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Abstract
Previous studies have shown that Automated Program Repair (apr) techniques suffer from
the overfitting problem. Overfitting happens when a patch is run and the test suite does not
reveal any error, but the patch actually does not fix the underlying bug or it introduces a new
defect that is not covered by the test suite. Therefore, the patches generated by apr tools
need to be validated by human programmers, which can be very costly, and prevents apr
tool adoption in practice. Our work aims to minimize the number of plausible patches that
programmers have to review, thereby reducing the time required to find a correct patch. We
introduce a novel light-weight test-based patch clustering approach called xTestCluster,
which clusters patches based on their dynamic behavior. xTestCluster is applied after the
patch generation phase in order to analyze the generated patches from one or more repair
tools and to provide more information about those patches for facilitating patch assessment.
The novelty of xTestCluster lies in using information from execution of newly generated
test cases to cluster patches generated by multiple APR approaches. A cluster is formed of
patches that fail on the same generated test cases. The output from xTestCluster gives
developers a) a way of reducing the number of patches to analyze, as they can focus on
analyzing a sample of patches from each cluster, b) additional information (new test cases
and their results) attached to each patch. After analyzing 902 plausible patches from 21 Java
apr tools, our results show that xTestCluster is able to reduce the number of patches to
review and analyze with a median of 50%. xTestCluster can save a significant amount of
time for developers that have to review the multitude of patches generated by apr tools, and
provides them with new test cases that expose the differences in behavior between generated
patches. Moreover, xTestCluster can complement other patch assessment techniques that
help detect patch misclassifications.
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1 Introduction

Automated program repair (apr) techniques generate patches for fixing software bugs auto-
matically (Gazzola et al. 2017; Monperrus 2018). The aim of apr is to significantly reduce
the manual effort required by developers to fix software bugs. However, it has been shown
that apr techniques tend to produce more incorrect patches than correct ones (Le et al. 2018;
Long and Rinard 2016; Martinez et al. 2017). This issue is also known as the overfitting (or
test-suite-overfitting) problem. Overfitting happens when a patch generated automatically
passes all the existing test cases yet it fails in presence of other inputs which are not captured
by the given test suite (Smith et al. 2015). This happens because the test cases, which are
used as program specification to check whether the generated patches fix the bug may be
insufficient to fully specify the correct behavior of a program. As a result, a generated patch
may pass all the existing tests (i.e., the patch can be a plausible fix), but still be incorrect (Qi
et al. 2015).

Due to the overfitting problem, developers have to manually assess the generated patches
before integrating them to the code base. Manual patch assessment is a very time-consuming
and labor-intensive task (Ye et al. 2021), especially when multiple plausible patches are
generated for a given bug (Le et al. 2018; Martinez and Monperrus 2018). To alleviate this
problem, different techniques for automated patch assessment have been proposed. Filter-
ing of overfitted patches can happen during patch generation, as part of the repair process
(e.g. Long and Rinard (2016)), or as part of the post-processing of the generated patches
(e.g. Ye et al. (2021); Xiong et al. (2018)). Typically, such techniques focus on the prioritiza-
tion of patches. The patches ranked at the top are deemed to be the most likely to be correct.
Existing approaches often rank similar patches at the top (Le et al. 2018) and as a result waste
developers’ time if the top-ranked patches are overfitted. Furthermore, such approachesmight
require an oracle (Xin and Reiss 2017), or (often expensive) program instrumentation (Xiong
et al. 2018), or a more sophisticated machine learning process (Ye et al. 2021).

To alleviate these issues, we present a light-weight patch post-processing technique,
named xTestCluster, that aims to reduce the number of generated patches that a developer
has to assess. Our technique clusters plausible repair patches exhibiting the same behavior
(according to a given set of test suites), and provides the developer with fewer patches, each
representative of a given cluster, thus ensuring that those patches exhibit different behavior.
Our technique can be used not only when a single tool generates multiple plausible patches
for a given bug, but also when different available apr tools are running (potentially in par-
allel) in order to increase the chance of finding a correct patch. In this way, developers will
only need to examine one patch, representative of a given cluster, rather than all, possibly
hundreds, of patches produced by apr tools.

Our approach presents two main novelties: First, it leverages the diversity of the behavior
of the generated patches (and this diversity is not exposed by the developer-written test cases
used to synthesize patches). In particular, our clustering approach xTestCluster exploits
automatically generated test cases that enforce diverse behavior in addition to the existing
test suite, as opposed to previous work (including (Mechtaev et al. 2018) for patch generation
and Cashin et al. (2019) for patch assessment) that use solely the existing test suite written
by developers. Second, our approach has the main advantage that it does not involve code
instrumentation (aside from patch application) nor an oracle (e.g., Xin and Reiss (2017)) or
pre-existing dataset to learn fix patterns (e.g., Ye et al. (2021); Lin et al. (2022)). Moreover,
xTestCluster is complementary to previous work on patch overfitting assessment, as it can
apply different prioritization strategies to each cluster.
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xTestClusterworks as follows: First,xTestCluster receives as input a set of plausible
patches generated by a number of selected apr tools and it generates new test cases for the
patched files (i.e., buggy programs to which plausible patches have been applied) using
automated test-case generation tools. The goal of this step is to generate new inputs and
assertions that expose the behavior (correct and/or incorrect) of each generated patch. Second,
xTestCluster executes the generated test cases on each patched file to detect any behavioral
differences among the generated patches (we call this step cross test-case execution). Third,
xTestCluster receives the results from the execution of each test case on a patched version
of a given buggy program, and uses the names of the failing test cases to cluster patches
together. In other words, patches from the same cluster exhibit the same output, according
to the generated test cases: they fail on all the same generated tests. Patches that pass all the
test cases (no failing tests) are clustered together.

We evaluate our approach on 902 patches (248 correct and 654 overfitted) for bugs from
v.1.5.0 of the Defects4J data set (Just et al. 2014), generated by 21 different apr tools, and
collected and labeled by Wang et al. (2020). After removing duplicates, we used two auto-
mated test-case generation tools,EvoSuite (Fraser andArcuri 2011) andRandoop (Pacheco
and Ernst 2007), to generate test cases for our patch set. Finally, we cluster patches based on
test case results. To our knowledge, xTestCluster is the first approach to analyze together
patches from multiple program repair approaches generated to fix a particular bug. This is
important because it shows that xTestCluster can be used in the wild, independently of
the adopted Java repair tools.

Our results show that xTestCluster is able to create at least two clusters for almost half of
the bugs that have two ormore different patches. By having patches clustered,xTestCluster
is able to reduce a median of 50% of the number of patches to review and analyze. This
reduction could help code reviewers (developers using automated repair tools or researchers
evaluating patches) to reduce the time of patch evaluation. Additionally, xTestCluster
can also provide code reviewers with the inputs (from the generated test cases) that trigger
different program behaviors for different patches generated for one bug. This additional
information may help them decide which patch to select and merge into their codebase.

We also analyze the assessment done by two state-of-the-art patch assessment approaches,
ODS (Ye et al. 2021) and Cache (Lin et al. 2022) on the patches clustered by xTestCluster.
The results show that xTestCluster can be used complementarily to those approaches and
can help to detect false positives and false negatives. Finally, we study whether metrics
related to the quality of the newly-generated tests in order are related to the efficiency of
xTestCluster. We found that the number of test cases generated, their lengths (in terms of
lines of code), and the coverage affect the ability to cluster correct patches together.

Overall, the paper provides the following contributions:

– A novel test-based patch clustering approach called xTestCluster. It is complementary
to existing patch overfitting assessment approaches. xTestCluster can be applied to
patches generated by multiple APR tools.

