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Abstract—We propose ACCT, an end-to-end learning-based
congestion control mechanism for Internet flows that aims to
achieve an optimal sending rate through collaboration between
applications and the network elements along the network path.
Specifically, an ACCT sender can exploit explicit feedback from
the network about its ability to satisfy the application’s desired
sending rate. Unlike existing schemes, ACCT does not blindly
adjust its sending rate to either of these signals; instead, it
considers them advisory because the bottleneck may be at routers
that do not support ACCT signaling. To detect such bottlenecks
and strictly control the end-to-end delay for latency-sensitive
applications, ACCT actively measures the end-to-end queuing
delay and regulates its sending rate to keep queuing delay
within an acceptable margin. Finally, ACCT heavily relies on a
Reinforcement Learning (RL) agent to adjust the aggressiveness
of its sending rate. We propose a novel approach to formulate the
RL agent, exploiting multiple reward functions simultaneously to
train the agent. We implemented the ACCT congestion control
module in NS-3, which communicates with the RL agent via a
technology-agnostic protocol. We evaluated performance across
various network scenarios in both wired and wireless networks.
Across all experiments, ACCT significantly outperforms com-
monly used TCP variants such as CUBIC; it provides network
fairness when competing with other ACCT flows, and finally,
ACCT flows coexist well when they carry heterogeneous traffic.

I. INTRODUCTION

Traditional end-to-end rate control approaches such as those
mechanisms in TCP and its variants [1], [2], [3] cannot meet
the requirements of emerging Internet applications that typi-
cally require high-bandwidth and low-latency simultaneously.
The key reason behind this shortcoming is that end-host-
centric approaches are primarily designed to achieve high
network throughput with less regard for achieving end-to-
end latency targets. As a result, applications with latency
constraints rely on the network to meet their requirements
by means of traffic engineering. This problem is aggravated
over wireless networks due to wireless being intrinsically a
shared medium and also because wireless channels are less
stable than wired networks, fluctuating rapidly in the order of
milliseconds [4], [5], [6], [7], [8], [9]. The degree of fluctuation
is worse with emerging high capacity wireless technologies
that operate at high-frequency bands such as mmWave [10],
[11]. This can result in rapid changes in the available capacity
to wireless users. Traditional end-host-centric approaches,
which are heavily reliant on end-to-end measurements to
regulate their sending rate, fail to track these rapidly varying
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capacity changes. Consequently either the radio resources are
under-utilized or excessive queues are built up in the last mile
hop. Even BBR [12], the state-of-art end-host-centric, rate-
based, congestion control scheme, fails to precisely track such
capacity changes [13]. Although BBR can detect when the
pipe is not fully utilized, it typically fails to estimate the
available capacity precisely. As a result, it blindly increases
its sending rate to saturate an underutilized pipe. This can
result in long queuing delays [13], [14]. To tackle these
shortcomings, we argue that a precise rate control across a
diverse set of future Internet flows, carrying traffic of multiple
applications with differing requirements, can only be achieved
when end-hosts (applications) and networks collaborate. This
way, applications and networks can express their desired
requirements to one another, allowing applications to adapt
themselves to network constraints and the networks to prior-
itize their resource distribution according to the applications’
requirements.

There are a few existing network-centric proposals that try
to adopt a collaborative approach between senders and the net-
work, such as XCP [15] and RCP [16]. Each sender expresses
its desired sending rate and other feedback information, such
as the RTT measurement to routers. Each router along the
network path provides multiple bits of feedback per packet to
senders, indicating the sending rate that senders should follow.
This way, senders do not need to be concerned about adjusting
their sending rates and preserving network fairness with other
competing flows as the network deals with these aspects. How-
ever, delegating these responsibilities to the network introduces
two problems: (1) the approaches do not scale well with high
capacity networks with large numbers of flows due to complex
operations that need to be performed on a per-packet basis; and
(2) all network elements in all networks along the path should
support the proposed signaling mechanisms. These problems
have hindered the deployment of these proposals over the
past two decades. Recent proposals such as ABC [13] and
PBE-CC [14] have returned to these schemes but with an
approach of making them more distributed. These schemes,
however, are particularly designed for wireless networks, and
thus the focus of their design is only at the wireless link and
the last mile hop bottleneck (i.e., base stations and/or Wi-
Fi APs). Both ABC and PBE-CC fall back to CUBIC [1]
and BBR, respectively, if they detect non-wireless bottlenecks.
Additionally, these proposals do not consider the application
requirements at all, and thus they rely on the network to
engineer traffic of applications with different requirements.



