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Abstract—We propose a parallel constructive interference
(CI)-based symbol-level precoding (SLP) approach for massive
connectivity in the downlink of multiuser multiple-input single-
output (MU-MISO) systems, with only local channel state infor-
mation (CSI) used at each processor unit and limited information
exchange between processor units. We explore and reveal the
separability of the SLP model. By reformulating the power
minimization (PM) SLP problem and exploiting the separability
of the corresponding reformulation, the original problem is
decomposed into several parallel subproblems via the ADMM
framework with closed-form solutions, leading to a substantial
reduction in computational complexity. The sufficient condition
for guaranteeing the convergence of the proposed approach is
derived, based on which an adaptive parameter tuning strategy
is proposed to accelerate the convergence rate. To avoid the
large-dimension matrix inverse operation, an efficient algorithm
is proposed by employing the standard proximal term and by
leveraging the singular value decomposition (SVD). Furthermore,
a prox-linear proximal term is adopted to fully eliminate the
matrix inversion, and a parallel inverse-free SLP (PIF-SLP)
algorithm is finally obtained. Numerical results validate our
derivations above, and demonstrate that the proposed PIF-SLP
algorithm can significantly reduce the computational complexity
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I. INTRODUCTION

MASSIVE multiuser multiple-input multiple-output (M-
MU-MIMO) has been foreseen as one of the key

enablers for future wireless communication systems [1]–[3],
as it has the potential to offer tremendous multiplexing gain
and array gain, thereby meeting the boosting requirements
of spectral efficiency and energy efficiency [4], [5]. As a
fundamental factor that affects system performance, interfer-
ence plays a central role in reaping the benefits of M-MU-
MIMO, and needs to be dealt with carefully. As an effective
interference management technique in the downlink, precoding
has attracted extensive attention [6].

Maximum ratio transmission (MRT) precoding is the sim-
plest strategy that maximizes the received signal-to-noise ratio
(SNR) [7]. MRT is devised for noise-limited scenarios, when it
comes to interference-limited scenarios, zero-forcing (ZF) pre-
coding is a preferable choice [8], which employs the channel
inversion to eliminate the multiuser interference at the price of
augmenting noise. As a regularized form of channel inversion,
regularized ZF (RZF) precoding is proposed to alleviate the
noise-amplifying effect of ZF [9]. The aforementioned lin-
ear precoding methods are close to optimal only when the
number of transmit antennas is far greater than the number
of users [10], because in such case the channels of users are
asymptotically orthogonal and favorable propagation can be
achieved [1]. On the other hand, as the number of users keeps
increasing, there will be a large spread in the singular value
of the channel matrix [9], which will dramatically deteriorate
the performance of linear precoding methods.

Except for closed-form linear precoding methods described
above, there also exist a number of nonlinear precoding
approaches in the literature. Dirty paper coding (DPC) is a
capacity-achieving nonlinear precoding method that cancels
known interference sequentially leveraging the full channel
state information (CSI) [11]. An interference cancellation al-
ternative is the Tomlinson-Harashima precoding (THP), which
imposes an integer offset at the transmitter, and a modulo
operation is required for the received signal [12]. Instead of
sequentially calculating the offset in THP, another nonlinear
precoding, the vector perturbation (VP) precoding, jointly
selects a perturbation vector via the sphere encoding algorithm
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and transmits the perturbed signals to the users, which is
shown to achieve superior performance and requires a rela-
tively simpler decoding procedure than THP [13].

In addition to devising the precoder heuristically or analyti-
cally, pursuing the optimal precoding strategy naturally resorts
to optimization. Generally, most conventional optimization-
based precoding methods are designed involving two perfor-
mance metrics, one for object and the other for constraint,
among which the most commonly used metrics include the
transmit power, the received signal-to-interference-plus-noise
ratio (SINR), achievable sum-rate, error rate, etc. For example,
the SINR-constrained power minimization (PM) problem aims
to minimize the total transmit power, subject to the received
SINR target for each user [14]. This problem can be solved via
the uplink-downlink duality [14] or conic programming [15],
and also can be reformulated into a semidefinite optimization,
for which the semidefinite relaxation approach is viable [16].
The inverse problem of PM is the max-min SINR balancing
(SB) problem, which maximizes the minimum SINR subject
to a total transmit power constraint [15], [17], [18].

The closed-form and optimization-based linear precoding
methods described above can be categorized as block-level
precoding (BLP), as their precoding matrices are only de-
pendent on the CSI and stay constant during a channel
coherence interval. On the other hand, the nonlinear precoding
methods are also known as symbol-level precoding (SLP),
because their precoding matrices are jointly determined by
the CSI and data symbols, and generally redesigned for each
symbol slot. From a statistical perspective, the interference
is uncontrollable and performs as a deterioration factor, and
thereby BLP methods aim to mitigate or eliminate interference.
On the other hand, from an instantaneous view, interference
is controllable and can be manipulated to enhance signal
detection by means of SLP. This was first discussed by the
constructive interference (CI) precoding in the context of
pre-decorrelation and Pre-Rake [19]. The same concept was
introduced to ZF precoding later in [20]. As a step further, a
correlation rotation precoding technique was designed to rotate
both CI and destructive interference (DI) such that the phase of
interference is aligned to the signal of interest, based on which
DI can be transferred into CI [21]. The first work to combine
CI precoding with optimization was proposed in the context of
VP precoding with limited feedback. Standing on the concept
of CI, the optimization-based PM-SLP and SB-SLP schemes
were further studied, where the resulting interference is no
longer strictly aligned to the signal of interest, but constrained
by the CI regions [22], which provides further performance
improvements. At the same time, this means that the SLP
methods must solve a constrained optimization problem at
each symbol slot to obtain the full benefits offered by CI-SLP,
resulting substantial computational complexity, especially in
M-MU-MIMO settings.

Towards low-complexity and low-latency CI-SLP solutions,
plenty of works have endeavored to find efficient and practical
SLP solutions. For PM-SLP, the virtual multicast formulation
is widely used, by which the optimization variable is shifted
from the large-dimension precoding matrix to the small-
dimension precoded signal vector [22]–[24]. Subsequently, La-

grange duality is applied to inspect the reformulated problem,
whose Lagrangian dual is identified as a nonnegative least-
squares (NNLS) problem. A gradient projection algorithm with
line search was proposed to solve the NNLS problem [22].
With further inspection, the structure of the optimal solu-
tion for PM-SLP was analyzed via the Karush–Kuhn–Tucker
(KKT) optimality conditions, which leads to a closed-form
suboptimal solution for the NNLS problem [23]. To improve
the approximation performance of the suboptimal solution,
its improved alternative with an extra validation step was
proposed [24]. For SB-SLP, its Lagrangian dual was shown
to be a quadratic programming problem over a probability
simplex, and the optimal structure of the precoding matrix
was derived, based on which a closed-form iterative algorithm
with conditional optimality was developed [25], [26].

Based on the above descriptions, it can be summarized that
all the existing CI-based precoding approaches need sequential
and centralized implementations, while the closed-form sub-
optimal solutions suffer from performance losses. More im-
portantly, the resource-demanding matrix inverse operation is
commonly required, so the resulting complexity of SLP is still
high, which hinders its practical implementation. Motivated by
these findings, in this paper, we propose a parallel inverse-free
SLP (PIF-SLP) approach for the M-MU-MIMO downlink. The
main contributions of the paper are summarized as follows.

1) We explore the problem structure of PM-SLP. For the
first time in the literature, we reveal the separability of
the considered problem. To the best of our knowledge,
this is a favorable latent structure haven’t been reported
for SLP, which lays the foundation for parallel and
distributed implementations.

2) We propose a parallel SLP approach based on the proxi-
mal Jacobian alternating direction method of multipliers
(PJ-ADMM) for the PM-SLP problem. We take advan-
tage of the novel separable structure of the PM-SLP
problem, and by transferring the inequality constraints
into equality constraints with the introduced slack vari-
able vector, the original problem is formulated into an
unconstrained problem using the augmented Lagrangian
method (ALM). The PJ-ADMM framework is adopted
to decouple the unconstrained problem into a series
of parallel subproblems, and closed-form solutions are
obtained for each subproblem.