– An implementation of xTestCluster for analyzing Java patches. It uses two popular
automated test-case generation frameworks, EvoSuite (Fraser and Arcuri 2011) and
Randoop (Pacheco and Ernst 2007). The code of xTestCluster is publicly avail-
able (xtestcluster appendix repository 2021).

– An evaluation of xTestCluster using patches from 21 apr tools, and 920 plausible
patches.

All our data is available in our appendix (xtestcluster appendix repository 2021).
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2 Our approach

Our proposed approach, xTestCluster, for test-based patch clustering is shown in Fig. 1.

Algorithm 1 xTestCluster.
1: Input: B a buggy program, Ps plausible patches of bug B, TGs test-case generators.
2: TCG ← testGeneration(B, Ps, TGs) (Alg. 2)
3: ResPatchesexec ← test Execution(B, Ps, TCG) (Alg. 3)
4: clusters, exec_in f o ← clustering(Ps, ResPatchesexec) (Alg. 4)
5: return clusters, exec_in f o

xTestCluster receives as input a buggy program and a set of plausible patches that could
repair the bug. The patches could have been automatically generated by one ormultiple repair
approaches. Additionally, xTestCluster receives a set of test-case generation tools. Given
these inputs, xTestCluster carries out three steps (lines 2–5 of Algorithm 1): 1) test-case
generation, 2) test-case execution, and 3) clustering.

Test-case generation xTestCluster receives as input the plausible patches generated by
a set of apr tools and generates new test cases for the patched files (i.e., buggy programs to
which plausible patches were applied to). We use automated test case generation tools for
this purpose.

Test-case execution xTestCluster executes the generated test cases on each patched
version of the program: We call this approach cross test-case execution, because the test
cases generated for a given patched program version are executed on another patched version
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Fig. 1 The steps executed by xTestCluster
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Algorithm 2 Test-case Generation.
1: Input: B a buggy program, Ps plausible patches of bug B, TGs test-case generators.
2: TCG ← ∅
3: for patch ∈ Ps do
4: B′ ← apply patch to B
5: p f iles ← get Files(patch)

6: for tg ∈ TGs do
7: for p f ile ∈ p f iles do
8: TCnew ← generateT ests(tg, B′, p f ile)
9: TCG ← TCG ∪ TCnew
10: end for
11: end for
12: end for
13: return TCG

of a given buggy program. This cross execution aims to detect the behavioral differences
among the generated patches that we use in clustering afterward.

Clustering xTestCluster receives the results from the execution of each test case on
a patched version of a given buggy program and uses this information to cluster patches
together: if two patches have the same output for all the test cases generated, then they
belong to the same cluster. Each cluster of patches will also be furnished with test cases for
which the patches fail, and the corresponding failures observed.

These steps allow xTestCluster to reduce the number of patches that are presented to
the code reviewer. A code reviewer could be, for example, a software developer that has
developed and pushed a buggy version, which is exposed, for example, through failed test
cases executed by a continuous integration platform (ci). Without using xTestCluster, the
code reviewer needs to assess patches producedby repair approaches that theyhave integrated,
for example, in their ci. Using xTestCluster, the code reviewer can, now, review a subset
from all the generated patches, reducing the review effort. Moreover, for each presented
patch, they also have alternative patches (those not selected from the same cluster but with
the same behavior as the selected patch) and information about test-case executions. All this
information could help code reviewer decide which patch to integrate into the codebase to
fix the given bug.

In the following subsections, we detail each step of xTestCluster.

2.1 Test-case Generation

Algorithm 2 details this step. For each patch patch from those plausible patches received
as input (line 3), xTestCluster first applies this patch to the buggy program B, giving the
patched program B ′ as a result (line 4). We recall that the patched program must pass all test
cases provided by the developer. If the patch does not pass any of those test cases, it is not
plausible, and xTestCluster discards it. Then, xTestCluster retrieves the files affected
by the patch (line 5). Using each of the test-case generation tools (line 6) we have selected,
xTestCluster generates test cases for each of those files that have plausible fixes (line
8). All the generated test cases are stored in a set called TCG (line 9). xTestCluster is
agnostic to the test case generation tools employed in practice. This means that, in theory,
any test case generation tool could be used. For this reason, in this section we do not detail
the implementation of the generateT est invocation at line 8, i.e., how tests are generated.

123



_####_ Page 6 of 31 Empirical Software Engineering (2024) 29 _#####################_

Algorithm 3 Test-case Execution.
1: Input: B a buggy program , Ps plausible patches of bug B, TCG test cases generated.
2: ResPatchesexec ← ∅
3: for patch ∈ Ps do
4: Rexec ← ∅
5: B′ ← apply patch to B
6: for t ∈ TCG do
7: rest ← execute(t, B′, patch)

8: Rexec ← Rexec ∪ (rest , patch)

9: end for
10: ResPatchesexec ← ResPatchesexec ∪ 〈patch, Rexec〉
11: end for
12: return ResPatchesexec

Nevertheless, in theMethodology Section 4.2 we detail implementation of our approach used
in the evaluation (which is based on two state-of-the-art test generation tools: Evosuite (Fraser
and Arcuri 2011) and Randoop (Pacheco and Ernst 2007)).

xTestCluster also carries out a sanity check on the generated test cases. In particular,
it verifies that they are not flaky by executing them n times, and assuring that the results are
the same for each execution. Test cases that do not pass this check are discarded.1

2.2 Test-case execution

Next, we conduct cross test-case execution. Algorithm 3 details this step. xTestCluster
executes, on a version of the program patched with the patch patch, the test cases gener-
ated by considering other plausible patches for bug B. In other words, the step applies the
Cartesian product between patches and test cases produced for the patches. To achieve this,
xTestCluster iterates over the patches (line 3). For each patch, xTestCluster applies it
to the buggy program, producing the patched program B ′ as a result (line 5). xTestCluster
executes each new test case t generated in the previous step (set from TCG) over the patched
program B ′ (lines 6 and 7). All results from the test-case execution for patch are stored in
the map ResPatchesexec (line 10), which is then returned (line 12).

2.3 Clustering

Algorithm 4 details this step. xTestCluster iterates over the patches (line 4) in order
to assign each patch patchi to a cluster. If no cluster has been previously created (line 5),
xTestCluster creates a new cluster that includes patchi (line 6), and stores the results of the
test cases (i.e., the failing test cases if any) in the list FailsCs (line 7). The i-th element of that
list contains the execution results of the i-th cluster. Otherwise, xTestCluster first retrieves
the results from the test-case execution step (Algorithm 3) for that patch (line 9). Then,
xTestCluster iterates over the created clusters (line 11). For each cluster , xTestCluster
chooses a patch patcho from it (line 12) and retrieves the corresponding results from the
test case execution step (line 13). xTestCluster compares the two execution results (line
14): If both patches produce the same failures in our test set after being applied to the buggy
program, the patch patchi is included in cluster (line 15). Note that the result of a test case
can be passing or failing. When the result is failing, we also consider the message associated

1 For simplicity we do not show this check in Algorithm 2.
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Algorithm 4 Clustering.
1: Input: Ps plausible patches of bug B, ResPatchesexec results of test cases.
2: Cs ← ∅
3: FailsCs ← ∅
4: for patchi ∈ Ps do
5: if Cs is ∅ then
6: Cs ← set(patchi )
7: FailsCs ← getT est Execution(ResPatchesexec, patchi )
8: else
9: Rexeci ← getT est Execution(ResPatchesexec, patchi )
10: f oundCluster ← f alse
11: for cluster ∈ Cs do
12: patcho ← getOne(cluster)
13: Rexeco ← getT est Execution(ResPatchesexec, patcho)
14: if Rexeci = Rexeco then
15: cluster ← cluster ∪ patchi
16: f oundCluster ← true
17: break
18: end if
19: end for
20: if foundCluster = false then
21: Cs ← Cs ∪ set(patchi )
22: FailsCs ← FailsCs ∪ Rexeci
23: end if
24: end if
25: end for
26: return Cs, FailsCs

with the failing assertion or the message associated with an error. Consequently, patches that
do not pass a test case due to different reasons (e.g., some fail an assertion and others produce
a null pointer exception) are allocated into different clusters. Patches that pass all test cases
(this means that Rexeco at line 13 is empty) are clustered together. If xTestCluster cannot
allocate patchi to any cluster (line 20), it creates a new cluster which includes patchi (line
21) and stores the test execution result in FailsCs (line 22).