We propose ACCT, an end-to-end learning-based rate con-
trol mechanism for Internet flows which aims to achieve an
optimal sending rate by collaborating with network elements
on the network path (e.g., routers) and the application simul-
taneously. Specifically, an ACCT sender can exploit explicit
feedback from the network about the available capacity and
the application about the desired sending rate. Unlike existing
schemes, ACCT does not blindly adjust its sending rate to
either of these signals; instead, it considers them advisory
because the bottleneck may be at routers that do not sup-
port ACCT signaling. To detect such bottlenecks and strictly
control the end-to-end delay for latency-sensitive applications,
ACCT actively measures the end-to-end queuing delay and
regulates its sending rate within a small queuing delay margin.
Finally, ACCT heavily relies on a Reinforcement Learning
(RL) agent to adjust the aggressiveness of its sending rate
(unlike existing explicit rate control schemes such as XRC [17]
and WhiteHaul [18]). We propose a novel approach to for-
mulate the RL agent, exploiting multiple reward functions
simultaneously to train the agent. Each reward function defines
a strategy for ACCT to follow within an operating zone or a
defined condition (see § II-B). Recent learning-based proposals
such as Aurora [19] and Ocra [20] only follow a single
reward function and adjust the congestion window size rather
than the flow aggressiveness, which mainly limits them to be
applicable to different networks [19]. Our key contributions
are as follows:

• We design a new end-to-end congestion control algorithm
that utilizes feedback from the network to optimize the
sending rate (§ II-A). ACCT defines four different operat-
ing zones, which are detected based on explicit feedback
from the network and also the state of E2E queuing delay
(§ II-B). ACCT adjusts the aggressiveness of its sending
rate predictively with the help of an RL agent.

• We formulate the RL agent in which it uses a separate
reward function for each of operating zones (§ II-C).
This approach teaches the RL agent to follow a different
strategy in each operating zone . As a result, it allows a
well-trained neural network (NN) model to be used under
a wide range of conditions.

• We implement ACCT in NS-3. The ACCT congestion
control module is written in C/C++, while the RL agent
is in Python. We also modified the NS-3 networking stack
of wired and LTE networks to enable ACCT signaling.

• Our prototype is used to evaluate the performance of
ACCT across various scenarios and network settings in
both wired and wireless network topologies (§ III).

II. ACCT DESIGN

ACCT is designed to meet the following objectives:

• To distribute the available resources at the network routers
with awareness of application requirements such as the
desired sending rate.

• To track available capacity along the network path by (1)
consuming the advisory feedback from ACCT-enabled
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Figure 1. An overview of the ACCT deployment scenario. The sender ex-
presses its desired sending rate. The Network Agent extracts this information
from the data packet and overwrites it if a smaller rate can be offered. The
ACCT receiver piggybacks this feedback on ACK packet. The ACCT sender
considers this feedback and regulates its sending rate by help of an RL agent.

routers; (2) observing end-to-end network performance to
detect bottlenecks that are at non-ACCT enabled routers.

• To maintain end-to-end queuing delay within a small
acceptable margin to meet the stringent latency require-
ments of emerging applications.

• To coexist with other commonly used TCP variants (such
as CUBIC) in case ACCT flows need to compete with
them in a shared bottleneck.