3) We analyze the convergence performance of the pro-
posed parallel SLP approach, and derive the sufficient
condition for convergence, which indicates that the
parallel SLP approach is guaranteed to converge to the
global optimum as long as the proximal term is chosen
sufficiently large. However, a larger proximal term will
result in a slower convergence rate. Accordingly, an
adaptive parameter tuning strategy is developed to speed
up the convergence.

4) Based on the above, we propose the PIF-SLP algorithm
by adopting a prox-linear proximal term to avoid the ma-
trix inverse operation for further complexity reduction.
Specifically, the Hessian of the quadratic penalty term in
the Lagrangian function is approximated with an identi-
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cal proximal matrix, and hence the corresponding matrix
inversion can be replaced by scalar division. Meanwhile,
the required number of matrix multiplication is also
reduced.

5) We further propose a decentralized low-coordination
overhead scheme to alleviate the coordination overhead,
at the cost of slightly increased computational overhead.
By rearranging the closed-form solutions of the subprob-
lems and incorporating the updates of global variables in
the parallel processor units, the extra consensus node is
removed, which reduces the coordination overhead. The
computational complexity and the coordination overhead
between processor units of the parallel SLP approach are
also analytically studied.

Monte Carlo simulations are conducted to validate our analysis
as well as the effectiveness of the proposed schemes, where
it is demonstrated that the proposed PIF-SLP algorithm can
greatly reduce the computational burden of the CI-SLP without
performance loss. A scalable complexity-performance trade-
off of the parallel SLP approach is also observed.

The remainder of this paper is organized as follows. Section
II introduces the system model and CI, as well as the canonical
PM-SLP problem formulation. Section III reformulates the
canonical problem based on separability and slackness, where
ALM and ADMM are further introduced. The proposed par-
allel SLP approach and its sufficient condition of convergence
are presented in Section IV, including the adaptive parameter
tuning strategy and the final PIF-SLP algorithm. Section
V provides the computational complexity and coordination
overhead analysis. Numerical results are presented in Section
VI, and Section VII concludes the paper.

Notation: Scalars, vectors, and matrices, are represented by
plain lowercase, boldface lowercase, and boldface capital let-
ters, respectively. (·)T , (·)H , and (·)−1 denote transpose, con-
jugate transpose, and inverse operators, respectively. CM×N

and RM×N denote the sets of M ×N matrices with complex
and real entries, respectively. |·| represents the absolute value
of a real scalar or the modulus of a complex scalar. ∥·∥ denotes
the Euclidean norm of a vector or spectral norm of a matrix.
ℜ{·} and ℑ{·} respectively denote the real part and imaginary
part of a complex input. ⪰ denotes element-wise inequality. 0,
1, and I represent respectively, the all-zeros vector, the all-ones
vector, and the identity matrix with appropriate dimensions.
max{·} represents the element-wise maximum. ⊘ denotes the
element-wise division. diag{·} returns a vector consisting of
the main diagonal elements of a input matrix.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a downlink massive MU-MISO system, where
a base station (BS) equipped with Nt antennas serves K
single-antenna users in the same time-frequency resource. The
modulated data symbol vector s̃ ≜ [s̃1, · · · , s̃K ]T ∈ CK is
composed of K independent symbols randomly drawn from
a normalized M-ary phase-shift-keying (PSK) constellation,
which is mapped to the transmit signal x̃ ≜ [x̃1, · · · , x̃Nt

]T ∈
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Fig. 1. Illustration of CI regions for a generic M-PSK modulation.

CNt at the BS via SLP. The received signal of user k is
expressed as

yk = h̃T
k x̃+ nk, (1)

where h̃k ∈ CNt denotes the quasi-static Rayleigh flat-fading
channel vector between BS and user k, and nk is the circularly
symmetric complex zero-mean Gaussian white noise with
variance σ2

k at user k. The above signal model can be written
in a more compact form as

y = H̃x̃+ n, (2)

where y ≜ [y1, · · · , yK ]T ∈ CK and n ≜ [n1, · · · , nK ]T ∈
CK denote the received signal and noise at all K users,
respectively. H̃ ≜ [h̃1, · · · , h̃K ]T ∈ CK×Nt is the channel
matrix. To focus on the precoding design, perfect CSI is
assumed throughout this paper.

B. Constructive Interference

CI precoding was first introduced in [19], which reveals
that the constructive and destructive interference pattern of
the noiseless received signal

{
h̃T
k x̃
}

is jointly determined by
CSI and data symbols. Based on this fact, interference can be
predicted and further exploited using SLP, which judiciously
utilizes CSI and data symbols to optimize the transmit signal,
such that all the multiuser interference add up constructively
at receivers [27]. Therefore, the received instantaneous SINR

at user k is given as SINRk ≜
|h̃T

k x̃|2
σ2
k

. Since all interference is
exploited via SLP, the SINR is equivalent to the conventional
signal-to-noise ratio (SNR).

Geometrically, CI is achieved as long as the noiseless
received signal of each user lies in the symbol-specified CI
region in the complex plane, where the CI region refers to
a polyhedron bounded by hyperplanes parallel to decision
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boundaries or Voronoi edges [22], [28], and the only vertex
of one CI region is the SINR threshold-dependent nominal
constellation symbol, as depicted in Fig. 1. Without loss of
generality, let s̃k be the symbol of interest for user k, which
is an arbitrary constellation point drawn from a normalized
M-PSK constellation as described in Section II-A. One-half
of the decision region angle is ∠DAC = π

M . We rotate
s̃k to the positive real axis by a phase shift −∠s̃k, thereby
the rotated symbol is 1, which corresponds to

−→
OS in Fig. 1.

Other related signals are rotated by the same phase. The above
phase rotations enable formulating the CI constraints more
intuitively with straightforward trigonometry. Consequently,
the received noiseless signal of user k, h̃T

k x̃, turns out to h̃T
k

s̃k
x̃,

which is denoted by
−−→
OB in Fig. 1. For a given instantaneous

SINR threshold γk for user k, the nominal constellation point
is equivalent to

√
γkσks̃k. We introduce

−→
OA as the rotated

nominal constellation point, which is also the only vertex of
the interested CI region. When

−−→
OB is located in the depicted

CI region, the received signal is pushed away from decision
boundaries and the instantaneous SINR is guaranteed to be no
less than the prescribed threshold γk. One of the criteria that
specifies the location of

−−→
OB in the CI region is

∣∣∣−−→CD
∣∣∣ ≥

∣∣∣−−→CB
∣∣∣.

Accordingly, the corresponding explicit mathematical formu-
lation of CI constraints for M-PSK signaling can be written
as

ℜ
{
ĥT
k x̃
}
−

∣∣∣ℑ
{
ĥT
k x̃
}∣∣∣

tan π
M

≥ √γkσk,∀k, (3)

where ĥT
k ≜ h̃T

k

s̃k
, γk denotes the pre-defined instantaneous

SINR threshold for user k. It is worth noting that the CI con-
straint for each user already incorporates the SINR constraint.1

C. SLP for Power Minimization

Throughout this paper, we are interested in minimizing the
total transmit power subject to CI constraints, which is known
as the PM-SLP problem. This optimization problem can be
formulated as

P1 : min
x̃
∥x̃∥2

s.t. ℜ
{
ĥT
k x̃
}
−

∣∣∣ℑ
{
ĥT
k x̃
}∣∣∣

tan π
M

≥ √γkσk, ∀k. (4)

The quadratic objective function and linear constraints indicate
that this problem is convex, and hence can be handled via off-
the-shelf solvers. Unfortunately, most generic solvers, e.g., Se-
DuMi and SDPT3, are based on the high-complexity interior-
point method (IPM). To alleviate the computational burden,
efficient algorithms based on gradient projection method [22],
suboptimal closed-form solution [23], and improved subopti-
mal closed-form solution [24] were proposed. Existing works,
however, focus on centralized iterative algorithms and ignore
the separable nature of the PM-SLP problem. In the following,
we reveal the separable structure of the PM-SLP problem.

1The CI constraints can be readily extended to multi-level modulations,
such as QAM, by employing the symbol-scaling metric [29].

By exploiting such separability, we propose a parallel CI-SLP
precoding approach in this paper based on the PJ-ADMM, as
shown below.