Finally, xTestCluster returns all the created clusters Cs and a list with the test case
execution (i.e., failing cases) for each of those clusters (line 26).

3 Research questions

Our proposal, xTestCluster, aims to aid code reviewers in reducing the effort required for
manual assessment of patches automatically generated by apr tooling. In order to assess how
well xTestCluster can achieve this task we pose the following RQs:

RQ1: Hypothesis Validation To what extent are generated test cases able to capture
behavioral differences between patches generated by apr tools?

This RQ aims to show the ability of xTestCluster to detect behavioral differences among
the generated patches based on the execution of generated test cases, and, from those dif-
ferences, to create clusters of patches. If successful, semantically equivalent patches will be
clustered together and only one, thus, needs to be presented to code reviewer from such a
cluster.
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RQ2: Patch Reduction Effectiveness How effective is xTestCluster at reducing
the number of patches that need to be manually inspected?

This RQ aims to show the applicability of xTestCluster in order to help developers reduce
the effort of manually reviewing and assessing patches. In particular, we compare the number
of patches produced by all selected APR tools vs. the number of patches presented to code
reviewer if our approach is used.

RQ3:Clustering EffectivenessHow effective is xTestCluster at clustering correct
patches together?

This RQ aims to measure the ability of xTestCluster to cluster correct patches together.
In case each cluster contains only either correct or incorrect patches, we can simply pick
any patch from a given cluster for validation. In other words, picking any patch from a
cluster would be sufficient to ensure existence (or non-existence) of a correct patch among
all plausible patches in a cluster during patch assessment.

RQ4: Complementing State-of-the art patch assessment techniques To what extent
is xTestCluster able to complement existing overfitting detection techniques in
order to help them to reduce the rate of incorrect assessments?

ThisRQaims to study the assessment doneby state-of-the-art patch assessment approaches
on the clusters found by xTestCluster. We will specially focus on mixed clusters, i.e. those
that contain both correct and incorrect patches, and we study the false positives and false
negatives of other patch assessment approaches on patches assigned by xTestCluster to
those clusters.

RQ5: quality of generated test cases and effectiveness of XTESTCLUSTER To
what extent does quality of the newly-generated test cases affect xTestCluster ’s
effectiveness?

This RQ aims to study the relationship between the quality of test cases (represented
using metrics extracted from the newly generated test cases) and the effectiveness of xTest-
Cluster to differentiate correct patches from incorrect. In particular, we want to know if
the limitations of xTestCluster are due to the quality of the generated tests it uses for
comparing the behaviours.

4 Methodology

In this section, we present the methodology followed to answer our research questions.

4.1 Dataset

In order to evaluate xTestClusterwe need a set of plausible patches, i.e., proposed fixes for
a given bug. There are two constraints the dataset needs to meet. Firstly, as xTestCluster
focuses on the reduction of the amount of patches to be presented to the developers for
review, xTestClustermakes sense only if there are at least two different plausible patches
for a given bug. Secondly, we need to know whether each patch in the dataset is correct or
not. In previous work (e.g., Ye et al. (2021)) patches have been labelled (usually via manual
analysis) as either correct, incorrect (or overfitting), or marked as unknown (or unassessed).
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Wewill use the correct and incorrect label terminology, and only consider patches for which
correctness has been established.

We thus consider patches generated by existing repairs tools. In this experiment, we focus
on tools that repair bugs in Java source code because: 1. Java is a popular programming
language, which we aim to study, and 2. the most recent repair tools have been evaluated on
bugs from Java software projects.

Since the execution of apr tools to generate patches is very time-consuming (especially if
we consider several repair tools (Durieux et al. 2019)), we use publicly available patches that
were generated in previous APR work. We also decide to rely on external patch evaluations
done by other researchers and published as artifacts to peer-reviewed publications. This
avoids possible researcher bias. Furthermore, it allows us to gather a large dataset of patches,
from multiple sources, and avoid the costly manual effort of manual patch evaluation of
thousands of patches.

Taking all constraints into account, we decided to study patches for bugs from the
Defects4J (Just et al. 2014) dataset. To the best of our knowledge, Defects4J is the most
widely used dataset for the evaluation of repair approaches (Martinez et al. 2017; Durieux
et al. 2019; Liu et al. 2020). Consequently, hundreds of patches for fixing bugs inDefects4J
are publicly available.We leverage data from previouswork that has collected and aggregated
patches generated by different Java repair tools, all evaluated on Defects4J. We focus on
those that, in addition, provide a correctness label.

In this paper, we use the dataset provided byWang et al. (2020)which contains 902 patches
from 21 repair systems. We choose this dataset for the following main reasons.

– Firstly, it met all our criteria mentioned above (i.e., Java patches, Defects4J patches,
correctness labels).

– Secondly, it is a combination of other two datasets of labeled patches, one from Liu
et al. (2020) and the second from DDR by Ye et al. (2021). Liu et al. (2020) included
patches from 16 repair systems, and manually evaluated the correctness using guidelines
presented by Liu et al. (2020). Ye et al. (2021) classified patches using a technique called
RGT, which generates new test cases using ground-truth, human-written oracle patches.
The patches from these datasets were revised by Wang and colleagues in order to correct
existing correctness label misclassifications.

– Lastly, the dataset fromWang et al. has been widely used in the evaluation of overfitting
approaches, including (Ye et al. 2021; Lin et al. 2022; Wang et al. 2020). Using this
dataset allows us to compare the performance of xTestCluster with previous work.

Table 1 presents the number of patches from theWang et al. dataset per repair tool. The dataset
contains 902 bugs, 248 were labeled as correct, and the other 654 as overfitting (incorrect).

We now explain how we processed the Wang et al. datasets in order to select the bugs and
patches that we are interested in analyzing. Table 2 presents the number of bugs for which
patches were generated. In total, 202 bugs from the version 1.5.0 of Defects4J contain at
least one patch on Wang et al.’s dataset.

For each bug, we carry out a syntactic analysis of patches (using the diff command) in
order to detect duplicate patches produced by two or more repair tools. This is necessary, as
multiple tools can create exactly the same patch. In total, we consider 777 distinct patches.

From the patches gathered for 202 bugs in our dataset, we find that for 70 bugs there
is only one single patch. We discard those bugs and their patches because xTestCluster

needs at least two patches per bug. We also discard patches for three further bugs for the
following reasons: First, bugs Closure-63 and Closure-93 were deprecated in a recent version
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Table 1 Number of Correct and
Overfitted patches for bugs from
Defects4J (Just et al. 2014) per
repair tool, contained in the
dataset from Wang et al. (2020)
composed of 902 patches

Tools Dataset of patches
Wang et al. (2020)
Correct Overfitted

ACS (Xiong et al. 2017) 15 7

AVATAR (Liu et al. 2018) 19 38

Arja (Yuan and Banzhaf 2018) 5 52

CapGen (Wen et al. 2018) 25 41

Cardumen (Martinez and Monperrus 2016) 2 10

DynaMoth (Durieux and Monperrus 2016) 1 21

FixMiner (Koyuncu et al. 2020) 12 20

GenProg-A (Yuan and Banzhaf 2018) 2 28

Jaid (Chen et al. 2017) 40 41

jGenProg (Martinez and Monperrus 2016) 3 17

jKali (Martinez and Monperrus 2016) 3 22

jMutRepair (Martinez and Monperrus 2016) 5 17

Kali-A (Yuan and Banzhaf 2018) 3 60

kPAR (Liu et al. 2019) 10 52

Nopol (Xuan et al. 2017) 1 30

RSRepair-A (Yuan and Banzhaf 2018) 2 39

SOFix (Liu and Zhong 2018) 21 2

SequenceR (Chen et al. 2019) 17 56

SimFix (Jiang et al. 2018) 22 46

SketchFix (Hua et al. 2018) 16 7

TBar (Liu et al. 2019) 24 48

Total 248 654

of Defects4J.2 Consequently, the Defects4J framework does not allow us to checkout and
test those bugs. Second, for Math-35 bug, we could generate tests for only one patch, so we
discarded it.

