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ABSTRACT
Computational models are not just appealing because they can simulate and predict the development of 
biological phenomena across multiple spatial and temporal scales, but also because they can integrate 
information from well-established in vitro and in vivo models and test new hypotheses in cancer 
biomedicine. Agent-based models and simulations are especially interesting candidates among compu
tational modeling procedures in cancer research due to the capability to, for instance, recapitulate the 
dynamics of neoplasia and tumor – host interactions. Yet, the absence of methods to validate the 
consistency of the results across scales can hinder adoption by turning fine-tuned models into black 
boxes. This review compiles relevant literature that explores strategies to leverage high-fidelity simula
tions of multi-scale, or multi-level, cancer models with a focus on verification approached as simulation 
calibration. We consolidate our review with an outline of modern approaches for agent-based models’ 
validation and provide an ambitious outlook toward rigorous and reliable calibration.
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1. Introduction

Cancer initiation and progression is often catalyzed by geno
mic instability and chronic inflammation (see Figure 1(a)). 
These processes set in motion a complex multistage trajectory 
characterized by a series of random events that confer neo
plastic capabilities to normal cells. Through intricate interac
tions with neighboring cell populations, neoplastic cells 
orchestrate the formation of tissue within its own microenvir
onment and the remodeling of the microvasculature and the 
lymphatic system. Notably, this microenvironment evolves 
dynamically, influenced by the active contributions of unaware 
normal cell populations.1 

Understanding the underlying mechanisms of cancer and 
devising effective therapeutic strategies are formidable chal
lenges, further exacerbated by the disease’s complexity and 
heterogeneity. With a myriad of cancer types exhibiting dis
tinct molecular profiles and clinical behaviors, the quest for 
universally effective treatments remains elusive. Moreover, the 
significance of patient-specific parameters, including genetic 
variations, Tumor Microenvironment (TME) heterogeneity 
characteristics, and individual responses to treatment, further 
complicates the therapeutic landscape. Developing and testing 
new treatments in the clinical setting is a protracted endeavor, 
often spanning years of rigorous experimentation and clinical 
trials. However, mathematical and computational models – 
most commonly referred as in silico models – offer 

a promising avenue to expedite drug discovery and develop
ment process.2 By leveraging computer simulations, investiga
tors can systematically probe the mechanisms of cancer 
mechano-bio-physics, explore in silico new hypothesis for 
cancer biology while also develop novel procedures for disease 
stratification and prognosis, contribute toward reducing ani
mal testing and reduce the costs associated with clinical trials, 
and promote personalized therapy of cancer.

In cancer biomedicine, mathematical models based on 
Ordinary Differential Equations (ODEs) and Partial 
Differential Equations (PDEs) formulations serve as indispen
sable tools for simulating the dynamics of neoplasia across 
different scales. A comprehensive overview is given in the 
excellent reviews by Byrne et al.,3 Yin et al.4 and 
Hadjicharalambous et al.5 These modeling approaches offer 
efficient means to capture the complex interactions within the 
tumor – host ecosystem. ODEs are ideal mathematically sim
plifying the dynamics of large populations of cells (e.g., the 
growth dynamics of tumors, for instance, can be realistically 
approximated by a Gompertz function) by averaging para
meters of cell clusters. Compartmental models are a class of 
ODE-based models – they are commonly used in pharmaco
kinetic – pharmacodynamic analysis of drugs – that are cap
able of representing phenomena evolving at various scales and 
driven by different kinetics. They can capture dynamic fluc
tuations between different cell populations within the TME, as 
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well as, for instance, changes in the occupancy of cellular 
receptors or transitions between transcription factors. With 
regard to the analysis of drugs, such models are being used 
to investigate a drug’s path through the body, and its resulting 
concentration in different body compartments, or with the 
physiological and behavioral consequences produced by 
a drug molecules, e.g., in the cell viability or its phenotypic 
response. On the other hand, PDE-based models are well- 
established in mathematically replicating growth phenomena 
in developmental biology as well as in cancer growth, the mass 
balance of cell populations (including transport of cells as in 
tumor metastasis and in cell differentiation) and in the delivery 
of anti-cancer drugs, e.g.6–10 These processes are typically 

modeled using Turing’s reaction – diffusion model in two or 
multiple dimensions in space – time. By considering both 
spatial and temporal changes, PDEs offer pointwise informa
tion about the distribution and dynamics of substances within 
the TME. For instance, regions characterized by necrotic cells 
and hypoxia can be accurately modeled, providing insights 
into the spatial heterogeneity of tumor growth and response 
to therapy. Together, mathematical models governed by dif
ferential equations of cancer mechano-bio-physics can provide 
complementary approaches for understanding cancer 
dynamics and can offer insights into the spatial and temporal 
complexities inherent in tumor systems. Furthermore, these 
systems can often be efficiently implemented as matrices and 

Figure 1. (a) Diseases pathogenesis. Environmental factors, ionising radiation, and an unhealthy lifestyle (e.g. smoke, obesity) are often regarded as triggers for the 
pathogenesis of, among others, cardiovascular and neurodegenerative diseases, cancer and diabetes. Together with chronic inflammation, where inflammatory cells 
(macrophages, T lymphocytes and neutrophils) secrete large amounts of reactive/nitrogen oxygen species and cytokines, these factors can impair the normal 
functioning of cells. As a consequence, apoptosis and necrosis of cardiomyocytes, beta cells in the islets of Langerhans and neurons can lead to cardiomyopathy, 
diabetes, and Alzheimer’s disease, respectively. The aforementioned risk factors can also cause genetic mutations and chromosome instability in somatic cells which 
can, in turn, switch to a hyperplastic, malignant phenotype and become cancerous. As these cells proliferate and consume nutrients, carcinogenesis is initiated, which 
stimulates angiogenesis and tissue remodelling. Finally, if circulating tumour cells extravasate the blood vessels’ epithelium, other organs can be invaded. [ROS: 
Reactive Oxygen Species, NOS: Nitrogen Oxygen Species] (b) Calibration process formalism of multi-scale biophysical processes: from cell-level homeostatic dynamics, 
to competition and cooperation at population level, and up to organ-level phenotypic interactions.
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solved rapidly, benefiting from many fast matrix solving algo
rithms, thus reducing the need for extensive computational 
resources. However, their ‘modelling resolution’ is limited by 
assumptions intrinsic to their continuous nature – they can 
mathematically describe bio-physical phenomena via aver
aging of the dynamical changes occurring in cell populations 
or the balance of biochemical cues, etc. This offers therefore 
room for the development of particle-based models to simulate 
biological cells (or other pertinent entities of particulate mat
ter) as discrete entities.

Agent-Based Modeling (ABM) is a powerful simulation 
modeling technique that has seen increasing research and 
development in biology and in biomedical applications.11,12 

ABM represents processes and phenomena in terms of com
putational agents. Agents can be denoted as particles to repre
sent cells in biology, or segments to represent neurites or 

vessels, which can reside in space either in a structured lattice 
or following an off-lattice approach. In ABM, agents (cells) are 
programmed with respect to their behavior and interaction 
with other agents, modeled as Markov processes (i.e., such that 
the transition to a new state depends solely on the previous 
one) using mathematical rules for their description. When the 
agents’ decisions arise from probabilistic reasoning, stochastic 
systems can be simulated and complex, higher-scale behaviors 
emerge as the simulation clock ticks. The agents’ rules can, 
under suitable conditions, enable multi-cellular systems to 
self-organize into highly nonrandom structures. Thus, ABM 
simulations in cell biology are characterized by the dynamics 
of autonomous and heterogeneous entities whose phenotypic 
behavior is explicitly modeled (see Figure 2(b)), yet cell beha
vior can adapt in time based on cell-to-cell and cell-to-micro
environment interactions (see Figure 2(c)).

Figure 2. Approaches to calibration and validation of agent-based models. (a) Prototypical representation of the calibration and validation process and its connection 
to the agent-based model. High-level methodological approaches for ABM calibration and validation include optimization-based, Machine Learning (ML)-based, and 
hybrid modeling approaches. These techniques facilitate the translation of performance measures into parameter configurations of an agent-based model. (b) 
Prototypical representation of an agent’s interaction with the surrounding environment in an agent-based model. The agent perceives the environment and processes 
the gathered information. The agent’s internal rules, defining its behaviors, can update its internal state and trigger actions on the environment, resulting in local 
changes. (c) A common (not exhaustive) set of cell behavior mechanisms includes: ‘Divide,’ ‘Migrate,’ ‘Change morphology’ (grow, shrink, polarize), ‘Die’ (program
mable, stimulated), ‘Differentiate’ from one cellular phenotype (red) to another (purple), ‘React to a biochemical cue,’ ‘Secrete a substance,’ and ‘Interact’ with other 
cells or the extracellular matrix. (d) An ABM software can simulate multicellular populations to resolve the interactions amongst different cell phenotypes as well as the 
interactions of cells with blood vessels, the lymphatics, and the immune system. In the above schematic, biochemical interactions are indicated as a cloud of particles or 
protrusions to indicate lipids/proteins, while biomechanical interactions are depicted with springs.
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In the context of cancer biomedicine, ABM offers a unique 
capability to simulate single-cell behaviors and interactions. 
Figure 3 illustrates several examples of agent-based models of 
two- or three-dimensional mono- or multicultures of cells that 
simulate the growth of tumor spheroids, the development of 
the brain cortex, the lung airways at the alveolus-level, or 
hybrid models that couple ABM with Finite Element Method 

(FEM) to simulate glioma development. Given the pivotal role 
of single-cell interactions in driving tumor progression and 
heterogeneity, agent-based models provide a powerful frame
work for predicting the evolution of cancer. Particularly sig
nificant is ABM’s ability to model phenotypic changes and 
mechanical interactions, mirroring the complex dynamics 
observed in vivo. Furthermore, advancements in imaging 

Figure 3. Collage of still images from agent-based model simulation examples,13–17 depicting either off-lattice ABM or cellular automata approaches, which 
demonstrate the applicability of the method to simulate mono- and multicultures of cells in two and three dimensions, across different spatial scales as well as 
being coupled with other numerical methods (e.g., Finite Difference Method, FEM).
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techniques enable the tracking of single cells, facilitating the 
conversion of imaging data into mechanistic rules for ABM 
simulations. This integration of experimental data with com
putational models not only enhances our understanding of 
cancer biology but also enables the design of more targeted 
and informative experiments. By leveraging ABM, researchers 
can generate hypotheses, test various scenarios, and refine 
experimental designs in silico before conducting costly or 
time-consuming in vitro or in vivo studies (see Figure 2(a)). 
Thus, ABM serves as an invaluable tool for bridging the gap 
between experimental observations and theoretical predictions 
in cancer research, ultimately driving the development of more 
effective therapeutic strategies.

In this review, we begin by surveying a comprehensive yet 
non-exhaustive list of agent-based models addressing various 
aspects of cancer biomedicine. Additionally, we offer 
a comparison with existing approaches and explore hybrid 
multi-scale adaptations. Finally, we delve into top-down and 
bottom-up strategies for calibrating and validating agent-based 
models (see Figure 1(b)).

2. Agent-based modeling in cancer biomedicine

2.1. ABM as a mechanistic approach (2010–present)

Intrinsically decentralized, inherently interactive, and multi- 
entity, biological systems are ideal to simulate using ABM (see 
Figures 2(c,d)). Among other diseases, cancer biology has 
witnessed an increasing number of modeling efforts via ABM 
over the years; ABM, alone or coupled with other in silico 
modeling techniques, has been employed to explore the 
dynamics of the TME, to probe and identify new therapeutic 
agents, to promote clinical translation by aiding the develop
ment of new diagnostic tools, and to bridge the gap between 
animal and human data.5,18,19 The short survey of Metzcar 
et al.2 presents the state-of-the-art ABM simulations related 
to cancer hypoxia and necrosis, tumor-induced angiogenesis 
(i.e., the sprouting of new vessels from the existing ones trig
gered by tumor signals), invasion, stem cell dynamics and 
immuno-surveillance in neoplasia during the 2000s and the 
first half of the previous decade. In this first section, a survey of 
the major agent-based approaches of the last decade to model 
cancer development and potential therapeutic strategies is 
presented (see Table 1).

