
The Patch Overfi�ing Problem in Automated Program Repair:
Practical Magnitude and a Baseline for Realistic Benchmarking

Justyna Petke
University College London

London, UK

j.petke@ucl.ac.uk

Matias Martinez
Universitat Politècnica de

Catalunya-BarcelonaTech

Barcelona, Spain

matias.martinez@upc.edu

Maria Kechagia
University College London

London, UK

m.kechagia@ucl.ac.uk

Aldeida Aleti
Monash University

Melbourne, Australia

aldeida.aleti@monash.edu

Federica Sarro
University College London

London, UK

f.sarro@ucl.ac.uk

ABSTRACT

Automated program repair techniques aim to generate patches for

software bugs, mainly relying on testing to check their validity. The

generation of a large number of such plausible yet incorrect patches

is widely believed to hinder wider application of APR in practice,

which has motivated research in automated patch assessment. We

re�ect on the validity of this motivation and carry out an empirical

study to analyse the extent to which 10 APR tools su�er from

the over�tting problem in practice. We observe that the number

of plausible patches generated by any of the APR tools analysed

for a given bug from the Defects4J dataset is remarkably low, a

median of 2, indicating that a developer only needs to consider 2

patches in most cases to be con�dent to �nd a �x or con�rming

its nonexistence. This study unveils that the over�tting problem

might not be as bad as previously thought. We re�ect on current

evaluation strategies of automated patch assessment techniques

and propose a Random Selection baseline to assess whether and

when using such techniques is bene�cial for reducing human e�ort.

We advocate future work should evaluate the bene�t arising from

patch over�tting assessment usage against the random baseline.

CCS CONCEPTS

• Software and its engineering;

KEYWORDS

Over�tting, Automated Program Repair, Patch Assessment

ACM Reference Format:

Justyna Petke, Matias Martinez, Maria Kechagia, Aldeida Aleti, and Fed-

erica Sarro. 2024. The Patch Over�tting Problem in Automated Program

Repair: Practical Magnitude and a Baseline for Realistic Benchmarking.

In Companion Proceedings of the 32nd ACM International Conference on

the Foundations of Software Engineering (FSE Companion ’24), July 15–19,

2024, Porto de Galinhas, Brazil. ACM, New York, NY, USA, 5 pages. https:

//doi.org/10.1145/3663529.3663776

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0658-5/24/07
https://doi.org/10.1145/3663529.3663776

1 INTRODUCTION

Patch over�tting is a well-known problem in automated program

repair (APR), and arguably, prevents wider adoption of APR tool-

ing [13]. An important aspect of patch quality is whether an APR-

generated patch actually �xes the given bug. APR relies onmeasures

of correctness. Finding such a measure is an open challenge, and

applies both to patches produced by humans and by machines. In

APR, a patch is deemed over�tted if it satis�es a given APR-tool

functionality criterion (usually by passing an existing test suite),

yet is actually incorrect (e.g., bug prevails under untested inputs).

The patch over�tting problem results in automatically generated

patches that cannot be trusted by practitioners, which in turn im-

pacts the applicability of APR [12].

In order to minimise the impact of over�tting, many approaches

have been developed that either impose some constraints on the

patch during the generation process, e.g., via a domain-speci�c lan-

guage [7], or after the APR process has �nished, e.g., by analysing

patch behaviour on a new set of test cases [18], or based on sim-

ilarity to existing code [3]. To increase the uptake of APR, these

approaches aim to maximise the probability of showing correct

patches to the developer, who can then decide whether to ap-

ply the patch. It is a common belief that such approaches are

needed, since APR tools usually produce large amounts of plausi-

ble patches [1, 16, 18], which may have implications on the e�ort

needed to �nd the correct patch. However, there is no study that

veri�es this assumption by actually quantifying how much over-

�tting exists per tool per bug. The typical empirical assessment

of most APR tools often involves evaluating the accuracy of the

generated patches, thereby examining the potential for over�tting.

