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Abstract  

Background: In the last few years, numerous novel designs have been proposed to improve the 

efficiency and accuracy of phase I trials to identify the maximum-tolerated dose (MTD) or the 

optimal biological dose (OBD) for non-cytotoxic agents. However, the conventional 3+3 

approach, known for its limited sample size and poor performance continues to be an attractive 

choice for many trials, despite these alternative suggestions. 

 

Objective: The article seeks to underscore the importance of moving beyond the 3+3 design by 

highlighting a different key element in trial design: the estimation of sample size and its crucial 

role in predicting toxicity and determining the MTD. We use simulation studies to compare the 

performance of the most used phase I approaches: 3+3, CRM, Keyboard and BOIN designs 

regarding three key operating characteristics: the percentage of correct selection (PCS) of the 

true MTD, the average number of patients allocated per dose level, and the average total sample 

size. 

 

Results: The simulation results consistently show that the 3+3 algorithm underperforms in 

comparison to model-based and model-assisted designs across all scenarios and metrics. The 3+3 

method yields significantly lower (up to three times) probabilities in identifying the correct 

MTD, often selecting doses one or even two levels below the actual MTD. The 3+3 design 

allocates significantly fewer patients at the true MTD, assigns higher numbers to lower dose 

levels, and rarely explores doses above the target DLT rate. 

 

Conclusions: The overall performance of the 3+3 method is suboptimal, with a high level of 

unexplained uncertainty and significant implications for accurately determining the MTD. While 



the primary focus of the paper is to demonstrate the limitations of the 3+3 algorithm, the 

question remains about the preferred alternative approach. The intention is not to definitively 

recommend one model-based or model-assisted method over others, as their performance can 

vary based on parameters and model specifications. However, the presented results indicate that 

the CRM, Keyboard, and BOIN designs consistently outperform the 3+3 and offer improved 

efficiency and precision in determining the MTD, which is crucial in early-phase clinical trials. 

 

 

Keywords: phase I dose-finding studies, small sample size, model-based designs, model-assisted 

designs, 3+3 algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

Sample size determination is a critical aspect of phase I dose-finding designs in clinical trials. 

“How many patients do I need?” is a challenging question that does not always have a simple 

answer and usually requires a collaborative effort between clinicians and statisticians to translate 

clinical goals into a study that generates reliable and meaningful results. In phase I studies, 

sample size estimation is a fundamental process that balances the need to ensure patient safety 

with the goal of selecting the optimal dose of a new drug (single agent or combination) to move 

forward into later phases of drug development. Traditionally, for cytotoxic oncology agents, the 

primary objective of phase I trials is the identification of the maximum tolerated dose (MTD) 

based on assessment of toxicity, with the underlying assumption that both toxicity and efficacy 

increase with the dose level. The primary toxicity endpoint is usually a binary dose-limiting 

toxicity (DLT, yes/no) based on protocol-specific adverse event definitions. Upon completion of 

dose escalation, the MTD is identified as the highest dose that can be administered with an 

acceptable level of toxicity.  

 In the last decades, the rapid therapeutic development of non-cytotoxic agents (e.g., 

molecularly targeted agents or immunotherapy agents) motivated the inclusion of additional 

endpoints in dose-escalation such as pharmacokinetics (PK), pharmacodynamics (PD) or 

markers of clinical efficacy. These novel agents can have lower toxicity profiles and efficacy 

may occur at doses that do not induce clinically significant toxicity (1–3). On these premises, 

recent dose-finding trials have incorporated a proof-of-principle of biologic effect, that is, 

evidence of antitumor activity or other immunologic parameters, and targeted the identification 

of the optimal biological dose (OBD) rather than the MTD. Several sophisticated dose escalation 

designs (e.g., bivariate models versus joint models, binary versus ordinal endpoints) have been 

proposed in the context of OBD in an attempt to consider both efficacy and toxicity during the 



course of the study (4–8). Recent publications have suggested to guide the escalation decisions 

based on toxicity only and incorporate the efficacy and PK/PD markers at study end to choose 

the OBD dose (9,10). However, the majority of phase I oncology trials are still driven by a single 

binary toxicity endpoint with the MTD being the primary trial objective (11). Various dose-

finding methods have been proposed for designing phase I trials. Comparisons of these methods 

have been covered thoroughly in the literature including in recent reviews (12), and guidelines 

on key aspects of trial design have been published for the clinical community (13,14). The three 

main approaches currently used in phase I studies are: rule-based, model-based, and model-

assisted designs.  