2.1.1. Pathogenesis
Despite being just nodes in a much broader network, chronic 
inflammation, unhealthy lifestyle, and environmental factors 
have long been regarded as triggers in the pathogenesis of 
cancer (see Figure 1(a)). An et al.20 introduced an inflamma
tion and cancer development ABM platform. Built on 
a hierarchy of relationships between cancer hallmarks, in the 
model higher-order processes are driven by lower-order ones. 
The basal DNA damage rate of healthy cells was exacerbated 
by reactive oxygen species secreted by inflammatory cells (e.g., 
neutrophils, monocytes, and macrophages). If the DNA-repair 
rate was exceeded, an abstract genome (i.e., a simplified 
genetic profile where different gene locations are associated 
with different cellular pathways) was impacted and cells’ 

functions were impaired. Damaged cells could also recruit 
more inflammatory cells, hence, leading to the establishment 
of a positive feedback loop that highlights the potential role of 
anti-inflammatory therapies in cancer care. Thus, in the work 
by An et al.20 cancer was presented as an evolutionary process, 
and an interesting analogy between oncogenesis and evolution 
was highlighted, both requiring a basal level of genetic instabil
ity. Contextually, Araujo21 and Lynch22 and their colleagues 
emphasized on the role of genomic instability in carcinogen
esis. In the first model, the impact of each gene was propor
tional to the number of copies in the genome, where abstracted 
genes (i.e., proxies for realistic gene networks that regulate 
a single, specific cellular function) were used for division, 
death, and segregation mechanisms. When in homeostasis, 
the effects of proto-oncogenes (linked to the cell growth) and 
tumor suppressor genes were balanced. However, cell duplica
tion might randomly lead to aneuploidy in daughter cells 
causing hyperplastic growth. Different treatments were simu
lated, which eventually led to the conclusion that the best 
prognosis arises from a combination of chemotherapy and 
surgery. Besides, the simulations generated novel genotypes 
that resemble patterns found in cancer patients. Similarly, the 
model presented in the work by Lynch et al.22 linked chromo
somal instability with the cells’ karyotype, i.e., the whole set of 
cellular chromosomes. A framework to measure the chromo
somal instability level was built and three models for the 
selection of a cell after the division were compared. 
Following the division, the two cells underwent a selection 
procedure and, if not fit, they were removed from the agent- 
based simulation. The total fitness is then computed as a sum 
of the single chromosomes’ contributions. Phylogenetic trees 
were used in combination with approximate Bayesian compu
tation (a computational method based on the Bayes theorem 
that can generate posterior probability density functions for 
the models’ parameters) to estimate the probability of misse
gregation from an observed population of cells. The results 
showed that sampling karyotypes in a cell population doesn’t 
allow direct determination of the chromosomal instability, as 
other factors play key roles. However, selection and missegre
gation shape the karyotype diversity in a population of aneu
ploid cells.

2.1.2. Neoplastic cell dynamics
Cells in neoplasia can undergo phenotypic switching multiple 
times during their lifetime. This process is typically driven by 
endogenous or/exogenous factors, such as the lack of nutrients 
or mechanical stimuli. The ability to change their behavior and 
adapt to the surroundings can be effectively modeled by agent- 
based models, as demonstrated for example in the paper of 
Chen et al.23 They simulated the avascular growth of an in vitro 
tumor spheroid via a two-dimensional (2D) agent-based 
model, where nutrients are supplied solely by the existing 
environment. Interestingly, some modeling concepts were 
borrowed from the evolutionary game theory in that pheno
type switching (mostly proliferation – migration and vice 
versa) is regulated via a payoff matrix. The phenotype-to- 
phenotype competition was modeled as a rewarded game 
where the environment (i.e., the available resources) influences 
the cells’ phenotype, the tumor rate of growth and the surface 
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roughness. The latter, in particular, can be quantified. In the 
papers of Kareva et al.24 and Phillips et al.,25 vascular tumor 
growth was simulated using ABM driven by tumor hypoxia 
and the subsequent secretion of pro-angiogenic cytokines (e.g., 
vascular endothelial growth factor). The models showed that 
the rate of diffusion and consumption of the growth factors is 
key in the angiogenesis. The competition game is reiterated, 
although in this case it concerns high and low-affinity angio
genesis regulators. Reducing the tumor – endothelium com
munication would therefore allow control over the 
angiogenesis mechanisms as shown, for instance in Wang et 
al.26 There, the Loewe combination index27 (which quantifies 
the extent of drug synergy in combination therapies) revealed 
that merging cell-killing drugs and vascular endothelial growth 
factor inhibitors provides the best treatment for melanoma. 
These mechanisms were further investigated in the work of 
Lima and his colleagues,28 where a novel coarse-grained mod
eling approach was introduced. Multiple cells with the same 
phenotype were modeled using a single agent and the total 
computational time dropped by 93–97% with little difference 
with respect to the cell agents model. A multi-scenario (i.e., 
with different initial conditions) calibration of the agent-based 
model was performed via moment-based Bayesian inference. 
Finally, a time-dependent global sensitivity analysis allows the 
authors to identify the increase in the death rate due to lack of 
glucose as the most influential parameter. Overall, all spheroid 
model simulations showed that, eventually, the core of the 
tumor was dominated by necrotic cells, while the ones alive 
were located at the rim of the tumor – typically referred as the 
tumor enhancing region.

Predicting cell heterogeneity and understanding the relative 
impact of intrinsic versus environmental factors on its emer
gence is of paramount importance; this is often seen as the 
most influential factor in multi-drug resistance, treatment fail
ure and relapse. Although hardly achievable with in vivo mod
els, in silico models provide frameworks to quantitatively 
measure these relative weights. Gallaher et al.29 developed 
a model of intra-tumor heterogeneity in Glioblastoma 
(GBM) and used the in silico model to show that some level 
of intrinsic heterogeneity is required to capture the migration 
behavior observed in single-cell data. Interestingly, the envir
onmental heterogeneity alone proved to be insufficient. In 
their model, GBM growth was driven by the platelet-derived 
growth factor that acted both via paracrine and autocrine 
signaling (i.e., by interacting with the surrounding cells and 
regulating the secreting cells themselves, respectively). 
Combining treatments that inhibit cancer cell proliferation 
and suppress cell invasiveness (i.e., migration), led to an 
increased efficacy with respect to monotherapies. Moreover, 
the model not only proved the predictive capacity of single-cell 
data in silico, but it also emphasized its importance by showing 
that cell populations with heterogeneous phenotypes displayed 
similar growth dynamics and final density distributions. 
Interestingly, Greene and his colleagues30 further explored 
the role of cell heterogeneity on tumor growth using 
a continuous-time Markov chain model (i.e. a stochastic pro
cess where the transition to a new state depends only on the 
previous one). The model described cell states’ transitions and 
parameter estimation was performed using constrained trust 

region algorithms (i.e., optimization methods focused on 
a small region of the parameter space and constrained by, for 
example, biological observations) with nonlinear least squares. 
The phenotypic trade-off was similarly investigated by Gerlee 
et al.,31 which focused on GBM, and later on by Gallaher et al.32 

Here, the migration (favored by selection at the early stages of 
tumor development) and the proliferation (favored more in 
the later phases) capabilities improved simultaneously up to 
a certain coordinate of the trait space. From there, the increase 
in one of the rates could only come at the expense of the other. 
Different shapes of the trait space were analyzed and an inverse 
proportionality between the rate of cell turnover and pheno
typic variability among cancer cells was found. Modeling of 
GBM has also been the focus of,33 where special emphasis was 
put on the interplay between hypoxia and cancer progression. 
The results of their study illustrated differences in terms of the 
spatial distribution of oxygen/nutrients within the TME. This, 
in turn, can affect not only the rate of growth of the carcinoma 
but also the migrational capacity of the glioma cells. Notably, 
the authors draw attention toward hypoxia as a catalyst for 
dangerous mutations at a higher rate. In an effort to model the 
phenotypic transitions of cancer cells, Axenie and Kurz34 pro
posed a model that learnt the mechanistic rules governing 
cancer’s cells phenotypic staging from quiescent to prolifera
tion and from proliferation to apoptosis. Using a typical cancer 
phenotypic state space, quiescent cancer cells (Q) can become 
proliferative (P) or apoptotic (A). Non-necrotic cells become 
hypoxic when oxygen drops below a threshold value, while 
hypoxic cells can recover to their previous state or become 
necrotic. The transitions among these states are stochastic 
events generated by Poisson processes. Although trained on 
a limited time series of raw immunohistochemistry and mor
phometric data from 17 patients, the lightweight machine 
learning system was also able to accurately predict: tumor 
volume evolution, the dependency between histopathological 
and morphological data (such as nutrient diffusion penetra
tion length within the breast tissue), the ratio of cell apoptosis 
to proliferation rates and the radius of the tumor. More 
recently, Gazeli and his colleagues16 employed ABM to simu
late in vitro experiments on melanoma (B16F10) cancer cells 
monolayer growth when treated with Doxorubicin alone, or in 
combination with a treatment based on cold atmospheric 
pressure plasma jet. Their model was designed to probe the 
mechanisms of action of each therapeutic approach (cytotoxic 
drug or/with plasma); this was characterized through model- 
derived probabilities of the melanoma cell apoptosis and divi
sion. They presented an interesting approach that combines in 
silico with in vitro, and they demonstrated how simulations 
can help to speed up laboratory work and, thus, reduce the 
costs for cancer drug/treatment testing.

An interesting finding is reported in Poleszczuk et al.,35 

where the authors observed a reduction in the tumor volume 
by exploiting the induction of cancer cells’ senescence. They 
presented an ABM procedure to probe the competition of cell 
subpopulations. Cancer stem cells were allowed to “fight” 
against cancer progenitor cells to ensure vital space and nutri
ent supply. Their simulations showed that the tumor growth is 
regulated in two distinctive phases, in which an initial increase 
of the cancer cell population was followed by a reduction in the 
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proliferation rate and eventually tumor control. The latter was 
in fact caused by the reactivation of the senescence program in 
the progenitor cells that constrained the stem cells in the 
tumor core, thereby limiting their proliferation. Similar in 
silico results concerning neoplasia spatial inhibition were pre
sented by Norton et al.36; their focus was to investigate the role 
of cancer cell seeding in metastatic tumor progression. In 
particular, the authors modeled the metastatic cells dissemina
tion in two potential scenarios: the ‘site’ seeding, where cancer- 
stem cells were injected from a single direction due to a breach 
in the vasculature, and the ‘volume’ seeding, where seeding 
was allowed to happen at random locations in the metastatic 
tumor region. While migration promoted tumor growth in 
every scenario, even when the cell division rate was considered 
high, volume seeding enhanced tumor growth. However, the 
impact of the seeding procedure was reported higher when 
cells’ quiescence inhibited spatial growth. Moreover, by 
extending the simulator into a three-dimensional (3D) ABM 
simulator, the authors were able to recapitulate the visual 
differences in the tumor morphology with respect to the pro
liferation and migration parameters of their stochastic model. 
Recently, de Montigny and his colleagues14 proposed a hybrid 
approach that uniquely combines agent-based and finite ele
ment modeling to simulate GBM progression and bridge the 
gap between continuum-based and discrete system dynamics. 
While the transport of nutrients and intra-cellular signaling 
were simulated using the FEM, the cells were modeled as 
agents, with volume averaging used to interface the two spatial 
scales (tissue and cell scale). Their methodology helped reduce 
by several orders of magnitude the number of simulated agents 
and, consequently, bring down the total simulation time. 
Notwithstanding this, the hybrid model can replicate growth 
patterns of both low- and high-grade tumors and assesses the 
role of platelet-derived growth factor on the tumor shape and 
size at later time points. A somewhat similar methodology was 
presented by Rahman et al.,37 where GBM growth was mod
eled at multiple spatial and temporal scales, ranging from sub- 
cellular signaling pathways to the progression of the tumor 
tissue. By combining PDE solvers, an ABM simulator and 
ODE solvers for the tissue, cellular and intra-cellular scales, 
respectively, the authors provided a coupled cancer model 
where inter-compartmental communication ensures synchro
nization. The model was tested to replicate experimental find
ings concerning tumor growth and cell proliferation both in 
physiological conditions and following the administration of 
biochemical compounds (i.e. rapamycin).

2.1.3. Spatial characterisation
Tumor diagnosis together with the best treatment strategies 
can benefit from the characterization of the shape and spatial 
features of a solid tumor. Structural imaging, such as Magnetic 
Resonance Imaging (MRI) and histology images, and in silico 
modeling, such as ABM simulations, can provide spatial infor
mation and make predictions of the geometric features of 
carcinoma as they develop over time. Focusing on ABM (see 
Table 1), local modifications in the TME can be linked to 
outcomes at the tumor scale, overcoming the limitations 
imposed by reaction-diffusion equations that take average 
parameters from MRI or Computed-Tomography scans. As 