This assessment typically takes place on the Defects4J bugs. These

studies run the APR tools until the �rst plausible patch is found,

which may or may not be correct. Considering only a single plausi-

ble patch does not provide insights into the extent of over�tting,

that is the likelihood of these tools to produce incorrect plausible

patches. This is especially true nowadays, with increased use of

neural-based approaches, that output a set of probable �xes rather

than a single patch [11]. Instead, prior research on over�tting as-

sessment of APR techniques has provided evidence of e�ectiveness

by evaluating approaches on metrics such as accuracy, precision,

and recall [14, 17, 19], or the numbers of bugs �xed vs. not-�xed,

and/or total numbers of plausible yet incorrect patches generated

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

452

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-7833-6044
https://orcid.org/0000-0002-2945-866X
https://orcid.org/0000-0001-9092-3244
https://orcid.org/0000-0002-1716-690X
https://orcid.org/0000-0002-9146-442X
https://doi.org/10.1145/3663529.3663776
https://doi.org/10.1145/3663529.3663776
https://doi.org/10.1145/3663529.3663776
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3663529.3663776&domain=pdf&date_stamp=2024-07-10

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Petke et al.

per project [14, 19]. Although these results demonstrate the e�ec-

tiveness of patch over�tting assessment approaches, we lack an

understanding of how severe the problem of over�tting is

for many existing APR techniques in practice. In particular,

most post-processing approaches were evaluated on a set of pre-

viously labelled patches, without actually running the tools �rst.

Such datasets often consolidate patches obtained in di�erent exper-

imental environments. Many tools stop at the �rst plausible patch

by default, but take di�erent amounts of time to generate one. Thus,

it is not clear how many patches would be generated and whether

the e�cacy of the tooling at �nding bugs would increase, if all

tools were allowed to run for the same amount of time. As a result,

we do not know how e�ective the post-processing techniques that

tackle over�tting are at reducing the human e�ort in identifying

the correct patch in such a scenario.

Moreover, to know if a patch over�tting assessment technique is

bene�cial or not, we must establish a baseline that determines the

probability of selecting a correct patch from the generated patches.

If the probability of selecting a correct patch is 1 (which some

techniques can achieve for particular bugs), then patch over�tting

assessment would not be required. We propose all patch assess-

ment techniques must at least beat a Random Selection (RS)

strategy, i.e., the RS baseline, — a comparison not yet done.

In this work we �rst pick a sample of existing results reported

for automated patch assessment techniques, and calculate how a

random selection strategy would fair against these. We show that

for many bugs random sampling is just as e�ective, i.e., at least the

same number of patches would have to be manually assessed to

�nd a �x. Next, we run 10 APR tools on a set of 395 bugs from the

Defects4J v1.5 [5] dataset, allowing them to run beyond the �rst

patch found, up to a 3 hour time limit, as often used in evaluation

of APR tooling [9]. We analyse the patches found and calculate the

RS baseline per bug and per tool — this establishes the over�tting

rate. Our study shows, for each tool, how many patches need to be

sampled at random to have high con�dence that a correct patch ex-

ists among generated plausible ones. This establishes a baseline for

techniques that tackle over�tting that use the APR tools analysed

— they must at least beat this Random Selection (RS) baseline.

Our initial study con�rms that the magnitude of over�tting,

is not as big as previously thought, even considering older tools.

Moreover, we strongly recommend that all future patch assessment

techniques should be always compared against the RS baseline.

2 OVERFITTING ASSESSMENT BASELINE

We �rst present a baseline to benchmark existing and future over-

�tting assessment approaches (i.e., approaches that aim to identify

correct patches from a set of plausible ones). Our intuition is that

for an over�tting assessment approach to be deemed as e�ective,

it should at least outperform a random selection strategy. To de-

termine this baseline, we calculate the following measure: Given

a �xed set of patches, what is the probability of selecting a desirable

patch using a random selection strategy? In this work, we focus on

selecting a correct patch, but the argument follows for any other

desirable criterion. Assuming a purely random selection process,

given # patches with desirable patches, the probability of select-

ing at least 1 desirable patch in = consecutive draws is calculated

based on the Hypergeometric distribution as follows:

Table 1: ObjSim and PraPR patch ranking compared with the

RS baseline on bugs for which 10+ patches were generated.

‘T’ means a timeout after 5 minutes. All data reported in this

table is from previous work [2], but the last column contains

the likely rank of a correct patch (with 80% probability) if

random selection is used.