Rule-based or algorithmic designs such as the 3+3 continue to be popular approaches 

for dose-finding mainly due to the practical simplicity (15–17). The 3+3 assigns patients 

sequentially starting at the lowest dose and escalating after every three to six patients per dose; 

the recommended dose is defined as the largest dose with fewer than two patients experiencing a 

DLT during the observation window (i.e., first treatment cycle). With no underlying dose-

toxicity model, dose escalation relies more on empirical reasoning and several limitations have 

been consistently raised over time. The 3+3 algorithm lacks the capability to specify a target 

DLT rate, is slow in escalation, has high error rates that lead to inaccurate dose 

recommendations, and enrolls a significant proportion of patients at subtherapeutic doses 

(16,18). Since cohorts are limited to six patients per dose, in order to obtain additional evidence 

for further characterizing safety and preliminary efficacy signals, trials have used prespecified 

expansion cohorts after the dose-escalation component of the trial is completed (19,20). 

Model-based designs have been developed to target a pre-specified toxicity rate and 

improve precision in estimating the MTD and/or recommended phase 2 dose (RP2D) as well as 



efficacy during the dose escalation. Implemented in both Bayesian and Frequentist frameworks, 

model-based designs use a pre-specified dose-toxicity curve that is updated with observed 

toxicity data as the trial proceeds. With increasing awareness of the limitation and poor operating 

characteristics of the algorithmic design, investigators (especially from the pharmaceutical 

industry) have been more open to using model-based designs that achieve a better estimation of 

the target DLT rate at the MTD/RP2D while minimizing suboptimal dosing (21–24).  One of the 

most commonly applied model-based approaches is the Continual Reassessment Method (CRM) 

(25) and its variants that can incorporate both toxicity (including late-onset) and efficacy 

outcomes and can be implemented for testing single and multiple-agent combinations (5,26–28). 

Despite several advantages of model-based designs over traditional 3+3 designs, the high 

requirement of statistical and computational expertise coupled with the lack of predetermined 

algorithms to be followed limited their adoption in phase I trials. 

Model-assisted designs can be viewed as a hybrid between rule- and model-based 

designs. This category also relies on a statistical model for decision making, but like rule-based 

designs, the escalation/de-escalation rules can be tabulated before the trial starts and easily 

followed for dose allocation. Examples of model-assisted designs include the modified toxicity 

probability interval designs: mTPI (29), Keyboard/mTPI-2 (30,31) and the Bayesian Optimal 

Interval (BOIN) design (32). Simulations results showed that the model-assisted designs 

significantly outperform the 3 + 3 design and have comparable characteristics to model-based 

designs on several metrics, including the accuracy of identification of the MTD, allocation of 

patients to the MTD and reduction of overdosing risk (33,34). 

In a recent article published in the American Society of Clinical Oncology Educational 

Book, Kurzrock et al., 2021, provide a comprehensive review of the status quo in phase I trial 



design methodology highlighting the superiority of model-based or model-assisted designs 

compared with traditional 3+3 design in efficiency, safety, and flexibility. They also emphasize 

that “there is no reason that the ‘standard of trial design’ has to be fixed in the traditional 3+3 

design, ignoring the demonstrated advantages of novel designs” (12). On the same note, this 

article aims to reinforce the message of stepping away from the 3+3 by focusing upon another 

critical aspect of trial design: sample size estimation and understanding its critical role in 

estimating toxicity and the MTD.  

So, what constitutes an adequate sample size? In phase I trials, the sample size is 

generally determined considering two metrics: the percentage of correct selection (PCS) of the 

true MTD and the average number of patients allocated per dose level. We are using these 

measures in simulation studies to compare the performance of the most used phase I approaches: 

3+3, CRM, Keyboard and BOIN designs. The objective of this study is not to recommend the 

‘best’ model-based or method-assisted method, but to demonstrate the poor behavior and 

emphasize the severe limitations of the 3+3 under different toxicity scenarios. 