argued by Klank and her colleagues,38 modeling GBM growth 
as a Brownian motion via mechanistic rules of an agent-based 
formulation is ample to replicate the development of a highly 
packed tumor core with an enhancing (proliferative) boundary 
at the tumor – host interface. In fact, the overall expansion 
speed of the lesion depends on single-cell migration rates. In 
Norton39 and Karolak et al.,40 shape metrics such as the mean 
chord length, the moment of inertia, the radius of gyration and 
the accessible surface area are used to characterize tumor 
morphology and packing density. The results show that this 
data can be extracted from diagnostic images and allow for 
tumor invasiveness and cancerous nature predictions. And 
while the more generic and commonly used tumor diameter 
doesn’t provide information about the tumor architecture, the 
aforementioned metrics could be adopted to supplement this 
limitation. In fact, at similar tumor sizes substantial morpho
logical differences may be concealed. In this regard, computa
tional models could be used to map anatomical compositions 
(in terms of shape metrics) to the corresponding effective drug 
penetration rates. These, in turn, could be employed to adapt 
the therapeutic protocols (e.g., drug doses and schedule) prior 
to treatment. Additionally, Norton et al.39 reported that tumor 
morphology and invasiveness are directly linked to cancer cell 
phenotypic ratios, the level of hypoxia and the number of 
chemokine receptors. Indeed, reduced tumor growth was 
observed following the virtual administration of a drug that 
impaired cancer cell proliferation. Similarly, Bull et al.41 mod
eled via ABM the advective flow of microspheres from the 
tumor rim to the tumor core that results from the outer 
pressure in tumor spheroids. Their simulations illustrated dis
tinct spherical shells in which the cells’ movement was either 
dominated by Brownian motion or advection. More specifi
cally, the diffusion of the micro-beads located in the tumor rim 
was Brownian dominated, as the parent proliferating cells, 
located in this outer shell, placed their daughter cells randomly 
upon division. On the contrary, dying cells in the necrotic core 
left empty spaces. This, in turn, led to a depression that was 
counterbalanced by the cells in the outer shell, resulting in an 
advective motion. The authors introduced novel metric para
meters (such as the waiting time of cells in the proliferating 
rim or the radial infiltration velocity in the shell between the 
rim and the necrotic core) whose values were mapped to the 
composition of the simulated spheroids. This, in turn, pro
vided a new way to infer the underlying morphology (e.g. the 
quiescent area) from measurements of the microbead’s trajec
tories. Another approach to modeling tumor cells’ flows was 
presented by Jamous et al.,42 which simulated oncostreams 
(i.e., cells migration in opposite directions) and flocks (i.e., 
cells migration in the same direction) in 2D and 3D. They 
reported that the presence of oncostreams correlates with 
tumor progression, while they also interrogated in silico the 
parameter space impacting the mode of cancer cell migration. 
The authors showed that the formation of flocks in 2D simula
tions augmented as the cells’ shape was shifted from round to 
ellipsoid. Using the total polarization of the configuration as 
a proxy, the higher steering capability of the cells (which is 
correlated with the eccentricity of their shape) was found to be 
the reason behind the increased flock formation. As the simu
lation domain was extended from 2D into 3D, cells were 
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provided with an additional degree of freedom. While both 
streams and flocks emerged at low cell numbers, only the 
streams were observed at higher densities. Moreover, the 
authors found that the tumor dynamics is strongly affected 
by the cell density and that both flocks and streams emerge 
when the ability of the cells to steer drops; thus, dismantling of 
oncostreams was proposed by Jamous et al.42 as a new ther
apeutic approach. Another agent-based model of tumor cell 
movement was presented in the work of Suveges and 
colleagues,43 which emphasized the role of the Extracellular 
Matrix (ECM). More specifically, the authors developed 
a hybrid multi-scale model to investigate if and how the 
ECM could impact the cell invasion patterns of cancer cells. 
Cells were modeled using an agent-based model which was 
linked to, affected and was affected by a continuous model of 
the ECM. To simulate the adhesive interactions between the 
cells and the ECM, which don’t occur at a single point of 
contact, the authors employed non-local adhesion integrals. 
These allowed long-distance interactions to be taken into 
account by defining a sensing region over which the adhesion 
strengths were integrated. Their model demonstrated that 
aligned ECM fibers are necessary for tumor aggregations to 
move, while tumor invasion is impaired when the matrix fibers 
are aligned in parallel to the tumor margin. Importantly, their 
in silico findings were confirmed with experimental results, 
and they argued that the tumor expansion speed could be 
predicted from the orientation of the ECM fibers.

The impact of neoplastic cell heterogeneity on the tumor 
shape was further investigated by Gong et al.,44 where 
a spatially resolved agent-based model was combined with 
a Quantitative Systems Pharmacology model (QSP). The 
QSP, an immuno-oncology mathematical model of ODEs, 
was used to simulate interactions among multiple compart
ments at the tissue scale. Interestingly, the propagating front of 
the tumor-enhancing region and the tumor necrotic core were 
simulated by two different agent-based models. The effect of 
immune checkpoint inhibitors (such as antiPD-1) on the 
tumor growth was also simulated. Virtual patients and clinical 
trials were probed using sets of parameters generated via Latin 
Hypercube Sampling (LHS), and their agent-based model 
aided in identifying predictive biomarkers for the tumor dia
meter, anti-PD-1 responsiveness, and time to cancer progres
sion. Spatial heterogeneities within the tumor volume are not 
limited to cell morphologies, but rather encompass substance 
concentrations (e.g., glucose and oxygen). Modeling of these 
transients is well suited to agent-based models and allows, 
among other uses, inspecting the effect of local concentration 
changes on the cell cycle. Representative works that focused on 
the latter aspect were those of Hong et al.45 and Kempf et al.46 

These models provided insights into the role of hypoxic con
ditions in cancer treatments, assessing the capability of 
hypoxia-activated pro-drugs in killing heterogeneous bystan
der cells otherwise unreachable. Moreover, they highlighted 
the importance of timing and hypoxic sensitizers to maximize 
the efficacy of radiotherapy.

2.1.4. Somatic cells’ role
Inherent components of the environment that surrounds the 
tumor tissue, somatic cells can contribute to neoplasia and 

promote its development. Amongst them, immune cells and, 
in particular, lymphocytes, play key roles in the process and 
thus provide an interface for testing new treatment modalities. 
Contextually, this section summarizes some of the latest 
attempts at modeling the interplay between somatic and can
cer cells, while potential therapeutic approaches are outlined 
below.

In the work of Gong et al.,47 they emphasized the spatial 
patterns of ligand PDL1 that is secreted by immune cells (as 
a way to inhibit excessive activity), but also by cancer cells after 
protracted exposure. The high spatial resolution of the agent- 
based model allowed the in silico framework to correlate pre- 
treatment immune architecture, patients’ features and 
immune checkpoint inhibitor outcomes. Moreover, they 
attempted to predict treatment responders using a threshold 
on the distance between the PDL1-positive cells and the tumor 
surface. The model was further extended by the authors in 
subsequent studies44,48 (see last paragraph in subsection 2.1.3) 
with the introduction of a new module. Notably, the module 
was used to simulate the human body in a 4-compartment 
model, where the bloodstream served as a source for T-cells 
and myeloid-derived suppressor cells. While they employed 
ODEs to simulate the dynamics of the whole tumor at the 
tissue scale, the agent-based model replicated local changes at 
the cell scale in a small representative region. However, an 
ODE version of the agent-based model was built to keep 
consistency between the agent-based and the other models. 
The two were sequentially solved and used to update each 
other, with the input values scaled properly. The effects of 
immunotherapy (i.e., anti-PD1) and different values of the 
migration and proliferation rates of the cells (encoded by 
adimensional parameters) on the tumor morphology were 
investigated. Additionally, an innovative use of a 2D 
Gaussian kernel density to smooth the discrete spatial distri
bution of the cells allowed the authors to introduce a new way 
to locate the boundaries of the tumor-invasive front from 
digital pathology images. A different therapeutic approach, 
namely Chimeric Antigen Receptor (CAR) T-cell therapy, 
was modeled and investigated by Prybutok et al.49 

Simulations of both a dish and a tissue (where nutrients are 
thus provided by the vasculature) resulted in the identification 
of the best treatment strategy. This maximizes cancer cell death 
by CAR T-cells while minimizing the elimination of low-level 
antigen-expressing healthy cells. The studies of Beck et al. and 
Khazen et al.,50,51 provide tools to characterize the immune 
response mediated by Cytotoxic T Lymphocytes (CTLs). In the 
first one, a simple model with space competition was used to 
prove that both CTLs contact and cytokine secretion are 
needed for tumor cell killing. In the second, where CTLs 
could adhere to tumor cells, the optimal effector/target ratios 
for tumor control were found and the human CTLs killing per 
capita was quantified. Under certain circumstances, immu
notherapy alone might not be enough to eradicate solid 
tumors. The work of Kather et al.52 reports that for patients 
affected by microsatellite-stable colorectal cancer, effective 
immunotherapy strategies don’t exist. However, the agent- 
based model implemented by the authors shows that 
a combined therapy aimed at boosting the immune system 
while targeting the stroma can eradicate the simulated tumors 
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in 75% of the runs. A permeable stroma allows the lympho
cytes, whose number is elevated following an external injec
tion, to effectively counteract the immune evasion of the 
cancer cells and avoid the inhibition of the cell-killing mechan
isms. Finally, viral-infected cells are used as a proxy to activate 
the CD4+ T-cells in the model outlined by Jenner et al.,53 

where the authors examined the impact of the relative density 
of the stromal cells on the efficacy of oncolytic viruses for GBM 
treatment. The oncolytic viruses, simulated as a diffusing field, 
are uptaken by both cancer and stromal cells and the intracel
lular dynamics is modeled with ODEs. However, while repli
cation and subsequent lysis occur in cancer cells, the stromal 
ones act as sinks and reduce the overall viral infiltration. As 
a consequence, cytokines are not released and the response of 
CD8+ T-cells is hampered. The simulations, whose outcomes 
were validated against heterogeneous patient samples, showed 
that high viral biding rates could be ineffective if the relative 
density of GBM cells is low. Only an increase in the number of 
CD8+ T-cells led to a significant reduction of the tumor size.

The interaction between myeloma cells (i.e., malignant 
plasma cells that undergo uncontrolled growth and prolifera
tion) and bone marrow stromal cells was investigated by Su 
et al. and Ji et al.54,55 Myeloma cells are thought to closely 
collaborate with bone marrow stromal cells in a positive-feed
back loop that leads to niche stiffening and mechanical protec
tion from drugs. As multiple myeloma has proven to be able to 
develop multi-drug resistance and evade the host immune 
response and relapse, combining multiple therapies could 
lead to improved outcomes. Both the aforementioned models 
are robust in silico procedures to test the joint efficacy of 
different anti-cancer drugs. To quantitatively measure the 
synergistic effects of the drugs, the authors employed the 
Loewe combination index.27 Moreover, both the models are 
hybrid and multi-scale in that ODEs are used to simulate 
intracellular dynamics, while agents simulate the cells. 
Besides, Ji et al.55 built upon the work of Su et al.54 by imple
menting an immune system within the model. The authors 
simulated drugs that could target: the myeloma cells, their 
immune tolerance, the biomechanical phenotype of the bone 
marrow stromal cells and the communication between the 

latter and the myeloma cells. The models, which successfully 
replicated the tumor growth and interactions with the host 
cells, provide valuable resources to determine the efficacy of 
multi-drug treatments and the most promising dose 
combinations.

Other noteworthy models of interactions between cancer 
and blood cells, as well as other host cells, were presented in 
the papers of Uppal et al.56 and Heidary et al.57 There, the role 
of platelets, key players in metastasis, and fibroblasts, turned 
into cancer-associated cells, was explored. In,24 an ABM was 
employed to compare physiological wound healing and 
tumor-induced angiogenesis to interrogate the interplay 
between cancer cells and platelets. The model suggests that, 
by disrupting the physiological setting, tumor edges interfere 
with the well-orchestrated release of angiogenesis inhibitors. 
The resulting condition resembles a ‘wound that never heals'. 
The role of the cross-talk between the endothelium and cancer 
was further explored by Yan et al.,58 who presented a hybrid 
model of GBM progression. Of note, the model features both 
normal endothelial cells and trans-differentiated vascular 
endothelial cells, together with neoplastic stem and differen
tiated cells. The in silico results illustrated that the combination 
of therapies traditionally used in isolation can lead to enhanced 
results in GBM treatment. Modeling of the endothelium and 
the perivascular niche of the GBM was also explored by 
Randles et al.,59 where the authors employed ABM to optimize 
an existing therapeutic regimen. Scalable simulations were 
combined with simulated annealing (i.e., an optimization algo
rithm used to efficiently explore the parameters space) to infer 
the best timing for both chemo- and radiotherapy administra
tion. The parameters obtained were then used to implement 
and test the schedule in vivo. This results in an improved 
outcome and thus provides experimental evidence for the 
initial assumptions regarding the stem-like cancer cell differ
entiation and translocation mechanisms.

2.2. Machine learning approaches and ABM

Typically formulated as an optimization problem, simulation 
calibration has become a very interesting candidate in the ML 

Table 1. Overview of the relevant literature from the last decade in ABM procedures in cancer biomedicine.