Plausible Genuine Rank Rank Random

Bug patches �xes PraPR ObjSim prob. 80%

Chart-26 100 1 17 T 81

Closure-11 15 3 1 T 6

Closure-126 12 2 5 T 7

Jsoup-42 13 1 1 T 11

Math-50 30 1 30 30 24

Mockito-5 31 1 31 31 25

Time-11 32 1 1 1 26

%A (- ≥ 1) = 1 − %A (- = 0) = 1 −

(

0

) (

#−
=−0

)

(

#

=

)

= 1 −

(

#−
=

)

(

#

=

)

(1)

Note that when we select only one patch at random, the formula

simpli�es to 1 − (#−
#

) =

#
, i.e., we have a

#
chance of selecting

a desirable patch. If none exist, i.e., = 0, the probability is 0. In

the APR context, an approach that targets over�tting should select

a correct patch from a set of candidate patches more often than the

aforementioned baseline. In our empirical study, we focus on the sit-

uation where the APR process has �nished, producing a �xed set of

plausible, i.e., test-passing, patches. We aim to answer the following

question: How many patches per bug does a developer need to sample

at random to establish whether a correct patch exists among plausible

ones? This will form a baseline for evaluation of any patch assess-

ment approach that aims to overcome the over�tting problem.

3 MOTIVATION

To the best of our knowledge, no previouswork on patch assessment

over�tting compared against a baseline based on random sampling,

which we call here RS baseline for short. To illustrate the problem

let us consider results reported for some existing patch over�tting

assessment techniques, and compare them with the RS baseline.

Several patch assessment techniques produce a ranking of patches,

with the intention of the correct one being ranked at the top. Their

e�ectiveness is thus measured in terms of where the correct one is

ranked. In order to calculate how the RS baseline would perform

in this scenario, we calculate how many patches one would need

to randomly sample so that the probability of selecting a correct

one is at least 80%. We chose results reported for ObjSim [2] and

PraPR [4] for such an illustration. ObjSim is a standalone patch

prioritisation technique, while PraPR is an APR tool that prioritises

patches internally. The author of ObjSim compared against PraPR’s

strategy and released an artefact, containing detailed patch infor-

mation per bug, which allows us to make a comparison with the

RS baseline. We present these results, with an extra column for the

RS baseline in Table 11. Although in most cases PraPR beats the RS

baseline, ObjSim does not perform as well. The comparison with

the RS baseline suggests that in two cases (Mockito-5 and Math-50)

a developer is better-o� selecting patches at random rather than

1All results available at: https://github.com/SOLAR-group/over�tting-baseline-
artefact/blob/main/saved_results/paper_results/table4Full.md

453

https://github.com/SOLAR-group/overfitting-baseline-artefact/blob/main/saved_results/paper_results/table4Full.md
https://github.com/SOLAR-group/overfitting-baseline-artefact/blob/main/saved_results/paper_results/table4Full.md

The Patch Overfi�ing Problem in Automated Program Repair FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

using PraPR. Whereas, for all cases but one in Table 1 selecting

patches at random should be preferred to ObjSim.

Patches used in most patch over�tting assessment studies gath-

ered labelled patches from previous work, and thus, they share the

threat of coming from di�erent experimental setups. Of course a

technique that picks the one correct patch from a set of, say, 10,000,

will be considered best, but the question is how would it fair in prac-

tice. Suppose an APR tool generates only 2 patches per bug. Perhaps

it would be advantageous to use a more e�cient, but maybe less

e�ective automated patch assessment technique, if it can correctly

decide if they are over�tted with high probability? Perhaps random

selection or even manual e�ort is less time-costly? We do not aim

to answer these questions here, but instead, provide a set of patches

generated using a scenario where each tool can generate patches

up to the same time limit, and not just stop at �rst patch found. We

show the rate of over�tting per tool and bug, with calculations of

the e�ectiveness of a random patch selection strategy. Our work

provides a baseline for future studies using this dataset.