• To adapt to a wide range of networks with different
bandwidth-delay products (BDP) automatically without
requiring explicit parameter adjustment for different BDP
networks within the transport layer (e.g., tuning the flow
aggressiveness for increase congestion control function).

ACCT has three main components. (i) The ACCT Network
Agent is a distributed subsystem that resides at the network
routers. (ii) The ACCT Sender is an end-to-end congestion
control algorithm that operates at the transport layer. (iii) The
ACCT RL Agent is responsible for adjusting the aggressive-
ness of ACCT flows at the sender’s side.

A. ACCT Network Agent

At connection startup or whenever an application’s require-
ments change, the ACCT sender expresses the application’s
desired sending rate in its data packets (e.g., through an IP or
TCP option). When an ACCT Network Agent (NA) at a router
receives a data packet with that signal, it first checks whether
it can provide the requested rate. If not, the NA overwrites the
information in the data packet with a new smaller rate. This
process continues router-by-router until the data packet reaches
the receiver. The receiver then piggybacks this feedback in
the ACK packet returned to the sender. Fig. 1 illustrates these
interactions. The NA at the 3rd router overwrites the received
data packet with a new smaller rate (10Mbps), indicating
that sending more than 10Mbps by this flow may cause the
queue to build up at this router. Unlike existing schemes such
as XCP and RCP, the NA only calculates how its capacity
should be distributed among competing flows without directly
controlling queue occupancy. Instead, the ACCT sender is
responsible for adjusting its sending rate in response to the
signal of available capacity received from the network and
also the locally measured end-to-end queuing delay. This way,
the sender is not required to fully comply with the sending
rate proposed by the network and also a network router does
not need to accurately calculate a sending rate for the sender.
This loosely-coupled interaction between these components
simplifies the rate calculation at routers and also permits the
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Figure 2. (a) ACCT operating zones. (b) ACCT high-level architecture.

end-to-end rate control mechanism to be performed by end-
hosts in a distributed manner. An ACCT NA follows a simple
capacity estimation in which it splits the link capacity among
the set of active flows traversing it. Also, the NA considers a
flow as inactive when it does not receive a data packet from it
for a certain time (e.g., 250ms, more than the TCP timeout).
The NA marks a flow active when gets a data packet from it.

B. ACCT Sender

Several TCP variants (e.g., CUBIC, BBR) try to tackle the
problem of slow increase of TCP by adopting a Multiplicative-
Increase Multiplicative-Decrease (MIMD) policy. However,
these variants increase their sending rate blindly, causing
bottleneck queues to build up or overflow, resulting in an
increased end-to-end delay [13]. ACCT is designed to prevent
such delays by an increase function that is tuned intelligently
by an RL agent (§ II-C). The following describes how ACCT
modifies TCP window increase and decrease functions:
• For a non-duplicated ACK, increase the window (w) by α

w

• For a loss packet, decrease the window (w) by w
β

The value of α is 1 with TCP, which increases the congestion
window (w) by one segment every window of data (roughly
an RTT). If the value of α is greater than 1 then w is increased
more aggressively by more than one segment per RTT, while
if it is smaller than 1, w is increased more slowly, less than
one segment per RTT. With ACCT, α is dynamically adjusted
by an RL agent. The value of β is 2 with TCP and ACCT.

A key question here is how ACCT utilizes the explicit
feedback it receives from the network? First, ACCT splits its
operating zone into three distinct zones based on the explicit
feedback it receives from the network and its periodic end-
to-end measurements of queuing delay. Fig. 2(a) illustrates
these operating zones and the corresponding measurement
indications that detect them. Flows are in the Green Zone when
ACCT operates on a path formed from unsaturated links where
adding new segments does not increase the RTT. ACCT detects
this zone when its current sending rate is below that advertised
by the network and also when its estimated average queuing
delay (which is a function of RTT) is smaller than a certain
threshold. The Yellow Zone begins when the bottleneck buffer
starts to build up queue, and it lasts until the queuing budget
has been exceeded. ACCT detects this zone when its queuing
delay estimation is smaller than the queuing budget and also
its sending rate is above the advertised rate from the network.
The Red Zone starts when the estimated queuing delay at the
sender is above the queuing budget. The Red Zone continues
until the bottleneck buffer overflows and packets start being
dropped (indicated by the circle in the top right of Fig. 2(a)).