Model focus Main topics/findings References

Carcinogenesis Inflammation 20

Genomic instability and karyotype 21,22

Tumor growth Avascular/Vascular 14,23–25,28,37,60

Role of hypoxia 45,46,61

Cell heterogeneity and phenotypic switches 23,29,30,32,34

Spatial characterization ECM and cell migration 43,55

Proliferation vs migration 31,32,38,39,44

Shape metrics for tumor morphology 39,40

Tumor cells’ flows 41,42

Somatic cells interactions Immune cells 44,47,56

Connective tissue 55,57

Metastatic processes Main contributing factors 8,36,39

Treatment strategies Interrupt cell-cell communication 25,26,54–56

Reactivation of senescence 35

Combined treatments 16,27,58,59,62

Oxygenation level 33,45,46

Morphology and packing density 40,41

Immunotherapy 44,47–52,55

Oncolytic viruses 53
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community. This is because, on one side, in silico models can 
generate large quantities of data and, on the other side, biolo
gical or/and medical data is sometimes hard to collect or very 
expensive to acquire. Learning-based approaches offer an 
attractive alternative to optimization-based calibration 
approaches. They are especially interesting, as they also need 
to update behavior rules embedded in ABM, as shown in 
Figure 2(c). Such approaches tackle the realistic reproduction 
of mechanistic dynamics in biological systems by learning the 
mapping from clinical data and model parameters to 
a performance metric (see Figure 2(a)). In this space, the 
approaches are rather diverse. For instance, the work of 
Barde et al.63 presented the first empirical application example 
of a novel probabilistic model calibration methodology. This is 
a systematic study on methodologies to calibrate and bench
mark agent-based models. Their focus is on the comparison of 
ABM simulations carried out with standardized criteria based 
on accepted information-theoretical measures for forecasting 
performance and explanatory power. The purpose was to show 
that there are efforts in using ML to improve ABM calibration. 
Taking agent-based models closer to the data remains an open 
challenge, especially when considering biological processes. 
This involves calibrating the agent-based models to minimize 
the gap between simulation and reality. Computational intelli
gence, as a sub-field of artificial intelligence, is an exceptional 
candidate for achieving this due to its focus on computational 
principles and knowledge extraction based on biological prin
ciples, e.g., evolutionary programming, fuzzy logic, artificial 
immune systems etc. ML algorithms have the power to extract 
insights from experimental data, hence capturing those pecu
liarities that a model doesn’t typically capture. Data distribu
tion changes, bias, drift, and other phenomena can be learnt 
and used to judiciously parameterize agent-based models and 
ABM simulations. This aspect was the direct focus of the 
research carried out in the work of Lamperti et al.64 The 
authors explicitly tackled parameter space exploration and 
calibration of agent-based models combining supervised ML 
and intelligent sampling. This way the researchers could build 
a surrogate meta-model that provided a fast and accurate 
approximation of simulated model behaviors, dramatically 
reducing computation time. More precisely, the ML surrogate 
(i.e., an adaptive twin) facilitated large-scale explorations of the 
parameter-space, while providing a powerful filter to gain 
insights into the complex functioning of agent-based models 
capturing complex dynamics across scales. Using computa
tional intelligence for learning ABM simulation parameters, 
Singh et al.65 employed artificial life optimization. Their in 
silico framework implemented a hybrid model using micro- 
simulation and ABM techniques to generate an artificial 
society. The agents in this model derive their decisions and 
behaviors from real data (i.e., a micro-simulation feature) and 
interact among themselves (i.e., an ABM feature) to proceed in 
the simulation realization. Such approaches have been 
reported to map very well on the problem structure, as it is 
typically found in cancer cell biology, where local cell beha
viors propagate in upper tissues or organ properties change.

The work of Niida et al.66 proposed a very computation
ally powerful and parallelized approach to deal with model 

uncertainty (and its impact on calibration) in ABM. They 
highlighted the role of interactive visualization to help iden
tify suitable model parameters. This is crucial in handling 
the highly nonlinear dynamics of cellular interactions and 
cancer evolution. In this context, the calibration process of 
ABM simulations is structured around the concept of adapt
ability. By adaptability, we refer to the fact that model para
meters can impact one another, either via direct 
relationships (e.g., diffusion constant and physical properties 
of the extracellular matrix) or implications on system 
dynamics (e.g., vascularization and cellular metabolism can 
both affect the growth dynamics of cancer). More precisely, 
as the model complexity increases, so do the constraints 
among the model parameters and their inter-dependencies 
with respect to given summary statistics.

Using empirical priors and statistical learning, Lima and his 
colleagues28 proposed a moment-based Bayesian inference to 
account for the stochasticity of the coarse-grained ABM in 
a tumor growth multi-scale model. The approach presented 
very clever methods for quantifying uncertainties due to limited 
temporal observational data of cancer growth and staging at 
different spatial and temporal levels. Overall, the approach 
reduced the computational time of ABM simulations while 
reliably/realistically capturing tumor dynamics and its inherent 
nonlinearity. Using a hierarchical optimization simulation for 
calibrating the agent-based model, Amaran et al.67 integrated 
optimization techniques into simulation analysis. The primary 
goal of simulation-based optimization is to improve the perfor
mance of the models through Monte Carlo processes. More 
specifically, the Monte Carlo simulation allowed the system to 
find the optimal set of parameters for a given criterion based on 
a modular thresholding method. Here, by performing sensitivity 
analysis in conjunction with parameter optimization, the 
authors gained a comprehensive understanding of the process 
dynamics. Ultimately, this empowered the researchers to drive 
continuous simulation improvement and achieve superior qual
ity. The work of Akasiadis et al.68 stands out through the 
ingenious use of a typical calibration methodology. Their in 
silico method only considered numerical optimization and the 
goodness-of-fit only captured the quantitative aspects of the 
calibration. Finally, neural learning techniques were employed 
for comparing spatial simulations to tumor imaging, going 
beyond basic metrics retrieved from tumor images and ABM 
simulations. In this manner, such algorithms may evaluate the 
model fit quantitatively. More recently, the work of Cess and 
Finley69 employed representation learning and a neural network 
to project an input into low-dimensional space, which is 
a representative example. The authors utilize a neural network 
to represent the ABM simulations and tumor images as low- 
dimensional points, with the distance between them, serving as 
a quantitative indicator of their differences. The main contribu
tion of the study is that it draws on neural networks to create 
low-dimensional single-valued representations of both tumor 
image volume calculation and ABM simulations. The distance 
between these single point values serves as a quantitative indi
cator of the differences between the two (i.e. metric of perfor
mance of the ABM simulation at the core of a calibration 
process). In order to guide the reader, we tabulate the relevant 
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machine learning approaches and their successful application 
for ABM in Table 2.

2.3. Multi-scale or multi-level numerical methodologies 
in ABM

Multi-scale or, as some investigators prefer to use as a term, 
multi-level in silico modeling systems in biology and pharma
cology are robust methodologies that can aid researchers in 
understanding and probing the fundamental mechanisms of 
biological phenomena and in clinical applications. The excel
lent review of Morvan72 lays out clearly the definition of multi- 
scale methodologies using agent-based models, although in his 
survey he adopts the term ‘multi-level agent-based modelling’ 
instead of ‘multiscale’ since the latter, according to him and to 
Gil-Quijano et al. (see reference in72), has a restrictive meaning 
as it focuses on the spatiotemporal extent of levels and not on 
the interactions and organization within the biological system 
under investigation. We will thus use the term of a ‘multi-level 
agent-based model’ in this survey whereas, for semantic rea
sons, we will preserve the term ‘multi-scale model’ if used in 
the cited works below. Some examples of early attempts at 
multi-level approaches using ABM that considered coupling 
cell-scale to molecular-scale dynamics include the paper of 
Athale et al.73 They presented a model of gene – protein 
interactions integrated in an agent-based model system to 
probe the ability of brain cancer cells to ‘switch’ between 
migrating and proliferating phenotypes, while test how mole
cular species interact with other molecules within and across 
sub-cellular compartments. However, in order to keep the 
review relatively short, we limit the depth of our survey to 
the relevant multi-scale/multi-level ABM papers in biology 
and biomedicine of cancer presented during the last decade. 
Older review articles, such as those of Deisboeck,74 

Stamatakos,75 Walpole76 and their colleagues, present the 
highlights of published multi-scale in silico models of biologi
cal systems in cancer, cardiovascular and biomedicine, and 
demonstrate those early successes using agent-based models 
in the respective context.

2.3.1. Multi-scale/multi-level methods that couple ABM 
with differential equations-based solvers
There is a fair list of published papers that demonstrate the 
coupling between discrete systems – as in the case of agent- 
based models – and continuum-based models (i.e., these 
usually formulated using numerical methods that solve 
PDEs) or network models (i.e., such models are typically 
described using a set of coupled or non-coupled ODEs) to 
describe the biological cross-talk amongst different spatial 
scales by considering pertinent numerical algorithms and tech
niques suitable for the modeling task. Carcinogenesis 

dynamics unfolds across both spatial and temporal scales. 
ABM approaches are a suitable candidate to capture not only 
the molecular dynamics but also the aggregated dynamics of 
communication and regulatory networks, as shown by the very 
interesting multi-level ABM tools developed by Montagna and 
her colleagues.77 Here, drosophila embryo cells are modeled as 
agents that divide, move, secrete/uptake substances, while 
Montagna’s method encompasses also the balance of the mole
cules that mediate cell-to-cell communication and a gene reg
ulatory network to simulate the molecular biology of the cells 
(i.e., the reactions taking place inside the cells). Their multi- 
level ABM methodology was implemented via a multi- 
threaded discrete event scheduler using software Repast 
Simphony to simulate the expression patterns of the embryo 
cells against experimental evidence from the FlyEx database. 
Zhang et al.78 proposed an agent-based brain tumor model 
that encompasses intercellular level to describe cell – cell 
interactions intracellular-scale dynamics by employing 
a system of ordinary differential equations to describe selected 
molecular pathways relevant to glioblastoma multiforme 
pathophysiology (i.e., phenotypic switches in cells from migra
tion to proliferation), and the ‘tissue-scale’ to model the bal
ance of chemoattractant concentration (through isotropic 
diffusion, secretion, and consumption by the cells). The main 
focus of this work was in the design and development of their 
in-house C++/CUDA implementation of the multi-scale 
agent-based model, which was parallelized with respect to 
both the chemo-attractant diffusion and the intracellular sig
naling processes using graphics processing units (GPUs) com
puting. They reported a considerable computational speed-up 
of the GPU-based design of the multiscale ABM simulator 
compared to the one of the sequential design – this was 
amongst the few early works that demonstrated the potential 
of multi-scale ABM to simulate real-time cancer progression. 
Cai et al.79 developed a three-dimensional hybrid cellular 
automata model, which is part of the family of agent-based 
models, to study the dynamics of tumor spheroids and probe 
the effect of hypoxia, cell phenotypic behavior due to micro
environment biochemical factors. They solved three coupled 
reaction-diffusion equations to simulate the dynamics of the 
ECM, oxygen and ECM-degrading enzymes and communi
cated in a partitioned fashion the solution to an ABM simu
lator of the cell dynamics similar to the methodological 
approach of Zhang. Alfonso and his colleagues80 presented 
a comprehensive cancer model to study in silico immune cell 
infiltration and interactions in the breast ductal lobular epithe
lium. Following an ABM formulation, their multi-scale model 
accounts for myoepithelial, luminal, and immune cells (each 
type allowed to reside in a separate lattice in 2D space) whose 
behavior included immune cell trafficking, cell migration, 
immunosuppression, epithelial cell proliferation, damage, pro
grammed, and induced cell death, and cell lysis. Also, they 
modeled the transport and secretion of chemokines that con
trol the induction of an immune response in the terminal 
ductal lobular units of the breast epithelium. They calibrated 
their model from imaging data of immuno-histochemical 
epithelial, vascular, and immune cell markers from healthy 
women, and they investigated recurrent inflammation during 
physiological menstrual cycles and normal hormone levels, 

Table 2. Machine learning tools for ABM and overview of the relevant state-of- 
the-art literature.

Approaches References

Computational Intelligence 65,66,68,69

Probabilistic techniques 63,64,67

Bayesian and Statistical Learning 28,70,71
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while they analyzed in silico parameter perturbations that can 
lead to carcinogenesis. Interestingly in the latter part, as sug
gested by the agent-based model simulation results, they 
observed that epithelial damage induced higher variations in 
immune cell infiltration. Later, Gong et al.47 presented a multi- 
compartmental, multi-scale model of tumor development and 
anti-tumor immune response, which included interleukin-2 (a 
cytokine attributed to immunological homeostasis and classi
fication), cytotoxic T lymphocytes and neoplastic cells. Cells 
were set to interact in an off-lattice 3D space and follow a set of 
rules including division, migration, cytotoxic killing, and 
immune evasion. They developed an in-house C++ code for 
their ABM simulator to explore spatio-temporal tumor 
immune response to PD1 and PDL1 inhibition. To reduce 
the number of simulations used to quantify simulation uncer
tainty, they employed a particular statistical methodology for 
Monte Carlo simulation based on the LHS. This approach 
permitted to efficiently explore the parameter space and con
duct a comprehensive sensitivity analysis with a small number 
of samples, where each potential parameter combination was 
ranked based on the accuracy of the model predictions and 
performance. The in silico results generated interesting find
ings on the spatial patterns of different cell types without 
treatment that resembled patterns reported in cancer patient 
biopsies, and that ABM-simulated response to anti-PDL1 
treatment is affected by the neoantigen characteristics of 
a patient. Letort and her colleagues81 presented an open- 
source simulator, PhysiBoSS, which combined intracellular 
signaling using Boolean modeling and multi-cellular dynamics 
and behavior using ABM. As a use-case to demonstrate their 
modeling tool was modeling cell-fate decisions in response to 
treatment of cytokine Tumor Necrosis Factor (TNF) in order 
to illustrate the cell – cell communications. They also explored 
in silico the effect of different treatments and the behavior of 
several resistant mutants, while also testing the dynamics of 
cancer cell population with respect to the spatial heterogeneity 
of biochemical cues and resources (i.e., oxygen). Pally et al.82 

presented in a paper both their experimental and computa
tional work to interrogate cancer cell migration into cellular 
interactions with the basement membrane and its remodeling, 
the transition from basement membrane to type-I collagen, 
and the subsequent remodeling of, and migration within, type- 
I collagen in the context of early breast carcinomatosis. They 
built a multi-scale 3D organo- and pathotypic experimental 
assay, with the ABM implementation based on a cellular Potts 
model using the open-source software CompuCell3D. The 
model encompassed cancer cell proliferation and apoptosis, 
cell adhesion with the ECM, and the TME with respect to 
matrix remodeling through reaction – diffusion – based mor
phogen dynamics of Matrix Metalloproteinases (MMPs) and 
tissue inhibitors of MMPs. Pally and colleagues designed 
a culture model of MDA-MB-231 cells to form reconstituted 
basement membrane-coated suspended clusters to mimic the 
invasion patterns of breast cancer cells in vivo and probe how 
ECM density, MMPs and N-linked glycosylation concentra
tion impacts cancer cell invasiveness. Their approach consid
ers a hybrid system of partial differential equations, for the 
spatio-temporal evolution of the densities of the epithelial-like 
cancer cells, ECM and the MMPs, and stochastic differential 