4 METHODOLOGY

We considered 10 APR tools (Table 2) widely studied (e.g., [10]) and

evaluated by state-of-the-art patch assessment approaches such

as Cache [8] and ODS [19]. We modi�ed them, if needed, to run

beyond the �rst patch found. We use the widely studied Defects4J

v1.5 [5] dataset, due to the availability of labelled patches. We ran

each tool with the same time limit and report on patches obtained

within the �rst 3 hours, as standard in previous studies [9]. We

examined all plausible patches found in order to determine their

correctness based on four di�erent subsequent assessments: syntax

comparison with developer-written patches, with patches from

previous work [6, 8, 15], automated dynamic analysis with extra

tests [20], and manual analysis by two independent reviewers of

leftover unlabelled patches. Due to time constraints, we performed

the last two analysis stages (dynamic and manual) for the patches

for bugs for which a correct patch was found during syntactic

checks. We ran each repair attempt on an Intel Xeon E5-2630 v3

(Haswell, 2.40GHz, 2 CPUs, 8 cores/CPU) and 128 GB RAM.

5 RESULTS

The 10 APR tools generated 4,643 patches, 2,304 of which unique.

155 bugs were plausibly patched. Through syntactic analysis we

identi�ed 43 bugs for which a correct patch was found.

Magnitude of Over�tting Interestingly, for all 10 tools, the

median number of unique patches generated for the 155 bugs (for

which plausible patches have been generated by at least one tool)

is 2, while the average is 6.71. This is already a striking result. If

there are only 2 patches to verify, this puts into question the need

for sometimes quite time-consuming automated patch over�tting

approaches, especially if they can produce false-negative results,

i.e., mark a correct patch as an over�tting one. For the 10 APR tools

and 43 identi�ed correctly �xed bugs the median number of patches

generated per tool per bug is 2, while the average is 4.11, with a

max of 45. Indeed, on this dataset for a single tool for a single bug

either no plausible patches are generated or, most frequently, just 2

plausible patches are produced. This means that unless a post-APR

over�tting approach is very quick and easy to use, it might be more

cost-e�ective for a developer to manually analyse the two patches.

Table 2: Number of patches = (Equation 1) per tool to be sam-

pled to have 80%, 90%, or 100% chance of selecting a correct

patch at random. Data per bug is aggregated per tool.

Sample = su�cient with x% probability

Bugs median maximum

Tool �xed 80% 90% 100% 80% 90% 100%

Avatar 13 1 1 1 5 6 6

FixMiner 9 1 1 1 3 3 4

Nopol 0 0 0 0 0 0 0

SimFix 19 1 1 1 3 3 3

TBar 25 1 1 1 23 28 40

dynamoth 2 2 2 4 3 3 6

jGenProg 3 2 2 2 3 3 3

jKali 2 4 5 6 5 6 6

jMutRepair 4 2 2 2 3 3 3

kPAR 5 3 3 3 7 10 37

Over�tting Per Tool Table 2 presents the number of patches a

developer using a particular APR tool would have to randomly sam-

ple to have 80%, 90%, 100% chance of selecting a correct patch for a

given bug, by using the RS baseline (see Section 2). A median value

of 1 or 0 means that for most bugs the patches generated by a given

tool are either all correct or incorrect, respectively. We note that

Nopol did not generate any correct patches for any of the bugs for

which at least one other tool generated a correct patch. It is worth

noting that in previous section only a median of 2 patches was

generated per bug. Consequently, even in situations where the like-

lihood of choosing the correct patch is 0 due to over�tting, the patch

assessment process still only requires assessing these 2 patches.

For half of the tools, the highest number of patches that must

be sampled to achieve a 90% likelihood of discovering a correct

patch (assuming one exists) for a given bug is 3 (refer to the second-

to-last column in Table 2). More interestingly, SimFix and TBar,

tools that are able to �x the largest numbers of bugs, require max 3

and 28 patches to be sampled, respectively, while the median is 1

for both. Hence, if a developer intends to employ either SimFix or

TBar, they could randomly select just one patch. In the majority of

instances, this single selection would provide su�cient information

to determine if a correct patch has been generated. Additionally,

in the case of SimFix, they might contemplate evaluating up to

three di�erent patches. For 8 tools only up to 5 incorrect patches

have been generated per bug. This means that if one samples any 6

patches per bug generated by any of these tools, one would have

certainty whether a correct patch was generated or not. TBar, on

the other hand, generated 41 unique patches for Math-85, 2 of which

were correct.2 It is worth noting that jMutRepair generated only 3

patches for this bug, one of them correct. kPAR generated 45 unique

patches for Math-50, 9 of which correct. It was, however, the only

tool to generate a correct patch for this bug.