The key intuition behind this zone separation is that ACCT
needs to adopt different behaviors/strategies in each zone. For
example, when the Green Zone is detected, ACCT should not
be concerned about the queuing delay and it can aggressively
and predictively increase its sending rate to prevent link under-
utilization while not increasing the end-to-end delay. On the
other hand, when ACCT detects the Yellow (or Red) Zone
it should not worry about link under-utilization, but instead,
it should follow a gentle increase in order to continuously
probe the network and monitor the impact on the end-to-
end delay. On that basis, the ACCT Sender regularly informs
the RL Agent of the current operating zone. The RL Agent
follows different strategies by applying different reward func-
tions when in each operating zone (§ II-C). Additionally,
the definition of the operating zones assists ACCT with the
detection of non-ACCT bottlenecks. ACCT detects such a
bottleneck when the queuing delay estimation is higher than
the queuing budget while the sending rate is lower than the
advertised rate from the network. To signal this detection to
the RL agent, ACCT also defines another operating zone so-
called Blue Zone (see § II-C for more details).

End-to-end measurements. ACCT continuously tracks
three parameters: minimum RTT (RTTmin), target congestion
window (twnd), and average queuing delay (σ). The latter is
updated once every window of data (i.e., roughly an RTT),
while the first two parameters are updated upon the arrival
of every ACK packet. Whenever an ACK is received with
explicit rate information from the network, the ACCT Sender
calculates the target sending window (twnd) as follows:

twnd = Rnet ∗RTTmin (1)

Where Rnet is the advertised rate by the ACCT Network
Agents and RTTmin is the minimum observed RTT since
connection startup. In an ideal condition, twnd should maxi-
mize throughput with no queuing delay. However, adjusting
cwnd blindly to twnd is not practical as the bottleneck
can be at a router that does not support ACCT’s explicit
feedback mechanism. Thus, as discussed earlier, monitoring
queuing delay is crucial for detecting such a bottleneck and
to avoid simply following twnd, which has not taken the real
bottleneck into account. ACCT estimates the queuing delay
(σ), every window of data, with the following formula:

σ =

N∑
j=1

RTTj ∗
1

N
−RTTmin (2)

Where σ is the queuing delay estimation, RTTj is jth RTT
sample and N is the total number of RTT samples in a window.

Periodic window reduction. ACCT relies on an RL al-
gorithm to calculate a weight factor (α), which dictates the
aggressiveness of the ACCT sender in each zone. While
this is crucial to prevent link under-utilization across various
networks with different BDP, ACCT also employs a periodic
window reduction to strictly control end-to-end latency. The
minimum value of α that is decided by the RL agent is not
less than one packet, so ACCT increases its cwnd at least



by one segment every RTT to ensure continuous probing of
the network. As a result, ACCT will enter the Red Zone
eventually. To keep ACCT within the Yellow Zone, ACCT
resets the cwnd to the estimated target window (twnd) when
the end-to-end queuing delay exceeds the pre-defined queuing
budget. The strategy of the RL Agent during the Yellow Zone
is to reach this reduction point slowly (see II-C).

C. ACCT RL Agent

RL Architecture. Fig. 2(b) illustrates the architecture of the
RL agent. The agent interacts with the TCP module, receiving
a set of state information (St) as well as a reward value (Rt)
in each regular time interval (e.g. every window of data).
The agent inputs this information into a NN which results
in an action (At) (i.e., a value for α). The communication
between the TCP module and RL Agent can be achieved
through the Netlink socket. Finally, the RL agent uses the
A3C framework [21] which has shown a promising approach
for solving networking problems in several prior works [22].
RL Formulation. An RL technique requires the design of
three aspects: state inputs, reward functions and action space.