In total, we evaluate xTestCluster on 129 bugs, each having at least two patches which
we can successfully generate test cases for.

4.2 RQ1: Hypothesis validation

In order to answer RQ1, we group patches by bug repaired by the tools. Then, we apply the
algorithm described in Section 2.1. In this experiment, we report the results obtained by using
Evosuite (Fraser and Arcuri 2011) as the test-case generation tool. The results by adding test
cases from Randoop (Pacheco and Ernst 2007) are discussed in Section 6. For each bug from
Defects4J, we generate test cases for each patched version, i.e., after applying a candidate
patch to the buggy program, using both tools and a time budget of 60 seconds for the test-case
generation3.

2 https://github.com/rjust/defects4j#the-projects
3 In the Evosuite code, the default search budget is set to 60 seconds (https://github.com/EvoSuite/evosuite/
blob/1948d763944b3c3275d9564cf375b31981aedab0/client/src/main/java/org/evosuite/Properties.java#
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Table 2 Summary of bugs from
Defects4J and their respective
patches collected from the three
datasets

Summary of Bugs #Bugs

Total bugs from Defects4J (Just et al. 2014) 375

Total bugs with labelled patches 202

Bugs with one patch 70

Bugs with > distinct one patch 132

Bugs considered by xTestCluster 129

As this approach aims to not depend on any oracle (inc. human-written test cases), we trig-
ger the test generation from scratch, without providing any test cases as seed. When invoking
these generation tools, xTestCluster uses the default values for each hyperparameter4. In
particular, in Evosuite, the default objective of the search is to maximize the line coverage of
the test cases under generation. Additionally, by default, EvoSuite applies minimization to
generated test cases, which means that it removes all statements that are not strictly needed
to satisfy the coverage goals.

Then, we execute the test cases generated on the patched versions (cross test-case execu-
tion). Finally, we cluster patches for a single bug by putting together all the patches that have
the same results on the generated test cases, as explained in Section 2.3.

4.3 RQ2: Patch Reduction Effectiveness

To answer RQ2we take as input the number of clusters generated in RQ1 and the total number
of patches in our dataset per bug.We recall that these patches from a bug could come from: 1)
a single repair tool (which does not stop the search after the first test-passing patch is found
and finds multiple such patches), 2) multiple repair tools (where each could potentially stop
after the first test-passing patch is found).

For each bug, we compute the reduction of patches to analyze per bug B as follows:

reduction(B) = (#patches f or B − #clusters f or B)

#patches f or B
× 100 (1)

This gives us the % reduction of patches presented to a code reviewer. Recall that we only
present one patch from each cluster to code reviewer, i.e, #clusters patches. Otherwise, code
reviewer would have had to review #patches per bug.

4.4 RQ3: clustering effectiveness

To answer RQ3, we take as input: 1) the clusters generated by xTestCluster (we recall a
cluster has one or more patches), and 2) the correctness labels for each patch in our dataset
(see Section 4.1). We say that a cluster is pure if all its patches have the same label, i.e, all
patches are correct or all patches are incorrect. Otherwise, we say the cluster is not pure.

L690), however we found an official documentation mentioning a different value (10 minutes, https://www.
evosuite.org/documentation/commandline/). To avoid any confusion, we call Evosuite by explicitly passing
the search budget of 60 seconds.
4 Default values of Evosuite parameters https://github.com/EvoSuite/evosuite/blob/1948d763944b3c3275d95
64cf375b31981aedab0/client/src/main/java/org/evosuite/Properties.java#L516
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For each of the sets of patches per bug, we compute the ability of xTestCluster to
generate only pure clusters. Having bugs with only pure clusters is the main goal of xTest-
Cluster: If all patches in a cluster are correct, by picking one of them we are sure to present
a correct one to the code reviewer. Similarly, if all patches from a cluster are incorrect, by
picking one of them we are sure to present to the code reviewer an incorrect patch. In both
cases, the reduction of patches presents no risk and patches can be picked from a cluster in
any order, e.g., at random.

4.5 RQ4: Complementing State-of-the art patch assessment techniques

To answer RQ4, we study the performance of patch assessment approaches in patches clus-
tered by xTestCluster. For a fair comparison, we consider approaches also evaluated on
the same data used in this paper (Wang et al. (2020)). The recent empirical study by Lin et al.
(2022) compared 15 patch assessment approaches (including PatchSim (Xiong et al. 2018),
S3 (Le et al. 2017), CapGen (Wen et al. 2018), ssFix (Xin and Reiss 2017), ODS (Ye et al.
2021) and Cache (Lin et al. 2022)) on the mentioned dataset. They show that ODS and Cache
are the approaches with the highest accuracy, recall and f1 metrics. As their values of f1 are
extremely similar, we decided to include both of them in this experiment.

We first observe their results on patches assigned to pure clusters. That will help us
identify the cases for which xTestClusterworks as expected but any of the state-of-the-art
approach fails. Then, we study their performance on patches assigned to mixed clusters. That
is, on the cases for which xTestCluster fails. We study whether state-of-the-art approaches
also fail in such cases. As both ODS and Cache have been evaluated on the Wang et al.
dataset, composed of 902 patches, we consider the performance of these tools available in
the Appendix of ODS5 and Cache6.

4.6 RQ5: Quality of generated test cases and effectiveness of xTestCluster

To answer RQ5, we consider four metrics associated with the newly generated test cases.
Thosemetrics are: a) number of test cases generated per patch, b) lines of code corresponding
to these test cases, c) line coverage that reach these test cases i.e., the number of executed
lines per these test cases divided by the total lines of code contained in them, and d) mutation
score i.e., total number of mutants killed by these test cases divided by the total number of
mutants evaluated.

To know to what extent these metrics are related to the xTestCluster effectiveness
we carry out the following steps. For each of the metrics, we first create two samples: The
first one contains the metric values of the test cases that allow xTestCluster to create
pure clusters (in other words, those are the tests generated from patches assigned to pure
clusters). The second one contains the metric values of those test cases that are not capable
of differentiating the behaviour between correct and incorrect patches (in other words, those
are the tests generated from patches that belong to mixed clusters). Then, we compare the
two samples to know whether the samples have the same distribution (Null hypothesis H0)
or different distribution (Alternative hypothesis). If the Null hypothesis holds, it means that
the metric does not have an impact on xTestCluster effectiveness. To test the hypotheses,
we use the Mann-Whitney U test, with a significance cutoff (α level) equal to 0.05 (5%).

5 ODS appendix: https://github.com/SophieHYe/ODSExperiment
6 Cache appendix: https://github.com/Ringbo/Cache
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5 Results

In this section we present the results of our experiments with answers to our research ques-
tions.