Our results also reveal that the more recent tools are more e�ec-

tive at �nding correct patches, such as SimFix and TBar (Table 2).

In particular, TBar is able to �nd the largest number of �xes, i.e.,

25, for 43 bugs for which known �xes were found by any of the

10 tools. Each of those bugs was �xed by the 1st plausible patch

2https://github.com/SOLAR-group/over�tting-baseline-artefact/blob/main/saved_r
esults/paper_results/rq2/preprocessed.csv

454

https://github.com/SOLAR-group/overfitting-baseline-artefact/blob/main/saved_results/paper_results/rq2/preprocessed.csv
https://github.com/SOLAR-group/overfitting-baseline-artefact/blob/main/saved_results/paper_results/rq2/preprocessed.csv

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Petke et al.

Table 3: For each tool we show the no. of bugs �xed if the

�rst n patches are considered per bug (for selected n).

No. of bugs �xed within the �rst

n=1,2,..,37 plausible patches per bug

Tool 1 2 3 4 5 20 21 36 37

TBar 27 29 29 29 30 31 32 32 32

SimFix 19 19 19 19 19 19 19 19 19

jMutRepair 3 3 4 4 4 4 4 4 4

Avatar 12 14 14 14 14 15 15 15 15

kPAR 4 4 4 4 4 4 5 5 5

FixMiner 9 10 10 10 10 10 10 10 10

jGenProg 2 2 2 2 2 2 2 2 3

dynamoth 2 2 2 2 2 2 2 2 2

jKali 1 1 1 1 2 2 2 2 2

Table 4: No. of patches = (Equation 1) per bug to be sampled,

from the set of all patches generated by 10 tools, to have 80%,

90%, or 100% chance of selecting a correct patch at random.

Sample = su�cient with x% probability

Bug 80% 90% 100% Bug 80% 90% 100%

Chart-11 1 1 1 Lang-57 3 3 4

Chart-20 1 1 1 Math-70 3 3 4

Chart-24 1 1 1 Math-79 4 4 4

Chart-4 1 1 1 Mockito-29 4 4 4

Chart-8 1 1 1 Time-7 4 4 5

Closure-14 1 1 1 Math-30 4 5 6

Closure-73 1 1 1 Math-82 5 6 7

Closure-86 1 1 1 Chart-1 3 4 8

Math-11 1 1 1 Closure-46 5 6 9

Math-34 1 1 1 Lang-55 3 4 9

Math-5 1 1 1 Chart-9 9 10 11

Math-59 1 1 1 Closure-62 5 6 12

Math-65 1 1 1 Closure-126 6 8 15

Math-75 1 1 1 Math-58 15 17 18

Math-89 1 1 1 Chart-7 16 18 19

Mockito-38 1 1 1 Lang-59 21 24 26

Math-57 2 2 2 Math-33 16 21 37

Closure-2 3 3 3 Math-80 32 36 39

Closure-57 2 3 3 Lang-58 35 39 43

Lang-33 2 2 3 Math-85 21 27 48

Lang-43 2 3 3 Math-50 11 15 61

Math-53 3 3 3

found by TBar. This is not always the case. We gathered data for

all tools for an 8-hour time limit, and present in Table 3. TBar gen-

erated a correct patch for 32 bugs: 27 were correctly �xed by the

1st plausible patch found, 2 more by the 2nd plausible patch found,

while all 32 if one considered the 1st 21 plausible patches per bug.