 

Overview of Selected Dose-Escalation Designs  

3+3 Algorithm 

This rule-based design guides ‘up-and-down’ decisions, using the modified Fibonacci 

mathematical series to determine the amount of dose increase for cohorts of sequentially enrolled 

patients. In a 3 + 3 design, three patients are initially enrolled into a given dose cohort. If no DLT 

is observed in any of these subjects, the trial proceeds to enroll additional patients into the next 

higher dose cohort. If one subject develops a DLT at a specific dose, an additional three subjects 

are enrolled into that same dose cohort. The dose escalation continues until at least two patients 



among a cohort of three to six patients experience DLTs (i.e., ≥33% of patients with a DLT at 

that dose level). The MTD is then defined as one dose level just below this toxic level. 

As previously mentioned, the 3+3 has no specific target DLT rate. Using only data at the current 

dose to choose the next dose and MTD, the algorithm results in uncertainty surrounding the 

estimated DLT at each dose, with values ranging between 17% and 33% (35, 38). 

 

Continual Reassessment Method (CRM) 

The original CRM was implemented in a Bayesian framework relying on the use of a working 

dose-toxicity model with a prior distribution to sequentially update the dose-toxicity curve and 

estimate the dose level at which to treat the next available cohort of patients. The dose-toxicity 

model describes the probability of a patient experiencing a DLT at a given dose. The most 

common implementation of the CRM uses the ‘empiric’ model  𝐹(𝑑𝑘 , 𝑎) = 𝑑𝑘
exp⁡(𝑎)

, with a mean 

zero normal prior 𝑁(0, 𝜎𝑎
2) (25). The model is updated with accumulating toxicity data from the 

trial and allocates the next patient cohort to the dose level with an estimated DLT rate closest to 

the prespecified target rate (varying between 20 to 35%). Simulations showed that the CRM 

design achieves the recommended MTD after a median of three to four patients fewer than the 

‘3+3’ design (36). This not only reduces the cost and time required for the trial but also reduces 

the risk to patients by minimizing their exposure to potentially toxic doses. 

 

Modified Toxicity Probability Interval (mTPI) and Keyboard Designs 

The mTPI design starts with a definition of three toxicity probability intervals: underdosing, 

proper dosing, and overdosing intervals. A Bayesian framework, taking into consideration the 

relative distance between toxicity rate at each dose level and target probability for a fixed sample 



size, is used to calculate the posterior probabilities of intervals. Patients in the first cohort are 

treated at the lowest dose level and the next assignments (escalation/de-escalation) are made 

based on prespecified algorithmic-like rules until the maximum sample size is reached or a 

certain number of patients is treated at a single dose (e.g., 6 or 9). In mTPI the overdosing 

interval is typically wider than the proper dosing interval; this can lead to a high risk of overdose 

of patients (at doses greater than the MTD). The Keyboard design (also known as mTPI-2) 

addresses the overdose issue by using a dose escalation determined by the location of the 

strongest key relative to the target dosing interval that includes target toxicity θ. The strongest 

key is defined to be the dosing interval that most likely contains the current dose’s true toxicity 

rate, which is determined based on the posterior probability that each interval includes the target 

toxicity. With substantially lower risk of overdosing patients and better accuracy in identifying 

the MTD, the Keyboard design has been shown to outperform the mTPI (31). 

 

Bayesian Optimal Interval (BOIN) Design 

The BOIN design mimics the 3+3 simplicity and makes the dose escalation/de-escalation 

recommendations by comparing 𝑝̂, the observed DLT rate at the current dose, with two 

boundaries (𝜆𝑒, 𝜆𝑑) that depend on a target toxicity rate. Specifically, 𝑝̂ is defined as the number 

of patients experiencing DLT at the current dose divided by the total number of DLT-evaluable 

patients treated at the current dose. The design starts by treating a cohort of patients at the lowest 

dose and subsequent dose assignments are based on the following rules: if 𝑝̂ ≤ 𝜆𝑒, escalate the 

dose to the next higher level; if  𝑝̂ ≥ 𝜆𝑑, de-escalate the dose to the next lower level; otherwise, 

stay at the current dose. These steps repeat until the maximum sample size is reached or a certain 

number of patients is treated at a single dose (e.g., 9 or 12). More details of determining the two 



boundaries for commonly used target toxicity rates are provided in Yuan et al, 2016 (32). 