State inputs. The TCP module sends the following inputs
to the RL agent to express various network conditions:

Si = {[Ti], Li, [
Di

DB
], Ai−1, [Zonei], [

cwndi
twndi

]} (3)

Where Ti is the throughput of window i (MB/s) that is
calculated by dividing the ACKed bytes in a window by the
mean of the RTT samples in that window. Li is the loss rate of
window i (pkt/s). Di

DB is the end-to-end queuing delay, which
is calculated by dividing the mean queuing delay observed
in window i (Di) by the queuing budget (DB). Ai−1 is the
action taken by the RL agent in the previous window. zonei
indicates the operating zone of window i. Note that we hold
a time series history (last 8 samples) for elements shown with
square brackets. We use 1-D Convolutional Neural Networks
(CNNs) for the time series components to convert the vectors
of time series entries into single scalar values. Each state input
is fully connected to a hidden layer with 128 neurons, each
using a Relu activation function. Fig. 3 shows a representation
of the RL agent’s A3C neural networks.

Action space. the action space (as) is the set of possible
values for α. In every window of data the RL agent chooses
an action from this set (see below). Larger action spaces
require longer training times, but we found 15 produces good
results.

Ai = [1, 2, 3, 4, 5, 10, 20, 30, ..., 80, 90, 100] (4)

Reward functions. The TCP module sends a reward to the
RL agent to indicate how good was the last action taken by
the agent. During the course of training, the RL agent aims
to maximize the accumulated reward by taking action in a
particular state (network condition) which results in a higher
value of reward in future states. In other words, the RL agent
tends to adjust the flow aggressiveness (α) so that TCP stays in
states resulting in a high reward. Unlike existing schemes [19],
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Actor network Policy State 
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Hidden layer
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Figure 3. A3C [21] has two neural networks, and both networks receive the
same set of state inputs (St). The output of the Critic network is a value
function which refines the Actor network policy (vπθ (St)). The output layer
of the Actor network produces a probability value for each action. Boxes with
dotted borders are 1-D Convolutional Neural Networks (CNNs).

[20], ACCT does not follow a single reward function to train
its NN model. Instead, it defines four different operating zones
and utilizes a different reward function within each zone (see
§ II-B). In the Green Zone, ACCT gets high reward if it
increases its sending rate largely with the following function:

RG = Ai−1 − ωLi (5)

Where Ai−1 is the action taken by the agent in the last window.
Li is the number of lost packets in the current window. The
ω was selected experimentally to be 10. We formulate other
reward functions to reach a similar maximum value when
the agent behaves optimally in the other operating zones.
The Yellow Zone is the optimal operating zone. The reward
function is designed to prefer conservative increases in sending
rate, which tends to keep operations within the Yellow Zone
for longer, increasing accumulated reward:

RY = (as[N − 1] + 1−Ai−1)− ωLi − ζBi (6)

Where N is the total number of available actions in the action
space (as). Bi indicates how bursty the sending rate is in the
current window compared to the previous one. To prevent a
large negative value for this parameter, we calculate it via a
scaled-down as, with values ranging from 1 to 2.4. The value
of ω and ζ are 10 and 1, respectively. This reward function
pushes the agent to be more conservative during this zone by
producing a higher reward when the agent reduces the alpha
value (α → 1). In the Red Zone, ACCT follows a similar
reward function to the one in the Yellow Zone; Finally, when
ACCT detects a non-ACCT bottleneck (see § II-B), it enters
the Blue Zone and pursues the following:

RB = (as[N − 1] + 1−Ai−1)− β
Di

DB
− ωLi − ζBi (7)

Where Di

DB is the measured end-to-end queuing delay.