5.1 RQ1: Hypothesis validation

As Table 3 shows, xTestCluster is able to generate more than one cluster for 78 bugs
(60.4%) containing more than one plausible patch (129 bugs in total). This means that
xTestCluster, using generated test cases, is able to differentiate between patches whose
application produces different behavior.

For 51 bugs (39.6%), for which we have more than two syntactically different patches,
xTestCluster groups all of them into one cluster.We conjecture that this could be caused by
the following reasons: 1) Beyond syntactical differences, the patches could be semantically
equivalent; 2) test-case generation tools are not able to find inputs that expose behavioral
differences between the patches; 3) test-case generation tools are not able to find the right
assertion for an input that could expose behavioral differences.

Figure 2 shows the distribution of the number of clusters that xTestCluster is able to
create per bug (in total, 129 bugs as explained in Section 4.2).We observe that the distribution
is right-skewed. The most left bar corresponds to the previously mentioned 51 bugs with one
cluster. Then, the number of bugs with n clusters decreases as n increases. For 76 bugs,
xTestCluster generated between two and six clusters, but for 2 bugs, it generates a larger
number of clusters (eight and fifteen).

Answer to RQ1. Given 129 bugs with at least two plausible and syntactically dif-
ferent patches, for 78 of them (59.4%), xTestCluster is able to detect patches
with different behavior (based on test-case generation) and group them into different
clusters.

By reviewing one patch per cluster, a code reviewer can reduce the time and effort required
for reviewing, since he or she does not need to review all the generated patches for 59.4% of
the bugs (78 in total). In particular, let us focus on these 78 bugs for which xTestCluster

reduces the number of patches. Without xTestCluster, the mean number of patches to be
reviewed by a developer is 6.89 patches. On the contrary, xTestCluster offers a developer a
median of 3.26 patches, all of which behave differently according to the generated test cases.
This means that xTestCluster actually helps to reduce the number of patches required to
be reviewed.

Table 3 RQ1. Classification of
bugs according to the number of
patches and clusters generated by
xTestCluster

Bugs under analysis #Bugs

Bugs with one or more patches 202

Bugs with 1+ syntactically different patches 129

Bugs with multiple patches in one single cluster 51

Bugs with multiple patches and clusters 78
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Fig. 2 RQ1. Distribution of the number of clusters per bug. Bugs with a single patch (in total 51) are discarded

5.2 RQ2: Patch Reduction Effectiveness

We compare the number of patches produced by all selected APR tools vs. the number of
patches presented to code reviewer if our approach is used. Figure 3 shows the distribution of
the number of patches per bug to analyze without and with our approach (red and blue bars,
respectively).We observe that the distribution of patches using our tool (in blue) is distributed
more to the left than the other (in red). More cases on the left mean that the number of patches
to analyze is fewer.

Now, we focus on each bug: we study the percentage reduction in the patches to be
analyzed when xTestCluster is used vs. reviewing all available patches for a given bug.

The median percentage reduction is 50% (46.98%), which means that for half of the bugs
xTestCluster reduces the total number of patches one needs to analyze by at least 50%.

The distribution in Fig. 4 also shows that for 23 bugs we achieve no reduction. That is,
for 23 bugs each cluster contains a single patch, thus all need to be analyzed. For most of

Fig. 3 RQ2. Distribution of patches to analyze per bug with and without our approach
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Fig. 4 RQ2. Distribution of the percentage reduction of the number of patches to review. Reduction for a bug
B is computed as follows: ((#patches for B - #clusters for B ) / #patches for B) × 100

those cases (16), the number of patches (and clusters) is two. In other words, a code reviewer
only needs to check two patches per bug. Even in the cases there is no reduction in terms
of number of patches to be analyzed, xTestCluster provides developers, for each of those
patches, new inputs (included in the generated test cases) that expose the unique behavior
of each of those patches. Using that information, our approach could help developers decide
which patch is better.

Answer to RQ2. xTestCluster is able to reduce by a median of 50% the num-
ber of patches to analyze per bug. Thus xTestCluster could help code reviewers
(developers using repair tools or researchers evaluating patches) to reduce the time
required for patch assessment.

The findings discussed thus far already show that our approach could be very useful to
code reviewers. Firstly, it can significantly reduce the number of patches for review, thus
reducing the time and effort required for this task. Secondly, it can provide code reviewers
with test inputs that help differentiate between patches, thus reducing the complexity of patch
review.

Execution time of XTESTCLUSTER We calculate the execution time of xTestCluster
for a given bug by summing the time required for two tasks: 1) generating tests for each
patch discovered for a given bug (limited to a one-minute time budget), and 2) executing the
newly generated tests for each discovered patch. This results in a total number of executions
equivalent to the product of the number of generated tests and the number of discovered
patches for a given bug.

The median execution time per bug is 4.06 minutes (avg. 5.63). We recall that the process
of finding candidate patches is time-consuming (Martinez et al. 2017; Liu et al. 2020, 2021),
takingmore than this time to find the first plausible patches, as it requires several compilations
and validation using human-written test cases. Consequently, the overhead introduced by
xTestCluster does not significantly impact the time of the repair process. Nevertheless, in
the Discussion (Section 6) we discuss potential solutions to further decrease the execution
time of xTestCluster.
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5.3 RQ3: clustering effectiveness

5.3.1 Analysis of bugs with multiple clusters

We now focus on the 78 bugs for which our approach produced multiple clusters. We analyze
their purity, i.e., if the patches in a given cluster are all correct or all incorrect. This will
allow us to measure the ability of test-case generation to differentiate between correct and
incorrect patches. Table 4 summarizes our results. The first two rows group the bugs that have
both correct and incorrect patches (17 + 21 = 38 in total). The third and fourth rows show
the number of bugs with either only incorrect patches (40 in total), or only correct patches
(zero in total, which means that for every correct patch there is at least one repair tool that
generates an incorrect patch).

For 17 out of the 38 bugs (44%) with both correct and incorrect patches, all clusters
generated by xTestCluster are pure. This means that xTestCluster is able to perfectly
distinguish between correct and incorrect patches. For the remaining 21 bugs (56%), xTest-
Cluster generates more than one cluster, and at least one of them includes correct and
incorrect patches. This means that the generated test cases are not capable of detecting the
“wrong” behavior of the incorrect patches, i.e., they are not capable of detecting, via new
inputs, the differences between the behavior of correct and incorrect patches. Section 5.5
studies whether this limitation is related to the quality of the newly-generated tests.

Producing only pure clusters has two advantages. When selecting patches from a pure
cluster, there is no risk of selecting an incorrect patch over a correct one. Moreover, if we
know that a given cluster only contains correct patches, we can then safely select a patch from
a cluster that satisfies perhaps an additional criterion, such as readability or patch length.

Answer to RQ3.Based on the generated test cases, xTestCluster is able to cluster
plausible patches in a way that a single cluster will contain only correct or incorrect
patches for 44% of the bugs considered (17/38). This signifies that for these bugs,
it would be sufficient to assess just one of the patches from each cluster in order to
check whether it contains a correct patch. Furthermore, a code reviewer can choose
any patch from a cluster containing correct patches based on additional criteria that
best fit their codebase.

5.3.2 Analysis of single cluster bugs

We previously focused on bugs with multiple clusters and the correctness of the patches that
are contained in them. Now, we focus on bugs for which xTestCluster could not generate
more than one cluster. As Table 3 shows, there are 51 of such bugs. For 41 of them (78.4%),

Table 4 RQ3. Classification of
bugs based on cluster purity

Purity of clusters #Bugs

Only pure clusters (either correct and incorrect) 17

At least 1 mixed cluster 21

Only pure incorrect (all patches are incorrect) 40

Only pure correct (all patches are correct) 0

Total (bugs with multiple clusters) 78
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all patches are incorrect. This means that all incorrect patches produce the same behavior
in the buggy program according to the test. The other 11 bugs (21.6%) contain correct and
incorrect patches. However, xTestCluster cannot find any behavioral differences using
generated test cases, which result is ‘passing’ (i.e., there is no error or failure assertion) on
all patches. We will study such bugs with a single cluster in Section 5.5 to know whether this
limitation is related to the quality of the newly-generated tests.