III. ALM AND CONVENTIONAL ADMM FOR PM-SLP

In this section, we investigate the structure of the PM-SLP
optimization problem and reveal its separable nature. ALM is
used to tackle the reformulated problem subsequently. Conven-
tional Gauss-Seidel ADMM and Jacobian ADMM are further
employed to exploit the separability to arrive at sequential and
parallel solutions, where the separable PM-SLP problem is
decomposed into distributed subproblems. In the next section,
we present the proposed PIF-SLP approach.

A. Separability and Slackness

The real-valued equivalent of P1 can be written as

P2 : min
x
∥x∥2

s.t. NSkHkx ⪰
√
γkσk1, ∀k, (5)

where

x ≜

[
ℜ{x̃}
ℑ {x̃}

]
∈ R2Nt ,

N ≜

[
1 − 1

tan π
M

1 1
tan π

M

]
∈ R2×2,

Sk ≜


ℜ
{

1
s̃k

}
−ℑ

{
1
s̃k

}

ℑ
{

1
s̃k

}
ℜ
{

1
s̃k

}

 ∈ R2×2,

Hk ≜


ℜ
{
h̃T
k

}
−ℑ

{
h̃T
k

}

ℑ
{
h̃T
k

}
ℜ
{
h̃T
k

}

 ∈ R2×2Nt .

We further introduce Āk ≜ NSkHk, and bk ≜
√
γkσk1.

Accordingly, the CI constraints become

Ākx ⪰ bk, ∀k. (6)

Stacking the CI constraints, the compact formulation can be
written as

Ax ⪰ b, (7)

where A ≜
[
ĀT

1 , · · · , ĀT
K

]T ∈ R2K×2Nt , b ≜[
bT
1 , · · · ,bT

K

]T ∈ R2K . We can identify that the left-hand
side of (7) can be expressed as a linear combination of the
columns of A, i.e.,

∑2Nt

i=1 aixi, where ai is the i-th column of
A, xi is the i-th entry of x. Accordingly, P2 can be rearranged
as

P3 : min
{xi}

N∑

i=1

∥xi∥2

s.t.

N∑

i=1

Aixi ⪰ b, (8)

where xi ∈ Rni with
∑N

i=1 ni = 2Nt is the i-th block of
x, composed of the adjacent and/or disadjacent elements of
x, and Ai ∈ R2K×ni is the i-th column block of A, each
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column of which is uniquely taken from the columns of A.
Mathematically, for the adjacent case, x =

[
xT
1 , · · · ,xT

N

]T
,

A = [A1, · · · ,AN ], while for the disadjacent case, xi =
ET

i x, Ai = AEi, where Ei ∈ R2Nt×ni , and each column of
{Ei} is uniquely picked from the columns of the 2Nt × 2Nt

identity matrix. With such formulation, P3 is partitioned into
N blocks, here we do not confine the number of blocks, so
long as N is a positive integer not greater than 2Nt. When
N = 2Nt, the transmit signal is decomposed into 2Nt scalars
hence the PM-SLP problem is component separable [30].

To be more specific, the separable structure essentially
means that the primal objective function and constraints can
be rearranged as the sum of multiple blocks, where each block
only contains a subset of the optimization variables. Therefore
each block of the primal variable is not strongly coupled with
others. In the following, we will show that by assigning a
Lagrangian multiplier to each SINR constraint, the update of
each block of transmit signal admits decomposable structure,
i.e., the minimization of the augmented Lagrangian function
with respect to each primal variable block can be carried
independently with others.

We reformulate P3 by introducing a slack variable vector
c ∈ R2K

+ to replace the original inequality constraints as
follows:

P4 : min
{xi},c

N∑

i=1

∥xi∥2

s.t.

N∑

i=1

Aixi = b+ c,

c ⪰ 0. (9)

Since the feasible region of the slack variable c is R2K
+ , by

introducing an indicator function, the nonnegativity constraints
can be incorporated into the objective function:

P5 : min
{xi},c

N∑

i=1

∥xi∥2 + IR2K
+

(c)

s.t. −
N∑

i=1

Aixi + b+ c = 0, (10)

where IR2K
+

is the indicator function of R2K
+ given by

IR2K
+

(c) =

{
0, if c ∈ R2K

+ ,

+∞, otherwise.
(11)

B. ALM

The corresponding augmented Lagrangian function of P5 is
given in (12) on the top of the next page, where λ ∈ R2K

+

is the Lagrange multiplier vector, ρ is a positive penalty
parameter that determines the severity of the quadratic penalty
on constraint violations. When the value of λ is close to the
optimal Lagrange multiplier, or the penalty parameter ρ is
large, the optimal transmit signal vector x of P5 can be well
approximated by the unconstrained minima of the augmented
Lagrangian [31]. Therefore, the original PM-SLP problem can
be solved via the ALM.

Starting with an arbitrary λ0, the ALM aims to update
the multiplier vector iteratively to approximate the optimal
dual solution. A common choice of such approximation is the
following gradient iteration:

λt+1 = λt + ρt
(
−Axt+1 + b+ ct+1

)
, (13)

where the superscript denotes the iteration index, and(
ct+1,xt+1

)
is any vector that minimizes Lρt

(
x, c,λt

)
,

namely,
(
ct+1,xt+1

)
= argmin

c,x
Lρt

(
x, c,λt

)
. (14)

The standard ALM guarantees global convergence with
a theoretical linear convergence rate, while its convergence
rate is in general faster in practical problems. Despite the
promising convergence performance, the ALM involves a joint
optimization of primal variables, and hence can not take
advantage of the separability.

C. Gauss-Seidel ADMM

Given the current iteration variables
(
ct,xt,λt

)
, the

ADMM generates new iteration variables
(
ct+1,xt+1,λt+1

)

via alternating optimization. Applying standard ADMM to the
separable PM-SLP problem,

(
ct+1,xt+1,λt+1

)
is updated via

the following steps:

ct+1 =argmin
c
Lρ

(
xt
1, · · · ,xt

N , c,λt
)
, (15a)

xt+1
i =argmin

xi

Lρ

(
xt+1
<i ,xi,x

t
>i, c

t+1,λt
)
,∀i, (15b)

λt+1 =λt + ρ

(
−

N∑

i=1

Aix
t+1
i + b+ ct+1

)
. (15c)

We can observe that the transmit signal xt+1
i is calculated by

a sweep of Gauss-Seidel updates, namely, xt+1
i is sequentially

updated one after another. While the direct extended Gauss-
Seidel ADMM does not necessarily converge for N ≥ 3 [32],
it is still efficient at solving many practical problems. Thanks
to the strong convexity of the objective function of PM-
SLP, Gauss-Seidel ADMM is applicable. On the other hand,
however, although Gauss-Seidel ADMM is able to partition
the original PM-SLP problem into several subproblems and
allow distributed processing, parallel processing is still not
achievable. Therefore, Gauss-Seidel ADMM is inefficient for
large-scale MIMO precoding.

D. Jacobian ADMM

To enable parallel processing, Jacobian ADMM can be
adopted, which minimizes the augmented Lagrangian with
respect to x1, · · · ,xN in a parallel fashion, while keeping the
updates of the remaining variables unchanged, given by

xt+1
i = argmin

xi

Lρ

(
xi,x

t
̸=i, c

t+1,λt
)
,∀i. (16)

The above full decomposition and parallelization, however, is
achieved at the expense of a degraded practical convergence
performance compared to the Gauss-Seidel ADMM. It was
shown in [33] that the Jacobian ADMM iterations may be
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Lρ (x, c,λ) =

N∑

i=1

∥xi∥2 + IR2K
+

(c) + λT

(
−

N∑

i=1

Aixi + b+ c

)
+

ρ

2

∥∥∥∥∥−
N∑

i=1

Aixi + b+ c

∥∥∥∥∥

2

=

N∑

i=1

∥xi∥2 + IR2K
+

(c) +
ρ

2

∥∥∥∥∥−
N∑

i=1

Aixi + b+ c+
λ

ρ

∥∥∥∥∥

2

− 1

2ρ
∥λ∥2 (12)

divergent, thus the output of the preceding Jacobian updates
may not be used in the next iteration directly.