equations, for the time evolution of the mesenchymal-like 
cancer cells including their migration along ECM gradients 
with these cells described as particles. Sfakianakis and his 
colleagues83 presented a multi-scale modeling framework for 
cancer invasion of the ECM by the combined action of epithe
lial-like cancer cells and mesenchymal-like cancer cells. The 
implicit/explicit Runge-Kutta finite volume numerical method 
was employed to solve the continuum-based part of the model, 
and an explicit Euler-Maruyama scheme was employed for the 
solution of the stochastic particle-based part of the model. In 
the same year, Macnamara and her colleagues84 proposed 
a multi-level in silico method to simulate the growth of 
a solid tumor, migration of cancer cells within heterogeneous 
tissue, and the effects of fiber and vascular structure in cancer 
development. In contrast to previous works, they modeled 
each cell as a viscoelastic deformable sphere with cell dynamics 
governed by ordinary differential equations to describe cell – 
cell forces, cell random migration and cell to ECM friction, and 
cell behavior (i.e., cell cycle, growth, and birth) as in agent- 
based models. Cancer cells were allowed to occupy voxels 
within a Cartesian grid, which was also populated with addi
tional agents that were contiguously structured such that they 
formed capillary vessels. They also accounted for the balance 
of nutrients and oxygen at the tissue level in the form of 
reaction-diffusion equations that were discretized with finite 
elements. Macnamara built an in-house C++ solver for cell 
dynamics and used the FreeFem++ platform for as an FEM 
solver, while they ran (non-cancer specific) simulations of 
tumor growth around an arbitrarily defined blood-vessel 
network.

2.3.2. Hybrid formulations of multi-scale/multi-level 
procedures
In addition to the multi-scale/multi-level numerical methodol
ogies that couple ABM with continuum-based techniques (e.g., 
finite elements, finite differences), several hybrid in silico can
cer modeling procedures have demonstrated the capacity to 
simulate neoplasia development from micro to meso to macro- 
scales, as well as hybrid techniques that incorporate machine 
learning and optimization algorithms for model parameter 
exploration and verification. The following paragraphs outline 
the most notable examples of such novel hybrid formulations 
that relate to ABM.

De Montigny et al.14 proposed a hybrid multi-level in silico 
cancer model that was tailored to simulate glioma growth. 
Their off-lattice agent-based model encompasses (host and 
neoplastic) cell growth, division, migration and adhesion, the 
dynamics of the extracellular matrix, the effects of oxygen and 
nutrient availability in cell survival, or the switch of cancer 
cells into a hypoxic or necrotic state, and the signaling trig
gered by chemical cues and growth factors. In contrast to all 
the above-mentioned papers, the multi-level formulation in14 

uniquely couples a continuum-based finite element model for 
the solution of reaction-diffusion equations (i.e., to predict the 
balance of cytokines, growth factors, and oxygen) at the tissue 
scale with an agent-based model via the volume averaging 
method. The hybrid simulator was developed by coupling an 
in-house FEM solver FEB3 and the open-source platform 
BioDynaMo for the ABM simulations. Using the in silico 
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framework, they examined the impact of cell – cell and cell – 
ECM interactions in (macroscopic) tumor growth, brain tissue 
perfusion and tumor necrosis, as well as they assessed compu
tationally the differences between low- and high-grade glioma 
growth, vascularization and necrosis and compared to experi
mental data from the literature.

Lima et al.28 presented a reduced-order ABM methodology 
coupled with Bayesian inference modeling for parameter cali
bration to manage the stochasticity of the agent-based model. 
In terms of the multi-scale modeling, ABM was used for the 
phenotypic behavior and the geometric properties description 
of the cells, while the dynamics of nutrients was modeled at the 
tissue scale as a reaction – diffusion process. Their hybrid 
model was demonstrated to simulate the development of 
a BT-474 human breast cancer cells in vitro, using time- 
resolved microscopy data, and employed a moment-based 
Bayesian inference method to quantify the uncertainties 
owing to limited temporal observational data of carcinoma’s 
growth.

Ponce-de-Leon and colleagues85 presented a multi-scale 
model of cancer cell dynamics with signaling for TNF-receptor 
dynamics, as in their previous intracellular signaling work in 
Boolean modeling.81 Cancer cells were modeled as agents 
residing in 2D or 3D lattice, which accounts for the presence 
of oxygen and the cytokine TNF. Their in silico model was 
built by combining the open-source ABM simulator PhysiCell 
and the software PhysiBoSS that was developed by the authors. 
Subsequently, they integrated their simulator with an Extreme- 
scale Model Exploration with the Swift platform to carry out 
exploration tests of the agent-based model parameter space 
which was ultimately deployed to optimize dosage-specific 
treatments for tumor regression. They probed for the effect 
of the spatial distribution of cancer cells on the treatment 
parameters optimizing the supply strategies in cell monolayers 
and three-dimensional tumor spheroids; similarly, they inter
rogated the robustness of the effective treatments with respect 
to the cell population heterogeneity of the cancer cells. 
Following the modeling work in,85 Ruscone et al.86 proposed 
an enhanced multi-scale model to interrogate possible targets 
that can help block or suppress the invasive phenotypes of 
cancer cells. More specifically, the improvements are focused 
at the intracellular scale where they incorporated mechanisms 
of epithelialto-mesenchymal transition and cell metastasis. 
They used the in silico model to test the role of tumor protein 
63 and metalloproteinase MT1-MMP in tumor invasion, as 
well as that of the tyrosine kinase protein SRC in an epithelial 
monolayer, while they also tested possible drug candidates to 
block migration in the ECM of cells that have undergone 
epithelial-to-mesenchymal transition. Tsingos and her 
colleagues87 presented a spatially inhomogeneous cellular 
Potts model to simulate cell migration in a fibrous matrix. 
To overcome the substrate homogeneity of the Potts model, 
they coupled it with a ‘background’ bead-spring biomechanical 
model of the ECM where fiber networks were modeled using 
molecular dynamics. A unique feature of their multi-level 
approach was the incorporation of contractile pulling by the 
cells through discrete focal adhesion-like sites on the fiber 
network. Despite their simulation experiments coming from 
the angle of morphogenesis and tissue healing, their in silico 

method can be adapted to study cancer cell infiltration and 
invasiveness. Also very recently, Miller et al.88 presented 
a multi-scale modeling approach to evaluate the effect of 
chemotherapeutics on patient tumors based on metabolomic 
analysis results of lung cancer biopsy data. Despite their multi- 
scale model being based on previous work from the same 
group (see reference32 therein), they integrated metabolomic 
analysis evidence (from patient tumors) and modeling. 
Interestingly, they built a synthetic dataset using Monte- 
Carlo by resampling selected parameter values of the multi- 
scale model to simulate chemotherapy, while they considered 
seven evaluation metrics to quantify the tumor response; how
ever, as the authors suggest, their results need further valida
tion with metabolic evidence from different and larger patient 
datasets.

2.3.3. Towards robustness and high fidelity of multi-scale/ 
multi-level methodologies
The literature survey laid out in the previous subsections 
illustrates a remarkable development track record of multi- 
scale and multi-level methodologies using ABM in oncology 
over the past decade. The computational cost and complexity 
to test the numerical stability of a multi-scale/multi-level in 
silico procedure, to probe the sensitivity of the numerical 
schemes involved, and to calibrate the models across multiple 
spatial scales remains a challenge however. In addition to the 
computational cost emerging when, it comes to simulating 
thousands or even millions of agents and the inherent stochas
ticity of an agent-based model, this stipulates realizing a great 
number of simulations to accurately represent the statistical 
features of an in silico cancer model. Thus, the effort toward 
achieving a high level of robustness and fidelity in a multi- 
scale/multi-level ABM formulation elevates tremendously in 
proportion to increasing the size of the biological system under 
investigation, as well as with the quantity and the modalities of 
data coming from the laboratory or the clinic.

Interestingly, as it is presented in subsection 2.2, investi
gators have attempted to amalgamate sophisticated machine 
learning and optimization algorithms for learning the simu
lation parameters, to quantify the model uncertainty and its 
impact on calibration on agent-based models (e.g., as in65 

and28). However, the majority of multi-scale and multi-level 
methodologies have used data to constraint and validate the 
cancer model predictions on a single scale, e.g., usually at the 
tissue level through tumor size measurements, or in the order 
of the largest temporal scale, typically at the order of the 
time-duration of a preclinical cancer experiment. The cited 
papers that follow illustrate the gradual evolution of relevant 
cancer in silico models to accomplish calibration across the 
scales. Among the early attempts to simulate multicellular 
tumor spheroids that mimic the TME dynamics was that of 
Cai et al.,79 who modeled cells as agents while the balance of 
nutrients and enzymes was modeled following a continuum- 
based method. Despite their method encompassed multiple 
spatial scales, i.e., the dynamics of cells and proteins, the 
simulation predictions were tested using history plots of the 
tumor spheroids with respect to size. Later, following 
a similar modeling path, Mao et al.89 presented a hybrid 
continuum/agent-based model for HCT116 tumor spheroids 
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to simulate hypoxia-dependent interactions between ionizing 
radiation and a hypoxia-activated prodrug; this in silico tool 
was used by Hong et al.45 to build a pharmaco-kinetic/phar
maco-dynamic model and probe the bystander effects of 
hypoxia-activated prodrugs in cancer cell killing. To inform 
their model at the continuum scale (i.e. the average rate of 
diffusion of the drug molecules in the medium) they adopted 
parameters from the literature, while to calibrate the agent- 
based model they used in vitro data coming from flow cyto
metry analysis, confocal microscopy imaging data of the 
spheroids, and fluorescent staining of the cancer cells to 
mark their protein expression. In,52 they presented an in 
silico model of lymphocyte – tumor – stroma interactions 
to interrogate the response to immunotherapy and stroma- 
targeting therapies on human colorectal cancers. As in,45 

Kather et al. employed data from horizontal in vitro migra
tion experiments on lymphocytes to inform the agent-based 
model, as well as ex vivo measurements (based on morpho
logical processing of single slice images) on histological 
human tumor tissue samples to estimate the proliferation, 
apoptosis and distance to necrosis parameter values, and 
provide a quantitative basis for the cell-scale modeling. 
Rahman et al.37 coupled in ‘space and time’ multi-scale 
cancer model spanned from tissue (using FEM) to cellular 
(using ABM) and subcellular scale, with the latter being 
represented by signaling pathways. In a similar fashion, de 
Montigny et al.14 integrated ABM with the FEM using 
a volume-averaging formulation to build a multi-level brain 
cancer simulator. Both models, however, were calibrated and 
tested from observed data at a single scale (tissue level), i.e., 
history plots of the tumor volume and average volume frac
tion of cell groups. With an exception to the model in14 

where tissue-scale (FEM) parameters for tumor and host 
cell dynamics were inferred (a process often called data 
upscaling) from the cell-scale (ABM) simulation predictions, 
in37 the modeling parameters on the lower scales (cellular 
and subcellular) were either adapted from the literature or 
estimated. The multi-scale approach of Lima28 employed 
in vitro data to separately inform (at the cell scale) the 
mechanistic agent-based model of human breast cancer 
cells’ phenotypic behavior, and (at the continuum tissue 
scale) the transport and balance of glucose concentrations 
and cytokines in general. The important contribution of their 
paper concerns the Bayesian inference concept applied for 
the time-dependent sensitivity analysis of the in silico model 
and to interrogate the model parameters’ space. Using light
weight neural networks, Axenie et al.34 extracted the mechan
istic relations governing phenotypic staging and tumor 
volume development.90 Very recently, Cesaro and her 
colleagues91 demonstrated their multi-level TME simulator 
that couples mechanistic agent-based models with PDE- 
based solvers in two dimensions. An innovative feature of 
their paper was the data-driven strategy they adopted to 
inform the agent-based model using bulk gene expression 
data from The Cancer Genome Atlas database. They also 
used evidence from the scRNA-seq dataset of human color
ectal cancers to calibrate with respect to the tumor muta
tional burden and the inhibitory immune checkpoint that 
suppresses T-cell activation and to estimate the cell (HCA, 

T-reg, CAF, immune) fraction and in their model. The multi- 
scale model of Ponce-de-Leon85 considered the Covariance 
Matrix Adaptation Evolutionary Strategy for the numerical 
optimization of their agent-based model to analyze the treat
ment parameters of the tumor necrosis factor cytokine and 
its effect on cancer regression. Despite their model being 
inherently multi-scale, their in silico experiments were cali
brated on macroscopic quantities, i.e., drug dose, injection 
time and duration, and tumor size. In the same year however, 
Miller et al.92 presented a multi-level approach that is unique 
in that it proposes to link tumor metabolomic measurements 
from patients into the mathematical model for tissue-scale 
behavior of a carcinoma progression or control, the develop
ment of angiogenesis, the effect of chemotherapy, etc. 
However, an important limitation of the cancer model con
cerns that its behavior depends mainly on the metabolomic 
data available, and how they are appropriately weighted and 
combined to determine the effect on the (mechanistic) model 
parameters. Finally, Ruiz-Martinez and colleagues48 proposed 
a hybrid ODE-based/ABM simulation tool investigate ther
apeutic strategies related to anti-cancer immunity and 
immune checkpoint inhibition. The rules for the cancer 
(stem-like, progenitor, and senescent) and the immune 
(CD8+ T and Treg) cells were defined in the agent-based 
model provided in vivo evidence from the literature,93 while 
for the calibration of the differential and algebraic equations 
(120 in total) they employed a model. Their, a mechanistic 
modeling method often used for drug discovery, was based 
on a relevant one for non-small cell lung cancer and incor
porated data from single-cell RNA sequencing.

