermal and heavy-fuel oil. Solar and wind pro
ductions are generally consistent through scenarios with equal installed 
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capacity. In the 2050 LCR case, the production from solar modelled in 
OSeMOSYS is higher than the one estimated by FlexTool. In this case, 
the installed capacity in OSeMOSYS, and hence the production, is higher 
than the one in FlexTool, due to lower capital costs of solar, resulting in 
OSeMOSYS installing more panels and cutting imports from Ethiopia, 
leaving the interconnection line unused. The same does not happen in 
FlexTool as imports are exogenously imposed. Nuclear appears in the 
mix only in the HD scenario, and it is used in the FT and OS post-FT runs 
as a highly dispatchable unit, in net contrast with the usual role of nu
clear as baseload. 

Minor variations in the production levels between FT and OS post-FT 
runs are due to two main factors. First, the different time representation 
in the two models, and second, the different estimates of curtailed 
renewable electricity due to the different grid constraints imposed in the 
models. 

4.4. Total cost and emissions 

Total costs are estimated from the OSeMOSYS modelling. A com
parison between pre- and post- FlexTool runs is shown for each scenario 
in Fig. 8. Given the projected demand increase for Kenya, capital costs 
represent by far the higher share of total costs, as new capacity has to be 
built not only to substitute retired plants, but also to meet demand 
growth. The highest difference, both in absolute and relative terms, is 
obtained in the LCR scenario, where the high penetration of VRE makes 
it crucial to have an improved representation of flexibility requirements 
and subsequent capacity investments required. The total difference of 
1.1 billion dollars is entirely due to the difference in capital cost, with 
minor contributions from the other cost components. 

Annual emissions from the power sector in Kenya are projected to be 
relatively low in all scenarios, thanks to a high penetration of renewable 
energy sources (Fig. 9). In the scenarios where the REF demand pro
jection is considered, emissions get close to net-zero. FlexTool’s and 
OSeMOSYS’ updated runs have the same capacities installed, and dif
ferences in emission levels are only due to the way the system is oper
ated, hence FlexTool provides a more accurate picture of what the 
annual emissions could be given the capacity mix. The higher variation 
seen in 2050 in the HD scenario from the pre-FT run compared to the 
other two is due to the higher utilization of natural gas power plants, 
that is reduced by the much higher PV capacity and batteries installed in 
the FlexTool run (see Fig. 6). 

5. Discussion 

The results of the modelling highlight that Kenya is well placed to 
maintain its very low carbon generation system while meeting growing 
demand in future years. This is primarily through the use of its signifi
cant wind and geothermal resource bases, as shown across all scenarios. 
The modelling points to geothermal providing firm generation, 

Fig. 6. Additional capacity requirements for considered marker years.  

Fig. 7. Electricity production comparison across modelled scenarios at 
different stages of the linking procedure for the marker years considered. OS 
pre-FT is OSeMOSYS runs prior to flexibility assessment using FlexTool; FT is the 
flexibility assessment using FlexTool; OS post-FT is OSeMOSYS runs adjusted 
based on FlexTool assessment. 
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alongside an increase in storage, helping manage the variable genera
tion from a large increase in wind capacity. Kenya has particularly 
strong experience in developing its geothermal resources; however, 
experience of developing wind projects is less established. To achieve 
the growth in wind shown in this analysis, Kenya will continue under
taking wind resource assessment for detailed wind mapping which 
include zonation of promising areas for wind energy development, 
facilitation of investments in large scale energy projects, and informed 
decision making for public and private sectors deployment of wind re
sources. Additionally, Kenya will develop the Renewable Energy Auc
tion Policy aimed at attracting private sector investments in electricity 
generation from renewable energy sources as a means of diversifying 
national power sources and enhancing national energy security. 

Solar also has a key role to play, particularly in HD and LCR cases, 
but key to this in a system with high renewable shares will be battery 
storage. Both solar and wind deployment ramp up in the mid-2030s, as 
they become increasingly cost-competitive, alongside storage options 
that are required for system flexibility. To the mid-2030s, it is 

geothermal that plays a key role in meeting demand growth. It is notable 
that there is no role for nuclear, except in higher demand scenario, when 
the availability of other options is constrained. Whilst this technology 
does come into play, it should be noted that it does not operate as per 
standard operation of such plant, which tend to be run at high load 
factors to recuperate costs. In fact, the low load factors observed in the 
CEM highlight that nuclear is ill-suited to a high VRE system as in reality 
such plant would need to run at much higher load factors to be 
economic. 