5.3.3 Relationships between overfitting patches and failing test cases

We now focus on the behaviors of patches from mixed clusters on the generated tests. As
we previously mentioned, 21 bugs have one mixed cluster (and one or more pure clusters)
and 10 bugs have a single mixed cluster. On the one hand, from the 21 bugs with multiple
clusters, we found the patch from the mixed clusters fails on one or more newly-generated
test cases. We recall that those failing test cases are provided from patches that belong to a
different cluster. On the other hand, the remaining two bugs have a mixed cluster for which
its patches do not fail any newly-generated test cases. With respect to the 10 bugs with a
single mixed cluster, by construction there is no failing test.

We conclude that in the bugswithmultiples clusters, one or themmixed, the behavior of the
patches is diverse, and this diversity is partially detected by the newly-generated test cases,
which are not fully capable of capturing some of the incorrect behaviour from overfitting
patches.

5.4 RQ4: complementing state-of-the art patch assessment techniques

We now study to what extent our approach is able to complement two state-of-the-art patch
assessment tools: Cache (Lin et al. 2022) and ODS (Ye et al. 2021).

We first focus on bugs for which xTestCluster generates pure clusters. We recall those
bugs contain one or more clusters with only correct patches and one or more with only incor-
rect patches, but any cluster with both correct and incorrect. As discussed in Section 5.3.1,
those bugs are 17.

After analyzing the assessment done by ODS and Cache on patches from those bugs, we
observe that for 15 of those bugs, one of the assessment tools misclassify the correctness
of a patch. In particular, ODS and Cache misclassify patches from 12 bugs and 8 bugs,
respectively (three bugs are misclassified by both tools). For example, for bug Math-32 from
Defects4J, xTestCluster groups patches in two ‘pure’ clusters: one with three incorrect
patches, the other with one correct patch. ODS incorrectly classifies as overfitting the correct
patch, and marks as correct one of the overfitting patches. In this case, xTestCluster
provides developers ‘hints’ about that misclassification, in particular, let developers know
that three patches (two truly incorrect but one wrongly classified as correct) behave similarly
according to generated tests (that is, it provides a test case where all the three patches fail
one assertion).

Answer to RQ4.Our results show that xTestCluster can complement the overfit-
ting assessment analysis done by state-of-the-art assessment tool: combining patch
assessment with cluster classification can expose misclassifications.
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We also inspect the performance of ODS and Cache on the 21 bugs with multiple clusters
and at least one mixed cluster. For each mixed cluster, we verify whether ODS and Cache are
able to successfully recognize the overfitting patches from the correct ones. We recall that all
these patches from a mixed cluster have the same behavior according to the tests generated
from xTestCluster. Interestingly, for 17 of those bugs (81%), ODS or Cache incorrectly
assess at least one of the patches included in a mixed cluster (in particular, ODS does that
incorrect assessment for 16 bugs, Cache for 13, and both for 10 bugs).

Finally, we focus on the results of the assessment fromODS andCache on the patches from
bugs for which xTestCluster creates just a single mixed cluster, i.e., the cluster contains
both correct and incorrect patches. As mentioned in Section 5.3.3 there are ten of such bugs.
(The other 41 bugs with a single cluster contain only incorrect patches).

We find that for each of these 10 bugs, ODS or Cache produce at least one incorrect patch
assessment: ODS fails on at least one patch assessment on nine bugs, and Cache does it
on seven bugs. For example, the dataset from Wang et. al has five plausible patches from
Closure-86 bug, all generated by SequenceR. According to the ground-truth provided by the
dataset, only one of them is correct while the other four are incorrect. Ideally, xTestCluster
would have had to generate pure clusters, one with the correct patch, and one or more clusters
with the incorrect patches. However, both ODS and Cache could not identify any patch as
correct: they wrongly classified all SequenceR patches as overfitting. This classification is a
false positive.

ODS and Cache also suffer from false negatives. For example, there are six plausible
patches from bug Math-59, one of them is overfitting (that one generated by SequenceR),
while the other five are correct. xTestCluster groups them into a single cluster because
it cannot observe behavioral differences between them. ODS and Cache cannot observe
any differences: they classify all patches as correct. This produces a false negative on the
classification of the overfitting patch.

Answer to RQ4 (cont.) Our results show that in most of the cases that xTest-
Cluster cannot generate test that difference correct patches from overfitting, two
state-of-art patch assessment tools produce false positive and/or negatives. This result
shows the difficulty of patch assessment and calls for further research.

5.5 RQ5: quality of generated test cases and effectiveness of XTESTCLUSTER

To respond to RQ5, we first focus on the metrics computed in all test cases, then focus on
the relationship between the metrics and the effectiveness of xTestCluster.

5.5.1 Quality metrics from test cases

Table 5 shows the mean, median, and standard deviation of four metrics computed and
returned (together with the generated test cases) by Evosuite: 1) Number of test cases gener-
ated for a given patch, 2) lines of code (LOC) of such test cases, 3) the line coverage of the
generated test cases, and 4) the mutation score. In this section, we focus exclusively on Evo-
suite for two main reasons: first, as we discuss in Section 6 Evosuite outperforms Randoop,
secondly, the metrics are automatically generated by Evosuite.7

7 Collecting data with EvoSuite https://www.evosuite.org/documentation/tutorial-part-3/
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Table 5 Metrics from the
generated test cases for all the
patches considered

Metric Mean Median Std Dev

# Tests per patch 98.45 46 114.12

LOC of a generated
test cases for a patch

418.99 184 961.08

Line coverage 70% 77% 20%

Mutation Score 31% 21% 26%

Number of Test cases generated per patch8:We observe that themedian value of generated
test cases is 46 test. The average is larger (98.45) because, as we can see in Fig. 5c, there is
still a considerable number of patches with between 200 and 400 generated tests.

Number of lines of code in the test cases9: We observe that the median value is 184 lines
of code, which includes all the code from test cases generated for a patch. The average is also
higher (418.45) because, as we can see in Fig. 5a, for some patches, there are outliers with
more than 2000 test cases generated. Figure 5b shows the distribution without those outliers.
We observe that most of the test generated have less than 1000 LOC.

Coverage: The coverage reported by Evosuite reaches a median coverage of 77% but
the mean is just lower (70%). The distribution presented in Fig. 5d shows that most of the
generated tests have a high coverage, between 80% and 100%, but still a considerable number
of tests reach coverage between 40% and 0.6%.

Mutation Score: The mutation score reported by Evosuite reaches a mean of 31% and a
lower median (21%). This means that most of the test cases generated are able to kill at most
21% of the generated mutants, which is notably low. The distribution presented in Fig. 5d
seems to be a bimodal distribution: Most values are concentrated near 10% and near 55%.
For very few patches, the generated tests reach a mutation score larger than 80%.

5.5.2 Relation between quality metrics and effectiveness of XTESTCLUSTER

Table 6 shows the median of each metric, but, as a difference from the previous section, we
now consider a subset of tests. In particular, in column “MixedClusters” (second column), we
consider test cases generated related to bugs with mixed clusters. In column “Pure Cluster”
(third column), we consider test cases generated related to bugs with only pure clusters. The
column “P-value” (fourth column) shows the p-value returned by the Mann-Whitney U test.
Finally, the last column “Reject H0” shows if the Null Hypothesis, which states that there is
no significant difference between tests from mixed clusters and tests from pure clusters w.r.t.
a metric, is rejected.