To design a Jacobian ADMM with guaranteed convergence,
[33] suggests inserting an underrelaxation step between every
two adjacent Jacobian ADMM iterations, given by

ut+1 = ut − α
(
ut − ūt

)
, (17)

where ut ≜
(
xt
1,x

t
2 · · · ,xt

N ,λt
)
, ūt ≜

(
x̄t
1, x̄

t
2 · · · , x̄t

N , λ̄
t
)

denotes the output of the original Jacobian ADMM with the
input ut, α > 0 is a chosen step size. Note that, as an exactly
updated intermediate variable, the slack variable c is excluded
from u. The motivation for the above underrelaxation step
lies in the fact that the Jacobian decomposition may have
poor accuracy to approximate the joint optimization step of
ALM, and [33] proposes to compensate for the accuracy loss
by combining the last iteration ut with ūt approximately in
aid of the step size α. Its worst-case O(1/t) convergence rate
measured by the iteration complexity in both the ergodic and
nonergodic senses is established.

Another way to enhance convergence of the Jacobian
ADMM is to regularize each decomposed problem by a proxi-
mal term [34]. By adopting a proximal Jacobian decomposition
method of ALM, the iteration step for the transmit signal can
be expressed as

xt+1
i =argmin

xi

Lρ

(
xt
̸=i,xi, c

t+1,λt
)

+
τρ

2

∥∥Ai

(
xi − xt

i

)∥∥2 ,∀i, (18)

where τ > 0 is a proximal coefficient that controls the
proximity of the new iteration to the last one. It is essentially
one type of proximal Jacobian ADMM, but to discriminate
it from the PJ-ADMM in the next section and follow the
terminology in [34], we refer it to PJ-ALM, which is sum-
marized in Algorithm 1. It was shown in [34] that if the
proximal coefficient is sufficiently large, i.e., τ ≥ N − 1, the
convergence of the proximal Jacobian decomposition of ALM
can be guaranteed.

IV. PROPOSED PIF-SLP APPROACH

In the previous section, we have revealed the separability
of the original PM-SLP optimization problem (4) by inspect-
ing and rearranging its structure to facilitate distributed and
parallel processing. In this section, we adopt a more general
and flexible PJ-ADMM framework in [35] to solve the refor-
mulated PM-SLP problem with closed-form solutions for each
subproblem. PJ-ADMM is similar to the preceding relaxation
and regularization idea, while its relaxation step is split into
primal and dual relaxation, where the primal relaxation is

Algorithm 1 PJ-ALM for PM-SLP Problem (8)

Input: A, b, ρ, τ
Output: x

1: Initialize c0, x0
i (i = 1, · · · , N), and λ0;

2: for t = 0, 1, · · · do
3: Collect {xt

i}Ni=1 and λt;
4: Update ct+1 by (15a);
5: Share ct+1;
6: Collect ct+1, λt and {xt

i};
7: Update xt+1

i for i = 1, · · · , N in parallel by (18);
8: Share xt+1

i ;
9: Collect ct+1 and {xt+1

i }Ni=1;
10: Update λt+1 by (15c);
11: Share λt+1;
12: end for

replaced by a flexible quadratic proximal regularization term
for each subproblem. The PJ-ADMM procedure for PM-SLP
is formulated as

ct+1 =argmin
c
Lρ

(
xt
1, · · · ,xt

N , c,λt
)
, (19a)

xt+1
i =argmin

xi

Lρ

(
xt
̸=i,xi, c

t+1,λt
)
+

1

2

∥∥xi − xt
i

∥∥2
Pi

,∀i,
(19b)

λt+1 =λt + βρ

(
−

N∑

i=1

Aix
t+1
i + b+ ct+1

)
, (19c)

where β > 0 is a damping parameter, Pi is a symmetric and
positive semi-definite matrix and ∥xi∥2Pi

≜ xT
i Pixi. Based

on the above derivations, the original PM-SLP problem is de-
composed, and each subproblem can be calculated in a parallel
and distributed manner with (19). The global convergence with
o(1/t) convergence rate under certain conditions on {Pi} and
β of PJ-ADMM can be guaranteed, as established in [35].
In what follows, we derive closed-form solutions for each
subproblem in the PJ-ADMM iterations.

A. Closed-Form Solution for Each Subproblem of PJ-ADMM

The update for the slack variable c can be written as

ct+1 = arg min
c∈R2K

+

ρ

2

∥∥∥∥∥−
N∑

i=1

Aix
t
i + b+ c+

λt

ρ

∥∥∥∥∥

2

, (20)
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which is equivalent to projecting the vector
∑N

i=1 Aix
t
i−b−

λt

ρ onto R2K
+ , denoted by

PR2K
+

(
N∑

i=1

Aix
t
i − b− λt

ρ

)
.

Its closed-form solution is given by

ct+1 = max

{
N∑

i=1

Aix
t
i − b− λt

ρ
,0

}
. (21)

The iteration for xt+1
i is updated as follows:

xt+1
i = argmin

xi

∥xi∥2 +
ρ

2

∥∥∥∥∥∥
−Aixi −

N∑

j ̸=i

Ajx
t
j + b

+ct+1 +
λt

ρ

∥∥∥∥∥∥

2

+
1

2

∥∥xi − xt
i

∥∥2
Pi

,∀i, (22)

which is an unconstrained quadratic programming, whose
optimal solution can be obtained by setting the gradient of
the objective function with respect to xi to zero, i.e.,

2xi + ρAT
i


Aixi +

N∑

j ̸=i

Ajx
t
j − b− ct+1 − λt

ρ




+Pi

(
xi − xt

i

)
= 0,∀i. (23)

After some calculations, the closed-form solution for xt+1
i can

be written as

xt+1
i =

(
2I+ ρAT

i Ai +Pi

)−1


Pix

t
i + ρAT

i ×

−

N∑

j ̸=i

Ajx
t
j + b+ ct+1 +

λt

ρ




 ,∀i. (24)

Note that when we take N = 2Nt, i.e., the transmit signal
vector x is decomposed into 2Nt scalars, Ai is reduced to
a column vector ai, and Pi is reduced to a scalar pi, then
the update of the transmit signal can be carried out via 2Nt

parallel and distributed scalar operations, i.e.,

xt+1
i =

pix
t
i + ρaTi

(
−∑2Nt

j ̸=i ajx
t
j + b+ ct+1 + λt

ρ

)

2 + ρaTi ai + pi
,∀i.

(25)
If we group the real and imaginary parts of the same antenna’s
transmit signal into one block, the transmit signal vector will
be decomposed into Nt blocks. Based on the structure of A,
we can find that Ai ∈ R2K×2 is a matrix with orthogonal
columns, which implies that the corresponding AT

i Ai is a
2×2 diagonal matrix with equal non-zero elements. Therefore,
if we take Pi as a diagonal matrix too, then the matrix inverse
operation during the update of xi can be replaced by taking

the reciprocals of the two entries in the main diagonal with
reduced complexity, given by

xt+1
i =


Pix

t
i + ρAT

i ×

−

Nt∑

j ̸=i

Ajx
t
j + b+ ct+1 +

λt

ρ




⊘W,∀i, (26)

where W ≜ diag
{
2I+ ρAT

i Ai +Pi

}
.

B. Convergence Analysis

The global convergence of the PJ-ADMM for linear equality
constraints is established in [35]. As shown in the preceding
section, the linear inequality constraints of PM-SLP are refor-
mulated into linear equality constraints with the aid of the
slack variable c, which is an exactly updated intermediate
variable, thus not affecting convergence [36]. For the sake
of completeness, the global convergence theorem of the PJ-
ADMM PM-SLP is stated in the following.

Theorem 1: Let {ut} be the sequence generated by (19)
with arbitrary initialization. If there exists ϵi > 0 such that

Pi ⪰ ρ

(
1

ϵi
− 1

)
AT

i Ai,∀i,
N∑

i=1

ϵi ≤ 2− β, (27)

then {ut} converges to a solution u∗ to the PM-SLP problem.
Proof: See Appendix A.

Furthermore, by choosing ϵi ≤ 2−β
N , the sufficient condition

can be rewritten as

Pi ⪰ ρ

(
N

2− β
− 1

)
AT

i Ai,∀i. (28)

There are two special choices for Pi as mentioned in [35].
The first one is termed the standard proximal, which takes the
following form:

Pi = τiI, (29)

where τi ≥ ρ
(

N
2−β − 1

)
∥Ai∥2. The other is termed the prox-

linear proximal, which takes the following form:

Pi = τiI− ρAT
i Ai, (30)

where τi ≥ ρN
2−β ∥Ai∥2.