As the Kenyan government plan to maintain a high renewables sys
tem, it will be key that they ensure the system flexibility, to maintain a 
reliable supply as demand grows. This analysis has highlighted that for 
such systems planning tools that do not consider flexibility requirements 
in sufficient detail may result in poor investment choices. Hence the 
proposed approach that links analysis of capacity expansion using a 
CEM, with a PCM that provides insights on system operation and flexi
bility. Whilst the CEM in this study provides a reasonable estimation of a 
system that can meet the needs of high demand in a renewable domi
nated system, a number of issues highlight the importance of the PCM 
analysis. 

Solar contribution is underestimated by the CEM, with several 
additional GWs installed by 2050 for all scenarios after implementing 
the linking procedure. The more detailed time representation of the PCM 
identifies additional grid flexibility requirements, most of which can be 
met by renewable capacity, with only a minor role for dispatchable fossil 
fuel-based generation. This is a crucial insight that highlights the po
tential development of the system whilst remaining very low carbon. 
From the CEM analysis only, fossil fuel plants are built to meet reserve 
margin requirements, but not used at all. The PCM highlights some 
limited use of these plants but confirms the capacity requirement mainly 
to meet the reserve margin. Future developments could include a more 
in depth look at the level of reserve margin required to ensure proper 
security of supply. To provide the inertia required by the system, 
geothermal plants are used, playing a crucial role in minimising the use 
of fossil fuel plants. The PCM also identifies a stronger role for hydro 
power plants although this has not only to do with time discretization, 
but also with differences in how they are modelled. 

Crucially, the soft linking approach identifies critical issues in all 
scenarios, but mostly in 2050, when VRE penetration is higher. The 
importance of this linking approach in a system with high VRE pene
tration is confirmed by the results for the LCR scenario, where key 
additional capacity is already identified in 2030. Additional total system 
costs tend to be low in relative terms, but reach 1.1 billion $ in absolute 
terms, confirming the importance of linking to have better cost 
estimates. 

Kenya’s power sector has a highly diversified set of energy sources, 
with a high penetration of renewables and low emissions. This trend 

Fig. 8. Pre- and post-linking total cumulated system costs 2050.  

Fig. 9. Annual emissions comparison across modelled scenarios at different stages of the linking procedure for the considered marker years.  
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could be maintained in the future even for high demand projections, 
getting close to net-zero emissions even for cost-optimal scenarios where 
a climate constraint is not included. Results emphasise the increasing 
competitiveness of renewables and suggest that Kenya could avoid the 
risks associated with lock in effect of fossil fuels investments. 

6. Conclusion 

A novel soft linking strategy for CEMs and PCMs has been outlined 
and tested to analyse the optimal generation mix of the power system 
and has proven to be effective in identifying key potential flexibility 
issues and necessary investments to address them. The procedure is 
based on well documented open-source models, used and maintained by 
an international community of users, making it accessible and trans
parent for energy planners and stakeholders in Kenya as well as other 
sub-Saharan countries or LMICs more in general. Kenya could reinforce 
its role as regional leader in the adoption of renewable energy sources 
and energy system planning practices. The modelling results show that 
Kenya is well placed to maintain its high levels of renewable electricity 
reaching almost 100% in all scenarios while meeting the projected de
mand increase, leveraging especially on its geothermal and wind re
sources. The total installed capacities range from 1.9 GW to 3.5 GW for 
geothermal and 7.3 GW–16.8 GW for wind by 2050 depending on the 
demand growth projection. The main challenges for achieving the high 
renewables penetration are ensuring adequate flexibility in the system 
to avoid loss of load and ensuring enough reserves in the system to face 
unexpected changes in the power system. Inertia levels are satisfied in 
all scenarios but stricter requirement for instance in the rate of change of 
frequency (RoCoF), which is used to control the stability of the power 
system, could lead to additional constraints in the system. 

Potential improvements of the current work include the extension of 
the outlined procedure to include more marker years, starting with 
2040, and a regional disaggregation of both models. Additional sources 
of flexibility could also be considered, such as demand response. De
mand flexibility and long-term storage might help reduce reliance on 
natural gas peaker plants, especially if extending the time-horizon 
beyond 2050. Reserve margin has proven to be a key parameter 
driving the installation of fossil fuel resources, suggesting that a more 
extensive critical assessment of the level of reserve could be beneficial. 
Future developments could also look at the climate change impact on 
hydropower generation, the integration of geospatial information on 
renewable resources, as well as the introduction of methods to account 
for modelling uncertainty. 
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