Simulations studies showed that the BOIN design is more likely to correctly select the MTD and 

allocate more patients to the MTD than the 3+3 design and it has a lower risk of overdosing 

patients than the mTPI design. Comparisons of BOIN and CRM suggested that these two designs 

have comparable performance (37). 

 

Phase I Trial Example  

For illustration we consider a hypothetical phase I trial that aims to identify the MTD of a single 

agent defined as the dose with a DLT rate 𝜃 = 0.33. Five prespecified doses are considered with 

a cohort size of three patients. The trial starts with the first cohort of patients receiving dose level 

1. For the CRM, Keyboard and BOIN designs, we chose 𝜃 = 0.33 as target toxicity rate. For the 

3+3 design, the target DLT is not actually specified, thus the MTD is determined according to 

the rules described above. The prespecified maximum sample size is of 30 patients (i.e., six 

times the number of dose levels). The number of doses investigated in a trial is often driven by 

clinical considerations. Previous reviews of phase I trials have shown that the median number of 

dose levels explored was 5 (range 2–12) (39). Moreover, Wheeler et al., 2019, show that 

different dose range choices affect MTD selection; too few doses may lead to inaccurate MTD 

estimation, while too many doses may have a slow dose escalation towards the MTD (40). 

 

Design Specifications and Simulations Setting 

Simulations were performed using the following software/apps: 3+3 - R function ssim3p3 

(UBCRM package), CRM web application (41) available at https://uvatrapps.shinyapps.io/crmb/, 

and web applications “Keyboard” and “BOIN” (BOIN V2.7.6.0) available at 

https://uvatrapps.shinyapps.io/crmb/


http://www.trialdesign.org. For the CRM, Keyboard and BOIN designs we implemented the 

default and/or recommended parameters specified in the web applications.  

For the Bayesian CRM, we employed the ‘empiric’ model with the least non-informative normal 

prior distribution 𝑁(0, 𝜎𝑎
2), with a standard deviation 𝜎𝑎 = 0.94 on the model parameter a (25). 

The skeleton values (i.e., initial DLT probability estimates) were generated by setting the prior 

MTD (𝜈) to be the median dose (42, 43), and a spacing measure (𝛿) of 0.05 (44), which produce 

reasonable skeletons for many scenarios. The trial stops for safety if the lower limit of the 90% 

probability interval for the lowest study dose level exceeds the target DLT rate.  

For the Keyboard (i.e., mTPI-2) design the acceptable toxicity probability interval 

corresponding to the target DLT rate is (0.28, 0.38). Patients in the first cohort are treated at the 

lowest dose level, and the next dose escalation/de-escalation assignments are conducted 

according to the rules displayed in Table S1.  

The BOIN design uses the following rules to guide dose escalation/de-escalation: if the 

observed DLT rate at the current dose is ≤ 0.26 (𝜆𝑒), escalate the dose to the next higher dose 

level; if the observed DLT rate at the current dose is > 0.395⁡(𝜆𝑑), de-escalate the dose to the 

next lower dose level; otherwise, stay at the current dose. These boundaries are dependent on 

target DLT (in our example 0.33) and they use a binomial model to minimize the incorrect 

decisions of escalation/de-escalation the dose when it is actually greater/lower than the MTD 

(37). If there is a 95% probability that toxicity at a certain dose exceeds 0.33, then the current 

dose and all higher levels are eliminated. Dose escalation/de-escalation assignments are 

conducted according to the rules displayed in Table S2. 

 

http://www.trialdesign.org/


In the case of CRM, Keyboard, and BOIN simulations, the trial ends either upon reaching the 

maximum sample size of 30 or when the recommendation is to assign the next cohort to a dose 

that has already been assigned to 9 patients (maximum). This additional stopping rule proves 

advantageous in saving sample size and reducing the trial duration, particularly in scenarios 

where there is prior knowledge that the first dose is safe. 

As shown in Figure1, four dose-toxicity scenarios are considered with five dose levels. 

All scenarios, inspired by clinical applications, assume a monotonic increasing relationship, with 

various slopes, locations and spacing of the true MTD. We ran 1,000 simulations per scenario 

and computed the following operating characteristics for each method: the percentage of correct 

selection (PCS) of the true MTD, the percentage of early stopping, the average number of 

patients allocated per dose, and the average total sample size.  