We observe that there are significant differences between themedian of the number of test,
LOC and line coverage, and using the Mann-Whitney U test we reject the null hypothesis
for all these three metrics. For example, the patches assigned to mixed clusters have, as a
median, 35 test cases. However, the patches assigned to pure clusters have, as a median, 126
test cases.

8 In Evosuite this metrics is reported as “Size”.
9 In Evosuite this metrics is reported as “Length”.
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Fig. 5 Metrics computed from newly-generated tests

Answer RQ5: Our results show that the effectiveness of xTestCluster is related
to the quality of the test cases. Having a larger number of test cases, larger in terms of
LOC andwith higher coverage, help xTestCluster to detect behavioral differences
between the correct and incorrect patches.
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Table 6 Metrics computed on tests from patches assigned by xTestCluster to Mixed Clusters, and from
those assigned to Pure Clusters

Metric Mixed Cluster Pure Cluster P-value Reject H0?

# Tests per patch 35.00 126.00 <0.0001 True

LOC tests 142.50 392.00 <0.0001 True

Line coverage 74% 83% 0.0039 True

Mutation Score 19% 28% 0.1227 False

6 Discussion

In this section, we provide a deeper analysis of our findings, presenting two case studies, and
an assessment of the performance of the two test generation tools we used in xTestCluster.

Case study: chart-26 with all pure clusters We collected 11 labelled patches for the bug
Chart-26. After running the generated test cases on these patches, xTestCluster created
three clusters as follows: xTestCluster first creates a cluster that has exclusively correct
patches. Even though the patches are syntactically different, they have the same semantic
behaviour. For example, a patch from JAID (Chen et al. 2017) adds an if–return in
Axis.java file, whereas the patches from TBar (Liu et al. 2019) add an if guard to the
same file. Then,xTestCluster creates twomore clusters, both containing only syntactically
different incorrect patches. In one cluster, two patches from JAID also affect theAxis.java
file but introduce incorrect changes, such as variable assignment. However, in the other
cluster, all incorrect patches affect a different file (i.e., CategoryPlot.java). Overall,
xTestCluster not only clustered the correct patches together, but created clusters that
contain patches that are semantically similar, despite having syntactic differences.

Performance of test-case generation tools Our implementation of xTestCluster has a
parameter for choosing the test case generation tool to use. The parameter has three values:
1) EvoSuite (Fraser and Arcuri 2011), 2) Randoop (Pacheco and Ernst 2007), 3) both (i.e.,
it uses the two tools). In this paper, we report the results using only Evosuite for different
reasons. First, xTestCluster using Evosuite achieves better performance than using only
Randoop (11 pure clusters). Second, the use of both tools (i.e., the addition of Randoop to
our experimental setup) minimally impacts the performance (just one more bug with pure
clusters -Closure 33-) but doubles the execution time. In conclusion, the addition of new test
case generation tools can help xTestCluster to find more pure clusters at the expense of
execution time.

Runtime overhead of XTESTCLUSTER We configure test generation tools with a timeout
of one minute. The execution of the generated test cases takes a few seconds on average.
Consequently, the overhead mostly depends on the number of generated patches that xTest-
Cluster aims to cluster.

Reduction of execution time of XTESTCLUSTER The execution time (median 4.06 min
per bug) can be reduced by parallelizing the generation of test cases for each patch, rather
than sequentially executing them, as we do in this paper (loop in line 7 in Algorithm 2). The
execution of these generated test cases can also be parallelized (loop in line 6 in Algorithm
3).
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Selection of patches from a cluster All patches grouped in a cluster are semantically
equivalent (i.e., behave similarly) according to both the human-written test cases and the
new test cases generated by xTestCluster. Even the approach could randomly pick one of
them as the representative of a cluster for the reason mentioned above, it could apply other
selection strategies that go beyond the semantics of the patches: i.e., to consider the syntax of
patches. For example, xTestCluster could apply a strategy based on the number of lines of
source code it adds and removes from the original code, and favor shorter patches, i.e. those
that result in least changed lines in the original code. The preference for shorter patches has
also been implemented in previous work (e.g., Tian et al. (2022)), and has the advantage of
helping the understandability and maintainability of the patched code (Fry et al. 2012).

Integrationwith existing APR xTestCluster can be easily integrated with any repair tool
that generates Java patches, as it only requires the programs to be repaired and the generated
patches as input. In this paper, our tool was used with patches generated by 25 repair tools.

Parameter fine-tuning In the experiment presented in this paper, xTestCluster invokes
the test generation tools (Evosuite and Randoop) using the default values of each parameter,
including the execution time (aka, search budget), whichwas set to oneminute. Previouswork
investigated the effect of parameter optimization on test generation using EvoSuite (Arcuri
and Fraser 2013). The authors conclude that using default values is a reasonable and justified
choice, whereas parameter tuning (on test generation) is a long and expensive process that
might or might not pay off in the end. Nevertheless, the application of parameter tuning could
eventually improve the results presented in this paper. For example, increasing the execution
time beyond the default time budget of 60 seconds provides Evosuite more time to find
better quality test cases (in the context of this work, better test quality means, for instance,
to strengthen the coverage on lines that have been patched). Beyond time, there are other
parameters that could be fine-tuned with the goal of searching for improving the capacity of
xTestCluster, such as the crossover rate, population size, elitism rate, selection, and parent
replacement check. The impact of these five parameters on test generation was previously
studied by Arcuri and Fraser (2013).

Limitations xTestCluster uses test generation tools to generate test cases for a patched
programversion. Consequently, the efficacy of xTestCluster heavily depends on the ability
of these generation tools to create test cases (that is, a set of inputs and assertions of system
output) that exercise buggy behavior affected by a patch. For example, if a generation tool
generates test cases that do not cover a buggy line, then xTestCluster will not be able to
differentiate the behavior of the patches and thus will create a single cluster.

7 Threats to validity

Next, we discuss potential issues regarding the implementation of xTestCluster (internal
validity), the design of our study (construct validity), and the generalisability of our findings
(external validity).

Internal validity The source code of xTestCluster and the scripts written for generating
and processing the results of our experiments may contain bugs. This issue could have
introduced a bias to our results, by removing or augmenting values. To mitigate this issue we
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made our source code, as well as the scripts used for the analysis and processing of the results
of our study, publicly available in our repository (xtestcluster appendix repository 2021) for
external validation.

Construct validity There is randomness associated with use of test-case generation tools
such asEvoSuite (Fraser andArcuri 2011) andRandoop (Pacheco andErnst 2007), because
of the nature of the algorithms used in such tools. Therefore, the results of our experiments
could vary between different executions. In this experiment, we executeRandoop and Evo-
suiteonceon eachpatch.Doingmore executions of those tools (usingdifferent randomseeds)
could produce more diverse test cases that may find further differences between patches and,
consequently, help xTestCluster produce better results.

External Validity Our study uses the dataset fromWang et al., which is in turn composed of
two other datasets: DRR (Ye et al. 2021) (automated evaluation, using automated test cases
generated on the human-patched program, taking it as ground truth) and the one from Liu
et al. (2020) (manual evaluation done by humans). These two manners of labeling patches
may affect our results. However, the patches from those work were then re-assessed forWang
et al, giving as a results the dataset with 902 patches that we use in this experiment.

Durieux et al. (2019) observed that the Defects4J benchmark might suffer from overfit-
ting, as it has been used for the evaluation of most apr tools available. Thereby it can produce
misleading results regarding the capabilities of apr tools to generate correct patches. How-
ever, since Defects4J has been used for the evaluation of most apr tools, we were able to
find labeled data from multiple different apr tools only for Defects4J. Further research on
the impact of using other bug benchmarks would tackle this threat.