III. EVALUATION

Experiment setup. We conducted our experiments over both
wired networks and wireless networks with various link ca-
pacities and RTTs. With the wired network (Fig. 6(a)), links
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Figure 4. Comparing ACCT with CUBIC across several highly dynamic network conditions over a wired topology. The gray shaded area shows the bottleneck’s
link capacity, which changes every 4 secs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

C
D
F

Queue size (Packets)

ACCT(42ms)
ACCT(62ms)
ACCT(82ms)

CUBIC(42ms)
CUBIC(62ms)
CUBIC(82ms)

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

C
D
F

Queue Size (Packets)

ACCT-ACCT CUBIC-CUBIC

(b)
Figure 5. (a) The queue size distribution (CDF) for experiments in Fig. 4. At
80th percentile ACCT only occupies the queue by less than 5 pack whereas
CUBIC by more than 80 pkts. (b) Red and green curves show the queue size
CDF of experiments in Fig. 9(a) and Fig. 9(b) respectively. ACCT controls
the queuing delay within its queuing budget of 5ms at 99% of the time.

S1

S2

Sn

D1

D2

Dn

R2 R1

Slow Link 
[5Mbps, 100Mbps]

Fast Link 
(1Gbps)

Fast Link 
(1Gpbs)

Receivers Senders

(a)

UE 2 Server 2

10Gbps 1Gbps

RLC Buffer: 128 Packets
Bandwidth: [10MHz, 20MHz]
Capacity: [34Mbps, 68Mbps] Server N

PGWSGW

UE 1

UE N

eNB

Receivers Senders

Server 1

(b)
Figure 6. (a) Wired network topology. (b) LTE cellular network topology.

between hosts and routers had a capacity of 1Gbps. We
changed the one-way delay of these links to model different
E2E propagation delays. The link between the routers had 1ms
delay, but we varied its capacity across experiments to model
network congestion. With the wireless network (Fig. 6(b)),
we used a single base station with a total bandwidth of
20MHz.The RLC buffer size was configured with 128 pack-
ets. In all experiments, we enabled TCP SACK and Timestamp
options, the queue budget of ACCT was 5ms. We turned off
the TCP slow start mechanism at connection startup across
all schemes (unless stated otherwise). Finally, the desired rate
expressed by the application to the TCP socket was set to a
large value unless stated otherwise.
Efficiency and responsiveness. This experiment studies how
quickly ACCT can ramp up and down its sending rate
when it detects changes in capacity across various networks
with different BDPs. We used our wired network topology
(Fig. 6(a)). Every 4 secs, we randomly changed the maximum
capacity of the link between routers, ranging from 5Mbps to
100Mbps. Fig. 4 shows the results, comparing ACCT with
CUBIC in different network configurations. When BDP is

small, Fig. 4(a), CUBIC ramps up its sending rate faster
but as BDP increases, Fig. 4(b) and 4(c), CUBIC requires
more than 4 secs to fully saturate the available capacity due
to its slow cubic function behaviour. This shortcoming of
CUBIC can be seen in the first 4 secs of each experiment,
where CUBIC needs to increase its sending rate blindly in
the absence of the TCP slow start mechanism. On the other
hand, ACCT increases its sending rate quickly at connection
startup and when the available capacity suddenly increases
(i.e., when within the Green Zone). Thanks to the RL agent,
which proactively regulates the ACCT aggressiveness. When
the available capacity is suddenly reduced, ACCT follows the
capacity feedback it receives from the bottleneck router and
accurately adjusts its sending rate. Fig. 5(a) shows the queue
size distribution across these experiments. For 80% of the
time, ACCT occupies fewer than 5 packets, whereas this is 80
packets with CUBIC that reduce its sending rate only when
it detects packet losses. i.e., the bottleneck’s buffer overflows
before CUBIC can reduce its sending rate. If many packets get
dropped due to a sudden reduction in the available capacity,
then costly retransmission timeouts become inevitable.