 

Results 

Tables 1 and 2 show the operating characteristics of the four dose escalation methods under 

different dose-toxicity scenarios, with the true MTD (target DLT rate of 0.33) varying from dose 

level 1 to dose level 5. Toxicity probabilities are based on clinical applications and with the 

objective of observing the methods’ more extreme behavior under high or low toxicity profiles, 

as seen in scenarios 1 and 4, respectively.  

Simulation results indicate that under all scenarios and metrics, the 3+3 considerably 

underperforms compared to model-based and model-assisted designs. Table 1 presents the 

percentages of correctly selecting (PCS) the MTD and early stopping generated by the four 

approaches. In three out of four scenarios, the algorithm fails to recommend the true MTD 

generating the highest percentage of selection at one or even two dose levels below it. 



This conservative nature and risk of underestimation are on par with previous theoretical results 

showing that in fact 3+3 targets DLT rates between 16% to 27% (33). In scenario 1, where the 

true MTD is dose level 1, the 3+3 correctly identifies it in only 30.7% of the simulated trials and 

stops with no recommendation for the MTD 63.9% of the time. Overall, with a high percentage 

of unexplained uncertainty and severe implications on accurately determining the MTD, the 

algorithm never exceeds 44% in (correct or incorrect) MTD selection. 

An attractive feature of the 3+3 is the small sample size. Enrolling a small number of 

patients is usually faster and less logistically challenging than recruiting larger cohorts. Results 

in Table 2 show that with five doses the 3+3 produces average sample sizes ranging from 7.4 to 

18.5 saving an average of five patients in total compared to CRM and up to nine patients 

compared to BOIN and Keyboard designs. However, in terms of allocation per dose, the 

algorithm treats up to 50% less patients at the true MTD, generates higher allocations at lower 

dose levels and barely visits dose levels above the target DLT rate. As a result, the identified 

MTD may not be optimal and there may be a higher risk of underestimating or overestimating 

toxicity. From an ethical point of view, if assuming an underlying increasing dose-efficacy 

relationship, this inefficient patient allocation exposes patients to subtherapeutic doses (as seen 

in our simulations) raising concerns about patient welfare. Notably, our simulations consider a 

fixed sample size of 30, chosen to equal the maximum number of patients that could be enrolled 

under the 3+3 setting. In practice though, expanding phase I trials to include dose-expansion 

cohorts has become common in the last decade. These expansion cohorts usually follow a 3+3 

dose escalation and are used to collect more information at the estimated MTD to further define 

safety and collect preliminary signs of efficacy. A recent analysis found that dose-expansion 

cohorts enrolled up to 271 patients and were less likely used for testing cytotoxic agents (45). 



Alternatively, the CRM and BOIN have the advantage of allowing for flexibility in sample size 

and previous studies have shown that these models can have a sizable impact on reducing the 

sample size, while maintaining the ability to identify the MTD (46).  

While the focus of this paper is to demonstrate the poor performance of the 3+3 

algorithm, the inevitable question remains: what method should be used instead? Our goal is not 

to ultimately and decisively recommend one of the model-based or mode-assisted approaches, as 

their operating characteristics can vary depending on several parameters and model 

specifications (and across scenarios, though that is not the scope here). Tables 1 and 2 show that 

the CRM, Keyboard and BOIN designs have similar levels of efficiency for identifying the MTD 

and generate PCS values two or three times (scenario 4) higher than the 3+3. In some situations, 

the non-algorithmic designs select the true MTD in less than 50% of the trials, but still show a 

significant improvement from the 3+3. Overall, the CRM correctly selects the true MTD in all 

toxicity scenarios with the smallest average number of patients treated per dose and total sample 

size. The BOIN and Keyboard designs have almost identical results, but that is expected under 

these simulations setting since both follow the same escalation/de-escalation rules (see Tables S1 

and S2). 

 

Discussion 

Several factors can affect the efficiency of a phase I trial (e.g., number of patients enrolled and 

the proportion of those treated at subtherapeutic doses, number of dose levels tested, target DLT 

rate, trial duration). Phase I trials are usually small with a limited number of patients (i.e., 12 to 

30) and the maximum sample size being set as six times the number of dose levels considered. 