Over�tting Per Bug Next, we consider the case where for a

given bug we gather all syntactically unique patches generated by

all 10 tools. This should increase the chances of �nding a correct

patch, since there are bugs for which only one tool might be able

to generate a correct patch. However, this strategy might make the

selection of a correct patch more di�cult, as a developer would

have to undertake patch assessment for a larger set of patches

than if they were to use just one tool. Therefore, we calculate the

probabilities of randomly sampling a correct patch from the set of

all patches generated by all 10 tools for a given bug, based on the

RS baseline. Table 4 reports the number of patches that need to be

sampled to have 80%, 90%, or 100% chance that among them there

is a correct patch. We observe that for half of the bugs (22) up to 2

incorrect patches are generated, and thus one only needs to sample

3 patches to have 100% con�dence that a correct patch exists in the

sampled set. However, even up to 61 plausible patches would have

to be reviewed for one bug (see Math-50 in Table 4), rendering a

post-APR over�tting approach useful in those cases.

Nevertheless, the results show that indeed combining patches

from di�erent tools signi�cantly increases the number of bugs �xed,

from 25 �xed by an individual tool, to 43 when 10 tools are used.

This comes at the cost of a higher number of patches to be assessed,

yet for 26 bugs only 3 patches need to be assessed to have 80%

con�dence that a correct one would be found (see 2nd column in

Table 4), with the number increasing to 34 bugs if up to 6 patches

are analysed per bug (and 33 with 90% con�dence).

Patch Sampling Strategy Let us assume that the APR tools are

used to �x bugs that are similar to the ones reported here, and thus

the numbers in Tables 2 and 4 are representative of the ability of the

tools to �nd patches for such a set of bugs. If a developer where to

use all 10 tools to �nd a patch with 80% con�dence for one bug, they

would have to sample (5 ∗ 3 + 23 + 7 + 2 ∗ 5) = 55 patches, if �gures

from Table 2 in the 6th column, are considered, or up to 35, based

on the results reported in Table 4 (in 2nd column). This is a worst-

case scenario for this dataset and our chosen probability measure.

However, since the developer knows which patches come from

which tool, they might consider evaluating patches from SimFix in

the �rst instance, as they only need to consider 3 of those patches in

order to have con�dence that a correct patch was found by the tool.

Whether it is best to consider the patches of individual tooling

or combine patches together to sample from will depend on the

choice of tools and bugs used, thus we advocate both sampling

strategies are considered. We acknowledge that the results will dif-

fer, depending on the bugs and tools used. However, future research

on post-APR over�tting that uses the same ones as us here should

take into account the random empirical baselines established here.

6 CONCLUSIONS

Our empirical study con�rms that ARP tools su�er from over�tting

yet this problem might be not as bad as previously thought. We

found that a developer only needs to consider 2 patches for most

bugs to be con�dent to �nd a �x (or be sure none exists) for the

Defect4J bugs considered in our study.We found that using multiple

APR tools at the same time does not make the APR over�tting

problem much worse. Therefore, we recommend to always evaluate

the bene�t arising from the use of any post-processing APR tooling.

We outlined a baseline, based on Random Selection (RS), for patch

over�tting assessment. The RS baseline helps us explore and analyse

the bene�ts of post-APR over�tting assessment techniques, and

when it pays o� to use such techniques. All of our scripts and

labelled patches are available at: https://github.com/SOLAR-

group/over�tting-baseline-artefact. Copyright For the purpose

of open access, the authors have applied a Creative Commons

Attribution (CC BY) license to any accepted manuscript version

arising. FundingWe thank Ramony Cajal Fellowship no. RYC2021-

031523-I, ERC Advanced Grant no. 741278, UKRI EPSRC grant no.

EP/P023991/1, Australian Research Council grant no. DP210100041.

455

https://github.com/SOLAR-group/overfitting-baseline-artefact
https://github.com/SOLAR-group/overfitting-baseline-artefact

The Patch Overfi�ing Problem in Automated Program Repair FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

REFERENCES
[1] Thomas Durieux, Fernanda Madeiral, Matias Martinez, and Rui Abreu. 2019.