2.4. ML-assisted calibration: a two-sided sword

Agent-based numerical procedures that are supported by ML 
models, as has been briefly outlined in subsection 2.2, can 
significantly contribute to the generation of agent-based mod
els with suitable model parameters. However, automated cali
bration can also entail challenges and difficulties. This section 
elaborates on the comparison between ABM with and without 
ML assistance. Notably, we provide further explanatory com
ments to establish the wider context of ML and its involvement 
in ABM.

From a modeler’s perspective, a pure ABM procedure is, as 
is more generally mechanistic modeling, often seen as 
demanding with regard to the determination of model vari
ables. As explained above, ML techniques can be employed to 
efficiently search the parameter space of mechanistic models 
and determine optimized model parameters. However, an 
important criterion in biomedical models is that parameters 
need to be ‘biologically plausible,’ if not (ideally) directly 
experimentally informed model parameters. An agent-based 
model where model parameters were estimated from the lit
erature, without ML-assisted optimization, is the study of 
Macklin et al.94 However, due to limitations in data availabil
ity, it is usually impossible to infer all model parameters from 
the literature. ML can help address this problem. For instance, 
Demetriades and his colleagues62 employed ML to infer var
ious parameters on the pharmacological impact of cancer 
drugs. B¨orlin and his colleagues95 employed model 
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parameters obtained both from the literature as well as ML- 
derived ones. Jalalimanesh et al.96 make use of reinforcement 
learning to optimize radiation treatment. Overall, the need to 
account for biomedical plausibility in model parametrization 
highlights the importance of interdisciplinary collaboration 
particularly for mechanistic, multi-scale models97 (more 
about multi-scale models in subsection 2.3).

A crucial criterion in computational modeling is ‘explain
ability.’ This aspect has recently gained much attention due to 
the fact that large language models are very problematic with 
regard to gaining insights into the human-understandable 
causes of outputs. Especially when it comes to biomedical 
applications, explainability is of utmost importance. 
Clinicians need to understand exactly the reasons behind 
their findings to adequately inform their decision-making 
process, given the potentially life altering impacts of these. 
Mechanistic models, as in for example the studies of Macklin 
et al.94 and de Montigny et al.,14 produced experimentally 
verifiable hypotheses that can ultimately lead to deeper 
insights on glioma cancer growth and cell necrosis. Notably, 
many ML methods suffer from the same issues as large lan
guage models as they can be perceived as black boxes that may 
have excellent performance with regard to a given biomedical 
problem, but nevertheless limited clinical benefits. Therefore, 
modelers should be aware of the potential pitfalls when inter
facing mechanistic models with ML algorithms, especially 
when it comes to practical impact in the clinical setting. 
However, it is notable here that ML methods come in different 
types, i.e., fundamentally black-box and white-box models. 
Indeed, ML approaches that enable explainability (or inter
pretability) exist, as described in the work of Linardatos et al.98

In view of the trend of in silico models’ rising complexity 
and the number of parameters they consist of, then comes the 
need to rigorously assess ‘robustness’ and ‘sensitivity’ of the 
model, for instance with regard to the model parameters and/ 
or different initial conditions. Given that no two biological 
systems are exactly identical, a theoretical model must tolerate 
changes to model parameters, at least within reasonable 
boundaries. Due to this inherent variability, biological systems 
in cancer usually comprise redundancy, checkpoints, and con
trol loops that permit for changes without endangering impor
tant outcomes. In the context of computational modeling, 
limited changes to model parameters should not lead to 
implausible in silico outcomes.

Additionally, a crucial goal of computational modeling is 
the generation of hypotheses and experimentally verifiable 
predictions. To this end, ABM sensitivity analysis can help 
gain insights into the impact of the model parameters. 
A direct but basic way to accomplish such tests for ‘robustness’ 
and parameter ‘sensitivity’ is to execute the model with differ
ent model parameters in a grid-like manner – in this 

methodology, ML cannot be deemed pertinent. However, it 
may come to a case where some parameters of an agent-based 
model may have a stronger impact than others. In this direc
tion, ML can be a helpful tool to efficiently sample, identify, 
and rank model parameters in terms of their importance when 
considering these as ‘features.’ This is called Variable 
Importance Analysis and, for instance, the random forest ML 
method is commonly used for such analysis, as demonstrated 
in the work of Pereda et al.99 In a similar approach, Retzlaff 
and his colleagues100 used decision trees for Variable 
Importance Analysis in their agent-based model; the authors 
indicated that cell cycle duration and motility in the context of 
solid tumor metastasis are the most important factors with 
regard to therapy resistance.

An aspect that requires consideration for the usage of 
mechanistic modeling and ML-assisted mechanistic modeling 
is ‘scalability.’ Given that mechanistic modeling should be, for 
the sake of biological plausibility, based on local information 
exchange only, its simulation can naturally make use of paral
lelized and distributed computing.101,102 For numerous ML 
methods, their adaptation for large-scale applications requires 
often custom efforts, since every algorithm has a distinct com
munication pattern, as demonstrated in the work of 
Verbraeken et al.103 Along those lines, synchronization 
requirements among nodes can vary across ML methods, as 
well as suitability for specific hardware (e.g., CPUs versus 
GPUs). Overall, the smooth and efficient interfacing with 
mechanistic modeling constitutes nevertheless a challenging 
task that remains to be addressed in the future.

Clearly, specific problems in cancer biomedicine require 
consideration of the associated advantages and disadvantages, 
and there is no one-size-fits-all approach for any given scien
tific quest. ML can be a highly valuable asset for researchers 
employing ABM. However, the combination of these distinct 
approaches can also entail challenges, and so their symbiotic 
application is not necessarily warranted. Nevertheless, specific 
aspects that need to be considered on a case-by-case basis can 
be appreciated (Table 3).

2.5. Fusing mechanistic and learning approaches 
(physics-informed systems)

The in silico modeling approaches discussed above focus on 
the calibration of Markovchain/ODE-/PDE-based models to 
simulate processes involved in neoplasia. Such mechanistic 
models account for assumptions about the dynamics of the 
systems in both the temporal and spatial dimensions, as out
lined in subsection 2.3. Advanced numerical methods and 
high-performance computing enable high-fidelity simulations 
of such calibrated mechanistic models to run at scale. 
However, most approaches for calibrating biological systems’ 

Table 3. Comparison of pure MM versus ML-MM.

Criterion Well-suited for References

Identification of model parameters ML-MM 62,69,85,95,96

Accordance with experimentally measured parameters MM 94,104

Explainability MM 14,85,94

Robustness and sensitivity ML-MM 99,100

Computational scalability MM 101,102
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models focus on fit quality. The common noun in the current 
approaches landscape demonstrates that the calibration error, 
which varies depending on the optimization approach, reaches 
an insurmountable barrier that can result in a standstill in 
selecting the “optimal” model. This model selection process 
reaches another stale point when considering capturing corner 
cases in the spectrum of the modeled system’s behaviors. The 
current approaches look at modifications of the models them
selves with adaptive features or the analysis of the influence of 
the system’s characteristics on the system’s behavior in corner- 
case situations. Learning-based approaches offer an attractive 
alternative to these optimization-based calibration approaches. 
An additional advantage is the explanatory power that physics 
can offer when building ABM behavior rules for the simula
tion. Such approaches tackle the realistic reproduction of the 
biological system’s behaviors by learning the underlying map
ping from data and model parameters to a performance metric 
or goodness-of-fit criteria of plausibility. But, in order to gain 
the best of the two worlds, mechanistic ‘biases’ can be ‘injected’ 
into ML models and leverage the power of learning from large 
amounts of data through a ‘directed’ search for the solution, in 
other words, the realm of physics-informed ML modeling. 
Fusing mechanistic biophysical models and learning algo
rithms amounts to introducing appropriate observational, 
inductive or learning biases that can direct the learning process 
toward reaching physically plausible solutions. This new con
ceptual framework of physics-informed ML framework coined 
by Karniadakis and his team105 proposed training ML models 
from additional information obtained by enforcing the physi
cal laws (for example, at random points in the continuous 
space-time domain). Such physics-informed learning inte
grates (noisy) data and mathematical models, and implements 
them through neural networks or other kernel-based regres
sion networks for calibrating or optimizing ABM parameters. 
Practically, this can be done by introducing inductive, obser
vational, or learning biases in the learning process, under the 
form of a loss function, regularization term, or event calibra
tion metric. Multiple candidate approaches that focus on phy
sics-informed learning for simulation calibration have been 
proposed, each one focusing on a different component of the 
overall problem. Rutter et al.70 proposed an incremental mix
ture approximate Bayesian computational procedure for color
ectal cancer simulation calibration. They used a simulated 
sample from the posterior distribution of model parameters 
given calibration targets to inform national cancer screening 
guidelines. For instance, to achieve computational gains in 
large-scale simulations the work of Wood et al.106 developed 
a novel computationally efficient method for direct generalized 
additive model smoothness selection. Designed as a highly 
stable, but carefully structured, calibration system, the pro
posed approach achieved a computational efficiency that led, 
in simulations, to lower mean computation times than the 
schemes that are based on working model smoothness 
selection.

Because it may be challenging to abstract and define the 
rules that control an agent-based model from experimental 
data, at least in an objective manner, there is a particularly 
synergistic potential to utilize ML to help infer the most 
effective, system-specific ABM rules, as shown in the work of 

Sivakumar et al.107 Once such rule sets are developed, a large 
volume of ABM simulations can produce a plethora of data, 
and ML can be used in that setting as well. For instance, 
statistical measures that accurately and meaningfully charac
terize the stochastic outputs of a system and its features are one 
use of ML in this context. ABM simulations can produce 
credible (realistic) datasets to subsequently use for training 
ML algorithms (e.g., for regularization, to prevent overfitting), 
as an example of synergy in the other direction (from ABM to 
ML). In an effort to develop a general-purpose computational 
framework, Spolaor et al.108 introduced a novel approach for 
the analysis of hybrid models consisting of a quantitative (or 
mechanistic) module and a qualitative module that can reci
procally control each other’s dynamic behavior through 
a common interface. This qualifies as a mix of inductive and 
observational biases. More precisely, the system of Spolaor and 
colleagues took advantage of precise quantitative information 
about the temporal evolution of the modeled system through 
the definition and simulation of the mechanistic module. At 
the same time, it described the behavior of biophysical model 
components and their interactions that are not known in full 
detail, by exploiting fuzzy logic in the definition of the quali
tative module. Such approaches are deemed to be suitable for 
the analysis of cancer morphogenesis, an intricate chain of 
biological mechanisms that enable cell populations to repro
ducibly self-organize into specific shapes or patterns. Through 
physics-informed simulations, a modeler can modulate the 
state through controlled signal transduction on a range of 
spatial and temporal dimensions that include a variety of 
mechanisms and systems, as demonstrated in the work of 
Glen et al.109 The path of hybrid approaches is further 
strengthened by the work of Ward et al.110 which proposed 
a dynamic calibration of agent-based models using data assim
ilation. More precisely, investigators tackled the question of 
how such models can be dynamically calibrated using the 
ensemble Kalman filter, a standard method of data assimila
tion. The work developed a new type of Kalman filter-based 
system in a simple setting for data assimilation and fusion in 
ABM calibration for cancer development. Combining prob
abilistic machine learning in a physics-augmented framework, 
the work of Moon et al.111 claimed a new technique dedicated 
to improved calibration and validation of agent-based models. 
The framework identified periods of deviation between the 
simulation and the observation with the Hierarchical 
Dirichlet process hidden Markov model. This allows the fra
mework to automatically calibrate the temporal macro para
meters by searching parameter spaces with a broader 
likelihood of validation for tumor growth under 
a compromised immune system.

When considering clinical sequencing of surgery and che
motherapy, the work of Axenie and Kurz34 illustrated how 
a physics-informed ML system can extract the pharmacoki
netics of a common breast cancer chemotoxic medication 
while also concurrently learning the patterns of tumor devel
opment in a variety of breast cancer cell lines. In a very recent 
study, Beik et al.71 introduced a Bayesian multi-model infer
ence methodology for a dual purpose. On one end, the model 
quantified how mechanistic hypotheses can explain given 
experimental datasets, basically by attaching the probabilistic 
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explanation to data peculiarities. On the other, the model 
demonstrated how each dataset informs a given model hypoth
esis, thus, enabling hypothesis space exploration in the context 
of available data. The approach was successfully used to probe 
standing questions about heterogeneity, lineage plasticity, and 
cell – cell interactions in tumor growth mechanisms of small- 
cell lung cancer. The methodological approach in71 comple
ments the physics-informed ML approaches with a strong 
probabilistic framing of hypothesis testing and variable inter
actions in cancer modeling.