This estimation is often inspired from the 3+3 setting, with no other clear justification. In this 



paper, we seek to compare the relative performances of several phase I clinical trial designs 

under such a fixed sample size setting and point out several limitations with using the 3+3 

algorithm and its simplistic sample size approach. We have ultimately demonstrated that, 

regardless of the underlying true DLT scenario, the 3+3 has a poor performance with a low 

ability of identifying the MTD and high risk of underdosing. The performances of the model-

assisted designs (i.e., BOIN and Keyboard/mTPI-2) are comparable to that of the model-based 

CRM design and overall superior to the 3+3. However, in most scenarios, a fair amount of 

uncertainty remains even with model-based/assisted approaches. This is to be expected with any 

study that uses a fixed small sample size which is often the case in early phase dose-finding 

trials. The adequate sample size varies with different parameters such as target toxicities, 

different dose-toxicity relationships, and range of doses. Our goal was not to extensively study 

the design characteristics and propose an optimal sample size, but to show that the ‘standard’ 

3+3 setting consistently fails and that model alternatives are to be preferred. We should not 

necessarily assume that a larger sample size leads to improved accuracy. The answer is not 

straightforward and should be addressed in the planning stage of the trial by performing 

simulations with input from the clinical team. Another misconception regards the number of 

doses and novel designs’ inability to provide much benefit in the event of fewer doses. Zhu et al., 

2019 show that even with three dose levels, the 3 + 3 design still performs much worse than the 

CRM, BOIN, and Keyboard designs (47). The choice of cohort size is another important factor 

impacting sample size calculations. Three patients per cohort is, again, not based on any 

statistical justification, but rather on practicality and simplicity. Model-based approaches can be 

implemented for one or more patients per cohort and thereby allow for a more frequent updating 



of dose-toxicity curves, a more accurate MTD estimation and skewing of patients’ allocation to 

more promising/effective doses.  

In the era of molecularly targeted agents (MTA) and biological agents, the assumption of 

monotonic toxicity is not necessarily met. The novel agents have different toxicity profiles and 

may show non-monotonic dose-efficacy curve (e.g., plateau of antitumor effect). Under these 

circumstances, toxicity is no longer the main endpoint of interest and the process of selecting the 

optimal biological dose (OBD) usually incorporates both measures of toxicity and efficacy. The 

3+3 design’s use of solely toxicity to guide dose escalation makes it a very reductionist 

approach, unlikely to be optimized to ascertain the OBD.  

Lastly, model-based and model-assisted designs can adeptly handle a broader range of 

endpoints beyond binary DLT including ordinal (48) or time-to-event outcomes (26,49). These 

designs are also better suited for evaluating combination therapies, which pose unique challenges 

due to the larger dimensions of the dose search space and the partial ordering among drug 

combinations. 

Therefore, all evidence from simulations or real trials suggests that the 3+3 no longer has a place 

in the design of phase I trials, especially nowadays, when implementation of model-based/-

assisted designs is increasingly facilitated by freely available, user-friendly software. 
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Tables 

Table 1. Percentage of correctly selecting the MTD and early stopping generated by 

the four approaches 

  Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 % Early 

Stopping  

Scenario 1  0.33 0.50 0.56 0.61 0.67  

% MTD 

Selection  

3+3 30.7 4.9 0.4 0.1 0 63.9 

CRM 71.9 13.1 2.3 0.2 0 12.5 

 Keyboard 74.2 13.6 1.0 0 0 11.2 

 BOIN 74.7 13.4 0.9 0.1 0 10.9 

Scenario 2  0.16 0.33 0.45 0.52 0.60  

% MTD 

Selection  

3+3 44.3 25.8 5.0 0.6 0.1 24.2 

CRM 32.9 41.6 20.5 3.8 0.2 1.0 

 Keyboard 28.1 50.3 16.6 3.5 0.1 1.4 

 BOIN 28.4 49.7 17.1 3.4 0.1 1.3 

Scenario 3  0.05 0.15 0.25 0.33 0.45  

% MTD 

Selection 

3+3 19.5 34.1 27.8 12.8 3.5 2.3 

CRM 1.4 13.8 34.3 35.6 14.9 0 

 Keyboard 1.4 15.7 35.0 32.7 15.2 0 

 BOIN 1.3 15.9 34.6 33.3 14.8 0 

Scenario 4  0.02 0.08 0.12 0.18 0.33  

% MTD 

Selection  

3+3 7.5 12.7 23.3 36.8 19.4 0.3 

CRM 0 1.5 5.1 29.5 63.9 0 

 Keyboard 0.1 1.7 6.9 30.4 60.9 0 

 BOIN 0.1 1.7 6.9 30.4 60.9 0 

  Operating characteristics are averaged across 1,000 simulated trials. 