Empirical review of Java program repair tools: a large-scale experiment on 2,
141 bugs and 23, 551 repair attempts. In Proceedings of the ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30,
2019, Marlon Dumas, Dietmar Pfahl, Sven Apel, and Alessandra Russo (Eds.).
ACM, 302–313. https://doi.org/10.1145/3338906.3338911

[2] Ali Ghanbari. 2020. ObjSim: Lightweight Automatic Patch Prioritization via Ob-
ject Similarity. In Proceedings of the 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA 2020). Association for Computing Ma-
chinery, New York, NY, USA, 541—-544. https://doi.org/10.1145/3395363.3404362

[3] Ali Ghanbari and Andrian Marcus. 2022. Patch correctness assessment in auto-
mated program repair based on the impact of patches on production and test code.
In ISSTA ’22: 31st ACM SIGSOFT International Symposium on Software Testing and
Analysis, Virtual Event, South Korea, July 18 - 22, 2022, Sukyoung Ryu and Yannis
Smaragdakis (Eds.). ACM, 654–665. https://doi.org/10.1145/3533767.3534368

[4] Ali Ghanbari and Lingming Zhang. 2019. PraPR: Practical Program Repair via
BytecodeMutation. In 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). 1118–1121. https://doi.org/10.1109/ASE.2019.00116

[5] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database
of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
Proceedings of the 2014 International Symposium on Software Testing and Analysis
(San Jose, CA, USA) (ISSTA 2014). Association for Computing Machinery, New
York, NY, USA, 437–440. https://doi.org/10.1145/2610384.2628055

[6] Maria Kechagia, Xavier Devroey, Annibale Panichella, Georgios Gousios, and
Arie van Deursen. 2019. E�ective and e�cient API misuse detection via exception
propagation and search-based testing. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2019, Beijing,
China, July 15-19, 2019, Dongmei Zhang and Anders Møller (Eds.). ACM, 192–203.
https://doi.org/10.1145/3293882.3330552

[7] Xuan-Bach Dinh Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem
Visser. 2017. S3: syntax- and semantic-guided repair synthesis via programming
by examples. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017,
Eric Bodden, Wilhelm Schäfer, Arie van Deursen, and Andrea Zisman (Eds.).
ACM, 593–604. https://doi.org/10.1145/3106237.3106309

[8] Bo Lin, Shangwen Wang, Ming Wen, and Xiaoguang Mao. 2022. Context-Aware
Code Change Embedding for Better Patch Correctness Assessment. ACM Trans.
Softw. Eng. Methodol. 31, 3 (2022), 51:1–51:29. https://doi.org/10.1145/3505247

[9] Kui Liu, Li Li, Anil Koyuncu, Dongsun Kim, Zhe Liu, Jacques Klein, and
Tegawendé F. Bissyandé. 2021. A critical review on the evaluation of auto-
mated program repair systems. J. Syst. Softw. 171 (2021), 110817. https:
//doi.org/10.1016/j.jss.2020.110817

[10] Kui Liu, Shangwen Wang, Anil Koyuncu, Kisub Kim, Tegawendé F. Bissyandé,
Dongsun Kim, Peng Wu, Jacques Klein, Xiaoguang Mao, and Yves Le Traon. 2020.
On the e�ciency of test suite based program repair: A Systematic Assessment of
16 Automated Repair Systems for Java Programs. In ICSE ’20: 42nd International
Conference on Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020,
Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, New York, NY, USA, 615–627.
https://doi.org/10.1145/3377811.3380338

[11] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and
Lin Tan. 2020. CoCoNuT: combining context-aware neural translation models

using ensemble for program repair. In ISSTA ’20: 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Virtual Event, USA, July 18-22,
2020, Sarfraz Khurshid and Corina S. Pasareanu (Eds.). ACM, 101–114. https:
//doi.org/10.1145/3395363.3397369

[12] Yannic Noller, Ridwan Shari�deen, Xiang Gao, and Abhik Roychoudhury. 2022.
Trust Enhancement Issues in Program Repair. In Proceedings of the 44th Inter-
national Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE
’22). Association for Computing Machinery, New York, NY, USA, 2228–2240.
https://doi.org/10.1145/3510003.3510040

[13] Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the cure
worse than the disease? over�tting in automated program repair. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2015, Bergamo, Italy, August 30 - September 4, 2015, Elisabetta Di Nitto, Mark
Harman, and Patrick Heymans (Eds.). ACM, 532–543. https://doi.org/10.1145/27
86805.2786825