C. Adaptive Parameter Tuning Strategy

In the previous section, we have derived a sufficient condi-
tion to guarantee the convergence of the proposed algorithm,
which provides a lower bound for the Hessian of the proximal
term Pi. However, the basic inequality (60) for bounding
∥u∥2Q is usually rather loose, so the sufficient condition may
be fairly conservative in practical implementation [35].

In order to accelerate convergence, compared to adopting
a constant proximal coefficient that satisfies the sufficient
condition (28), it is preferred to initialize Pi with a relatively
small value and increase it iteratively until ∥ut−ut+1∥2Q ≥ 0,
i.e., adaptively tuning the proximal coefficient matrix Pi. [35]
proposed a heuristic scheme to tune the proximal coefficient
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matrix Pi based on the exact value of ∥ut−ut+1∥2Q. Specif-
ically, the proximal coefficient is increased when Q is not
positive semi-definite. Otherwise it will remain constant. The
aforementioned analysis indicates that the resulting constant
proximal coefficient does not necessarily satisfy the sufficient
condition (28). The details of the adaptive parameter tuning
scheme for our proposed PJ-ADMM are summarized as fol-
lows:

Pt+1
i =

{
δiP

t
i, if ∥ut−1 − ut∥2Q < η∥ut−1 − ut∥2,

Pt
i, otherwise,

(31)

where δi > 1, η > 0 is a sufficient small scalar.

D. Efficient Algorithm and Inverse-Free Algorithm

For the standard proximal term (29), when AT
i Ai is a

non-diagonal matrix, and the proximal parameter τi is tuned
within each iteration, matrix inverse operation is required in
(24) whenever τi is changed, thus the computational com-
plexity of the algorithm is dominated by matrix inversion.
The overall computational complexity can be further reduced
by circumventing matrix inverse operation, which can be
realized based on the fact that the eigenspace of the matrix
to be inverted ρAT

i Ai + (2 + τi)I is inherited from the
eigenspace of AT

i Ai [37]. To this end, we can compute its
singular value decomposition (SVD) only once within the
algorithm, instead of computing its matrix inversion in each
iteration. The obtained singular matrix is then stored and
utilized to compute the transmit signal in the subsequent
iterations. Although both SVD and matrix inverse have the
same cubic complexity with respect to the matrix dimension,
the SVD-based algorithm only requires one execution of SVD
throughout the algorithm, whereas the matrix inversion-based
algorithm needs to perform matrix inversion in each iteration,
resulting in higher complexity. To be more specific, we firstly
express the SVD of AT

i Ai as

AT
i Ai = UiΣiV

T
i , (32)

where Ui, Vi are the right and left singular matrix, respec-
tively, and Ui is a unity matrix, i.e., U−1

i = UT
i . From the

symmetry, we have Vi = Ui. Σi is a diagonal matrix of which
the diagonal entries are singular values of AT

i Ai. Based on
the above, each xi can be efficiently updated by

xt+1
i =

(
2I+ ρAT

i Ai + τiI
)−1

ri

=Ui [ρΣi + (2 + τi)I]
−1

UT
i ri

=Ui

(
UT

i ri ⊘ qi

)
,∀i, (33)

where

qi ≜diag{ρΣi + (2 + τi)I},

ri ≜τix
t
i + ρAT

i


−

N∑

j ̸=i

Ajx
t
j + b+ ct+1 +

λt

ρ


 .

With the above approach, the matrix inversion in each update
of xi is replaced by one SVD in the first update and incre-
mental matrix-vector multiplications in the remaining updates.

So far, the computational complexity induced by the adap-
tive parameter tuning strategy is alleviated by the preceding
SVD-based efficient algorithm, thereby the constant proximal
and the adaptive proximal only need one matrix inverse
operation or SVD, respectively, both with O((2Nt)

3) com-
plexity. For a M-MU-MIMO system equipped with hundreds
of downlink transmit antennas, such complexity reduction is
remarkable.

As a step further, we can observe that the matrix inversion is
needed by the non-diagonal coefficient matrix ρAT

i Ai of the
quadratic penalty term in the augmented Lagrangian function
(12). Fortunately, flexible as the proximal term is, it can be
used to subtract ρAT

i Ai, which means the matrix inverse
operation can be fully eliminated. To devise such an inverse-
free algorithm, we propose to construct a prox-linear proximal
term as in (30), which linearizes the quadratic penalty term by
approximating the Hessian ρAT

i Ai of the quadratic penalty
term with an identity proximal matrix τiI. Accordingly, the
inverse-free closed-form solutions for the update of xi can be
obtained by substituting (30) into (24), i.e.,

xt+1
i =

1

2 + τi

[
τix

t
i + ρAT

i

(
−Axt + b+ ct+1 +

λt

ρ

)]
,∀i.

(34)
The computational complexity is mainly induced by the
matrix-vector multiplications, any single matrix inversion or
SVD is no longer demanded.

E. Decentralized Algorithm for Low-Coordination Overhead

We can envision that the PIF-SLP algorithm can be im-
plemented by a network of processor units connected by
communication links [38], which will consume extra resources
and cause time delay. In the preceding PJ-ADMM approach,
iterations for the slack variable and Lagrangian multiplier
vector need to be carried out at a central node, which requires
extra information exchange with other processor units in the
system to aggregate and propagate intermediate results. In
such case, the time spent in exchanging information cannot
be neglected. When real-time implementation and low-latency
communication is required, we can reduce the coordination
overhead by incorporating the slack variable iteration into
the primal and dual variable iterations, and carrying out the
multiplier iteration at the N blocks of transmit signal vector
iterations. Another valuable feature is that the central node
is no longer required, enabling us to further come up with a
decentralized low-coordination overhead PIF-SLP algorithm.

Without loss of generality, an example illustration of the
centralized, as well as the decentralized system with N = 4
parallel processing units is shown in Fig. 2. For the centralized
scheme shown in Fig. 2a, the processor unit 0 is working as
a consensus node that collects the parallel processor units’
results {Aixi} to update the slack variable vector c and
the Lagrangian multiplier vector λ. The remaining processing
unit 1 to 4 are parallel and distributed nodes that update the
transmit signal blocks {xi} using the exchanged information.
The update of the centralized scheme in Fig. 2a is detailed
in (35) and (36) on the top of the page after next, where the
exchanged information is labeled.
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Processor 1 Processor 2

Processor 3Processor 4

Processor 0

Consensus Node

λ, c

A1x1

λ, c

A2x2
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A3x3

λ, c
A4x4

A1x1

A
2
x 2

A3x3

A
4
x 4 A

2 x
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A
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4

(a) Proposed parallel SLP approach with one centralized consensus
node.

Processor 1 Processor 2

Processor 3Processor 4

A1x1

A
2
x 2

A3x3

A
4
x 4

A
2 x

2

A
4 x

4

(b) Proposed parallel SLP approach with fully decentralized nodes.

Fig. 2. An example of parallel centralized and decentralized SLP systems.

As shown in Fig. 2b, in the presence of the underlying
4 fully parallel processor units, the decentralized scheme
does not need a central node and enjoys fewer coordination
overhead. The quantitative comparison is presented in Section
V-B.