8 Related work

In this section we discuss the most relevant related work and compare and contrast them to
our proposed xTestCluster.

8.1 Patch clustering

Similar to xTestCluster, Cashin et al. (2019) present PATCHPART, a clustering approach
that clusters patches based on invariants generated from the existing test cases. Using
Daikon (Ernst et al. 2007) to find dynamic invariants and evaluated on 12 bugs (5 from
GenProg and 7 from Arja), PATCHPART reduces human effort by reducing the number of
semantically distinct patches that must be considered by over 50%. Our approach, in con-
trast, is based on output of the execution of newly generated test cases, and is validated on a
larger set of bugs (139 vs 12), tools (25 vs 2). A deeper comparison with PATCHPART is not
possible, as the information about the bugs repaired, considered patches, clusters generated
and the tool is not publicly available.

Mechtaev et al. (2018) provide an approach for clustering patches based on test equiva-
lence. There are two main differences between their work and ours. First, the main technical
difference is that our clustering approach exploits additional automatically generated test
cases, which are created to generate inputs that enforce diverse behavior, while Mechtaev
et al. use solely the existing test suite written by developers, thus is unable to detect differ-
ences not exposed by unseen inputs. Secondly, the goal of our approach also differs: to group
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patches generated by different (and diverse) repair tools after those are generated, while
Mechtaev et al. group patches from a single repair tool as they incorporate their approach to
the patch generation process from one tool. For that reason, our evaluation considers patches
from 25 repair tools for Java, while Mechtaev et al. evaluated four repair tools for C.

8.2 Patch assessment

Wang et al. (2020) provide an overview and an empirical comparison of patch assessment
approaches. One of the core findings of Wang et al. (2020) is that existing techniques are
highly complementary to each other. These overfitting techniques can be used to complement
our work. For instance, we can apply xTestCluster, which is based on the cross-execution
of newly generated test cases, on a set of previously filtered patches using automated patch
assessment, or to use a patch ranking technique on the clusters created by xTestCluster.
We describe a selection of such approaches in this section. Here we divide work on automated
patch assessment into two categories: approaches that focus on overfitting as: (1) independent
tools, which can be used with different apr approaches; (2) dependent tools, which are
incorporated into specific repair tools.

Independent approaches Opad is a dynamic approach, which filters out overfitted patches
by generating new test cases using fuzzing. Initially, Opad was developed for C programs
and evaluated on GenProg, Kali, and SPR (Yang et al. 2017). Recently, a Java version
for Opad has been introduced by Wang et al. (2020). There are several tools that use patch
similarity for patch overfitting assessment. For instance, Patch- sim (Xiong et al. 2018) and
Test- sim (Xiong et al. 2018) have been developed for Java and evaluated on jGenProg,
Nopol, jKali, ACS and HDRepair. Specifically, the approach generates new test inputs to
enhance original test suites, and uses test execution trace and output similarity to determine
patch correctness.ObjSim (Ghanbari 2020) employs a similar strategy and has been evaluated
on patches generated by PraPR. The above approaches involve code instrumentation, which
can be costly. Like many other approaches, they also provide patch ranking as an output.
DiffTGen (Xin and Reiss 2017) identifies overfitted patches by generating new test inputs
that uncover semantic differences between an original faulty program and a patched program.
Their test cases are created from an oracle, and in the evaluation of DiffTGen, the authors use
the human-written patches as correctness oracle. Unlike them, in our work we do not assume
existence of an oracle because it is not available during the repair process. Our approach
creates new test cases from generated patches (not from human-written patches) and analyze
the behavioural differences between them (not between a candidate patch and a human-
written patch). The goals of our technique xTestCluster and the mentioned techniques are
different. Those aim to classify patches as overfitting (in order to remove them), our technique
clusters patches according to their behavior. Consequently, even if both aim to reduce human
effort, the final goals are different.

Other patch assessment approaches that use machine learning (ML) to label correct and
incorrect patches have recently emerged. For instance, ODS is a novel patch overfitting
assessment system for Java that leverages static analysis to compare a patched program and
a buggy program, and a probabilistic model to classify patches as correct or not (Ye et al.
2021). ODS can be employed as a post-processing procedure to classify the patches gener-
ated by different apr systems. Tian et al. (2020) demonstrated the potential of embeddings
to empower learning algorithms in reasoning about patch correctness: a machine learning
predictor with the BERT transformer-based embeddings associated with logistic regression.
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Tian et al. also propose BATS (Tian et al. 2022), an unsupervised learning-based approach
to predict patch correctness by statically checking the similarity of generated patches against
past correct patches. In addition to the patch similarity, BATS also considers the similarity
between the failing test cases that expose the bugs fixed by generated patches and those failing
test cases that expose the bugs repaired by past correct patches. Kang andYoo (2022) propose
an approach based on language models which prioritizes patches that generate natural code.
Cache from Lin et al. (2022) presents a deep learning-based classifier to predict the correct-
ness of the patch. The evaluation of Cache shows that it performs better than the previous
mentioned approaches includingODS andPatch- sim (Xiong et al. 2018). Liang et al. (2021)
present an interactive filtering approach to patch review, which filters out incorrect patches
by asking questions to the developers. The authors implemented this approach in an Eclipse
plugin tool called InPaFer. The main differences between these machine learning approaches
and xTestCluster, are as follows: (1) we aim to cluster patches based on behavioural
differences, while the aforementioned approaches try to detect overfitting patches (2) the
ML-based approaches are static (do not execute the patches), while our approach performs
dynamic analysis by executing the generated patches using newly generated test cases (3)
we do not require existence of a dataset of previously fixed patches.

Dependent approaches This category includes apr tools that also implement patch over-
fitting assessment techniques. Most techniques are based on static analysis and relevant
heuristics. For instance, S3 is an apr tool for the C programming language that uses syntax
constraints for assessing patch overfitting (Le et al. 2017). ssFix is an apr tool for Java that
leverages syntax constraints for assessing patch overfitting (Xin and Reiss 2017). CapGen
considers programs’ asts and a context-aware approach for assessing patch overfitting (Wen
et al. 2018). Prophet is an apr tool for C programs that rank patch candidates in the order
of likely correctness using a model trained from human-written patches. Other techniques
apply dynamic strategies for filtering overfitting patches. For instance, Fix2Fit (Gao et al.
2019) is an apr tool for C programs that defines a fuzzing strategy that filters out patches that
make the program crash under newly generated tests. Our approach can complement these
tools: xTestCluster can receive as input the (filtered) patches from one or more of those
apr tools, and present to the user only those that behave differently.

9 Conclusions

Wehave introduced xTestCluster that is able to reduce the amount of patches required to be
reviewed. xTestCluster clusters semantically similar patches together by exclusively util-
ising automated test generation tools. In this paper, we evaluate it in the context of automated
program repair. APR tools can generate multiple plausible patches, that are not necessarily
correct. Moreover, different tools can fix different bugs. Therefore, we consider a scenario
where multiple tools are used to generate plausible patches for later patch assessment.

We use 902 patches from previous work that were labeled as correct or not and evaluated
xTestCluster using that set. We show that xTestCluster can indeed cluster syntactically
different yet semantically similar patches together.

Results show that xTestCluster reduces the median number of patches that need to be
assessed per bug by half. This can save significant amount of time for developers that have
to review the multitude of patches generated by apr techniques. Moreover, we provide test
cases that show the differences in behavior between different patches.
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For 44% of the bugs considered, all clusters are pure, i.e., contain only correct or incorrect
patches. Thus, code reviewer can select any patch from such a cluster to establish correctness
of all patches in that cluster.

In future work we will study the feasibility of complementing our approach with other
techniques, e.g., patch ranking, in order to help xTestCluster to select the most adequate
patch from a given cluster.
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