On the other hand, when considering the translation of in 
silico models in cancer progression, physics-informed ML 
approaches have been successful in tumor volume prediction 
after learning without supervision tumor phenotypic stages 
from breast cancer cell lines (e.g., see34) as another simulta
neous task. For the purpose of optimization-free calibration of 
ABM simulations, the work of Axenie et al.112 introduced 
a physics-informed fuzzy logic calibration system. Using spa
tiotemporal models of agents’ interactions, the in silico system 
could regress, based on human experts, the plausible solutions 
of the goodness-of-fit metric (e.g., Akaike Information 
Criterion, Root Mean Squared Error (RMSE), etc.). 
Benefiting from expert knowledge, known physics models 
and inference capabilities, the calibration framework in112 

provided a very good trade-off between plausible/realistic 
reproduction of real dynamics, plausible choice of model para
meters, and a very fast calibration procedure. From 
a methodology point of view, this approach is superior to 
those using solely optimization algorithms, as in the paper of 
Akasiadis and his colleagues68 for instance. They only consid
ered numerical optimization, where the goodness-of-fit only 
captured the quantitative aspects of the tumor growth agent- 
based model calibration. Yet, when considering the plausibility 
of the candidate solution, the numerical approach might offer 
a, sometimes, non-intuitive or plausible parametrization of the 
agent-based model behavior rules. This can be overcome by 
infusing a mathematical description of tumor growth covari
ates or other mechanistic dependencies in the learning func
tion (i.e., modeling a loss function of the log-likelihood 
distance from the data to the mechanistic model). The differ
ent approaches for physics-informed learning calibration of 
ABM simulations demonstrate the potential such an approach 
has to leverage known models and learning algorithms and 
demonstrate how their combination is beneficial to achieve 
plausible, realistic simulations. Thus, physics-informed ML 
offers an attractive numerical procedure for extracting an 
accurate human-understandable representation of the under
lying dynamics of physical interactions crucial to typical 
oncology problems, as demonstrated by the very encouraging 
results from multiple predictive tasks instantiations in oncol
ogy, as shown in the work of Kurz et al.113

This overview highlights the way ML systems may enhance 
clinical decision-making using effective computational techni
ques that benefit from embedding priors in the learning pro
cesses in order to guide their convergence toward plausible 
solutions. In order to do this, we think that such platforms 
provide a link between the modeler, the data scientist, the data, 

and the practising physician. In order to guide the reader, we 
offer a synthetic overview on the successful recipes for agent- 
based models’ calibration that fuse machine learning and 
mechanistic modeling in Table 4.

3. Strategies for agent-based models calibration and 
validation

3.1. Calibration as a multi-stage validation

Independent of the underlying parameter inference approach, 
a calibration procedure typically comprises multiple stages: data 
acquisition, scale choice (global or local), performance metrics 
(M) definition, the definition of the metrics for the goodness- 
offit (G), and the choice of an optimization algorithm. A first, 
and crucial question is what input data is available for an agent- 
based model calibration? In vitro cell line data are typically 
available, but poised by small sample size, uneven sampling, 
and multi-modality. On the other hand, in vivo data, although 
collected under strict (and thus more easily reproducible) pro
tocols, often provides limited coverage of the study’s phenom
ena, focusing only on specific aspects. Although Equation 1 
defines the calibration problem, we now exemplify how this is 
applied in practice. Consider the problem of phenotypical tran
sitions in tumors. Due to their spatio-temporal modeling cap
abilities, ABM simulations can capture such dynamics. For 
instance, if we consider solid tumors, the typical cancer pheno
typic state space is composed of three states quiescent (Q), 
proliferative (P) and apoptotic (A). Non-necrotic cells become 
hypoxic (H) when oxygen drops below a threshold value. 
Hypoxic cells can recover to their previous state or become 
necrotic (N). The transitions among these states are stochastic 
events generated by Poisson processes. Mapping this example 
onto Equation 1: β can be composed, for instance, of cells’ cycle 
time value, cells apoptosis time, proliferation index, and apop
tosis index; F is a mapping function from β to states transition 
rates; x can be composed of the mean Q-P transition rates, and 
Q-A transition rates, f is a function of goodness-of-fit which can 
be, for instance, RMSE and symmetric Mean Absolute 
Percentual Error of F to the real timeseries of raw immuno- 
histochemistry and morphometric data of solid tumors. Second, 
the discrepancy in calibration is, typically, measured by the 
goodness-of-fit of the simulated parameters to the real para
meters. This is supplemented by a series of calculated quantities 
by the metrics of performance in both the real world and 
simulation. Every goodness of fit evaluation can be performed 
either globally (e.g., using Least-squared errors) or locally (e.g., 

Table 4. Fusing mechanistic and machine learning approaches for ABM calibra
tion; a synthetic overview on relevant state-of-the-art methodologies.

Approach Reference(s)

Physics-informed Neural Networks 34,105,113

Bayesian Techniques 70,71

Probabilistic Techniques 68,106,110,111

Rule-based Techniques 68,107,108,112

Hybrid Modelling Techniques 108–110
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using maximum likelihood). Since at its core, model calibration 
is basically an optimization problem, the underlying algorithm 
aims to converge to a solution that is close to the global mini
mum of the goodness-of-fit metric, G, while obeying imposed 
constraints on parameters’ values. The formulation of the cali
bration procedure can be synthetically described as: 

min
Msim;Mreal

f Mreal;Msimð Þ

with f :ð Þ ¼ G :ð Þ;Msim ¼ FðxjβÞ;Mreal ¼ F xð Þ (1) 

s:t:βmin � β � βmax;

where F is a mapping function of the biophysical system’s tem
poral trajectory data x provided a set of model parameters β 
calculated after simulating the model to extract the simulated 
values of the performance metrics Msim, with Mreal being the 
observed values of the performance metrics calculated by 
F from data x; f is a function representing the goodness-of-fit 
G (i.e., the realism of the simulation or closeness of Mreal to Msim), 
and f(Mreal,Msim) is the objective function to be optimized calcu
lated from x – in principle a function describing the discrepancy 
between simulation and reality (i.e., Msim ≈ Mreal). A mapping of 
this formalism to the disease trajectory is illustrated in Figure 1(b). 
This formalism was adopted by many researchers in their 
attempts to calibrate ABM simulations. We chose to analyze 
two very relevant candidates that currently capture the state-of- 
the-art strengths and limitations of such methods. Cess and 
Finley69 presented a novel approach that applied neural networks 
to represent both tumor images and ABM simulations as low 
dimensional points, with the distance between points acting as 
a quantitative measure of the difference between the two. This 
enabled the authors to extract a quantitative comparison of tumor 
images and ABM simulations, where the distance between simu
lated and experimental images can be minimized using standard 
parameter-fitting algorithms. We can see that each of the quan
tities in Equation 1 can take arbitrary dimensions, but there will 
always be a ‘distance-based’ goodness-of-fit G to characterize the 
plausibility of the simulation after calibrating the models’ para
meters β. But, as the literature survey shows, so far there has been 
no shared view on the quantification of validity in agent-based 
simulations. Very recently, Troost et al.114 conceptualized valida
tion by systematically substantiating the premises on which con
clusions from simulation analysis for a particular modeling 
context are built. They provided a formal extension to the classical 
approach in Equation 1. To this extent, a strict definition of the 
parameters β is the problem dependent and the choice of func
tions f depends on the trade-off between explanatory power, 
predictive accuracy, and the plausibility captured by the bounded 
β values. They proposed an assessment of the validity of agent- 
based models by incorporating valid conclusions from simulation 
analysis in a context-adequate method that touched model con
struction, model and parameter inference, uncertainty analysis, 
and the simulation process itself. The authors have built 
a comprehensive understanding of validation for agent-based 
models with a modular structure for versatile applications across 
several fields, where measures of performance are typically pro
blem-specific. Introducing the framework multiple dimensions 
were defined to characterize the modeling context and purpose 

with a clear stage-wise buildup: premises of common validation 
approaches – a detailed protocol to guide context-adequate model 
construction and review and, finally, a consistent tracking of 
uncertainty propagation through the modeling process.

We now turn our attention to how optimization-based and 
optimization-free multistage methods complete the landscape of 
relevant approaches for multi-stage validation. In research tar
geting the estimation of the parameters of a stochastic process 
model for a macroparasite population within a host, the team of 
Drovandi et al.115 employed approximate Bayesian computation 
to model the immunity of the host as an unobserved model 
variable. Despite the very limited data, the authors had available, 
the process rate’s time constants were inferred reasonably pre
cisely with a grounded plausibility proof. The approach involved 
a three-stage Markov process for which the observed data like
lihood was computationally intractable. The proposed algorithm 
was validated on an autologistic model prior to parameters 
inference from experimental data. Interestingly, the model also 
captured the extra-binomial variation of the immune system. 
The results were also supported by the study of Carr et al.116 who 
presented a similar framework of Bayesian modeling and infer
ence as in the work of Jorgensen et al.117 They proposed an 
efficient Bayesian inference method for a stochastic agent-based 
model. The study mitigated the use of the Bayesian setting (a) by 
constructing lightweight surrogate models to substitute the 
simulations used for inference, and (b) by circumventing the 
need for Bayesian sampling schemes and directly estimating the 
posterior distribution. This multi-staged approach demon
strated realistic results in tumor growth prediction. 
Considering a similar scenario of tumor growth curve extrac
tion, the work of Wang et al.118 proposed a method for calibra
tion of a Voronoi cell-based model for tumor growth using 
approximate Bayesian computation. Interestingly, the work 
involved as well estimating the distribution of parameters that 
govern cancer cell proliferation (i.e., the distribution of β in 
Equation 1) and recovering outputs that match the experimental 
data. Their results showed that the proposed approach, and its 
multi-stage extension, provided insights into tumor growth and 
a good quantification of this process uncertainty. Multi-stage 
calibration describes a very promising avenue to explore, also 
because it is also supported by work that fuses mechanistic 
modeling and ML. A very good candidate subsuming these 
principles is the work of Axenie et al.,112 where the optimization 
step was reduced to a simple feed-forward inference through 
a logic model of spatio-temporal interactions of the agents. This 
modeling stage allowed the system to ‘inject’ proper biases in the 
learning process of the mapping F in the generic process cap
tured by Equation 1 while keeping inference efficient. 
Additionally, the employed metrics of performance demon
strated a tight coupling among the micro- and macro-scopic 
dynamics of the agents. Interestingly, the calibration of micro
scopic parameters took into account also the aforementioned 

Table 5. Calibration as a multi-stage validation. An overview on relevant state-of- 
theart methodologies that follow the formal description in Equation 1.

Approach Reference(s)

Neural Networks 69,112

Generic Optimisation Techniques 114

Bayesian Inference 114–118
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scale coupling for a plausible candidate parameter configura
tion. Table 5 summarizes the most relevant publications that 
categorize the most important modeling approaches for ABM 
calibration as a multi-stage validation process.

3.2. Models comparison — benchmarking

Given the availability of different computational techniques 
and approaches, the scientific community acknowledges the 
need to assess and compare different explanatory computa
tional models. In particular, this abundance of in silico models 
gives rise to the question of what criteria investigators should 
consider when making decisions of appropriateness. One com
monly used process to address this question is model bench
marking. Model benchmarking stands for the assessment and 
quantification of in silico models according to well-specified 
criteria. This provides the means to objectively infer metrics 
and uses these to compare the models, enabling a framework 
for improved selection.

Notably, without proper standardization the benchmarking 
criteria can be strongly influenced by the research aims of the 
individual investigator(s), institutions or national funding 
policies, thus, causing biases and misconceptions. Here, we 
elaborate on the set of criteria that we believe to be crucial 
for ABM simulations in biomedicine and hence well-suited for 
benchmarking studies in the future.

Naturally, computational models’ primary objective is to 
achieve a high-fidelity predictive performance. To accomplish 
this, specific measured data need to be reproduced by the in 
silico model in a repeatable fashion (‘replicability’). The cap
ability in doing so is quantified using measures of ‘accuracy.’ In 
the biomedical context, such actions could relate to various 
anatomical, physiological, omics or other types of biological 
information. For instance, the study of Borlin et al.95 presented 
an agent-based model that quantitatively captures several bio
logical measurements of autophagy, which plays crucial roles 
in cellular and organismal homeostasis, including the response 
to diverse stresses. Ideally, the model performance refers to 
some type of agreement with such experimental data; for 
instance, this could be the number of cells or subcellular 
vesicles of a certain type. Well established measures, such as 
Mean Squared Error (MSE), RMSE, the F-score and the 
Receiver Operating Characteristic (ROC) curve, are commonly 
used to quantify the agreement between computational pre
dictions and experimentally observed data. Nevertheless, 
oftentimes such agreement may be only of a qualitative nature, 
which can still exhibit significant explanatory power. For 
instance, a computational model that captures up- or down- 
regulation of certain metabolic pathways in the right context, 
has value, even if the magnitude of change is not quantitatively 
accounted for. However, in the presence of multiple plausible 
models, quantitative accuracy is a crucial factor and may 
determine which models to select over others.