For notational simplicity, we first denote g (x) ≜
−∑N

i=1 Aixi+b. The closed-form solution (21) for the slack
variable c can be rewritten as

ct+1 = max

{
−g
(
xt
)
− λt

ρ
,0

}
. (37)

Denoting g+ (x,λ, ρ) ≜ max
{
g (x) ,−λ

ρ

}
, we have

g+ (x,λ, ρ) = g (x) + c. (38)

Substituting (38) into (12), we can rewrite the augmented
Lagrangian function as

Lρ (x,λ) =

N∑

i=1

∥xi∥2 + λTg+ (x,λ, ρ) +
ρ

2

∥∥g+ (x,λ, ρ)
∥∥2

=

N∑

i=1

∥xi∥2 +

1

2ρ

(
∥max {λ+ ρg (x) ,0}∥2 − ∥λ∥2

)
, (39)

where the penalty term 1
2ρ

(
∥max {λ+ ρg (x) ,0}∥2 − ∥λ∥2

)

corresponding to the inequality CI constraints is continuously

differentiable with respect to x as g (x) is continuously
differentiable [39]. Following the preceding procedure, we
can obtain closed-form expressions similar to the preceding
PJ-ADMM. By substituting (38) into the update for xi in
(24) and λ in (19c), xt+1

i and λt+1 can be further expressed
as

xt+1
i =

(
2I+ ρAT

i Ai +Pi

)−1
[
Pix

t
i

+ρAT
i

(
g+
(
xt,λt, ρ

)
+Aix

t
i +

λt

ρ

)]
,∀i, (40a)

λt+1 =λt + βρg+
(
xt+1,λt, ρ

)
. (40b)

Therefore, the exchanged information is reduced to {Aixi}.
A slight difference between PJ-ADMM and its decentralized
counterpart during iteration lies in that the latter first uses the
updated transmit signal vector to reformulate the slack variable
c, based on which the multiplier vector λ is updated. Since the
slack variable is updated twice in one iteration, this scheme
can converge faster. It is important to note that the above
decentralized scheme is numerically equivalent to a symmetric
version of PJ-ADMM:

ct+
1
2 =argmin

c
Lρ

(
xt
1, · · · ,xt

N , c,λt
)
, (41a)

xt+1
i =argmin

xi

Lρ

(
xt
̸=i,xi, c

t+ 1
2 ,λt

)
+

1

2

∥∥xi − xt
i

∥∥2
Pi

,∀i,
(41b)

ct+1 =argmin
c
Lρ

(
xt+1
1 , · · · ,xt+1

N , c,λt
)
, (41c)

λt+1 =λt + βρ

(
−

N∑

i=1

Aix
t+1
i + b+ ct+1

)
. (41d)

For completeness, we further propose the decentralized PIF-
SLP algorithm, which can be obtained by substituting the
prox-linear proximal term (30) into (40a), given by

xt+1
i =

1

2 + τi

[
τix

t
i + ρAT

i

(
g+
(
xt,λt, ρ

)
+

λt

ρ

)]
,∀i,
(42a)

λt+1 =λt + βρg+
(
xt+1,λt, ρ

)
. (42b)

The corresponding algorithm is summarized in Algorithm 2.

V. COMPLEXITY AND OVERHEAD ANALYSIS

A. Computational Complexity

We evaluate the computational complexity of the proposed
parallel SLP approach, including the matrix inversion-based
plain implementation, the SVD-based efficient algorithm, and
the PIF-SLP algorithm by counting float count operations in
this section. Define the flop-count operator F (z|y) as the
number of flops to compute z given y. Assume that the
dimensions of the parallel subproblems are equal. Thereby
the row and column dimensions of Ai are 2K and 2Nt/N ,
respectively. When no matrix structure is exploited, matrix
inversion is required in each iteration, then the straight and
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Processor 0 :ct+1 = max





N∑

i=1

Aix
t
i

︸ ︷︷ ︸
from distributed nodes

−b− λt

ρ
,0





,λt+1 = λt + βρ



−

N∑

i=1

Aix
t+1
i

︸ ︷︷ ︸
from distributed nodes

+b+ ct+1




, (35)

{Processor i}Ni=1 :xt+1
i =

(
2I+ ρAT

i Ai +Pi

)−1



Pix

t
i + ρAT

i



−

N∑

j ̸=i

Ajx
t
j

︸ ︷︷ ︸
from distributed nodes

+b+ ct+1 + λt

︸ ︷︷ ︸
from central node

1

ρ






,∀i. (36)

Algorithm 2 Proposed Decentralized Low-Coordination Over-
head PIF-SLP Algorithm

Input: A, b, β, ρ, η, {δi}Ni=1

Output: x
1: Initialize x0

i (i = 1, · · · , N),λ0 and τ0i (i = 1, · · · , N);
2: for t = 0, 1, · · · do
3: Update xt+1

i for i = 1, · · · , N in parallel by (42a);
4: Share Aix

t+1
i ;

5: Collect {Ajx
t+1
j }j ̸=i;

6: Update λt+1 for i = 1, · · · , N in parallel by (42b);
7: if ∥ut − ut+1∥2Q < η∥ut − ut+1∥2 then
8: τi ← δiτi;
9: Backtrack ut+1 ← ut;

10: end if
11: end for

naive implementation of the proposed parallel PM-SLP ap-
proach costs

F
(
λt+1|λt

)
=F

(
ct+1|

(
Aix

t
i,λ

t
))

+ F
(
Aix

t+1
i |

(
Aix

t
i, c

t+1,λt
))

+ F
(
λt+1|

(
λt,Aix

t+1
i , ct+1

))

=O(2K) +O(8KN2
t /N

2 + 8N3
t /N

3)

+O(4KNt/N + 4N2
t /N

2) +O(2K)

(43)

flops per iteration. The dominant terms are caused by ma-
trix inversion, matrix-matrix multiplication, and matrix-vector
multiplication during the update of xi. As discussed in Section
IV-D, when SVD is precomputed and used in the subsequent
iterations, then the SVD-based efficient algorithm costs

F
(
λt+1|λt

)
=F

(
ct+1|

(
Aix

t
i,λ

t
))

+ F
(
Aix

t+1
i |

(
Aix

t
i, c

t+1,λt,Ui,Σi

))

+ F
(
λt+1|

(
λt,Aix

t+1
i , ct+1

))

=O(2K) +O(4KNt/N + 4N2
t /N

2) +O(2K)
(44)

flops per iteration. The dominant terms of the efficient im-
plementation turn to matrix-vector multiplication since matrix

inversion and matrix-matrix multiplication are both eliminated.
The PIF-SLP algorithm costs

F
(
λt+1|λt

)
=F

(
ct+1|

(
Aix

t
i,λ

t
))

+ F
(
Aix

t+1
i |

(
Aix

t
i, c

t+1,λt
))

+ F
(
λt+1|

(
λt,Aix

t+1
i , ct+1

))

=O(2K) +O(4KNt/N + 2Nt/N) +O(2K)
(45)

flops per iteration. It can be observed that the PIF-SLP
algorithm is not only free of matrix inversion or SVD but
also requires fewer matrix multiplications compared to the
other two algorithms. The three proposed schemes have cubic,
square, and linear complexities with respect to the dimension
of the transmit signal block, respectively.

B. Coordination Overhead

For the parallel SLP scheme with a consensus node, the iter-
ation needs N+1 processor units, of which N for the update of
xi, and the extra one for multiplier and slack variable update.
Assume the CSI of transmit antennas is only accessed by the
corresponding processors, while the data information is known
by all processor units. The algorithm requires sharing CSI
and interim results among processor units. We share {Aix

t
i}

instead of sharing {Ai} and {xt
i} separately, for reduced

coordination overhead. Hence, the coordination overhead per
iteration of the N +1 processor units is QN(N +2)2K bits,
where Q denotes the required bits for exchanging one real-
valued scalar.

As for the low-coordination overhead decentralized coun-
terpart, the processor dedicated to consensus variables, i.e.,
the Lagrangian multiplier and slack variable, is eliminated.
The Lagrangian multiplier is updated in each local processor
unit. The need for the exchange of consensus variables is
therefore removed. The exchanged information is the sole
{Aix

t
i}. Thus, the coordination overhead per iteration of the

N processor units is QN(N − 1)2K bits.

VI. NUMERICAL RESULTS

This section evaluates and compares the performance of the
proposed algorithms via Monte Carlo simulations. We assume
each user has unit noise variance and equal instantaneous
SINR threshold, i.e., σ2

k = σ2 = 1, γk = γ,∀k. A downlink
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massive MU-MISO system with Nt = 128 transmit antennas
to serve K = 112 single-antenna users is considered unless
otherwise specified. The transmit signal vector is partitioned
into N = 64 blocks, with 4 real-valued elements in each block.

In the sequel for clarity, we list the proposed algorithms
as well as the benchmark schemes we have compared in our
simulations:

1) ‘ZF’: The conventional ZF scheme with symbol-level
power normalization. The corresponding precoded signal
vector is given by

x̃ZF =
1

fZF
H̃H

(
H̃H̃H

)−1

s̃, (46)

where fZF is the symbol-level scaling factor. For the
sake of comparison, the ZF transmit signal is normalized
by the transmit power obtained by the IPM, thus we have

fZF =

∥∥∥∥H̃H
(
H̃H̃H

)−1

s̃

∥∥∥∥
∥x̃IPM∥

, (47)

where x̃IPM is the complex-valued precoded signal
obtained by the IPM for PM-SLP.