[14] Haoye Tian, Kui Liu, Abdoul Kader Kaboré, Anil Koyuncu, Li Li, Jacques Klein,
and Tegawendé F. Bissyandé. 2020. Evaluating Representation Learning of Code
Changes for Predicting Patch Correctness in Program Repair. Association for
Computing Machinery, New York, NY, USA, 981–992. https://doi.org/10.1145/33
24884.3416532

[15] Shangwen Wang, Ming Wen, Bo Lin, Hongjun Wu, Yihao Qin, Deqing Zou,
Xiaoguang Mao, and Hai Jin. 2020. Automated Patch Correctness Assessment:
How Far AreWe?. In Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering (Virtual Event, Australia) (ASE ’20). Association
for Computing Machinery, New York, NY, USA, 968—-980. https://doi.org/10.1
145/3324884.3416590

[16] Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang Huang. 2018.
Identifying patch correctness in test-based program repair. In Proceedings of the
40th International Conference on Software Engineering, ICSE 2018, Gothenburg,
Sweden, May 27 - June 03, 2018, Michel Chaudron, Ivica Crnkovic, Marsha Chechik,
and Mark Harman (Eds.). ACM, 789–799. https://doi.org/10.1145/3180155.3180
182

[17] Jun Yang, Yuehan Wang, Yiling Lou, Ming Wen, and Lingming Zhang. 2023.
A Large-Scale Empirical Review of Patch Correctness Checking Approaches.
In Proceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE 2023, San
Francisco, CA, USA, December 3-9, 2023, Satish Chandra, Kelly Blincoe, and Paolo
Tonella (Eds.). ACM, 1203–1215. https://doi.org/10.1145/3611643.3616331

[18] Jinqiu Yang, Alexey Zhikhartsev, Yuefei Liu, and Lin Tan. 2017. Better test cases
for better automated program repair. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Germany,
September 4-8, 2017, Eric Bodden, Wilhelm Schäfer, Arie van Deursen, and Andrea
Zisman (Eds.). ACM, 831–841. https://doi.org/10.1145/3106237.3106274

[19] He Ye, Jian Gu, Matias Martinez, Thomas Durieux, and Martin Monperrus. 2022.
Automated Classi�cation of Over�tting Patches With Statically Extracted Code
Features. IEEE Trans. Software Eng. 48, 8 (2022), 2920–2938. https://doi.org/10.1
109/TSE.2021.3071750

[20] He Ye, Matias Martinez, and Martin Monperrus. 2021. Automated patch as-
sessment for program repair at scale. Empir. Softw. Eng. 26, 2 (2021), 20.
https://doi.org/10.1007/s10664-020-09920-w

Received 26-JAN-2024; accepted 2024-04-09

456

https://doi.org/10.1145/3338906.3338911
https://doi.org/10.1145/3395363.3404362
https://doi.org/10.1145/3533767.3534368
https://doi.org/10.1109/ASE.2019.00116
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/3293882.3330552
https://doi.org/10.1145/3106237.3106309
https://doi.org/10.1145/3505247
https://doi.org/10.1016/j.jss.2020.110817
https://doi.org/10.1016/j.jss.2020.110817
https://doi.org/10.1145/3377811.3380338
https://doi.org/10.1145/3395363.3397369
https://doi.org/10.1145/3395363.3397369
https://doi.org/10.1145/3510003.3510040
https://doi.org/10.1145/2786805.2786825
https://doi.org/10.1145/2786805.2786825
https://doi.org/10.1145/3324884.3416532
https://doi.org/10.1145/3324884.3416532
https://doi.org/10.1145/3324884.3416590
https://doi.org/10.1145/3324884.3416590
https://doi.org/10.1145/3180155.3180182
https://doi.org/10.1145/3180155.3180182
https://doi.org/10.1145/3611643.3616331
https://doi.org/10.1145/3106237.3106274
https://doi.org/10.1109/TSE.2021.3071750
https://doi.org/10.1109/TSE.2021.3071750
https://doi.org/10.1007/s10664-020-09920-w

	Abstract
	1 Introduction
	2 Overfitting Assessment Baseline
	3 Motivation
	4 Methodology
	5 Results
	6 Conclusions
	References