As previously discussed (section 2.4), computational mod
els and in particular mechanistic models require parametriza
tion using biological information. These should be ideally 
experimentally measured, and at least based upon plausible 
evidence. Given that such parametrization may be difficult to 
conduct based on real-world data, it is best to minimize the 

presence of estimated model parameters while also reducing to 
the absolute necessary ones, based on the design of the agent- 
based model, the list of assumptions. Arguably, models that 
require fewer parameters and less guesswork can generally be 
considered superior to those where significant subjective 
inputs are necessary. When multiple models confer equivalent 
agreement with experimental data, models with comparably 
reduced ‘complexity’ are preferable to others, in accordance 
with Occam’s Razor.119 Thus, with regard to mode bench
marking, it is important to consider and compare model com
plexities. At the very least, model complexity should reflect the 
complexity and disparity of the empirical data used to inform 
and calibrate the in silico model. It is beyond the scope of this 
review, however, to give a comprehensive overview of model 
complexity measures, which comprise for instance the number 
of model parameters, number of agents, the ontology graph, 
the Bayesian Information Criterion, and many others. The 
interested reader is recommended however to read.119–122

Explanatory power is, as mentioned earlier, a particularly 
important aspect of an in silico model in biomedicine. 
A hypothetical model A, which is considered in this example 
as a black-box one, may perform significantly better in repro
ducing experimental data than a hypothetical mechanistic 
model B. However, the real-world value of a model B may 
still be higher. No patient will agree to surgery without 
a proper explanation of the underlying reasoning. Indeed, 
model A’s applicability is a-priori limited in contexts where 
the stakes are high and interventions can have long-term 
implications. Nevertheless, to date, the explainable category 
of a model B has seen very limited translation and thus appli
cation in the clinical setting has been rudimentary.

However, explanatory power is also difficult to quantify 
and so remains rarely assessed in existing benchmarking 
studies. A potential framework to assess and grade 
a model’s explainability is as follows: in its most basic form, 
a model could be associated with a binary variable for being 
of the black-box or white-box type. Black-box models are 
entirely data-driven, while white-box models constitute the
oretical models that describe the mechanisms of a given sys
tem. In many cases, this basic differentiation could be 
extended to a spectrum of explainability, associated with 
gray-box models. Pure ABM is a mechanistic approach, 
hence it is a white-box type. Given that models exist where 
ABM interacts with statistical approaches (e.g., Monte Carlo 
methods17), it is conceivable that a more fine-grained 
explainability measure can be constructed. Explainability is 
an active area of artificial intelligence research and is parti
cularly important to consider when assessing the usage of 
computational models in biomedical applications. 
Explainability needs to be accounted for in accordance with 
experimental data across multiple spatial and temporal scales. 
Again, the extent to which different scales are validated can 
be associated with explainability.123 For instance, the study of 
Bauer et al.13 combined ABM of single-cell behavior in terms 
of cell death, with developmental outcomes in terms of large- 
scale tissue anatomy. The larger the range of spatial and 
temporal scales that an agent-based model allows to capture 
and reproduce, the higher its explanatory power. Along those 
lines, Wijeratne and Vavourakis7 studied the impact of drug- 
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borne nanoparticles on multiple levels including the fluid 
dynamics, biochemics, vasculature, and overall solid tumor, 
while Ruscone et al.86 also proposed an agent-based model 
and probe dynamics on the scales of genetics, metabolism, 
cell behavior and population.

Biomedical applications are in many regards very challen
ging, particularly when it comes to personalized medicine. 
Many diseases can progress very differently depending on 
lifestyle, age, genetics and comorbidities. In order for 
a computational model to have predictive power, it requires 
the capability to account for variation as observed in a given 
system (e.g., interpersonal variation, age-dependent changes, 
drug-induced changes, etc.). This aspect could therefore be 
accounted for in the benchmarking of computational models, 
for instance by producing distributions of outputs for multiple 
runs with different initial settings and/or stochastic dynamics. 
At the same time, computational models also need to be con
sistent, so that a given result depends on very specific initial 
conditions. Such variation and consistency can be captured 
using ‘sensitivity’ analysis.28,66,124

It is not astounding that most bench-marking studies 
focus on computational performance, which depends on 
‘computational efficacy.’ Needless to say, the more efficiently 
and faster a model can be simulated, the better suited it is for 
parameter optimization, refinement, and adaptation. While 
this does not necessarily entail enhanced explanatory power, 
it can lead to an edge when it comes to real-world applica
tions. This is particularly true in the biomedical context 
where data acquisition has reached very high throughput 
levels, requiring frequent analysis, fast processing, and 
repeated updating and adaptation of computational models. 
Advanced code optimization techniques can significantly 
reduce computational time.125 In addition to run-time, hard
ware resource demands that the model implementation 
imposes, such as usage of memory and energy, are factors 
to be considered. Moreover, the volume of code (lines of 
code) and its complexity126 play significant roles when asses
sing computational models. Moreover, ML methods often 
out-compete mechanistic, multi-scale models in terms of 
computational efficacy.127 Therefore, the incorporation of 
techniques ML can be advantageous for certain applications, 
such as for the prognosis of patients who may suffer from 
time-critical issues.128

To conclude this section, several factors that are relevant for 
comparing computational models are outlined in Table 6 – the 
table is not meant however to provide an exhaustive list of the 
relevant references. These factors can serve as a stepping stone 
to formulate an ecosystem comprising the multitude of com
putational models, and establish their strengths and 

weaknesses in a systematic benchmarking approach. 
Naturally, the factors need to be considered on a case-by-case 
basis, and their relative importance varies according to context 
and the stakes at hand.

4. Discussion and outlook

4.1. Modern mechanistic modelling approaches in cancer 
biomedicine

Agent-based models have proven to be invaluable tools for 
providing new insights and testing hypotheses on complex 
heterogeneous systems, including biological systems. In the 
context of cancer biomedicine, this novel mechanistic approach 
offers a unique way (a) to fuse information from in vitro and 
in vivo data including for instance gene expression and medical 
imaging,29 (b) to develop novel in silico procedures for patient 
diagnosis and neoplasia stratification,39 (c) to identify and com
pare the efficacy of potential treatment strategies59 as well as to 
narrow the cardinality of the set of possible experiments down to 
the most promising ones while also (d) to aid reducing animal 
testing and clinical trials on humans.47

Recent efforts aimed at employing ABM to model tumor 
tissues have been presented in subsection 2.1, which unveils 
the versatility of the approach. In fact, at multiple spatial and 
temporal scales, the models examined have demonstrated how 
various aspects of cancer dynamics can be captured, spanning 
from the pathogenesis to the growth and interaction with 
somatic cells. Furthermore, ABM offers a versatile framework 
that can be seamlessly integrated with other modeling 
approaches, facilitating validation against large-scale experi
mental datasets. ABM’s granular representation of individual 
entities and their interactions allows for the incorporation of 
detailed biological mechanisms, capturing emergent properties 
and system-level behaviors. This flexibility enables ABM to 
complement both traditional modeling techniques such as 
equation-based models which excel in capturing system-level 
dynamics and spatial gradients, and more recent data-driven 
approaches (see, for example, the excellent review by Metzcar 
et al.129). This integrative approach offers mutual benefits, as 
ABM provides detailed mechanistic insights that inform the 
development and refinement of equation-based models, while 
equation-based models provide a framework for scaling up 
ABM simulations to larger spatial and temporal scales. By 
combining the strengths of both approaches, investigators 
can construct hybrid models that bridge the gap between 
micro- and macroscopic phenomena, enabling a more com
prehensive understanding of system-level dynamics and facil
itating the design of targeted therapeutic interventions. Hence, 

Table 6. Benchmarking multi-scale computational models. Here, important criteria for benchmarking are shown, along with some example quantities that can be 
objectively measured and relevant references.

Criterion Quantities Reference(s)

Accuracy MSE, RMSE, F-score, 
ROC curve

28,95

Complexity # of model parameters, # of agents, connectivity density of ontology graph, Bayesian Information Criterion 119–122

Explanatory power black box vs. white box model, accordance with experimental data 
across scales

7,13,17,86

Model robustness/sensitivity coefficient of variation, sensitivity indices 28,66,124

Computational efficacy lines of code, run-time, memory usage, energy demand 125–128
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agent-based models are excellently suited to produce explana
tory powerful computational models that can integrate various 
data modalities, heterogeneous information as well as back
ground information that may not be readily available in the 
form of experimental measurements.

4.2. Calibration ‘recipes’ for validating the simulations of 
agent-based models

Calibration is the methodological procedure to compute 
model parameter configurations when the in silico model can 
produce realistic simulation outputs. This process can be 
approached from multiple perspectives and there is 
a plethora of tools capable to optimize the parameters and, 
thus, to improve the fidelity of large-scale agent-based models 
in cancer biomedicine. Independent of their inner workings, 
the calibration process is a ‘search’ in a large parameter space. 
This search can be guided (as in the case of ML-based 
approaches) by embedding information about the physics of 
the process being modeled or rules of the evolution of the 
process dynamics. While most of the calibration approaches 
formulate the ‘search’ as an optimization method (i.e., to 
minimize a distance among some performance indices), there 
is much more to gain from embedding rules and physics in the 
optimization process. This has been formally described in 
subsection 2.5, where a comparative benchmark has been 
developed to offer the readers a ‘recipe’ for approaching the 
validation of agent-based models through calibration. 
However, we acknowledge that there is no ‘one size fits all’ 
solution, and we thus recommend formulating the calibration 
process as suggested in subsection 3.1 followed by 
a benchmarking as suggested in subsection 3.2 and in 
Table 6. Besides, choosing the best fitting candidate from the 
“models zoo” is thoroughly covered in subsection 2.2 and in 
the excellent review of Metzcar and his colleagues.2 Starting 
there the reader could get a grasp on the necessary function
ality and capabilities of already successful simulation tools and 
machine learning and physics-informed learning algorithms in 
cancer biomedicine. Notably, it is currently not viable to 
quantitatively compare different ABM studies due to the 
model heterogeneity and the varying experimental data used 
for validation. We note that increasing usage of common 
experimental datasets and computational frameworks will 
help establish ways to compare agent-based models. Such 
benchmarks could then be used to justify the usage of specific 
ABM works over others, which will ultimately help bridge the 
gap toward clinical application.130 The models we described in 
our review are mainly preclinical, computational and biologi
cal. It has been very well emphasized by Markowetz130 that 
there is a wealth of models excelling in preclinical setups, but 
out of these only a few have ever been independently validated, 
let alone been adopted in the clinic. As we rolled out an 
interdisciplinary ABM-based tools overview that applies to 
cancer biomedicine, we still propose and encourage: (a) 
model developers to have a roadmap to clinical practice, (b) 
provide a model implementation and regulation plan to pre
pare the model for the clinic, and (c) regularly interact and 
exchange ideas with clinicians to stay abreast of their views and 
new developments in clinical practice.

4.3. Outlook to ‘non-invasive’ calibration of agent-based 
models

While a computer simulation is a cost-effective and safe way to 
evaluate hypotheses on new cancer therapies, immune – tumor 
interactions, and bio-physics of tumor invasion, existing simu
lators are often impractical due to inefficient and/or imprac
tical control interfaces. This hinders the data exchange of the 
simulation evolution with the ‘external’ world where signals, 
data, or decisions to update the temporal trajectory of the 
simulation might be applied. A mature simulator, under the 
control of external systems, can be used to run the models 
being tested within a closed-loop environment. However, 
state-of-the-art simulators are often impractical for the task 
at hand due to their inefficient control interfaces. The chal
lenges can be divided into two primary areas: the requirement 
for efficient synchronization, and the need for flexible and 
scalable data processing during runtime. In terms of the syn
chronization model, state-of-the-art ABM simulators primar
ily use a conservative step-based approach, which needs 
synchronization at every interaction point. However, the 
high frequency of interactions with the simulation process 
caused by data collection (i.e. probing) can result in an over
whelming amount of message flow, leading to significant over
head in the simulation execution. Alternatively, an optimistic 
approach that allows for full asynchronicity and causality 
violations exists, but implementing a rollback mechanism to 
address missing decision-making or data collection times is 
complex, error-prone, and not supported by most ABM simu
lators. Processing simulation data during runtime poses other 
challenges, e.g., storage and large volumes of simulation out
puts, secure and fast transfer of sensitive clinical data, extract
ing valuable insights from a limited data amount, making 
predictions based on an unevenly distributed sample etc. The 
objective is to dynamically instruct the running simulation, 
allowing it to store and output the data of interest while 
avoiding any redundancy. An essential yet challenging aspect 
of this problem is performing temporal operations and on-the- 
fly data processing within queries, for example, filtering or 
computing data to retrieve results over a specific time interval.

List of Acronyms

ABM Agent-Based Modeling
CAR Chimeric Antigen Receptor
CTLs Cytotoxic T Lymphocytes
ECM Extracellular Matrix
FEM Finite Element Method
GBM Glioblastoma
LHS Latin Hypercube Sampling
ML Machine Learning
ML-MM Machine Learning-assisted Mechanistic Modeling
MM Mechanistic Modeling
MMPs Matrix Metalloproteineases
MSE Mean Squared Error
ODE Ordinary Differential Equation
PDE Partial Differential Equation
QSP Quantitative Systems Pharmacology model
RMSE Root Mean Squared Error
ROC Receiver Operating Characteristic
TME Tumor Microenvironment
TNF Tumor Necrosis Factor
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