2) ‘IPM’: The IPM for PM-SLP implemented by CVX
[40].

3) ‘EGPA’: The efficient gradient projection algorithm for
PM-SLP [22].

4) ‘SCF’: The suboptimal closed-form solution for PM-
SLP [23].

5) ‘ISCF’: The improved suboptimal closed-form solution
for PM-SLP [24].

6) ‘PSLP-SA’: The proposed parallel and distributed ap-
proach for PM-SLP, with the standard proximal term
and the adaptive parameter tuning strategy.

7) ‘PSLP-SC’: The proposed parallel and distributed ap-
proach for PM-SLP, with the standard proximal term
and constant parameters.

8) ‘PSLP-LA’: The proposed parallel and distributed ap-
proach for PM-SLP, with the prox-linear proximal term
and the adaptive parameter tuning strategy.

9) ‘PSLP-LC’: The proposed parallel and distributed ap-
proach for PM-SLP, with the prox-linear proximal term
and constant parameters.

For PSLP-SA and PSLP-LA, the proximal parameters are
initialized as τi = 0.1(N − 1)ρ and τi = 0.06(N − 1)ρ
for QPSK and 8PSK, respectively. After initialization, the
aforementioned proximal parameters will adaptively updated
by the adaptive parameter tuning strategy in Section IV-C
with δi = 2. For PSLP-SC and PSLP-LC, we choose
τi = 0.2ρ

(
N

2−β − 1
)
∥Ai∥2. The penalty parameter ρ is

respectively set to 0.06 and 0.03 for QPSK and 8PSK; the
damping parameter β is set to 1. Elaborately chosen from
a number of different values, this parameter combination is
relatively suited for the adopted settings. In the simulations of
all the above proposed schemes, the slack variable is updated
twice in one iteration for faster convergence, as demonstrated
in Section IV-E.
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Fig. 3. Convergence behavior of the proposed approach in different SINR
thresholds, QPSK, Nt = 128, K = 112, N = 64.

A. Convergence Behavior

We first demonstrate the convergence behavior of the pro-
posed approach. As the adaptive parameter tuning strategy
needs precise information to evaluate whether the parame-
ters need to be tuned, we adopt the more accurate decen-
tralized low-coordination overhead formulation. The iterate
gap of the primal and dual variable is defined as ∆xt ≜∥∥xt − xt−1

∥∥ / ∥xt∥ ,∆λt ≜
∥∥λt − λt−1

∥∥ /
∥∥λt
∥∥.

Fig. 3 illustrates the convergence behavior of the proposed
algorithms in terms of iterate gap and average transmit power,
which are both averaged over 2000 random channel realiza-
tions. The results in Fig. 3 show that the sequence generated by
the proposed algorithm is convergent to a unique solution. The
alternately optimized primal and dual variables have an identi-
cal iterate gap. The algorithms with adaptive parameter tuning
have a faster convergence rate compared to the algorithms with
constant parameters. Meanwhile, using the same parameters,
the inverse-free algorithms with the prox-linear proximal term
have slightly slower convergence performance than the more
complex algorithms with the standard proximal term. When
the iteration index reaches 100, the iterate gap of both the
primal and dual variable converges to the order of 10−4 with
the aid of the adaptive parameter tuning strategy, and the
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Fig. 4. Transmit power and uncoded BER performance of different schemes
in different SINR thresholds, QPSK, Nt = 128, K = 112, N = 64.

average transmit power is close to optimal. Moreover, it is
shown that the rate of convergence of the proposed approach
is independent of the SINR threshold, which is consistent with
the absence of b in the sufficient condition of convergence in
Section IV-B.

B. Transmit Power and Uncoded BER Performance

We compare the performance of the proposed approach and
other schemes of interest in the view of transmit power and
uncoded bit error rate (BER).

Fig. 4a depicts the average transmit power with the SINR
threshold for the same system setting. The transmit power
of the proposed parallel SLP algorithms approach those of
the IPM from low to high. Since we initialize the transmit
signal as a zero vector. Specifically, the early termination of
the PSLP-SA and PSLP-LA algorithm at 35 iterations leads to
a suboptimal solution of nearly 0.15 dB and 0.1 dB transmit
power gap, respectively. When the number of iterations of
PSLP reaches 50, all the proposed schemes have optimal
transmit power. The SCF scheme needs the most transmit
power to satisfy the symbol-level SINR threshold, having a
2.4 dB gap to optimal, while the ISCF scheme is superior to
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Fig. 5. Average transmit power and uncoded BER performance of different
schemes in different SINR thresholds, 8PSK, Nt = 128, K = 112, N = 64.

SCF by narrowing the gap to 0.4 dB, but still inferior to the
proposed schemes.

Fig. 4b shows the uncoded BER performance of the pro-
posed parallel SLP approach compared to other schemes at
various SINR thresholds for the same system setting. At the
interference-limited medium-to-high SINR threshold region,
the SLP schemes implemented by the proposed parallel ap-
proach, IPM, SCF, ISCF, and EGPA all achieve lower uncoded
BER over the ZF scheme. The performance of the proposed
approach increases stably with the number of iterations, pro-
viding a performance-complexity trade-off. With sufficient
iterations, the uncoded BER performance of the proposed
approach matches that of the IPM. EGPA, SCF, and ISCF
also have approximately matched uncoded BER performance
with IPM, because they all satisfy the SINR thresholds.

Fig. 5a and Fig. 5b show the average transmit power
and uncoded BER of the considered schemes under 8PSK
modulation, respectively. For a better illustration, the unit
of average power in Fig. 5a is in linear scale. We can
see that, similar to the QPSK case in Fig. 4, the proposed
parallel SLP approach can approximate to the optimal solution
obtained by IPM, which demonstrates the effectiveness of
the parallel SLP approach under different PSK modulation
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orders. The performance-complexity trade-off can also be
observed. Together with Fig. 5 and Fig. 4, we can conclude
that the number of iterations for convergence of the proposed
approach is increased with modulation order, which can be
explained by the fact that the higher-order modulation contains
more constellation points, thus needing more accurate SLP
solutions.

Fig. 6 demonstrates the effectiveness of the proposed paral-
lel SLP approach under a varying number of users. The system
has 128 transmit antennas, and the number of users varies from
100 to 120. The SINR threshold is 12 dB. The trend can be
seen in Fig. 6 is that, unlike the ZF scheme as well as the
SCF and ISCF schemes, whose transmit power performance
severely deteriorates when the number of users increases,
both the proposed PSLP-SA and PSLP-LA algorithms and
EGPA show robustness among various load levels. Because
the proposed parallel SLP approach and EGPA solve the PM-
SLP problem successfully, regardless of the problem size. The
performance of the early terminated parallel SLP approach at
35 iterations is degraded by the increasing system load, which
validates that the larger problem size needs more iterations to
converge.

C. Computational Complexity Comparison

Table I presents the average number of iterations and exe-
cution time per channel realization of the proposed schemes,
where ‘MI’ and ‘SVD’ denote the plain implementation with
matrix inversion in each iteration in Section IV-A and the
SVD-based efficient implementation in Section IV-D, respec-
tively. The stopping criterion is ∆xt < 10−3. We can observe
that the proposed PIF-SLP algorithm with the adaptive tuning
strategy (PSLP-LA) is the most efficient in reaching the given
iterate gap.

Fig. 7 compares the average execution time required per
channel realization of the concerned schemes. The system
setting is the same as Fig. 6. We notice that implementing the
parallel approach in physical parallel computing processors is
beyond the range of this paper, thus the execution time for the
proposed parallel SLP approach is the total time required for

TABLE I
AVERAGE NUMBER OF ITERATIONS AND EXECUTION TIME OF PROPOSED

SCHEMES OVER 2000 RANDOM CHANNEL REALIZATIONS, QPSK,
Nt = 128, K = 112, N = 64.