  CRM: Continual Reassessment Method; Keyboard Design; BOIN: Bayesian Optimal Interval Design 

  % Early Stopping refers to early stopping due to excessive DLTs at the lowest dose. 

 

 

 

 

 

 

 

 

 



 

Table 2. Average sample size and number of patients treated per dose generated by 

the four approaches 

  Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 # Total 

Patients 

Scenario 1  0.33 0.50 0.56 0.61 0.67  

# Patients 

treated  

3+3 5.2 1.9 0.3 0.03 0 7.4 

CRM 7.9 2.9 0.6 0.04 0 11.4 

 Keyboard 8.9 4.3 0.6 0.05 0 13.9 

 BOIN 8.9 4.3 0.5 0.05 0 13.8 

Scenario 2  0.16 0.33 0.45 0.52 0.60  

# Patients 

treated 

3+3 5.1 4.1 1.6 0.3 0.06 11.2 

CRM 6.4 6.1 3.3 0.7 0.1 16.6 

 Keyboard 7.6 8.4 3.7 0.9 0.1 20.7 

 BOIN 7.5 8.3 3.7 0.9 0.1 20.5 

Scenario 3  0.05 0.15 0.25 0.33 0.45  

# Patients 

treated 

3+3 3.9 4.7 4 2.4 0.9 15.9 

CRM 3.9 5.1 5.9 4.6 1.9 21.4 

 Keyboard 3.8 6.2 7.1 5 2.2 24.3 

 BOIN 3.8 6.2 7 5 2.2 24.2 

Scenario 4  0.02 0.08 0.12 0.18 0.33  

# Patients 

treated 

3+3 3.4 3.9 4.1 4.2 2.9 18.5 

CRM 3.3 3.9 4.4 5.8 6.3 23.7 

 Keyboard 3.2 4.2 4.9 6.5 6.6 25.4 

 BOIN 3.1 4.2 4.9 6.5 6.5 25.2 
  Operating characteristics are averaged across 1,000 simulated trials. 

  CRM: Continual Reassessment Method; Keyboard Design; BOIN: Bayesian Optimal Interval Design 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 

 

Figure 1 legend: Dose-toxicity scenarios as a function of dose level. Dashed line marks the target 

dose limiting toxicity (DLT) rate θ=0.33 

 

Supplementary Tables 

Table S1. Dose escalation/de-escalation rules for the keyboard design 

  

Number of patients treated at the current dose 1 2 3 4 5 6 7 8 9 

Escalate if # of DLT ≤ 0 0 0 1 1 1 1 2 2 

Deescalate if # of DLT ≥ 1 1 2 2 2 3 3 4 4 

Eliminate if # of DLT ≥ NA NA 3 3 4 4 5 5 6 

Note. “of DLT” is the number of patients with at least one DLT. When none of the actions (i.e., escalate, de-escalate 

or eliminate) is triggered, stay at the current dose for treating the next cohort of patients. “NA” means that a dose 

cannot be eliminated before treating three patients. 

 

Table S2. Dose escalation/de-escalation rule for the BOIN design  

Number of patients treated at the current dose 1 2 3 4 5 6 7 8 9 

Escalate if # of DLT ≤ 0 0 0 1 1 1 1 2 2 

Deescalate if # of DLT ≥ 1 1 2 2 2 3 3 4 4 

Eliminate if # of DLT ≥ NA NA 3 3 4 4 5 5 6 

Note. “# of DLT” is the number of patients with at least one DLT. When none of the actions (i.e., escalate, de-

escalate or eliminate) is triggered, stay at the current dose for treating the next cohort of patients. “NA” means that a 

dose cannot be eliminated before treating three patients.  