Fairness and Convergence Multiple TCP flows sharing the
same bottleneck link should be able to compete fairly with
one another. We thus study how quickly ACCT converges to
its fair share of capacity as flows join and leave the wireless
bottleneck. For these experiments, we use the wireless network
topology (Fig. 6(b)). Note that we only trained the ACCT
RL agent with wired networks, meaning that the RL agent
has never been trained with cellular networks. We consider
F ACCT flows (i.e., F = 4) sharing a cellular bottleneck.
Initially, 4 ACCT flows arrive at the UE with an inter-arrival
time of 10 secs, making the base station a bottleneck. After
40 secs, the flows leave the bottleneck again with 10 secs gap
between each flow’s departure. Fig. 7 shows the results for
scenarios where the RTT of flows is identical (7(a) & 7(b)) and
different (7(c) & 7(d)). ACCT flows share bottleneck capacity
equally as flows join and leave regardless of their RTT; ACCT
converges to its fair-share quickly while it controls the RLC’s
Head-of-Line (HoL) delay within the budget of 5ms at 99% of
the time in both experiments. Fig. 7(b) and 7(d) show the RTT
measurements at the senders. These figures show the RTT of
each flow and how the RL agent carefully adjusts the ACCT
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Figure 7. Fairness among competing ACCT flows when they have (a) similar RTTs and (c) different RTTs. Figures (b) and (d) plot the observed RTT as a
time-series at the ACCT senders for different cases of RTT similarity among flows. Experiments are conducted on our wireless network topology (Fig. 6(b)).
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Figure 8. Achieved sending rate when (a) ACCT competes with Vegas, (b) ACCT competes with Illinois, (c) ACCT competes with CUBIC.
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Figure 9. Comparing ACCT to CUBIC for the coexistence of heterogeneous
traffic. The red curves represent file download traffic and the green curves
represent video streaming traffic with an ON/OFF traffic pattern.
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Figure 10. Comparing low-latency flows for the (a) FCT and (b) queue size.

aggressiveness to stay in the Yellow Zone for longer to achieve
a higher accumulated reward.
Coexistence We consider how well ACCT flows coexist when
they are carrying heterogeneous traffic. We first define our
flow types and then walk through the experiments. Bandwidth-
hungry flow. A long-lived TCP flow remains in the bottleneck
link for the duration of the simulation. This flow represents file
download traffic. Video-streaming flows. A TCP flow with an
ON/OFF traffic pattern. The TCP flow has a periodic cycle of
10-secs where in the first 2-secs it bursts packets with constant
bit rate of 23Mbps (i.e., representing the transmission of a
high quality video chunk), then stops sending for the next 8-
secs if all the sent packets during the ON period are delivered
successfully. This 10-secs cycle is repeated again for the period
of the simulation. Latency-sensitive flow. A medium-size TCP
flow with random sizes ranging from 500KB to 2MB. During
the simulation period, we generated 20 non-overlapping flows
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Figure 11. ACCT competes with CUBIC at a non-ACCT bottleneck.

with an inter-arrival rate of 5 secs.
Bandwidth-hungry vs. video-streaming flows. An ACCT

flow carrying file download traffic competes with another
ACCT flow carrying video traffic. We repeat the same ex-
periment with CUBIC. Fig. 9 shows the results. ACCT shows
immediate response and successfully slows down the rate of
the file download traffic (red curve) as the video-streaming
traffic (green curve) bursts its packets into the network. When
the video traffic enters its OFF period, ACCT immediately
increases its sending rate, fully utilizing the available capacity.
On the other hand, CUBIC fails to slow down and conse-
quently, the bursty video traffic causes severe packet losses
across both competing flows. As a result, the video chunk
may take longer than 2 secs to be delivered with non-ACCT
flows, degrading users’ QoE watching the video content. These
losses can be clearly seen in Fig. 9(b) because CUBIC rapidly
reduces its rate. This figure also highlights that file download
flow is incapable of ramping up its sending rate quickly when
the video flow enters its OFF period. Finally, Fig 5(b) shows
that ACCT consistently (for 99% of the time) maintains the
queuing delay below its budget of 5ms, almost 5 times lower
than CUBIC.