Schemes
γ = 5 dB γ = 10 dB

Iterations Time (s) Iterations Time (s)

PSLP-SA/MI 62.3255 0.0401 62.1500 0.0397
PSLP-SA/SVD 62.3255 0.0242 62.1500 0.0240
PSLP-LA 67.3320 0.0156 67.1945 0.0156
PSLP-SC/MI 133.0500 0.0742 133.3380 0.0741
PSLP-SC/SVD 133.0500 0.0426 133.3380 0.0425
PSLP-LC 126.1735 0.0293 126.2845 0.0292

100 105 110 115 120

Number of Users  K

10
-3

10
-2

10
-1

10
0

A
v
er

ag
e 

E
x
ec

u
ti

o
n
 T

im
e 

(s
)

ZF

IPM

EGPA

SCF

ISCF

PSLP-SA-35 iter

PSLP-SA-50 iter

PSLP-LA-35 iter

PSLP-LA-50 iter

Fig. 7. Average execution time for different schemes in different number of
users, QPSK, Nt = 128, γ = 12 dB, N = 64.

MATLAB simulation, which is an overestimate. It is observed
that the proposed approach exhibits the lowest time complexity
among other compared iterative schemes, i.e., IPM and EGPA.
It also outperforms the closed-form solutions such as the SCF
and the ISCF, excluding the heuristic ZF scheme. For the
proposed parallel SLP approach, the execution time of which
is increased with the number of iterations. Note again that
the separable structure of PM-SLP is utilized by the parallel
approach, which facilitates parallel implementation, thus the
low-latency advantage over centralized iterative schemes such
as IPM, EGPA, SCF, and ISCF can be more significant in
practice. For all the compared schemes, the execution time
is increased with the number of users, but the proposed
approach exhibits the smallest increment. For the PM-SLP
optimization problem, the number of constraints is 2K, which
linearly increased with the number of users. The complexity of
optimization is determined by the number of constraints, thus
more constraints need more iterations to solve the problem.
For other schemes, the growing matrix dimension incurs more
float point operations directly.

VII. CONCLUSION

In this paper, parallel and decentralized processing for CI-
based SLP is proposed based on ADMM for a massive MU-
MISO downlink system. By reformulating the canonical PM-
SLP optimization problem and introducing a slack variable
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vector, we transfer the original problem into separable equality
constrained optimization, which is well-suited for the applica-
tion of parallel processing. The augmented Lagrangian method
is used to acquire an unconstrained problem formulation,
which is further decomposed into several parallel subproblems
via the PJ-ADMM framework. The sufficient condition for
global convergence of the parallel CI-based SLP approach is
derived, based on which a PIF-SLP algorithm is proposed to
further alleviate the computational burden. We further propose
decentralized algorithms to reduce the coordination overhead.
Numerical results show the superiority of the proposed al-
gorithms in terms of computational efficiency over state-of-
the-art works, without compromising transmit power or BER
performance.

Although PSK modulation is considered in this paper,
and the CI-based SLP is modulation-dependent, the proposed
analyses and algorithms can be extended to other modulations
through reformulating the optimization problem. We note that
addressing the complexity issue of SLP from the perspective
of information theory remains an open problem due to the
contradiction between the modulation dependency nature of
SLP and the assumption of Gaussian inputs in conventional
Shannon information theory.

APPENDIX A
PROOF OF THEOREM 1

Proof: The first-order optimal condition for xi is given
by

AT
i


λt − ρ

N∑

j=1

Ajx
t
j + b+ ct+1


+Pi

(
xt
i − xt+1

i

)

+ρAT
i Ai

(
xt
i − xt+1

i

)
∈ ∂fi

(
xt+1
i

)
,
(48)

where fi (xi) ≜ ∥xi∥2. Denoting λ̂ = λt −
ρ
(
Axt+1 − b− ct+1

)
, then the first-order optimal condition

(48) turns to

AT
i


λ̂− ρ

N∑

j=1

Aj

(
xt
j − xt+1

j

)



+
(
Pi + ρAT

i Ai

) (
xt
i − xt+1

i

)
∈ ∂fi

(
xt+1
i

)
. (49)

Assum there exist a saddle point u∗ = (x∗
1,x

∗
2 · · · ,x∗

N ,λ∗)
for PM-SLP. From the convexity of fi (xi), we have

(
∂fi
(
xt+1
i

)
− ∂fi (x

∗
i )
)T (

xt+1
i − x∗

i

)
≥ 0. (50)

The stationarity condition of KKT conditions is given by

AT
i λ

∗ ∈ ∂fi (x
∗
i ) . (51)

Thus (50) can be written as

AT

i


λ̂− λ∗ − ρ

N∑

j=1

Aj

(
xt
j − xt+1

j

)




T

(
xt+1
i − x∗

i

)

+
(
xt+1
i − x∗

i

)T (
Pi + ρAT

i Ai

) (
xt
i − xt+1

i

)
≥ 0. (52)

Summing the above inequality over all i, we obtain
(
λ̂− λ∗

)T
A
(
xt+1 − x∗)

+

N∑

i=1

(
xt+1
i − x∗

i

)T (
Pi + ρAT

i Ai

) (
xt
i − xt+1

i

)

≥ ρ
(
xt − xt+1

)T
ATA

(
xt+1 − x∗) . (53)

Note that

A
(
xt+1 − x∗) = 1

βρ

(
λt − λt+1

)
, (54)

λ̂− λ∗ =
(
λ̂− λt+1

)
+
(
λt+1 − λ∗)

=
β − 1

β

(
λt − λt+1

)
+
(
λt+1 − λ∗) . (55)

Substituting (54) and (55) into (53), we obtain (56) on the top
of the next page.

For notation simplicity, denoting

Gx ≜



P1 + ρAT

1 A1

. . .
PN + ρAT

NAN


 ,

G ≜

[
Gx

1
βρI

]
,

Q ≜




P1 + ρAT
1 A1

1
βA

T
1

. . .
...

PN + ρAT
NAN

1
βA

T
1

1
βA

T
1 · · · 1

βA
T
N

2−β
ρβ2 I



.

Essentially, from (56) we have

(
ut − ut+1

)T
G
(
ut+1 − u∗) ≥ 1− β

β2ρ

∥∥λt − λt+1
∥∥2

+
1

β

(
λt − λt+1

)T
A
(
xt − xt+1

)
. (57)

Thus we have the relationship (58) on the top of the next page.
To prove the convergence of the PJ-ADMM for PM-SLP

is reduced to ensure that Q is positive semi-definite. For any
u ∈ R2Nt+2K , we have

∥u∥2Q = ∥x∥2Gx
+

2− β

β2ρ
∥λ∥2 + 2

β
λTAx. (59)

Using the basic inequality

2

β
λTAx =

N∑

i=1

2

β
λTAixi

≥−
N∑

i=1

(
ϵi
ρβ2
∥λ∥2 + ρ

ϵi
∥Aixi∥2

)
, (60)

for any ϵi > 0, we have

∥u∥2Q ≥
N∑

i=1

∥xi∥2Pi+ρAT
i Ai− ρ

ϵi
AT

i Ai

+
2− β −∑N

i=1 ϵi
β2ρ

∥λ∥2 . (61)
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(
λt+1 − λ∗)T 1

βρ

(
λt − λt+1

)
+

N∑

i=1

(
xt+1
i − x∗

i

)T (
Pi + ρAT

i Ai

) (
xt
i − xt+1

i

)

≥ 1− β

β2ρ

∥∥λt − λt+1
∥∥2 + 1

β

(
λt − λt+1

)T
A
(
xt − xt+1

)
(56)

∥∥ut − u∗∥∥2
G
−
∥∥ut+1 − u∗∥∥2

G
=2
(
ut − ut+1

)T
G
(
ut+1 − u∗)+

∥∥ut − ut+1
∥∥2
G

(58a)

≥2− 2β

β2ρ

∥∥λt − λt+1
∥∥2 + 2

β

(
λt − λt+1

)T
A
(
xt − xt+1

)
+
∥∥ut − ut+1

∥∥2
G

(58b)

=
∥∥ut − ut+1

∥∥2
Q

(58c)

Therefore, Q is positive semi-definite if

Pi ⪰ ρ

(
1

ϵi
− 1

)
AT

i Ai,∀i,
N∑

i=1

ϵi ≤ 2− β, (62)

where ϵi > 0.
If the sufficient condition is satisfied, then the error metric

∥ut − u∗∥2G is monotonically non-decreasing, and the se-
quence {ut} generated by the PJ-ADMM is contractive. The
global convergence of the algorithm follows immediately from
the analysis of the contraction method [41].
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