Bandwidth-hungry vs. low-latency flows. A bandwidth-
hungry ACCT flow competes with 20 non-overlapping low-
latency ACCT flows, each joining the bottleneck with an inter-
arrival gap of 5 secs. Fig. 10(a) shows the results for the flow
completion time (FCT) of low-latency flows. With ACCT the



FCT of low-latency flows is reduced by 5x and 3x at the 50th
percentile and 99.9th percentile, respectively, compared with
CUBIC. This reduction in FCT can also be seen in Fig. 10(b)
which shows the bottleneck queue size distribution for these
experiments. At the 75th percentile, CUBIC overflows the
queue of the network device and starts building queue at queue
disc while ACCT occupies 1 packet.

TCP-friendliness. ACCT should coexist with other used TCP
variants in the same bottleneck. To examine this, we used
our wired network topology and compared the performance
of ACCT when it competes with TCP Vegas (delay-based),
Illinois (delay-based), and CUBIC (loss-based) at a shared
ACCT-enabled bottleneck. Fig. 8 shows the results. When
ACCT competes with delay-based TCP variants, the network
fairness between flows can be preserved while the queuing de-
lay is gracefully controlled. Note that the queuing delay can’t
be controlled strictly in such scenarios because the behavior of
other traffic cannot be fully controlled by ACCT;e.g., Illinois
tends to occupy more queues than Vegas (Fig. 8(d)). When
ACCT competes with CUBIC, it achieves its fair share of
resources, but CUBIC compromises the end-to-end delay.

Non-ACCT bottleneck. We explore scenarios where the bot-
tleneck is at a non-ACCT enabled router. We used a wired
topology and turned off the ACCT signaling capability at
routers R1 and R2. A new flow is established every 10 secs:
the first three flows are CUBIC, and the last flow is ACCT.
Fig. 11 shows the results for two network scenarios with
different capacities of the bottleneck link. The ACCT flow in
Fig. 11(a) and 11(b) has a desired rate of 20Mbps and 40Mbps,
respectively, which is significantly greater than its fair-share
of the bottleneck (i.e., 12.5Mbps and 25Mbps, respectively).
In both experiments, ACCT joined the bottleneck gracefully
and shared the resource well with CUBIC flows. Note that
the CUBIC flows suffered from slow convergence. This is
visible in the first 30 secs. When ACCT joined the bottleneck,
it caused all flows to converge faster. The reason is that the RL
agent causes small bursts by temporarily increasing α when
CUBIC flows significantly occupy the bottleneck’s buffer; i.e.,
the RL agent tries to stay in the Green Zone, collecting more
rewards rather than getting stuck in the Blue Zone. The only
way to reduce the sending rate of CUBIC flows under these
conditions is when CUBIC observes packet losses.

IV. CONCLUSIONS AND FUTURE PLAN

We present ACCT, an end-to-end, learning-based, con-
gestion control algorithm for Internet flows. ACCT senders
express their desired sending rates to routers and ACCT-
enabled routers provide explicit feedback to the senders about
their maximum sending rates. Unlike XCP, ACCT considers
the network feedback advisory and follows it cautiously by
also actively monitoring the end-to-end network conditions in
case the bottleneck is at routers that do not support ACCT.

We evaluated ACCT performance under various scenarios
in wired and wireless networks in NS-3. ACCT significantly
outperforms CUBIC; ACCT provides network fairness when

competing with either ACCT flows or non-ACCT flows at both
ACCT-enabled and non-ACCT routers; and, finally, ACCT
flows coexist well when they carry heterogeneous traffic.

Finally, we are currently working on a real prototype of
ACCT with Linux Kernel supporting several state-of-the-art
congestion control algorithms. Additionally, we plan to design
a multipath variant of the ACCT with existing multipath
transport protocols such as MPTCP [23] and its variants [24],
[25], [26], [27]. We will report on these in the near future.
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